Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo
2014-05-02
General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).
Summary of human responses to ventilation.
Seppänen, O A; Fisk, W J
2004-01-01
It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.
Horsley, Alex; Macleod, Kenneth; Gupta, Ruchi; Goddard, Nick; Bell, Nicholas
2014-01-01
Background The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. Methods A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. Results 10–90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was −0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range −3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. Conclusion The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus. PMID:24892522
Mechanical ventilation in disaster situations: a new paradigm using the AGILITIES Score System.
Wilkens, Eric P; Klein, Gary M
2010-01-01
The failure of life-critical systems such as mechanical ventilators in the wake of a pandemic or a disaster may result in death, and therefore, state and federal government agencies must have precautions in place to ensure availability, reliability, and predictability through comprehensive preparedness and response plans. All 50 state emergency preparedness response plans were extensively examined for the attention given to the critically injured and ill patient population during a pandemic or mass casualty event. Public health authorities of each state were contacted as well. Nine of 51 state plans (17.6 percent) included a plan or committee for mechanical ventilation triage and management in a pandemic influenza event. All 51 state plans relied on the Centers for Disease Control and Prevention Flu Surge 2.0 spreadsheet to provide estimates for their influenza planning. In the absence of more specific guidance, the authors have developed and provided guidelines recommended for ventilator triage and the implementation of the AGILITIES Score in the event of a pandemic, mass casualty event, or other catastrophic disaster. The authors present and describe the AGILITIES Score Ventilator Triage System and provide related guidelines to be adopted uniformly by government agencies and hospitals. This scoring system and the set ofguidelines are to be used iA disaster settings, such as Hurricane Katrina, and are based on three key factors: relative health, duration of time on mechanical ventilation, and patients' use of resources during a disaster. For any event requiring large numbers of ventilators for patients, the United States is woefully unprepared. The deficiencies in this aspect of preparedness include (1) lack of accountability for physical ventilators, (2) lack of understanding with which healthcare professionals can safely operate these ventilators, (3) lack of understanding from where additional ventilator resources exist, and (4) a triage strategy to provide ventilator support to those patients with the greatest chances of survival.
Żera, Tymoteusz; Przybylski, Jacek; Grygorowicz, Tomasz; Kasarełło, Kaja; Podobińska, Martyna; Mirowska-Guzel, Dagmara; Cudnoch-Jędrzejewska, Agnieszka
2018-04-01
Vasopressin (AVP) maintains body homeostasis by regulating water balance, cardiovascular system and stress response. AVP inhibits breathing through central vasopressin 1a receptors (V1aRs). Chemoreceptors within carotid bodies (CBs) detect chemical and hormonal signals in the bloodstream and provide sensory input to respiratory and cardiovascular centers of the brainstem. In the study we investigated if CBs contain V1aRs and how the receptors are involved in the regulation of ventilation by AVP. We first immunostained CBs for V1aRs and tyrosine hydroxylase, a marker of chemoreceptor type I (glomus) cells. In urethane-anesthetized adult Sprague-Dawley male rats, we then measured hemodynamic and respiratory responses to systemic (intravenous) or local (carotid artery) administration of AVP prior and after systemic blockade of V1aRs. Immunostaining of CBs showed colocalization of V1aRs and tyrosine hydroxylase within glomus cells. Systemic administration of AVP increased mean arterial blood pressure (MABP) and decreased respiratory rate (RR) and minute ventilation (MV). Local administration of AVP increased MV and RR without significant changes in MABP or heart rate. Pretreatment with V1aR antagonist abolished responses to local and intravenous AVP administration. Our findings show that chemosensory cells within CBs express V1aRs and that local stimulation of the CB with AVP increases ventilation, which is contrary to systemic effects of AVP manifested by decreased ventilation. The responses are mediated by V1aRs, as blockade of the receptors prevents changes in ventilation. We hypothesize that excitatory effects of AVP within the CB provide a counterbalancing mechanism for the inhibitory effects of systemically acting AVP on the respiration. Copyright © 2018 Elsevier Inc. All rights reserved.
