Sample records for vent building ventilation

  1. Building America Case Study: Design Guidance for Passive Vents in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  2. Measure Guideline: Passive Vents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, David; Neri, Robin

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  3. Using spacecraft trace contaminant control systems to cure sick building syndrome

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1994-01-01

    Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.

  4. Venting of attics & cathedral ceilings

    Treesearch

    William B. Rose; Anton TenWolde

    2002-01-01

    Current building codes typically call for attic ventilation to minimize condensation on the underside of roof sheathing. Summer cooling of attic air, minimizing ice dams, and extending the service life of the roof materials often are cited as additional benefits of attic ventilation. In fact, most asphalt shingle manufacturers warrant their products only for ventilated...

  5. My School Makes Me Sick: Cheap Solutions to Environmental Problems in Schools.

    ERIC Educational Resources Information Center

    Wiley, Robert

    This paper presents 19 solutions to problems within the school environment: (1) ventilation (e.g., keep the thermostat fan on whenever the room is occupied); (2) filters (e.g., get rid of 20 percent cheap filters); (3) clean the ductwork; (4) avoid car and bus fumes by keeping vehicles 50 feet from the building; (5) sewer vents (vents must…

  6. Natural ventilation of buildings: opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  7. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  8. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  9. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  10. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  11. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  12. 40 CFR 63.7765 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... through windows, vents, or other general building ventilation or exhaust systems are not considered to be... final shape, and harden the formed aggregate. This definition does not include a line for making green...

  13. Evaluation of Passive Vents in New Construction Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean Maxwell; Berger, David; Zuluaga, Marc

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high performance, new construction, multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards.

  14. Technology Solutions Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the "normal leakage paths through the building envelope" disappear. Consortium for Advanced Residential Buildings researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust withmore » ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. This research effort included several weeks of building pressure monitoring to validate system performance of the different strategies for providing make-up air to apartments.« less

  15. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  16. Assessment of Natural Ventilation System for a Typical Residential House in Poland

    NASA Astrophysics Data System (ADS)

    Antczak-Jarząbska, Romana; Krzaczek, Marek

    2016-09-01

    The paper presents the research results of field measurements campaign of natural ventilation performance and effectiveness in a residential building. The building is located in the microclimate whose parameters differ significantly in relation to a representative weather station. The measurement system recorded climate parameters and the physical variables characterizing the air flow in the rooms within 14 days of the winter season. The measurement results showed that in spite of proper design and construction of the ventilation system, unfavorable microclimatic conditions that differed from the predicted ones caused significant reduction in the efficiency of the ventilation system. Also, during some time periods, external climate conditions caused an opposite air flow direction in the vent inlets and outlets, leading to a significant deterioration of air quality and thermal comfort measured by CO2 concentration and PMV index in a residential area.

  17. A study of building structural features associated with high indoor air concentrations of organochlorine termiticides.

    PubMed

    Pisaniello, D L; Gun, R T; Tkaczuk, M N; Hann, C; Crea, J

    1993-09-01

    As part of a two-year study of post-treatment residential exposure to the termiticide, aldrin, the building structural features of ten houses with crawl-space-type floors were assessed by an independent inspector. Building attributes recorded on a checklist included the age of the dwelling, room characteristics, floor details and the nature of subfloor ventilation. At the end of each inspection, the inspector, who was blinded to data on airborne aldrin concentrations, provided a rating of expected indoor air contamination. Several of the building attributes, including the age of the house, the area of exterior subfloor vents, as well as the inspector's rating, were significantly correlated with airborne aldrin values. No single building variable, however, was highly correlated with every measure of aldrin concentration over a 12-month period. The observed data are consistent with poor subfloor ventilation and a 'leaky' floor being important contributors to indoor air pollution. It is recommended that pest control companies advise householders about any obvious floor and ventilation deficiencies before soil treatment work is undertaken. Pesticide exposure (by analogy with geological radon exposure) may be reduced by sealing gaps in floors and/or by improving subfloor ventilation.

  18. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  19. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  20. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  1. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  2. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent or...

  3. Evaluation of Passive Vents in New Construction Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sean; Berger, David; Zuluaga, Marc

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unitmore » HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.« less

  5. Closed loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes.

    PubMed

    Arnal, Jean-Michel; Garnero, Aude; Novotni, Dominik; Corno, Gaëlle; Donati, Stéphane-Yannis; Demory, Didier; Quintana, Gabrielle; Ducros, Laurent; Laubscher, Thomas; Durand-Gasselin, Jacques

    2018-01-01

    There is an equipoise regarding closed-loop ventilation modes and the ability to reduce workload for providers. On one hand some settings are managed by the ventilator but on another hand the automatic mode introduces new settings for the user. This randomized controlled trial compared the number of manual ventilator setting changes between a full closed loop ventilation and oxygenation mode (INTELLiVENT-ASV®) and conventional ventilation modes (volume assist control and pressure support) in Intensive Care Unit (ICU) patients. The secondary endpoints were to compare the number of arterial blood gas analysis, the sedation dose and the user acceptance. Sixty subjects with an expected duration of mechanical ventilation of at least 48 hours were randomized to be ventilated using INTELLiVENT-ASV® or conventional modes with a protocolized weaning. All manual ventilator setting changes were recorded continuously from inclusion to successful extubation or death. Arterial blood gases were performed upon decision of the clinician in charge. User acceptance score was assessed for nurses and physicians once daily using a Likert Scale. The number of manual ventilator setting changes per 24 h-period per subject was lower in INTELLiVENT-ASV® as compared to conventional ventilation group (5 [4-7] versus 10 [7-17]) manuals settings per subject per day [P<0.001]). The number of arterial blood gas analysis and the sedation doses were not significantly different between the groups. Nurses and physicians reported that INTELLiVENT-ASV® was significantly easier to use as compared to conventional ventilation (P<0.001 for nurses and P<0.01 for physicians). For mechanically ventilated ICU patients, INTELLiVENT-ASV® significantly reduces the number of manual ventilator setting changes with the same number of arterial blood gas analysis and sedation dose, and is easier to use for the caregivers as compared to conventional ventilation modes.

  6. Occupancy-driven smart register for building energy saving (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjie; Wang, Ya S.

    2017-04-01

    The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise shape and air flow control. The performance and the specification of the smart registers will be characterized experimentally. Its capacity of regulating airflow, forming air curtain will be demonstrated.

  7. Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air tomore » apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.« less

  8. Building America Case Study: Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    "9One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests thatmore » observed temperature, humidity, and pressure conditions through the home and crawlspace. Additionally, CARB worked with NREL to perform multi-point tracer gas testing on six separate ventilation strategies - varying portions of 62.2 required flow supplied by the crawlspace fan and an upstairs bathroom fan. The intent of the tracer gas testing was to identify effective Reciprocal Age of Air (RAoA), which is equivalent to the air change rate in well-mixed zones, for each strategy while characterizing localized infiltration rates in several areas of the home.« less

  9. Home Ventilator Guide

    MedlinePlus

    ... SpO 2 , low minute ventilation,apnea, high leak, non-vent- ed mask, circuit occlusion/discon- nect, malfunction, ... failure, block tube, tube discon- nect, high leak, non- vented mask, low minute volume, apnea, low SpO ...

  10. 49 CFR 192.187 - Vaults: Sealing, venting, and ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vault or pit is sealed, each opening must have a tight fitting cover without open holes through which an... Components § 192.187 Vaults: Sealing, venting, and ventilation. Each underground vault or closed top pit....7 cubic meters): (1) The vault or pit must be ventilated with two ducts, each having at least the...

  11. Sonic Anemometry to Measure Natural Ventilation in Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, uo ≥ 4 m s−1) reaching 36.3% when wind speed was lower (uo = 2 m s−1). PMID:22163728

  12. Sonic anemometry to measure natural ventilation in greenhouses.

    PubMed

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  13. Indoor air quality in 24 California residences designed as high-performance homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Mullen, Nasim; Singer, Brett

    2015-01-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California. Although the mechanically vented homes were six times as airtight as non-mechanically ventilated homes (medians of 1.1 and 6.1 ACH 50, n=11 and n=8, respectively), their use of mechanical ventilation systems and possiblymore » window operation meant their median air exchange rates were almost the same (0.30 versus 0.32 hr -1, n=8 and n=8, respectively). Pollutant levels were also similar in vented and unvented homes. In addition, these similarities were achieved despite numerous observed faults in complex mechanical ventilation systems. More rigorous commissioning is still recommended. Cooking exhaust systems were used inconsistently and several suffered from design flaws. Failure to follow best practices led to IAQ problems in some cases. Ambient nitrogen dioxide standards were exceeded or nearly so in four homes that either used gas ranges with standing pilots, or in Passive House-style homes that used gas cooking burners without venting range hoods. Homes without active particle filtration had particle count concentrations approximately double those in homes with enhanced filtration. The majority of homes reported using low-emitting materials; consistent with this, formaldehyde levels were approximately half those in conventional, new CA homes built before 2008. Emissions of ultrafine particles (with diameters <100 nm) were dramatically lower on induction electric cooktops, compared with either gas or resistance electric models. These results indicate that high performance homes can achieve acceptable and even exceptional IAQ by providing adequate general mechanical ventilation, using low-emitting materials, providing mechanical particle filtration, incorporating well-designed exhaust ventilation for kitchens and bathrooms, and educating occupants to use the kitchen and bath ventilation.« less

  14. ENERGY STAR Certified Ventilating Fans

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  15. 40 CFR 63.8246 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...

  16. 40 CFR 63.8246 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...

  17. 40 CFR 63.8246 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...

  18. 40 CFR 63.8246 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...

  19. 40 CFR 63.8246 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...

  20. VOC Emission Reduction Study at the Hill Air Force Base Building 515 Painting Facility

    DTIC Science & Technology

    1990-09-01

    occurs during painting. A system for decreasing the flow to a downstream VOC emission control device can be designed that takes advantage of this...paint application process. A flow-reducing ventilation system that takes advantage of this operating characteristic can be designed in which the...flow from the second duct is vented to a VOC emission control device. The advantage of this system is that the flow rate to a VOC emission contro

  1. Do the components of heat and moisture exchanger filters affect their humidifying efficacy and the incidence of nosocomial pneumonia?

    PubMed

    Thomachot, L; Vialet, R; Arnaud, S; Barberon, B; Michel-Nguyen, A; Martin, C

    1999-05-01

    To compare the efficiency of two heat and moisture exchange filters (HMEFs) of different compositions of the humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in patients in the intensive care unit (ICU). Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for 24 hrs or more during the study period. At admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with Humid-Vent Filter Light HMEF. The condensation surface was made of paper impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with the Clear ThermAl HMEF (Intersurgical, France). The condensation surface was made of plastic foam impregnated with AlCl2. The filter membrane was made of two polymer fibers (modacrylic and polypropylene). In both groups, HMEFs were changed daily. Seventy-seven patients were ventilated for 19+/-7 days with the Humid-Vent Filter Light HMEF and 63 patients for 17+/-6 days with the Clear ThermAl HMEF. Patients ventilated with the Humid-Vent Filter Light underwent 8.7+/-3.7 tracheal aspirations and 1.2+/-2.0 instillations per day and those with the Clear ThermAl, 8.2+/-3.9 and 1.5+/-2.4 per day, respectively (NS). The abundance of tracheal secretions and the presence of blood and viscosity, as evaluated by semiquantitative scales, were similar in both groups. One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF and none with the other HMEF (NS). Tracheal colonization was observed at a rate of 91% with the Humid-Vent Filter Light and 97% with the Clear ThermAl (NS). The rate of ventilator-associated pneumonia was similar in both groups (35%). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Despite differences in their components, the two HMEFs that were tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected, and very few patients (three in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the Humid-Vent Filter Light and the Clear ThermAl HMEFs are suited for use with ICU patients.

  2. Stereoscopic particle image velocimetry investigations of the mixed convection exchange flow through a horizontal vent

    NASA Astrophysics Data System (ADS)

    Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier

    2017-10-01

    The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.

  3. Comparing two heat and moisture exchangers, one hydrophobic and one hygroscopic, on humidifying efficacy and the rate of nosocomial pneumonia.

    PubMed

    Thomachot, L; Viviand, X; Arnaud, S; Boisson, C; Martin, C D

    1998-11-01

    Many heat and moisture exchangers with filter (HMEF) have been developed. In-house data from companies provide some information about their performances; unfortunately, to our knowledge, no comparative evaluation in clinical conditions has been undertaken of these newer products. The aim of this study was to compare the efficiency of two HMEFs, one hydrophobic and one hygroscopic, on humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in ICU patients. Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for > or = 24 h during the study period. On admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with a hygroscopic device (Humid-Vent Filter Light HMEF; Gibeck; Upplands Vaesby, Sweden). The condensation surface was made of paper (Microwell) impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with a hydrophobic device (Pall BB100 HMEF). The condensation surface was made of a hydrophobic resin with a hydrophylic layer. The filter membrane was made of ceramic fibers. In both groups, HMEFs were changed daily. Both groups of patients were similar for the tested characteristics, including parameters of mechanical ventilation. Sixty-six patients were ventilated for 11.7+/-11 days with the Humid-Vent Filter Light HMEF and 70 patients for 12.2+/-12 days with the Pall BB 100. Patients ventilated with the Humid-Vent Filter Light underwent 6.0+/-3.0 tracheal aspirations and 1.7+/-2.0 instillations per day, and those with the Pall BB 100, 6.0+/-3.0 and 1.6+/-2.0 per day, respectively (not significant [NS]). Abundance of tracheal secretions, presence of blood, and viscosity, evaluated by semiquantitative scales, were similar in both groups. No difference in the rate of atelectasis was observed between the two groups (7.5% and 7.1%, NS). One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF, and one with the other HMEF (NS). One patient in each group (NS) was switched to an active heated humidifier because of very tenacious bronchial secretions despite repeated instillations. Tracheal colonization was observed at a rate of 67% with the Humid-Vent Filter Light and 58% with the Pall BB 100 (NS). A small, but NS difference was observed in the rate of ventilator-associated pneumonia: Humid-Vent Filter Light, 32% (27.1 per 1000 ventilator days); and Pall BB 100, 37% (30.4 per 1000 ventilator days). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Three patients in each group died from their nosocomial pneumonia. Despite differences in their components, the two HMEFs tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected and very few patients (one in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the hygroscopic HME (Humid-Vent Filter Light) and the hydrophobic HME (Pall BB 100) are suited for use in ICU patients.

  4. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  5. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  6. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  7. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  8. 46 CFR 127.250 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 127.250 Section 127.250... ARRANGEMENTS Particular Construction and Arrangements § 127.250 Ventilation for enclosed spaces. (a) Each enclosed space within the vessel must be properly vented or ventilated. Means must be provided for closing...

  9. 46 CFR 32.55-5 - Ventilation of tank vessels constructed between November 10, 1936, and July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... actuated gas ejectors or blowers or ventilators fitted with heads for natural ventilation, will be approved... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation of tank vessels constructed between November... HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting...

  10. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  11. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  12. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  13. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  14. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or ventilated...

  15. Laboratory Evaluation of Energy Recovery Ventilators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosar, D.

    Over the years, building scientists have characterized the relationship between building airtightness, exhaust-only appliances airflows, and building depressurization. Now, as the use of deep retrofit measures and new construction practices is growing to realize lower infiltration levels in increasingly tighter envelopes, performance issues can arise with the operation of exhaust-only appliances in a depressurized home. As the depressurization levels climb in tighter homes, many of these exhaust-only appliances see their rated airflows reduced and other related performance issues arise as a result. If sufficiently depressurized, atmospherically vented combustion appliances that may be present in the home can backdraft as well.more » Furthermore, when exhaust-only appliances operate and the tight home becomes depressurized, water vapor intrusion from outdoors can raise additional issues of mold in the building envelope in more humid climates.« less

  16. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  17. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  18. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  19. 46 CFR 169.315 - Ventilation (other than machinery spaces).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation (other than machinery spaces). 169.315... spaces). (a) All enclosed spaces within the vessel must be properly ventilated in a manner suitable for the purpose of the space. (b) A means must be provided to close off all vents and ventilators. (c...

  20. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...-product hydrogen stream, each end box ventilation system vent, and each mercury thermal recovery unit vent...

  1. 46 CFR 38.20-5 - Venting-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Venting-T/ALL. 38.20-5 Section 38.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Venting and Ventilation § 38.20-5 Venting—T/ALL. (a) Safety relief valves on cargo tanks in barges may be connected to...

  2. 46 CFR 38.20-5 - Venting-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Venting-T/ALL. 38.20-5 Section 38.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Venting and Ventilation § 38.20-5 Venting—T/ALL. (a) Safety relief valves on cargo tanks in barges may be connected to...

  3. A multicenter mortality prediction model for patients receiving prolonged mechanical ventilation

    PubMed Central

    Carson, Shannon S.; Kahn, Jeremy M.; Hough, Catherine L.; Seeley, Eric J.; White, Douglas B.; Douglas, Ivor S.; Cox, Christopher E.; Caldwell, Ellen; Bangdiwala, Shrikant I.; Garrett, Joanne M.; Rubenfeld, Gordon D.

    2012-01-01

    Objective Significant deficiencies exist in the communication of prognosis for patients requiring prolonged mechanical ventilation after acute illness, in part because of clinician uncertainty about long-term outcomes. We sought to refine a mortality prediction model for patients requiring prolonged ventilation using a multicentered study design. Design Cohort study. Setting Five geographically diverse tertiary care medical centers in the United States (California, Colorado, North Carolina, Pennsylvania, Washington). Patients Two hundred sixty adult patients who received at least 21 days of mechanical ventilation after acute illness. Interventions None. Measurements and Main Results For the probability model, we included age, platelet count, and requirement for vasopressors and/or hemodialysis, each measured on day 21 of mechanical ventilation, in a logistic regression model with 1-yr mortality as the outcome variable. We subsequently modified a simplified prognostic scoring rule (ProVent score) by categorizing the risk variables (age 18–49, 50–64, and >65 yrs; platelet count 0–150 and >150; vasopressors; hemodialysis) in another logistic regression model and assigning points to variables according to β coefficient values. Overall mortality at 1 yr was 48%. The area under the curve of the receiver operator characteristic curve for the primary ProVent probability model was 0.79 (95% confidence interval, 0.75–0.81), and the p value for the Hosmer-Lemeshow goodness-of-fit statistic was .89. The area under the curve for the categorical model was 0.77, and the p value for the goodness-of-fit statistic was .34. The area under the curve for the ProVent score was 0.76, and the p value for the Hosmer-Lemeshow goodness-of-fit statistic was .60. For the 50 patients with a ProVent score >2, only one patient was able to be discharged directly home, and 1-yr mortality was 86%. Conclusion The ProVent probability model is a simple and reproducible model that can accurately identify patients requiring prolonged mechanical ventilation who are at high risk of 1-yr mortality. PMID:22080643

  4. 46 CFR 36.20-5 - Ventilation of pumproom-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation of pumproom-TB/ALL. 36.20-5 Section 36.20-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-5 Ventilation of pumproom—TB/ALL. (a) Where personnel are required to enter pumprooms...

  5. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  6. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  7. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  8. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  9. 46 CFR 32.55-1 - Ventilation of tank vessels constructed on or after July 1, 1951-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Ventilation and Venting § 32.55-1 Ventilation... means of ventilation. (b) Compartments containing machinery where sources of vapor ignition are normally... approved for this purpose. Machinery spaces below the freeboard deck, in which fuels with flash point of...

  10. Buoyancy and Pressure Driven Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar; Jaluria, Yogesh

    2003-11-01

    An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.

  11. Cigarette filter ventilation is a defective design because of misleading taste, bigger puffs, and blocked vents.

    PubMed

    Kozlowski, L T; O'Connor, R J

    2002-03-01

    To review tobacco industry documents on filter ventilation in light of published studies and to explore the role of filter ventilation in the design of cigarettes that deliver higher smoke yields to smokers than would be expected from standard machine smoked tests (Federal Trade Commission (FTC), International Organization for Standardization (ISO)). Searched from November 1999 to November 2000 internet databases of industry documents (www.pmdocs.com, www.rjrtdocs.com, www.lorillarddocs.com, www.bw.aalatg.com, www.cdc.gov/tobacco/industrydocs, www.tobaccodocuments.org, www.tobaccopapers.org, www.hlth.gov.bc.ca/Guildford, www.cctc.ca/ncth/Guildford, www.cctc.ca/ncth/Guildford2) for documents related to filter ventilation. Documents found dated from 1955 through 1994. Those documents judged to contain the most relevant information or data on filter ventilation related to cigarette taste and compensatory smoking, while also trying to avoid redundancy from various documents deriving from the same underlying data. Filter ventilation is a crucial design feature creating three main problems for lower tar cigarettes as measured by official smoking machine testing. Firstly, it misleadingly makes cigarettes taste lighter and milder, and, therefore, they appear less dangerous to smokers. Secondly, it promotes compensation mainly by facilitating the taking of larger puffs. Thirdly, for very heavily ventilated cigarettes (that is, > 65% filter air dilution), behavioural blocking of vents with lips or fingers is an additional contributor to compensatory smoking. These three effects are found in industry research as well as published research. Filter ventilation is a dangerous, defective technology that should be abandoned in less hazardous nicotine delivery systems. Health interested groups should test cigarettes in a way that reflects compensatory smoking. Lower tar (vented filter) cigarettes should be actively countermarketed.

  12. Hyper Vent-ilating

    NASA Image and Video Library

    2015-04-13

    This series of oblique images highlight the wall and exterior of the beautiful volcanic vent located to the northeast of Rachmaninoff basin and west of Copland crater. Layering can be seen along a portion of the wall and the exterior is smooth due to a blanket of fine particles of lava that were ejected explosively from the vent in a pyroclastic eruption. This vent is deeper than Earth's Grand Canyon. http://photojournal.jpl.nasa.gov/catalog/PIA19282

  13. 40 CFR 98.323 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems (metric tons CH4). CH4V = Quarterly CH4 liberated from each ventilation monitoring point (metric... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system... CH4 liberated from a ventilation monitoring point (metric tons CH4). V = Volumetric flow rate for the...

  14. Evaluation of wind-induced internal pressure in low-rise buildings: A multi scale experimental and numerical approach

    NASA Astrophysics Data System (ADS)

    Tecle, Amanuel Sebhatu

    Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30--40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30--40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.

  15. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK.

    PubMed

    Sharpe, Tim; Farren, Paul; Howieson, Stirling; Tuohy, Paul; McQuillan, Jonathan

    2015-07-21

    The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in "healthy" Indoor Air Quality (IAQ) in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents) gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for "adequate" ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time) hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of "trickle ventilators open plus doors open" gave an average of 1021 ppm. "Trickle ventilators open" gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported across the sampled dwellings. Potential implications of the results are discussed.

  16. View forward from secondary bridge; note stack for venting after ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View forward from secondary bridge; note stack for venting after boilers, ventilators, davits, searchlights on port and starboard stanchions and ship's pulling boats; skylight at lower center provides light to engine room. (p30) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  17. Heat transfer variations of bicycle helmets.

    PubMed

    Brühwiler, P A; Buyan, M; Huber, R; Bogerd, C P; Sznitman, J; Graf, S F; Rösgen, T

    2006-09-01

    Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.

  18. SY Tank Farm ventilation isolation option risk assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, T.B.; Morales, S.D.

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  19. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  20. 40 CFR 170.110 - Restrictions associated with pesticide applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... respiratory protection device is required for application by the product labeling. (3) Applied otherwise... fans or other mechanical ventilating systems; or (iii) Four hours of ventilation using vents, windows...) Aerosol (3) Not in 1 or 2 above, and for which a respiratory protection device is required for application...

  1. 40 CFR 170.110 - Restrictions associated with pesticide applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... respiratory protection device is required for application by the product labeling. (3) Applied otherwise... fans or other mechanical ventilating systems; or (iii) Four hours of ventilation using vents, windows...) Aerosol (3) Not in 1 or 2 above, and for which a respiratory protection device is required for application...

  2. 40 CFR 170.110 - Restrictions associated with pesticide applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... respiratory protection device is required for application by the product labeling. (3) Applied otherwise... fans or other mechanical ventilating systems; or (iii) Four hours of ventilation using vents, windows...) Aerosol (3) Not in 1 or 2 above, and for which a respiratory protection device is required for application...

  3. 40 CFR 170.110 - Restrictions associated with pesticide applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... respiratory protection device is required for application by the product labeling. (3) Applied otherwise... fans or other mechanical ventilating systems; or (iii) Four hours of ventilation using vents, windows...) Aerosol (3) Not in 1 or 2 above, and for which a respiratory protection device is required for application...

  4. 9 CFR 3.65 - Terminal facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., or air conditioning and may be ventilated or air circulated by means of fans, blowers, or an air conditioning system so as to minimize drafts, odors, and moisture condensation. Auxiliary ventilation, such as exhaust fans and vents or fans or blowers or air conditioning shall be used for any animal holding area...

  5. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo tanks...

  6. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo tanks...

  7. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo tanks...

  8. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo tanks...

  9. 46 CFR 36.20-1 - Flame screens-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flame screens-TB/ALL. 36.20-1 Section 36.20-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES Vents and Ventilation § 36.20-1 Flame screens—TB/ALL. (a) Flame screens may be omitted in the vent lines on cargo tanks...

  10. Maximum yields might improve public health—if filter vents were banned: a lesson from the history of vented filters

    PubMed Central

    Kozlowski, L T; O'Connor, R J; Giovino, G A; Whetzel, C A; Pauly, J; Cummings, K M

    2006-01-01

    Filter ventilation is the dominant design feature of the modern cigarette that determines yields of tar, nicotine, and carbon monoxide on smoking machine tests. The commercial use of filter ventilation was precipitated by the 1964 United States Surgeon‐General's report, further advanced by the adoption of an official Federal Trade Commission test in 1967, and still further advanced by the inclusion of a gas phase (carbon monoxide) measure in 1979. The first vented‐filter brand on the market in the United States (Carlton) in 1964 and the second major vented‐filter brand (True) in 1966 illustrate this. Ultimately, filter ventilation became a virtually required way to make very low tar cigarettes (less than 10 mg or, even more so, less than 5 mg tar). The key to the lower tar cigarette was not, in effect, the advanced selective filtration design characteristics or sophisticated tobacco selection or processing as envisioned by experts (although these techniques were and are used); the key to the very much lower tar cigarette was simply punching holes in the filter. We propose that the banning of filter vents, coupled with low maximum standard tar, nicotine, and carbon monoxide yields, would contribute to making cigarettes much less palatable and foster smoking cessation or the use of clearly less hazardous nicotine delivery systems. It may be necessary to link low maximum yields with the banning of filter ventilation to achieve public health benefit from such maxima. PMID:16728759

  11. 40 CFR 98.323 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: ER12JY10.005 Where: CH4VTotal = Total quarterly CH4 liberated from ventilation systems (metric tons CH4... and degasification systems, calculated using Equation FF-6 of this section (metric tons). (e) For the... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system...

  12. 40 CFR 98.323 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: ER12JY10.005 Where: CH4VTotal = Total quarterly CH4 liberated from ventilation systems (metric tons CH4... and degasification systems, calculated using Equation FF-6 of this section (metric tons). (e) For the... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system...

