1991-05-01
Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems by Edgar S. Neely Robert D. Neathammer...Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems RDTE dated 1980EIMB 1984 - 1989 6. AUTHOR(S) Edgar S. Neely, Robert D...Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the
Characterization of natural ventilation in wastewater collection systems.
Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne
2011-03-01
The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.
B-Plant Canyon Ventilation Control System Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCDANIEL, K.S.
1999-08-31
Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.
Code System to Calculate Tornado-Induced Flow Material Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDRAE, R. W.
1999-11-18
Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less
USDA-ARS?s Scientific Manuscript database
Increasing broiler house size and ventilation capacity have resulted in increased light ingress through ventilation system component apertures. The effective photoperiod for broilers may create local increases in light intensity, which may also impact broiler’ body homeostasis. The objective of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... to high temperatures from exhaust system parts, must be fireproof. Each exhaust system component must... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Heat recovery ventilators (HRVs) differ from other mechanical ventilation devices by their ability to exchange heat between supply and exhaust air streams, which reduces the cost of heating or cooling fresh air. This booklet discusses the need for mechanical ventilation in conventional and energy-efficient homes, an explains the components of a HRV system, how to operate and maintain the system, and how to solve operating problems. A maintenance chart and schedule and a HRV troubleshooting guide are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SEDERBURG, J.P.
1999-09-30
This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.
[Monitorization of respiratory mechanics in the ventilated patient].
García-Prieto, E; Amado-Rodríguez, L; Albaiceta, G M
2014-01-01
Monitoring during mechanical ventilation allows the measurement of different parameters of respiratory mechanics. Accurate interpretation of these data can be useful for characterizing the situation of the different components of the respiratory system, and for guiding ventilator settings. In this review, we describe the basic concepts of respiratory mechanics, their interpretation, and their potential use in fine-tuning mechanical ventilation. Copyright © 2013 Elsevier España, S.L. y SEMICYUC. All rights reserved.
Comfort parameters - Ventilation of a subway wagon
NASA Astrophysics Data System (ADS)
Petr, Pavlíček; Ladislav, Tříska
2017-09-01
Research and development of a ventilation system is being carried out as a part of project TA04030774 of the Technology Agency of the Czech Republic. Name of the project is "Research and Development of Mass-optimized Components for Rail Vehicles". Problems being solved are development and testing of a new concept for ventilation systems for public transport vehicles. The main improvements should be a reduction of the mass of the whole system, easy installation and reduction of the noise of the ventilation system. This article is focused on the comfort parameters in a subway wagon (measurement and evaluation carried out on a function sample in accordance with the regulations). The input to the project is a ventilator hybrid casing for a subway wagon, which was manufactured and tested during the Ministry of Industry and Trade project TIP FR-TI3/449.
Hartog, A; Vazquez de Anda, G F; Gommers, D; Kaisers, U; Verbrugge, S J; Schnabel, R; Lachmann, B
1999-01-01
We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm H2O), partial liquid ventilation or ventilation with low PEEP (8 cm H2O) (ventilated controls). Blood-gas values were measured hourly. At the end of the 4-h study, in six animals per group, pressure-volume curves were constructed and bronchoalveolar lavage (BAL) was performed, whereas in the remaining animals lung injury was assessed. In the ventilated control group, arterial oxygenation did not improve and protein concentration of BAL and conversion of active to non-active surfactant components increased significantly. In the three treatment groups, PaO2 increased rapidly to > 50 kPa and remained stable over the next 4 h. The protein concentration of BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active to non-active surfactant components increased significantly in the partial liquid ventilation group and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation groups, less lung injury was found compared with the ventilated control group and the group ventilated with high PEEP. We conclude that although all three strategies improved PaO2 to > 50 kPa, the impact on protein transfer into the alveoli, surfactant system and lung injury differed markedly.
Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems
NASA Technical Reports Server (NTRS)
Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.
2013-01-01
A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.
Short-term airing by natural ventilation - modeling and control strategies.
Perino, M; Heiselberg, P
2009-10-01
The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and IAQ control. However, in order to promote a wider applications of these systems, an improvement in the knowledge of their working principles and the availability of new design and simulation tools is necessary. In this context, the paper analyses and presents the results of a research that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ. Practical Implications Numerical and experimental analyses have proved that short-term airing by intermittent ventilation is an effective measure to satisfactorily control IAQ. Different control strategies have been investigated to optimize the capabilities of the systems. The proposed zonal model has provided good performances and could be adopted as a design tool, while CFD simulations can be profitably used for detailed studies of the pollutant concentration distribution in a room and to address local discomfort problems.
HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.
ERIC Educational Resources Information Center
Wheeler, Arthur E.
Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Respiratory mechanics in brain injury: A review.
Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta
2016-02-04
Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.
40 CFR Appendix I to Part 1068 - Emission-Related Components
Code of Federal Regulations, 2010 CFR
2010-07-01
... system. 2. Fuel system. 3. Ignition system. 4. Exhaust gas recirculation systems. II. The following parts.... Crankcase ventilation valves. 3. Sensors. 4. Electronic control units. III. The following parts are...
40 CFR Appendix I to Part 1068 - Emission-Related Components
Code of Federal Regulations, 2011 CFR
2011-07-01
... system. 2. Fuel system. 3. Ignition system. 4. Exhaust gas recirculation systems. II. The following parts.... Crankcase ventilation valves. 3. Sensors. 4. Electronic control units. III. The following parts are...
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike
2014-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Plutonium Finishing Plant (PFP) HVAC System Component Index
DOE Office of Scientific and Technical Information (OSTI.GOV)
DICK, J.D.
2000-02-28
The Plutonium Finishing Plant (PFP) WAC System includes sub-systems 25A through 25K. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-005, ''Definition and Means of Maintaining the Ventilation System Confinement Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.'' This document lists safety class and safety significant components for the Heating Ventilation Air Conditioning and specifies the critical characteristics for Commercial Grade Items, as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that themore » equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.« less
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Control systems for heating, ventilating, and air conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, R.W.
1977-01-01
Hundreds of ideas for designing and controlling sophisticated heating, ventilating and air conditioning (HVAC) systems are presented. Information is included on enthalpy control, energy conservation in HVAC systems, on solar heating, cooling and refrigeration systems, and on a self-draining water collector and heater. Computerized control systems and the economics of supervisory systems are discussed. Information is presented on computer system components, software, relevant terminology, and computerized security and fire reporting systems. Benefits of computer systems are explained, along with optimization techniques, data management, maintenance schedules, and energy consumption. A bibliography, glossaries of HVAC terminology, abbreviations, symbols, and a subject indexmore » are provided. (LCL)« less
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike
2015-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
An experimental study of an adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Celik, Zeki; Roberts, Leonard
1988-01-01
A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.
ERIC Educational Resources Information Center
Greim, Clifton W.; D'Angelo, David
1999-01-01
Explains how commissioning can help to ensure that all components in a new heating, ventilation, and air conditioning system will work together as designed. Bowdoin College's experience with commissioning is highlighted. (GR)
Regenerative Blower for EVA Suit Ventilation Fan
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Paul, Heather L.
2010-01-01
Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike
2016-01-01
NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.
Shinoda, Koh; Oba, Jun
2010-03-01
In compliance with health and safety management guidelines against harmful formaldehyde (FA) levels in the gross anatomy laboratory, we newly developed a dissection-table-connected local ventilation system in 2006. The system was composed of (1) a simple plenum-chambered dissection table with low-cost filters, (2) a transparent vinyl flexible duct for easy mounting and removal, which connects the table and the exhaust pipe laid above the ceiling, and (3) an intake creating a downward-flow of air, which was installed on the ceiling just above each table. The dissection table was also designed as a separate-component system, of which the upper plate and marginal suction inlets can be taken apart for cleaning after dissection, and equipped with opening/closing side-windows for picking up materials dropped during dissection and a container underneath the table to receive exudate from the cadaver through a waste-fluid pipe. The local ventilation system dramatically reduced FA levels to 0.01-0.03 ppm in the gross anatomy laboratory room, resulting in no discomforting FA smell and irritating sensation while preserving the student's view of room and line of flow as well as solving the problems of high maintenance cost, sanitation issues inside the table, and working-inconvenience during dissection practice. Switching ventilation methods or power-modes, the current local ventilation system was demonstrated to be more than ten times efficient in FA reduction compared to the whole-room ventilation system and suggested that 11 m3/min/table in exhaust volume should decrease FA levels in both A- and B-measurements to less than 0.1 ppm in 1000 m3 space containing thirty-one 3.5%-FA-fixed cadavers.
Evaluation of Rankine cycle air conditioning system hardware by computer simulation
NASA Technical Reports Server (NTRS)
Healey, H. M.; Clark, D.
1978-01-01
A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.
Experimental evaluation of the Skylab orbital workshop ventilation system concept
NASA Technical Reports Server (NTRS)
Allums, S. L.; Hastings, L. J.; Ralston, J. T.
1972-01-01
Extensive testing was conducted to evaluate the Orbital Workshop ventilation concept. Component tests were utilized to determine the relationship between operating characteristics at 1 and 0.34 atm. System tests were conducted at 1 atm within the Orbital Workshop full-scale mockup to assess delivered volumetric flow rate and compartment air velocities. Component tests with the Anemostat circular diffusers (plenum- and duct-mounted) demonstrated that the diffuser produced essentially equivalent airflow patterns and velocities in 1- and 0.34-atm environments. The tests also showed that the pressure drop across the diffuser could be scaled from 1 to 0.34 atm using the atmosphere pressure ratio. Fan tests indicated that the performance of a multiple, parallel-mounted fan cluster could be predicted by summing the single-fan flow rates at a given delta P.
Trickling Filters. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Richwine, Reynold D.
The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…
Probabilistic risk analysis of building contamination.
Bolster, D T; Tartakovsky, D M
2008-10-01
We present a general framework for probabilistic risk assessment (PRA) of building contamination. PRA provides a powerful tool for the rigorous quantification of risk in contamination of building spaces. A typical PRA starts by identifying relevant components of a system (e.g. ventilation system components, potential sources of contaminants, remediation methods) and proceeds by using available information and statistical inference to estimate the probabilities of their failure. These probabilities are then combined by means of fault-tree analyses to yield probabilistic estimates of the risk of system failure (e.g. building contamination). A sensitivity study of PRAs can identify features and potential problems that need to be addressed with the most urgency. Often PRAs are amenable to approximations, which can significantly simplify the approach. All these features of PRA are presented in this paper via a simple illustrative example, which can be built upon in further studies. The tool presented here can be used to design and maintain adequate ventilation systems to minimize exposure of occupants to contaminants.
49 CFR 192.173 - Compressor stations: Ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Design of Pipeline Components § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to ensure...
NASA Astrophysics Data System (ADS)
Wegrzyński, Wojciech; Krajewski, Grzegorz; Kimbar, Grzegorz
2018-01-01
This paper is a proposal of a new device that may be used as a component of natural smoke ventilation systems - an external aerodynamic baffle used to limit the wind effect at the most adverse angle. Natural ventilation is not only affected by the external wind, but also dependent on the angle of wind attack. It has been proven, that at angles between 45° to 60° the performance of such device is the lowest. This is the reason why additional device is proposed - external baffle that could hypothetically increase the performance at chosen angles. The purpose of this paper is to explore this idea by numerical modelling of such external elements on a validated natural ventilator model, with use of ANSYS® Fluent® CFD model.
Columbia County Habitat for Humanity Passive Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi
2016-03-18
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-04-01
Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less
14 CFR 27.859 - Heating systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Except for heaters which incorporate designs to prevent hazards in the event of fuel leakage in the... locations ensuring prompt detection of fire in the heater region. (2) Fire extinguisher systems that provide... shrouds so that no leakage from those components can enter the ventilating airstream. (k) Drains. There...
AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…
Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa
2018-01-01
Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.
Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien
2018-01-01
Background Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. Methods The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. Results The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Conclusions Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. Trial registration ClinicalTrials.gov PRS / NCT03359148 PMID:29547638
HPAC Info-dex 5: Locating engineering societies, associations
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This is the 1995/1996 listing of heating, ventilation, air conditioning and refrigeration systems engineering societies, trade associations, and government organizations that have established performance standards for mechanical systems and components. The societies and associations are listed alphabetically along with their complete addresses and telephone and FAX numbers.
Impact of Fire Ventilation on General Ventilation in the Building
NASA Astrophysics Data System (ADS)
Zender-Świercz, Ewa; Telejko, Marek
2017-10-01
The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.
Horsley, Alex; Macleod, Kenneth; Gupta, Ruchi; Goddard, Nick; Bell, Nicholas
2014-01-01
Background The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. Methods A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. Results 10–90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was −0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range −3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. Conclusion The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus. PMID:24892522
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...
EFFICACY OF UV IRRADIATION ON EIGHT SPECIES OF BACILLUS
Ultraviolet irradiation has been used in the indoor environment to eliminate or control infectious diseases. Heating, ventilating and air-conditioning (HVAC) system components such as duct liners, cooling coils, drip pans, interior insulation and areas subjected to high levels of...
1985-01-01
components must also perform accurately if control is to be accurate, tests were made to determine if these components were likely to introduce more...efficient. However, it also greatly increases the com- plexity of the control systems, since room temperature measurements must be made for each zone, with...involving a psychrometer (a dry-bulb and a wet-bulb mercury thermometer) provides only a rough indication. Calibration is time- consuming and only partly
The Effectiveness of UV Irradiation on Vegetative Bacteria and Fungi Surface Contamination
Ultraviolet irradiation has commonly been used in the indoor environment to eliminate or control infectious diseases in medical care facilities. Heating, ventilating, and air-conditioning (HV AC) system components such as duct-liners, cooling coils, drip-pans, interior insulation...
Central venous pulse pressure analysis using an R-synchronized pressure measurement system.
Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther
2006-12-01
The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.
A new system for understanding modes of mechanical ventilation.
Chatburn, R L; Primiano, F P
2001-06-01
Numerous ventilation modes and ventilation options have become available as new mechanical ventilators have reached the market. Ventilator manufacturers have no standardized terminology for ventilator modes and ventilation options, and ventilator operator's manuals do not help the clinician compare the modes of ventilators from different manufacturers. This article proposes a standardized system for classifying ventilation modes, based on general engineering principles and a small set of explicit definitions. Though there may be resistance by ventilator manufacturers to a standardized system of ventilation terminology, clinicians and health care equipment purchasers should adopt such a system in the interest of clear communication--the lack of which prevents clinicians from fully understanding the therapies they administer and could compromise the quality of patient care.
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...
Interactive simulation system for artificial ventilation on the internet: virtual ventilator.
Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki
2004-12-01
To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.
2017-01-01
Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.
Introduction to the Portable Life Support Schematic and Technology Development Components
NASA Technical Reports Server (NTRS)
Conger, Bruce
2008-01-01
Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.
49 CFR 192.187 - Vaults: Sealing, venting, and ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... vault or pit is sealed, each opening must have a tight fitting cover without open holes through which an... Components § 192.187 Vaults: Sealing, venting, and ventilation. Each underground vault or closed top pit....7 cubic meters): (1) The vault or pit must be ventilated with two ducts, each having at least the...
D0 General Support: The Use of Programmable Logic Controllers (PLCS) at D0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hance, R.; /Fermilab
With the exception of control of heating, ventilation, and air conditioning (HVAC) ventilation fans, and their shutdown in the case of smoke in the ducts, all implementations of Programmable Logic Controllers (PLCs) in Dzero have been made within the fundamental premise that no uncertified PLC apparatus shall be entrusted with the safety of equipment or personnel. Thus although PLCs are used to control and monitor all manner of intricate equipment, simple hardware interlocks and relief devices provide basic protection against component failure, control failure, or inappropriate control operation. Nevertheless, this report includes two observations as follows: (1) It may bemore » prudent to reconfigure the link between the Pyrotronics system and the HVAC system such that the Pyrotronics system provides interlocks to the ventilation fans instead of control inputs to the uncertified HVAC PLCs. Although the Pyrotronics system is certified and maintained to life safety standards, the HVAC system is not. A hardware or software failure of the HVAC system probably should not be allowed to result in the situation where the ventilation fans in a smoke filled duct continue to operate. Dan Markley is investigating this matter. (2) It may also be prudent to examine the network security of those systems connected to the Fermilab WAN (HVAC, Cryo, and Solenoid Controls). Even though the impact of a successful hack might only be to operations, it might nevertheless be disruptive and could be expensive. The risks should perhaps be analyzed. One of the most attractive features of these systems, from a user's viewpoint, is their unlimited networking. The unlimited networking that makes the systems so convenient to legitimate access also makes them vulnerable to illegitimate access.« less
33 CFR 183.620 - Natural ventilation system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...
33 CFR 183.620 - Natural ventilation system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...
Characteristics of rain penetration through a gravity ventilator used for natural ventilation.
Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon
2008-01-01
Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Watts, Carly A.; Vogel, Matt
2012-01-01
A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer to 35,000 rpm) (2) RCA performance at boundary conditions, including carbon dioxide and water vapor saturation events, as well as reduced vacuum quality (3) SWME valve anomalies (4 documented cases where the SWME failed to respond to a control signal or physically jammed, preventing SWME control) (4) Reduction of SWME hollow fiber hydrophobicity and significant reduction of the SWME degassing capability after significant accumulated test time.
Control strategy optimization of HVAC plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio
In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components andmore » energy systems, and is sufficiently fast to make it applicable to real-time setting.« less
Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas
2017-09-01
Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Ross, Amy
2011-01-01
A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.
Hydronic rooftop cooling systems
Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA
2008-01-29
A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.
Lazure, L P
2000-09-01
Fiber-reinforced plastics are used to manufacture a large variety of products, particularly for the transportation sector. Hand lay-up molding and projection molding are the main methods of manufacture. The users of these processes are exposed to appreciable emissions of styrene; in Quebec, more than 3000 workers work in this industry. A statistical analysis of styrene concentrations measured over a five-year period by the Institut de recherche en santé et en sécurité du travail (IRSST, Occupational Health and Safety Research Institute) reveals that for all of the main manufacturing sectors involved, between 40 percent and 78 percent of the results exceed the exposure standard of 50 ppm. This study evaluated the effectiveness of a ventilated table in controlling worker exposure to styrene and acetone in a shop that manufactures fiber-reinforced plastics parts. The evaluated local extraction system consists of a ventilated table with a surface area of 1.2 m x 1.2 m. During molding, the styrene emissions are exhausted through the ventilated table as well as through the slots in a lateral hood. Replacement air, introduced vertically through a supply air shower located above the worker, limits the diffusion of contaminants toward the worker's breathing zone. The reduction in worker exposure to styrene and acetone during hand lay-up molding was measured in the breathing zone for two sizes of molds. The results show that exhaust ventilation reduced the styrene concentrations by 91 percent and that the introduction of replacement air increased the efficiency of the ventilated table to 96 percent. The evaluation performed indicates that the ventilated table adequately controls worker exposure to styrene and acetone during the molding of small components.
Xu, Songao; Yu, Huijie; Sun, Hui; Zhu, Xiangyun; Xu, Xiaoqin; Xu, Jun; Cao, Weizhong
2017-01-01
To investigate the efficiency of closed tracheal suction system (CTSS) using novel splash-proof ventilator circuit component on ventilator-associated pneumonia (VAP) and the colonization of multiple-drug resistant bacteria (MDR) in patients undergoing mechanical ventilation (MV) prevention. A prospective single-blinded randomized parallel controlled intervention study was conducted. 330 severe patients admitted to the intensive care unit (ICU) of the First Hospital of Jiaxing from January 2014 to May 2016 were enrolled, and they were divided into open tracheal suction group, closed tracheal suction group, and splash-proof suction group on average by random number table. The patients in the three groups used conventional ventilator circuit component, conventional CTSS, and CTSS with a novel splash-proof ventilator circuit component for MV and sputum suction, respectively. The incidence of VAP, airway bacterial colonization rate, MDR and fungi colonization rate, duration of MV, length of ICU and hospitalization stay, and financial expenditure during hospitalization, as well as the in-hospital prognosis were recorded. After excluding patients who did not meet the inclusion criteria, incomplete data, backed out and so on, 318 patients were enrolled in the analysis finally. Compared with the open tracheal suction group, the total incidence of VAP was decreased in the closed tracheal suction group and splash-proof suction group [20.95% (22/105), 21.90% (23/105) vs. 29.63% (32/108)], but no statistical difference was found (both P > 0.05), and the incidence of VAP infections/1 000 MV days showed the same change tendency (cases: 14.56, 17.35 vs. 23.07). The rate of airway bacterial colonization and the rate of MDR colonization in the open tracheal suction group and splash-proof suction group were remarkably lower than those of closed tracheal suction group [32.41% (35/108), 28.57% (30/105) vs. 46.67% (49/105), 20.37% (22/108), 15.24% (16/105) vs. 39.05% (41/105)] with significantly statistical differences (all P < 0.05). Besides, no significantly statistical difference was found in the fungi colonization rate among open tracheal group, closed tracheal group, and splash-proof suction group (4.63%, 3.81% and 6.67%, respectively, P > 0.05). Compared with the closed tracheal suction group, the duration of MV, the length of ICU and hospitalization stay were shortened in the open tracheal suction group and splash-proof suction group [duration of MV (days): 8.00 (4.00, 13.75), 8.00 (5.00, 13.00) vs. 9.00 (5.00, 16.00); the length of ICU stay (days): 10.00 (6.00, 16.00), 11.00 (7.00, 19.00) vs. 13.00 (7.50, 22.00); the length of hospitalization stay (days): 16.50 (9.25, 32.00), 19.00 (10.50, 32.50) vs. 21.00 (10.00, 36.00)], and financial expenditure during hospitalization was lowered [10 thousand Yuan: 4.95 (3.13, 8.62), 5.47 (3.84, 9.41) vs. 6.52 (3.99, 11.02)] without significantly statistical differences (all P > 0.05). Moreover, no significantly statistical difference was found in the in-hospital prognosis among the three groups. CTSS performed using novel splash-proof ventilator circuit component shared similar advantages in preventing VAP with the conventional CTSS. Meanwhile, it is superior because it prevented the colonization of MDR and high price in the conventional CTSS.Clinical Trail Registration Chinese Clinical Trial Registry, ChiCTR-IOR-16009694.
Lucero, Cynthia A; Cohen, Adam L; Trevino, Ingrid; Rupp, Angela Hammer; Harris, Michelle; Forkan-Kelly, Sinead; Noble-Wang, Judith; Jensen, Bette; Shams, Alicia; Arduino, Matthew J; LiPuma, John J; Gerber, Susan I; Srinivasan, Arjun
2011-11-01
We investigated a cluster of Burkholderia cepacia complex colonization in ventilated pediatric patients. Isolates from 15 patients, 2 sink drains, and several ventilator components were found to belong to a single B cenocepacia clone. Hospital tap water used during oral and tracheostomy care was identified as the most likely mechanism for transmission. Published by Mosby, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, B.; /Fermilab
1999-10-08
A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics.more » Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface. Background material pertinent to the BYAC system will cover the separate water and air subsystems and their purposes. In addition programming and system automation will also be covered.« less
SY Tank Farm ventilation isolation option risk assessment report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, T.B.; Morales, S.D.
The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Rudd and D. Bergey
Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less
Integrative approaches for modeling regulation and function of the respiratory system.
Ben-Tal, Alona; Tawhai, Merryn H
2013-01-01
Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less
Mobile communication devices causing interference in invasive and noninvasive ventilators.
Dang, Bao P; Nel, Pierre R; Gjevre, John A
2007-06-01
The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of less than 1 meter.
Analysis of radon reduction and ventilation systems in uranium mines in China.
Hu, Peng-hua; Li, Xian-jie
2012-09-01
Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.
Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator
Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou
2014-01-01
Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318
Ventilation System Effectiveness and Tested Indoor Air Quality Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin; Bergey, Daniel
In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less
Ventilation System Effectiveness and Tested Indoor Air Quality Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin; Bergey, Daniel
Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less
Analysis of the systems of ventilation of residential houses of Ukraine and Estonia
NASA Astrophysics Data System (ADS)
Savchenko, Olena; Zhelykh, Vasyl; Voll, Hendrik
2017-12-01
The most common ventilation system in residential buildings in Ukraine is natural ventilation. In recent years, due to increased tightness of structures, an increase in the content of synthetic finishing materials in them, the quality of microclimate parameters deteriorated. One of the measures to improve the parameters of indoor air in residential buildings is the use of mechanical inflow and exhaust ventilation system. In this article the regulatory documents concerning the design of ventilation systems in Ukraine and Estonia and the requirements for air exchange in residential buildings are considered. It is established that the existing normative documents in Ukraine are analogous to European norms, which allow design the system of ventilation of residential buildings according to European standards. However, the basis for the design of ventilation systems in Ukraine is the national standards, in which mechanical ventilation, unfortunately, is provided only for the design of high-rise buildings. To maintain acceptable microclimate parameters in residential buildings, it is advisable for designers to apply the requirements for designing ventilation systems in accordance with European standards.
Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa
2007-03-01
The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure/exhaust ventilation (above 12 air exchanges/h) together with efficient active scavenging systems are sufficient to sustain N(2)O exposure in ORs at levels below or within the OEL value of 180mg/m(3).
Effects of ventilation strategy on distribution of lung inflammatory cell activity
2013-01-01
Introduction Leukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration. Methods Anesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans. Results Before endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P < 0.01) and higher whole-lung fgas (0.71 ± 0.12 vs. 0.48 ± 0.08; P = 0.004), as well as, in dependent regions, lower shunt fractions. Following 2 h of endotoxemia, PaO2/FiO2 ratios decreased in both groups, but more so with injurious ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P < 0.01) and more normally aerated lung (14-fold; P < 0.01). Ki was lower during protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P < 0.01). 18F-FDG phosphorylation rate (k3) was twofold higher with injurious ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for. Conclusions During systemic endotoxemia, protective ventilation may reduce the magnitude and heterogeneity of pulmonary inflammatory cell metabolic activity in early lung injury and may improve gas exchange through its effects predominantly in dependent lung regions. Such effects are likely related to a reduction in the metabolic activity, but not in the number, of lung-infiltrating neutrophils. PMID:23947920
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
Crew Survivability After a Rapid Cabin Depressurization Event
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder expectations to validate the functionality being imposed; (2) review/refinement of concept of operations to establish the potential triggers for such an event and define the response of the spacecraft and suit ventilation loop pressure control systems; and (3) assessment of system capabilities with respect to structural capability and pressure control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, William; Walker, Iain
One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less
Coaxial Tubing Systems Increase Artificial Airway Resistance and Work of Breathing.
Wenzel, Christin; Schumann, Stefan; Spaeth, Johannes
2017-09-01
Tubing systems are an essential component of the ventilation circuit, connecting the ventilator to the patient's airways. Coaxial tubing systems incorporate the inspiratory tube within the lumen of the expiratory one. We hypothesized that by design, these tubing systems increase resistance to air flow compared with conventional ones. We investigated the flow-dependent pressure gradient across coaxial, conventional disposable, and conventional reusable tubing systems from 3 different manufacturers. Additionally, the additional work of breathing and perception of resistance during breathing through the different devices were determined in 18 healthy volunteers. The pressure gradient across coaxial tubing systems was up to 6 times higher compared with conventional ones (1.90 ± 0.03 cm H 2 O vs 0.34 ± 0.01 cm H 2 O, P < .001) and was higher during expiration compared with inspiration ( P < .001). Additional work of breathing and perceived breathing resistance were highest in coaxial tubing systems, accordingly. Our findings suggest that the use of coaxial tubing systems should be carefully considered with respect to their increased resistance. Copyright © 2017 by Daedalus Enterprises.
Validation Data for Mechanical System Algorithms Used in Building Energy Analysis Programs.
1982-02-01
15 Zone Design 15 Built-Up Air Handler 15 Ventilation Requirements 16 The DES 16 Duct Design 17 Air -Delivery System 17 VAV Operation 17 Constant Volume...observed to operate well at reduced air flows, even at low flow in the so- called surge region. Recommendations 1. The HVAC system and component...With Inlet Guide Vanes Operating Within a Built-Up Air Handler 31 Test 2 -- Boiler Operation, Capacity, Efficiency, and Stand-By Losses 32 Test 3
Kaul, Tej K; Mittal, Geeta
2013-09-01
Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.
Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.
2018-02-01
The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.
2016-06-20
In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less
VENTILATION TECHNOLOGY SYSTEMS ANALYSIS
The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenlee, K. J.; Henry, J. R.; Kirkton, S. D.
2009-11-01
As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure andmore » function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O{sub 2}) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O{sub 2}), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton.« less
Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.
2016-01-01
Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.
Schatzel, S J; Krog, R B; Dougherty, H
2017-01-01
Longwall face ventilation is an important component of the overall coal mine ventilation system. Increased production rates due to higher-capacity mining equipment tend to also increase methane emission rates from the coal face, which must be diluted by the face ventilation. Increases in panel length, with some mines exceeding 6,100 m (20,000 ft), and panel width provide additional challenges to face ventilation designs. To assess the effectiveness of current face ventilation practices at a study site, a face monitoring study with continuous monitoring of methane concentrations and automated recording of longwall shearer activity was combined with a tracer gas test on a longwall face. The study was conducted at a U.S. longwall mine operating in a thick, bituminous coal seam and using a U-type, bleederless ventilation system. Multiple gob gas ventholes were located near the longwall face. These boreholes had some unusual design concepts, including a system of manifolds to modify borehole vacuum and flow and completion depths close to the horizon of the mined coalbed that enabled direct communication with the mine atmosphere. The mine operator also had the capacity to inject nitrogen into the longwall gob, which occurred during the monitoring study. The results show that emission rates on the longwall face showed a very limited increase in methane concentrations from headgate to tailgate despite the occurrence of methane delays during monitoring. Average face air velocities were 3.03 m/s (596 fpm) at shield 57 and 2.20 m/s (433 fpm) at shield 165. The time required for the sulfur hexafluoride (SF 6 ) peak to occur at each monitoring location has been interpreted as being representative of the movement of the tracer slug. The rate of movement of the slug was much slower in reaching the first monitoring location at shield 57 compared with the other face locations. This lower rate of movement, compared with the main face ventilation, is thought to be the product of a flow path within and behind the shields that is moving in the general direction of the headgate to the tailgate. Barometric pressure variations were pronounced over the course of the study and varied on a diurnal basis.
Effects of types of ventilation system on indoor particle concentrations in residential buildings.
Park, J S; Jee, N-Y; Jeong, J-W
2014-12-01
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
V-SUIT Model Validation Using PLSS 1.0 Test Results
NASA Technical Reports Server (NTRS)
Olthoff, Claas
2015-01-01
The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2014 CFR
2014-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 29.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2012 CFR
2012-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... section of the powerplant compartment) unless the amount of extinguishing agent and the rate of discharge...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2010 CFR
2010-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2013 CFR
2013-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 29.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2010 CFR
2010-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... section of the powerplant compartment) unless the amount of extinguishing agent and the rate of discharge...
14 CFR 29.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2011 CFR
2011-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... section of the powerplant compartment) unless the amount of extinguishing agent and the rate of discharge...
14 CFR 29.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2013 CFR
2013-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... section of the powerplant compartment) unless the amount of extinguishing agent and the rate of discharge...
14 CFR 29.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2014 CFR
2014-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... section of the powerplant compartment) unless the amount of extinguishing agent and the rate of discharge...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2011 CFR
2011-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
14 CFR 25.1187 - Drainage and ventilation of fire zones.
Code of Federal Regulations, 2012 CFR
2012-01-01
... component containing flammable fluids. The drainage means must be— (1) Effective under conditions expected... flammable vapors. (c) No ventilation opening may be where it would allow the entry of flammable fluids... vapors will cause an additional fire hazard. (e) Unless the extinguishing agent capacity and rate of...
Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCDANIEL, K.S.
1999-08-31
Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.
Jain, Rajnish K; Swaminathan, Srinivasan
2013-09-01
Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.
46 CFR 111.106-15 - Ventilation of hazardous locations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... its operational controls outside the ventilated space, if the system is mechanical; and (3) Have a... opening. (c) The mechanical ventilation of enclosed flammable or combustible liquid cargo handling or.... The power ventilation system must be designed to remove vapors from the bottom of the space at points...
Investigation of air cleaning system response to accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrae, R.W.; Bolstad, J.W.; Foster, R.D.
1980-01-01
Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.
A proactive approach for managing indoor air quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, R.E.; Casey, J.M.; Williams, P.L.
1997-11-01
Ventilation and maintenance, followed by psychosocial issues, are the factors most often implicated in indoor air quality (IAQ) investigations. The absence of accepted exposure standards and the presence of a wide variety of building designs, ages, ventilation systems, and usages often make IAQ complaint investigations ineffective. Thus, the best approach to achieving IAQ is to prevent problems from occurring. This paper presents the framework for a proactive approach to managing the causes most often implicated in IAQ investigations. It is the aim of this proactive protocol to provide a cost-effective guide for preventing IAQ problems in nonindustrial settings and inmore » buildings for which there are no current IAQ complaints. The proposed protocol focuses on heating, ventilation, and air-conditioning (HVAC) system maintenance and operation; psychosocial factors; and the handling and investigation of complaints. An IAQ manager is designated to implement and manage the protocol. The HVAC system portion of the protocol focuses on proper maintenance of the components often identified as sources of problems in IAQ studies, documentation of the maintenance procedures, and training of individuals responsible for building maintenance. The protocol addresses the psychosocial factors with an environmental survey that rates the occupants` perceptions of the indoor air to identify potential IAQ problems. The psychosocial portion of the protocol also incorporates occupant education and awareness. Finally, a three-step initial investigation procedure for addressing IAQ problems is presented.« less
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
Bearg, D W
1998-09-01
This article summarizes an approach for improving the indoor air quality (IAQ) in a building by providing feedback on the performance of the ventilation system. The delivery of adequate quantities of ventilation to all building occupants is necessary for the achievement of good IAQ. Feedback on the performance includes information on the adequacy of ventilation provided, the effectiveness of the distribution of this air, the adequacy of the duration of operation of the ventilation system, and the identification of leakage into the return plenum, either of outdoor or supply air. Keeping track of ventilation system performance is important not only in terms of maintaining good IAQ, but also making sure that this system continues to perform as intended after changes in building use. Information on the performance of the ventilation system is achieved by means of an automated sampling system that draws air from multiple locations and delivers it to both a carbon dioxide monitor and dew point sensor. The use of single shared sensors facilitates calibration checks as well as helps to guarantee data integrity. This approach to monitoring a building's ventilation system offers the possibility of achieving sustainable performance of this important aspect of good IAQ.
Summary of human responses to ventilation.
Seppänen, O A; Fisk, W J
2004-01-01
It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Walker, Iain; Tang, Yihuan
2014-06-01
Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.
Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen
2018-06-01
This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stewart, L. J.; Murphy, E. D.; Mitchell, C. M.
1982-01-01
A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel.
The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
The LoTrach system: its role in the prevention of ventilator-associated pneumonia.
Fletcher, Andrew J W; Ruffell, Alison J; Young, Peter J
2008-01-01
To discuss the development of the LoTrach system in light of current evidence around the prevention of ventilator-associated pneumonia (VAP) and its practical application in the intensive care setting. VAP causes substantial morbidity and mortality in ventilated patients in the Intensive Care Unit (ICU), increases length of stay in ICU and is extremely costly. Strategies are needed to reduce the risk of VAP. We examine the need for an endotracheal tube (ETT) specifically designed for the critically-ill patient, the development of the LoTrach system from conception to production, and the role of the various components of the system in preventing VAP. Early issues in implementing this revolutionary equipment into ICU are explored and three case studies highlight advantages of this system. The LoTrach system has been designed to facilitate the provision of a number of evidence-based interventions that have been shown to reduce VAP. Pulmonary aspiration is ubiquitous with conventional cuffs but prevented by the cuff of the LoTrach system when held at a constant and safe pressure against the tracheal wall with a cuff pressure controller. Other aspects incorporated in the ETT are aimed at clearing the secretions from the subglottic space, preventing tube occlusion and accidental extubation, and avoiding damage to the airway. In this way the LoTrach system employs a multifactorial approach to the prevention of VAP and the cost savings from LoTrach rather than a standard ETT will be considerable because of an average 3 day reduction in ICU length of stay related to this. It thus has the potential to be a very useful tool in the ICU setting in the prevention of VAP.
Design and calibration of a high-frequency oscillatory ventilator.
Simon, B A; Mitzner, W
1991-02-01
High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].
Mendell, M J; Lei-Gomez, Q; Mirer, A G; Seppänen, O; Brunner, G
2008-08-01
Building-related symptoms in office workers worldwide are common, but of uncertain etiology. One cause may be contaminants related to characteristics of heating, ventilating, and air-conditioning (HVAC) systems. We analyzed data from 97 representative air-conditioned US office buildings in the Building Assessment and Survey Evaluation (BASE) study. Using logistic regression models with generalized estimating equations, we estimated odds ratios (OR) and 95% confidence intervals for associations between building-related symptom outcomes and HVAC characteristics. Outdoor air intakes less than 60 m above ground level were associated with significant increases in most symptoms: e.g. for upper respiratory symptoms, OR for intake heights 30 to 60 m, 0 to <30 m, and below ground level were 2.7, 2.0, and 2.1. Humidification systems with poor condition/maintenance were associated with significantly increased upper respiratory symptoms, eye symptoms, fatigue/difficulty concentrating, and skin symptoms, with OR = 1.5, 1.5, 1.7, and 1.6. Less frequent cleaning of cooling coils and drain pans was associated with significantly increased eye symptoms and headache, with OR = 1.7 and 1.6. Symptoms may be due to microbial exposures from poorly maintained ventilation systems and to greater levels of vehicular pollutants at air intakes nearer the ground level. Replication and explanation of these findings is needed. These findings support current beliefs that moisture-related HVAC components such as cooling coils and humidification systems, when poorly maintained, may be sources of contaminants that cause adverse health effects in occupants, even if we cannot yet identify or measure the causal exposures. While finding substantially elevated risks for poorly maintained humidification systems, relative to no humidification systems, the findings do not identify important (symptom) benefits from well-maintained humidification systems. Findings also provide an initial suggestion, needing corroboration, that outdoor air intakes lower than 18 stories in office buildings may be associated with substantial increases in many symptoms. If this is corroborated and linked to ground-level vehicle emissions, urban ventilation air intakes may need to be located as far above ground level as possible or to incorporate air cleaners that remove gaseous pollutants.
Hentschel, Roland; Semar, Nicole; Guttmann, Josef
2012-09-01
To study appropriateness of respiratory system compliance calculation using an inflation hold and compare it with ventilator readouts of pressure and tidal volume as well as with measurement of compliance of the respiratory system with the single-breath-single-occlusion technique gained with a standard lung function measurement. Prospective clinical trial. Level III neonatal unit of a university hospital. Sixty-seven newborns, born prematurely or at term, ventilated for a variety of pathologic conditions. A standardized sigh maneuver with a predefined peak inspiratory pressure of 30 cm H2O, termed inspiratory capacity at inflation hold, was applied. Using tidal volume, exhaled from inspiratory pause down to ambient pressure, as displayed by the ventilator, and predefined peak inspiratory pressure, compliance at inspiratory capacity at inflation hold conditions could be calculated as well as ratio of tidal volume and ventilator pressure using tidal volume and differential pressure at baseline ventilator settings: peak inspiratory pressure minus positive end-expiratory pressure. For the whole cohort, the equation for the regression between tidal volume at inspiratory capacity at inflation hold and compliance of the respiratory system was: compliance of the respiratory system = 0.052 * tidal volume at inspiratory capacity at inflation hold - 0.113, and compliance at inspiratory capacity at inflation hold conditions was closely related to the standard lung function measurement method of compliance of the respiratory system (R = 0.958). In contrast, ratio of tidal volume and ventilator pressure per kilogram calculated from the ventilator readouts and displayed against compliance of the respiratory system per kilogram yielded a broad scatter throughout the whole range of compliance; both were only weakly correlated (R = 0.309) and also the regression line was significantly different from the line of identity (p < .05). Peak inspiratory pressure at study entry did not affect the correlation between compliance at inspiratory capacity at inflation hold conditions and compliance of the respiratory system. After a standard sigh maneuver, inspiratory capacity at inflation hold and the derived quantity compliance at inspiratory capacity at inflation hold conditions can be regarded as a valid, accurate, and reliable surrogate measure for standard compliance of the respiratory system in contrast to ratio of tidal volume and ventilator pressure calculated from the ventilator readouts during ongoing mechanical ventilation at respective ventilator settings.
Ventilation planning at Energy West's Deer Creek mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonc, L.; Prosser, B.; Gamble, G.
2009-08-15
In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.
Mine fire experiments and simulation with MFIRE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laage, L.W.; Yang, Hang
1995-12-31
A major concern of mine fires is the heat generated ventilation disturbances which can move products of combustion (POC) through unexpected passageways. Fire emergency planning requires simulation of the interaction of the fire and ventilation system to predict the state of the ventilation system and the subsequent distribution of temperatures and POC. Several computer models were developed by the U.S. Bureau of Mines (USBM) to perform this simulation. The most recent, MFIRE, simulates a mine`s ventilation system and its response to altered ventilation parameters such as the development of new mine workings or changes in ventilation control structures, external influencemore » such as varying outside temperatures, and internal influences such as fires. Extensive output allows quantitative analysis of the effects of the proposed alteration to die ventilation system. This paper describes recent USBM research to validate MFIRE`s calculation of temperature distribution in an airway due to a mine fire, as temperatures are the most significant source of ventilation disturbances. Fire tests were conducted at the Waldo Mine near Magdalena, NM. From these experiments, temperature profiles were developed as functions of time and distance from the fire and compared with simulations from MFIRE.« less
On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies
Mumovic, D.
2009-01-01
Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Ventilation System Surveillance Requirements To Operate for 10 Hours per Month,'' Using the Consolidated Line... currently require operating the ventilation system for at least 10 continuous hours with the heaters... Technical Specifications (TSs) Task Force (TSTF) Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Pipe sizes and discharge rates for enclosed ventilation... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the initial...
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K
2015-05-01
Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
Smart ventilation energy and indoor air quality performance in residential buildings: A review
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
2017-12-30
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Smart ventilation energy and indoor air quality performance in residential buildings: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Outcomes management of mechanically ventilated patients: utilizing informatics technology.
Smith, K R
1998-11-01
This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.
Joor, Fleur; Markhorst, Dick G; Kneyber, Martin C J; van Heerde, Marc
2011-01-01
During mechanical ventilation of young children, problems may arise due to the additional dead space of the ventilation circuit. This may lead to respiratory acidosis and even hypoxia in the child. A 3-month-old boy suffered from frequent apnoea. He was mechanically ventilated for this. Shortly after its initiation, he developed severe respiratory acidosis, hypoxemia and circulatory insufficiency. This was due to a large additional dead space caused by the use of equipment components made for adults. After he was switched to a circuit suitable for himself, he recovered rapidly. As a rule of thumb, an additional dead space of 1.5-2 ml/kg body weight is acceptable in young children. Emergency wards for young children should have specific equipment to mechanically ventilate them, and have a protocol paying explicit attention to the dead space.
Biermann, A; Geissler, A
2016-09-01
Diagnosis-related groups (DRGs) have been used to reimburse hospitals services in Germany since 2003/04. Like any other reimbursement system, DRGs offer specific incentives for hospitals that may lead to unintended consequences for patients. In the German context, specific procedures and their documentation are suspected to be primarily performed to increase hospital revenues. Mechanical ventilation of patients and particularly the duration of ventilation, which is an important variable for the DRG-classification, are often discussed to be among these procedures. The aim of this study was to examine incentives created by the German DRG-based payment system with regard to mechanical ventilation and to identify factors that explain the considerable increase of mechanically ventilated patients in recent years. Moreover, the assumption that hospitals perform mechanical ventilation in order to gain economic benefits was examined. In order to gain insights on the development of the number of mechanically ventilated patients, patient-level data provided by the German Federal Statistical Office and the German Institute for the Hospital Remuneration System were analyzed. The type of performed ventilation, the total number of ventilation hours, the age distribution, mortality and the DRG distribution for mechanical ventilation were calculated, using methods of descriptive and inferential statistics. Furthermore, changes in DRG-definitions and changes in respiratory medicine were compared for the years 2005-2012. Since the introduction of the DRG-based payment system in Germany, the hours of ventilation and the number of mechanically ventilated patients have substantially increased, while mortality has decreased. During the same period there has been a switch to less invasive ventilation methods. The age distribution has shifted to higher age-groups. A ventilation duration determined by DRG definitions could not be found. Due to advances in respiratory medicine, new ventilation methods have been introduced that are less prone to complications. This development has simultaneously improved survival rates. There was no evidence supporting the assumption that the duration of mechanical ventilation is influenced by the time intervals relevant for DRG grouping. However, presumably operational routines such as staff availability within early and late shifts of the hospital have a significant impact on the termination of mechanical ventilation.
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
Skovgaard, Nini; Abe, Augusto S; Andrade, Denis V; Wang, Tobias
2005-11-01
Low O2 levels in the lungs of birds and mammals cause constriction of the pulmonary vasculature that elevates resistance to pulmonary blood flow and increases pulmonary blood pressure. This hypoxic pulmonary vasoconstriction (HPV) diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts and is considered important for the local matching of ventilation to blood perfusion. In the present study, the effects of acute hypoxia on pulmonary and systemic blood flows and pressures were measured in four species of anesthetized reptiles with diverse lung structures and heart morphologies: varanid lizards (Varanus exanthematicus), caimans (Caiman latirostris), rattlesnakes (Crotalus durissus), and tegu lizards (Tupinambis merianae). As previously shown in turtles, hypoxia causes a reversible constriction of the pulmonary vasculature in varanids and caimans, decreasing pulmonary vascular conductance by 37 and 31%, respectively. These three species possess complex multicameral lungs, and it is likely that HPV would aid to secure ventilation-perfusion homogeneity. There was no HPV in rattlesnakes, which have structurally simple lungs where local ventilation-perfusion inhomogeneities are less likely to occur. However, tegu lizards, which also have simple unicameral lungs, did exhibit HPV, decreasing pulmonary vascular conductance by 32%, albeit at a lower threshold than varanids and caimans (6.2 kPa oxygen in inspired air vs. 8.2 and 13.9 kPa, respectively). Although these observations suggest that HPV is more pronounced in species with complex lungs and functionally divided hearts, it is also clear that other components are involved.
Field evaluation of ventilation system performance in enclosed parking garages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, A.M.; Grot, D.A.; Krarti, M.
2000-07-01
This paper summarizes the results of a field study to determine the ventilation requirements and the contaminant levels in existing enclosed parking garages. The testing was conducted in seven parking garages with different sizes, traffic flow patterns, vehicle types, and locations. In particular, the study compares the actual ventilation rates measured using the tracer gas technique with the ventilation requirements of ANSI/ASHRAE Standard 62-1989. In addition, the field test evaluated the effectiveness of the existing ventilation systems in maintaining acceptable contaminant levels within enclosed parking garages.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-11-18
Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-01-01
Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933
Animal biocalorimeter and waste management system
NASA Technical Reports Server (NTRS)
Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)
1995-01-01
A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.
Contaminants in ventilated filling boxes
NASA Astrophysics Data System (ADS)
Bolster, D. T.; Linden, P. F.
While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.
Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng
2012-12-01
RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.
Space station ventilation study
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Allen, G. E.
1972-01-01
A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.
Bundles to prevent ventilator-associated pneumonia: how valuable are they?
Wip, Charity; Napolitano, Lena
2009-04-01
To review the value of care bundles to prevent ventilator-associated pneumonia (VAP). The Ventilator Bundle contains four components, elevation of the head of the bed to 30-45 degrees, daily 'sedation vacation' and daily assessment of readiness to extubate, peptic ulcer disease prophylaxis, and deep venous thrombosis prophylaxis, aimed to improve outcome in mechanically ventilated patients, but not all are associated with VAP prevention. Daily spontaneous awakening and breathing trials are associated with early liberation from mechanical ventilation and VAP reduction. Although a small prospective, randomized clinical study documented that the semirecumbent position was associated with a significant reduction in VAP, more recent studies have documented that the semirecumbent position is difficult to maintain in mechanically ventilated patients and may not impact VAP reduction. Prophylaxis for peptic ulcer disease and deep venous thrombosis do not directly impact VAP reduction. Other methods to reduce VAP, such as oral care and hygiene, chlorhexidine in the posterior pharynx, and specialized endotracheal tubes (continuous aspiration of subglottic secretions, silver-coated), should be considered for inclusion in a revised Ventilator Bundle more specifically aimed at VAP prevention. The Ventilator Bundle is an effective method to reduce VAP rates in ICUs. The ventilator bundle should be modified and expanded to include specific processes of care that have been definitively demonstrated to be effective in VAP reduction or a specific VAP bundle created to focus on VAP prevention.
Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V
2010-01-01
Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.
Predicting the response of the injured lung to the mechanical breath profile
Smith, Bradford J.; Lundblad, Lennart K. A.; Kollisch-Singule, Michaela; Satalin, Joshua; Nieman, Gary; Habashi, Nader
2015-01-01
Mechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (Vt) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-Vt ventilation. To gain insight into the relative merits of these two ventilation modes, we measured lung mechanics and derecruitability in rats before and following Tween lavage. We fit to these lung mechanics measurements a computational model of the lung that accounts for both the degree of tissue distension of the open lung and the amount of lung derecruitment that takes place as a function of time. Using this model, we predicted how tissue distension, open lung fraction, and intratidal recruitment vary as a function of ventilator settings both for conventional low-Vt ventilation and for APRV. Our predictions indicate that APRV is more effective at recruiting the lung than low-Vt ventilation, but without causing more overdistension of the tissues. On the other hand, low-Vt ventilation generally produces less intratidal recruitment than APRV. Predictions such as these may be useful for deciding on the relative benefits of different ventilation modes and thus may serve as a means for determining how to ventilate a given lung in the least injurious fashion. PMID:25635004
Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.
Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J
2005-10-01
To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.
NASA Astrophysics Data System (ADS)
Raatschen, W.; Sjoegren, M.
The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.
NASA Astrophysics Data System (ADS)
Hittle, D. C.; Johnson, D. L.
1985-01-01
This report is one of a series on the development of heating, ventilating, and air-conditioning (HVAC) control systems that are simple, efficient, reliable, maintainable, and well-documented. This report identifies major problems associated with three currently used HVAC control systems. It also describes the development of a retrofit control system applicable to military buildings that will allow easy identification of component failures, facilitate repair, and minimize system failures. Evaluation of currently used controls showed that pneumatic temperature control equipment requires a very clean source of supply air and is also not very accurate. Pneumatic, rather than electronic, actuators should be used because they are cheaper and require less maintenance. Thermistor temperature detectors should not be used for HVAC applications because they require frequent calibration. It was found that enthalpy economy cycles cannot be used for control because the humidity sensors required for their use are prone to rapid drift, inaccurate, and hard to calibrate in the field. Performance of control systems greatly affects HVAC operating costs. Significant savings can be achieved if proportional-plus-integral control schemes are used. Use of the retrofit prototype control panel developed in this study on variable-air-volume systems should provide significant energy cost savings, improve comfort and reliability, and reduce maintenance costs.
Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce
2012-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
Zhang, Yang; Liu, Gongjian; Dull, Randal O.; Schwartz, David E.
2014-01-01
The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:24838752
NASA Astrophysics Data System (ADS)
Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan
Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.
46 CFR 194.20-5 - Ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND... Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The... based upon the volume of the compartment. (1) Power ventilation units shall have nonsparking impellers...
Protective garment ventilation system
NASA Technical Reports Server (NTRS)
Lang, R. (Inventor)
1970-01-01
A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.
Carbon Dioxide Detection and Indoor Air Quality Control.
Bonino, Steve
2016-04-01
When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.
A new system for continuous and remote monitoring of patients receiving home mechanical ventilation
NASA Astrophysics Data System (ADS)
Battista, L.
2016-09-01
Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.
A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.
Battista, L
2016-09-01
Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.
Kim, MinJeong; Liu, Hongbin; Kim, Jeong Tai; Yoo, ChangKyoo
2014-08-15
Sensor faults in metro systems provide incorrect information to indoor air quality (IAQ) ventilation systems, resulting in the miss-operation of ventilation systems and adverse effects on passenger health. In this study, a new sensor validation method is proposed to (1) detect, identify and repair sensor faults and (2) evaluate the influence of sensor reliability on passenger health risk. To address the dynamic non-Gaussianity problem of IAQ data, dynamic independent component analysis (DICA) is used. To detect and identify sensor faults, the DICA-based squared prediction error and sensor validity index are used, respectively. To restore the faults to normal measurements, a DICA-based iterative reconstruction algorithm is proposed. The comprehensive indoor air-quality index (CIAI) that evaluates the influence of the current IAQ on passenger health is then compared using the faulty and reconstructed IAQ data sets. Experimental results from a metro station showed that the DICA-based method can produce an improved IAQ level in the metro station and reduce passenger health risk since it more accurately validates sensor faults than do conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Regional gas transport in the heterogeneous lung during oscillatory ventilation
Herrmann, Jacob; Tawhai, Merryn H.
2016-01-01
Regional ventilation in the injured lung is heterogeneous and frequency dependent, making it difficult to predict how an oscillatory flow waveform at a specified frequency will be distributed throughout the periphery. To predict the impact of mechanical heterogeneity on regional ventilation distribution and gas transport, we developed a computational model of distributed gas flow and CO2 elimination during oscillatory ventilation from 0.1 to 30 Hz. The model consists of a three-dimensional airway network of a canine lung, with heterogeneous parenchymal tissues to mimic effects of gravity and injury. Model CO2 elimination during single frequency oscillation was validated against previously published experimental data (Venegas JG, Hales CA, Strieder DJ, J Appl Physiol 60: 1025–1030, 1986). Simulations of gas transport demonstrated a critical transition in flow distribution at the resonant frequency, where the reactive components of mechanical impedance due to airway inertia and parenchymal elastance were equal. For frequencies above resonance, the distribution of ventilation became spatially clustered and frequency dependent. These results highlight the importance of oscillatory frequency in managing the regional distribution of ventilation and gas exchange in the heterogeneous lung. PMID:27763872
Control of asthma triggers in indoor air with air cleaners: a modeling analysis.
Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; Macintosh, David L
2008-08-06
Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30-55% lower cat allergen levels, 90-99% lower risk of respiratory infection through the inhalation route of exposure, 90-98% lower environmental tobacco smoke (ETS) levels, and 50-75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice.
Control of asthma triggers in indoor air with air cleaners: a modeling analysis
Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L
2008-01-01
Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328
40 CFR 98.323 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems (metric tons CH4). CH4V = Quarterly CH4 liberated from each ventilation monitoring point (metric... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system... CH4 liberated from a ventilation monitoring point (metric tons CH4). V = Volumetric flow rate for the...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
Mazzeo, A T; Fanelli, V; Mascia, L
2013-03-01
The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.
Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems
2017-02-22
patients using long-term liquid oxygen differ from those on traditional treatment with oxygen concentrators and/or compressed gas cylinders? A...AFRL-SA-WP-SR-2017-0006 Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems Thomas Blakeman, MSc, RRT; Dario...To) August 2014 – September 2016 4. TITLE AND SUBTITLE Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems 5a. CONTRACT NUMBER
[Respiratory monitoring of pediatric patients in the Intensive Care Unit].
Donoso, Alejandro; Arriagada, Daniela; Contreras, Dina; Ulloa, Daniela; Neumann, Megan
Respiratory monitoring plays an important role in the care of children with acute respiratory failure. Therefore, its proper use and correct interpretation (recognizing which signals and variables should be prioritized) should help to a better understanding of the pathophysiology of the disease and the effects of therapeutic interventions. In addition, ventilated patient monitoring, among other determinations, allows to evaluate various parameters of respiratory mechanics, know the status of the different components of the respiratory system and guide the adjustments of ventilatory therapy. In this update, the usefulness of several techniques of respiratory monitoring including conventional respiratory monitoring and more recent methods are described. Moreover, basic concepts of mechanical ventilation, their interpretation and how the appropriate analysis of the information obtained can cause an impact on the clinical management of the patient are defined. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
NASA Technical Reports Server (NTRS)
Link, Dwight E., Jr.; Balistreri, Steven F., Jr.
2015-01-01
The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.
Cohen, I L; Bari, N; Strosberg, M A; Weinberg, P F; Wacksman, R M; Millstein, B H; Fein, I A
1991-10-01
To test the hypothesis that a formal interdisciplinary team approach to managing ICU patients requiring mechanical ventilation enhances ICU efficiency. Retrospective review with cost-effectiveness analysis. A 20-bed medical-surgical ICU in a 450-bed community referral teaching hospital with a critical care fellowship training program. All patients requiring mechanical ventilation in the ICU were included, comparing patients admitted 1 yr before the inception of the ventilatory management team (group 1) with those patients admitted for 1 yr after the inception of the team (group 2). Group 1 included 198 patients with 206 episodes of mechanical ventilation and group 2 included 165 patients with 183 episodes of mechanical ventilation. A team consisting of an ICU attending physician, nurse, and respiratory therapist was formed to conduct rounds regularly and supervise the ventilatory management of ICU patients who were referred to the critical care service. The two study groups were demographically comparable. However, there were significant reductions in resource use in group 2. The number of days on mechanical ventilation decreased (3.9 days per episode of mechanical ventilation [95% confidence interval 0.3 to 7.5 days]), as did days in the ICU (3.3 days per episode of mechanical ventilation [90% confidence interval 0.3 to 6.3 days]), numbers of arterial blood gases (23.2 per episode of mechanical ventilation; p less than .001), and number of indwelling arterial catheters (1 per episode of mechanical ventilation; p less than .001). The estimated cost savings from these reductions was $1,303 per episode of mechanical ventilation. We conclude that a ventilatory management team, or some component thereof, can significantly and safely expedite the process of "weaning" patients from mechanical ventilatory support in the ICU.
Energy Use Consequences of Ventilating a Net-Zero Energy House
Ng, Lisa C.; Payne, W. Vance
2016-01-01
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776
Energy Use Consequences of Ventilating a Net-Zero Energy House.
Ng, Lisa C; Payne, W Vance
2016-03-05
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.
46 CFR 127.260 - Ventilation for accommodations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for accommodations. 127.260 Section 127.260... ARRANGEMENTS Particular Construction and Arrangements § 127.260 Ventilation for accommodations. (a) Each... vessel of 100 or more gross tons must be provided with a mechanical ventilation system unless the...
A perfluorochemical loss/restoration (L/R) system for tidal liquid ventilation.
Libros, R; Philips, C M; Wolfson, M R; Shaffer, T H
2000-01-01
Tidal liquid ventilation is the transport of dissolved respiratory gases via volume exchange of perfluorochemical (PFC) liquid to and from the PFC-filled lung. All gas-liquid surface tension is eliminated, increasing compliance and providing lung protection due to lower inflation pressures. Tidal liquid ventilation is achieved by cycling fluid from a reservoir to and from the lung by a ventilator. Current approaches are microprocessor-based with feedback control. During inspiration, warmed oxygenated PFC liquid is pumped from a fluid reservoir/gas exchanger into the lung. PFC fluid is conserved by condensing (60-80% efficiency) vapor in the expired gas. A feedback-control system was developed to automatically replace PFC lost due to condenser inefficiency. This loss/restoration (L/R) system consists of a PFC-vapor thermal detector (+/- 2.5%), pneumatics, amplifiers, a gas flow detector (+/- 1%), a PFC pump (+/- 5%), and a controller. Gravimetric studies of perflubron loss from a flask due to evaporation were compared with experimental L/R results and found to be within +/- 1.4%. In addition, when L/R studies were conducted with a previously reported liquid ventilation system over a four-hour period, the L/R system maintained system perflubron volume to within +/- 1% of prime volume and 11.5% of replacement volume, and the difference between experimental PFC loss and that of the L/R system was 1.8 mL/hr. These studies suggest that the PFC L/R system may have significant economic (appropriate dosing for PFC loss) as well as physiologic (maintenance of PFC inventory in the lungs and liquid ventilator) impact on liquid ventilation procedures.
Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation.
Cruces, Pablo; González-Dambrauskas, Sebastián; Quilodrán, Julio; Valenzuela, Jorge; Martínez, Javier; Rivero, Natalia; Arias, Pablo; Díaz, Franco
2017-10-06
Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU's. Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (K TI and K TE ) were calculated. We included 16 patients, of median age 2.5 (1-5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26-31), PPL 24 (20-26), tPEEP 9 [8-11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP - PEEP) (P < 0.01). QI was significantly lower than QE [5 (4.27-6.75) v/s 16.5 (12-23.8) L/min. RawI and RawE were 38.8 (32-53) and 40.5 (22-55) cmH2O/L/s; K TI and K TE [0.18 (0.12-0.30) v/s 0.18 (0.13-0.22) s], and K TI :K TE ratio was 1:1.04 (1:0.59-1.42). Analysis of respiratory mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.
Temperature of gas delivered from ventilators.
Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji
2013-01-01
Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.
Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises
NASA Astrophysics Data System (ADS)
Litvinova, N. A.
2017-11-01
The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.
Mechanical ventilation in disaster situations: a new paradigm using the AGILITIES Score System.
Wilkens, Eric P; Klein, Gary M
2010-01-01
The failure of life-critical systems such as mechanical ventilators in the wake of a pandemic or a disaster may result in death, and therefore, state and federal government agencies must have precautions in place to ensure availability, reliability, and predictability through comprehensive preparedness and response plans. All 50 state emergency preparedness response plans were extensively examined for the attention given to the critically injured and ill patient population during a pandemic or mass casualty event. Public health authorities of each state were contacted as well. Nine of 51 state plans (17.6 percent) included a plan or committee for mechanical ventilation triage and management in a pandemic influenza event. All 51 state plans relied on the Centers for Disease Control and Prevention Flu Surge 2.0 spreadsheet to provide estimates for their influenza planning. In the absence of more specific guidance, the authors have developed and provided guidelines recommended for ventilator triage and the implementation of the AGILITIES Score in the event of a pandemic, mass casualty event, or other catastrophic disaster. The authors present and describe the AGILITIES Score Ventilator Triage System and provide related guidelines to be adopted uniformly by government agencies and hospitals. This scoring system and the set ofguidelines are to be used iA disaster settings, such as Hurricane Katrina, and are based on three key factors: relative health, duration of time on mechanical ventilation, and patients' use of resources during a disaster. For any event requiring large numbers of ventilators for patients, the United States is woefully unprepared. The deficiencies in this aspect of preparedness include (1) lack of accountability for physical ventilators, (2) lack of understanding with which healthcare professionals can safely operate these ventilators, (3) lack of understanding from where additional ventilator resources exist, and (4) a triage strategy to provide ventilator support to those patients with the greatest chances of survival.
Tunnel Ventilation Control Using Reinforcement Learning Methodology
NASA Astrophysics Data System (ADS)
Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung
The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.
Buildings operations and ETS exposure.
Spengler, J D
1999-01-01
Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS. Images Figure 1 Figure 2 Figure 3 PMID:10375293
Bacterial burden in the operating room: impact of airflow systems.
Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin
2012-09-01
Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
46 CFR 194.15-5 - Ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
....15-5 Ventilation. (a) Operations, reactions or experiments which produce toxic, noxious or corrosive...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot...
Bordes, Julien; Erwan d'Aranda; Savoie, Pierre-Henry; Montcriol, Ambroise; Goutorbe, Philippe; Kaiser, Eric
2014-09-01
Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. A solution is to use a ventilator able to function with an oxygen concentrator. We tested the SeQual Integra™ (SeQual, San Diego, CA) 10-OM oxygen concentrator paired with the Pulmonetic System(®) LTV 1000 ventilator (Pulmonetic Systems, Minneapolis, MN) and evaluated the delivered fraction of inspired oxygen (FiO2) across a range of minute volumes and combinations of ventilator settings. Two LTV 1000 ventilators were tested. The ventilators were attached to a test lung and FiO2 was measured by a gas analyzer. Continuous-flow oxygen was generated by the OC from 0.5 L/min to 10 L/min and injected into the oxygen inlet port of the LTV 1000. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered FiO2. The LTV 1000 ventilator is a turbine ventilator that is able to deliver high FiO2 when functioning with an oxygen concentrator. However, modifications of the ventilator settings such as increase in minute ventilation affect delivered FiO2 even if oxygen flow is constant on the oxygen concentrator. The ability of an oxygen concentrator to deliver high FiO2 when used with a turbine ventilator makes this method of oxygen delivery a viable alternative to cylinders in austere environments when used with a turbine ventilator. However, FiO2 has to be monitored continuously because delivered FiO2 decreases when minute ventilation is increased. Copyright © 2014 Elsevier Inc. All rights reserved.
Particulate matter in animal rooms housing mice in microisolation caging.
Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E
2006-11-01
Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.
Effect of outside air ventilation rate on VOC concentrations and emissions in a call center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.
2002-01-01
A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrationsmore » were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.« less
NASA Astrophysics Data System (ADS)
Khalqihi, K. I.; Rahayu, M.; Rendra, M.
2017-12-01
PT Perkebunan Nusantara VIII Ciater is a company produced black tea orthodox more or less 4 tons every day. At the production section, PT Perkebunan Nusantara VIII will use local exhaust ventilation specially at sortation area on sieve machine. To maintain the quality of the black tea orthodox, all machine must be scheduled for maintenance every once a month and takes time 2 hours in workhours, with additional local exhaust ventilation, it will increase time for maintenance process, if maintenance takes time more than 2 hours it will caused production process delayed. To support maintenance process in PT Perkebunan Nusantara VIII Ciater, designing local exhaust ventilation using design for assembly approach with Boothroyd and Dewhurst method, design for assembly approach is choosen to simplify maintenance process which required assembly process. There are 2 LEV designs for this research. Design 1 with 94 components, assembly time 647.88 seconds and assembly efficiency level 23.62%. Design 2 with 82 components, assembly time 567.84 seconds and assembly efficiency level 24.83%. Design 2 is choosen for this research based on DFA goals, minimum total part that use, optimization assembly time, and assembly efficiency level.
Particle transport in low-energy ventilation systems. Part 1: theory of steady states.
Bolster, D T; Linden, P F
2009-04-01
Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.
Are we fully utilizing the functionalities of modern operating room ventilators?
Liu, Shujie; Kacmarek, Robert M; Oto, Jun
2017-12-01
The modern operating room ventilators have become very sophisticated and many of their features are comparable with those of an ICU ventilator. To fully utilize the functionality of modern operating room ventilators, it is important for clinicians to understand in depth the working principle of these ventilators and their functionalities. Piston ventilators have the advantages of delivering accurate tidal volume and certain flow compensation functions. Turbine ventilators have great ability of flow compensation. Ventilation modes are mainly volume-based or pressure-based. Pressure-based ventilation modes provide better leak compensation than volume-based. The integration of advanced flow generation systems and ventilation modes of the modern operating room ventilators enables clinicians to provide both invasive and noninvasive ventilation in perioperative settings. Ventilator waveforms can be used for intraoperative neuromonitoring during cervical spine surgery. The increase in number of new features of modern operating room ventilators clearly creates the opportunity for clinicians to optimize ventilatory care. However, improving the quality of ventilator care relies on a complete understanding and correct use of these new features. VIDEO ABSTRACT: http://links.lww.com/COAN/A47.
Houses need to breathe--right?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.
2004-10-01
Houses need to breathe, but we can no longer leave the important functions associated with ventilation to be met accidentally. A designed ventilation system must be considered as much a part of a home as its heating system. Windows are a key part of that system because they allow a quick increase in ventilation for unusual events, but neither they nor a leaky building shell can be counted on to provide minimum levels.
NASA Technical Reports Server (NTRS)
Dinh, Khanh
1994-01-01
Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.
Assessing Respiratory System Mechanical Function.
Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo
2016-12-01
The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... maintaining a safe and healthful working environment. A well planned mine ventilation system is necessary to assure a fresh air supply to miners at all working places, to control the amounts of harmful airborne... usually present harsh and hostile working environments. The ventilation system is the most vital life...
NASA Technical Reports Server (NTRS)
Wells, H. B.
1977-01-01
The preliminary data of the environmental control and life support subsystem for a space construction base manufacturing module was reported. A space processing module, which is capable of performing production biological experiments, was chosen as a baseline configuration. The primary assemblies and components considered for use were humidity and temperature control, ventilation fan, cabin fan, water separator, condensate storage, overboard dumping, distribution system, contaminant monitoring, cabin sensors, and fire and smoke detection.
NASA Technical Reports Server (NTRS)
Jennings, Mallory
2011-01-01
NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.
Clinical challenges in mechanical ventilation.
Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J
2016-04-30
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
Limiting ventilator-induced lung injury through individual electronic medical record surveillance.
Herasevich, Vitaly; Tsapenko, Mykola; Kojicic, Marija; Ahmed, Adil; Kashyap, Rachul; Venkata, Chakradhar; Shahjehan, Khurram; Thakur, Sweta J; Pickering, Brian W; Zhang, Jiajie; Hubmayr, Rolf D; Gajic, Ognjen
2011-01-01
To improve the safety of ventilator care and decrease the risk of ventilator-induced lung injury, we designed and tested an electronic algorithm that incorporates patient characteristics and ventilator settings, allowing near-real-time notification of bedside providers about potentially injurious ventilator settings. Electronic medical records of consecutive patients who received invasive ventilation were screened in three Mayo Clinic Rochester intensive care units. The computer system alerted bedside providers via the text paging notification about potentially injurious ventilator settings. Alert criteria included a Pao2/Fio2 ratio of <300 mm Hg, free text search for the words "edema" or "bilateral + infiltrates" on the chest radiograph report, a tidal volume of >8 mL/kg predicted body weight (based on patient gender and height), a plateau pressure of >30 cm H2O, and a peak airway pressure of >35 cm H2O. Respiratory therapists answered a brief online satisfaction survey. Ventilator-induced lung injury risk was compared before and after the introduction of ventilator-induced lung injury alert. The prevalence of acute lung injury was 42% (n = 490) among 1,159 patients receiving >24 hrs of invasive ventilation. The system sent 111 alerts for 80 patients, with a positive predictive value of 59%. The exposure to potentially injurious ventilation decreased after the intervention from 40.6 ± 74.6 hrs to 26.9 ± 77.3 hrs (p = .004). Electronic medical record surveillance of mechanically ventilated patients accurately detects potentially injurious ventilator settings and is able to influence bedside practice at moderate costs. Its implementation is associated with decreased patient exposure to potentially injurious mechanical ventilation settings.
Külpmann, Rüdiger; Christiansen, Bärbel; Kramer, Axel; Lüderitz, Peter; Pitten, Frank-Albert; Wille, Frank; Zastrow, Klaus-Dieter; Lemm, Friederike; Sommer, Regina; Halabi, Milo
2016-01-01
Since the publication of the first "Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems) in hospitals" (http://www.krankenhaushygiene.de/informationen/fachinformationen/leitlinien/12) in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section "Ventilation and air conditioning technology" attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.
Epithelial and endothelial damage induced by mechanical ventilation modes.
Suki, Béla; Hubmayr, Rolf
2014-02-01
The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. Although lung injury is typically viewed through the lens of altered barrier properties and mechanical ventilation-associated immune responses, in this review, we call attention to the importance of heterogeneity and the physical failure of the load bearing cell and tissue elements in the pathogenesis of ARDS. Specifically, we introduce a simple elastic network model to better understand the deformations of lung regions, intra-acinar alveoli and cells within a single alveolus, and consider the role of regional distension and interfacial stress-related injury for various ventilation modes. Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.
Regional gas transport in the heterogeneous lung during oscillatory ventilation.