Mine fire experiments and simulation with MFIRE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laage, L.W.; Yang, Hang
1995-12-31
A major concern of mine fires is the heat generated ventilation disturbances which can move products of combustion (POC) through unexpected passageways. Fire emergency planning requires simulation of the interaction of the fire and ventilation system to predict the state of the ventilation system and the subsequent distribution of temperatures and POC. Several computer models were developed by the U.S. Bureau of Mines (USBM) to perform this simulation. The most recent, MFIRE, simulates a mine`s ventilation system and its response to altered ventilation parameters such as the development of new mine workings or changes in ventilation control structures, external influencemore » such as varying outside temperatures, and internal influences such as fires. Extensive output allows quantitative analysis of the effects of the proposed alteration to die ventilation system. This paper describes recent USBM research to validate MFIRE`s calculation of temperature distribution in an airway due to a mine fire, as temperatures are the most significant source of ventilation disturbances. Fire tests were conducted at the Waldo Mine near Magdalena, NM. From these experiments, temperature profiles were developed as functions of time and distance from the fire and compared with simulations from MFIRE.« less
Clinical challenges in mechanical ventilation.
Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J
2016-04-30
Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proportional mechanical ventilation through PWM driven on/off solenoid valve.
Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G
2010-01-01
Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.
Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K
2015-05-01
Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
High tidal volume ventilation in infant mice.
Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D
2008-06-30
Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.
Circuit compliance compensation in lung protective ventilation.
Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo
2006-01-01
Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.
Respiratory mechanics in brain injury: A review.
Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta
2016-02-04
Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.
Lai, Tian-Shun; Wang, Zhi-Hong; Cai, Shao-Xi
2015-01-01
Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg). MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation. PMID:25635432
NASA Astrophysics Data System (ADS)
Passaro, Perry David
Misconceptions can be thought of as naive approaches to problem solving that are perceptually appealing but incorrect and inconsistent with scientific evidence (Piaget, 1929). One type of misconception involves flow distributions within circuits. This concept is important because miners' conceptual errors about flow distribution changes within complex circuits may be in part responsible for fatal mine disasters. Based on the theory that misconceptions of flow distribution changes within circuits were responsible for underground mine disasters involving mine ventilation circuits, a series of studies was undertaken with mining engineering students, professional mining engineers, as well as mine foremen, mine supervisors, mine rescue members, mine maintenance personnel, mining researchers and working miners to identify these conceptual errors and errors in mine ventilation procedures. Results indicate that misconceptions of flow distribution changes within circuits exist in over 70 percent of the subjects sampled. It is assumed that these misconceptions of flow distribution changes within circuits result in errors of judgment when miners are faced with inferring and changing ventilation arrangements when two or more mine sections are connected. Furthermore, it is assumed that these misconceptions are pervasive in the mining industry and may be responsible for at least two mine ventilation disasters. The findings of this study are consistent with Piaget's (1929) model of figurative and operative knowledge. This model states that misconceptions are in part due to a lack of knowledge of dynamic transformations and how to apply content information. Recommendations for future research include the development of an interactive expert system for training miners with ventilation arrangements. Such a system would meet the educational recommendations made by Piaget (1973b) by involving a hands-on approach that allows discovery, interaction, the opportunity to make mistakes and to review the cognitive concepts on which the subject relied during his manipulation of the ventilation system.
Are there benefits or harm from pressure targeting during lung-protective ventilation?
MacIntyre, Neil R; Sessler, Curtis N
2010-02-01
Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa
2018-01-01
Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.
1992-12-01
As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less
Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien
2018-01-01
Background Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. Methods The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. Results The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Conclusions Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. Trial registration ClinicalTrials.gov PRS / NCT03359148 PMID:29547638
Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey
2014-09-30
Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.