  13. Simultaneous measurement of ventilation using tracer gas techniques and VOC concentrations in homes, garages and vehicles.

    PubMed

    Batterman, Stuart; Jia, Chunrong; Hatzivasilis, Gina; Godwin, Chris

    2006-02-01

    Air exchange rates and interzonal flows are critical ventilation parameters that affect thermal comfort, air migration, and contaminant exposure in buildings and other environments. This paper presents the development of an updated approach to measure these parameters using perfluorocarbon tracer (PFT) gases, the constant injection rate method, and adsorbent-based sampling of PFT concentrations. The design of miniature PFT sources using hexafluorotoluene and octafluorobenzene tracers, and the development and validation of an analytical GC/MS method for these tracers are described. We show that simultaneous deployment of sources and passive samplers, which is logistically advantageous, will not cause significant errors over multiday measurement periods in building, or over shorter periods in rapidly ventilated spaces like vehicle cabins. Measurement of the tracers over periods of hours to a week may be accomplished using active or passive samplers, and low method detection limits (<0.025 microg m(-3)) and high precisions (<10%) are easily achieved. The method obtains the effective air exchange rate (AER), which is relevant to characterizing long-term exposures, especially when ventilation rates are time-varying. In addition to measuring the PFT tracers, concentrations of other volatile organic compounds (VOCs) are simultaneously determined. Pilot tests in three environments (residence, garage, and vehicle cabin) demonstrate the utility of the method. The 4 day effective AER in the house was 0.20 h(-1), the 4 day AER in the attached garage was 0.80 h(-1), and 16% of the ventilation in the house migrated from the garage. The 5 h AER in a vehicle traveling at 100 km h(-1) under a low-to-medium vent condition was 92 h(-1), and this represents the highest speed test found in the literature. The method is attractive in that it simultaneously determines AERs, interzonal flows, and VOC concentrations over long and representative test periods. These measurements are practical, cost-effective, and helpful in indoor air quality and other investigations.

  14. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  15. Attic and crawlspace ventilation : implications for homes located in the urban-wildland interface

    Treesearch

    Stephen L. Quarles; Anton TenWolde

    2004-01-01

    Roof (attic and cathedral ceiling) and crawlspace ventilation has commonly been used as a moisture management tool to minimize performance problems associated with excessive moisture accumulation in these spaces. However, for homes located in the urban wildland interface, roof vents in particular provide an entry point into the attic for flame and burning embers....

  16. 40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system...

  17. 40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system...

  18. 40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system...

  19. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  20. Generator stator core vent duct spacer posts

    DOEpatents

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  1. Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction, Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In an effort to improve indoor air quality in high-performance, new construction, multifamily buildings, dedicated sources of outdoor air are being implemented. Passive vents are being selected by some design teams over other strategies because of their lower first costs and operating costs. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings constructed eight steps, which outline the design and commissioning required for these passive vents to perform as intended.

  2. 40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system... weekly mercury emission rate in grams per week for each by-product hydrogen stream and for each end box...

  3. Vertical axis wind rotors: Status and potential. [energy conversion efficiency and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vance, W.

    1973-01-01

    The design and application of a vertical axis wind rotor is reported that operates as a two stage turbine wherein the wind impinging on the concave side is circulated through the center of the rotor to the back of the convex side, thus decreasing what might otherwise be a high negative pressure region. Successful applications of this wind rotor to water pumps, ship propulsion, and building ventilators are reported. Also shown is the feasibility of using the energy in ocean waves to drive the rotor. An analysis of the impact of rotor aspect ratio on rotor acceleration shows that the amount of venting between rotor vanes has a very significant effect on rotor speed for a given wind speed.

  4. Influence of a Vented Mouthguard on Physiological Responses in Handball.

    PubMed

    Schulze, Antina; Laessing, Johannes; Kwast, Stefan; Busse, Martin

    2018-05-23

    Schulze, A, Laessing, J, Kwast, S, and Busse, M. Influence of a vented mouthguard on physiological responses in handball. J Strength Cond Res XX(X): 000-000, 2018-Mouthguards (MGs) improve sports safety. However, airway obstruction and a resulting decrease in performance are theoretical disadvantages regarding their use. The study aim was to assess possible limitations of a "vented" MG on aerobic performance in handball. The physiological effects were investigated in 14 male professional players in a newly developed handball-specific course. The measured values were oxygen uptake, ventilation, heart rate, and lactate. Similar oxygen uptake (V[Combining Dot Above]O2) values were observed with and without MG use (51.9 ± 6.4 L·min·kg vs. 52.1 ± 10.9 L·min·kg). During maximum load, ventilation was markedly lower with the vented MG (153.1 ± 25 L·min vs. 166.3 ± 20.8 L·min). The endexpiratory concentrations of O2 (17.2 ± 0.5% vs. 17.6 ± 0.8%) and CO2 (4.0 ± 0.5% vs. 3.7 ± 0.6%) were significantly lower and higher, respectively, when using the MG. The inspiration and expiration times with and without the MG were 0.6 ± 0.1 seconds vs. 0.6 ± 0.1 seconds and 0.7 ± 0.2 seconds vs. 0.6 ± 0.2 seconds (all not significant), respectively, indicating that there was no relevant airflow restriction. The maximum load was not significantly affected by the MG. The lower ventilation for given V[Combining Dot Above]O2 values associated with MG use may be an effect of improved biomechanics and lower respiratory drive of the peripheral musculature.

  5. Assessment of Literature Related to Combustion Appliance Venting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, V. H.; Less, B. D.; Singer, B. C.

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less

  6. 9 CFR 3.76 - Indoor housing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provide for their health and well-being and to minimize odors, drafts, ammonia levels, and moisture condensation. Ventilation must be provided by windows, doors, vents, fans, or air conditioning. Auxiliary...

  7. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  8. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  9. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  10. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  11. 9 CFR 3.126 - Facilities, indoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., vents, fans, or air-conditioning and shall be ventilated so as to minimize drafts, odors, and moisture condensation. (c) Lighting. Indoor housing facilities shall have ample lighting, by natural or artificial means...

  12. Summary of human responses to ventilation.

    PubMed

    Seppänen, O A; Fisk, W J

    2004-01-01

    It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.

  13. View of building 11070 showing vents and forced air system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11070 showing vents and forced air system on east side, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Maintenance Shop, C Street, China Lake, Kern County, CA

  14. Looking North at Reactor Number One and Air Vent on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North at Reactor Number One and Air Vent on Fourth Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO

  15. House-level risk factors associated with the colonization of broiler flocks with Campylobacter spp. in Iceland, 2001 - 2004.

    PubMed

    Guerin, Michele T; Martin, Wayne; Reiersen, Jarle; Berke, Olaf; McEwen, Scott A; Bisaillon, Jean-Robert; Lowman, Ruff

    2007-11-12

    The concurrent rise in consumption of fresh chicken meat and human campylobacteriosis in the late 1990's in Iceland led to a longitudinal study of the poultry industry to identify the means to decrease the frequency of broiler flock colonization with Campylobacter. Because horizontal transmission from the environment is thought to be the most likely source of Campylobacter to broilers, we aimed to identify broiler house characteristics and management practices associated with flock colonization. Between May 2001 and September 2004, pooled caecal samples were obtained from 1,425 flocks at slaughter and cultured for Campylobacter. Due to the strong seasonal variation in flock prevalence, analyses were restricted to a subset of 792 flocks raised during the four summer seasons. Logistic regression models with a farm random effect were used to analyse the association between flock Campylobacter status and house-level risk factors. A two-stage process was carried out. Variables were initially screened within major subsets: ventilation; roof and floor drainage; building quality, materials and repair; house structure; pest proofing; biosecurity; sanitation; and house size. Variables with p < or = 0.15 were then offered to a comprehensive model. Multivariable analyses were used in both the screening stage (i.e. within each subset) and in the comprehensive model. 217 out of 792 flocks (27.4%) tested positive. Four significant risk factors were identified. Campylobacter colonization was predicted to increase when the flock was raised in a house with vertical (OR = 2.7), or vertical and horizontal (OR = 3.2) ventilation shafts, when the producer's boots were cleaned and disinfected prior to entering the broiler house (OR = 2.2), and when the house was cleaned with geothermal water (OR = 3.3). The increased risk associated with vertical ventilation shafts might be related to the height of the vents and the potential for vectors such as flies to gain access to the house, or, increased difficulty in accessing the vents for proper cleaning and disinfection. For newly constructed houses, horizontal ventilation systems could be considered. Boot dipping procedures should be examined on farms experiencing a high prevalence of Campylobacter. Although it remains unclear how geothermal water increases risk, further research is warranted to determine if it is a surrogate for environmental pressures or the microclimate of the farm and surrounding region.

  16. Analysis of the systems of ventilation of residential houses of Ukraine and Estonia

    NASA Astrophysics Data System (ADS)

    Savchenko, Olena; Zhelykh, Vasyl; Voll, Hendrik

    2017-12-01

    The most common ventilation system in residential buildings in Ukraine is natural ventilation. In recent years, due to increased tightness of structures, an increase in the content of synthetic finishing materials in them, the quality of microclimate parameters deteriorated. One of the measures to improve the parameters of indoor air in residential buildings is the use of mechanical inflow and exhaust ventilation system. In this article the regulatory documents concerning the design of ventilation systems in Ukraine and Estonia and the requirements for air exchange in residential buildings are considered. It is established that the existing normative documents in Ukraine are analogous to European norms, which allow design the system of ventilation of residential buildings according to European standards. However, the basis for the design of ventilation systems in Ukraine is the national standards, in which mechanical ventilation, unfortunately, is provided only for the design of high-rise buildings. To maintain acceptable microclimate parameters in residential buildings, it is advisable for designers to apply the requirements for designing ventilation systems in accordance with European standards.

  17. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  18. Night ventilation control strategies in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less

  19. 40 CFR 63.8226 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... From Mercury Cell Chlor-Alkali Plants Operation and Maintenance Requirements § 63.8226 What are my... emission limitations for by-product hydrogen streams, end box ventilation system vents, and mercury thermal...

  20. 40 CFR 63.8242 - What are the installation, operation, and maintenance requirements for my continuous monitoring...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...

  1. 40 CFR 63.8226 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... From Mercury Cell Chlor-Alkali Plants Operation and Maintenance Requirements § 63.8226 What are my... emission limitations for by-product hydrogen streams, end box ventilation system vents, and mercury thermal...

  2. 40 CFR 63.8242 - What are the installation, operation, and maintenance requirements for my continuous monitoring...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...

  3. 40 CFR 63.8226 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... From Mercury Cell Chlor-Alkali Plants Operation and Maintenance Requirements § 63.8226 What are my... emission limitations for by-product hydrogen streams, end box ventilation system vents, and mercury thermal...

  4. 40 CFR 63.8242 - What are the installation, operation, and maintenance requirements for my continuous monitoring...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...

  5. 40 CFR 63.8226 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... From Mercury Cell Chlor-Alkali Plants Operation and Maintenance Requirements § 63.8226 What are my... emission limitations for by-product hydrogen streams, end box ventilation system vents, and mercury thermal...

  6. 40 CFR 63.8226 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... From Mercury Cell Chlor-Alkali Plants Operation and Maintenance Requirements § 63.8226 What are my... emission limitations for by-product hydrogen streams, end box ventilation system vents, and mercury thermal...

  7. 40 CFR 63.8242 - What are the installation, operation, and maintenance requirements for my continuous monitoring...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...

  8. 40 CFR 63.8242 - What are the installation, operation, and maintenance requirements for my continuous monitoring...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...

  9. 42. VIEW EAST OF PLASTIC STACK (PROBABLY PVC) WHICH VENTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW EAST OF PLASTIC STACK (PROBABLY PVC) WHICH VENTED FUMES FROM THE DIPPING OPERATIONS IN BUILDING 49A; BUILDING 49 IS AT THE LEFT OF THE PHOTOGRAPH - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  10. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  11. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

    PubMed

    Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y

    2017-01-01

    The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n  = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n  = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p  < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group. The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.

  12. A new yeti crab phylogeny: Vent origins with indications of regional extinction in the East Pacific

    PubMed Central

    Liu, Xinming; Lin, Rongcheng; Li, Xinzheng; Won, Yong-Jin

    2018-01-01

    The recent discovery of two new species of kiwaid squat lobsters on hydrothermal vents in the Pacific Ocean and in the Pacific sector of the Southern Ocean has prompted a re-analysis of Kiwaid biogeographical history. Using a larger alignment with more fossil calibrated nodes than previously, we consider the precise relationship between Kiwaidae, Chirostylidae and Eumunididae within Chirostyloidea (Decapoda: Anomura) to be still unresolved at present. Additionally, the placement of both new species within a new “Bristly” clade along with the seep-associated Kiwa puravida is most parsimoniously interpreted as supporting a vent origin for the family, rather than a seep-to-vent progression. Fossil-calibrated divergence analysis indicates an origin for the clade around the Eocene-Oligocene boundary in the eastern Pacific ~33–38 Ma, coincident with a lowering of bottom temperatures and increased ventilation in the Pacific deep sea. Likewise, the mid-Miocene (~10–16 Ma) rapid radiation of the new Bristly clade also coincides with a similar cooling event in the tropical East Pacific. The distribution, diversity, tree topology and divergence timing of Kiwaidae in the East Pacific is most consistent with a pattern of extinctions, recolonisations and radiations along fast-spreading ridges in this region and may have been punctuated by large-scale fluctuations in deep-water ventilation and temperature during the Cenozoic; further affecting the viability of Kiwaidae populations along portions of mid-ocean ridge. PMID:29547631

  13. 49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...

  14. 49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...

  15. 49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...

  16. 49 CFR Appendix H to Part 229 - Static Noise Test Protocols-In-Cab Static

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... normal operating temperature. (5) The heating, ventilation and air conditioning (HVAC) system or a dedicated heating or air conditioner system must be operating on high, and the vents must be open and...

  17. 40 CFR 63.8230 - By what date must I conduct performance tests or other initial compliance demonstrations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Initial Compliance... § 63.8190(a)(2) for by-product hydrogen streams and end box ventilation system vents and the applicable...

  18. 40 CFR 63.8230 - By what date must I conduct performance tests or other initial compliance demonstrations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Initial Compliance... § 63.8190(a)(2) for by-product hydrogen streams and end box ventilation system vents and the applicable...

  19. 40 CFR 63.8230 - By what date must I conduct performance tests or other initial compliance demonstrations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Initial Compliance... § 63.8190(a)(2) for by-product hydrogen streams and end box ventilation system vents and the applicable...

  20. 40 CFR 63.8230 - By what date must I conduct performance tests or other initial compliance demonstrations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Initial Compliance... § 63.8190(a)(2) for by-product hydrogen streams and end box ventilation system vents and the applicable...

  1. 40 CFR 63.8230 - By what date must I conduct performance tests or other initial compliance demonstrations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Initial Compliance Requirements § 63.8230...(a)(2) for by-product hydrogen streams and end box ventilation system vents and the applicable...

  2. Turning Maneuver Limitations Imposed by Sudden Strut Side Ventilation on a 200-Ton 80-Knot Hydrofoil Craft

    DTIC Science & Technology

    1975-05-01

    ventilated, but never supercavitating , for speeds up to 80 knots. In particular, choking of the air flow to the foil vent was not con- sidered. If this...4Conolly, A.C., "Experimental Investigations of Supercavitating Hydrofoils with Flaps," General Dynamics/Convair Report GD/C-63-210 (Dec 1963). 10 THE SIX...Dec 1966). 4. Conolly, A.C., "Experimenta, Investigations of Supercavitating Hydro- foils with Flaps," General Dynamics/Convair Report GD/C-63-210 (Dec

  3. Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California.

    PubMed

    Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D

    2012-08-01

    This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.

  4. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  5. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.

    PubMed

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-11-18

    Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.

  6. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    PubMed Central

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-01-01

    Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933

  7. Demand controlled ventilating systems: Sensor market survey. Energy conservation in buildings and community systems programme, annex 18, December 1991

    NASA Astrophysics Data System (ADS)

    Raatschen, W.; Sjoegren, M.

    The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.

  8. 28. Ventilation Building located on front lawn of building 500, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Ventilation Building located on front lawn of building 500, looking southeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  9. 29. Ventilation Building located on front lawn of building 500, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Ventilation Building located on front lawn of building 500, looking northeast - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  10. Laboratory and Physical Modelling of Building Ventilation Flows

    NASA Astrophysics Data System (ADS)

    Hunt, Gary

    2001-11-01

    Heating and ventilating buildings accounts for a significant fraction of the total energy budget of cities and an immediate challenge in building physics is for the design of sustainable, low-energy buildings. Natural ventilation provides a low-energy solution as it harness the buoyancy force associated with temperature differences between the internal and external environment, and the wind to drive a ventilating flow. Modern naturally-ventilated buildings use innovative design solutions, e.g. glazed atria and solar chimneys, to enhance the ventilation and demand for these and other designs has far outstripped our understanding of the fluid mechanics within these buildings. Developing an understanding of the thermal stratification and movement of air provides a considerable challenge as the flows involve interactions between stratification and turbulence and often in complex geometries. An approach that has provided significant new insight into these flows and which has led to the development of design guidelines for architects and ventilation engineers is laboratory modelling at small-scale in water tanks combined with physical modelling. Density differences to drive the flow in simplified plexiglass models of rooms or buildings are provided by fresh and salt water solutions, and wind flow is represented by a mean flow in a flume tank. In tandom with the experiments, theoretical models that capture the essential physics of these flows have been developed in order to generalise the experimental results to a wide range of typical building geometries and operating conditions. This paper describes the application and outcomes of these modelling techniques to the study of a variety of natural ventilation flows in buildings.

  11. Dissolution of biogenic ooze over basement edifices in the equatorial Pacific with implications for hydrothermal ventilation of the oceanic crust

    USGS Publications Warehouse

    Bekins, B.A.; Spivack, A.J.; Davis, E.E.; Mayer, L.A.

    2007-01-01

    Recent observations indicate that curious closed depressions in carbonate sediments overlying basement edifices are widespread in the equatorial Pacific. A possible mechanism for their creation is dissolution by fluids exiting basement vents from off-axis hydrothermal flow. Quantitative analysis based on the retrograde solubility of calcium carbonate and cooling of basement fluids during ascent provides an estimate for the dissolution capacity of the venting fluids. Comparison of the dissolution capacity and fluid flux with typical equatorial Pacific carbonate mass accumulation rates shows that this mechanism is feasible. By maintaining sediment-free basement outcrops, the process may promote widespread circulation of relatively unaltered seawater in the basement in an area where average sediment thicknesses are 300-500 m. The enhanced ventilation can explain several previously puzzling observations in this region, including anomalously low heat flux, relatively unaltered seawater in the basement, and aerobic and nitrate-reducing microbial activity at the base of the sediments. ?? 2007 The Geological Society of America.

  12. Indoor thermal environment, air exchange rates, and carbon dioxide concentrations before and after energy retro fits in Finnish and Lithuanian multi-family buildings.

    PubMed

    Leivo, Virpi; Prasauskas, Tadas; Du, Liuliu; Turunen, Mari; Kiviste, Mihkel; Aaltonen, Anu; Martuzevicius, Dainius; Haverinen-Shaughnessy, Ulla

    2018-04-15

    Impacts of energy retrofits on indoor thermal environment, i.e. temperature (T) and relative humidity (RH), as well as ventilation rates and carbon dioxide (CO 2 ) concentrations, were assessed in 46 Finnish and 20 Lithuanian multi-family buildings, including 39 retrofitted case buildings in Finland and 15 in Lithuania (the remaining buildings were control buildings with no retrofits). In the Finnish buildings, high indoor T along with low RH levels was commonly observed both before and after the retrofits. Ventilation rates (l/s per person) were higher after the retrofits in buildings with mechanical exhaust ventilation than the corresponding values before the retrofits. Measured CO 2 levels were low in vast majority of buildings. In Lithuania, average indoor T levels were low before the retrofits and there was a significant increase in the average T after the retrofits. In addition, average ventilation rate was lower and CO 2 levels were higher after the retrofits in the case buildings (N=15), both in apartments with natural and mixed ventilation. Based on the results, assessment of thermal conditions and ventilation rates after energy retrofits is crucial for optimal indoor environmental quality and energy use. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ventilation and infiltration in high-rise apartment buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.

    1996-03-01

    Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will bemore » over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.« less

  14. Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Guoqiang

    2008-05-01

    A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.

  15. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less

  16. Combined Ventilation and Perfusion Imaging Correlates With the Dosimetric Parameters of Radiation Pneumonitis in Radiation Therapy Planning for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo

    2015-11-15

    Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less

  17. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran.

    PubMed

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-10-01

    Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals.

  18. 40 CFR 63.8256 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...

  19. 40 CFR 63.8256 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...

  20. 40 CFR 63.8256 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...

  1. 40 CFR 63.8256 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...

  2. 40 CFR 63.8256 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...

  3. Measure Guideline: Ventilation Guidance for Residential High-Performance New Construction - Multifamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph

    2017-01-01

    The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less

  4. Measure Guideline: Ventilation Guidance for Residential High-Performance New Construction - Multifamily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph

    The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less

  5. The fluid mechanics of natural ventilation

    NASA Astrophysics Data System (ADS)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  6. Impact of Fire Ventilation on General Ventilation in the Building

    NASA Astrophysics Data System (ADS)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  7. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  8. Monitoring lung contusion in a porcine polytrauma model using EIT: an application study.

    PubMed

    Santos, Susana Aguiar; Wembers, Carlos Castelar; Horst, Klemens; Pfeifer, Roman; Simon, Tim-Philipp; Pape, Hans-Christoph; Hildebrand, Frank; Czaplik, Michael; Leonhardt, Steffen; Teichmann, Daniel

    2017-07-26

    Lung contusion is the most common lung injury following blunt chest trauma which, in turn, is associated with high mortality rates (Gavelli et al 2002 Eur. Radiol. 12 1273-94). Lung contusion is characterized by hemorrhage and edema with consecutively reduced compliance. Objective and Approach: In this study, unilateral lung contusion and other traumata were induced in 12 pigs by using a bolt gun machine. To investigate the pathophysiological consequences of lung contusion, information on clinical parameters was collected and monitored regularly while animals were additionally monitored with electrical impedance tomography (EIT) before trauma, and at 4, 24, 48 and 72 h after polytrauma. Statistical analyses showed significant differences between the measurement time points in terms of lung compliance ([Formula: see text]) and in global EIT parameters, such as absolute global impedance (aGlobImp) ([Formula: see text]), tidal impedance variation (TIV) ([Formula: see text]) and the center of ventilation (CoV) ([Formula: see text]). Additionally, distinct analyses for the left (non-injured) and right (injured) lung were also performed. In this context, during the progress of lung contusion, significant changes were found for the injured lung in TIV ([Formula: see text]), global inhomogeneity ([Formula: see text]), regional ventilation delay ([Formula: see text]), CoV ([Formula: see text]) and in regions of non-ventilation (rNoVent) ([Formula: see text]). Furthermore, TIV and rNoVent were capable to differentiate the injured and the contralateral healthy lung at 4 and 24 h after injury (TIV: [Formula: see text] and [Formula: see text]; rNoVent: [Formula: see text] and [Formula: see text]). TIV reached a sensitivity of 82% (specificity of 100%) at 4 h and sensitivity of 82% (specificity of 82%) at 24 h after injury, in detecting lung contusion specific consequences. The results indicate that EIT might be a valuable tool to detect and to monitor lung injuries including lung contusion. Most probably, EIT-derived indices could also be used to adapt ventilator settings to optimize individual lung protection.

  9. Risk Reduction and Measures of Injury for EVA Associated Upper Extremity Medical Issues: Extended Vent Tube Study

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.; Hoffman, Ronald B.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Gernhardt, M. L.

    2007-01-01

    During Neutral Buoyancy Lab (NBL) training sessions, a large amount of moisture accumulates in the EVA gloves. The glove design restricts the extension of the EVA suit s ventilation/cooling system to the hand. Subungual redness and fingernail pain develops for many astronauts following their NBL training sessions with subsequent oncholysis occurring over succeeding weeks. Various attempts have been made to reduce or avoid this problem. The causal role of moisture has yet to be defined. Methods: To determine the contribution that moisture plays in the injury to the fingers and fingernails during EVA training operations in NBL, the current Extravehicular Mobility Unit (EMU), with a Portable Life Support System (PLSS) was configured with a ventilation tube that extended down a single arm of the crewmember during the test and compared with the unventilated contralateral arm; with the ventilated hand serving as the experimental condition (E) and the opposite arm as the control (C). A cross-over design was used with opposite handedness for the vent tube on a subsequent NBL training run. Moisture content measures were conducted at six points on each hand with three types of moisture meters. A questionnaire was administered to determine subjective thermal hand discomfort, skin moisture perception, and hand and nail discomfort. Photographs and video were recorded. Measures were applied to six astronauts pre- and post-run in the NBL. Results: The consistent trends in relative hydration ratios at the dorsum, from 3.34 for C to 2.11 for E, and first ring finger joint locations, from 2.46 for C to 1.96 for E, indicated the extended vent tube promoted skin drying. The experimental treatment appeared to be more effective on the left hand versus the right hand, implying an interaction with hand anthropometry and glove fit. Video analyses differentiated fine and gross motor training tasks during runs and will be discussed. Conclusions: This potential countermeasure was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in two of six subjects. Improved design in the ventilation pattern of such a countermeasure is expected to improve the countermeasure s efficiency.

  10. The Influence of Internal Wall and Floor Covering Materials and Ventilation Type on Indoor Radon and Thoron Levels in Hospitals of Kermanshah, Iran

    PubMed Central

    Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah

    2016-01-01

    Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals. PMID:28180013

  11. 40 CFR 63.8252 - What notifications must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... to conduct for by-product hydrogen streams and end box ventilation system vents and for mercury... a cell room monitoring program according to § 63.8192(g), a certification that you are operating...

  12. 40 CFR 63.8252 - What notifications must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... to conduct for by-product hydrogen streams and end box ventilation system vents and for mercury... a cell room monitoring program according to § 63.8192(g), a certification that you are operating...

  13. 40 CFR 63.8252 - What notifications must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... to conduct for by-product hydrogen streams and end box ventilation system vents and for mercury... a cell room monitoring program according to § 63.8192(g), a certification that you are operating...

  14. 40 CFR 63.8252 - What notifications must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... to conduct for by-product hydrogen streams and end box ventilation system vents and for mercury... a cell room monitoring program according to § 63.8192(g), a certification that you are operating...

  15. 40 CFR 63.8184 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...

  16. 40 CFR 63.8184 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...

  17. 40 CFR 63.8184 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...

  18. 40 CFR 63.8184 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...

  19. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  20. 46 CFR 154.805 - Vent masts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ventilation intake or other opening to an accommodation, service, control station, or other gas-safe space... to an accommodation, service, control station, or other gas-safe space; (g) Has drains to remove any liquid that may accumulate; and (h) Prevents accumulations of liquid at the relief valves. [CGD 74-289...