Herrmann, Jacob; Tawhai, Merryn H; Kaczka, David W
2016-12-01
Regional ventilation in the injured lung is heterogeneous and frequency dependent, making it difficult to predict how an oscillatory flow waveform at a specified frequency will be distributed throughout the periphery. To predict the impact of mechanical heterogeneity on regional ventilation distribution and gas transport, we developed a computational model of distributed gas flow and CO 2 elimination during oscillatory ventilation from 0.1 to 30 Hz. The model consists of a three-dimensional airway network of a canine lung, with heterogeneous parenchymal tissues to mimic effects of gravity and injury. Model CO 2 elimination during single frequency oscillation was validated against previously published experimental data (Venegas JG, Hales CA, Strieder DJ, J Appl Physiol 60: 1025-1030, 1986). Simulations of gas transport demonstrated a critical transition in flow distribution at the resonant frequency, where the reactive components of mechanical impedance due to airway inertia and parenchymal elastance were equal. For frequencies above resonance, the distribution of ventilation became spatially clustered and frequency dependent. These results highlight the importance of oscillatory frequency in managing the regional distribution of ventilation and gas exchange in the heterogeneous lung. Copyright © 2016 the American Physiological Society.
The School Advanced Ventilation Engineering Software (SAVES)
The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M
2017-01-30
Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel's exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems.
Particle transport in low-energy ventilation systems. Part 2: Transients and experiments.
Bolster, D T; Linden, P F
2009-04-01
Providing adequate indoor air quality while reducing energy consumption is a must for efficient ventilation system design. In this work, we study the transport of particulate contaminants in a displacement-ventilated space, using the idealized 'emptying filling box' model (P.F. Linden, G.F. Lane-serff and D.A. Smeed (1990) Emptying filling boxes: the fluid mechanics of natural ventilation, J. fluid Mech., 212, 309-335.). In this paper, we focused on transient contaminant transport by modeling three transient contamination scenarios, namely the so called 'step-up', 'step-down', and point source cases. Using analytical integral models and numerical models we studied the transient behavior of each of these three cases. We found that, on average, traditional and low-energy systems can be similar in overall pollutant removal efficiency, although quite different vertical gradients can exist. This plays an important role in estimating occupant exposure to contaminant. A series of laboratory experiments were conducted to validate the developed models. The results presented here illustrate that the source location plays a very important role in the distribution of contaminant concentration for spaces ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical contaminant sources for a given type of space practitioners can design or select more effective systems for the purpose at hand.
Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, J. Chris; Wray, Craig P.
2013-04-01
Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems.more » Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).« less
Lv, Jinze; Zhu, Lizhong
2013-03-01
Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.
Drope, J; Bialous, S; Glantz, S
2004-01-01
Objective: To describe how the tobacco industry developed a network of consultants to promote ventilation as a "solution" to secondhand smoke (SHS) in the USA. Methods: Analysis of previously secret tobacco industry documents. Results: As with its other strategies to undermine the passage of clean indoor legislation and regulations, the tobacco industry used consultants who represented themselves as independent but who were promoting the industry's ventilation "solution" strategies under close, but generally undisclosed, industry supervision. The nature of the industry's use of ventilation consultants evolved over time. In the 1980s, the industry used them in an effort to steer the concerns about indoor air quality away from secondhand smoke, saying SHS was an insignificant component of a much larger problem of indoor air quality and inadequate ventilation. By the 1990s, the industry and its consultants were maintaining that adequate ventilation could easily accommodate "moderate smoking". The consultants carried the ventilation message to businesses, particularly the hospitality business, and to local and national and international regulatory and legislative bodies. Conclusion: While the tobacco industry and its consultants have gone to considerable lengths to promote the tobacco industry's ventilation "solution", this strategy has had limited success in the USA, probably because, in the end, it is simpler, cheaper, and healthier to end smoking. Tobacco control advocates need to continue to educate policymakers about this fact, particularly in regions where this strategy has been more effective. PMID:14985616
Preoperational test report, recirculation ventilation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, F.T.
1997-11-11
This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.
Optimal ventilation of the anesthetized pediatric patient.
Feldman, Jeffrey M
2015-01-01
Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.
A new prototype of an electronic jet-ventilator and its humidification system
Kraincuk, Paul; Kepka, Anton; Ihra, Gerald; Schabernig, Christa; Aloy, Alexander
1999-01-01
Background: Adequate humidification in long-term jet ventilation is a critical aspect in terms of clinical safety. Aim: To assess a prototype of an electronic jet-ventilator and its humidification system. Methods: Forty patients with respiratory insufficiency were randomly allocated to one of four groups. The criterion for inclusion in this study was respiratory insufficiency exhibiting a Murray score above 2. The four groups of patients were ventilated with three different respirators and four different humidification systems. Patients in groups A and B received superimposed high-frequency jet ventilation (SHFJV) by an electronic jet-ventilator either with (group A) or without (group B) an additional humidification system. Patients in group C received high-frequency percussive ventilation (HFPV) by a pneumatic high-frequency respirator, using a hot water humidifier for warming and moistening the inspiration gas. Patients in group D received conventional mechanical ventilation using a standard intensive care unit respirator with a standard humidification system. SHFJV and HFPV were used for a period of 100 h (4days). Results: A significantly low inspiration gas temperature was noted in patients in group B, initially (27.2 ± 2.5°C) and after 2 days (28.0 ± 1.6°C) (P < 0.05). The percentage of relative humidity of the inspiration gas in patients in group B was also initially significantly low (69.8 ± 4.1%; P < 0.05) but rose to an average of 98 ± 2.8% after 2 h. The average percentage across all four groups amounted to 98 ± 0.4% after 2 h. Inflammation of the tracheal mucosa was found in patients in group B and the mucosal injury score (MIS) was significantly higher than in all the other groups. Patients in groups A, C and D showed no severe evidence of airway damage, exhibiting adequate values of relative humidity and temperature of the inspired gas. Conclusion: The problems of humidification associated with jet ventilation can be fully prevented by using this new jet-ventilator. These data were sustained by nondeteriorating MIS values at the end of the 4-day study period in groups A, C and D. PMID:11056732
Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.
Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas
2018-01-01
In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.
Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo
2014-05-02
General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).
Bascompta, Marc; Castañón, Ana María; Sanmiquel, Lluís; Oliva, Josep
2016-11-01
Gases such as CO, CO2 or NOx are constantly generated by the equipment in any underground mine and the ventilation layout can play an important role in keeping low concentrations in the working faces. Hence, a method able to control the workplace environment is crucial. This paper proposes a geographical information system (GIS) for such goal. The system created provides the necessary tools to manage and analyse an underground environment, connecting pollutants and temperatures with the ventilation characteristics over time. Data concerning the ventilation system, in a case study, has been taken every month since 2009 and integrated into the management system, which has quantified the gasses concentration throughout the mine due to the characteristics and evolution of the ventilation layout. Three different zones concerning CO, CO2, NOx and effective temperature have been found as well as some variations among workplaces within the same zone that suggest local airflow recirculations. The system proposed could be a useful tool to improve the workplace conditions and efficiency levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
Ventilator-Related Adverse Events: A Taxonomy and Findings From 3 Incident Reporting Systems.
Pham, Julius Cuong; Williams, Tamara L; Sparnon, Erin M; Cillie, Tam K; Scharen, Hilda F; Marella, William M
2016-05-01
In 2009, researchers from Johns Hopkins University's Armstrong Institute for Patient Safety and Quality; public agencies, including the FDA; and private partners, including the Emergency Care Research Institute and the University HealthSystem Consortium (UHC) Safety Intelligence Patient Safety Organization, sought to form a public-private partnership for the promotion of patient safety (P5S) to advance patient safety through voluntary partnerships. The study objective was to test the concept of the P5S to advance our understanding of safety issues related to ventilator events, to develop a common classification system for categorizing adverse events related to mechanical ventilators, and to perform a comparison of adverse events across different adverse event reporting systems. We performed a cross-sectional analysis of ventilator-related adverse events reported in 2012 from the following incident reporting systems: the Pennsylvania Patient Safety Authority's Patient Safety Reporting System, UHC's Safety Intelligence Patient Safety Organization database, and the FDA's Manufacturer and User Facility Device Experience database. Once each organization had its dataset of ventilator-related adverse events, reviewers read the narrative descriptions of each event and classified it according to the developed common taxonomy. A Pennsylvania Patient Safety Authority, FDA, and UHC search provided 252, 274, and 700 relevant reports, respectively. The 3 event types most commonly reported to the UHC and the Pennsylvania Patient Safety Authority's Patient Safety Reporting System databases were airway/breathing circuit issue, human factor issues, and ventilator malfunction events. The top 3 event types reported to the FDA were ventilator malfunction, power source issue, and alarm failure. Overall, we found that (1) through the development of a common taxonomy, adverse events from 3 reporting systems can be evaluated, (2) the types of events reported in each database were related to the purpose of the database and the source of the reports, resulting in significant differences in reported event categories across the 3 systems, and (3) a public-private collaboration for investigating ventilator-related adverse events under the P5S model is feasible. Copyright © 2016 by Daedalus Enterprises.
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
Ventilation Transport Trade Study for Future Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
Kempf, Robert; Vogel, Matthew; Paul, Heather L.
2008-01-01
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Ventilation and infiltration in high-rise apartment buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.
1996-03-01
Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will bemore » over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.« less
Liñán, C; Del Rosal, Y; Carrasco, F; Vadillo, I; Benavente, J; Ojeda, L
2018-08-01
This study shows the utilization of the air CO 2 exhaled by a very high number of visitors in the Nerja Cave as both a tracer and an additional tool to precisely evaluate the air circulation through the entire karst system, which includes non-touristic passages, originally free of anthropogenic CO 2 . The analysis of the temporal - spatial evolution of the CO 2 content and other monitoring data measured from January 2015 to December 2016 in the Nerja-Pintada system, including air microbiological controls, has allowed us to define a new general ventilation model, of great interest for the conservation of the subterranean environment. During the annual cycle four different ventilation regimes and two ventilation modes (UAF-mode and DAF-mode) exist which determine the significance of the anthropogenic impact within the caves. During the winter regime, the strong ventilation regime and the airflow directions from the lowest to the highest entrance (UAF-mode) contribute to the rapid elimination of anthropogenic CO 2 , and this affects the whole karstic system. During the summer regime the DAF-mode ventilation (with airflows from the highest to the lowest entrances) is activated. Although the number of visitors is maximum and the natural ventilation of the karstic system is the lowest of the annual cycle, the anthropogenic impact only affects the Tourist Galleries. The transitional ventilation regimes -spring and autumn- are the most complex of the annual cycle, with changing air-flow directions (from UAF-mode to DAF-mode and vice versa) at diurnal and poly diurnal scale, which conditions the range of the anthropogenic impact in each sector of the karst system. The activation of the DAF-mode has been observed when the temperature difference between the external and air cave is higher than 5°C. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arney, David; Goldman, Julian M.; Whitehead, Susan F.; Lee, Insup
When a x-ray image is needed during surgery, clinicians may stop the anesthesia machine ventilator while the exposure is made. If the ventilator is not restarted promptly, the patient may experience severe complications. This paper explores the interconnection of a ventilator and simulated x-ray into a prototype plug-and-play medical device system. This work assists ongoing interoperability framework development standards efforts to develop functional and non-functional requirements and illustrates the potential patient safety benefits of interoperable medical device systems by implementing a solution to a clinical use case requiring interoperability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M
Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less
46 CFR 111.33-9 - Ventilation exhaust.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-9 Ventilation exhaust. The exhaust of each forced-air semiconductor rectifier system must: (a) Terminate in a location other than a hazardous location...
The usability of ventilators: a comparative evaluation of use safety and user experience.
Morita, Plinio P; Weinstein, Peter B; Flewwelling, Christopher J; Bañez, Carleene A; Chiu, Tabitha A; Iannuzzi, Mario; Patel, Aastha H; Shier, Ashleigh P; Cafazzo, Joseph A
2016-08-20
The design complexity of critical care ventilators (CCVs) can lead to use errors and patient harm. In this study, we present the results of a comparison of four CCVs from market leaders, using a rigorous methodology for the evaluation of use safety and user experience of medical devices. We carried out a comparative usability study of four CCVs: Hamilton G5, Puritan Bennett 980, Maquet SERVO-U, and Dräger Evita V500. Forty-eight critical care respiratory therapists participated in this fully counterbalanced, repeated measures study. Participants completed seven clinical scenarios composed of 16 tasks on each ventilator. Use safety was measured by percentage of tasks with use errors or close calls (UE/CCs). User experience was measured by system usability and workload metrics, using the Post-Study System Usability Questionnaire (PSSUQ) and the National Aeronautics and Space Administration Task Load Index (NASA-TLX). Nine of 18 post hoc contrasts between pairs of ventilators were significant after Bonferroni correction, with effect sizes between 0.4 and 1.09 (Cohen's d). There were significantly fewer UE/CCs with SERVO-U when compared to G5 (p = 0.044) and V500 (p = 0.020). Participants reported higher system usability for G5 when compared to PB980 (p = 0.035) and higher system usability for SERVO-U when compared to G5 (p < 0.001), PB980 (p < 0.001), and V500 (p < 0.001). Participants reported lower workload for G5 when compared to PB980 (p < 0.001) and lower workload for SERVO-U when compared to PB980 (p < 0.001) and V500 (p < 0.001). G5 scored better on two of nine possible comparisons; SERVO-U scored better on seven of nine possible comparisons. Aspects influencing participants' performance and perception include the low sensitivity of G5's touchscreen and the positive effect from the quality of SERVO-U's user interface design. This study provides empirical evidence of how four ventilators from market leaders compare and highlights the importance of medical technology design. Within the boundaries of this study, we can infer that SERVO-U demonstrated the highest levels of use safety and user experience, followed by G5. Based on qualitative data, differences in outcomes could be explained by interaction design, quality of hardware components used in manufacturing, and influence of consumer product technology on users' expectations.
Adaptive support ventilation: State of the art review
Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico
2013-01-01
Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471
NASA Technical Reports Server (NTRS)
1982-01-01
The ventilation and fire safety requirements for subway tunnels with dipped profiles between stations as compared to subway tunnels with level profiles were evaluated. This evaluation is based upon computer simulations of a train fire emergency condition. Each of the tunnel configurations evaluated was developed from characteristics that are representative of modern transit systems. The results of the study indicate that: (1) The level tunnel system required about 10% more station cooling than dipped tunnel systems in order to meet design requirements; and (2) The emergency ventilation requirements are greater with dipped tunnel systems than with level tunnel systems.
Winkler, Bernd E; Muellenbach, Ralf M; Wurmb, Thomas; Struck, Manuel F; Roewer, Norbert; Kranke, Peter
2017-02-01
While controlled ventilation is most frequently used during cardiopulmonary resuscitation (CPR), the application of continuous positive airway pressure (CPAP) and passive ventilation of the lung synchronously with chest compressions and decompressions might represent a promising alternative approach. One benefit of CPAP during CPR is the reduction of peak airway pressures and therefore a potential enhancement in haemodynamics. We therefore evaluated the tidal volumes and airway pressures achieved during CPAP-CPR. During CPR with the LUCAS™ 2 compression device, a manikin model was passively ventilated at CPAP levels of 5, 10, 20 and 30 hPa with the Boussignac tracheal tube and the ventilators Evita ® V500, Medumat ® Transport, Oxylator ® EMX, Oxylog ® 2000, Oxylog ® 3000, Primus ® and Servo ® -i as well as the Wenoll ® diver rescue system. Tidal volumes and airway pressures during CPAP-CPR were recorded and analyzed. Tidal volumes during CPAP-CPR were higher than during compression-only CPR without positive airway pressure. The passively generated tidal volumes increased with increasing CPAP levels and were significantly influenced by the ventilators used. During ventilation at 20 hPa CPAP via a tracheal tube, the mean tidal volumes ranged from 125 ml (Medumat ® ) to 309 ml (Wenoll ® ) and the peak airway pressures from 23 hPa (Primus ® ) to 49 hPa (Oxylog ® 3000). Transport ventilators generated lower tidal volumes than intensive care ventilators or closed-circuit systems. Peak airway pressures during CPAP-CPR were lower than those during controlled ventilation CPR reported in literature. High peak airway pressures are known to limit the applicability of ventilation via facemask or via supraglottic airway devices and may adversely affect haemodynamics. Hence, the application of ventilators generating high tidal volumes with low peak airway pressures appears desirable during CPAP-CPR. The limited CPAP-CPR capabilities of transport ventilators in our study might be prerequisite for future developments of transport ventilators.
Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A
2008-01-01
The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.
Methane emissions and airflow patterns along longwall faces and through bleeder ventilation systems
Schatzel, Steven J.; Dougherty, Heather N.
2015-01-01
The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of longwall face and bleeder ventilation systems using tracer gas experiments and computer network ventilation. The condition of gateroad entries, along with the caved material’s permeability and porosity changes as the longwall face advances, determine the resistance of the airflow pathways within the longwall’s worked-out area of the bleeder system. A series of field evaluations were conducted on a four-panel longwall district. Tracer gas was released at the mouth of the longwall section or on the longwall face and sampled at various locations in the gateroads inby the shield line. Measurements of arrival times and concentrations defined airflow/gas movements for the active/completed panels and the bleeder system, providing real field data to delineate these pathways. Results showed a sustained ability of the bleeder system to ventilate the longwall tailgate corner as the panels retreated. PMID:26925166
Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barley, C. D.; Anderson, R.; Hendron, B.
2007-12-01
This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.
Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M.
2017-01-01
Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel’s exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems. PMID:28146089
VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence
NASA Astrophysics Data System (ADS)
Chen, Austin H.; Chen, Guan-Ting
How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.
The necessity of HVAC system for the registered architectural cultural heritage building
NASA Astrophysics Data System (ADS)
Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian
2018-02-01
This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.
PLSS 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda
2015-01-01
NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5.
Burbank performs the scheduled extensive cleanup of ventilation systems
2012-02-22
ISS030-E-093414 (22 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs the scheduled extensive cleanup of ventilation systems in the Columbus laboratory of the International Space Station.
7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 ...
7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 (BUILDING 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD
The effect of closed system suction on airway pressures when using the Servo 300 ventilator.
Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M
2001-12-01
To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppiti, James; Nelson, Roger; MacMillan, Walter J.
The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less
Evaluation of a liquid cooling garment as a component of the Launch and Entry Suit (LES)
NASA Technical Reports Server (NTRS)
Waligora, J.; Charles, J.; Fritsch, I.; Fortney, S.; Siconolfi, S.; Pepper, L.; Bagian, L.; Kumar, V.
1994-01-01
The LES is a partial pressure suit and a component of the shuttle life support system used during launch and reentry. The LES relies on gas ventilation with cabin air to provide cooling. There are conditions during nominal launch and reentry, landing, and post-landing phases when cabin temperature is elevated. Under these conditions, gas cooling may result in some discomfort and some decrement in orthostatic tolerance. There are emergency conditions involving loss of cabin ECS capability that would challenge crew thermal tolerance. The results of a series of tests are presented. These tests were conducted to assess the effectiveness of a liquid-cooled garment in alleviating thermal discomfort, orthostatic intolerance, and thermal intolerance during simulated mission phases.
Short-term airing by natural ventilation - implication on IAQ and thermal comfort.
Heiselberg, P; Perino, M
2010-04-01
The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.
Mols, G; von Ungern-Sternberg, B; Rohr, E; Haberthür, C; Geiger, K; Guttmann, J
2000-06-01
To assess respiratory comfort and associated breathing pattern during volume assist (VA) as a component of proportional assist ventilation and during pressure support ventilation (PSV). Prospective, double-blind, interventional study. Laboratory. A total of 15 healthy volunteers (11 females, 4 males) aged 21-31 yrs. Decreased respiratory system compliance was simulated by banding of the thorax and abdomen. Volunteers breathed via a mouthpiece with VA and PSV each applied at two levels (VA, 8 cm H2O/L and 12 cm H2O/L; PSV, 10 cm H2O and 15 cm H2O) using a positive end-expiratory pressure of 5 cm H2O throughout. The study was subdivided into two parts. In Part 1, volunteers breathed three times with each of the four settings for 2 mins in random order. In Part 2, the first breath effects of multiple, randomly applied mode, and level shifts were studied. In Part 1, the volunteers were asked to estimate respiratory comfort in comparison with normal breathing using a visual analog scale. In Part 2, they were asked to estimate the change of respiratory comfort as increased, decreased, or unchanged immediately after a mode shift. Concomitantly, the respiratory pattern (change) was characterized with continuously measured tidal volume, respiratory rate, pressure, and gas flow. Respiratory comfort during VA was higher than during PSV. The higher support level was less important during VA but had a major negative influence on comfort during PSV. Both modes differed with respect to the associated breathing pattern. Variability of breathing was higher during VA than during PSV (Part 1). Changes in respiratory variables were associated with changes in respiratory comfort (Part 2). For volunteers breathing with artificially reduced respiratory system compliance, respiratory comfort is higher with VA than with PSV. This is probably caused by a better adaptation of the ventilatory support to the volunteer's need with VA.
Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basementmore » with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments« less
NASA Astrophysics Data System (ADS)
Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.
2012-09-01
BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ˜<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean regression slope was computed for the RTI system across participants and showed a modest RSD of +/-36.6%. Comparison of the correlation values of the exposure monitors with the Wocket accelerometers at various body locations showed statistically identical regressions for all sensors at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket accelerometer located at the dominant side wrist location (R = 0.57; p = 0.016). ConclusionsEven with a modest number of adult volunteers, the consistency and linearity of regression slopes for all subjects were very good with excellent within-person Pearson correlations for the accelerometer versus ventilation volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear regression is likely to be usable for a wider range of adults to predict ventilation volumes from accelerometry data over a range of low to moderate energy level activities. The predicted volumes would then allow real-time estimates of potential dose, enabling more robust panel studies. The poorer correlation in predicting ventilation rate for an accelerometer located on the wrist suggested that this location should not be considered for predictions of ventilation volume.
Innovative ventilation system for animal anatomy laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, D.R.; Smith, D.C.
1997-04-01
A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less
Change-over natural and mechanical ventilation system energy consumption in single-family buildings
NASA Astrophysics Data System (ADS)
Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata
2017-11-01
The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
ACHP | News | ACHP Issues Program Comment for GSA on Select Repairs and
to windows, lighting, roofing, and heating, ventilating, and air-conditioning (HVAC) systems within Upgrades Windows Lighting Roofing Heating, Ventilation, and Air Conditioning (HVAC) Systems Updated March
SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT
This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...
Turner, W A; Bearg, D W; Brennan, T
1995-01-01
This chapter begins with an overview of the history of ventilation guidelines, which has led to the guidelines that are in effect today. Of particular interest is the most recent return in the past 5 years to ventilation rates that more closely reflect a mean or average of the range of guidelines that have existed over the past century. OSHA's and the EPA's recognition of the need to operate ventilation systems in buildings in an accountable manner is also of note. Of even more interest is the resurgence of the concept of minimum mixing and once-through ventilation air that has been pursued in parts of Northern Europe for the past 10 years, and in a school that is being designed with this concept in New Hampshire. In addition, the design concept of equipping office buildings with low pressure drop high efficiency particle filtration to remove fine particles from all of the air that is supplied to the occupants is being used increasingly in the U.S. This chapter also presents an overview of the various types of ventilation systems found in homes and commercial office buildings and the common indoor air quality problems that may be associated with them. It also offers an overview of common HVAC evaluation techniques that can be used to determine if a ventilation system is performing in a manner that makes sense for the use of the space and the needs of the occupants. Are the occupants receiving a reasonable supply of outdoor air? Is the air that they receive of reasonable quality? Are obvious pollutants being exhausted? Ventilation systems have become extremely complex and more difficult to run and maintain over the past 40 years. This trend will continue to drive the need for professionally maintained HVAC equipment that is serviced and run by individuals who are accountable for the quality of the air that the system delivers.
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...
Kim, Ji Hoon; Beom, Jin Ho; You, Je Sung; Cho, Junho; Min, In Kyung; Chung, Hyun Soo
2018-01-01
Several auditory-based feedback devices have been developed to improve the quality of ventilation performance during cardiopulmonary resuscitation (CPR), but their effectiveness has not been proven in actual CPR situations. In the present study, we investigated the effectiveness of visual flashlight guidance in maintaining high-quality ventilation performance. We conducted a simulation-based, randomized, parallel trial including 121 senior medical students. All participants were randomized to perform ventilation during 2 minutes of CPR with or without flashlight guidance. For each participant, we measured mean ventilation rate as a primary outcome and ventilation volume, inspiration velocity, and ventilation interval as secondary outcomes using a computerized device system. Mean ventilation rate did not significantly differ between flashlight guidance and control groups (P = 0.159), but participants in the flashlight guidance group exhibited significantly less variation in ventilation rate than participants in the control group (P<0.001). Ventilation interval was also more regular among participants in the flashlight guidance group. Our results demonstrate that flashlight guidance is effective in maintaining a constant ventilation rate and interval. If confirmed by further studies in clinical practice, flashlight guidance could be expected to improve the quality of ventilation performed during CPR.