Sirsat, Tushar S; Dzialowski, Edward M
2016-04-15
Precocial birds begin embryonic life with an ectothermic metabolic phenotype and rapidly develop an endothermic phenotype after hatching. Switching to a high-energy, endothermic phenotype requires high-functioning respiratory and cardiovascular systems to deliver sufficient environmental oxygen to the tissues. We measured tidal volume (VT), breathing frequency (ƒ), minute ventilation (V̇e), and whole-animal oxygen consumption (V̇o2) in response to gradual cooling from 37.5°C (externally pipped paranates, EP) or 35°C (hatchlings) to 20°C along with response to hypercapnia during developmental transition from an ectothermic, EP paranate to endothermic hatchling. To examine potential eggshell constraints on EP ventilation, we repeated these experiments in artificially hatched early and late EP paranates. Hatchlings and artificially hatched late EP paranates were able to increase V̇o2significantly in response to cooling. EP paranates had high ƒ that decreased with cooling, coupled with an unchanging low VT and did not respond to hypercapnia. Hatchlings had significantly lower ƒ and higher VT and V̇e that increased with cooling and hypercapnia. In response to artificial hatching, all ventilation values quickly reached those of hatchlings and responded to hypercapnia. The timing of artificial hatching influenced the temperature response, with only artificially hatched late EP animals, exhibiting the hatchling ventilation response to cooling. We suggest one potential constraint on ventilatory responses of EP paranates is the rigid eggshell, limiting air sac expansion during inhalation and constraining VT Upon natural or artificial hatching, the VT limitation is removed and the animal is able to increase VT, V̇e, and thus V̇o2, and exhibit an endothermic phenotype. Copyright © 2016 the American Physiological Society.
Sirsat, Tushar S.
2016-01-01
Precocial birds begin embryonic life with an ectothermic metabolic phenotype and rapidly develop an endothermic phenotype after hatching. Switching to a high-energy, endothermic phenotype requires high-functioning respiratory and cardiovascular systems to deliver sufficient environmental oxygen to the tissues. We measured tidal volume (VT), breathing frequency (ƒ), minute ventilation (V̇e), and whole-animal oxygen consumption (V̇o2) in response to gradual cooling from 37.5°C (externally pipped paranates, EP) or 35°C (hatchlings) to 20°C along with response to hypercapnia during developmental transition from an ectothermic, EP paranate to endothermic hatchling. To examine potential eggshell constraints on EP ventilation, we repeated these experiments in artificially hatched early and late EP paranates. Hatchlings and artificially hatched late EP paranates were able to increase V̇o2 significantly in response to cooling. EP paranates had high ƒ that decreased with cooling, coupled with an unchanging low VT and did not respond to hypercapnia. Hatchlings had significantly lower ƒ and higher VT and V̇e that increased with cooling and hypercapnia. In response to artificial hatching, all ventilation values quickly reached those of hatchlings and responded to hypercapnia. The timing of artificial hatching influenced the temperature response, with only artificially hatched late EP animals, exhibiting the hatchling ventilation response to cooling. We suggest one potential constraint on ventilatory responses of EP paranates is the rigid eggshell, limiting air sac expansion during inhalation and constraining VT. Upon natural or artificial hatching, the VT limitation is removed and the animal is able to increase VT, V̇e, and thus V̇o2, and exhibit an endothermic phenotype. PMID:26818053
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...
46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...
Sperber, Jesper; Lipcsey, Miklós; Larsson, Anders; Larsson, Anders; Sjölin, Jan; Castegren, Markus
2015-05-10
Protective ventilation with lower tidal volume (VT) and higher positive end-expiratory pressure (PEEP) reduces the negative additive effects of mechanical ventilation during systemic inflammatory response syndrome. We hypothesised that protective ventilation during surgery would affect the organ-specific immune response in an experimental animal model of endotoxin-induced sepsis-like syndrome. 30 pigs were laparotomised for 2 hours (h), after which a continuous endotoxin infusion was started at 0.25 micrograms × kg(-1) × h(-1) for 5 h. Catheters were placed in the carotid artery, hepatic vein, portal vein and jugular bulb. Animals were randomised to two protective ventilation groups (n = 10 each): one group was ventilated with VT 6 mL × kg(-1) during the whole experiment while the other group was ventilated during the surgical phase with VT of 10 mL × kg(-1). In both groups PEEP was 5 cmH2O during surgery and increased to 10 cmH2O at the start of endotoxin infusion. A control group (n = 10) was ventilated with VT of 10 mL × kg(-1) and PEEP 5 cm H20 throughout the experiment. In four sample locations we a) simultaneously compared cytokine levels, b) studied the effect of protective ventilation initiated before and during endotoxemia and c) evaluated protective ventilation on organ-specific cytokine levels. TNF-alpha levels were highest in the hepatic vein, IL-6 levels highest in the artery and jugular bulb and IL-10 levels lowest in the artery. Protective ventilation initiated before and during endotoxemia did not differ in organ-specific cytokine levels. Protective ventilation led to lower levels of TNF-alpha in the hepatic vein compared with the control group, whereas no significant differences were seen in the artery, portal vein or jugular bulb. Variation between organs in cytokine output was observed during experimental sepsis. We see no implication from cytokine levels for initiating protective ventilation before endotoxemia. However, during endotoxemia protective ventilation attenuates hepatic inflammatory cytokine output contributing to a reduced total inflammatory burden.