  1. 46 CFR 154.805 - Vent masts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ventilation intake or other opening to an accommodation, service, control station, or other gas-safe space... to an accommodation, service, control station, or other gas-safe space; (g) Has drains to remove any liquid that may accumulate; and (h) Prevents accumulations of liquid at the relief valves. [CGD 74-289...

  2. 46 CFR 154.805 - Vent masts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ventilation intake or other opening to an accommodation, service, control station, or other gas-safe space... to an accommodation, service, control station, or other gas-safe space; (g) Has drains to remove any liquid that may accumulate; and (h) Prevents accumulations of liquid at the relief valves. [CGD 74-289...

  3. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  4. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  5. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  6. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  7. 40 CFR 98.320 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... (MSHA). (b) This source category includes the following: (1) Each ventilation system shaft or vent hole...

  8. Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises

    NASA Astrophysics Data System (ADS)

    Litvinova, N. A.

    2017-11-01

    The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.

  9. Indoor environment program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daisey, J.M.

    1995-04-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, andmore » energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.« less

  10. Pollutant exposures from natural gas cooking burners: a simulation-based assessment for Southern California.

    PubMed

    Logue, Jennifer M; Klepeis, Neil E; Lobscheid, Agnes B; Singer, Brett C

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for 1 week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs as well as NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of NO2 and CO were obtained from available databases. We inferred ventilation rates, occupancy patterns, and burner use from household characteristics. We also explored proximity to the burner(s) and the benefits of using venting range hoods. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying by <10%. The simulation model estimated that-in homes using NGCBs without coincident use of venting range hoods-62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  11. Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Settles, G. S.

    1996-11-01

    The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)

  12. Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi

    2009-02-01

    As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.

  13. Effects of types of ventilation system on indoor particle concentrations in residential buildings.

    PubMed

    Park, J S; Jee, N-Y; Jeong, J-W

    2014-12-01

    The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Summarized Data of Test Space Heating, Ventilation and Air Conditioning Inspections from the Building Assessment Survey and Evaluation Study

    EPA Pesticide Factsheets

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  15. 14. ENGINE TEST CELL BUILDING ROOF. VENTILATION AND COOLING TOWERS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. ENGINE TEST CELL BUILDING ROOF. VENTILATION AND COOLING TOWERS. LOOKING EAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  16. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  17. Wind Extraction for Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  18. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    NASA Astrophysics Data System (ADS)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  19. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different ventilation airflow patterns.

    PubMed

    Wan, M P; Chao, C Y H

    2007-06-01

    Expiratory droplets and droplet nuclei can be pathogen carriers for airborne diseases. Their transport characteristics were studied in detail in two idealized floor-supply-type ventilation flow patterns: Unidirectional-upward and single-side-floor, using a multiphase numerical model. The model was validated by running interferometric Mie imaging experiments using test droplets with nonvolatile content, which formed droplet nuclei, ultimately, in a class-100 clean-room chamber. By comparing the droplet dispersion and removal characteristics with data of two other ceiling-supply ventilation systems collected from a previous work, deviations from the perfectly mixed ventilation condition were found to exist in various cases to different extent. The unidirectional-upward system was found to be more efficient in removing the smallest droplet nuclei (formed from 1.5 mum droplets) by air extraction, but it became less effective for larger droplets and droplet nuclei. Instead, the single-side-floor system was shown to be more favorable in removing these large droplets and droplet nuclei. In the single-side-floor system, the lateral overall dispersion coefficients for the small droplets and nuclei (initial size

  20. Buildings operations and ETS exposure.

    PubMed Central

    Spengler, J D

    1999-01-01

    Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS. Images Figure 1 Figure 2 Figure 3 PMID:10375293

  1. 22. STEEL ARCH SEGMENT AND VENT IN OFFICE, ROOM 2351, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. STEEL ARCH SEGMENT AND VENT IN OFFICE, ROOM 2351, SECOND FLOOR, NORTH SIDE. - Hughes Aircraft Company, Processing & Electronics Building, 6775 Centinela Avenue, Los Angeles, Los Angeles County, CA

  2. Vented Tank Resupply Experiment (VTRE) for In-space Technology Experiment Program (IN-STEP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of the Vented Tank Resupply Experiment (VTRE) program is presented in outline and graphical form. The goal of the program is to develop, design, build and provide flight and post flight support for a Shuttle Hitchhiker Experiment to investigate and demonstrate vented tank venting in space. Program schedules and experiment subsystem schematics are presented and specific technical objectives, power requirements, payload assemblies, Hitchhiker canister integration, and orbiter mission approach are addressed.

  3. An Attempt to Design a Naturally Ventilated Tower in Subtropical Climate of the Developing Country; Pakistan

    NASA Astrophysics Data System (ADS)

    Sohail, Maha

    2017-12-01

    A large proportion of the world's population resides in developing countries where there is a lack of rigorous studies in designing energy efficient buildings. This study is a step in designing a naturally ventilated high rise residential building in a tropical climatic context of the developing country, Pakistan. Karachi, the largest city of Pakistan, lies in the subtropical hot desert region with constant high temperature of average 32 °C throughout the summer and no particular winter season. The Design Builder software package is used to design a 25 storey high rise residential building relying primarily on natural ventilation. A final conceptual design is proposed after optimization of massing, geometry, orientation, and improved building envelope design including extensive shading devices in the form of trees. It has been observed that a reduction of 8 °C in indoor ambient temperature is possible to achieve with passive measures and use of night time ventilation. A fully naturally ventilated building can reduce the energy consumption for cooling and heating by 96 % compared to a building using air conditioning systems.

  4. 40 CFR 60.713 - Compliance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such as drying ovens. All ventilation air must be vented through stacks suitable for testing; (iii... procedures of paragraph (b)(1), (b)(2), (b)(3), or (b)(4) of this section, as appropriate. (2) To establish...) and (v) of this section, as applicable, and the test methods and procedures specified in § 60.715(b...

  5. 40 CFR 60.713 - Compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such as drying ovens. All ventilation air must be vented through stacks suitable for testing; (iii... procedures of paragraph (b)(1), (b)(2), (b)(3), or (b)(4) of this section, as appropriate. (2) To establish...) and (v) of this section, as applicable, and the test methods and procedures specified in § 60.715(b...

  6. 34. Roof vent detail from roof of Bwing, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Roof vent detail from roof of B-wing, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. Characterization of natural ventilation in wastewater collection systems.

    PubMed

    Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne

    2011-03-01

    The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.

  8. Ventilation/odor study, field study. Final report, Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffee, R.A.; Jann, P.

    1981-04-01

    The results are presented of field investigations in schools, hospitals, and an office building on the relation between ventilation rate and odor within the buildings. The primary objective of the study was to determine: the reduction in ventilation rates that could be achieved in public buildings without causing adverse effects on odor; the sources of odor in public buildings; and the identity of the odorants. The variables of particular interest include: type of odor, occupant density, odorant identity and concentration, differences in impressions between occupants adapted to prevailing conditions and visitors, and the influence of temperature and humidity on bothmore » the generation and perception of common contaminants. Sensory odor measurements, chemical measurements, fresh air ventilation measurements, and acceptability evaluations via questionnaires were made. Sensory odor levels were found to be quite low in most buildings tested. A three-to-five-fold reduction in the fresh air ventilation in schools, hospitals, and office buildings can be achieved without significantly affecting perceived odor intensities or detectability. Tobacco smoking was found to be the most significant, pervasive contributor to interior odor level. Total hydrocarbon content of indoor air varies directly with ventilation rates; odor, however, does not. The complete set of reduced data are contained in Volume II. (LEW)« less

  9. First experiences with methods to measure ammonia emissions from naturally ventilated cattle buildings in the U.K.

    NASA Astrophysics Data System (ADS)

    Demmers, T. G. M.; Burgess, L. R.; Short, J. L.; Phillips, V. R.; Clark, J. A.; Wathes, C. M.

    A method has been developed to measure the emission rate of ammonia from naturally ventilated U.K. livestock buildings. The method is based on measurements of ammonia concentration and estimates of the ventilation rate of the building by continuous release of carbon monoxide tracer within the building. The tracer concentration is measured at nine positions in openings around the perimeter of the building, as well as around a ring sampling line. Two criteria were evaluated to decide whether, at any given time, a given opening in the building acted as an air inlet or as an air outlet. Carbon monoxide concentration difference across an opening was found to be a better criterion than the temperature difference across the opening. Ammonia concentrations were measured continuously at the sampling points using a chemiluminescence analyser. The method was applied to a straw-bedded beef unit and to a slurry-based dairy unit. Both buildings were of space-boarded construction. Ventilation rates estimated by the ring line sample were consistently higher than by the perimeter samples. During calm weather, the ventilation estimates by both samples were similar (10-20 air changes h -1). However, during windy conditions (>5 m s -1) the ventilation rate was overestimated by the ring line sample (average 100 air changes h -1) compared to the perimeter samples (average 50 air changes h -1). The difference was caused by incomplete mixing of the tracer within the building. The ventilation rate estimated from the perimeter samples was used for the calculation of the emission rate. Preliminary estimates of the ammonia emission factor were 6.0 kg NH 3 (500 kg live-weight) -1 (190 d) -1 for the slurry-based dairy unit and 3.7 for the straw-bedded beef unit.

  10. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  11. Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics

    EPA Pesticide Factsheets

    In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.

  12. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, G.W.; Talbott, J.M.; Moses, D.O.

    Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration ismore » the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.« less

  14. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    PubMed

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  16. Cigarette Filter Ventilation and Smoking Protocol Influence Aldehyde Smoke Yields

    PubMed Central

    2018-01-01

    The WHO study group on tobacco product regulation (TobReg) advised regulating and lowering toxicant levels in cigarette smoke. Aldehydes are one of the chemical classes on the TobReg smoke toxicants priority list. To provide insight in factors determining aldehyde yields, the levels of 12 aldehydes in mainstream cigarette smoke of 11 Dutch brands were quantified. Variations in smoking behavior and cigarette design affecting human exposure to aldehydes were studied by using four different machine testing protocols. Machine smoking was based on the International Standardization Organization (ISO) and Health Canada Intense (HCI) regime, both with and without taping the filter vents. The 11 cigarette brands differed in (i) design and blend characteristics; (ii) tar, nicotine, and carbon monoxide (TNCO) levels; (iii) popularity; and (iv) manufacturer. Cigarette smoke was trapped on a Cambridge filter pad and carboxen cartridge. After being dissolved in methanol/CS2 and derivatization with DNPH, the aldehyde yields were determined using HPLC-DAD. Using an intense smoking regime (increased puff volume, shorter puff interval) significantly increased aldehyde yields, following the pattern: ISO < ISO-taped < HCI-untaped < HCI. For all of the regimes, acetaldehyde and acrolein yields were strongly correlated (r = 0.804). The difference in TNCO and aldehyde levels between regular and highly ventilated low-TNCO cigarettes (as measured using ISO) diminished when smoking intensely; this effect is stronger when combined with taping filter vents. The highly ventilated low-TNCO brands showed six times more aldehyde production per mg nicotine for the intense smoking regimes. In conclusion, acetaldehyde and acrolein can be used as representatives for the class of volatile aldehydes for the different brands and smoking regimes. The aldehyde-to-nicotine ratio increased when highly ventilated cigarettes were smoked intensely, similar to real smokers. Thus, a smoker of highly ventilated low-TNCO cigarettes has an increased potential for higher aldehyde exposures compared to a smoker of regular cigarettes. PMID:29727173

  17. Improving indoor air quality through the use of continual multipoint monitoring of carbon dioxide and dew point.

    PubMed

    Bearg, D W

    1998-09-01

    This article summarizes an approach for improving the indoor air quality (IAQ) in a building by providing feedback on the performance of the ventilation system. The delivery of adequate quantities of ventilation to all building occupants is necessary for the achievement of good IAQ. Feedback on the performance includes information on the adequacy of ventilation provided, the effectiveness of the distribution of this air, the adequacy of the duration of operation of the ventilation system, and the identification of leakage into the return plenum, either of outdoor or supply air. Keeping track of ventilation system performance is important not only in terms of maintaining good IAQ, but also making sure that this system continues to perform as intended after changes in building use. Information on the performance of the ventilation system is achieved by means of an automated sampling system that draws air from multiple locations and delivers it to both a carbon dioxide monitor and dew point sensor. The use of single shared sensors facilitates calibration checks as well as helps to guarantee data integrity. This approach to monitoring a building's ventilation system offers the possibility of achieving sustainable performance of this important aspect of good IAQ.

  18. DETAIL OF WINDOW AND ROOF VENT AT EAST ELEVATION GABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WINDOW AND ROOF VENT AT EAST ELEVATION GABLE END; CAMERA FACING WEST. - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  19. Recent Upgrades at the Safety and Tritium Applied Research Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Merrill, Brad Johnson; Stewart, Dean Andrew

    This paper gives a brief overview of the Safety and Tritium Applied Research (STAR) facility operated by the Fusion Safety Program (FSP) at the Idaho National Laboratory (INL). FSP researchers use the STAR facility to carry out experiments in tritium permeation and retention in various fusion materials, including wall armor tile materials. FSP researchers also perform other experimentation as well to support safety assessment in fusion development. This lab, in its present two-building configuration, has been in operation for over ten years. The main experiments at STAR are briefly described. This paper discusses recent work to enhance personnel safety atmore » the facility. The STAR facility is a Department of Energy less than hazard category 3 facility; the personnel safety approach calls for ventilation and tritium monitoring for radiation protection. The tritium areas of STAR have about 4 to 12 air changes per hour, with air flow being once through and then routed to the facility vent stack. Additional radiation monitoring has been installed to read the laboratory room air where experiments with tritium are conducted. These ion chambers and bubblers are used to verify that no significant tritium concentrations are present in the experiment rooms. Standby electrical power has been added to the facility exhaust blower so that proper ventilation will now operate during commercial power outages as well as the real-time tritium air monitors.« less

  20. Indoor Air Quality Assessment of the San Francisco Federal Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David

    2008-07-01

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightlymore » elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.« less

  1. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-03-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.

  2. Using Coupled Energy, Airflow and IAQ Software (TRNSYS/CONTAM) to Evaluate Building Ventilation Strategies

    PubMed Central

    Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.

    2016-01-01

    Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405

  3. Change-over natural and mechanical ventilation system energy consumption in single-family buildings

    NASA Astrophysics Data System (ADS)

    Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata

    2017-11-01

    The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.

  4. Contaminant levels, source strengths, and ventilation rates in California retail stores.

    PubMed

    Chan, W R; Cohn, S; Sidheswaran, M; Sullivan, D P; Fisk, W J

    2015-08-01

    This field study measured ventilation rates and indoor air quality in 21 visits to retail stores in California. Three types of stores, such as grocery, furniture/hardware stores, and apparel, were sampled. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California's Title 24 Standard in all but one store. Concentrations of volatile organic compounds (VOCs), ozone, and carbon dioxide measured indoors and outdoors were analyzed. Even though there was adequate ventilation according to standard, concentrations of formaldehyde and acetaldehyde exceeded the most stringent chronic health guidelines in many of the sampled stores. The whole-building emission rates of VOCs were estimated from the measured ventilation rates and the concentrations measured indoor and outdoor. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California's stringent formaldehyde reference level. Given the high costs of providing ventilation, effective source control is an attractive alternative. Field measurements suggest that California retail stores were well ventilated relative to the minimum ventilation rate requirement specified in the Building Energy Efficiency Standards Title 24. Concentrations of formaldehyde found in retail stores were low relative to levels found in homes but exceeded the most stringent chronic health guideline. Looking ahead, California is mandating zero energy commercial buildings by 2030. To reduce the energy use from building ventilation while maintaining or even lowering formaldehyde in retail stores, effective formaldehyde source control measures are vitally important. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  5. Effect of Ventilation Strategies on Residential Ozone Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain S.; Sherman, Max H.

    Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-­exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less

  6. DETAIL OF SECOND STORY WINDOWS AND ROOF VENT ON SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SECOND STORY WINDOWS AND ROOF VENT ON SOUTH END OF EAST ELEVATION; CAMERA WEST. - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  7. Lava flow risk maps at Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Fornaciai, A.; Papale, P.; Tarquini, S.

    2009-04-01

    Mount Cameroon, in the southwest Cameroon, is one of the most active volcanoes in Africa. Rising 4095 m asl, it has erupted nine times since the beginning of the past century, more recently in 1999 and 2000. Mount Cameroon documented eruptions are represented by moderate explosive and effusive eruptions occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast near the village of Biboundi, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea, threatening the villages of Bakingili and Dibunscha. More than 450,000 people live or work around the volcano, making the risk from lava flow invasion a great concern. In this work we propose both conventional hazard and risk maps and novel quantitative risk maps which relate vent locations to the expected total damage on existing buildings. These maps are based on lava flow simulations starting from 70,000 different vent locations, a probability distribution of vent opening, a law for the maximum length of lava flows, and a database of buildings. The simulations were run over the SRTM Digital Elevation Model (DEM) using DOWNFLOW, a fast DEM-driven model that is able to compute detailed invasion areas of lava flows from each vent. We present three different types of risk maps (90-m-pixel) for buildings around Mount Cameroon volcano: (1) a conventional risk map that assigns a probability of devastation by lava flows to each pixel representing buildings; (2) a reversed risk map where each pixel expresses the total damage expected as a consequence of vent opening in that pixel (the damage is expressed as the total surface of urbanized areas invaded); (3) maps of the lava catchments of the main towns around the volcano, within every catchment the pixels are classified according to the expected impact they might produce on the relative town in the case of a vent opening in that pixel. Maps of type (1) and (3) are useful for long term planning. Maps of type (2) and (3) are useful at the onset of a new eruption, when a vent forms. The combined use of these maps provides an efficient tool for lava flow risk assessment at Mount Cameroon.

  8. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room.

    PubMed

    Thatiparti, Deepthi Sharan; Ghia, Urmila; Mead, Kenneth R

    2016-01-01

    When infectious epidemics occur, they can be perpetuated within health care settings, potentially resulting in severe health care workforce absenteeism, morbidity, mortality, and economic losses. The ventilation system configuration of an airborne infection isolation room is one factor that can play a role in protecting health care workers from infectious patient bioaerosols. Though commonly associated with airborne infectious diseases, the airborne infection isolation room design can also impact other transmission routes such as short-range airborne as well as fomite and contact transmission routes that are impacted by contagion concentration and recirculation. This article presents a computational fluid dynamics study on the influence of the ventilation configuration on the possible flow path of bioaerosol dispersal behavior in a mock airborne infection isolation room. At first, a mock airborne infection isolation room was modeled that has the room geometry and layout, ventilation parameters, and pressurization corresponding to that of a traditional ceiling-mounted ventilation arrangement observed in existing hospitals. An alternate ventilation configuration was then modeled to retain the linear supply diffuser in the original mock airborne infection isolation room but interchanging the square supply and exhaust locations to place the exhaust closer to the patient source and allow clean air from supply vents to flow in clean-to-dirty flow paths, originating in uncontaminated parts of the room prior to entering the contaminated patient's air space. The modeled alternate airborne infection isolation room ventilation rate was 12 air changes per hour. Two human breathing models were used to simulate a source patient and a receiving health care worker. A patient cough cycle was introduced into the simulation, and the airborne infection dispersal was tracked in time using a multi-phase flow simulation approach. The results from the alternate configuration revealed that the cough aerosols were pulled by the exhaust vent without encountering the health care worker by 0.93 s after patient coughs and the particles were controlled as the aerosols' flow path was uninterrupted by an air particle streamline from patient to the ceiling exhaust venting out cough aerosols. However, not all the aerosols were vented out of the room. The remaining cough aerosols entered the health care worker's breathing zone by 0.98 s. This resulted in one of the critical stages in terms of the health care worker's exposure to airborne virus and presented the opportunity for the health care worker to suffer adverse health effects from the inhalation of cough aerosols. Within 2 s, the cough aerosols reentered and recirculated within the patient and health care worker's surroundings resulting in pockets of old contaminated air. By this time, coalescence losses decreased as the aerosol were no longer in very close proximity and their movement was primarily influenced by the airborne infection isolation room airflow patterns. In the patient and health care worker's area away from the supply, the fresh air supply failed to reach this part of the room to quickly dilute the cough aerosol concentration. The exhaust was also found to have minimal effect upon cough aerosol removal, except for those areas with high exhaust velocities, very close to the exhaust grill. Within 5-20 s after a patient's cough, the aerosols tended to break up to form smaller sized aerosols of less than one micron diameter. They remained airborne and entrained back into the supply air stream, spreading into the entire room. The suspended aerosols resulted in the floating time of more than 21 s in the room due to one cough cycle. The duration of airborne contagion in the room and its prolonged exposure to the health care worker is likely to happen due to successive coughing cycles. Hence, the evaluated alternate airborne infection isolation room is not effective in removing at least 38% particles exposed to health care worker within the first second of a patient's cough.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  10. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    PubMed Central

    Patton, Allison P.; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J.; Krogmann, Uta; Mainelis, Gediminas

    2016-01-01

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3) than in Building L (37 µg/m3); I/O was higher in Building E (1.3–2.0) than in Building L (0.5–0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents’ exposure to PM in residential green buildings. PMID:26805862

  11. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    PubMed

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-20

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.

  12. Healthy Building Design for the Commercial, Industrial, and Institutional Marketplace.

    ERIC Educational Resources Information Center

    Turner, William A.

    Building design and construction that helps deliver both superior air quality and occupant thermal comfort, while minimizing energy consumption, are examined. The paper explores an integrated building systems approach that combines the principles of "directed air flow control" and "demand controlled ventilation" where ventilation is effectively…

  13. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  14. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  15. 40 CFR 63.8234 - What equations and procedures must I use for the initial compliance demonstration?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen streams and end box ventilation system vents. You must determine the total grams of mercury per Megagram of chlorine production (g Hg/Mg Cl2) of chlorine produced from all by-product hydrogen streams and...) Determine the mercury emission rate for each test run in grams per day for each by-product hydrogen stream...

  16. 40 CFR 63.8234 - What equations and procedures must I use for the initial compliance demonstration?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen streams and end box ventilation system vents. You must determine the total grams of mercury per Megagram of chlorine production (g Hg/Mg Cl2) of chlorine produced from all by-product hydrogen streams and...) Determine the mercury emission rate for each test run in grams per day for each by-product hydrogen stream...

  17. 40 CFR 63.8234 - What equations and procedures must I use for the initial compliance demonstration?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen streams and end box ventilation system vents. You must determine the total grams of mercury per Megagram of chlorine production (g Hg/Mg Cl2) of chlorine produced from all by-product hydrogen streams and...) Determine the mercury emission rate for each test run in grams per day for each by-product hydrogen stream...

  18. 40 CFR 63.8234 - What equations and procedures must I use for the initial compliance demonstration?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen streams and end box ventilation system vents. You must determine the total grams of mercury per Megagram of chlorine production (g Hg/Mg Cl2) of chlorine produced from all by-product hydrogen streams and...) Determine the mercury emission rate for each test run in grams per day for each by-product hydrogen stream...

  19. Convection venting lensed reflector-type compact fluorescent lamp system

    DOEpatents

    Pelton, Bruce A.; Siminovitch, Michael

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  20. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  1. Estimates of associated outdoor particulate matter health risk and costs reductions from alternative building, ventilation and filtration scenarios.

    PubMed

    Sultan, Zuraimi M

    2007-05-01

    Although many studies have reported calculations of outdoor particulate matter (PM) associated externalities using ambient data, there is little information on the role buildings, their ventilation and filtration play. This study provides the framework to evaluate the health risk and cost reduction of building, ventilation and filtration strategies from outdoor PM pollution on a nationwide level and applied it to a case study in Singapore. Combining Indoor Air Quality (IAQ) and time weighted exposure models, with established concentration-response functions and monetary valuation methods, mortality and morbidity effects of outdoor PM on the population of Singapore under different building, ventilation and filtration strategies were estimated. Different interventions were made to compare the effects from the current building conditions. The findings demonstrate that building protection effect reduced approximately half the attributable health cases amounting to US$17.7 billion due to PM pollution when compared to levels computed using outdoor data alone. For residential buildings, nationwide adoption of natural ventilation from current state is associated with 28% higher cases of mortality and 13 to 38% higher cases for different morbidities, amounting to US$6.7 billion. The incurred cost is negligible compared to energy costs of air-conditioning. However, nationwide adoption of closed residence and air-conditioning are associated with outcomes including fewer mortality (10 and 6% respectively), fewer morbidities (8 and 4% respectively) and economic savings of US$1.5 and 0.9 billion respectively. The related savings were about a factor of 9 the energy cost for air-conditioning. Nationwide adoption of mechanical ventilation and filtration from current natural ventilation in schools is associated with fewer asthma hospital admissions and exacerbations; although the economic impact is not substantial. Enhanced workplace filtration reduces the mortality and morbidity cases by 14 and 13% respectively amounting to savings of up to US$2.4 billion. The huge costs savings are comparable to the average worker salary and insignificant to energy, installation and rental cost. Despite uncertainty about accurate benefits, this study shows that health and economic gain via different building, ventilation and filtration designs in minimizing ingress of outdoor PM applied to a nationwide scale can be very large. Importantly, the results suggest that PM associated externalities and legislative efforts should not only focus on ambient PM reduction policies but also include building-informed decisions.

  2. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less

  3. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basementmore » with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments« less

  4. Building Assessment Survey and Evaluation (BASE) Study: Summarized Data - Test Space HVAC Characteristics

    EPA Pesticide Factsheets

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  5. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    NASA Astrophysics Data System (ADS)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  6. Analysis of Numerical Models for Dispersion of Chemical/Biological Agents in Complex Building Environments

    DTIC Science & Technology

    2004-11-01

    variation in ventilation rates over time and the distribution of ventilation air within a building, and to estimate the impact of envelope air ... tightening efforts on infiltration rates. • It may be used to determine the indoor air quality performance of a building before construction, and to

  7. Reducing Building HVAC Costs with Site-Recovery Energy

    ERIC Educational Resources Information Center

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  8. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    DOEpatents

    Goldsberry, Fred L.; Cawley, William E.

    1981-01-01

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  9. Cultivation mutualism between a deep-sea vent galatheid crab and its chemosynthetic epibionts

    NASA Astrophysics Data System (ADS)

    Watsuji, Tomo-o.; Tsubaki, Remi; Chen, Chong; Nagai, Yukiko; Nakagawa, Satoshi; Yamamoto, Masahiro; Nishiura, Daisuke; Toyofuku, Takashi; Takai, Ken

    2017-09-01

    Since the discovery of deep-sea hydrothermal vents in 1977, chemosynthesis-based ecosystems have been found in a wide range of habitats, such as hydrocarbon seeps, coastal sediments and terrestrial caves. Several invertebrates found in dark ecosystems harbor chemosynthetic bacteria (epibionts) on the surfaces of their specialised tissues; in particular, a vent galatheid crab Shinkaia crosnieri consumes the epibionts thriving on their setae as the primary nutritional source. In this study, we found that the water stream is the key to the nutritional symbiosis between S. crosnieri and chemosynthetic epibionts. The chemosynthetic functions of epibionts were highly activated by the water flow, and observations in the laboratory supported rheotaxis by S. crosnieri. In addition, endogenous water flow generated by respiratory water ventilation of S. crosnieri stimulated the chemosynthetic activity of epibionts under static conditions. These results point out that the epibionts are cultivated by the active behaviors of S. crosnieri, potentially representing the first example of a cultivation mutualism in chemosynthetic ectosymbiosis.