NASA Astrophysics Data System (ADS)
Huang, Tao; Xiang, Yutong; Wang, Yonghong
2017-05-01
In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.
Study of Alternate Material for Pedal Ventilator Kits.
1980-04-01
to fans with diameters of 36 inches or less, revealed that a shelter ventilation system of minimum cost would require three units with 36-inch...doorways, it was decided, with OCD approval, to develop pre-assembled one and two-operator bicycle ventilator kits utilizing a fan and ducting system of...polypropylene matrix. According to Ford Motor Company, an enthusiastic user, this material hybrid offers large potential savings in direct substitution for glass
Water spray ventilator system for continuous mining machines
Page, Steven J.; Mal, Thomas
1995-01-01
The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.
International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.
2009-01-01
The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.
Alves, Abel Eduardo; Pereira, José Manuel
2018-03-01
The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which can significantly decrease the use of antibiotics in critically ventilated patients.
Surgical clothing systems in laminar airflow operating room: a numerical assessment.
Sadrizadeh, Sasan; Holmberg, Sture
2014-01-01
This study compared two different laminar airflow distribution strategies - horizontal and vertical - and investigated the effectiveness of both ventilation systems in terms of reducing the sedimentation and distribution of bacteria-carrying particles. Three different staff clothing systems, which resulted in source strengths of 1.5, 4 and 5 CFU/s per person, were considered. The exploration was conducted numerically using a computational fluid dynamics technique. Active and passive air sampling methods were simulated in addition to recovery tests, and the results were compared. Model validation was performed through comparisons with measurement data from the published literature. The recovery test yielded a value of 8.1 min for the horizontal ventilation scenario and 11.9 min for the vertical ventilation system. Fewer particles were captured by the slit sampler and in sedimentation areas with the horizontal ventilation system. The simulated results revealed that under identical conditions in the examined operating room, the horizontal laminar ventilation system performed better than the vertical option. The internal constellation of lamps, the surgical team and objects could have a serious effect on the movement of infectious particles and therefore on postoperative surgical site infections. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Bianchi, Biagio; Giametta, Ferruccio; La Fianza, Giovanna; Gentile, Andrea; Catalano, Pasquale
2015-01-01
The environment in the broiler house is a combination of physical and biological factors generating a complex dynamic system of interactions between birds, husbandry system, light, temperature, and the aerial environment. Ventilation plays a key role in this scenario. It is pivotal to remove carbon dioxide and water vapor from the air of the hen house. Adequate ventilation rates provide the most effective method of controlling temperature within the hen house. They allow for controlling the relative humidity and can play a key role in alleviating the negative effects of high stocking density and of wet litter. In the present study the results of experimental tests performed in a breeding broiler farm are shown. In particular the efficiency of a semi transversal ventilation system was studied against the use of a pure transversal one. In order to verify the efficiency of the systems, fluid dynamic simulations were carried out using the software Comsol multiphysics. The results of this study show that a correct architectural and structural design of the building must be supported by a design of the ventilation system able to maintain the environmental parameters within the limits of the thermo‑neutral and welfare conditions and to achieve the highest levels of productivity.
NASA Technical Reports Server (NTRS)
Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory
2013-01-01
NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.
Code of Federal Regulations, 2013 CFR
2013-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii)(A) The employer shall ensure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2012 CFR
2012-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii)(A) The employer shall ensure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2010 CFR
2010-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii) The employer shall assure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2014 CFR
2014-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii)(A) The employer shall ensure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2011 CFR
2011-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii) The employer shall assure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Assessment of Natural Ventilation System for a Typical Residential House in Poland
NASA Astrophysics Data System (ADS)
Antczak-Jarząbska, Romana; Krzaczek, Marek
2016-09-01
The paper presents the research results of field measurements campaign of natural ventilation performance and effectiveness in a residential building. The building is located in the microclimate whose parameters differ significantly in relation to a representative weather station. The measurement system recorded climate parameters and the physical variables characterizing the air flow in the rooms within 14 days of the winter season. The measurement results showed that in spite of proper design and construction of the ventilation system, unfavorable microclimatic conditions that differed from the predicted ones caused significant reduction in the efficiency of the ventilation system. Also, during some time periods, external climate conditions caused an opposite air flow direction in the vent inlets and outlets, leading to a significant deterioration of air quality and thermal comfort measured by CO2 concentration and PMV index in a residential area.
CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor
NASA Astrophysics Data System (ADS)
Belhocien, Ali; Omar, Wan Zaidi Wan
Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.
Weaning from mechanical ventilation: why are we still looking for alternative methods?
Frutos-Vivar, F; Esteban, A
2013-12-01
Most patients who require mechanical ventilation for longer than 24 hours, and who improve the condition leading to the indication of ventilatory support, can be weaned after passing a first spontaneous breathing test. The challenge is to improve the weaning of patients who fail that first test. We have methods that can be referred to as traditional, such as the T-tube, pressure support or synchronized intermittent mandatory ventilation (SIMV). In recent years, however, new applications of usual techniques as noninvasive ventilation, new ventilation methods such as automatic tube compensation (ATC), mandatory minute ventilation (MMV), adaptive support ventilation or automatic weaning systems based on pressure support have been described. Their possible role in weaning from mechanical ventilation among patients with difficult or prolonged weaning remains to be established. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Circuit compliance compensation in lung protective ventilation.
Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo
2006-01-01
Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.
ERIC Educational Resources Information Center
Strickland, Gary
2001-01-01
Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…
Griffel, M I; Astiz, M E; Rackow, E C; Weil, M H
1990-01-01
We studied the effect of mechanical ventilation on systemic oxygen extraction and lactic acidosis in peritonitis and shock in rats. Sepsis was induced by cecal ligation and perforation. After tracheostomy, rats were randomized to spontaneous breathing (S) or mechanical ventilation with paralysis (V). Five animals were studied in each group. The V animals were paralyzed with pancuronium bromide to eliminate respiratory effort. Mechanical ventilation consisted of controlled ventilation using a rodent respirator with periodic adjustment of minute ventilation to maintain PaCO2 and pH within normal range. Arterial and central venous blood gases and thermodilution cardiac output were measured at baseline before abdominal surgery, and sequentially at 0.5, 3.5, and 6 h after surgery. At 6 h, cardiac output was 193 +/- 30 ml/kg.min in S animals and 199 +/- 32 ml/kg.min in V animals (NS). The central venous oxygen saturation was 27.4 +/- 4.7% in S animals and 30.0 +/- 6.4% in V animals (NS). Systemic oxygen extraction was 70 +/- 5% in S animals and 67 +/- 6% in V animals (NS). Arterial lactate was 2.4 +/- 0.4 mmol/L in S animals and 2.2 +/- 0.5 mmol/L in V animals (NS). The S animals developed lethal hypotension at 6.6 +/- 0.4 h compared to 6.8 +/- 0.4 h in V animals (NS). These data suggest that mechanical ventilation does not decrease systemic oxygen extraction or ameliorate the development of lactic acidosis during septic shock.
Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.
2006-01-01
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, Joseph
2017-01-01
The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, Joseph
The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less
Akkanti, Bindu; Rajagopal, Keshava; Patel, Kirti P; Aravind, Sangeeta; Nunez-Centanu, Emmanuel; Hussain, Rahat; Shabari, Farshad Raissi; Hofstetter, Wayne L; Vaporciyan, Ara A; Banjac, Igor S; Kar, Biswajit; Gregoric, Igor D; Loyalka, Pranav
2017-06-01
Extracorporeal carbon dioxide removal (ECCO 2 R) permits reductions in alveolar ventilation requirements that the lungs would otherwise have to provide. This concept was applied to a case of hypercapnia refractory to high-level invasive mechanical ventilator support. We present a case of an 18-year-old man who developed post-pneumonectomy acute respiratory distress syndrome (ARDS) after resection of a mediastinal germ cell tumor involving the left lung hilum. Hypercapnia and hypoxemia persisted despite ventilator support even at traumatic levels. ECCO 2 R using a miniaturized system was instituted and provided effective carbon dioxide elimination. This facilitated establishment of lung-protective ventilator settings and lung function recovery. Extracorporeal lung support increasingly is being applied to treat ARDS. However, conventional extracorporeal membrane oxygenation (ECMO) generally involves using large cannulae capable of carrying high flow rates. A subset of patients with ARDS has mixed hypercapnia and hypoxemia despite high-level ventilator support. In the absence of profound hypoxemia, ECCO 2 R may be used to reduce ventilator support requirements to lung-protective levels, while avoiding risks associated with conventional ECMO.
The impact of particle filtration on indoor air quality in a classroom near a highway.
van der Zee, S C; Strak, M; Dijkema, M B A; Brunekreef, B; Janssen, N A H
2017-03-01
A pilot study was performed to investigate whether the application of a new mechanical ventilation system with a fine F8 (MERV14) filter could improve indoor air quality in a high school near the Amsterdam ring road. PM10, PM2.5, and black carbon (BC) concentrations were measured continuously inside an occupied intervention classroom and outside the school during three sampling periods in the winter of 2013/2014. Initially, 3 weeks of baseline measurements were performed, with the existing ventilation system and normal ventilation habits. Next, an intervention study was performed. A new ventilation system was installed in the classroom, and measurements were performed during 8 school weeks, in alternating 2-week periods with and without the filter in the ventilation system under otherwise identical ventilation conditions. Indoor/outdoor ratios measured during the weeks with filter were compared with those measured without filter to evaluate the ability of the F8 filter to improve indoor air quality. During teaching hours, the filter reduced BC exposure by, on average, 36%. For PM10 and PM2.5, a reduction of 34% and 30% was found, respectively. This implies that application of a fine filter can reduce the exposure of schoolchildren to traffic exhaust at hot spot locations by about one-third. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
Ooi, Soo Shen; Mak, Joon Wah; Chen, Donald K F; Ambu, Stephen
2017-02-07
The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants' complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants' sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system.
OOI, Soo Shen; MAK, Joon Wah; CHEN, Donald K.F.; AMBU, Stephen
2016-01-01
The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants’ complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants’ sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system. PMID:27476379
Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel
NASA Astrophysics Data System (ADS)
Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei
2018-03-01
In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.
30 CFR 75.326 - Mean entry air velocity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per minute reaching each working face where coal is being cut, mined, drilled for blasting, or loaded, and to any... the inby end of the line curtain, ventilation tubing, or other face ventilation control devices. [61...
30 CFR 75.326 - Mean entry air velocity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per minute reaching each working face where coal is being cut, mined, drilled for blasting, or loaded, and to any... the inby end of the line curtain, ventilation tubing, or other face ventilation control devices. [61...
30 CFR 75.326 - Mean entry air velocity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per minute reaching each working face where coal is being cut, mined, drilled for blasting, or loaded, and to any... the inby end of the line curtain, ventilation tubing, or other face ventilation control devices. [61...
Effect of Ventilation Strategies on Residential Ozone Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain S.; Sherman, Max H.
Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less
Energy and cost associated with ventilating office buildings in a tropical climate.
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.
Water supply rates for recirculating evaporative cooling systems in poultry housing
USDA-ARS?s Scientific Manuscript database
Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Ventilation System Surveillance Requirements to Operate for 10 hours per Month.'' DATES: Comment period....1, which currently require operating the heaters in the respective systems for at least 10... Adoption of Technical Specifications Task Force Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
An evidence-based recommendation on bed head elevation for mechanically ventilated patients.
Niël-Weise, Barbara S; Gastmeier, Petra; Kola, Axel; Vonberg, Ralf P; Wille, Jan C; van den Broek, Peterhans J
2011-01-01
A semi-upright position in ventilated patients is recommended to prevent ventilator-associated pneumonia (VAP) and is one of the components in the Ventilator Bundle of the Institute for Health Care Improvement. This recommendation, however, is not an evidence-based one. A systematic review on the benefits and disadvantages of semi-upright position in ventilated patients was done according to PRISMA guidelines. Then a European expert panel developed a recommendation based on the results of the systematic review and considerations beyond the scientific evidence in a three-round electronic Delphi procedure. Three trials (337 patients) were included in the review. The results showed that it was uncertain whether a 45° bed head elevation was effective or harmful with regard to the occurrence of clinically suspected VAP, microbiologically confirmed VAP, decubitus and mortality, and that it was unknown whether 45° elevation for 24 hours a day increased the risk for thromboembolism or hemodynamic instability. A group of 22 experts recommended elevating the head of the bed of mechanically ventilated patients to a 20 to 45° position and preferably to a ≥ 30° position as long as it does not pose risks or conflicts with other nursing tasks, medical interventions or patients' wishes. Although the review failed to prove clinical benefits of bed head elevation, experts prefer this position in ventilated patients. They made clear that the position of a ventilated patient in bed depended on many determinants. Therefore, given the scientific uncertainty about the benefits and harms of a semi-upright position, this position could only be recommended as the preferred position with the necessary restrictions.
Inventory of File gfs.t06z.pgrb2.1p00.f000
analysis U-Component of Wind [m/s] 002 planetary boundary layer VGRD analysis V-Component of Wind [m/s] 003 planetary boundary layer VRATE analysis Ventilation Rate [m^2/s] 004 surface GUST analysis Wind Speed (Gust mb RH analysis Relative Humidity [%] 008 10 mb UGRD analysis U-Component of Wind [m/s] 009 10 mb VGRD
Inventory of File gfs.t06z.pgrb2.0p50.f000
analysis U-Component of Wind [m/s] 002 planetary boundary layer VGRD analysis V-Component of Wind [m/s] 003 planetary boundary layer VRATE analysis Ventilation Rate [m^2/s] 004 surface GUST analysis Wind Speed (Gust mb RH analysis Relative Humidity [%] 008 10 mb UGRD analysis U-Component of Wind [m/s] 009 10 mb VGRD
Inventory of File gfs.t06z.pgrb2.0p25.f000
analysis U-Component of Wind [m/s] 002 planetary boundary layer VGRD analysis V-Component of Wind [m/s] 003 planetary boundary layer VRATE analysis Ventilation Rate [m^2/s] 004 surface GUST analysis Wind Speed (Gust mb RH analysis Relative Humidity [%] 008 10 mb UGRD analysis U-Component of Wind [m/s] 009 10 mb VGRD
Inventory of File gfs.t06z.pgrb2.2p50.f000
analysis U-Component of Wind [m/s] 002 planetary boundary layer VGRD analysis V-Component of Wind [m/s] 003 planetary boundary layer VRATE analysis Ventilation Rate [m^2/s] 004 surface GUST analysis Wind Speed (Gust mb RH analysis Relative Humidity [%] 008 10 mb UGRD analysis U-Component of Wind [m/s] 009 10 mb VGRD
Proposed Schematics for an Advanced Development Lunar Portable Life Support System
NASA Technical Reports Server (NTRS)
Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg
2010-01-01
The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.
Design of a resistojet for Space Station Freedom
NASA Technical Reports Server (NTRS)
Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony
1993-01-01
In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.
Thomachot, L; Vialet, R; Arnaud, S; Barberon, B; Michel-Nguyen, A; Martin, C
1999-05-01
To compare the efficiency of two heat and moisture exchange filters (HMEFs) of different compositions of the humidifying capacity and the rate of bronchial colonization and ventilator-associated pneumonia in patients in the intensive care unit (ICU). Prospective, randomized study. ICU of a university hospital. All patients who required mechanical ventilation for 24 hrs or more during the study period. At admission to the ICU, patients were randomly assigned to one of two groups. In one group, the patients were ventilated with Humid-Vent Filter Light HMEF. The condensation surface was made of paper impregnated with CaCl2. The filter membrane was made of polypropylene. In the other group, the patients were ventilated with the Clear ThermAl HMEF (Intersurgical, France). The condensation surface was made of plastic foam impregnated with AlCl2. The filter membrane was made of two polymer fibers (modacrylic and polypropylene). In both groups, HMEFs were changed daily. Seventy-seven patients were ventilated for 19+/-7 days with the Humid-Vent Filter Light HMEF and 63 patients for 17+/-6 days with the Clear ThermAl HMEF. Patients ventilated with the Humid-Vent Filter Light underwent 8.7+/-3.7 tracheal aspirations and 1.2+/-2.0 instillations per day and those with the Clear ThermAl, 8.2+/-3.9 and 1.5+/-2.4 per day, respectively (NS). The abundance of tracheal secretions and the presence of blood and viscosity, as evaluated by semiquantitative scales, were similar in both groups. One episode of tracheal tube occlusion was observed with the Humid-Vent Filter Light HMEF and none with the other HMEF (NS). Tracheal colonization was observed at a rate of 91% with the Humid-Vent Filter Light and 97% with the Clear ThermAl (NS). The rate of ventilator-associated pneumonia was similar in both groups (35%). Bacteria responsible for tracheal colonization and pneumonia were similar in both groups. Despite differences in their components, the two HMEFs that were tested achieved similar performances in terms of humidification and heating of inspired gases. Only one episode of endotracheal tube occlusion was detected, and very few patients (three in each group) had to be switched to an active heated humidifier. No difference was observed either in the rate of tracheal colonization or of ventilator-associated pneumonia. These data show that the Humid-Vent Filter Light and the Clear ThermAl HMEFs are suited for use with ICU patients.
2012-02-01
for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system compartment. 105.25-7 Section 105.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. 108.437 Section 108.437 Shipping COAST GUARD, DEPARTMENT OF... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for...
SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)
The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...
Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung
NASA Technical Reports Server (NTRS)
Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)
2017-01-01
Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.
6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION ...
6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION HOUSE. THIS AIR CONDITIONING SYSTEM WAS INSTALLED BY PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS WHEN THE MILL WAS CONSTRUCTED IN 1923-24. ONE AIR WASHER AND FAN ROOM EXTERIOR IS VISIBLE ON THE RIGHT. THE DUCTS FROM BOTH FAN ROOMS (CURVED METAL STRUCTURES AT CENTER AND LEFT OF PHOTO) ARE CONNECTED TO A COMMON AIR SHAFT. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estill, C.F.; Kovein, R.J.; Jones, J.H.
1999-03-26
The National Institute for Occupational Safety and Health (NIOSH) is currently conducting research on ventilation controls to reduce furniture stripping exposures to methylene chloride to the OSHA PEL of 25 ppm. Low cost ventilation systems were designed by NIOSH researchers along with Benny Bixenman of Benco Sales, Inc. (Forney, TX). The controls were constructed and installed by Benco Sales. This report compares the methylene chloride levels of one worker stripping furniture using the recently installed ventilation controls and using the existing controls. During the survey, two different chemical stripping solutions (a standard formulation and a low methylene chloride content formulation)more » were used and compared. This survey tested three control combinations: (1) new ventilation, low methylene chloride stripper, (2) new ventilation, standard stripping solution, and (3) old ventilation, standard stripping solution. During each test, sorbent tube sampling and real-time sampling were employed. Sorbent tube, data collected in the worker's breathing zone, ranged from 300 to 387 ppm. Real-time data showed breathing zone exposures to range from 211 to 383 ppm while stripping and 164 to 230 ppm while rinsing. Data were inconclusive to determine which ventilation system or stripping solution produced the lowest exposures. Recommendations are made in the report to improve the newly installed ventilation controls.« less
Hypopnea consequent to reduced pulmonary blood flow in the dog.
Stremel, R W; Whipp, B J; Casaburi, R; Huntsman, D J; Wasserman, K
1979-06-01
The ventilatory responses to diminished pulmonary blood flow (Qc), as a result of partial cardiopulmonary bypass (PCB), were studied in chloralose-urethan-anesthetized dogs. Qc was reduced by diverting vena caval blood through a membrane gas exchanger and returning it to the ascending aorta. PCB flows of 400--1,600 ml/min were utilized for durations of 2--3 min. Decreasing Qc, while maintaining systemic arterial blood gases and perfusion, results in a significant (P less than 0.05) decrease in expiratory ventilation (VE) (15.9%) and alveolar ventilation (VA) (31.0%). The ventilatory decreases demonstrated for this intact group persist after bilateral cervical vagotomy (Vx), carotid body and carotid sinus denervation (Cx), and combined Vx and Cx. The changes in VE and VA were significantly (P less than 0.001) correlated with VCO2 changes, r = 0.80 and r = 0.93, respectively. These ventilatory changes were associated with an overall average decrease in left ventricular PCO2 of 2.1 Torr; this decrease was significant (P less than 0.05) only in the intact and Cx groups. Decreasing pulmonary blood flow results in a decrease in ventilation that may be CO2 related; however, the exact mechanism remains obscure but must have a component that is independent of vagally mediated cardiac and pulmonary afferents and peripheral baroreceptor and chemoreceptor afferents.
Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics
NASA Astrophysics Data System (ADS)
Miller, J. D.; Settles, G. S.
1996-11-01
The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)
Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.
2016-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305
Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M
2014-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.
Assessing Thermal Comfort Due to a Ventilated Double Window
NASA Astrophysics Data System (ADS)
Carlos, Jorge S.; Corvacho, Helena
2017-10-01
Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.
Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D
2012-08-01
This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.
Reduced bleed air extraction for DC-10 cabin air conditioning
NASA Technical Reports Server (NTRS)
Newman, W. H.; Viele, M. R.; Hrach, F. J.
1980-01-01
It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.
Technology evaluation of heating, ventilation, and air conditioning for MIUS application
NASA Technical Reports Server (NTRS)
Gill, W. L.; Keough, M. B.; Rippey, J. O.
1974-01-01
Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
40 CFR 98.323 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: ER12JY10.005 Where: CH4VTotal = Total quarterly CH4 liberated from ventilation systems (metric tons CH4... and degasification systems, calculated using Equation FF-6 of this section (metric tons). (e) For the... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system...
40 CFR 98.323 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: ER12JY10.005 Where: CH4VTotal = Total quarterly CH4 liberated from ventilation systems (metric tons CH4... and degasification systems, calculated using Equation FF-6 of this section (metric tons). (e) For the... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system...
Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?
Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto
2002-09-01
Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore PMM. V(te), as measured by the VIP Bird and Drager paired with the Ventrak PMM, had a tendency to underestimate V(t) by up to 25% at the smallest V(te). However, when paired with the Bicore PMM, these same two ventilators read over target by up to 18%. Under controlled laboratory conditions, we demonstrated that true delivered V(te), as measured by the three ventilators and two freestanding PMM, differed markedly. In general, decreasing dynamic compliance of the tubing was not associated with greater inaccuracy in V(te) measurements. Copyright 2002 Wiley-Liss, Inc.
Marjanovic, Nicolas; Le Floch, Soizig; Jaffrelot, Morgan; L'Her, Erwan
2014-05-01
In the absence of endotracheal intubation, the manual bag-valve-mask (BVM) is the most frequently used ventilation technique during resuscitation. The efficiency of other devices has been poorly studied. The bench-test study described here was designed to evaluate the effectiveness of an automatic, manually triggered system, and to compare it with manual BVM ventilation. A respiratory system bench model was assembled using a lung simulator connected to a manikin to simulate a patient with unprotected airways. Fifty health-care providers from different professional groups (emergency physicians, residents, advanced paramedics, nurses, and paramedics; n = 10 per group) evaluated manual BVM ventilation, and compared it with an automatic manually triggered device (EasyCPR). Three pathological situations were simulated (restrictive, obstructive, normal). Standard ventilation parameters were recorded; the ergonomics of the system were assessed by the health-care professionals using a standard numerical scale once the recordings were completed. The tidal volume fell within the standard range (400-600 mL) for 25.6% of breaths (0.6-45 breaths) using manual BVM ventilation, and for 28.6% of breaths (0.3-80 breaths) using the automatic manually triggered device (EasyCPR) (P < .0002). Peak inspiratory airway pressure was lower using the automatic manually triggered device (EasyCPR) (10.6 ± 5 vs 15.9 ± 10 cm H2O, P < .001). The ventilation rate fell consistently within the guidelines, in the case of the automatic manually triggered device (EasyCPR) only (10.3 ± 2 vs 17.6 ± 6, P < .001). Significant pulmonary overdistention was observed when using the manual BVM device during the normal and obstructive sequences. The nurses and paramedics considered the ergonomics of the automatic manually triggered device (EasyCPR) to be better than those of the manual device. The use of an automatic manually triggered device may improve ventilation efficiency and decrease the risk of pulmonary overdistention, while decreasing the ventilation rate.