Lung Mechanics in Marine Mammals
2013-09-30
system of anesthetized pinnipeds (Table 1, Fig. 1). In some animals where euthanasia was planned, we managed to measure both lung mechanics in vivo...during spontaneous breathing (dynamic) and mechanical ventilation (static), and the static compliance after euthanasia . Table 1. Number of samples...airway and esophageal pressures during voluntary breathing and mechanical ventilation (Fig. 1). Aim 2: In the second year we also used a fast response
Mozhaev, G A; Tikhonovskiĭ, I Iu
1992-01-01
The use of physical methods, namely low frequency magnetic field in critically ill patients under respiratory therapy made it possible to prevent and in case of their development to effectively treat pyoinflammatory bronchopulmonary complications that accompany prolonged controlled lung ventilation. The results obtained were due to the elimination of an unfavourable effect of controlled lung ventilation on natural resistance and immune response of the respiratory tract because of normalization of physicochemical properties of the tracheobronchial tree secretion, enhanced functional capacities of phagocytes, repaired bonds between cellular and humoral local immunity in the lungs.
Cost containment and mechanical ventilation in the United States.
Cohen, I L; Booth, F V
1994-08-01
In many ICUs, admission and discharge hinge on the need for intubation and ventilatory support. As few as 5% to 10% of ICU patients require prolonged mechanical ventilation, and this patient group consumes > or = 50% of ICU patient days and ICU resources. Prolonged ventilatory support and chronic ventilator dependency, both in the ICU and non-ICU settings, have a significant and growing impact on healthcare economics. In the United States, the need for prolonged mechanical ventilation is increasingly recognized as separate and distinct from the initial diagnosis and/or procedure that leads to hospitalization. This distinction has led to improved reimbursement under the prospective diagnosis-related group (DRG) system, and demands more precise accounting from healthcare providers responsible for these patients. Using both published and theoretical examples, mechanical ventilation in the United States is discussed, with a focus on cost containment. Included in the discussion are ventilator teams, standards of care, management protocols, stepdown units, rehabilitation units, and home care. The expanding role of total quality management (TQM) is also presented.
Pogodin, M A; Granstrem, M P; Dimitrienko, A I
2007-04-01
We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.
Krebs, Joerg; Pelosi, Paolo; Tsagogiorgas, Charalambos; Haas, Jenny; Yard, Benito; Rocco, Patricia R M; Luecke, Thomas
2011-09-15
This study aimed to assess pulmonary inflammatory and fibrogenic responses and their impact on lung mechanics and histology in healthy rats submitted to protective mechanical ventilation for different experimental periods. Eighteen Wistar rats were randomized to undergo open lung-mechanical ventilation (OL-MV) for 1, 6 or 12 h. Following a recruitment maneuver, a decremental PEEP trial was performed and PEEP set according to the minimal respiratory system static elastance. Respiratory system, lung, and chest-wall elastance and gas-exchange were maintained throughout the 12 h experimental period. Histological lung injury score remained low at 1 and 6 h, but was higher at 12 h due to overinflation. A moderate inflammatory response was observed with a distinct peak at 6h. Compared to unventilated controls, type I procollagen mRNA expression was decreased at 1 and 12h, while type III procollagen expression decreased throughout the 12h experimental period. In conclusion, OL-MV in healthy rats yielded overinflation after 6 h even though respiratory elastance and gas-exchange were preserved for up to 12 h. Copyright © 2011 Elsevier B.V. All rights reserved.
A new system for understanding modes of mechanical ventilation.