  10. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  11. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    PubMed

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  12. Ventilation rates in recently constructed U.S. school classrooms.

    PubMed

    Batterman, S; Su, F-C; Wald, A; Watkins, F; Godwin, C; Thun, G

    2017-09-01

    Low ventilation rates (VRs) in schools have been associated with absenteeism, poorer academic performance, and teacher dissatisfaction. We measured VRs in 37 recently constructed or renovated and mechanically ventilated U.S. schools, including LEED and EnergyStar-certified buildings, using CO 2 and the steady-state, build-up, decay, and transient mass balance methods. The transient mass balance method better matched conditions (specifically, changes in occupancy) and minimized biases seen in the other methods. During the school day, air change rates (ACRs) averaged 2.0±1.3 hour -1 , and only 22% of classrooms met recommended minimum ventilation rates. HVAC systems were shut off at the school day close, and ACRs dropped to 0.21±0.19 hour -1 . VRs did not differ by building type, although cost-cutting and comfort measures resulted in low VRs and potentially impaired IAQ. VRs were lower in schools that used unit ventilators or radiant heating, in smaller schools and in larger classrooms. The steady-state, build-up, and decay methods had significant limitations and biases, showing the need to confirm that these methods are appropriate. Findings highlight the need to increase VRs and to ensure that energy saving and comfort measures do not compromise ventilation and IAQ. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. 49 CFR 192.173 - Compressor stations: Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to ensure...

  14. 1. VIEW OF BUILDING 883 EXTERIOR, LOOKING SOUTHEAST. VENTILATION EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF BUILDING 883 EXTERIOR, LOOKING SOUTHEAST. VENTILATION EQUIPMENT IS VISIBLE. (11/27/56) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  15. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  16. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  17. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  18. 9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST STAND 1-3 AT FAR LEFT, AND ITS MACHINE SHOP AT LEFT CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, SIXTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE PAGES

    Zuo, Wangda; Wetter, Michael; Tian, Wei; ...

    2015-07-13

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  1. Coupling indoor airflow, HVAC, control and building envelope heat transfer in the Modelica Buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Wangda; Wetter, Michael; Tian, Wei

    Here, this paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation ofmore » the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Lastly, further research and development needs were also discussed.« less

  2. Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study.

    PubMed

    Neto, Ary Serpa; Barbas, Carmen S V; Simonis, Fabienne D; Artigas-Raventós, Antonio; Canet, Jaume; Determann, Rogier M; Anstey, James; Hedenstierna, Goran; Hemmes, Sabrine N T; Hermans, Greet; Hiesmayr, Michael; Hollmann, Markus W; Jaber, Samir; Martin-Loeches, Ignacio; Mills, Gary H; Pearse, Rupert M; Putensen, Christian; Schmid, Werner; Severgnini, Paolo; Smith, Roger; Treschan, Tanja A; Tschernko, Edda M; Melo, Marcos F V; Wrigge, Hermann; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J

    2016-11-01

    Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [V T ] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H 2 O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27-33), representing 0·14 cases per ICU bed over a 1-week period. V T was similar for patients at risk and not at risk of ARDS (median 7·6 mL/kg PBW [IQR 6·7-9·1] vs 7·9 mL/kg PBW [6·8-9·1]; p=0·346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6·0 cm H 2 O [IQR 5·0-8·0] vs 5·0 cm H 2 O [5·0-7·0]; p<0·0001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0·004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0·0001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0·0001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0·0001). V T did not differ between patients who did and did not develop ARDS (p=0·471 for those at risk of ARDS; p=0·323 for those not at risk). Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS. None. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. This photograph, taken from the main roof of E Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photograph, taken from the main roof of E Building, looking north, shows two metal penthouses at right, a similar brick structure and some of the vents and other mechanical devices of the building - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH

  4. Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems

    DTIC Science & Technology

    1991-05-01

    Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems by Edgar S. Neely Robert D. Neathammer...Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems RDTE dated 1980EIMB 1984 - 1989 6. AUTHOR(S) Edgar S. Neely, Robert D...Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the

  5. Quantitative relationship of sick building syndrome symptoms with ventilation rates

    EPA Science Inventory

    Data from published studies were combined and analyzed to develop best-fit equations and curves quantifying the change in sick building syndrome (SBS) symptom prevalence in office workers with ventilation rate. For each study, slopes were calculated, representing the fractional...

  6. Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for finishing pigs

    NASA Astrophysics Data System (ADS)

    Schauberger, G.; Piringer, M.; Petz, E.

    The indoor climate of livestock buildings is of importance for the well-being and health of animals and their production performance (daily weight gain, milk yield etc). By using a steady-state model for the sensible and latent heat fluxes and the CO2 and odour mass flows, the indoor climate of mechanically ventilated livestock buildings can be calculated. These equations depend on the livestock (number of animals and how they are kept), the insulation of the building and the characteristics of the ventilation system (ventilation rate). Since the model can only be applied to animal houses where the ventilation systems are mechanically controlled (this is the case for a majority of finishing pig units), the calculations were done for an example of a finishing pig unit with 1000 animal places. The model presented used 30 min values of the outdoor parameters temperature and humidity, collected over a 2-year period, as input. The projected environment inside the livestock building was compared with recommended values. The duration of condensation on the inside surfaces was also calculated.

  7. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    PubMed

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  8. Effects of ventilation behaviour on indoor heat load based on test reference years.

    PubMed

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  9. Effects of ventilation behaviour on indoor heat load based on test reference years

    NASA Astrophysics Data System (ADS)

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  10. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Impacts of freeway traffic conditions on in-vehicle exposure to ultrafine particulate matter

    NASA Astrophysics Data System (ADS)

    Bigazzi, Alexander Y.; Figliozzi, Miguel A.

    2012-12-01

    There is evidence of adverse health impacts from human exposure to traffic-related ultrafine particulate matter pollution. As more commuters are spending a significant portion of their daily routine inside vehicles, it is increasingly relevant to study exposure levels to harmful pollutants inside the vehicle microenvironment. This study is one of the first research efforts to combine detailed freeway traffic data (at 20 s intervals) and in-vehicle ultrafine particulate (UFP) exposure data under varying vehicle ventilation conditions. Results show that due to negative correlation between traffic speed and density, traffic states have a small but significant impact on in-vehicle UFP concentrations, highest in high traffic flow-high speed conditions or in high traffic density-low speed conditions. Vehicle cabin barrier effects are the primary determinant of in-vehicle exposure concentrations, providing 15% protection with the windows down, 47% protection with the windows up and the vent open, and 83-90% protection with the windows up and the vent closed (more with the air conditioning on). Unique results from this study include the dominance of ventilation over traffic effects on UFP and the non-linear relationships between traffic variables and UFP concentrations. The results of this research have important implications for exposure modeling and potential exposure mitigation strategies.

  12. Spatial and Alignment Analyses for a field of Small Volcanic Vents South of Pavonis Mons Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Glaze, L. S.; Greeley, R.; Hauber, E.; Baloga, S. M.; Sakimoto, S. E. H.; Williams, D. A.; Glotch, T. D.

    2008-01-01

    The Tharsis province of Mars displays a variety of small volcanic vent (10s krn in diameter) morphologies. These features were identified in Mariner and Viking images [1-4], and Mars Orbiter Laser Altimeter (MOLA) data show them to be more abundant than originally observed [5,6]. Recent studies are classifying their diverse morphologies [7-9]. Building on this work, we are mapping the location of small volcanic vents (small-vents) in the Tharsis province using MOLA, Thermal Emission Imaging System, and High Resolution Stereo Camera data [10]. Here we report on a preliminary study of the spatial and alignment relationships between small-vents south of Pavonis Mons, as determined by nearest neighbor and two-point azimuth statistical analyses. Terrestrial monogenetic volcanic fields display four fundamental characteristics: 1) recurrence rates of eruptions,2 ) vent abundance, 3) vent distribution, and 4) tectonic relationships [11]. While understanding recurrence rates typically requires field measurements, insight into vent abundance, distribution, and tectonic relationships can be established by mapping of remotely sensed data, and subsequent application of spatial statistical studies [11,12], the goal of which is to link the distribution of vents to causal processes.

  13. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  14. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  15. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  16. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  17. The correlation of Acanthamoeba from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality.

    PubMed

    Ooi, Soo Shen; Mak, Joon Wah; Chen, Donald K F; Ambu, Stephen

    2017-02-07

    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants' complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants' sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system.

  18. The correlation of Acanthamoeba from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality

    PubMed Central

    OOI, Soo Shen; MAK, Joon Wah; CHEN, Donald K.F.; AMBU, Stephen

    2016-01-01

    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants’ complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants’ sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system. PMID:27476379

  19. 1. Historic American Buildings Survey, Stanley P. Mixon, Photographer September ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, Stanley P. Mixon, Photographer September 11, 1940 EXTERIOR, BRICK END BARN WITH SIDE OVERHANG AND VENT PATTERN IN WALL. - Brick End Barn, Kleinfeltersville, Lebanon County, PA

  20. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room

    PubMed Central

    THATIPARTI, DEEPTHI SHARAN; GHIA, URMILA; MEAD, KENNETH R.

    2017-01-01

    When infectious epidemics occur, they can be perpetuated within health care settings, potentially resulting in severe health care workforce absenteeism, morbidity, mortality, and economic losses. The ventilation system configuration of an airborne infection isolation room is one factor that can play a role in protecting health care workers from infectious patient bioaerosols. Though commonly associated with airborne infectious diseases, the airborne infection isolation room design can also impact other transmission routes such as short-range airborne as well as fomite and contact transmission routes that are impacted by contagion concentration and recirculation. This article presents a computational fluid dynamics study on the influence of the ventilation configuration on the possible flow path of bioaerosol dispersal behavior in a mock airborne infection isolation room. At first, a mock airborne infection isolation room was modeled that has the room geometry and layout, ventilation parameters, and pressurization corresponding to that of a traditional ceiling-mounted ventilation arrangement observed in existing hospitals. An alternate ventilation configuration was then modeled to retain the linear supply diffuser in the original mock airborne infection isolation room but interchanging the square supply and exhaust locations to place the exhaust closer to the patient source and allow clean air from supply vents to flow in clean-to-dirty flow paths, originating in uncontaminated parts of the room prior to entering the contaminated patient’s air space. The modeled alternate airborne infection isolation room ventilation rate was 12 air changes per hour. Two human breathing models were used to simulate a source patient and a receiving health care worker. A patient cough cycle was introduced into the simulation, and the airborne infection dispersal was tracked in time using a multi-phase flow simulation approach. The results from the alternate configuration revealed that the cough aerosols were pulled by the exhaust vent without encountering the health care worker by 0.93 s after patient coughs and the particles were controlled as the aerosols’ flow path was uninterrupted by an air particle streamline from patient to the ceiling exhaust venting out cough aerosols. However, not all the aerosols were vented out of the room. The remaining cough aerosols entered the health care worker’s breathing zone by 0.98 s. This resulted in one of the critical stages in terms of the health care worker’s exposure to airborne virus and presented the opportunity for the health care worker to suffer adverse health effects from the inhalation of cough aerosols. Within 2 s, the cough aerosols reentered and recirculated within the patient and health care worker’s surroundings resulting in pockets of old contaminated air. By this time, coalescence losses decreased as the aerosol were no longer in very close proximity and their movement was primarily influenced by the airborne infection isolation room airflow patterns. In the patient and health care worker’s area away from the supply, the fresh air supply failed to reach this part of the room to quickly dilute the cough aerosol concentration. The exhaust was also found to have minimal effect upon cough aerosol removal, except for those areas with high exhaust velocities, very close to the exhaust grill. Within 5–20 s after a patient’s cough, the aerosols tended to break up to form smaller sized aerosols of less than one micron diameter. They remained airborne and entrained back into the supply air stream, spreading into the entire room. The suspended aerosols resulted in the floating time of more than 21 s in the room due to one cough cycle. The duration of airborne contagion in the room and its prolonged exposure to the health care worker is likely to happen due to successive coughing cycles. Hence, the evaluated alternate airborne infection isolation room is not effective in removing at least 38% particles exposed to health care worker within the first second of a patient’s cough. PMID:28736744

  1. The Fluid Mechanics of Natural Ventilation

    NASA Astrophysics Data System (ADS)

    Linden, P. F.

    1999-01-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. The governing feature of this flow is the exchange between an interior space and the external ambient. Although the wind may often appear to be the dominant driving mechanism, in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of ventilation are discussed: mixing ventilation, in which the interior is at an approximately uniform temperature, and displacement ventilation, where there is strong internal stratification. The dynamics of these buoyancy-driven flows are considered, and the effects of wind on them are examined. The aim behind this work is to give designers rules and intuition on how air moves within a building; the research reveals a fascinating branch of fluid mechanics.

  2. KSC-06pd0564

    NASA Image and Video Library

    2006-03-29

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building at NASA's Kennedy Space Center, the nose cap on top of external tank number 119 has been removed. A new gaseous oxygen vent valve will be installed. Tank 119 is designated for mission STS-121. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  3. KSC-06pd0615

    NASA Image and Video Library

    2006-04-13

    KENNEDY SPACE CENTER, FLA. - In the transfer aisle of the Vehicle Assembly Building, workers work on the rim around the nose cap of external tank number 119, the tank designated for mission STS-121. The cap was removed in order to install a new gaseous oxygen vent valve underneath. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  4. KSC-06pd0616

    NASA Image and Video Library

    2006-04-13

    KENNEDY SPACE CENTER, FLA. - In the transfer aisle of the Vehicle Assembly Building, workers check the rim around the nose cap of external tank number 119, the tank designated for mission STS-121. The cap was removed in order to install a new gaseous oxygen vent valve underneath. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  5. Bacterial diversity among four healthcare-associated institutes in Taiwan.

    PubMed

    Chen, Chang-Hua; Lin, Yaw-Ling; Chen, Kuan-Hsueh; Chen, Wen-Pei; Chen, Zhao-Feng; Kuo, Han-Yueh; Hung, Hsueh-Fen; Tang, Chuan Yi; Liou, Ming-Li

    2017-08-15

    Indoor microbial communities have important implications for human health, especially in health-care institutes (HCIs). The factors that determine the diversity and composition of microbiomes in a built environment remain unclear. Herein, we used 16S rRNA amplicon sequencing to investigate the relationships between building attributes and surface bacterial communities among four HCIs located in three buildings. We examined the surface bacterial communities and environmental parameters in the buildings supplied with different ventilation types and compared the results using a Dirichlet multinomial mixture (DMM)-based approach. A total of 203 samples from the four HCIs were analyzed. Four bacterial communities were grouped using the DMM-based approach, which were highly similar to those in the 4 HCIs. The α-diversity and β-diversity in the naturally ventilated building were different from the conditioner-ventilated building. The bacterial source composition varied across each building. Nine genera were found as the core microbiota shared by all the areas, of which Acinetobacter, Enterobacter, Pseudomonas, and Staphylococcus are regarded as healthcare-associated pathogens (HAPs). The observed relationship between environmental parameters such as core microbiota and surface bacterial diversity suggests that we might manage indoor environments by creating new sanitation protocols, adjusting the ventilation design, and further understanding the transmission routes of HAPs.

  6. Health effects from indoor air pollution: case studies.

    PubMed

    White, L E; Clarkson, J R; Chang, S N

    1987-01-01

    In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.

  7. Radon exposures in a Jerusalem public school.

    PubMed Central

    Richter, E D; Neeman, E; Fischer, I; Berdugo, M; Westin, J B; Kleinstern, J; Margaliot, M

    1997-01-01

    In December 1995, ambient radon levels exceeding 10,000 Bq/m3 were measured in a basement shelter workroom of a multilevel East Talpiot, Jerusalem, public elementary school (six grades, 600 students). The measurements were taken after cancers (breast and multiple myeloma) were diagnosed in two workers who spent their workdays in basement rooms. The school was located on a hill that geologic maps show to be rich in phosphate deposits, which are a recognized source for radon gas and its daughter products. Levels exceeding 1000,000 Bq/m3 were measured at the mouth of a pipe in the basement shelter workroom, the major point of radon entry. The school was closed and charcoal and electret ion chamber detectors were used to carry out repeated 5-day measurements in all rooms in the multilevel building over a period of several months. Radon concentrations were generally higher in rooms in the four levels of the building that were below ground level. There were some ground-level rooms in the building in which levels reached up to 1300 Bq/m3. In rooms above ground level, however, peak levels did not exceed 300 Bq/m3. Exposure control based on sealing and positive pressure ventilation was inadequate. These findings suggested that radon diffused from highly contaminated basement and ground-floor rooms to other areas of the building and that sealing off the source may have led to reaccumulation of radon beneath the building. Later, subslab venting of below-ground radon pockets to the outside air was followed by more sustained reductions in indoor radon levels to levels below 75 Bq/m3. Even so, radon accumulated in certain rooms when the building was closed. This sentinel episode called attention to the need for a national radon policy requiring threshold exposure levels for response and control. A uniform nationwide standard for school buildings below 75 Bq/m3 level was suggested after considering prudent avoidance, the controversies over risk assessment of prolonged low-level exposures in children, and the fact that exposures in most locations in the Talpiot school could be reduced below this level. Proposal of this stringent standard stimulated the search for a strategy of risk control and management based on control at the source. This strategy was more effective and probably more cost effective than one based on suppression of exposure based on sealing and ventilation. Because many Israeli areas and much of the West Bank area of the Palestinian National Authority sit on the same phosphate deposits, regional joint projects for surveillance and control may be indicated. Images Figure 1. Figure 2. PMID:9467053

  8. Risk factors for work-related symptoms in northern California office workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, M.J.

    1991-10-01

    In most episodes of health complaints reported in office buildings in the last-twenty years, causal factors have not been identified. In order to assess risk factors for work-related symptoms in office workers, a reanalysis was performed of previous studies, and an epidemiologic study was conducted. The reanalysis of data, showed remarkable agreement among studies. Air-conditioned buildings were consistently associated with higher prevalence of headache, lethargy, and eye, nose, or throat problems. Humidification was not a necessary factor for this higher prevalence. Mechanical ventilation without air-conditioning was not associated with higher symptom prevalence. A study was conducted among 880 office workers,more » within 12 office buildings selected without regard to worker complaints, in northern California. A number of factors were found associated with prevalence of work-related symptoms, after adjustment in a logistic regression model for personal, psychosocial, job, workspace, and building factors. Two different ventilation types were associated with increases Ln symptom prevalence, relative to workers in naturally ventilated buildings: mechanical supply and exhaust ventilation, without air conditioning and with operable windows; and air-conditioning with sealed windows. No study buildings were humidified. In both these ventilation types, the highest odds ratios (ORs) found were for skin symptoms (ORs-5.0, 5.6) and for tight chest or difficulty breathing (ORs-3.6, 4.3). Use of carbonless copies or photocopiers, sharing a workspace, carpets, new carpets, new walls, and distance from a window were associated with symptom increases. Cloth partitions and new paint were associated with symptom decreases.« less

  9. Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy

    PubMed Central

    Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.

    2012-01-01

    Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875

  10. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    PubMed

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  11. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE PAGES

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    2017-12-30

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  12. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  13. Review and Extension of CO2-Based Methods to Determine Ventilation Rates with Application to School Classrooms

    PubMed Central

    Batterman, Stuart

    2017-01-01

    The ventilation rate (VR) is a key parameter affecting indoor environmental quality (IEQ) and the energy consumption of buildings. This paper reviews the use of CO2 as a “natural” tracer gas for estimating VRs, focusing on applications in school classrooms. It provides details and guidance for the steady-state, build-up, decay and transient mass balance methods. An extension to the build-up method and an analysis of the post-exercise recovery period that can increase CO2 generation rates are presented. Measurements in four mechanically-ventilated school buildings demonstrate the methods and highlight issues affecting their applicability. VRs during the school day fell below recommended minimum levels, and VRs during evening and early morning were on the order of 0.1 h−1, reflecting shutdown of the ventilation systems. The transient mass balance method was the most flexible and advantageous method given the low air change rates and dynamic occupancy patterns observed in the classrooms. While the extension to the build-up method improved stability and consistency, the accuracy of this and the steady-state method may be limited. Decay-based methods did not reflect the VR during the school day due to heating, ventilation and air conditioning (HVAC) system shutdown. Since the number of occupants in classrooms changes over the day, the VR expressed on a per person basis (e.g., L·s−1·person−1) depends on the occupancy metric. If occupancy measurements can be obtained, then the transient mass balance method likely will provide the most consistent and accurate results among the CO2-based methods. Improved VR measurements can benefit many applications, including research examining the linkage between ventilation and health. PMID:28165398

  14. Review and Extension of CO₂-Based Methods to Determine Ventilation Rates with Application to School Classrooms.

    PubMed

    Batterman, Stuart

    2017-02-04

    The ventilation rate (VR) is a key parameter affecting indoor environmental quality (IEQ) and the energy consumption of buildings. This paper reviews the use of CO₂ as a "natural" tracer gas for estimating VRs, focusing on applications in school classrooms. It provides details and guidance for the steady-state, build-up, decay and transient mass balance methods. An extension to the build-up method and an analysis of the post-exercise recovery period that can increase CO₂ generation rates are presented. Measurements in four mechanically-ventilated school buildings demonstrate the methods and highlight issues affecting their applicability. VRs during the school day fell below recommended minimum levels, and VRs during evening and early morning were on the order of 0.1 h -1 , reflecting shutdown of the ventilation systems. The transient mass balance method was the most flexible and advantageous method given the low air change rates and dynamic occupancy patterns observed in the classrooms. While the extension to the build-up method improved stability and consistency, the accuracy of this and the steady-state method may be limited. Decay-based methods did not reflect the VR during the school day due to heating, ventilation and air conditioning (HVAC) system shutdown. Since the number of occupants in classrooms changes over the day, the VR expressed on a per person basis (e.g., L·s -1 ·person -1 ) depends on the occupancy metric. If occupancy measurements can be obtained, then the transient mass balance method likely will provide the most consistent and accurate results among the CO₂-based methods. Improved VR measurements can benefit many applications, including research examining the linkage between ventilation and health.

  15. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    PubMed

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  16. The influence of opening windows and doors on the natural ventilation rate of a residential building

    EPA Science Inventory

    An analysis of air exchange rates due to intentional window and door openings in a research test house located in a residential environment is presented. These data inform the development of ventilation rate control strategies as building envelopes are tightened to improve the e...

  17. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less

  18. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  19. VENTILATION RESEARCH: A REVIEW OF RECENT INDOOR AIR QUALITY LITERATURE

    EPA Science Inventory

    The report gives results of a literature review, conducted to survey and summarize recent and ongoing engineering research into building ventilation, air exchange rate, pollutant distribution and dispersion, and other effects of heating, ventilation, and air-conditioning (HVAC) s...

  20. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    PubMed

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. KSC-06pd0562

    NASA Image and Video Library

    2006-03-29

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building at NASA's Kennedy Space Center, workers begin removal of the nose cap on top of external tank number 119, the tank designated for mission STS-121. The cap is being removed in order to install a new gaseous oxygen vent valve under the nose cap. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  2. KSC-06pd0563

    NASA Image and Video Library

    2006-03-29

    KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building at NASA's Kennedy Space Center, workers remove the nose cap on top of external tank number 119, the tank designated for mission STS-121. The cap is being removed in order to install a new gaseous oxygen vent valve under the nose cap. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  3. KSC-06pd0614

    NASA Image and Video Library

    2006-04-13

    KENNEDY SPACE CENTER, FLA. - In the transfer aisle of the Vehicle Assembly Building, workers get ready to ablate the rim around the nose cap of external tank number 119, the tank designated for mission STS-121. The cap was removed in order to install a new gaseous oxygen vent valve underneath. Vapors are created prior to launch as the liquid oxygen in the external tank boils off. At the forward end of each external tank propellant tank is a vent and relief valve that can be opened before launch for venting or by excessive tank pressure for relief. The vent function is available only before launch. Mission STS-121 to the International Space Station is scheduled for launch in July. Photo credit: NASA/Jim Grossmann

  4. Field study of exhaust fans for mitigating indoor air quality problems: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.

    1986-09-01

    Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.

  5. 75 FR 52701 - Approval and Promulgation of Implementation Plans; State of Missouri

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... information claimed to be Confidential Business Information (CBI) or other information whose disclosure is.... Ventilation Limits 5. Ongoing Ventilation Testing and Reporting Requirements 6. Winter Construction Work..., including building enclosure and ventilation projects, implementation of work practice standards, process...

  6. Sensor-based demand controlled ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Almeida, A.T.; Fisk, W.J.

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less

  7. Health outcomes and green renovation of affordable housing.

    PubMed

    Breysse, Jill; Jacobs, David E; Weber, William; Dixon, Sherry; Kawecki, Carol; Aceti, Susan; Lopez, Jorge

    2011-01-01

    This study sought to determine whether renovating low-income housing using "green" and healthy principles improved resident health and building performance. We investigated resident health and building performance outcomes at baseline and one year after the rehabilitation of low-income housing using Enterprise Green Communities green specifications, which improve ventilation; reduce moisture, mold, pests, and radon; and use sustainable building products and other healthy housing features. We assessed participant health via questionnaire, provided Healthy Homes training to all participants, and measured ventilation, carbon dioxide, and radon. Adults reported statistically significant improvements in overall health, asthma, and non-asthma respiratory problems. Adults also reported that their children's overall health improved, with significant improvements in non-asthma respiratory problems. Post-renovation building performance testing indicated that the building envelope was tightened and local exhaust fans performed well. New mechanical ventilation was installed (compared with no ventilation previously), with fresh air being supplied at 70% of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers standard. Radon was < 2 picocuries per liter of air following mitigation, and the annual average indoor carbon dioxide level was 982 parts per million. Energy use was reduced by 45% over the one-year post-renovation period. We found significant health improvements following low-income housing renovation that complied with green standards. All green building standards should include health requirements. Collaboration of housing, public health, and environmental health professionals through integrated design holds promise for improved health, quality of life, building operation, and energy conservation.