A study of energy use for ventilation and air-conditioning systems in Hong Kong
NASA Astrophysics Data System (ADS)
Yu, Chung Hoi Philip
Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong Kong. A sample database of 20 existing commercial buildings was established for further analysis of building energy use. Heat gains through building envelopes were reviewed with reference to fundamental theory behind as well as the heat transfer equations presented in the literature. The prevailing methodologies of cooling load estimation and energy calculation were studied. Building energy auditing methods were discussed with reference to the local practice as well as international standards and guides. The common procedures of building energy auditing with three stages were outlined: historical data collection/analysis, preliminary site survey, and detailed energy consumption investigation. A typical commercial building was selected for detailed study of energy use by MVAC systems. (Abstract shortened by UMI.)
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama
2009-04-15
Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.
Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504
Kuwabara, Kazuaki; Matsuda, Shinya; Fushimi, Kiyohide; Ishikawa, Koichi B; Horiguchi, Hiromasa; Fujimori, Kenji
2012-01-01
Public health emergencies like earthquakes and tsunamis underscore the need for an evidence-based approach to disaster preparedness. Using the Japanese administrative database and the geographical information system (GIS), the interruption of hospital-based mechanical ventilation administration by a hypothetical disaster in three areas of the southeastern mainland (Tokai, Tonankai, and Nankai) was simulated and the repercussions on ventilator care in the prefectures adjacent to the damaged prefectures was estimated. Using the database of 2010 including 3,181,847 hospitalized patients among 952 hospitals, the maximum daily ventilator capacity in each hospital was calculated and the number of patients who were administered ventilation on October xx was counted. Using GIS and patient zip code, the straight-line distances among the damaged hospitals, the hospitals in prefectures nearest to damaged prefectures, and ventilated patients' zip codes were measured. The authors simulated that ventilated patients were transferred to the closest hospitals outside damaged prefectures. The increase in the ventilator operating rates in three areas was aggregated. One hundred twenty-four and 236 patients were administered ventilation in the damaged hospitals and in the closest hospitals outside the damaged prefectures of Tokai, 92 and 561 of Tonankai, and 35 and 85 of Nankai, respectively. The increases in the ventilator operating rates among prefectures ranged from 1.04 to 26.33-fold in Tokai; 1.03 to 1.74-fold in Tonankai, and 1.00 to 2.67-fold in Nankai. Administrative databases and GIS can contribute to evidenced-based disaster preparedness and the determination of appropriate receiving hospitals with available medical resources.
Shendell, D G; Winer, A M; Weker, R; Colome, S D
2004-06-01
The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Brian; May, Doug; Howlett, Don
2013-07-01
Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less
Kalema, T; Viot, M
2014-02-01
The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Proportional mechanical ventilation through PWM driven on/off solenoid valve.
Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G
2010-01-01
Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-08-01
The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline.
Comparison of indoor air pollutants concentration in two Romanian classrooms
NASA Astrophysics Data System (ADS)
Vasile, Vasilica; Dima, Alina; Zorila, Elena; Istrate, Andrei; Catalina, Tiberiu
2018-02-01
This paper investigates the air pollutions in space ventilated in two High School classrooms. The analysis consists of comparison of one classroom with hybrid ventilation system and another one stander-by classroom with natural ventilation. Several studies regarding indoor air quality during the experimental campaign have been done for VOC, CO2, CO, other pollutants, keeping monitored for humidity and temperature. The experimental demonstrated that the highest value for CO2 in stander-by classroom is 2691 ppm and in classroom with hybrid ventilation is 1897 ppm, while values for CO are 1.1 / 1.1 ppm and VOC 0.14 / 0.06 ppm, better use hybrid ventilation.
The ventilation problem in schools: literature review
Fisk, W. J.
2017-07-06
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
The ventilation problem in schools: literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W. J.
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
Remetti, R; Gigante, G E
2010-01-01
The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...
Code of Federal Regulations, 2013 CFR
2013-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2011 CFR
2011-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...
Service bay area, pump room level, showing ventilation fans and ...
Service bay area, pump room level, showing ventilation fans and ducts association with evaporative-cooling system. Note battery bank at far right. View to the east - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ
Night ventilation control strategies in office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaojun; Yi, Lingli; Gao, Fusheng
2009-10-15
In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less
van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried
2018-04-24
This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.
Portable Life Support System 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Carra, Michael; Converse, David; Chullen, Cinda
2016-01-01
NASA is building a high-fidelity prototype of an advanced Portable Life Support System (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, was driven by a centrifugal fan developed using specifications from the Constellation Program. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement were identified with the PLSS 2.0 fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0, and it uses the same nonmetallic, canned motor, with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 ventilation loop. The larger impeller allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds consistent with prior, oxygen-rated fans. Development of the fan also considered a shrouded impeller design that could allow larger clearances for greater oxygen safety, assembly tolerances and particle ingestion. This paper discusses the design, manufacturing and performance testing of the new fans.
Development of a lightweight portable ventilator for far-forward battlefield combat casualty support
NASA Astrophysics Data System (ADS)
Cutchis, Protagoras N.; Smith, Dexter G.; Ko, Harvey W.; Wiesmann, William P.; Pranger, L. Alex
1999-07-01
Immediate medical provision substantially reduces the number of fatalities sustained during military operations. However, the shift from large-scale regional conflicts to smaller peacekeeping and humanitarian missions has reduced the military medical support infrastructure. Civilian emergency medical services have long emphasized the 'golden hour' during which a patient must receive definitive medical attention. Without on-scene medical support, injured soldiers must be transported significant distances before receiving advanced medical care, and rapid transport to a medical facility is not always a viable option. Technological solutions enable military medics to deliver advanced medical care on the battlefield. We report here on the development of a small lightweight portable respirator for the treatment of far- forward battlefield casualties. The Far Forward Life Support System (FFLSS) utilizes a combination of COTS (commercial off the shelf) components and custom designed systems to provide ventilatory support to injured combatants. It also incorporates a small IV fluid pump and IV fluids for resuscitation. A microcompressor control system monitors both system performance and patient parameters for system control. Telemetry to a pager-like device worn by the front line medic alerts of any anomalies in ventilator or patient parameters, which will add greatly to triage decisions and resource management. Novel elements of the FLSS design include oxygen generation, low-pressure air generation, available patient suction, and the absence of any high pressure air cylinders. A prototype developed for animal testing will be described in detail as well as further design requirements for the human rated prototype.
Wan, M P; Chao, C Y H
2007-06-01
Expiratory droplets and droplet nuclei can be pathogen carriers for airborne diseases. Their transport characteristics were studied in detail in two idealized floor-supply-type ventilation flow patterns: Unidirectional-upward and single-side-floor, using a multiphase numerical model. The model was validated by running interferometric Mie imaging experiments using test droplets with nonvolatile content, which formed droplet nuclei, ultimately, in a class-100 clean-room chamber. By comparing the droplet dispersion and removal characteristics with data of two other ceiling-supply ventilation systems collected from a previous work, deviations from the perfectly mixed ventilation condition were found to exist in various cases to different extent. The unidirectional-upward system was found to be more efficient in removing the smallest droplet nuclei (formed from 1.5 mum droplets) by air extraction, but it became less effective for larger droplets and droplet nuclei. Instead, the single-side-floor system was shown to be more favorable in removing these large droplets and droplet nuclei. In the single-side-floor system, the lateral overall dispersion coefficients for the small droplets and nuclei (initial size =45 mum) were about an order of magnitude higher than those in the unidirectional-upward system. It indicated that bulk lateral airflow transport in the single-side-floor system was much stronger than the lateral dispersion mechanism induced mainly by air turbulence in the unidirectional-upward system. The time required for the droplets and droplet nuclei to be transported to the exhaust vent or deposition surfaces for removal varied with different ventilation flow patterns. Possible underestimation of exposure level existed if the perfectly mixed condition was assumed. For example, the weak lateral dispersion in the unidirectional ventilation systems made expiratory droplets and droplet nuclei stay at close distance to the source leading to highly nonuniform spatial distributions. The distance between the source and susceptible patients became an additional concern in exposure analysis. Relative significance of the air-extraction removal mechanism was studied. This can have impact to the performance evaluation of filtration and disinfection systems installed in the indoor environment. These findings revealed the need for further development in a risk-assessment model incorporating the effect of different ventilation systems on distributing expiratory droplets and droplet nuclei nonuniformly in various indoor spaces, such as buildings, aircraft cabins, trains, etc.
Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J
2016-03-01
Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.
Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.
2016-01-01
Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405
The high hall ventilation with the simplified simulation of the fan
NASA Astrophysics Data System (ADS)
Kyncl, Martin; Pelant, Jaroslav
2018-06-01
Here we work with the system of equations describing the non-stationary compressible turbulent multi-component flow in the gravitational field. We focus on the numerical simulation of the fan situated inside the high hall. The RANS equations are discretized with the use of the finite volume method. The original modification of the Riemann problem and its solution is used at the boundaries. The combination of specific boundary conditions is used for the simulation of the fan. The presented computational results are computed with own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general).
Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah
2016-10-01
Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals.
Influence of Applying Additional Forcing Fans for the Air Distribution in Ventilation Network
NASA Astrophysics Data System (ADS)
Szlązak, Nikodem; Obracaj, Dariusz; Korzec, Marek
2016-09-01
Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes necessary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing subsurface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in networks with a large number of installed fans). In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of overpressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan). Possibilities of increasing airflow rate in working areas were conducted.
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gas-safe space in the cargo area. (4) Each space that contains inert gas generators, except main...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... following must have a supply-type mechanical ventilation system: (1) Each space that contains electric...
Parametric instabilities of rotor-support systems with application to industrial ventilators
NASA Technical Reports Server (NTRS)
Parszewski, Z.; Krodkiemski, T.; Marynowski, K.
1980-01-01
Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.
NASA Astrophysics Data System (ADS)
Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo
2017-11-01
European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.
Applying Adult Ventilator-associated Pneumonia Bundle Evidence to the Ventilated Neonate.
Weber, Carla D
2016-06-01
Ventilator-associated pneumonia (VAP) in neonates can be reduced by implementing preventive care practices. Implementation of a group, or bundle, of evidence-based practices that improve processes of care has been shown to be cost-effective and to have better outcomes than implementation of individual single practices. The purpose of this article is to describe a safe, effective, and efficient neonatal VAP prevention protocol developed for caregivers in the neonatal intensive care unit (NICU). Improved understanding of VAP causes, effects of care practices, and rationale for interventions can help reduce VAP risk to neonatal patients. In order to improve care practices to affect VAP rates, initial and annual education occurred on improved protocol components after surveying staff practices and auditing documentation compliance. In 2009, a tertiary care level III NICU in the Midwestern United States had 14 VAP cases. Lacking evidence-based VAP prevention practices for neonates, effective adult strategies were modified to meet the complex needs of the ventilated neonate. A protocol was developed over time and resulted in an annual decrease in VAP until rates were zero for 20 consecutive months from October 2012 to May 2014. This article describes a VAP prevention protocol developed to address care practices surrounding hand hygiene, intubation, feeding, suctioning, positioning, oral care, and respiratory equipment in the NICU. Implementation of this VAP prevention protocol in other facilities with appropriate monitoring and tracking would provide broader support for standardization of care. Individual components of this VAP protocol could be studied to strengthen the inclusion of each; however, bundled interventions are often considered stronger when implemented as a whole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ALTIC, NICK A
In March 2011, the USNS Bridge was deployed off northeastern Honshu, Japan with the carrier USS Ronald Reagan to assist with relief efforts after the 2011 Tōhoku earthquake and tsunami. During that time, the Bridge was exposed to air-borne radioactive materials leaking from the damaged Fukushima I Nuclear Power Plant. The proximity of the Bridge to the air-borne impacted area resulted in the contamination of the ship’s air-handling systems and the associated components, as well as potential contamination of other ship surfaces due to either direct intake/deposition or inadvertent spread from crew/operational activities. Preliminary surveys in the weeks after themore » event confirmed low-level contamination within the heating, ventilation, and air conditioning (HVAC) ductwork and systems, and engine and other auxiliary air intake systems. Some partial decontamination was performed at that time. In response to the airborne contamination event, Military Sealift Fleet Support Command (MSFSC) contracted Oak Ridge Associated Universities (ORAU), under provisions of the Oak Ridge Institute for Science and Education (ORISE) contract, to assess the radiological condition of the Bridge. Phase I identified contamination within the CPS filters, ventilation systems, miscellaneous equipment, and other suspect locations that could not accessed at that time (ORAU 2011b). Because the Bridge was underway during the characterization, all the potentially impacted systems/spaces could not be investigated. As a result, MSFSC contracted with ORAU to perform Phase II of the characterization, specifically to survey systems/spaces previously inaccessible. During Phase II of the characterization, the ship was in port to perform routine maintenance operations, allowing access to the previously inaccessible systems/spaces.« less
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
Friedrich, Lena; Boeckelmann, Irina
2018-01-11
Hygienic and microbiologically sterile air quality is essential for successful guideline-based work in operating theatres. To ensure clean air and to reduce contamination during surgery, ventilation systems are indispensable. Ventilation systems should be especially designed to keep the number of particles and germs under statutory limits. Therefore, they must be operated to recognised standards of good practice and be periodically inspected and maintained. The objective of this study was to prove, through the analysis of observation outside surgery time (rest condition), the effects of ventilation systems on air quality in a medical facility. Measurements were taken in 34 operating theatres annually over a period of ten years outside surgery time (resting condition) but with the air ventilation system operating under full load. 29 operating theatres were provided with laminar air flow and five theatres with turbulent air flow systems. In each operating theatre, air cleanliness was analysed by measuring the amount of airborne particles and airborne germs. Measuring points were determined 10 mm beneath the supply-air ceiling in the centre of the operating theatre and at one position outside the supply-air ceiling. The number of airborne particles at the supply-air ceiling was between 0/m³ and 4,441/m³ of air and, as such, the limiting factor was never exceeded. However, airborne germ measurements of between 0 CFU/m³ and 200 CFU/m³ (CFU: colony forming units) demonstrated that the limiting factor for this criterion was exceeded in 10.9% of occasions. In general, the values in the middle of the room were higher than at the supply-air ceiling. There were significant differences (p < 0.001) between the values at the supply-air ceiling, the surgery table and the values outside the supply-air ceiling. The results show the positive impact of ventilation systems on the air cleanliness in operating theatres. However, laminar airflow systems seem to create cleaner air than conventional ventilation systems. The size of the supply-air ceiling plays an important role in the prevention of the contamination of the staff, the surgical field, the instrument table and the patient. However, the effect on surgical site infections has not been verified. Improved measuring methods should be considered. Georg Thieme Verlag KG Stuttgart · New York.
Kum, Oyeon
2018-06-01
An optimized air ventilation system design for a treatment room in Heavy-ion Medical Facility is an important issue in the aspects of nuclear safety because the activated air produced in a treatment room can directly affect the medical staff and the general public in the radiation-free area. Optimized design criteria of air ventilation system for a clinical room in 430 MeV/u carbon ion beam medical accelerator facility was performed by using a combination of MCNPX2.7.0 and CINDER'90 codes. Effective dose rate and its accumulated effective dose by inhalation and residual gamma were calculated for a normal treatment scenario (2 min irradiation for one fraction) as a function of decay time. Natural doses around the site were measured before construction and used as reference data. With no air ventilation system, the maximum effective dose rate was about 3 μSv/h (total dose of 90 mSv/y) and minimum 0.2 μSv/h (total dose of 6 mSv/y), which are over the legal limits for medical staff and for the general public. Although inhalation dose contribution was relatively small, it was considered seriously because of its long-lasting effects in the body. The integrated dose per year was 1.8 mSv/y in the radiation-free area with the 20-min rate of air ventilation system. An optimal air ventilation rate of 20 min is proposed for a clinical room, which also agrees with the best mechanical design value. © 2018 American Association of Physicists in Medicine.
Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina
Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.
SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA
2014-01-01
Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a “physically active” home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system. PMID:27182399
Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming
2009-09-01
To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.
Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R
2001-08-01
To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.
30 CFR 57.11059 - Respirable atmosphere for hoist operators underground.
Code of Federal Regulations, 2010 CFR
2010-07-01
... independent ventilation system shall convert, without contamination, to an approved and properly maintained 2... evacuation. Air for the enclosure's ventilation system shall be provided in one of the following ways: (1) Air coursed from the surface through a borehole into the hoist enclosure directly or through a metal...
A Qualitative Analogy for Respiratory Mechanics
ERIC Educational Resources Information Center
Baptista, Vander
2010-01-01
The geometric configuration and mechanical properties of the integral elements of the respiratory system, as well as the modus operandi of the interacting parts in the ventilation process, comprise a hard-to-visualize system, making the mechanics of pulmonary ventilation a confusing topic for students and a difficult task for the teacher. To…
This fact sheet provides practical information and guidance to auto refinish shops on proper ventilation of paint mixing rooms, including ventilation system basics and diagrams, risk reduction ideas, common mistakes, tips, and design considerations.
Comparison of freezing control strategies for residential air-to-air heat recovery ventilators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, E.G.; Bradley, L.C.; Chant, R.E.
1989-01-01
A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.
Andersson, B; Lundin, S; Lindgren, S; Stenqvist, O; Odenstedt Hergès, H
2011-02-01
Continuous positive airway pressure (CPAP) has been shown to improve oxygenation and a number of different CPAP systems are available. The aim of this study was to assess lung volume and ventilation distribution using three different CPAP techniques. A high-flow CPAP system (HF-CPAP), an ejector-driven system (E-CPAP) and CPAP using a Servo 300 ventilator (V-CPAP) were randomly applied at 0, 5 and 10 cmH₂O in 14 volunteers. End-expiratory lung volume (EELV) was measured by N₂ dilution at baseline; changes in EELV and tidal volume distribution were assessed by electric impedance tomography. Higher end-expiratory and mean airway pressures were found using the E-CPAP vs. the HF-CPAP and the V-CPAP system (P<0.01). EELV increased markedly from baseline, 0 cmH₂O, with increased CPAP levels: 1110±380, 1620±520 and 1130±350 ml for HF-, E- and V-CPAP, respectively, at 10 cmH₂O. A larger fraction of the increase in EELV occurred for all systems in ventral compared with dorsal regions (P<0.01). In contrast, tidal ventilation was increasingly directed toward dorsal regions with increasing CPAP levels (P<0.01). The increase in EELV as well as the tidal volume redistribution were more pronounced with the E-CPAP system as compared with both the HF-CPAP and the V-CPAP systems (P<0.05) at 10 cmH₂O. EELV increased more in ventral regions with increasing CPAP levels, independent of systems, leading to a redistribution of tidal ventilation toward dorsal regions. Different CPAP systems resulted in different airway pressure profiles, which may result in different lung volume expansion and tidal volume distribution. © 2010 The Authors. Journal compilation © 2010 The Acta Anaesthesiologica Scandinavica Foundation.
Indrehus, Oddny; Aralt, Tor Tybring
2005-04-01
Aerosol, NO and CO concentration, temperature, air humidity, air flow and number of running ventilation fans were measured by continuous analysers every minute for a whole week for six different one-week periods spread over ten months in 2001 and 2002 at measuring stations in the 7860 m long tunnel. The ventilation control system was mainly based on aerosol measurements taken by optical scatter sensors. The ventilation turned out to be satisfactory according to Norwegian air quality standards for road tunnels; however, there was some uncertainty concerning the NO2 levels. The air humidity and temperature inside the tunnel were highly influenced by the outside metrological conditions. Statistical models for NO concentration were developed and tested; correlations between predicted and measured NO were 0.81 for a partial least squares regression (PLS1) model based on CO and aerosol, and 0.77 for a linear regression model based only on aerosol. Hence, the ventilation control system should not solely be based on aerosol measurements. Since NO2 is the hazardous polluter, modelling NO2 concentration rather than NO should be preferred in any further optimising of the ventilation control.
Stoller, James K; Roberts, Vincent; Matt, David; Chom, Leslie; Sasidhar, Madhu; Chatburn, Robert L
2013-12-01
When respiratory therapists (RTs) seek respiratory care equipment, finding it quickly is desirable, both to expedite patient care and to avert RTs wasting time. To optimize RTs' ability to quickly locate ventilators, we developed and implemented a radio-frequency identification (RFID) tagging system called eTrak. The Clinical Engineering and Information Technology groups at Cleveland Clinic collaboratively developed a Wi-Fi-based RFID program that used active RFID tags. Altogether, 218 ventilators, 82 noninvasive ventilators, and various non-respiratory equipment were tagged, beginning in March 2010. We calculated the difference in time required to locate equipment before versus after implementation. The eTrak system had a mean 145 log-ons per week over the first year of use, and was associated with a decreased time required for RTs to locate ventilators: median 18 min (range 1-45 min) versus 3 min (range 1-6 min) (P < .001). Surveys of RTs regarding whether equipment was hard to find before versus after implementing eTrak showed a non-significant trend toward improvement. An RFID tracking system for respiratory equipment shortened the time to locate ventilators and non-significantly improved RT satisfaction with finding equipment. RFID tagging of equipment warrants further investigation.
New modes of assisted mechanical ventilation.
Suarez-Sipmann, F
2014-05-01
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery.
Maia, Lígia de Albuquerque; Silva, Pedro Leme; Pelosi, Paolo; Rocco, Patricia Rieken Macedo
2017-06-01
The obesity prevalence is increasing in surgical population. As the number of obese surgical patients increases, so does the demand for mechanical ventilation. Nevertheless, ventilatory strategies in this population are challenging, since obesity results in pathophysiological changes in respiratory function. Areas covered: We reviewed the impact of obesity on respiratory system and the effects of controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. To date, there is no consensus regarding the optimal invasive mechanical ventilation strategy for obese surgical patients, and no evidence that possible intraoperative beneficial effects on oxygenation and mechanics translate into better postoperative pulmonary function or improved outcomes. Expert commentary: Before determining the ideal intraoperative ventilation strategy, it is important to analyze the pathophysiology and comorbidities of each obese patient. Protective ventilation with low tidal volume, driving pressure, energy, and mechanical power should be employed during surgery; however, further studies are required to clarify the most effective ventilation strategies, such as the optimal positive end-expiratory pressure and whether recruitment maneuvers minimize lung injury. In this context, an ongoing trial of intraoperative ventilation in obese patients (PROBESE) should help determine the mechanical ventilation strategy that best improves clinical outcome in patients with body mass index≥35kg/m 2 .
Javanese House’s Roof (Joglo) with the Opening as a Cooling Energy Provider
NASA Astrophysics Data System (ADS)
Pranoto S, M.
2018-01-01
Natural ventilation and air movement could be considered under the heading structural controls as it does not rely on any form of energy supply or mechanical installation but due to its importance for human comfort, it deserves a separate section. Air infiltration can destroy the performance of ventilation systems. Good ventilation design combined with optimum air tightness is needed to ensure energy efficient ventilation. Ultimately, ventilation needs depend on occupancy pattern and building use. A full cost and energy analysis is therefore needed to select an optimum ventilation strategy.The contains of paper is about the element of Javanese house (the roof) as the element of natural ventilation and a cooling energy provider. In this research, The Computational Fluid Dynamics Program, is used to draw and analysis. That tool can be track the pattern and the direction of movement of air also the air velocity in the object of ventilation of the roof Javanese house based. Finally, the ventilation of the roof of this Javanese house can add the velocity of air at indoor, average 0.4 m/s and give the effect of cooling, average 0.7°C.
Investigation of induced recirculation during planned ventilation system maintenance
Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.