  8. Health Outcomes and Green Renovation of Affordable Housing

    PubMed Central

    Breysse, Jill; Jacobs, David E.; Weber, William; Dixon, Sherry; Kawecki, Carol; Aceti, Susan; Lopez, Jorge

    2011-01-01

    Objective This study sought to determine whether renovating low-income housing using “green” and healthy principles improved resident health and building performance. Methods We investigated resident health and building performance outcomes at baseline and one year after the rehabilitation of low-income housing using Enterprise Green Communities green specifications, which improve ventilation; reduce moisture, mold, pests, and radon; and use sustainable building products and other healthy housing features. We assessed participant health via questionnaire, provided Healthy Homes training to all participants, and measured ventilation, carbon dioxide, and radon. Results Adults reported statistically significant improvements in overall health, asthma, and non-asthma respiratory problems. Adults also reported that their children's overall health improved, with significant improvements in non-asthma respiratory problems. Post-renovation building performance testing indicated that the building envelope was tightened and local exhaust fans performed well. New mechanical ventilation was installed (compared with no ventilation previously), with fresh air being supplied at 70% of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers standard. Radon was <2 picocuries per liter of air following mitigation, and the annual average indoor carbon dioxide level was 982 parts per million. Energy use was reduced by 45% over the one-year post-renovation period. Conclusions We found significant health improvements following low-income housing renovation that complied with green standards. All green building standards should include health requirements. Collaboration of housing, public health, and environmental health professionals through integrated design holds promise for improved health, quality of life, building operation, and energy conservation. PMID:21563714

  9. 35. OFFICE OF THE QUARTERMASTER GENERAL; CONSTRUCTION DIVISION; PLAN NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. OFFICE OF THE QUARTERMASTER GENERAL; CONSTRUCTION DIVISION; PLAN NUMBER 800-196. MOBILIZATION BUILDINGS; STANDARD HEATING DETAILS; WARM AIR HEATING; SMOKE PIPES & VENT HOODS FOR RANGES. - Fort McCoy, Building T-1129, Sparta, Monroe County, WI

  10. 30. VIEW WEST IN BASEMENT OF BUILDING 41A; NOTE PLASTIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW WEST IN BASEMENT OF BUILDING 41A; NOTE PLASTIC DUCTING WHICH WAS USED TO VENT CORROSIVE FUMES FROM ACID PICKLING AND ELECTROPLATING TANKS - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  11. Integrated analysis of numerical weather prediction and computational fluid dynamics for estimating cross-ventilation effects on inhaled air quality inside a factory

    NASA Astrophysics Data System (ADS)

    Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide

    2017-10-01

    Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.

  12. City ventilation of Hong Kong at no-wind conditions

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Li, Yuguo

    We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.

  13. Wind-Driven Natural Ventilation Design Of Walk-Up Apartment In Coastal Region North Jakarta

    NASA Astrophysics Data System (ADS)

    Nugrahanti, Fathina I.; Yasin, P. E.; Nurdini, A.

    2018-05-01

    Housing has been the second most energy-consuming sector in Indonesia nowadays. According to the data released by government, the biggest consumption in housing sector is the use of air conditioning. This consumption will significantly rise in metropolitan-high density city like Jakarta along with the increase of vertical housing supply. This research focus on design iteration to achieve optimum model of wind-driven naturally ventilated housing. Cilincing District, North Jakarta, known as industrial and settlement area is used as case study. Since the location by the bay area, Cilincing represents the characteristic of tropical coastal area. This research utilizes the tropical coastal characteristic especially wind to design a naturally ventilated housing. Various building elements are determined as variables and tested using Ansys Fluent CFD simulator to achieve thermal comfort stadard by SNI 03-6572-2001. Preliminary results shows that unlinear (zig-zag) building layout and combination of various building distances give big impact to airflow movement around the buildings. Narrowing building distance in the middle of the site can create a kind-of tunnel / trap that strengthen the wind along the site. Inlet and outlet area should be balance to avoid uneven airflow distribution inside the room and located in different level to maximize cross-ventilation.

  14. Thermoregulation and ventilation of termite mounds.

    PubMed

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO(2) concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  15. Thermoregulation and ventilation of termite mounds

    NASA Astrophysics Data System (ADS)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  16. The necessity of HVAC system for the registered architectural cultural heritage building

    NASA Astrophysics Data System (ADS)

    Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian

    2018-02-01

    This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.

  17. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOEpatents

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  18. 78 FR 36760 - Petition for Waiver and Notice of Granting the Application for Interim Waiver of BSH Home...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... collected water into either a drain line or an in-unit container, these products do not use an exhaust port... conventional vented clothes dryer cannot be used, such as high-rise apartments and other buildings where... those dwellers of high-rise apartments and others who in many cases have no way to vent to the outside...

  19. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  20. Positioning Your Library for Solar (and Financial) Gain. Improving Energy Efficiency, Lighting, and Ventilation with Primarily Passive Techniques

    ERIC Educational Resources Information Center

    Shane, Jackie

    2012-01-01

    This article stresses the importance of building design above technology as a relatively inexpensive way to reduce energy costs for a library. Emphasis is placed on passive solar design for heat and daylighting, but also examines passive ventilation and cooling, green roofs, and building materials. Passive design is weighed against technologies…

  1. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools. IEQ Strategies[TM].

    ERIC Educational Resources Information Center

    Daisey, Joan M.; Angell, William J.

    This report presents detailed results from a survey and critical review of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, particularly California schools. The findings: (1) identify the most commonly reported building-related health symtoms involving…

  2. Impact of varying area of polluting surface materials on perceived air quality.

    PubMed

    Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F

    2003-06-01

    A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.

  3. Experimental and CFD evidence of multiple solutions in a naturally ventilated building.

    PubMed

    Heiselberg, P; Li, Y; Andersen, A; Bjerre, M; Chen, Z

    2004-02-01

    This paper considers the existence of multiple solutions to natural ventilation of a simple one-zone building, driven by combined thermal and opposing wind forces. The present analysis is an extension of an earlier analytical study of natural ventilation in a fully mixed building, and includes the effect of thermal stratification. Both computational and experimental investigations were carried out in parallel with an analytical investigation. When flow is dominated by thermal buoyancy, it was found experimentally that there is thermal stratification. When the flow is wind-dominated, the room is fully mixed. Results from all three methods have shown that the hysteresis phenomena exist. Under certain conditions, two different stable steady-state solutions are found to exist by all three methods for the same set of parameters. As shown by both the computational fluid dynamics (CFD) and experimental results, one of the solutions can shift to another when there is a sufficient perturbation. These results have probably provided the strongest evidence so far for the conclusion that multiple states exist in natural ventilation of simple buildings. Different initial conditions in the CFD simulations led to different solutions, suggesting that caution must be taken when adopting the commonly used 'zero initialization'.

  4. Predicting indoor pollutant concentrations, and applications to air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, David M.

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less

  5. Gas hydrate and spatial venting variations in the continental margin offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, S.; Lim, Y.; Hsieh, W.; Yang, T.; Wang, Y.

    2006-12-01

    Strong BSR, high methane contents and rapid sulfate reduction were found in the continental margin sediments offshore southwestern Taiwan. In order to identify the venting phenomena and its relationship with gas hydrate, this research investigate sea floor vent features using WHOI?|s Towcam system as well as piston core in the study region. A total of 10 dives were conducted on board the r/v OR-1. Pore water sulfate, dissolved sulfide, methane, chloride, del O18 ratio, sediment organic carbon, carbonate content and carbonate del C13 ratio, pyrite-S were measured Large spatial variations were found based on pictures obtained from Towcam system and piston cores. Active venting features include bacteria mat, live dense bivalve patches, gas plume, temperature and salinity fluctuations, rapid sulfate reduction and high concentrations of methane in sediments. In addition, vent chimney, pockmark and large authigenic carbonate buildup were also observed in the active venting area. In contrast, in some areas without active venting features, scatter dead chimney, semi- buried carbonate structures, and dead bivalves were found. Total sulfate depletion was found at depth as shallow as 1 meter below sediment water interface in area near active vent whereas almost no sulfate depletion was observed in areas without any vent feature. Stages of carbonate build up existed, with initial phase dominated by small tube, chimney, and later with massive carbonate structures protruding the sea floor. The appearances of massive carbonate buildup structures seemed to indicate the end stage of gas hydrate venting phenomena.

  6. Validity of thermally-driven small-scale ventilated filling box models

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  7. Urban ventilation corridors mapping using surface morphology data based GIS analysis

    NASA Astrophysics Data System (ADS)

    Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna

    2017-04-01

    This paper describes deriving the most appropriate method for mapping urban ventilation corridors, which, if properly designed, reduce heat stress, air pollution and increase air quality, as well as increase the horizontal wind speed. Urban areas are - in terms of surface texture - recognized as one of the roughest surfaces, which results in wind obstruction and decreased ventilation of densely built up areas. As urban heat islands, private household and traffic emissions or large scale industries occur frequently in many cities, both in temperate and tropical regions. A proper ventilation system has been suggested as an appropriate mitigation mean [1] . Two concepts of morphometric analyses of the urban environment are used on the example of Warsaw, representing a dense, urban environment, located in the temperate zone. The utilized methods include firstly a roughness mapping calculation [2] , which analyses zero plane displacement height (zd) and roughness length (z0) and their distribution for the eight (inter-)cardinal wind directions and secondly a grid-based frontal area index mapping approach [3] , which uses least cost path analysis. Utilizing the advantages and minimizing the disadvantages of those two concepts, we propose a hybrid approach. All concepts are based on a 3D building database obtained from satellite imagery, aided by a cadastral building database. Derived areas (ventilation corridors), that facilitate the ventilation system, should be considered by the local authorities as worth preserving, if not expanding, in order to improve the air quality in the city. The results also include designation of the problematic areas, which greatly obscure the ventilation and might be investigated as to reshape or rebuilt to introduce the air flow in particularly dense areas like city centers. Keywords: roughness mapping; GIS; ventilation corridors; frontal area index Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120-128. Gál, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206. Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.

  8. Spreadsheet Assessment Tool v. 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, David J.; Martinez, Ruben

    2016-03-03

    The Spreadsheet Assessment Tool (SAT) is an easy to use, blast assessment tool that is intended to estimate the potential risk due to an explosive attack on a blood irradiator. The estimation of risk is based on the methodology, assumptions, and results of a detailed blast effects assessment study that is summarized in Sandia National Laboratories Technical Report SAND2015-6166. Risk as defined in the report and as used in the SAT is: "The potential risk of creating an air blast-induced vent opening at a buildings envelope surface". Vent openings can be created at a buildings envelope through the failure ofmore » an exterior building component—like a wall, window, or door—due to an explosive sabotage of an irradiator within the building. To estimate risk, the tool requires that users obtain and input information pertaining to the building's characteristics and the irradiator location. The tool also suggests several prescriptive mitigation strategies that can be considered to reduce risk. Given the variability in civilian building construction practices, the input parameters used by this tool may not apply to all buildings being assessed. The tool should not be used as a substitute for engineering judgment. The tool is intended for assessment purposes only.« less

  9. Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan De Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Verena; Fontaine, A. R.

    1987-10-01

    Examination of a small collection of macroinvertebrates from three vents of the southern Juan de Fuca vent field reveals differences between the vents with respect to species composition, species habits, and microbial and metallic deposits on their surfaces. TWo apparently new vestimentiferan species were found, and for the first time the Juan de Fuca palm worm was observed to dwell on smokers. High acidity values recorded in this system may interfere with the process of shell calcification in an archaeogastropod snail. The surfaces of vestimentifer an tubes at two vents are heavily encrusted with microbial and metallic accumulations. Scanning electron microscope, transmission electron microscope, and energy dispersive X ray microanalysis observations show that iron-based crusts on orange tubes are built from accumulations of an Fe-rich particle of distinctive size and shape. Morphological evidence is presented for the microbial origin of Fe-rich particles. Zn-rich particles found on black tubes are not of microbial origin. We suggest that iron deposition on surfaces in the vent environment is initially biocatalytic but subsequent deposits may build by simple inorganic reactions.

  10. Architectural design influences the diversity and structure of the built environment microbiome

    PubMed Central

    Kembel, Steven W; Jones, Evan; Kline, Jeff; Northcutt, Dale; Stenson, Jason; Womack, Ann M; Bohannan, Brendan JM; Brown, G Z; Green, Jessica L

    2012-01-01

    Buildings are complex ecosystems that house trillions of microorganisms interacting with each other, with humans and with their environment. Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome—the community of microorganisms that live indoors—is important for understanding the relationship between building design, biodiversity and human health. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility. We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air. The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors, and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms. Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors, including taxa closely related to potential human pathogens. Building attributes, specifically the source of ventilation air, airflow rates, relative humidity and temperature, were correlated with the diversity and composition of indoor bacterial communities. The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors, and higher in rooms with lower airflow rates and lower relative humidity. The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments, altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors. PMID:22278670

  11. Sustainable Building in China -- A Green Leap Forward?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, Richard; Ye, Qing; Feng, Wei

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building,more » including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m 2 (20 kBtu/ft 2), which is 61% of the mean EUI value of 103 kWh/m 2 (33 kBtu/ft 2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.« less

  12. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Fisk, William J.

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% asmore » the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.« less

  13. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments.

    PubMed

    Allen, Joseph G; MacNaughton, Piers; Satish, Usha; Santanam, Suresh; Vallarino, Jose; Spengler, John D

    2016-06-01

    The indoor built environment plays a critical role in our overall well-being because of both the amount of time we spend indoors (~90%) and the ability of buildings to positively or negatively influence our health. The advent of sustainable design or green building strategies reinvigorated questions regarding the specific factors in buildings that lead to optimized conditions for health and productivity. We simulated indoor environmental quality (IEQ) conditions in "Green" and "Conventional" buildings and evaluated the impacts on an objective measure of human performance: higher-order cognitive function. Twenty-four participants spent 6 full work days (0900-1700 hours) in an environmentally controlled office space, blinded to test conditions. On different days, they were exposed to IEQ conditions representative of Conventional [high concentrations of volatile organic compounds (VOCs)] and Green (low concentrations of VOCs) office buildings in the United States. Additional conditions simulated a Green building with a high outdoor air ventilation rate (labeled Green+) and artificially elevated carbon dioxide (CO2) levels independent of ventilation. On average, cognitive scores were 61% higher on the Green building day and 101% higher on the two Green+ building days than on the Conventional building day (p < 0.0001). VOCs and CO2 were independently associated with cognitive scores. Cognitive function scores were significantly better under Green+ building conditions than in the Conventional building conditions for all nine functional domains. These findings have wide-ranging implications because this study was designed to reflect conditions that are commonly encountered every day in many indoor environments. Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD. 2016. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments. Environ Health Perspect 124:805-812; http://dx.doi.org/10.1289/ehp.1510037.

  14. CFD and ventilation research.

    PubMed

    Li, Y; Nielsen, P V

    2011-12-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.

  15. Dynamics of airborne fungal populations in a large office building

    NASA Technical Reports Server (NTRS)

    Burge, H. A.; Pierson, D. L.; Groves, T. O.; Strawn, K. F.; Mishra, S. K.

    2000-01-01

    The increasing concern with bioaerosols in large office buildings prompted this prospective study of airborne fungal concentrations in a newly constructed building on the Gulf coast. We collected volumetric culture plate air samples on 14 occasions over the 18-month period immediately following building occupancy. On each sampling occasion, we collected duplicate samples from three sites on three floors of this six-story building, and an outdoor sample. Fungal concentrations indoors were consistently below those outdoors, and no sample clearly indicated fungal contamination in the building, although visible growth appeared in the ventilation system during the course of the study. We conclude that modern mechanically ventilated buildings prevent the intrusion of most of the outdoor fungal aerosol, and that even relatively extensive air sampling protocols may not sufficiently document the microbial status of buildings.

  16. Reducing the ingress of urban noise through natural ventilation openings.

    PubMed

    Oldham, D J; de Salis, M H; Sharples, S

    2004-01-01

    For buildings in busy urban areas affected by high levels of road traffic noise the potential to use natural ventilation can be limited by excessive noise entering through ventilation openings. This paper is concerned with techniques to reduce noise ingress into naturally ventilated buildings while minimizing airflow path resistance. A combined experimental and theoretical approach to the interaction of airflow and sound transmission through ventilators for natural ventilation applications is described. A key element of the investigation has been the development of testing facilities capable of measuring the airflow and sound transmission losses for a range of ventilation noise control strategies. It is demonstrated that a combination of sound reduction mechanisms -- one covering low frequency sound and another covering high frequency sound -- is required to attenuate effectively noise from typical urban sources. A method is proposed for quantifying the acoustic performance of different strategies to enable comparisons and informed decisions to be made leading to the possibility of a design methodology for optimizing the ventilation and acoustic performance of different strategies. The need for employing techniques for combating low frequency sound in tandem with techniques for reducing high frequency sound in reducing the ingress of noise from urban sources such as road traffic to acceptable levels is demonstrated. A technique is proposed for enabling the acoustic and airflow performance of apertures for natural ventilation systems to be designed simultaneously.

  17. Influence of ventilation and filtration on indoor particle concentrations in urban office buildings

    NASA Astrophysics Data System (ADS)

    Quang, Tran Ngoc; He, Congrong; Morawska, Lidia; Knibbs, Luke D.

    2013-11-01

    This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 μm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6-3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building's HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.

  18. Seismic analyses of equipment in 2736-Z complex. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocoma, E.C.

    1995-04-01

    This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; themore » ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.« less

  19. 9 CFR 354.226 - Lighting and ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Buildings and Plant Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or...

  20. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  1. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  2. Prediction of indoor radon/thoron concentration in a model room from exhalation rates of building materials for different ventilation rates

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Sharma, Navjeet; Sarin, Amit

    2018-05-01

    Studies have confirmed that elevated levels of radon/thoron in the human-environments can substantially increase the risk of lung cancer in general population. The building materials are the second largest contributors to indoor radon/thoron after soil and bedrock beneath dwellings. In present investigation, the exhalation rates of radon/thoron from different building materials samples have been analysed using active technique. Radon/thoron concentrations in a model room have been predicted based on the exhalation rates from walls, floor and roof. The indoor concentrations show significant variations depending upon the ventilation rate and type of building materials used.

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  4. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    PubMed Central

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A.; Mikkola, Raimo; Marik, Tamás; Salonen, Heidi

    2018-01-01

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention. PMID:29385772

  5. Natural Ventilation: A Mitigation Strategy to Reduce Overheating In Buildings under Urban Heat Island Effect in South American Cities

    NASA Astrophysics Data System (ADS)

    Palme, Massimo; Carrasco, Claudio; Ángel Gálvez, Miguel; Inostroza, Luis

    2017-10-01

    Urban heat island effect often produces an increase of overheating sensation inside of buildings. To evacuate this heat, the current use of air conditioning increases the energy consumption of buildings. As a good alternative, natural ventilation is one of the best strategies to obtain indoor comfort conditions, even in summer season, if buildings and urban designs are appropriated. In this work, the overheating risk of a small house is evaluated in four South American cities: Guayaquil, Lima, Antofagasta and Valparaíso, with and without considering the UHI effect. Then, natural ventilation is assessed in order to understand the capability of this passive strategy to assure comfort inside the house. Results show that an important portion of the indoor heat can be evacuated, however the temperature rising (especially during the night) due to UHI can generate a saturation effect if appropriate technical solutions, like the increase in the air speed that can be obtained with good urban design, are not considered.

  6. Radon safety in terms of energy efficiency classification of buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  7. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems.

    PubMed

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A; Mikkola, Raimo; Marik, Tamás; Kredics, László; Salonen, Heidi; Kurnitski, Jarek

    2018-01-30

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants' symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study's aim was to determine whether a positive pressure of 5-7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants' questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM 2.5 ) decreased, and occupants' negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  8. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings

    PubMed Central

    Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna

    2018-01-01

    An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525

  9. Fort Bliss Standards for the Treatment of Historic Buildings

    DTIC Science & Technology

    2008-05-01

    visual disparity between the two materials. Typical historical uses for sandstone included • Urban row houses, commercial buildings and churches...migration within walls due to interior condensation and humidity, va- por drive problems caused by furnace, bathroom and kitchen vents, and rising damp...Replacing Deteriorated Woodwork • Historic Exteriors: Preserving Wood • Preservation Brief #31: Mothballing Historic Buildings Pests can be

  10. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    NASA Astrophysics Data System (ADS)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  11. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  12. 7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 (BUILDING 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD

  13. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrationsmore » were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.« less

  14. Trends in Public Library Buildings.

    ERIC Educational Resources Information Center

    Holt, Raymond M.

    1987-01-01

    Review of trends in public library buildings covers cycles in building activity; financial support; site selection; expansion, remodeling, or conversion of existing buildings; size of buildings; and such architectural concerns as flexible space, lighting, power, accommodation of computer systems, heat and ventilation, fire protection, security,…

  15. Transient natural ventilation of a room with a distributed heat source

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  16. Thermal Performance Testing of EMU and OSS Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mary

    2012-01-01

    A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.

  17. View of equipment building and tower base, looking southeast. Door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of equipment building and tower base, looking southeast. Door opens to radio room, and hood covers the engine room outlet. Vertical pipe with cap above roof is fuel tank vent. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  18. Health and Wellbeing of Occupants in Highly Energy Efficient Buildings: A Field Study.

    PubMed

    Wallner, Peter; Tappler, Peter; Munoz, Ute; Damberger, Bernhard; Wanka, Anna; Kundi, Michael; Hutter, Hans-Peter

    2017-03-19

    Passive houses and other highly energy-efficient buildings need mechanical ventilation. However, ventilation systems in such houses are regarded with a certain degree of skepticism by parts of the public due to alleged negative health effects. Within a quasi-experimental field study, we investigated if occupants of two types of buildings (mechanical vs. natural ventilation) experience different health, wellbeing and housing satisfaction outcomes and if associations with indoor air quality exist. We investigated 123 modern homes (test group: with mechanical ventilation; control group: naturally ventilated) built in the years 2010 to 2012 in the same geographic area and price range. Interviews of occupants based on standardized questionnaires and measurements of indoor air quality parameters were conducted twice (three months after moving in and one year later). In total, 575 interviews were performed (respondents' mean age 37.9 ± 9 years in the test group, 37.7 ± 9 years in the control group). Occupants of the test group rated their overall health status and that of their children not significantly higher than occupants of the control group at both time points. Adult occupants of the test group reported dry eyes statistically significantly more frequently compared to the control group (19.4% vs. 12.5%). Inhabitants of energy-efficient, mechanically ventilated homes rated the quality of indoor air and climate significantly higher. Self-reported health improved more frequently in the mechanically ventilated new homes ( p = 0.005). Almost no other significant differences between housing types and measuring time points were observed concerning health and wellbeing or housing satisfaction. Associations between vegetative symptoms (dizziness, nausea, headaches) and formaldehyde concentrations as well as between CO₂ levels and perceived stale air were observed. However, both associations were independent of the type of ventilation. In summary, occupants of the mechanically ventilated homes rated their health status slightly higher and their health improved significantly more frequently than in occupants of the control group. As humidity in homes with mechanical ventilation was lower, it seems plausible that the inhabitants reported dry eyes more frequently.

  19. Theory of gastric CO2 ventilation and its control during respiratory acidosis: implications for central chemosensitivity, pH regulation, and diseases causing chronic CO2 retention.

    PubMed

    Dean, Jay B

    2011-02-15

    The theory of gastric CO(2) ventilation describes a previously unrecognized reflex mechanism controlled by neurons in the caudal solitary complex (cSC) for non-alveolar elimination of systemic CO(2) during respiratory acidosis. Neurons in the cSC, which is a site of CO(2) chemosensitivity for cardiorespiratory control, also control various gastroesophageal reflexes that remove CO(2) from blood. CO(2) is consumed in the production of gastric acid and bicarbonate in the gastric epithelium and then reconstituted as CO(2) in the stomach lumen from the reaction between H(+) and HCO(3)(-). Respiratory acidosis and gastric CO(2) distension induce cSC/vagovagal mediated transient relaxations of the lower esophageal sphincter to vent gastric CO(2) upwards by bulk flow along an abdominal-to-esophageal (=intrapleural) pressure gradient the magnitude of which increases during abdominal (gastric) compression caused by increased contractions of respiratory muscles. Esophageal distension induces cSC/nucleus ambiguus/vagovagal reflex relaxation of the upper esophageal sphincter and CO(2) is vented into the pharynx and mixed with pulmonary gas during expiration or, alternatively, during eructation. It is proposed that gastric CO(2) ventilation provides explanations for (1) the postprandial increase in expired CO(2) and (2) the negative P(blood - expired)CO₂difference that occurs with increased inspired CO(2). Furthermore, it is postulated that gastric CO(2) ventilation and alveolar CO(2) ventilation are coordinated under dual control by CO(2) chemosensitive neurons in the cSC. This new theory, therefore, presupposes a level of neural control and coordination between two previously presumed dissimilar organ systems and supports the notion that different sites of CO(2) chemosensitivity address different aspects of whole body pH regulation. Consequently, not all sites of central chemosensitivity are equal regarding the mechanism(s) activated for CO(2) elimination. A distributed CO(2) chemosensitive network-at least nine different areas in the CNS, including the cSC, have been reported to date-may reflect the complexity and dynamic nature of the fundamental neural circuitry required to achieve CO(2)/pH regulation across multiple organ systems under various states of arousal, oxygenation, pH status, and redox state. Moreover, coordination of respiratory and digestive control networks through the cSC could also account for the frequent co-expression of pulmonary diseases that cause chronic respiratory acidosis (and overstimulation of cSC neurons) with peptic ulcer disease or gastroesophageal reflux disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. SBS symptoms in relation to dampness and ventilation in inspected single-family houses in Sweden.

    PubMed

    Smedje, Greta; Wang, Juan; Norbäck, Dan; Nilsson, Håkan; Engvall, Karin

    2017-10-01

    To investigate the relationships between symptoms compatible with the sick building syndrome (SBS) in adults and building dampness and ventilation in single-family houses. Within the Swedish BETSI study, a national sample of single-family houses were inspected by professional building experts, and adults living in the houses answered a questionnaire on SBS. Relationships between building factors and SBS were analysed using logistic regression. Of the respondents, 23% reported having had weekly SBS symptoms during the last three months. A large proportion of houses exhibited building or construction problems. In total, 40% of houses had dampness problems in the foundation, and this was related to a higher prevalence of both mucous and dermal symptoms, and any SBS symptoms. Furthermore, high air humidity was related to more symptoms, with the relationship with absolute humidity being stronger than that with relative humidity or moisture load. Symptoms were also more prevalent in houses with a high U value, reflecting a poor thermal insulation. Compared to natural ventilation, living in a house with mechanical supply and exhaust ventilation was related to a lower prevalence of general symptoms and any SBS symptoms, but there were only weak associations between measured air exchange rate and symptoms. A large proportion of single-family houses have dampness problems in the foundation, and pollutants may enter the living space of the house and affect the health of the occupants. Furthermore, absolute air humidity should be measured more often in indoor air studies.

  1. A passive solar residence using native and recycled materials, Bee Cave, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, L.M. III; King, L.H.

    The Booth Residence at Bee Cave, Texas is a Passive Solar residence in a hot humid climate and a good example of both passive solar and renewable features. The design, operation, materials, and furnishings give the structure a regional and rustic character. Passive solar strategies employed include solar orientation, solar shading, natural ventilation, induced ventilation, night flushing, direct gain clearstory, high mass floors, daylighting, radiant barrier, and a double ventilated roof system. The project is in contrast to the existing compound which includes three identical buildings each rotated 120 degrees and intended to be energy efficient, but actual operation hasmore » pointed out some deficiencies in the design. Additional features include extensive use of natural, recycled, and materials reused from other buildings. The Boothe Residence is an example of building in harmony with the local climate, the use of locally available materials, craftsman, artists, manpower, and reuse of trim and furnishings.« less

  2. On the application of a new thermal diagnostic model: the passive elements equivalent in term of ventilation inside a room

    NASA Astrophysics Data System (ADS)

    El Khattabi, El Mehdi; Mharzi, Mohamed; Raefat, Saad; Meghari, Zouhair

    2018-05-01

    In this paper, the thermal equivalence of the passive elements of a room in a building located in Fez-Morocco has been studied. The possibility of replacing them with a semi-passive element such as ventilation has been appraised. For this aim a Software in Fortran taking into account the meteorological external conditions along with different parameters of the building envelope has been performed. A new computational approach is adapted to determinate the temperature distribution throughout the building multilayer walls. A novel equation gathering the internal temperature with the external conditions, and the building envelope has been deduced in transient state.

  3. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. © 2013 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  4. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and newmore » analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.« less

  5. Factors Affecting Radon Concentration in Houses

    NASA Astrophysics Data System (ADS)

    Al-Sharif, Abdel-Latif; Abdelrahman, Y. S.

    2001-03-01

    The dangers to the human health upon exposure to radon and its daughter products is the main motivation behind the vast number of studies performed to find the concentration of radon in our living environment, including our houses. The presence of radon and its daughter products in houses are due to various sources including building materials and the soil under the houses. Many factors affect radon concentration in our houses, the elevation above ground level,ventilation, building materials and room usage being among these factors. In our paper, we discuss the effect of elevation above ground level, room usage and ventilation on the Radon concentration in houses. The faculty residences of the Mu'tah University (Jordan) were chosen in our study. Our results showed that the concentration of radon decreases with elevation. Ventilation rate was also found to affect radon concentration, where low concentrations observed for areas with good ventilation.

  6. Comparison of the Intensity of Ventilation at Windows Exchange in the Room - Case Study

    NASA Astrophysics Data System (ADS)

    Kapalo, Peter; Voznyak, Orest

    2017-06-01

    Doing the replacement of old wooden windows in a new plastic windows, in the old buildings, we get the great reducing of the building heat loss. Simpler maintenance and attendance of window is the next advantage. New windows are characterized by better tightness. The aim of the article is determination due to the performed experimental measurements, how much more are reduce the uncontrolled ventilation that is caused of the infiltration windows. In the article there is presented the experimental measurement of indoor air quality in the room in two phases. In the first phase there is the room installed by 55 year old wood window. In the second phase there is the same room installed by new plastic window. Due to the experimental measurement of indoor air quality it is calculated intensity of ventilation - infiltration. These results of ventilation intensity are reciprocally compared.

  7. Ventilation.

    PubMed

    Turner, W A; Bearg, D W; Brennan, T

    1995-01-01

    This chapter begins with an overview of the history of ventilation guidelines, which has led to the guidelines that are in effect today. Of particular interest is the most recent return in the past 5 years to ventilation rates that more closely reflect a mean or average of the range of guidelines that have existed over the past century. OSHA's and the EPA's recognition of the need to operate ventilation systems in buildings in an accountable manner is also of note. Of even more interest is the resurgence of the concept of minimum mixing and once-through ventilation air that has been pursued in parts of Northern Europe for the past 10 years, and in a school that is being designed with this concept in New Hampshire. In addition, the design concept of equipping office buildings with low pressure drop high efficiency particle filtration to remove fine particles from all of the air that is supplied to the occupants is being used increasingly in the U.S. This chapter also presents an overview of the various types of ventilation systems found in homes and commercial office buildings and the common indoor air quality problems that may be associated with them. It also offers an overview of common HVAC evaluation techniques that can be used to determine if a ventilation system is performing in a manner that makes sense for the use of the space and the needs of the occupants. Are the occupants receiving a reasonable supply of outdoor air? Is the air that they receive of reasonable quality? Are obvious pollutants being exhausted? Ventilation systems have become extremely complex and more difficult to run and maintain over the past 40 years. This trend will continue to drive the need for professionally maintained HVAC equipment that is serviced and run by individuals who are accountable for the quality of the air that the system delivers.

  8. Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetiu, C.; Feustel, H.E.

    1998-07-01

    As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage canmore » thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.« less

  9. Lung deposition and systemic bioavailability of different aerosol devices with and without humidification in mechanically ventilated patients.

    PubMed

    Moustafa, Islam O F; Ali, Mohammed R A-A; Al Hallag, Moataz; Rabea, Hoda; Fink, James B; Dailey, Patricia; Abdelrahim, Mohamed E A

    During mechanical ventilation medical aerosol delivery has been reported to be upto two fold greater with dry inhaled gas than with heated humidity. Urine levels at 0.5 h post dose (URSAL0.5%) has been confirmed as an index of lung deposition and 24 h (URSAL24%) as index of systemic absorption. Our aim was to determine the effect of humidification and aerosol device type on drug delivery to ventilated patients using urine levels. In a randomized crossover design, 36 (18female) mechanically ventilated patients were assigned to one of three groups. Groups 1 and 2 received 5000 μg salbutamol using vibrating mesh (VM) and jet nebulizers (JN), respectively, while group 3 received 1600 μg (16 puffs) of salbutamol via metered dose inhaler with AeroChamber Vent (MDI-AV). All devices were placed in the inspiratory limb of ventilator downstream from the humidifier. Each subject received aerosol with and without humidity at >24 h intervals with >12 h washout periods between salbutamol doses. Patients voided urine 15 min before each study dose and urine samples were collected at 0.5 h post dosing and pooled for the next 24 h. The MDI-AV and VM resulted in a higher percentage of urinary salbutamol levels compared to the JN (p < 0.05). Urine levels were similar between humidity and dry conditions. Our findings suggest that in-vitro reports overestimate the impact of dry vs. heated humidified conditions on the delivery of aerosol during invasive mechanical ventilation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Building Ventilation as an Effective Disease Intervention Strategy in a Dense Indoor Contact Network in an Ideal City.

    PubMed

    Gao, Xiaolei; Wei, Jianjian; Lei, Hao; Xu, Pengcheng; Cowling, Benjamin J; Li, Yuguo

    2016-01-01

    Emerging diseases may spread rapidly through dense and large urban contact networks, especially they are transmitted by the airborne route, before new vaccines can be made available. Airborne diseases may spread rapidly as people visit different indoor environments and are in frequent contact with others. We constructed a simple indoor contact model for an ideal city with 7 million people and 3 million indoor spaces, and estimated the probability and duration of contact between any two individuals during one day. To do this, we used data from actual censuses, social behavior surveys, building surveys, and ventilation measurements in Hong Kong to define eight population groups and seven indoor location groups. Our indoor contact model was integrated with an existing epidemiological Susceptible, Exposed, Infectious, and Recovered (SEIR) model to estimate disease spread and with the Wells-Riley equation to calculate local infection risks, resulting in an integrated indoor transmission network model. This model was used to estimate the probability of an infected individual infecting others in the city and to study the disease transmission dynamics. We predicted the infection probability of each sub-population under different ventilation systems in each location type in the case of a hypothetical airborne disease outbreak, which is assumed to have the same natural history and infectiousness as smallpox. We compared the effectiveness of controlling ventilation in each location type with other intervention strategies. We conclude that increasing building ventilation rates using methods such as natural ventilation in classrooms, offices, and homes is a relatively effective strategy for airborne diseases in a large city.

  11. IET control building (TAN620). interior service area. equipment on concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). interior service area. equipment on concrete pads. liquid pump and valves on right. control panel at center of view, blower at left. piping for vent and sanitary sewer. INEEL negative no. HD-21-3-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. 49 CFR 192.361 - Service lines: Installation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... buildings. Each underground service line installed below grade through the outer foundation wall of a... underlies, extend into a normally usable and accessible part of the building; and (3) The space between the... is sealed at both ends, a vent line from the annular space must extend to a point where gas would not...

  13. 49 CFR 192.361 - Service lines: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... buildings. Each underground service line installed below grade through the outer foundation wall of a... underlies, extend into a normally usable and accessible part of the building; and (3) The space between the... is sealed at both ends, a vent line from the annular space must extend to a point where gas would not...

  14. 49 CFR 192.361 - Service lines: Installation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... buildings. Each underground service line installed below grade through the outer foundation wall of a... underlies, extend into a normally usable and accessible part of the building; and (3) The space between the... is sealed at both ends, a vent line from the annular space must extend to a point where gas would not...

  15. 49 CFR 192.361 - Service lines: Installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... buildings. Each underground service line installed below grade through the outer foundation wall of a... underlies, extend into a normally usable and accessible part of the building; and (3) The space between the... is sealed at both ends, a vent line from the annular space must extend to a point where gas would not...

  16. Injury Prevention Effectiveness of Modifications of Shoe Type on Injuries and Risk Factors Associated with Pain and Discomfort in the US Army Band, Fort Meyer, Virginia 2007-2008

    DTIC Science & Technology

    2009-06-30

    shown to reduce mean USACHPPM Epidemiological Report No. 12-HF-05WC-07 3 peak pressure during heel strike and forefoot landing(15). For...such as outsoles that have built in compression pads in the heel and forefoot , and Cooltech®. Cooltech theoretically improves breathability by...in the heel and forefoot , and Cooltech® which presumably improves breathability by increasing ventilation through eyeleted vent holes on the sides

  17. Disposable condenser humidifiers in intensive care.

    PubMed

    Oh, T E; Thompson, W R; Hayward, D R

    1981-11-01

    Two disposable condenser humidifiers were evaluated in nine ventilated intensive care patients. The Portex "Humid Vent" delivered end-inspired absolute humidities of 22--26.3 g/m3 at end-inspired temperatures of 27--28.3 degrees C. Corresponding humidities and temperatures with the Servo "Humidifier 150" were higher and were constant, at 27.7--29 g/m3 and 29.3--29.7 degrees C respectively. These disposable devices can be used for humidification in intensive care, but only for patients breathing room air, or on a short term basis.

  18. Environmental Perceptions and Health before and after Relocation to a Green Building.

    PubMed

    MacNaughton, Piers; Spengler, John; Vallarino, Jose; Santanam, Suresh; Satish, Usha; Allen, Joseph

    2016-08-01

    Green buildings are designed to have low environmental impacts and improved occupant health and well-being. Improvements to the built environment including ventilation, lighting, and materials have resulted in improved indoor environmental quality (IEQ) in green buildings, but the evidence around occupant health is currently centered around environmental perceptions and self-reported health. To investigate the objective impact of green buildings on health, we tracked IEQ, self-reported health, and heart rate in 30 participants from green and conventional buildings for two weeks. 24 participants were then selected to be relocated to the Syracuse Center of Excellence, a LEED platinum building, for six workdays. While they were there, ventilation, CO 2 , and volatile organic compound (VOC) levels were changed on different days to match the IEQ of conventional, green, and green+ (green with increased ventilation) buildings. Participants reported improved air quality, odors, thermal comfort, ergonomics, noise and lighting and fewer health symptoms in green buildings prior to relocation. After relocation, participants consistently reported fewer symptoms during the green building conditions compared to the conventional one, yet symptom counts were more closely associated with environmental perceptions than with measured IEQ. On average, participants had 4.7 times the odds of reporting a lack of air movement, 1.4 more symptoms (p-value = 0.019) and a 2 bpm higher heart rate (p-value < 0.001) for a 1000 ppm increase in indoor CO 2 concentration. These findings suggest that occupant health in green and conventional buildings is driven by both environmental perceptions and physiological pathways.

  19. Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption

    NASA Astrophysics Data System (ADS)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2018-03-01

    The MESSENGER mission revealed, for the first time, conclusive evidence of explosive volcanism on Mercury. Several previous works have cataloged the appearance and location of explosive volcanism on the planet using a variety of identifying characteristics, including vent presence and deposit color as seen in multispectral image mosaics. We present here a comprehensive catalog of vents of likely volcanic origin; our classification scheme emphasizes vent morphology. We have analyzed the morphologies of all vents in our catalog, and recognize three main morphologies: "simple vent", "pit vent", and "vent-with-mound". The majority of vents we identify are located within impact craters. The spatial distribution of vents does not correlate with the locations of volcanic smooth plains deposits, in contrast to the Moon, nor do vents correlate with the locations of large impact basins (except for the Caloris and Tolstoj basins). Using the degradation state of the vent host crater as a proxy for maximum age, we suggest that vent formation has been active through the Mansurian and into the Kuiperian periods, although the majority of vents were likely formed much earlier in mercurian history. The morphologies and locations of vents are used to investigate a set of plausible formation geometries. We find that the most likely and most prevalent formation geometry is that of a dike, stalled at depth, which then explosively vents to the surface. We compare the vent and deposit size of mercurian pyroclastic deposits with localized and regional lunar pyroclastic deposits, and find a range of possible eruption energies and corresponding variations in eruption style. Localized lunar pyroclastic deposits and the majority of mercurian pyroclastic deposits show evidence for eruption that is consistent with the magmatic foam at the top of a dike reaching a critical gas volume fraction. A subset of mercurian vents, including the prominent Copland-Rachmaninoff vent to the northeast of the Rachmaninoff basin, indicates eruption at enhanced gas volume fractions. This subset of vents shows a similar eruptive behavior to the lunar Orientale dark mantle ring deposit, suggesting that the dikes that formed these vents and deposits on Mercury underwent some form of additional volatile build-up either through crustal volatile incorporation or magma convection within the dike. There also exists a population of mercurian vents that no longer retain a visible associated pyroclastic deposit; we hypothesize that the visible signature of the pyroclastic deposit has been lost through space weathering and regolith mixing processes. Together, these results provide a comprehensive analysis of explosive volcanism on Mercury, and inform continued research on the thermal history of Mercury and magma composition and evolution.

  20. [Heat and moisture exchangers for conditioning of inspired air of intubated patients in intensive care. The humidification properties of passive air exchangers under clinical conditions].

    PubMed

    Rathgeber, J; Züchner, K; Kietzmann, D; Weyland, W

    1995-04-01

    Heat and moisture exchangers (HME) are used as artificial noses for intubated patients to prevent tracheo-bronchial or pulmonary damage resulting from dry and cold inspired gases. HME are mounted directly on the tracheal tube, where they collect a large fraction of the heat and moisture of the expired air, adding this to the subsequent inspired breath. The effective performance depends on the water-retention capacity of the HME: the amount of water added to the inspired gas cannot exceed the stored water uptake of the previous breath. This study evaluates the efficiency of four different HME under laboratory and clinical conditions using a new moisture-measuring device. METHODS. In a first step, the absolute efficiency of four different HME (DAR Hygrobac, Gibeck Humid-Vent 2P, Pall BB 22-15 T, and Pall BB 100) was evaluated using a lung model simulating physiological heat and humidity conditions of the upper airways. The model was ventilated with tidal volumes of 500, 1,000, and 1,500 ml and different flow rates. The water content of the ventilated air was determined between tracheal tube and HME using a new high-resolution humidity meter and compared with the absolute water loss of the exhaled air at the gas outlet of a Siemens Servo C ventilator measured with a dew-point hygrometer. Secondly, the moisturizing efficiency was evaluated under clinical conditions in an intensive care unit with 25 intubated patients. Maintaining the ventilatory conditions for each patient, the HME were randomly changed. The humidity data were determined as described above and compared with the laboratory findings. RESULTS AND DISCUSSION. The water content at the respirator outlet is inversely equivalent to the humidity of the inspired gases and represents the water loss from the respiratory tract if the patient is ventilated with dry gases. Moisture retention and heating capacity decreased with higher volumes and higher flow rates. These data are simple to obtain without affecting the patient and can easily be interpreted. It was demonstrated that, compared to physiological conditions, the DAR Hygrobac and Gibeck Humid Vent 2P-HME coated with hygroscopic salts-were able to maintain sufficient inspiratory humidity and heat. The Pall-HME, solely a condensation humidifier, did not meet the physiological requirements.

  1. Installation of ventilated facades without scaffolding in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Gnedina, Lyubov; Muchkina, Arina; Labutin, Alexander

    2018-03-01

    This article consider the use of polystyrene concrete blocks during assembling enclosing structure of ventilated facades in high-rise monolithic housing construction. Comparing with traditional technology devices hinged ventilated facade the main advantage of the proposed design is an exception of using scaffold, that leads to a cheapening of the enclosing structure. Proposed solutions are confirmed by patents of the Russian Federation.

  2. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  3. SUNREL Publications | Buildings | NREL

    Science.gov Websites

    Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings Improvements to the SERIRES /SUNREL Building Energy Simulation Program, Deru, M. 1996. Masters Thesis, Colorado State University, Fort

  4. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. Themore » guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.« less

  5. Clinical outcome associated with the use of different inhalation method with and without humidification in asthmatic mechanically ventilated patients.

    PubMed

    Moustafa, Islam O F; ElHansy, Muhammad H E; Al Hallag, Moataz; Fink, James B; Dailey, Patricia; Rabea, Hoda; Abdelrahim, Mohamed E A

    2017-08-01

    Inhaled-medication delivered during mechanical-ventilation is affected by type of aerosol-generator and humidity-condition. Despite many in-vitro studies related to aerosol-delivery to mechanically-ventilated patients, little has been reported on clinical effects of these variables. The aim of this study was to determine effect of humidification and type of aerosol-generator on clinical status of mechanically ventilated asthmatics. 72 (36 females) asthmatic subjects receiving invasive mechanical ventilation were enrolled and assigned randomly to 6 treatment groups of 12 (6 females) subjects each received, as possible, all inhaled medication using their assigned aerosol generator and humidity condition during delivery. Aerosol-generators were placed immediately after humidifier within inspiratory limb of mechanical ventilation circuit. First group used vibrating-mesh-nebulizer (Aerogen Solo; VMN) with humidification; Second used VMN without humidification; Third used metered-dose-inhaler with AeroChamber Vent (MDI-AV) with humidification; Forth used MDI-AV without humidification; Fifth used Oxycare jet-nebulizer (JN) with humidification; Sixth used JN without humidification. Measured parameters included clinical-parameters reflected patient response (CP) and endpoint parameters e.g. length-of-stay in the intensive-care-unit (ICU-days) and mechanical-ventilation days (MV-days). There was no significant difference between studied subjects in the 6 groups in baseline of CP. VMN resulted in trend to shorter ICU-days (∼1.42days) compared to MDI-AV (p = 0.39) and relatively but not significantly shorter ICU-days (∼0.75days) compared JN. Aerosol-delivery with or without humidification did not have any significant effect on any of parameters studied with very light insignificant tendency of delivery at humid condition to decrease MV-days and ICU-days. No significant effect was found of changing humidity during aerosol-delivery to ventilated-patient. VMN to deliver aerosol in ventilated patient resulted in trend to decreased ICU-days compared to JN and MDI-AV. Aerosol-delivery with or without humidification did not have any significant effect on any of parameters studied. However, we recommend increasing the number of patients studied to corroborate this finding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  7. HOT CELL BUILDING, TRA632. EAST END OF BUILDING. CAMERA FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. EAST END OF BUILDING. CAMERA FACING WEST. TRUCK ENCLOSURE (1986) TO THE LEFT, SMALL ADDITION IN ITS SHADOW IS ENCLOSURE OVER METAL PORT INTO HOT CELL NO. 1 (THE OLDEST HOT CELL). NOTE PERSONNEL LADDER AND PLATFORM AT LOFT LEVEL USED WHEN SERVICING AIR FILTERS AND VENTS OF CELL NO. 1. INL NEGATIVE NO. HD46-32-4. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  9. 62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING AT NORTHWEST FACADE. ACCESS TO ROOF ALLOWS MAINTENANCE OF VENTILATION EQUIPMENT WHICH IS PLACED OUTSIDE BUILDING TO MINIMIZE EXPLOSION HAZARD. NO. 2 VISIBLE ON WALL OF BUILDING STANDS FOR EXPLOSION HAZARD WITH FRAGMENTATION. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  10. Houses need to breathe--right?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.

    2004-10-01

    Houses need to breathe, but we can no longer leave the important functions associated with ventilation to be met accidentally. A designed ventilation system must be considered as much a part of a home as its heating system. Windows are a key part of that system because they allow a quick increase in ventilation for unusual events, but neither they nor a leaky building shell can be counted on to provide minimum levels.

  11. DETAIL OF THE INTERIOR WALL VENTILATION BAND FROM THE MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR WALL VENTILATION BAND FROM THE MAIN GYMNASIUM AREA TO THE LOCKER ROOM AREA. VIEW FACING WEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI

  12. Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China.

    PubMed

    Yuan, Ye; Luo, Zhiwen; Liu, Jing; Wang, Yaowu; Lin, Yaoyu

    2018-06-01

    China is confronted with serious PM 2.5 pollution, especially in the capital city of Beijing. Exposure to PM 2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM 2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM 2.5 pollution. Different building interventions have been introduced to mitigate indoor PM 2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM 2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM 2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM 2.5 emissions are absent; however, if an indoor PM 2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM 2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM 2.5 filtration efficiency is no <90% and the envelope air-tightness is above Chinese National Standard Level 7. Introducing mechanical ventilation with low PM 2.5 filtration efficiency to current residences in urban Beijing will increase the indoor PM 2.5 exposure and result in excess costs to the residents. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, H.; Kang, Z.J.; Bong, T.Y.

    1999-11-12

    Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters,more » such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.« less

  14. Mechanisms and sources of radon entry in buildings constructed with modern technologies.

    PubMed

    Zhukovsky, M V; Vasilyev, A V

    2014-07-01

    To investigate the influence of modern building construction technologies on the accumulation of radon indoor, 20 rooms in buildings constructed using mostly monolithic concrete or aerated concrete blocks have been studied. Dominance of the diffusion mechanism of radon entry in buildings constructed with modern technologies has been established. As a result of computer simulations it was found that the main contribution to the variability of radon concentration was made by changes in the ventilation rate. At a low ventilation rate (<0.2 h(-1)) radon concentration above 200 Bq m(-3) can be observed for residential buildings. There is a need for the regulation of the radium-specific activity in building materials. According to the estimates of this study, the content of 226Ra in building materials should not exceed the value of 100 Bq kg(-1). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. ASSESSMENT OF VENTILATION RATES IN 100 BASE OFFICE BUILDINGS

    EPA Science Inventory

    The U.S. EPA's Office of Radiation and Indoor Air studied 100 public and private office buildings across the U.S. from 1994-1998. The purpose of the study, entitled The Building Assessment Survey and Evaluation Study (BASE), was to: a) provide a distribution of IAQ, building, and...

  16. Geothermal Gases--Community Experiences, Perceptions, and Exposures in Northern California.

    PubMed

    Chiu, Cindy H; Lozier, Matthew J; Bayleyegn, Tesfaye; Tait, Karen; Barreau, Tracy; Copan, Lori; Roisman, Rachel; Jackson, Rebecca; Smorodinsky, Svetlana; Kreutzer, Richard A; Yip, Fuyuen; Wolkin, Amy

    2015-12-01

    Lake County, California, is in a high geothermal-activity area. Over the past 30 years, the city of Clearlake has reported health effects and building evacuations related to geothermal venting. Previous investigations in Clearlake revealed hydrogen sulfide at levels known to cause health effects and methane at levels that can cause explosion risks. The authors conducted an investigation in multiple cities and towns in Lake County to understand better the risk of geothermal venting to the community. They conducted household surveys and outdoor air sampling of hydrogen sulfide and methane and found community members were aware of geothermal venting and some expressed concerns. The authors did not, however, find hydrogen sulfide above the California Environmental Protection Agency air quality standard of 30 parts per billion over one hour or methane above explosive thresholds. The authors recommend improving risk communication, continuing to monitor geothermal gas effects on the community, and using community reports and complaints to monitor and document geothermal venting incidents.

  17. 50 CFR 260.99 - Buildings and structures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... suspended over exposed food in any step of preparation shall be of the safety type or otherwise protected to prevent food contamination in case of breakage. (b) Ventilation. There shall be sufficient ventilation in... PROCESSED FOOD PRODUCTS INSPECTION AND CERTIFICATION Inspection and Certification of Establishments and...

  18. THE EFFECT OF VENTILATION ON EMISSION RATES OF WOOD FINISHING MATERIALS

    EPA Science Inventory

    The rate of emission of organic compounds from building materials varies according to: type of material, material loading (area of material/volume of room), compound emitted, temperature, humidity, and ventilation rate. For some compounds and materials (e.g., formaldehyde from pa...

  19. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant densities were approximately 20% to 30% of that called by ASHRAE 62.1. Formaldehyde was the most important contaminant of concern in retail stores investigated. Both stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb). This study found that source removal and reducing the emission rate, as demonstrated in retail stores sampled in this study, is a viable strategy to meet the health guideline. Total volatile compound were present in retail stores at low concentrations well below health guidelines suggested by Molhave (1700microg /m 2) and Bridges (1000 microg /m2). Based on these results and through mass--balance modeling, different ventilation rate reduction scenarios were proposed, and for these scenarios the differences in energy consumption were estimated. Findings of all phases of this desertion have contributed to understanding (a) the trade-off between energy savings and ventilation rates that do not compromise indoor air quality, and (b) the trade-off between energy savings and resets of indoor air temperature that do not compromise thermal comfort. Two models for retail stores were built and calibrated and validated against actual utility bills. Energy simulation results indicated that by lowering the ventilation rates from measured and minimum references would reduce natural gas energy use by estimated values of 6% to 19%. Also, this study found that the electrical cooling energy consumption was not significantly sensitive to different ventilation rates. However, increasing indoor air temperature by 3°C in summer had a significant effect on the energy savings. In winter, both energy savings strategies, ventilation reduction and decrease in set points, had a significant effect on natural gas consumption. Specially, when the indoor air temperature 21°C was decreased to 19.4°C with the same amount of ventilation rate of Molhaves guideline for both cases. Interestingly, the temperature of 23.8°C (75°F), which is the lowest value of ASHRAE 55 thermal comfort for sedentary people (cashiers) and the highest value for thermal comfort adjustments due to activity level (customers and workers) that are calculated by using empirical equation, was the optimum temperature for sedentary and active people in Retail store buildings.

  20. Preventing Airborne Disease Transmission: Review of Methods for Ventilation Design in Health Care Facilities

    PubMed Central

    Aliabadi, Amir A.; Rogak, Steven N.; Bartlett, Karen H.; Green, Sheldon I.