2015-01-01
The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter (DPM) levels showed a high increase in district intake mass flow, but minor increases in exposure levels related to the recirculation percentage. Utilization of DPM mass flow rates allows input into ventilation modeling programs to better understand and plan for ventilation changes and district recirculation effects on miners’ health. PMID:26190862
Martin, Dion C; Richards, Glenn N
2017-05-23
The lung-protective ventilation bundle has been shown to reduce mortality in adult acute respiratory distress syndrome (ARDS). This concept has expanded to other areas of acute adult ventilation and is recommended for pediatric ventilation. A component of lung-protective ventilation relies on a prediction of lean body weight from height. The predicted body weight (PBW) relationship employed in the ARDS Network trial is considered valid only for adults, with a dedicated formula required for each sex. No agreed PBW formula applies to smaller body sizes. This analysis investigated whether it might be practical to derive a unisex PBW formula spanning all body sizes, while retaining relevance to established adult protective ventilation practice. Historic population-based growth charts were adopted as a reference for lean body weight, from pre-term infant through to adult median weight. The traditional ARDSNet PBW formulae acted as the reference for prevailing protective ventilation practice. Error limits for derived PBW models were relative to these references. The ARDSNet PBW formulae typically predict weights heavier than the population median, therefore no single relationship could satisfy both references. Four alternate piecewise-linear lean body-weight predictive formulae were presented for consideration, each with different balance between the objectives. The 'PBWuf + MBW' model is proposed as an appropriate compromise between prevailing practice and simplification, while also better representing lean adult body-weight. This model applies the ARDSNet 'female' formula to both adult sexes, while providing a tight fit to median body weight at smaller statures down to pre-term. The 'PBWmf + MBW' model retains consistency with current practice over the adult range, while adding prediction for small statures.
Bavis, Ryan W.; van Heerden, Eliza S.; Brackett, Diane G.; Harmeling, Luke H.; Johnson, Stephen M.; Blegen, Halward J.; Logan, Sarah; Nguyen, Giang N.; Fallon, Sarah C.
2014-01-01
Newborn rats chronically exposed to moderate hyperoxia (60% O2) exhibit abnormal respiratory control, including decreased eupneic ventilation. To further characterize this plasticity and explore its proximate mechanisms, rats were exposed to either 21% O2 (Control) or 60% O2 (Hyperoxia) from birth until studied at 3 – 14 days of age (P3 – P14). Normoxic ventilation was reduced in Hyperoxia rats when studied at P3, P4, and P6-7 and this was reflected in diminished arterial O2 saturations; eupneic ventilation spontaneously recovered by P13-14 despite continuous hyperoxia, or within 24 h when Hyperoxia rats were returned to room air. Normoxic metabolism was also reduced in Hyperoxia rats but could be increased by raising inspired O2 levels (to 60% O2) or by uncoupling oxidative phosphorylation within the mitochondrion (2, 4-dinitrophenol). In contrast, moderate increases in inspired O2 had no effect on sustained ventilation which indicates that hypoventilation can be dissociated from hypometabolism. The ventilatory response to abrupt O2 inhalation was diminished in Hyperoxia rats at P4 and P6-7, consistent with smaller contributions of peripheral chemoreceptors to eupneic ventilation at these ages. Finally, the spontaneous respiratory rhythm generated in isolated brainstem-spinal cord preparations was significantly slower and more variable in P3-4 Hyperoxia rats than in age-matched Controls. We conclude that developmental hyperoxia impairs both peripheral and central components of eupneic ventilatory drive. Although developmental hyperoxia diminishes metabolism as well, this appears to be a regulated hypometabolism and contributes little to the observed changes in ventilation. PMID:24703970
2012-01-01
Introduction Ventilator-associated pneumonia (VAP) remains a common hazardous complication in mechanically ventilated patients and is associated with increased morbidity and mortality. We undertook a systematic review and meta-analysis of randomized controlled trials to assess the effect of toothbrushing as a component of oral care on the prevention of VAP in adult critically ill patients. Methods A systematic literature search of PubMed and Embase (up to April 2012) was conducted. Eligible studies were randomized controlled trials of mechanically ventilated adult patients receiving oral care with toothbrushing. Relative risks (RRs), weighted mean differences (WMDs), and 95% confidence intervals (CIs) were calculated and heterogeneity was assessed with the I2 test. Results Four studies with a total of 828 patients met the inclusion criteria. Toothbrushing did not significantly reduce the incidence of VAP (RR, 0.77; 95% CI, 0.50 to 1.21) and intensive care unit mortality (RR, 0.88; 95% CI, 0.70 to 1.10). Toothbrushing was not associated with a statistically significant reduction in duration of mechanical ventilation (WMD, -0.88 days; 95% CI, -2.58 to 0.82), length of intensive care unit stay (WMD, -1.48 days; 95% CI, -3.40 to 0.45), antibiotic-free day (WMD, -0.52 days; 95% CI, -2.82 to 1.79), or mechanical ventilation-free day (WMD, -0.43 days; 95% CI, -1.23 to 0.36). Conclusions Oral care with toothbrushing versus without toothbrushing does not significantly reduce the incidence of VAP and alter other important clinical outcomes in mechanically ventilated patients. However, the results should be interpreted cautiously since relevant evidence is still limited, although accumulating. Further large-scale, well-designed randomized controlled trials are urgently needed. PMID:23062250
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... the installation of a heating, ventilation, and air conditioning (HVAC) system at the City of La Ca... EE0000905, for the installation of a heating, ventilation, and air conditioning (HVAC) system at the at the... efforts and MEP's scouting process, it was determined that if the described HVAC system was manufactured...
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the units' machinery, electrical, and ventilation systems. (See Notes 1 and 2). (b) For the purpose of this subpart “semi-enclosed location” means a location where natural conditions of ventilation...
Ventilation of an hydrofoil wake
NASA Astrophysics Data System (ADS)
Arndt, Roger; Lee, Seung Jae; Monson, Garrett
2013-11-01
Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.
Gal'perin, Iu Sh; Alkhimova, L R; Dmitriev, N D; Kozlova, I A; Nemirovskiĭ, S B; Makarov, M V; Safronov, A Iu
2005-01-01
In the new ventilator Avenir-221 P modern lines of development of ventilation support in intensive therapy of adults and children are implemented. The capacities of the ventilator are successfully combined with its technical decisions which include microprocessor parametrical controlling, programming-controlled electric drive, an information saturation, intuitively clear control system, protection against interruption of power supply sources and oxygen feeding falls. A set of functional characteristics (modes VCV, PCV, Ass/Contr, PSV, SIMV, PEEP, Sigh, etc.) in combination with an original design make the device the most accessible and promising for application in intensive care and resuscitation units of a wide network of Russian hospitals and clinics. The ventilator Avenir-221 P has passed all required tests and is presently commercially available.
Pantelic, J; Tham, K W; Licina, D
2015-12-01
The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems’ performance and can serve as an aid in making critical design decisions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.
Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus
We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.
Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R
2014-01-01
The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.
Winter ventilation rates at primary schools: comparison between Portugal and Finland.
Canha, N; Almeida, S M; Freitas, M C; Täubel, M; Hänninen, O
2013-01-01
This study focused on examination of ventilation rates in classrooms with two different types of ventilation systems: natural and mechanical. Carbon dioxide (CO2) measurements were conducted in primary schools of Portugal characterized by natural ventilation and compared to Finland where mechanical ventilation is the norm. The winter period was selected since this season exerts a great influence in naturally ventilated classrooms, where opening of windows and doors occurs due to outdoor atmospheric conditions. The ventilation rates were calculated by monitoring CO2 concentrations generated by the occupants (used as a tracer gas) and application of the buildup phase method. A comparison between both countries' results was conducted with respect to ventilation rates and how these levels corresponded to national regulatory standards. Finnish primary schools (n = 2) registered a mean ventilation rate of 13.3 L/s per person, which is higher than the recommended ventilation standards. However, the Finnish classroom that presented the lowest ventilation rate (7.2 L/s per person) displayed short-term CO2 levels above 1200 ppm, which is the threshold limit value (TLV) recommended by national guidelines. The Portuguese classrooms (n = 2) showed low ventilation rates with mean values of 2.4 L/s per person, which is markedly lower than the minimum recommended value of 7 L/s per person as defined by ASHRAE and 20% less than the REHVA minimum of 3 L/s per person. Carbon dioxide levels of 1000 ppm, close to the TLV of 1200 ppm, were also reached in both Portuguese classrooms studied. The situation in Portugal indicates a potentially serious indoor air quality problem and strengthens the need for intervention to improve ventilation rates in naturally ventilated classrooms.
Wilms, C T; Schober, P; Kalb, R; Loer, S A
2006-01-01
During partial liquid ventilation perfluorocarbons are instilled into the airways from where they subsequently evaporate via the bronchial system. This process is influenced by multiple factors, such as the vapour pressure of the perfluorocarbons, the instilled volume, intrapulmonary perfluorocarbon distribution, postural positioning and ventilatory settings. In our study we compared the effects of open and closed breathing systems, a heat-and-moisture-exchanger and a sodalime absorber on perfluorocarbon evaporation during partial liquid ventilation. Isolated rat lungs were suspended from a force transducer. After intratracheal perfluorocarbon instillation (10 mL kg(-1)) the lungs were either ventilated with an open breathing system (n = 6), a closed breathing system (n = 6), an open breathing system with an integrated heat-and-moisture-exchanger (n = 6), an open breathing system with an integrated sodalime absorber (n = 6), or a closed breathing system with an integrated heat-and-moisture-exchanger and a sodalime absorber (n = 6). Evaporative perfluorocarbon elimination was determined gravimetrically. When compared to the elimination half-life in an open breathing system (1.2 +/- 0.07 h), elimination half-life was longer with a closed system (6.4 +/- 0.9 h, P 0.05) when compared to a closed system. Evaporative perfluorocarbon loss can be reduced effectively with closed breathing systems, followed by the use of sodalime absorbers and heat-and-moisture-exchangers.
Susceptibility to ventilator induced lung injury is increased in senescent rats
2013-01-01
Introduction The principal mechanisms of ventilator induced lung injury (VILI) have been investigated in numerous animal studies. However, prospective data on the effect of old age on VILI are limited. Under the hypothesis that susceptibility to VILI is increased in old age, we investigated the pulmonary and extrapulmonary effects of mechanical ventilation with high tidal volume (VT) in old compared to young adult animals. Interventions Old (19.1 ± 3.0 months) and young adult (4.4 ± 1.3 months) male Wistar rats were anesthetized and mechanically ventilated (positive end-expiratory pressure 5 cmH2O, fraction of inspired oxygen 0.4, respiratory rate 40/minute) with a tidal volume (VT) of either 8, 16 or 24 ml/kg for four hours. Respiratory and hemodynamic variables, including cardiac output, and markers of systemic inflammation were recorded throughout the ventilation period. Lung histology and wet-to-dry weight ratio, injury markers in lung lavage and respiratory system pressure-volume curves were assessed post mortem. Basic pulmonary characteristics were assessed in non-ventilated animals. Results Compared to young adult animals, high VT (24 ml/kg body weight) caused more lung injury in old animals as indicated by decreased oxygenation (arterial oxygen tension (PaO2): 208 ± 3 vs. 131 ± 20 mmHg; P <0.05), increased lung wet-to-dry-weight ratio (5.61 ± 0.29 vs. 7.52 ± 0.27; P <0.05), lung lavage protein (206 ± 52 mg/l vs. 1,432 ± 101; P <0.05) and cytokine (IL-6: 856 ± 448 vs. 3,283 ± 943 pg/ml; P <0.05) concentration. In addition, old animals ventilated with high VT had more systemic inflammation than young animals (IL-1β: 149 ± 44 vs. 272 ± 36 pg/ml; P <0.05 - young vs. old, respectively). Conclusions Ventilation with unphysiologically large tidal volumes is associated with more lung injury in old compared to young rats. Aggravated pulmonary and systemic inflammation is a key finding in old animals developing VILI. PMID:23710684
Development and fabrication of heat-sterilizable inhalation therapy equipment
NASA Technical Reports Server (NTRS)
Irons, A. S.
1974-01-01
The development of a completely heat sterilizable intermittent positive pressure breathing (IPPB) ventilator in an effort to reduce the number of hospital acquired infections is reported. After appropriate changes in materials and design were made, six prototype units were fabricated and were successfully field tested in local hospitals. Most components of the modified ventilators are compatible with existing machines. In all but a few instances, such as installation of bacteria-retentive filters and a modified venturi, the change over from non-heat-sterilizable to sterilizable units was accomplished by replacement of heat labile materials with heat stable materials.
Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi
2015-01-01
The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototypemore » measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s -1 (12.6 km h -1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.« less
Small scale power generation from biomass-technical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepori, W.A.; Cardenas, M.M.; Carney, O.B.
1983-12-01
System and nursery pig performance data for the Winter of 1983 were collected for a 96-pig capacity modified-open-front (MOF) naturally ventilated and a 96-pig capacity mechanically ventilated swine nurseries. Both nurseries utilized active solar collectors to provide in-floor heating at the rear of each pen along with hovers. The mechanically ventilated nursery utilized solar preheated ventilation air. The naturally ventilated nursery had double glazed solar windows to passively heat the interior space. The relative humidity in the naturally ventilated (NV) nursery averaged 20 percentage points higher than the mechanically ventilated (MV) nursery with no significant differences in air temperature. Themore » MV nursery used 50% more energy than the NV nursery and the NV nursery required 1.9 kWh/pig marketed less than that needed for the MV nursery. Pig performance figure were not significantly different between the two buildings. The feed to gain ration were 2.0 + or - 0.35 and 1.96 + or 0.38 for the MV and NV nurseries respectively.« less
Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah
2016-01-01
Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals. PMID:28180013
NASA Astrophysics Data System (ADS)
Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas
2012-04-01
To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.
Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.
Shendell, D G; Prill, R; Fisk, W J; Apte, M G; Blake, D; Faulkner, D
2004-10-01
Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P < 0.05) with a 0.5-0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10-20% increase in student absence. Annual ADA was 2% higher (P < 0.0001) in traditional than in portable classrooms. This study provides motivation for larger school studies to investigate associations of student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.
A dynamic ventilation model for gravity sewer networks.
Wang, Y C; Nobi, N; Nguyen, T; Vorreiter, L
2012-01-01
To implement any effective odour and corrosion control technology in the sewer network, it is imperative that the airflow through gravity sewer airspaces be quantified. This paper presents a full dynamic airflow model for gravity sewer systems. The model, which is developed using the finite element method, is a compressible air transport model. The model has been applied to the North Head Sewerage Ocean Outfall System (NSOOS) and calibrated using the air pressure and airflow data collected during October 2008. Although the calibration is focused on forced ventilation, the model can be applied to natural ventilation as well.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... openings to accommodations, service, control station, and other gas-safe spaces. (c) Each ventilation system under § 154.1200 (a) and (b)(1) must change the air in that space and its adjoining trunks at... top of each space that personnel enter during cargo handling operations. (b) The discharge end of each...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... safe and healthful working environment. A well planned mine ventilation system is necessary to assure a fresh air supply to miners at all working places, to control the amounts of harmful airborne... present harsh and hostile working environments. The ventilation system is the most vital life support...
Niemelä, R; Koskela, H; Engström, K
2001-08-01
The purpose of the study was to investigate the performance of displacement ventilation in a large factory hall where large components of stainless steel for paper, pulp and chemical industries were manufactured. The performance of displacement ventilation was evaluated in terms of concentration distributions of welding fumes and grinding particles, flow field of the supply air and temperature distributions. Large differences in vertical stratification patterns between hexavalent chromium (Cr(VI)) and other particulate contaminants were observed. The concentration of Cr(VI) was notably lower in the zone of occupancy than in the upper part of the factory hall, whereas the concentrations of total airborne particles and trivalent chromium (Cr(III)) were higher in the occupied zone than in the upper zone. The stratification of Cr(VI) had the same tendency as the air temperature stratification caused by the displacement flow field.
[Appropriate dust control measures for jade carving operations].
Liu, Jiang; Wang, Qiushui; Liu, Guangquan
2002-12-01
To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.
Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.
2015-03-01
Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.
Hard metal exposures. Part 1: Observed performance of three local exhaust ventilation systems.
Guffey, S E; Simcox, N; Booth, D W; Hibbard, R; Stebbins, A
2000-04-01
Not every ventilation system performs as intended; much can be learned when they do not. The purpose of this study was to compare observed initial performance to expected levels for three saw-reconditioning shop ventilation systems and to characterize the changes in performance of the systems over a one-year period. These three local exhaust ventilation systems were intended to control worker exposures to cobalt, cadmium, and chromium during wet grinding, dry grinding, and welding/brazing activities. Prior to installation the authors provided some design guidance based on Industrial Ventilation, a Manual of Recommended Practice. However, the authors had limited influence on the actual installation and operation and no line authority for the systems. In apparent efforts to cut costs and to respond to other perceived needs, the installed systems deviated from the specifications used in pressure calculations in many important aspects, including adding branch ducts, use of flexible ducts, the choice of fans, and the construction of some hoods. After installation of the three systems, ventilation measurements were taken to determine if the systems met design specifications, and worker exposures were measured to determine effectiveness. The results of the latter will be published as a companion article. The deviations from design and maintenance failures may have adversely affected performance. From the beginning to the end of the study period the distribution of air flow never matched the design specifications for the systems. The observed air flows measured within the first month of installation did not match the predicated design air flows for any of the systems, probably because of the differences between the design and the installed system. Over the first year of operation, hood air flow variability was high due to inadequate cleaning of the sticky process materials which rapidly accumulated in the branch ducts. Poor distribution of air flows among branch ducts frequently produced individual hood air flows that were far below specified design levels even when the total air flow through that system was more than adequate. To experienced practitioners, it is not surprising that deviations from design recommendations and poor maintenance would be associated with poor system performance. Although commonplace, such experiences have not been documented in peer-reviewed publications to date. This publication is a first step in providing that documentation.
Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale
NASA Astrophysics Data System (ADS)
Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki
2017-10-01
The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.
2013-07-01
Mechanical ventilation in patients with respiratory failure represents one of the most important aspects of intensity care. It can be performed invasively and non-invasively depending on the clinical situation and the underlying disease. The expenditure and consumption of resources is the basis of the compensation for each patient case in the German diagnosis related group system. For ventilated patients it is calculated based on the hours of ventilation, according to the standard coding guideline. In this statement, the German Respiratory Society and the Association of Pneumological Clinics aim to clarify some aspects of the coding of invasive and non-invasive ventilation. © Georg Thieme Verlag KG Stuttgart · New York.
Driving pressure and survival in the acute respiratory distress syndrome.
Amato, Marcelo B P; Meade, Maureen O; Slutsky, Arthur S; Brochard, Laurent; Costa, Eduardo L V; Schoenfeld, David A; Stewart, Thomas E; Briel, Matthias; Talmor, Daniel; Mercat, Alain; Richard, Jean-Christophe M; Carvalho, Carlos R R; Brower, Roy G
2015-02-19
Mechanical-ventilation strategies that use lower end-inspiratory (plateau) airway pressures, lower tidal volumes (VT), and higher positive end-expiratory pressures (PEEPs) can improve survival in patients with the acute respiratory distress syndrome (ARDS), but the relative importance of each of these components is uncertain. Because respiratory-system compliance (CRS) is strongly related to the volume of aerated remaining functional lung during disease (termed functional lung size), we hypothesized that driving pressure (ΔP=VT/CRS), in which VT is intrinsically normalized to functional lung size (instead of predicted lung size in healthy persons), would be an index more strongly associated with survival than VT or PEEP in patients who are not actively breathing. Using a statistical tool known as multilevel mediation analysis to analyze individual data from 3562 patients with ARDS enrolled in nine previously reported randomized trials, we examined ΔP as an independent variable associated with survival. In the mediation analysis, we estimated the isolated effects of changes in ΔP resulting from randomized ventilator settings while minimizing confounding due to the baseline severity of lung disease. Among ventilation variables, ΔP was most strongly associated with survival. A 1-SD increment in ΔP (approximately 7 cm of water) was associated with increased mortality (relative risk, 1.41; 95% confidence interval [CI], 1.31 to 1.51; P<0.001), even in patients receiving "protective" plateau pressures and VT (relative risk, 1.36; 95% CI, 1.17 to 1.58; P<0.001). Individual changes in VT or PEEP after randomization were not independently associated with survival; they were associated only if they were among the changes that led to reductions in ΔP (mediation effects of ΔP, P=0.004 and P=0.001, respectively). We found that ΔP was the ventilation variable that best stratified risk. Decreases in ΔP owing to changes in ventilator settings were strongly associated with increased survival. (Funded by Fundação de Amparo e Pesquisa do Estado de São Paulo and others.).
Neural network for photoplethysmographic respiratory rate monitoring
NASA Astrophysics Data System (ADS)
Johansson, Anders
2001-10-01
The photoplethysmographic signal (PPG) includes respiratory components seen as frequency modulation of the heart rate (respiratory sinus arrhythmia, RSA), amplitude modulation of the cardiac pulse, and respiratory induced intensity variations (RIIV) in the PPG baseline. The aim of this study was to evaluate the accuracy of these components in determining respiratory rate, and to combine the components in a neural network for improved accuracy. The primary goal is to design a PPG ventilation monitoring system. PPG signals were recorded from 15 healthy subjects. From these signals, the systolic waveform, diastolic waveform, respiratory sinus arrhythmia, pulse amplitude and RIIV were extracted. By using simple algorithms, the rates of false positive and false negative detection of breaths were calculated for each of the five components in a separate analysis. Furthermore, a simple neural network (NN) was tried out in a combined pattern recognition approach. In the separate analysis, the error rates (sum of false positives and false negatives) ranged from 9.7% (pulse amplitude) to 14.5% (systolic waveform). The corresponding value of the NN analysis was 9.5-9.6%.
2011-01-01
We describe difficult weaning after prolonged mechanical ventilation in three tracheostomized children affected by respiratory virus infection. Although the spontaneous breathing trials were successful, the patients failed all extubations. Therefore a tracheostomy was performed and the weaning plan was begun. The strategy for weaning was the decrease of ventilation support combining pressure control ventilation (PCV) with increasing periods of continuous positive airway pressure + pressure support ventilation (CPAP + PSV) and then CPAP + PSV with increasing intervals of T-piece. They presented acute respiratory distress syndrome on admission with high requirements of mechanical ventilation (MV). Intervening factors in the capabilities and loads of the respiratory system were considered and optimized. The average MV time was 69 days and weaning time 31 days. We report satisfactory results within the context of a directed weaning protocol. PMID:21244710
Automatic control of pressure support for ventilator weaning in surgical intensive care patients.
Schädler, Dirk; Engel, Christoph; Elke, Gunnar; Pulletz, Sven; Haake, Nils; Frerichs, Inéz; Zick, Günther; Scholz, Jens; Weiler, Norbert
2012-03-15
Despite its ability to reduce overall ventilation time, protocol-guided weaning from mechanical ventilation is not routinely used in daily clinical practice. Clinical implementation of weaning protocols could be facilitated by integration of knowledge-based, closed-loop controlled protocols into respirators. To determine whether automated weaning decreases overall ventilation time compared with weaning based on a standardized written protocol in an unselected surgical patient population. In this prospective controlled trial patients ventilated for longer than 9 hours were randomly allocated to receive either weaning with automatic control of pressure support ventilation (automated-weaning group) or weaning based on a standardized written protocol (control group) using the same ventilation mode. The primary end point of the study was overall ventilation time. Overall ventilation time (median [25th and 75th percentile]) did not significantly differ between the automated-weaning (31 [19-101] h; n = 150) and control groups (39 [20-118] h; n = 150; P = 0.178). Patients who underwent cardiac surgery (n = 132) exhibited significantly shorter overall ventilation times in the automated-weaning (24 [18-57] h) than in the control group (35 [20-93] h; P = 0.035). The automated-weaning group exhibited shorter ventilation times until the first spontaneous breathing trial (1 [0-15] vs. 9 [1-51] h; P = 0.001) and a trend toward fewer tracheostomies (17 vs. 28; P = 0.075). Overall ventilation times did not significantly differ between weaning using automatic control of pressure support ventilation and weaning based on a standardized written protocol. Patients after cardiac surgery may benefit from automated weaning. Implementation of additional control variables besides the level of pressure support may further improve automated-weaning systems. Clinical trial registered with www.clinicaltrials.gov (NCT 00445289).