    2011-01-01

    Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813

  1. Preventing airborne disease transmission: review of methods for ventilation design in health care facilities.

    PubMed

    Aliabadi, Amir A; Rogak, Steven N; Bartlett, Karen H; Green, Sheldon I

    2011-01-01

    Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrationsmore » with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.« less

  3. CPAP Devices for Emergency Prehospital Use: A Bench Study.

    PubMed

    Brusasco, Claudia; Corradi, Francesco; De Ferrari, Alessandra; Ball, Lorenzo; Kacmarek, Robert M; Pelosi, Paolo

    2015-12-01

    CPAP is frequently used in prehospital and emergency settings. An air-flow output minimum of 60 L/min and a constant positive pressure are 2 important features for a successful CPAP device. Unlike hospital CPAP devices, which require electricity, CPAP devices for ambulance use need only an oxygen source to function. The aim of the study was to evaluate and compare on a bench model the performance of 3 orofacial mask devices (Ventumask, EasyVent, and Boussignac CPAP system) and 2 helmets (Ventukit and EVE Coulisse) used to apply CPAP in the prehospital setting. A static test evaluated air-flow output, positive pressure applied, and FIO2 delivered by each device. A dynamic test assessed airway pressure stability during simulated ventilation. Efficiency of devices was compared based on oxygen flow needed to generate a minimum air flow of 60 L/min at each CPAP setting. The EasyVent and EVE Coulisse devices delivered significantly higher mean air-flow outputs compared with the Ventumask and Ventukit under all CPAP conditions tested. The Boussignac CPAP system never reached an air-flow output of 60 L/min. The EasyVent had significantly lower pressure excursion than the Ventumask at all CPAP levels, and the EVE Coulisse had lower pressure excursion than the Ventukit at 5, 15, and 20 cm H2O, whereas at 10 cm H2O, no significant difference was observed between the 2 devices. Estimated oxygen consumption was lower for the EasyVent and EVE Coulisse compared with the Ventumask and Ventukit. Air-flow output, pressure applied, FIO2 delivered, device oxygen consumption, and ability to maintain air flow at 60 L/min differed significantly among the CPAP devices tested. Only the EasyVent and EVE Coulisse achieved the required minimum level of air-flow output needed to ensure an effective therapy under all CPAP conditions. Copyright © 2015 by Daedalus Enterprises.

  4. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaaf, Rebecca E.; Evans, Meredydd

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  5. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)

  6. Institute for Safe Medication Practices

    MedlinePlus

    ... QuarterWatch Featured Tools Guide to Building a Smart Infusion System Drug Library The Root Cause Analysis Workbook ... 2 mL by Fresenius Kabi - Packa Recall: Diabetes infusion set vent membrane may be susceptible to Activase ( ...

  7. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  8. 38 CFR 59.50 - Priority list.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... priority group does not include applications for the addition or replacement of building utility systems, such as heating and air conditioning systems or building features, such as roof replacements. Projects... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and...

  9. PBF Cooling Tower. View from highbay roof of Reactor Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View from high-bay roof of Reactor Building (PER-620). Camera faces northwest. East louvered face has been installed. Inlet pipes protrude from fan deck. Two redwood vents under construction at top. Note piping, control, and power lines at sub-grade level in trench leading to Reactor Building. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3466 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. 8. BUILDING NO. 611. INTERIOR OF ARMOR PLATELINED TESTING CHAMBER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. BUILDING NO. 611. INTERIOR OF ARMOR PLATE-LINED TESTING CHAMBER. 1/2' THICK ARMOR PLATING BOLTED TO WALLS, FLOOR AND CEILING. WALLS CONSTRUCTED OF 24' THICK REINFORCED CONCRETE. VENTS IN CEILING EXHAUST SMOKE FROM EXPLOSIONS. SMALLEST WHEELED VEHICLES HOLD DUDS. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  11. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact tool, final verification of the dewar pressure vessel design requires a complete, detailed real fluid compressible flow model of the vent stack. The wall heat flux resulting from a loss of vacuum insulation increases the dewar pressure, which actuates the pressure relief mechanism and results in high-speed flow through the dewar vent stack. At high pressures, the flow can be choked at the vent stack inlet, at the exit, or at an intermediate transition or restriction. During previous SOFIA analyses, it was observed that there was generally a readily identifiable section of the vent stack that would limit the flow – e.g., a small diameter entrance or an orifice. It was also found that when the supercritical helium was approximated as an ideal gas at the dewar condition, the calculated mass flow rate based on choking at the limiting entrance or transition was less than the mass flow rate calculated using the detailed real fluid model2. Using this lower mass flow rate would yield a conservative prediction of the dewar’s wall heat flux capability. The simplified method of the current work was developed by building on this observation.

  12. Particle penetration into the automotive interior. I. Influence of vehicle speed and ventilatory mode.

    PubMed

    Muilenberg, M L; Skellenger, W S; Burge, H A; Solomon, W R

    1991-02-01

    Penetration of particulate aeroallergens into the interiors of two, new, similar Chrysler Corporation passenger vehicles (having no evidence of intrinsic microbial contamination) was studied on a large circular test track during periods of high pollen and spore prevalence. Impactor collections were obtained at front and rear seat points and at the track center during periods with (1) windows and vents closed and air conditioning on, (2) windows closed, vents open, and no air conditioning, and (3) air conditioner off, front windows open, and vents closed. These conditions were examined sequentially during travel at 40, 50, 60, and 80 kph. Particle recoveries within the two, new, similar Chrysler Corporation passenger vehicles did not vary with the speed of travel, either overall or with regard to each of the three ventilatory modalities. In addition, collections at front and rear seat sampling points were comparable. Highest interior aeroallergen levels were recorded with WO, and yet, these levels averaged only half the concurrent outside concentrations at track center. Recoveries within the cars were well below recoveries obtained outside when windows were closed (both VO and AC modes). These findings suggest window ventilation as an overriding factor determining particle ingress into moving vehicles. Efforts to delineate additional determinants of exposure by direct sampling are feasible and would appear essential in formulating realistic strategies of avoidance.

  13. Energy Retrofits Can Ease the Budget Squeeze.

    ERIC Educational Resources Information Center

    Nordeen, Howard

    1983-01-01

    Computer-based building management systems can cut the energy costs of heating, ventilating, and air conditioning (HVAC) systems in school buildings. Administrators are advised on how to choose the best system. (MLF)

  14. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  15. Ventilation Guidance To Promote the Safe Use of Spray Polyurethane Foam (SPF) Insulation, Incluyendo la Versión de Español

    EPA Pesticide Factsheets

    This guidance describes basic ventilation principles and strategies to help protect workers and building occupants and promote the safe use of spray polyurethane foam (SPF) insulation. Guia para la ventilacion sobre la application del aerosol de espuma.

  16. EFFECTS OF NATURAL AND FORCED BASEMENT VENTILATION ON RADON LEVELS IN SINGLE FAMILY DWELLINGS

    EPA Science Inventory

    The report gives, for the first time, results of an extensive study of the effect of ventilation on radon concentrations and radon entry rate in a single-family dwelling. Measurements of radon concentrations, building dynamics, and environmental parameters made in Princeton Unive...

  17. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less

  18. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  19. Building America Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate, Boilingbrook, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less

  20. Cardiopulmonary resuscitation using the cardio vent device in a resuscitation model.

    PubMed

    Suner, Selim; Jay, Gregory D; Kleinman, Gary J; Woolard, Robert H; Jagminas, Liudvikas; Becker, Bruce M

    2002-05-01

    To compare the "Bellows on Sternum Resuscitation" (BSR) device that permits simultaneous compression and ventilation by one rescuer with two person cardiopulmonary resuscitation (CPR) with bag-valve-mask (BVM) ventilation in a single blind crossover study performed in the laboratory setting. Tidal volume and compression depth were recorded continuously during 12-min CPR sessions with the BSR device and two person CPR. Six CPR instructors performed a total of 1,894 ventilations and 10,532 compressions in 3 separate 12-min sessions. Mean tidal volume (MTV) and compression rate (CR) with the BSR device differed significantly from CPR with the BVM group (1242 mL vs. 1065 mL, respectively, p = 0.0018 and 63.2 compressions per minute (cpm) vs. 81.3 cpm, respectively, p = 0.0076). Error in compression depth (ECD) rate of 9.78% was observed with the BSR device compared to 8.49% with BMV CPR (p = 0.1815). Error rate was significantly greater during the second half of CPR sessions for both BSR and BVM groups. It is concluded that one-person CPR with the BSR device is equivalent to two-person CPR with BVM in all measured parameters except for CR. Both groups exhibited greater error rate in CPR performance in the latter half of 12-min CPR sessions.

  1. Heat performance resulting from combined effects of radiation and mixed convection in a rectangular cavity ventilated by injection or suction

    NASA Astrophysics Data System (ADS)

    Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.

    2018-05-01

    In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.

  2. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings.

    PubMed

    Luongo, J C; Fennelly, K P; Keen, J A; Zhai, Z J; Jones, B W; Miller, S L

    2016-10-01

    Infectious disease outbreaks and epidemics such as those due to SARS, influenza, measles, tuberculosis, and Middle East respiratory syndrome coronavirus have raised concern about the airborne transmission of pathogens in indoor environments. Significant gaps in knowledge still exist regarding the role of mechanical ventilation in airborne pathogen transmission. This review, prepared by a multidisciplinary group of researchers, focuses on summarizing the strengths and limitations of epidemiologic studies that specifically addressed the association of at least one heating, ventilating and/or air-conditioning (HVAC) system-related parameter with airborne disease transmission in buildings. The purpose of this literature review was to assess the quality and quantity of available data and to identify research needs. This review suggests that there is a need for well-designed observational and intervention studies in buildings with better HVAC system characterization and measurements of both airborne exposures and disease outcomes. Studies should also be designed so that they may be used in future quantitative meta-analyses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. 1. View from missile site control building (southeast to northwest) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View from missile site control building (southeast to northwest) of universal missile building. Note earth mounding. On the far right can be seen the exit tunnel; the small "boxes" on top are the roof ventilators. This building was salvaged and sealed after site inactivation - Stanley R. Mickelsen Safeguard Complex, Universal Missile Building, Between Tactical Road South & Patrol Road, Nekoma, Cavalier County, ND

  4. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gasmore » decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.« less

  5. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  6. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  7. Validating computational predictions of night-time ventilation in Stanford's Y2E2 building

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Lamberti, Giacomo; Gorle, Catherine

    2017-11-01

    Natural ventilation can significantly reduce building energy consumption, but robust design is a challenging task. We previously presented predictions of natural ventilation performance in Stanford's Y2E2 building using two models with different levels of fidelity, embedded in an uncertainty quantification framework to identify the dominant uncertain parameters and predict quantified confidence intervals. The results showed a slightly high cooling rate for the volume-averaged temperature, and the initial thermal mass temperature and window discharge coefficients were found to have an important influence on the results. To further investigate the potential role of these parameters on the observed discrepancies, the current study is performing additional measurements in the Y2E2 building. Wall temperatures are recorded throughout the nightflush using thermocouples; flow rates through windows are measured using hotwires; and spatial variability in the air temperature is explored. The measured wall temperatures are found the be within the range of our model assumptions, and the measured velocities agree reasonably well with our CFD predications. Considerable local variations in the indoor air temperature have been recorded, largely explaining the discrepancies in our earlier validation study. Future work will therefore focus on a local validation of the CFD results with the measurements. Center for Integrated Facility Engineering (CIFE).

  8. Nosehouse: heat-conserving ventilators based on nasal counterflow exchangers.

    PubMed

    Vogel, Steven

    2009-12-01

    Small birds and mammals commonly minimize respiratory heat loss with reciprocating counterflow exchangers in their nasal passageways. These animals extract heat from the air in an exhalation to warm those passageways and then use that heat to warm the subsequent inhalation. Although the near-constant volume of buildings precludes direct application of the device, a pair of such exchangers located remotely from each other circumvents that problem. A very simple and crudely constructed small-scale physical model of the device worked well enough as a heat conserver to suggest utility as a ventilator for buildings.

  9. Cost/Value Approach to Insulation Produces Savings at Sibley School

    ERIC Educational Resources Information Center

    School Business Affairs, 1978

    1978-01-01

    An energy savings study revealed that adding insulation to an existing building and reducing ventilation loads would enable the school to heat both the existing building and the addition with existing boiler equipment. (Author/MLF)

  10. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  11. Talking Fire Alarms Calm Kids.

    ERIC Educational Resources Information Center

    Executive Educator, 1984

    1984-01-01

    The new microprocessor-based fire alarm systems can help to control smoke movement throughout school buildings by opening vents and doors, identify the burning section, activate voice alarms, provide firefighters with telephone systems during the fire, and release fire-preventing gas. (KS)

  12. Time-series analysis of fissure-fed multi-vent activity: a snapshot from the July 2014 eruption of Etna volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Spina, L.; Taddeucci, J.; Cannata, A.; Sciotto, M.; Del Bello, E.; Scarlato, P.; Kueppers, U.; Andronico, D.; Privitera, E.; Ricci, T.; Pena-Fernandez, J.; Sesterhenn, J.; Dingwell, D. B.

    2017-07-01

    On 5 July 2014, an eruptive fissure opened on the eastern flank of Etna volcano (Italy) at 3.000 m a.s.l. Strombolian activity and lava effusion occurred simultaneously at two neighbouring vents. In the following weeks, eruptive activity led to the build-up of two cones, tens of meters high, here named Crater N and Crater S. To characterize the short-term (days) dynamics of this multi-vent system, we performed a multi-parametric investigation by means of a dense instrumental network. The experimental setup, deployed on July 15-16th at ca. 300 m from the eruption site, comprised two broadband seismometers and three microphones as well as high speed video and thermal cameras. Thermal analyses enabled us to characterize the style of eruptive activity at each vent. In particular, explosive activity at Crater N featured higher thermal amplitudes and a lower explosion frequency than at Crater S. Several episodes of switching between puffing and Strombolian activity were noted at Crater S through both visual observation and thermal data; oppositely, Crater N exhibited a quasi-periodic activity. The quantification of the eruptive style of each vent enabled us to infer the geometry of the eruptive system: a branched conduit, prone to rapid changes of gas flux accommodated at the most inclined conduit (i.e. Crater S). Accordingly, we were able to correctly interpret acoustic data and thereby extend the characterization of this two-vent system.

  13. Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study

    NASA Astrophysics Data System (ADS)

    Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław

    2017-10-01

    Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring and autumn), but also in individual days in the potentially most favorable periods of work exchanger (summer and winter). Inappropriate operation of the heat exchanger, will lead to a temporary increase in energy consumption for the preparation of the desired air temperature, relative to the fresh air unit which is non-pretreated. For optimal energy system operation: exchanger EAHX - air handling unit, to preserve the most favourable parameters of inlet air to handling unit, there is a need to dynamically adjust the source of fresh air, depending on changing external conditions and the required outlet temperature of central unit (temperature of air forced to the rooms).

  14. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less

  15. Synergic effects of thermal mass and natural ventilation on the thermal behaviour of traditional massive buildings

    NASA Astrophysics Data System (ADS)

    Gagliano, A.; Nocera, F.; Patania, F.; Moschella, A.; Detommaso, M.; Evola, G.

    2016-05-01

    The energy policies about energy efficiency in buildings currently focus on new buildings and on existing buildings in case of energy retrofit. However, historic and heritage buildings, that are the trademark of numerous European cities, should also deserve attention; nevertheless, their energy efficiency is nowadays not deeply investigated. In this context, this study evaluates the thermal performance of a traditional massive building situated in a Mediterranean city. Dynamic numerical simulations were carried out on a yearly basis through the software DesignBuilder, both in free-running conditions and in the presence of an air-conditioning (AC) system. The results highlight that the massive envelope of traditional residential buildings helps in maintaining small fluctuations of the indoor temperature, thus limiting the need for AC in the mid-season and in summer. This feature is highly emphasised by exploiting natural ventilation at night, which allows reducing the building energy demand for cooling by about 30%.The research also indicates that, for Mediterranean climate, the increase in thermal insulation does not always induce positive effects on the thermal performance in summer, and that it might even produce an increase in the heat loads due to the transmission through the envelope.

  16. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report by Lawrence Berkeley National Laboratory identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two meetings and provided input and feedback to early drafts ofmore » this document. The most fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most U.S. locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.« less

  17. Addressing Kitchen Contaminants for Healthy, Low-Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, J. Chris; Singer, Brett C.

    2014-01-01

    Cooking and cooking burners emit pollutants that can adversely affect indoor air quality in residences and significantly impact occupant health. Effective kitchen exhaust ventilation can reduce exposure to cooking-related air pollutants as an enabling step to healthier, low-energy homes. This report identifies barriers to the widespread adoption of kitchen exhaust ventilation technologies and practice and proposes a suite of strategies to overcome these barriers. The recommendations have been vetted by a group of industry, regulatory, health, and research experts and stakeholders who convened for two web-based meetings and provided input and feedback to early drafts of this document. The mostmore » fundamental barriers are (1) the common misconception, based on a sensory perception of risk, that kitchen exhaust when cooking is unnecessary and (2) the lack of a code requirement for kitchen ventilation in most US locations. Highest priority objectives include the following: (1) Raise awareness among the public and the building industry of the need to install and routinely use kitchen ventilation; (2) Incorporate kitchen exhaust ventilation as a requirement of building codes and improve the mechanisms for code enforcement; (3) Provide best practice product and use-behavior guidance to ventilation equipment purchasers and installers, and; (4) Develop test methods and performance targets to advance development of high performance products. A specific, urgent need is the development of an over-the-range microwave that meets the airflow and sound requirements of ASHRAE Standard 62.2.« less

  18. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less

  19. STTR Phase I: Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallstrom, Jason O.; Ni, Zheng Richard

    This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less

  20. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors.

    PubMed

    Dong, Boming; Stewart, Paul W; Egan, Thomas M

    2013-08-01

    We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. Improving performance of HVAC systems to reduce exposure to aerosolized infectious agents in buildings; recommendations to reduce risks posed by biological attacks.

    PubMed

    Hitchcock, Penny J; Mair, Michael; Inglesby, Thomas V; Gross, Jonathan; Henderson, D A; O'Toole, Tara; Ahern-Seronde, Joa; Bahnfleth, William P; Brennan, Terry; Burroughs, H E Barney; Davidson, Cliff; Delp, William; Ensor, David S; Gomory, Ralph; Olsiewski, Paula; Samet, Jonathan M; Smith, William M; Streifel, Andrew J; White, Ronald H; Woods, James E

    2006-01-01

    The prospect of biological attacks is a growing strategic threat. Covert aerosol attacks inside a building are of particular concern. In the summer of 2005, the Center for Biosecurity of the University of Pittsburgh Medical Center convened a Working Group to determine what steps could be taken to reduce the risk of exposure of building occupants after an aerosol release of a biological weapon. The Working Group was composed of subject matter experts in air filtration, building ventilation and pressurization, air conditioning and air distribution, biosecurity, building design and operation, building decontamination and restoration, economics, medicine, public health, and public policy. The group focused on functions of the heating, ventilation, and air conditioning systems in commercial or public buildings that could reduce the risk of exposure to deleterious aerosols following biological attacks. The Working Group's recommendations for building owners are based on the use of currently available, off-the-shelf technologies. These recommendations are modest in expense and could be implemented immediately. It is also the Working Group's judgment that the commitment and stewardship of a lead government agency is essential to secure the necessary financial and human resources and to plan and build a comprehensive, effective program to reduce exposure to aerosolized infectious agents in buildings.

  2. Small scale power generation from biomass-technical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepori, W.A.; Cardenas, M.M.; Carney, O.B.

    1983-12-01

    System and nursery pig performance data for the Winter of 1983 were collected for a 96-pig capacity modified-open-front (MOF) naturally ventilated and a 96-pig capacity mechanically ventilated swine nurseries. Both nurseries utilized active solar collectors to provide in-floor heating at the rear of each pen along with hovers. The mechanically ventilated nursery utilized solar preheated ventilation air. The naturally ventilated nursery had double glazed solar windows to passively heat the interior space. The relative humidity in the naturally ventilated (NV) nursery averaged 20 percentage points higher than the mechanically ventilated (MV) nursery with no significant differences in air temperature. Themore » MV nursery used 50% more energy than the NV nursery and the NV nursery required 1.9 kWh/pig marketed less than that needed for the MV nursery. Pig performance figure were not significantly different between the two buildings. The feed to gain ration were 2.0 + or - 0.35 and 1.96 + or 0.38 for the MV and NV nurseries respectively.« less

  3. High-School Buildings and Grounds. Bulletin, 1922, No. 23

    ERIC Educational Resources Information Center

    Bureau of Education, Department of the Interior, 1922

    1922-01-01

    The success of any high school depends largely upon the planning of its building. The wise planning of a high-school building requires familiarity with school needs and processes, knowledge of the best approved methods of safety, lighting, sanitation, and ventilation, and ability to solve the educational, structural, and architectural problems…

  4. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  5. Teaching Ventilation/Perfusion Relationships in the Lung

    ERIC Educational Resources Information Center

    Glenny, Robb W.

    2008-01-01

    This brief review is meant to serve as a refresher for faculty teaching respiratory physiology to medical students. The concepts of ventilation and perfusion matching are some of the most challenging ideas to learn and teach. Some strategies to consider in teaching these concepts are, first, to build from simple to more complex by starting with a…

  6. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    NASA Astrophysics Data System (ADS)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  7. Occupant feedback questionnaire producing a fingerprint and a score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levermore, G.J.; Lowe, D.J.; Ure, J.W.

    In order to ensure that buildings and HVAC plans are truly for people and actually satisfy the occupants, it is necessary to obtain feedback from the occupants. This can be done by a novel questionnaire that produces a readily understandable fingerprint and score to indicate occupants' liking of their environments. The questionnaire uses a double-Likert section rating the liking and importance of up to 24 environmental, organizational, and human factors. To date it has been used primarily in U.K. offices, including modern deep-plan, naturally ventilated buildings. Comparison is made to previous results from 1,400 occupants in 12 offices that aremore » air conditioned and naturally ventilated, where scores ranged from +17% (greatly liked by the occupants) to {minus}15% (greatly disliked). However, four U.K. offices with 1,300 occupants, which are discussed in detail, produced very low scores, {minus}14% to {minus}39%, the latter for a building with no windows. The fingerprints and scores were supported by an independent consultant's survey of the buildings and plant and also detailed factor analysis. The latter indicated that the 18 factors used in the questionnaire could be reduced to 5 general factors. The most important factors for the occupants for their ideal office were temperature, health, ventilation, and heating control, and the least important were the appearance of the building, distance to a window, humidity, and glare. It is proposed that this questionnaire is a useful management tool and suitable for use as a final commissioning tool.« less

  8. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  9. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  10. Temporary banding of the gastroesophageal junction in the critically ill neonate with esophageal atresia and tracheoesophageal fistula.

    PubMed

    Fagelman, K M; Boyarsky, A

    1985-09-01

    Patients with esophageal atresia and a distal tracheoesophageal fistula with associated conditions contributing to decreased pulmonary compliance present special problems in management. In the face of positive pressure ventilation, the fistula acts as a vent preventing adequate ventilatory effort from reaching the lungs. A thoracic approach to ligate or divide the fistula carries with it a high mortality rate. A technique is described whereby a silicone rubber band is applied to the gastroesophageal junction to effectively occlude the esophagus. It is designed so that is can be adjusted or removed, without operative intervention, according to the patient's clinical course and growth.

  11. Associations of indoor carbon dioxide concentrations and environmental susceptibilities with mucous membrane and lower respiratory building related symptoms in the BASE study: Analyses of the 100 building dataset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdmann, Christine A.; Apte, Michael G.

    Using the US EPA 100 office-building BASE Study dataset, they conducted multivariate logistic regression analyses to quantify the relationship between indoor CO{sub 2} concentrations (dCO{sub 2}) and mucous membrane (MM) and lower respiratory system (LResp) building related symptoms, adjusting for age, sex, smoking status, presence of carpet in workspace, thermal exposure, relative humidity, and a marker for entrained automobile exhaust. In addition, they tested the hypothesis that certain environmentally-mediated health conditions (e.g., allergies and asthma) confer increased susceptibility to building related symptoms within office buildings. Adjusted odds ratios (ORs) for statistically significant, dose-dependent associations (p < 0.05) for dry eyes,more » sore throat, nose/sinus congestion, and wheeze symptoms with 100 ppm increases in dCO{sub 2} ranged from 1.1 to 1.2. These results suggest that increases in the ventilation rates per person among typical office buildings will, on average, reduce the prevalence of several building related symptoms by up to 70%, even when these buildings meet the existing ASHRAE ventilation standards for office buildings. Building occupants with certain environmentally-mediated health conditions are more likely to experience building related symptoms than those without these conditions (statistically significant ORs ranged from 2 to 11).« less

  12. Employing ASHRAE Standard 62-1989 in urban building environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckler, M.

    1991-01-01

    Indoor air quality (IAQ) is a result of a complex relationship between the contamination sources in a building, the ventilation rate, and the dilution of the indoor air contaminant concentrations with outdoor air. This complex relationship is further complicated by outdoor sources used for dilution air and pollution sinks in a building which may modify or remove contaminants. This paper reports that the factors influencing IAQ in a building are: emissions from indoor contamination sources, dilution rate of outdoor ventilation air, quality of the outdoor dilution air, and systems and materials in a building that change the concentrations of contaminants.more » Emissions from contaminant sources in a building are the primary determinant of IAQ. They include building materials, consumer products, cleaners, furnishings, combustion appliances and processes, biological growth from standing water and damp surfaces and building occupants. These factors combined with the emissions from indoor air contamination sources such as synthetic building materials, modern office equipment, and cleaning and biological agents are believed to increase the levels of indoor air contamination. The physiological reactions to these contaminants, coupled with the psychosocial stresses of the modern office environment, and the wide range of human susceptibility to indoor air contaminants led to the classification of acute building sicknesses: sick building syndrome (SBS), building-related illness (BRI), and multiple chemical sensitivity (MCS).« less

  13. A MODEL BUILDING CODE ARTICLE ON FALLOUT SHELTERS WITH RECOMMENDATIONS FOR INCLUSION OF REQUIREMENTS FOR FALLOUT SHELTER CONSTRUCTION IN FOUR NATIONAL MODEL BUILDING CODES.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…

  14. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    NASA Astrophysics Data System (ADS)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  15. CHARACTERISTICS OF SCHOOL BUILDINGS IN THE U.S.

    EPA Science Inventory

    The report gives results of visiting a subsample of 100 schools from the Environmental Protection Agency's (EPA's) National School Radon Survey to obtain information on building structure, location of utility lines, and the type of heating, ventilating, and air conditioning (HVAC...

  16. 38 CFR 59.50 - Priority list.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... utility systems, such as heating and air conditioning systems or building features, such as roof... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and air conditioning (HVAC); boiler; medical gasses; roof; elevators); clinical-support facilities (e.g...

  17. 38 CFR 59.50 - Priority list.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... utility systems, such as heating and air conditioning systems or building features, such as roof... Americans with Disabilities Act; building systems and utilities (e.g., electrical; heating, ventilation, and air conditioning (HVAC); boiler; medical gasses; roof; elevators); clinical-support facilities (e.g...

  18. INVESTIGATION OF CONTACT VACUUMING FOR REMEDIATION OF FUNGALLY CONTAMINATED DUCT MATERIALS

    EPA Science Inventory

    Environmental fungi become a potential Indoor Air Quality (IAQ) problem when adequate moisture and nutrients are present in building materials. Because of their potential to rapidly spread contamination throughout a building, ventilation system materials are of particular signifi...

  19. Javanese House’s Roof (Joglo) with the Opening as a Cooling Energy Provider

    NASA Astrophysics Data System (ADS)

    Pranoto S, M.

    2018-01-01

    Natural ventilation and air movement could be considered under the heading structural controls as it does not rely on any form of energy supply or mechanical installation but due to its importance for human comfort, it deserves a separate section. Air infiltration can destroy the performance of ventilation systems. Good ventilation design combined with optimum air tightness is needed to ensure energy efficient ventilation. Ultimately, ventilation needs depend on occupancy pattern and building use. A full cost and energy analysis is therefore needed to select an optimum ventilation strategy.The contains of paper is about the element of Javanese house (the roof) as the element of natural ventilation and a cooling energy provider. In this research, The Computational Fluid Dynamics Program, is used to draw and analysis. That tool can be track the pattern and the direction of movement of air also the air velocity in the object of ventilation of the roof Javanese house based. Finally, the ventilation of the roof of this Javanese house can add the velocity of air at indoor, average 0.4 m/s and give the effect of cooling, average 0.7°C.

  20. Indoor-outdoor concentrations of RSPM in classroom of a naturally ventilated school building near an urban traffic roadway

    NASA Astrophysics Data System (ADS)

    Goyal, Radha; Khare, Mukesh

    2009-12-01

    A study on indoor-outdoor RSPM (PM 10, PM 2.5 and PM 1.0) mass concentration monitoring has been carried out at a classroom of a naturally ventilated school building located near an urban roadway in Delhi City. The monitoring has been planned for a year starting from August 2006 till August 2007, including weekdays (Monday, Wednesday and Friday) and weekends (Saturday and Sunday) from 8:0 a.m. to 2:0 p.m., in order to take into account hourly, daily, weekly, monthly and seasonal variations in pollutant concentrations. Meteorological parameters, including temperature, rH, pressure, wind speed and direction, and traffic parameters, including its type and volume has been monitored simultaneously to relate the concentrations of indoor-outdoor RSPM with them. Ventilation rate has also been estimated to find out its relation with indoor particulate concentrations. The results of the study indicates that RSPM concentrations in classroom exceeds the permissible limits during all monitoring hours of weekdays and weekends in all seasons that may cause potential health hazards to occupants, when exposed. I/O for all sizes of particulates are greater than 1, which implies that building envelop does not provide protection from outdoor pollutants. Further, a significant influence of meteorological parameters, ventilation rate and of traffic has been observed on I/O. Higher I/O for PM 10 is indicating the presence of its indoor sources in classroom and their indoor concentrations are strongly influenced by activities of occupants during weekdays.

  1. Detection of viruses in used ventilation filters from two large public buildings.

    PubMed

    Goyal, Sagar M; Anantharaman, Senthilvelan; Ramakrishnan, M A; Sajja, Suchitra; Kim, Seung Won; Stanley, Nicholas J; Farnsworth, James E; Kuehn, Thomas H; Raynor, Peter C

    2011-09-01

    Viral and bacterial pathogens may be present in the air after being released from infected individuals and animals. Filters are installed in the heating, ventilation, and air-conditioning (HVAC) systems of buildings to protect ventilation equipment and maintain healthy indoor air quality. These filters process enormous volumes of air. This study was undertaken to determine the utility of sampling used ventilation filters to assess the types and concentrations of virus aerosols present in buildings. The HVAC filters from 2 large public buildings in Minneapolis and Seattle were sampled to determine the presence of human respiratory viruses and viruses with bioterrorism potential. Four air-handling units were selected from each building, and a total of 64 prefilters and final filters were tested for the presence of influenza A, influenza B, respiratory syncytial, corona, parainfluenza 1-3, adeno, orthopox, entero, Ebola, Marburg, Lassa fever, Machupo, eastern equine encephalitis, western equine encephalitis, and Venezuelan equine encephalitis viruses. Representative pieces of each filter were cut and eluted with a buffer solution. Attempts were made to detect viruses by inoculation of these eluates in cell cultures (Vero, MDCK, and RK-13) and specific pathogen-free embryonated chicken eggs. Two passages of eluates in cell cultures or these eggs did not reveal the presence of any live virus. The eluates were also examined by polymerase chain reaction or reverse-transcription polymerase chain reaction to detect the presence of viral DNA or RNA, respectively. Nine of the 64 filters tested were positive for influenza A virus, 2 filters were positive for influenza B virus, and 1 filter was positive for parainfluenza virus 1. These findings indicate that existing building HVAC filters may be used as a method of detection for airborne viruses. As integrated long-term bioaerosol sampling devices, they may yield valuable information on the epidemiology and aerobiology of viruses in air that can inform the development of methods to prevent airborne transmission of viruses and possible deterrents against the spread of bioterrorism agents. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Risk factors in heating, ventilating, and air-conditioning systems for occupant symptoms in US office buildings: the US EPA BASE study.

    PubMed

    Mendell, M J; Lei-Gomez, Q; Mirer, A G; Seppänen, O; Brunner, G

    2008-08-01

    Building-related symptoms in office workers worldwide are common, but of uncertain etiology. One cause may be contaminants related to characteristics of heating, ventilating, and air-conditioning (HVAC) systems. We analyzed data from 97 representative air-conditioned US office buildings in the Building Assessment and Survey Evaluation (BASE) study. Using logistic regression models with generalized estimating equations, we estimated odds ratios (OR) and 95% confidence intervals for associations between building-related symptom outcomes and HVAC characteristics. Outdoor air intakes less than 60 m above ground level were associated with significant increases in most symptoms: e.g. for upper respiratory symptoms, OR for intake heights 30 to 60 m, 0 to <30 m, and below ground level were 2.7, 2.0, and 2.1. Humidification systems with poor condition/maintenance were associated with significantly increased upper respiratory symptoms, eye symptoms, fatigue/difficulty concentrating, and skin symptoms, with OR = 1.5, 1.5, 1.7, and 1.6. Less frequent cleaning of cooling coils and drain pans was associated with significantly increased eye symptoms and headache, with OR = 1.7 and 1.6. Symptoms may be due to microbial exposures from poorly maintained ventilation systems and to greater levels of vehicular pollutants at air intakes nearer the ground level. Replication and explanation of these findings is needed. These findings support current beliefs that moisture-related HVAC components such as cooling coils and humidification systems, when poorly maintained, may be sources of contaminants that cause adverse health effects in occupants, even if we cannot yet identify or measure the causal exposures. While finding substantially elevated risks for poorly maintained humidification systems, relative to no humidification systems, the findings do not identify important (symptom) benefits from well-maintained humidification systems. Findings also provide an initial suggestion, needing corroboration, that outdoor air intakes lower than 18 stories in office buildings may be associated with substantial increases in many symptoms. If this is corroborated and linked to ground-level vehicle emissions, urban ventilation air intakes may need to be located as far above ground level as possible or to incorporate air cleaners that remove gaseous pollutants.

  3. Control technology assessment for coal gasification and liquefaction processes, coal gasification facility, Caterpillar Tractor Company, York, Pennsylvania. Report for the site visit of May 1981. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telesca, D.R.

    A control technology survey was conducted at the coal gasification facility of the Caterpillar Tractor Company (SIC-5161), in York, Pennsylvania on August 18, 1980 and May 7, 1981, in conjunction with an industrial hygiene characterization study. Potential hazards included coal dust, noise, fire, carbon-monoxide (630080) (CO), polynuclear aromatics, hydrogen sulfide (7783064), phenols, and flammable and explosive gases. Preemployment physicals were given to employees including complete medical histories, physical examinations, and skin examination. Examinations were given annually for the first 5 years and semiannually thereafter. The most hazardous activities were poking, cleaning, inspection of process equipment, and equipment maintenance. Coal dustmore » emissions were effectively reduced by enclosure and venting. Venturi steam injectors in the gasifier pokeholes prevented gas emissions during poking. Ash dust was controlled by removal and handling while it was wet. An audible and visual alarm was used for CO monitoring. The ventilation system in the building effectively prevented accumulation of gases. The author recommends separate lockers for contaminated and clean clothing; a clean area for eating; escape pack respirators located in the rectifier room, control room, and coal bunker; and supplied air respirators in dangerous areas. Disposal of off gas from the feeding system should be addressed.« less

  4. 75 FR 65625 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... ICR are: Tank systems, Surface impoundments, Waste piles, Land treatment, Landfills, Incinerators..., Process vents, Equipment leaks, Containment buildings, Recovery/recycling. With each information...: Waste Piles 17 Subpart M: Land Treatment 0 Subpart N: Landfills 37 [[Page 65627

  5. Extreme winds and tornadoes: design and evaluation of buildings and structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.R.

    1985-01-01

    The general provisions of ANSI A58.1-1982 are explained in detail. As mentioned above, these procedures may be used to determine design wind loads on structures from extreme winds, hurricane and tornado winds. Treatment of atmospheric pressure change loads are discussed, including recommendations for venting a building, if necessary, and the effects of rate of pressure change on HVAC systems. Finally, techniques for evaluating existing facilities are described.

  6. Ventilation of Wide-Span Schools in the Hot, Humid Tropics. Educational Building Report 6.

    ERIC Educational Resources Information Center

    Chand, Ishwar

    This report describes studies on natural air motion induced in wide-span educational buildings. It includes a discussion on the influence of air motion indoors on various factors such as the span of buildings, orientation in relation to outdoor wind, open spaces such as courtyards, plan form, semi-partitions, external projections, adjacent…

  7. Photocopy of drawing (this photograph is an 8" x 10" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (this photograph is an 8" x 10" copy of an 8" x 10" negative; 1945 architectural drawing located at NAS Pensacola, Florida, Building No. 458) ROMAN CATHOLIC CHAPEL, BUILDING NO. 322, PLAN AND SECTIONS FOR VENTILATION IMPROVEMENTS, SHEET 1 OF 1. - U.S. Naval Air Station, YMCA Building, West Avenue, Pensacola, Escambia County, FL

  8. Limiting the Temperatures in Naturally Ventilated Buildings in Warm Climates. Building Research Establishment Current Paper 7/74.

    ERIC Educational Resources Information Center

    Petherbridge, P.

    Formulas used in the calculation of cooling loads and indoor temperatures are employed to demonstrate the influence of various building parameters--such as thermal transmittance (U-value), solar absorptivity, and thermal storage--on the indoor thermal environment. The analysis leads to guidance on ways of limiting temperatures in naturally…

  9. THE SCHOOL PLANT GUIDE FOR PLANNING SCHOOL PLANTS OF PENNSYLVANIA. ARCHITECTURAL DESIGN REQUIREMENTS AND GENERAL, ELECTRIC, HEATING AND VENTILATING, AND PLUMBING STANDARDS.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Public Instruction, Harrisburg.

    A GUIDE COVERING ARCHITECTURAL DESIGN REQUIREMENTS, ELECTRIC, HEATING AND VENTILATING, AND PLUMBING STANDARDS AS APPROVED BY THE STATE BOARD OF EDUCATION IN 1966. THE FOLLOWING MINIMUM STANDARD FOR NEW BUILDING, ALTERATIONS, AND ADDITIONS ARE OUTLINED--(1) SPATIAL ENVIRONMENTAL FACTORS, SUCH AS CEILING HEIGHTS, INTERIOR SANITARY FACILITIES, ROOMS…

  10. Overheating risk assessment of naturally ventilated classroom under the influence of climate change in hot and humid region

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Tsang

    2013-04-01

    Natural ventilation (NV) is considered one of the passive building strategies used for reducing cooling energy demand. The utilization of nature wind for cooling down indoor thermal environment to reach thermal comfort requires knowledge of adequately positioning the building fenestrations, designing inlet-outlet related opening ratios, planning unobstructed cross ventilation paths, and, the most important, assessing the utilization feasibility base on local climatic variables. Furthermore, factors that influence the indoor thermal condition include building envelope heat gain, indoor air velocity, indoor heat gain (e.g. heat discharges from occupant's body, lighting fixture, electrical appliances), and outdoor climate. Among the above, the indoor thermal performance of NV building is significantly dependent to outdoor climate conditions. In hot and humid Taiwan, under college school classrooms are usually operated in natural ventilation mode and are more vulnerable to climate change in regard to maintain indoor thermal comfort. As climate changes in progress, NV classrooms would expect to encounter more events of overheating in the near future, which result in more severe heat stress, and would risk the utilization of natural ventilation. To evaluate the overheating risk under the influence of recent climate change, an actual top floor elementary school classroom with 30 students located at north Taiwan was modeled. Long-term local hourly meteorological data were gathered and further constructed into EnergyPlus Weather Files (EPWs) format for building thermal dynamic simulation to discuss the indoor thermal environmental variation during the period of 1998 to 2012 by retrospective simulation. As indoor thermal environment is an overall condition resulting from a series combination of various factors, sub-hourly building simulation tool, EnergyPlus, coupled with the above fifteen years' EPWs was adopted to predict hourly indoor parameters of mean radiant temperature, air velocity, dry-bulb temperature and relative humidity. These physical quantities are crucial for calculating the thermal indices such as Physiological Equivalent Temperature (PET), New Standard Effective Temperature (SET*), and operative temperature (OT), which were subsequently being used for assessing thermal discomfort. Occurrences and the severity of overheating were assessed by observing the number of hours that surmount the upper limit of the adaptive thermal model proposed by ASHRAE Standard 55 (American Society of Heating, Refrigerating and Air-conditioning Engineers Standard) base on ISO 7730 method to characterize long term indoor thermal discomfort. Preliminary result show that although the degree of increase in overheating risk of NV classrooms was mild, there is a trend revealing that both the occurrences and the severity of thermal discomfort were gradually rising. The study also proposed several building renovation strategies for adapting the climate change to alleviate overheating situation. Efficiencies of these recommended strategies were also analyzed by simulating with the hottest year in comparison with the coldest year.

  11. Bibliography on School Buildings.

    ERIC Educational Resources Information Center

    Nomani, M. S.; Srivastava, R. D.

    This bibliography comprises 153 references with abstracts on school building publications published during the period of 1960-1966. The references have been grouped under seven headings--(1) air conditioning and ventilation, (2) bibliography and research reports, (3) construction systems, (4) design development, (5) furniture, (6) lighting, and…

  12. Developing a Reference Material for Diffusion-Controlled Formaldehyde Emissions Testing

    EPA Science Inventory

    Emissions of formaldehyde from building materials can contaminate indoor air and create significant risks to human health. The need to control formaldehyde emissions from indoor materials is made more urgent by the prevailing drive to improve building energy by decreasing ventil...

  13. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives.

    PubMed

    Hobday, R A; Dancer, S J

    2013-08-01

    Infections caught in buildings are a major global cause of sickness and mortality. Understanding how infections spread is pivotal to public health yet current knowledge of indoor transmission remains poor. To review the roles of natural ventilation and sunlight for controlling infection within healthcare environments. Comprehensive literature search was performed, using electronic and library databases to retrieve English language papers combining infection; risk; pathogen; and mention of ventilation; fresh air; and sunlight. Foreign language articles with English translation were included, with no limit imposed on publication date. In the past, hospitals were designed with south-facing glazing, cross-ventilation and high ceilings because fresh air and sunlight were thought to reduce infection risk. Historical and recent studies suggest that natural ventilation offers protection from transmission of airborne pathogens. Particle size, dispersal characteristics and transmission risk require more work to justify infection control practices concerning airborne pathogens. Sunlight boosts resistance to infection, with older studies suggesting potential roles for surface decontamination. Current knowledge of indoor transmission of pathogens is inadequate, partly due to lack of agreed definitions for particle types and mechanisms of spread. There is recent evidence to support historical data on the effects of natural ventilation but virtually none for sunlight. Modern practice of designing healthcare buildings for comfort favours pathogen persistence. As the number of effective antimicrobial agents declines, further work is required to clarify absolute risks from airborne pathogens along with any potential benefits from additional fresh air and sunlight. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Low home ventilation rate in combination with moldy odor from the building structure increase the risk for allergic symptoms in children.

    PubMed

    Hägerhed-Engman, L; Sigsgaard, T; Samuelson, I; Sundell, J; Janson, S; Bornehag, C-G

    2009-06-01

    There are consistent findings on associations between asthma and allergy symptoms and residential mold and moisture. However, definitions of 'dampness' in studies are diverse because of differences in climate and building construction. Few studies have estimated mold problems inside the building structure by odor assessments. In a nested case-control study of 400 Swedish children, observations and measurements were performed in their homes by inspectors, and the children were examined by physicians for diagnoses of asthma, eczema, and rhinitis. In conclusion, we found an association between moldy odor along the skirting board and allergic symptoms among children, mainly rhinitis. No associations with any of the allergic symptoms were found for discoloured stains, 'floor dampness' or a general mold odor in the room. A moldy odor along the skirting board can be a proxy for hidden moisture problem inside the outer wall construction or in the foundation construction. There are indications that such dampness problems increase the risk for sensitization but the interpretation of data in respect of sensitization is difficult as about 80% of the children with rhinitis were sensitized. Furthermore, low ventilation rate in combination with moldy odor along the skirting board further increased the risk for three out of four studied outcomes, indicating that the ventilation rate is an effect modifier for indoor pollutants. This study showed that mold odor at the skirting board level is strongly associated with allergic symptoms among children. Such odor at that specific place can be seen as a proxy for some kind of hidden moisture or mold problem in the building structure, such as the foundation or wooden ground beam. In houses with odor along the skirting board, dismantling of the structure is required for an investigation of possible moisture damage, measurements, and choice of actions. In homes with low ventilation in combination with mold odor along the skirting board, there was even a higher risk of health effects. This emphasizes the need for the appropriate remediation as this is an ever increasing problem in poorly ventilated houses that are damp.

  15. The effects of bedroom air quality on sleep and next-day performance.

    PubMed

    Strøm-Tejsen, P; Zukowska, D; Wargocki, P; Wyon, D P

    2016-10-01

    The effects of bedroom air quality on sleep and next-day performance were examined in two field-intervention experiments in single-occupancy student dormitory rooms. The occupants, half of them women, could adjust an electric heater to maintain thermal comfort but they experienced two bedroom ventilation conditions, each maintained for 1 week, in balanced order. In the initial pilot experiment (N = 14), bedroom ventilation was changed by opening a window (the resulting average CO2 level was 2585 or 660 ppm). In the second experiment (N = 16), an inaudible fan in the air intake vent was either disabled or operated whenever CO2 levels exceeded 900 ppm (the resulting average CO2 level was 2395 or 835 ppm). Bedroom air temperatures varied over a wide range but did not differ between ventilation conditions. Sleep was assessed from movement data recorded on wristwatch-type actigraphs and subjects reported their perceptions and their well-being each morning using online questionnaires. Two tests of next-day mental performance were applied. Objectively measured sleep quality and the perceived freshness of bedroom air improved significantly when the CO2 level was lower, as did next-day reported sleepiness and ability to concentrate and the subjects' performance of a test of logical thinking. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  16. Healthy Efficient New Gas Homes (HENGH) Pilot Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Maddalena, Randy L; Stratton, Chris

    The Healthy Efficient New Gas Homes (HENGH) is a field study that will collect data on ventilation systems and indoor air quality (IAQ) in new California homes that were built to 2008 Title 24 standards. A pilot test was performed to help inform the most time and cost effective approaches to measuring IAQ in the 100 test homes that will be recruited for this study. Two occupied, single-family detached homes built to 2008 Title 24 participated in the pilot test. One of the test homes uses exhaust-only ventilation provided by a continuous exhaust fan in the laundry room. The othermore » home uses supply air for ventilation. Measurements of IAQ were collected for two weeks. Time-resolved concentrations of particulate matter (PM), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO), and formaldehyde were measured. Measurements of IAQ also included time-integrated concentrations of volatile organic compounds (VOCs), volatile aldehydes, and NO2. Three perfluorocarbon tracers (PFTs) were used to estimate the dilution rate of an indoor emitted air contaminant in the two pilot test homes. Diagnostic tests were performed to measure envelope air leakage, duct leakage, and airflow of range hood, exhaust fans, and clothes dryer vent when accessible. Occupant activities, such as cooking, use of range hood and exhaust fans, were monitored using various data loggers. This document describes results of the pilot test.« less

  17. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Military Housing Inspections - Republic of Korea

    DTIC Science & Technology

    2014-10-28

    Soot build-up on surfaces and around vent flue joints and dampers of the boilers in the mechanical rooms were signs of inadequate combustion...Illuminated sensor probe indicates that conductor is energized (Deficiency No. YON‑EL‑140310‑015) Source: DoD OIG Disconnected Ground Wire Installation

  19. Green buildings: Implications for acousticians

    NASA Astrophysics Data System (ADS)

    Noble, Michael R.

    2005-04-01

    This presentation will deal with the practical implications of green design protocols of the US Green Building Council on interior acoustics of buildings. Three areas of particular consequence to acousticians will be discussed. Ventilation Systems: reduced energy consumption goals dictate reliance on natural cooling and ventilation using ambient air when possible. The consequent large openings in the building envelope to bring fresh air into rooms, and similar sized openings to transfer the mixed air out, can severely compromise the noise isolation of the rooms concerned. Radiant Cooling: the heavy concrete floors of buildings can be used as a thermal flywheel to lessen the cooling load, which forces the concrete ceilings to be exposed to the occupied rooms for heat transfer, and strictly limits the application of acoustical absorption on the ceilings. This challenges the room acoustics design. Green Materials: the LEED protocols require the elimination of potentially harmful finishes, including fibrous materials which may impact air quality or contribute to health problems. Since the backbone of sound absorption is glass and mineral fibres, this further challenges provision of superior room acoustics. Examples and commentary will be provided based on current and recent projects.

  20. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  1. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  2. Probabilistic risk analysis of building contamination.

    PubMed

    Bolster, D T; Tartakovsky, D M

    2008-10-01

    We present a general framework for probabilistic risk assessment (PRA) of building contamination. PRA provides a powerful tool for the rigorous quantification of risk in contamination of building spaces. A typical PRA starts by identifying relevant components of a system (e.g. ventilation system components, potential sources of contaminants, remediation methods) and proceeds by using available information and statistical inference to estimate the probabilities of their failure. These probabilities are then combined by means of fault-tree analyses to yield probabilistic estimates of the risk of system failure (e.g. building contamination). A sensitivity study of PRAs can identify features and potential problems that need to be addressed with the most urgency. Often PRAs are amenable to approximations, which can significantly simplify the approach. All these features of PRA are presented in this paper via a simple illustrative example, which can be built upon in further studies. The tool presented here can be used to design and maintain adequate ventilation systems to minimize exposure of occupants to contaminants.

  3. Analysis for Building Envelopes and Mechanical Systems Using 2012 CBECS Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, David W.; Halverson, Mark A.; Butzbaugh, Joshua B.

    This report describes the aggregation and mapping of certain building characteristics data available in the most recent Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2012) to describe most typical building construction practices. This report provides summary data for potential use in the support of modifications to the Pacific Northwest National Laboratory’s commercial building prototypes used for building energy code analysis. Specifically, this report outlines findings and most typical design choices for certain building envelope and heating, ventilating, and air-conditioning (HVAC) system choices.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, Mark J.; Apte, Mike G.

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptivemore » ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.« less

  5. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  6. On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies

    PubMed Central

    Mumovic, D.

    2009-01-01

    Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216

  7. 25 CFR 36.104 - What are the requirements for heating, ventilation, cooling and lighting at dormitories?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... building codes in the Bureau of Indian Affairs “School Facilities Design Handbook,” dated March 30, 2007... any proposal to change which building codes are included in the Bureau of Indian Affairs “School... inspect the Handbook at the Department of the Interior Library, Main Interior Building, 1849 C Street NW...

  8. 25 CFR 36.104 - What are the requirements for heating, ventilation, cooling and lighting at dormitories?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... building codes in the Bureau of Indian Affairs “School Facilities Design Handbook,” dated March 30, 2007... any proposal to change which building codes are included in the Bureau of Indian Affairs “School... inspect the Handbook at the Department of the Interior Library, Main Interior Building, 1849 C Street NW...

  9. EXTERIOR, A view looking northwest capturing disposal containers in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR, A view looking northwest capturing disposal containers in the foreground. Also shown on the left side of the roof is the ventilation equipment used for the original clean room and on the right side the penthouse on the press building addition can be seen - Department of Energy, Mound Facility, Isolated Building (I Building), One Mound Road, Miamisburg, Montgomery County, OH

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parthasarathy, Srinandini; McKone, Thomas E.; Apte, Michael G.

    This report summarizes the screening procedure and its results for selecting contaminants of concern (COC), whose concentrations are affected by ventilation in commercial buildings. Many pollutants comprising criteria pollutants, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and biological contaminants are found in commercial buildings. In this report, we focus primarily on identifying potential volatile organic COC, which are impacted by ventilation. In the future we plan to extend this effort to inorganic gases and particles. Our screening considers compounds detected frequently in indoor air and compares the concentrations to health-guidelines and thresholds. However, given the range of buildings undermore » consideration, the contaminant sources and their concentrations will vary depending on the activity and use of the buildings. We used a literature review to identify a large list of chemicals found in commercial-building indoor air. The VOCs selected were subject to a two stage screening process, and the compounds of greater interest are included in priority List A. Other VOCs that have been detected in commercial buildings are included in priority List B. The compounds in List B, were further classified into groups B1, B2, B3, B4 in order of decreasing interest.« less

  11. Nonstationary heat and mass transfer in the multilayer building construction with ventilation channels

    NASA Astrophysics Data System (ADS)

    Kharkov, N. S.

    2017-11-01

    Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).

  12. Preoperational test report, recirculation ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  13. Harnessing natural ventilation benefits.

    PubMed

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.

  14. ENERGY COSTS OF IAQ CONTROL THROUGH INCREASED VENTILATION IN A SMALL OFFICE IN A WARM, HUMID CLIMATE: PARAMETRIC ANALYSIS USING THE DOE-2 COMPUTER MODEL

    EPA Science Inventory

    The report gives results of a series of computer runs using the DOE-2.1E building energy model, simulating a small office in a hot, humid climate (Miami). These simulations assessed the energy and relative humidity (RH) penalties when the outdoor air (OA) ventilation rate is inc...

  15. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  16. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the mostmore » promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.« less

  17. Smart Energy Choices Free Up Dollars for Capital Improvements.

    ERIC Educational Resources Information Center

    Ritchey, David

    2003-01-01

    Describes several ways to design or renovate school building to save thousand of dollars of energy costs. Considers site design, energy-efficient building envelope, renewable energy systems, lighting and electrical systems, mechanical and ventilation systems, water conservation, and transportation. Describes how to obtain information about the…

  18. When Students Say School Makes Them Sick, Sometimes They're Right.

    ERIC Educational Resources Information Center

    Reecer, Marcia

    1988-01-01

    "Sick building syndrome" results mainly from tightly sealed, poorly ventilated buildings with low levels of airborne pollutants. This article describes the problem at a Pennsylvania elementary school, examines roles of specific contaminants, and discusses credibility problems, prescriptions, and preventive measures. Insets explain causes…

  19. Energy Efficiency on Parade

    Science.gov Websites

    heating, ventilation and air conditioning (HVAC) systems, structural insulated panels to improve products and systems. NREL building engineers estimate the combination of advanced products and design Building America program manager George James. "All of the technologies and systems used in this house

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; sullivan, Douglas

    The HZEB research program aims to generate information needed to develop new science-based commercial building ventilation rate (VR) standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. This interim report describes the preliminary results from one HZEB field study on retail stores. The primary purpose of this study is to estimate the whole-building source strengths of contaminant of concerns (COCs). This information is needed to determine the VRs necessary to maintain indoor concentrations of COCs below applicable health guidelines.The goal of this study is to identify contaminants in retail stores that should bemore » controlled via ventilation, and to determine the minimum VRs that would satisfy the occupant health and odor criteria.« less

Top