Emhofer, Waltraud; Lichtenegger, Klaus; Haslinger, Walter; Hofbauer, Hermann; Schmutzer-Roseneder, Irene; Aigenbauer, Stefan; Lienhard, Martin
2015-01-01
Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (<30 tons storage capacity) residential pellet storage facilities, ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m(3) h(-1), depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.
2012-01-01
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611
Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Kumar, Ranjan; Ghosh, Achyuta Krishna
2017-04-01
Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.
6. UNIT VENTILATOR, WOMEN'S COOLING ROOM. Hot Springs National ...
6. UNIT VENTILATOR, WOMEN'S COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Metabolic Profiling in Patients with Pneumonia on Intensive Care.
Antcliffe, David; Jiménez, Beatriz; Veselkov, Kirill; Holmes, Elaine; Gordon, Anthony C
2017-04-01
Clinical features and investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and when patients develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for metabolic profiling to aid the diagnosis in critical care. In this prospective observational study ventilated patients with brain injuries or pneumonia were recruited in the intensive care unit and serum samples were collected soon after the start of ventilation. Metabolic profiles were produced using 1D 1 H NMR spectra. Metabolic data were compared using multivariate statistical techniques including Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). We recruited 15 patients with pneumonia and 26 with brain injuries, seven of whom went on to develop VAP. Comparison of metabolic profiles using OPLS-DA differentiated those with pneumonia from those with brain injuries (R 2 Y=0.91, Q 2 Y=0.28, p=0.02) and those with VAP from those without (R 2 Y=0.94, Q 2 Y=0.27, p=0.05). Metabolites that differentiated patients with pneumonia included lipid species, amino acids and glycoproteins. Metabolic profiling shows promise to aid in the diagnosis of pneumonia in ventilated patients and may allow a more timely diagnosis and better use of antibiotics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Activation of respiratory muscles during weaning from mechanical ventilation.
Walterspacher, Stephan; Gückler, Julia; Pietsch, Fabian; Walker, David Johannes; Kabitz, Hans-Joachim; Dreher, Michael
2017-04-01
Respiratory muscle dysfunction is a key component of weaning failure. Balancing respiratory muscle loading and unloading by applying different ventilation modes along with spontaneous breathing episodes are established weaning strategies. However, the effects of body positioning on the respiratory muscles during weaning remains unclear. This study aimed at assessing respiratory drive by surface electromyography (EMG) of the diaphragm (EMG dia ) and parasternal muscles (EMG para ) in tracheotomized patients during prolonged weaning in 3 randomized body positions-supine, 30° semirecumbent, and 80° sitting-during mechanical ventilation and spontaneous breathing. Nine patients were included for analysis. Cardiorespiratory parameters (heart rate, blood pressure, arterial oxygen saturation, dyspnea) did not change under each condition (all P>.05). EMG para and EMG dia did not change under mechanical ventilation (both P>.05). EMG dia changed under spontaneous breathing from supine to sitting (0.45±0.26 vs 0.32±0.19; P=.012) and between semirecumbent to sitting (0.41±0.23 vs 0.32±0.19; P=.039), whereas EMG para did not change. This is the first study to show that body positioning influences respiratory drive to the diaphragm in tracheotomized patients with prolonged weaning from mechanical ventilation during unassisted breathing. Sitting position reduces respiratory drive compared with semirecumbent and supine positioning and might therefore be favored during spontaneous breathing trials. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Våge, Kjetil; Håvik, Lisbeth; Papritz, Lukas; Spall, Michael; Moore, Kent
2017-04-01
The Deep Western Boundary Current constitutes the lower limb of the Atlantic Meridional Overturning Circulation, and, as such, is a crucial component of the Earth's climate system. The largest and densest contribution to the current stems from the overflow plume that passes through Denmark Strait. A main source of Denmark Strait Overflow Water (DSOW) is the East Greenland Current (EGC). The DSOW transported by the EGC originates from the Atlantic inflow into the Nordic Seas. This is then transformed into Atlantic-origin Overflow Water while progressing northward through the eastern part of the Nordic Seas. Here we show, using measurements from autonomous gliders deployed from fall 2015 to spring 2016, that the Atlantic-origin Overflow Water transported toward Denmark Strait by the EGC was re-ventilated while transiting the western Iceland Sea in winter. In summer, this region is characterized by an upper layer of cold, fresh Polar Surface Water that is thought to prevent convection. But in fall and winter this fresh water mass is diverted toward the Greenland shelf by enhanced northerly winds, which results in a water column that is preconditioned for convection. Severe heat loss from the ocean to the atmosphere offshore of the ice edge subsequently causes the formation of deep mixed layers. This further transforms the Atlantic-origin Overflow Water and impacts the properties of the DSOW, and hence the deepest and densest component of the lower limb of the Atlantic Meridional Overturning Circulation.
Wenzel, V; Idris, A H; Dörges, V; Nolan, J P; Parr, M J; Gabrielli, A; Stallinger, A; Lindner, K H; Baskett, P J
2001-05-01
The fear of acquiring infectious diseases has resulted in reluctance among healthcare professionals and the lay public to perform mouth-to-mouth ventilation. However, the benefit of basic life support for a patient in cardiopulmonary or respiratory arrest greatly outweighs the risk for secondary infection in the rescuer or the patient. The distribution of ventilation volume between lungs and stomach in the unprotected airway depends on patient variables such as lower oesophageal sphincter pressure, airway resistance and respiratory system compliance, and the technique applied while performing basic or advanced airway support, such as head position, inflation flow rate and time, which determine upper airway pressure. The combination of these variables determines gas distribution between the lungs and the oesophagus and subsequently, the stomach. During bag-valve-mask ventilation of patients in respiratory or cardiac arrest with oxygen supplementation (> or = 40% oxygen), a tidal volume of 6-7 ml kg(-1) ( approximately 500 ml) given over 1-2 s until the chest rises is recommended. For bag-valve-mask ventilation with room-air, a tidal volume of 10 ml kg(-1) (700-1000 ml) in an adult given over 2 s until the chest rises clearly is recommended. During mouth-to-mouth ventilation, a breath over 2 s sufficient to make the chest rise clearly (a tidal volume of approximately 10 ml kg(-1) approximately 700-1000 ml in an adult) is recommended.
A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.
Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé
2006-01-01
Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.
Schlenker, E H; Eikanger, J
1997-06-01
The purposes of these studies were: 1) to determine the effects of various doses of propranolol, a nonspecific beta-adrenergic antagonist, on ventilation, oxygen consumption, and body temperature in hamsters, and 2) to test the hypothesis that in hamsters the stimulatory effects of naloxone, an opioid receptor antagonist, on ventilation and oxygen consumption occur, at least in part, through the release of catecholamines that act via beta-adrenergic receptors. Propranolol, a non-specific beta adrenergic receptor antagonist, at a 20 mg/kg depressed body temperature, oxygen consumption, tidal volume, and ventilation relative to saline. The lower dose of 10 mg/kg had only transitory effects on tidal volume at 60 min and ventilation at 30 min post-injection-Naloxone (1 mg/kg) relative to saline stimulated ventilation and oxygen consumption. These effects were blocked by propranolol pretreatment. The results of these experiments demonstrate that in the hamster, 1) body temperature, oxygen consumption, and ventilation appear to be modulated by beta-adrenergic receptors, and 2) the stimulatory effects of naloxone on oxygen consumption and ventilation may occur through the interaction of endogenous opioids and beta-adrenergic receptor systems.
Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.
Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa
2018-02-27
The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pump for bilge slop or dirty oil, at the deck discharge. (3) For each powered ventilation system, outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pump for bilge slop or dirty oil, at the deck discharge. (3) For each powered ventilation system, outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
46 CFR 129.540 - Remote stopping-systems on OSVs of 100 or more gross tons.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pump for bilge slop or dirty oil, at the deck discharge. (3) For each powered ventilation system, outside the space ventilated. (4) For each fuel-oil pump, outside the space containing the pump. (5) For each cargo-transfer pump for combustible and flammable liquid, at each transfer-control station. (c...
40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system...
40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system...
40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system...
The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...
NASA Astrophysics Data System (ADS)
Brodny, Jarosław; Tutak, Magdalena
2016-12-01
One of the most dangerous and most commonly present risks in hard coal mines is methane hazard. During exploitation by longwall system with caving, methane is emitted to mine heading from the mined coal and coal left in a pile. A large amount of methane also flows from neighboring seams through cracks and fissures formed in rock mass. In a case of accumulation of explosive methane concentration in goaf zone and with appropriate oxygen concentration and occurrence of initials (e.g. spark or endogenous fire), it may come to the explosion of this gas. In the paper there are presented results of numerical analysis of mixture of air and methane streams flow through the real heading system of a mine, characterized by high methane hazard. The aim of the studies was to analyze the ventilation system of considered heading system and determination of braking zones in goaf zone, in which dangerous and explosive concertation of methane can occur with sufficient oxygen concentration equal to at least 12%. Determination of position of these zones is necessary for the selection of appropriate parameters of the ventilation system to ensure safety of the crew. Analysis of the scale of methane hazard allows to select such a ventilation system of exploitation and neighboring headings that ensures chemical composition of mining atmosphere required by regulation, and required efficiency of methane drainage. The obtained results clearly show that numerical methods, combined with the results of tests in real conditions can be successfully used for the analysis of variants of processes related to ventilation of underground mining, and also in the analysis of emergency states.
Unloading work of breathing during high-frequency oscillatory ventilation: a bench study
van Heerde, Marc; Roubik, Karel; Kopelent, Vitek; Plötz, Frans B; Markhorst, Dick G
2006-01-01
Introduction With the 3100B high-frequency oscillatory ventilator (SensorMedics, Yorba Linda, CA, USA), patients' spontaneous breathing efforts result in a high level of imposed work of breathing (WOB). Therefore, spontaneous breathing often has to be suppressed during high-frequency oscillatory ventilation (HFOV). A demand-flow system was designed to reduce imposed WOB. Methods An external gas flow controller (demand-flow system) accommodates the ventilator fresh gas flow during spontaneous breathing simulation. A control algorithm detects breathing effort and regulates the demand-flow valve. The effectiveness of this system has been evaluated in a bench test. The Campbell diagram and pressure time product (PTP) are used to quantify the imposed workload. Results Using the demand-flow system, imposed WOB is considerably reduced. The demand-flow system reduces inspiratory imposed WOB by 30% to 56% and inspiratory imposed PTP by 38% to 59% compared to continuous fresh gas flow. Expiratory imposed WOB was decreased as well by 12% to 49%. In simulations of shallow to normal breathing for an adult, imposed WOB is 0.5 J l-1 at maximum. Fluctuations in mean airway pressure on account of spontaneous breathing are markedly reduced. Conclusion The use of the demand-flow system during HFOV results in a reduction of both imposed WOB and fluctuation in mean airway pressure. The level of imposed WOB was reduced to the physiological range of WOB. Potentially, this makes maintenance of spontaneous breathing during HFOV possible and easier in a clinical setting. Early initiation of HFOV seems more possible with this system and the possibility of weaning of patients directly on a high-frequency oscillatory ventilator is not excluded either. PMID:16848915
Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
Kim, Do-Yeon; Robergs, Robert Andrew
2012-02-01
Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kull, K.
1988-09-01
This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
Misenheimer, Corey T.; Terry, Stephen D.
2016-06-27
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misenheimer, Corey T.; Terry, Stephen D.
Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less
Westinghouse Small Modular Reactor balance of plant and supporting systems design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Stansbury, C.; Taylor, C.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less
The effect of acute exposure to hyperbaric oxygen on respiratory system mechanics in the rat.
Rubini, Alessandro; Porzionato, Andrea; Zara, Susi; Cataldi, Amelia; Garetto, Giacomo; Bosco, Gerardo
2013-10-01
This study was designed to investigate the possible effects of acute hyperbaric hyperoxia on respiratory mechanics of anaesthetised, positive-pressure ventilated rats. We measured respiratory mechanics by the end-inflation occlusion method in nine rats previously acutely exposed to hyperbaric hyperoxia in a standard fashion. The method allows the measurements of respiratory system elastance and of both the "ohmic" and of the viscoelastic components of airway resistance, which respectively depend on the newtonian pressure dissipation due to the ohmic airway resistance to air flow, and on the viscoelastic pressure dissipation caused by respiratory system tissues stress-relaxation. The activities of inducible and endothelial NO-synthase in the lung's tissues (iNOS and eNOS respectively) also were investigated. Data were compared with those obtained in control animals. We found that the exposure to hyperbaric hyperoxia increased respiratory system elastance and both the "ohmic" and viscoelastic components of inspiratory resistances. These changes were accompanied by increased iNOS but not eNOS activities. Hyperbaric hyperoxia was shown to acutely induce detrimental effects on respiratory mechanics. A possible causative role was suggested for increased nitrogen reactive species production because of increased iNOS activity.
A novel method to determine air leakage in heat pump clothes dryers
Bansal, Pradeep; Mohabir, Amar; Miller, William
2016-01-06
A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less
A novel method to determine air leakage in heat pump clothes dryers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Mohabir, Amar; Miller, William
A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less
Research & Development Roadmap for Next-Generation Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Sutherland, Timothy; Foley, Kevin
2012-03-01
Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less
This project evaluated the effectiveness, first costs and operational costs of various types of residential ventilation systems in three different climates in the U.S. The Agency, through its Energy Star Program, recommends that builders construct homes that are energy efficient ...
Detail of heating coil for Machine Shop (Bldg. 163) ventilation ...
Detail of heating coil for Machine Shop (Bldg. 163) ventilation system Note portion of fan visible behind coil - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, Machine Shop, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM
Using spacecraft trace contaminant control systems to cure sick building syndrome
NASA Technical Reports Server (NTRS)
Graf, John C.
1994-01-01
Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.
Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less
Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A
2017-05-01
Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics profiles, and it was associated with a lower V T . Copyright © 2017 by Daedalus Enterprises.
Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Rivera, Fatonia L.
2010-01-01
NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.
[Air quality control systems: heating, ventilating, and air conditioning (HVAC)].
Bellucci Sessa, R; Riccio, G
2004-01-01
After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.
Ventilator use by emergency medical services during 911 calls in the United States.
El Sayed, Mazen; Tamim, Hani; Mailhac, Aurelie; N Clay, Mann
2018-05-01
Emergency and transport ventilators use in the prehospital field is not well described. This study examines trends of ventilator use by EMS agencies during 911 calls in the United States and identifies factors associated with this use. This retrospective study used four consecutive releases of the US National Emergency Medical Services Information System (NEMSIS) public research dataset (2011-2014) to describe scene EMS activations (911 calls) with and without reported ventilator use. Ventilator use was reported in 260,663 out of 28,221,321 EMS 911 scene activations (0.9%). Patients with ventilator use were older (mean age 67±18years), nearly half were males (49.2%), mostly in urban areas (80.2%) and cared for by advanced life support (ALS) EMS services (89.5%). CPAP mode of ventilation was most common (71.6%). "Breathing problem" was the most common dispatch complaint for EMS activations with ventilator use (63.9%). Common provider impression categories included "respiratory distress" (72.5%), "cardiac rhythm disturbance" (4.6%), "altered level of consciousness" (4.3%) and "cardiac arrest"(4.0%). Ventilator use was consistently higher at the Specialty Care Transport (SCT) and Air Medical Transport (AMT) service levels and increased over the study period for both suburban and rural EMS activations. Significant factors for ventilator use included demographic characteristics, EMS agency type, specific complaints, provider's primary impressions and condition codes. Providers at different EMS levels use ventilators during 911 scene calls in the US. Training of prehospital providers on ventilation technology is needed. The benefit and effectiveness of this intervention remain to be assessed. Copyright © 2017 Elsevier Inc. All rights reserved.
Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.
Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J
2014-11-01
Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P < .002). There were no differences between conventional ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV is feasible. Copyright © 2014 by Daedalus Enterprises.
A microprocessor-controlled tracheal insufflation-assisted total liquid ventilation system.
Parker, James Courtney; Sakla, Adel; Donovan, Francis M; Beam, David; Chekuri, Annu; Al-Khatib, Mohammad; Hamm, Charles R; Eyal, Fabien G
2009-09-01
A prototype time cycled, constant volume, closed circuit perfluorocarbon (PFC) total liquid ventilator system is described. The system utilizes microcontroller-driven display and master control boards, gear motor pumps, and three-way solenoid valves to direct flow. A constant tidal volume and functional residual capacity (FRC) are maintained with feedback control using end-expiratory and end-inspiratory stop-flow pressures. The system can also provide a unique continuous perfusion (bias flow, tracheal insufflation) through one lumen of a double-lumen endotracheal catheter to increase washout of dead space liquid. FRC and arterial blood gases were maintained during ventilation with Rimar 101 PFC over 2-3 h in normal piglets and piglets with simulated pulmonary edema induced by instillation of albumin solution. Addition of tracheal insufflation flow significantly improved the blood gases and enhanced clearance of instilled albumin solution during simulated edema.
Home energy efficiency and radon related risk of lung cancer: modelling study
Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael
2014-01-01
Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of home energy efficiency are not compromised by avoidable negative impacts on indoor air quality. PMID:24415631
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Walker, Iain; Ticci, Sara
Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g.,more » ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami, Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.« less
Humidification during invasive and noninvasive mechanical ventilation: 2012.
Restrepo, Ruben D; Walsh, Brian K
2012-05-01
We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.
Koutsoukou, Antonia; Perraki, Helen; Orfanos, Stylianos E; Koulouris, Nikolaos G; Tromaropoulos, Andreas; Sotiropoulou, Christina; Roussos, Charis
2009-12-01
The aim of this study was to investigate the effect of mechanical ventilation (MV) before acute respiratory distress syndrome (ARDS) on subsequent evolution of respiratory mechanics and blood gases in protectively ventilated patients with ARDS. Nineteen patients with ARDS were stratified into 2 groups according to ARDS onset relative to the onset of MV: In group A (n = 11), MV was applied at the onset of ARDS; in group B (n = 8), MV had been initiated before ARDS. Respiratory mechanics and arterial blood gas were assessed in early (
Cardiopulmonary resuscitation update.
Reynolds, Joshua C; Bond, Michael C; Shaikh, Sanober
2012-02-01
Cardiopulmonary resuscitation (CPR) is vital therapy in cardiac arrest care by lay and trained rescuers. Chest compressions are the key component of CPR. Ventilation and airway management should be secondary to high-quality and continuous chest compressions in patients receiving CPR. Only after the patient has had return of spontaneous circulation or completed a cycle of CPR with defibrillation (if appropriate) should attempts at securing an advanced airway be made. Even then, interruptions of chest compressions should be minimized to maintain cardiocerebral perfusion and increase survival. Finally, the ventilation rate should be no more than 8 to 10 breaths per minute. Copyright © 2012 Elsevier Inc. All rights reserved.
Noninvasive ventilation in a child affected by achondroplasia respiratory difficulty syndrome.
Ottonello, Giancarlo; Villa, Giovanna; Moscatelli, Andrea; Diana, Maria Cristina; Pavanello, Marco
2007-01-01
Achondroplasia can result in respiratory difficulty in early infancy, from anatomical abnormalities such as mid-facial hypoplasia and/or adenotonsillar hypertrophy, leading to obstructive apnea, or to pathophysiological changes occurring in nasopharyngeal or glossal muscle tone, related to neurological abnormalities (foramen magnum and/or hypoglossal canal problems, hydrocephalus), leading to central apnea. More often, the two respiratory components (central and obstructive) are both evident in mixed apnea. Polysomnographic recording should be used during preoperative and postoperative assessment of achondroplastic children and in the subsequent follow-up to assess the adequacy of continuing home respiratory support, including supplemental oxygen, bilevel positive airway pressure, or assisted ventilation.
Numerical simulation of gas distribution in goaf under Y ventilation mode
NASA Astrophysics Data System (ADS)
Li, Shengzhou; Liu, Jun
2018-04-01
Taking the Y type ventilation of the working face as the research object, diffusion equation is introduced to simulate the diffusion characteristics of gas, using Navier-Stokes equation and Brinkman equation to simulate the gas flow in working face and goaf, the physical model of gas flow in coal mining face was established. With numerical simulation software COMSOL multiphysics methods, gas distribution in goaf under Y ventilation mode is simulated and gas distribution of the working face, the upper corner and goaf is analysised. The results show that the Y type ventilation system can effectively improve the corner gas accumulation and overrun problem.
4. VENTILATION FAN SHOWING RELATIVE POSITION IN THE AIR TUNNEL. ...
4. VENTILATION FAN SHOWING RELATIVE POSITION IN THE AIR TUNNEL. - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY
The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...
This letter is to brings attention several concerns that the Agency has regarding the use of sanitizer and/or disinfectant products, and other types of antimicrobial products, to treat the surfaces of heating, ventilation
40 CFR 63.8243 - What equations and procedures must I use to demonstrate continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... hydrogen streams and end box ventilation system vents. For each consecutive 52-week period, you must determine the g Hg/Mg Cl2 produced from all by-product hydrogen streams and all end box ventilation system... weekly mercury emission rate in grams per week for each by-product hydrogen stream and for each end box...
Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.
ERIC Educational Resources Information Center
Corbett, Robert J.; Miller, Barbara
The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…
Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics
In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.
Aerobiology in the operating room and its implications for working standards.
Friberg, B; Friberg, S
2005-01-01
Two novel operating room (OR) ventilation concepts, i.e. the upward displacement or thermal convection system and the exponential ultra-clean laminar air flow (LAF) designed to function without extra walls, were evaluated from a bacteriological point of view. The thermal convection system (17 air changes/h) was compared with conventional ventilation (16 air changes/h) with an air inlet at the ceiling and evacuation at floor level. The exponential LAF was compared with the vertical ultra-clean LAF and the horizontal ultra-clean LAF, both with extra side walls. The comparison was made using strictly standardized simulated operations and, except for the horizontal LAF, it was performed in the same OR where the type of ventilation was changed. In the different areas important for surgical asepsis, the thermal system resulted in a twofold to threefold increase in bacterial air and surface counts compared to the conventional system (statistical significance = p < 0.05-0.0001). The bacteriological efficiency of the exponential LAF was equal to the horizontal and vertical LAF units with extra walls in the OR, and all three systems easily fulfilled the criteria for ultra-clean air, i.e. bacteria-carrying particles < 10/m3. In the areas important for surgical asepsis the turbulent ventilation systems yielded highly significant correlation between air and surface contamination (p < 0.02-0.0006). No such correlation existed in the LAF systems.
Żera, Tymoteusz; Przybylski, Jacek; Grygorowicz, Tomasz; Kasarełło, Kaja; Podobińska, Martyna; Mirowska-Guzel, Dagmara; Cudnoch-Jędrzejewska, Agnieszka
2018-04-01
Vasopressin (AVP) maintains body homeostasis by regulating water balance, cardiovascular system and stress response. AVP inhibits breathing through central vasopressin 1a receptors (V1aRs). Chemoreceptors within carotid bodies (CBs) detect chemical and hormonal signals in the bloodstream and provide sensory input to respiratory and cardiovascular centers of the brainstem. In the study we investigated if CBs contain V1aRs and how the receptors are involved in the regulation of ventilation by AVP. We first immunostained CBs for V1aRs and tyrosine hydroxylase, a marker of chemoreceptor type I (glomus) cells. In urethane-anesthetized adult Sprague-Dawley male rats, we then measured hemodynamic and respiratory responses to systemic (intravenous) or local (carotid artery) administration of AVP prior and after systemic blockade of V1aRs. Immunostaining of CBs showed colocalization of V1aRs and tyrosine hydroxylase within glomus cells. Systemic administration of AVP increased mean arterial blood pressure (MABP) and decreased respiratory rate (RR) and minute ventilation (MV). Local administration of AVP increased MV and RR without significant changes in MABP or heart rate. Pretreatment with V1aR antagonist abolished responses to local and intravenous AVP administration. Our findings show that chemosensory cells within CBs express V1aRs and that local stimulation of the CB with AVP increases ventilation, which is contrary to systemic effects of AVP manifested by decreased ventilation. The responses are mediated by V1aRs, as blockade of the receptors prevents changes in ventilation. We hypothesize that excitatory effects of AVP within the CB provide a counterbalancing mechanism for the inhibitory effects of systemically acting AVP on the respiration. Copyright © 2018 Elsevier Inc. All rights reserved.