Chatburn, R L; Primiano, F P
2001-06-01
Numerous ventilation modes and ventilation options have become available as new mechanical ventilators have reached the market. Ventilator manufacturers have no standardized terminology for ventilator modes and ventilation options, and ventilator operator's manuals do not help the clinician compare the modes of ventilators from different manufacturers. This article proposes a standardized system for classifying ventilation modes, based on general engineering principles and a small set of explicit definitions. Though there may be resistance by ventilator manufacturers to a standardized system of ventilation terminology, clinicians and health care equipment purchasers should adopt such a system in the interest of clear communication--the lack of which prevents clinicians from fully understanding the therapies they administer and could compromise the quality of patient care.
Schilling, Thomas; Kozian, Alf; Senturk, Mert; Huth, Christof; Reinhold, Annegret; Hedenstierna, Göran; Hachenberg, Thomas
2011-07-01
One-lung ventilation (OLV) results in alveolar proinflammatory effects, whereas their extent may depend on administration of anesthetic drugs. The current study evaluates the effects of different volatile anesthetics compared with an intravenous anesthetic and the relationship between pulmonary and systemic inflammation in patients undergoing open thoracic surgery. Sixty-three patients scheduled for elective open thoracic surgery were randomized to receive anesthesia with 4 mg · kg⁻¹ · h⁻¹ propofol (n = 21), 1 minimum alveolar concentration desflurane (n = 21), or 1 minimum alveolar concentration sevoflurane (n = 21). Analgesia was provided by remifentanil (0.25 μg · kg⁻¹ · min⁻¹). After intubation, all patients received pressure-controlled mechanical ventilation with a tidal volume of approximately 7 ml · kg ideal body weight, a peak airway pressure lower than 30 cm H₂O, a respiratory rate adjusted to a Paco2 of 40 mmHg, and a fraction of inspired oxygen lower than 0.8 during OLV. Fiberoptic bronchoalveolar lavage of the ventilated lung was performed immediately after intubation and after surgery. The expression of inflammatory cytokines was determined in the lavage fluids and serum samples by multiplexed bead-based immunoassays. Proinflammatory cytokines increased in the ventilated lung after OLV. Mediator release was more enhanced during propofol anesthesia compared with desflurane or sevoflurane administration. For tumor necrosis factor-α, the values were as follows: propofol, 5.7 (8.6); desflurane, 1.6 (0.6); and sevoflurane, 1.6 (0.7). For interleukin-8, the values were as follows: propofol, 924 (1680); desflurane, 390 (813); and sevoflurane, 412 (410). (Values are given as median [interquartile range] pg · ml⁻¹). Interleukin-1β was similarly reduced during volatile anesthesia. The postoperative serum interleukin-6 concentration was increased in all patients, whereas the systemic proinflammatory response was negligible. OLV increases the alveolar concentrations of proinflammatory mediators in the ventilated lung. Both desflurane and sevoflurane suppress the local alveolar, but not the systemic, inflammatory responses to OLV and thoracic surgery.
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b) The...
Interactive simulation system for artificial ventilation on the internet: virtual ventilator.
Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki
2004-12-01
To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.
Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation.
Manitsopoulos, Nikolaos; Orfanos, Stylianos E; Kotanidou, Anastasia; Nikitopoulou, Ioanna; Siempos, Ilias; Magkou, Christina; Dimopoulou, Ioanna; Zakynthinos, Spyros G; Armaganidis, Apostolos; Maniatis, Nikolaos A
2015-02-14
Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were induced by HVt but were significantly attenuated by simvastatin. Microvascular protein permeability increase 20-fold by injurious ventilation but only 4-fold with simvastatin. There was a 3-fold increase in plasma Tumor Necrosis Factor-α, a 7-fold increase in plasma Interleukin-6 and a 20-fold increase in lavage fluid Matrix-Metalloprotease-9 by HVt but simvastatin reduced these levels to control. Lung tissue vascular endothelial cadherin expression was significantly reduced by injurious ventilation but remained preserved by simvastatin. High-dose simvastatin prevents experimental hyperinflation lung injury by angioprotective and anti-inflammatory effects.
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a) Each exhaust type mechanical ventilation system required under § 154.1200 (a) must have ducts for...
Annual verifications--a tick-box exercise?
Walker, Gwen; Williams, David
2014-09-01
With the onus on healthcare providers and their staff to protect patients against all elements of 'avoidable harm' perhaps never greater, Gwen Walker, a highly experienced infection prevention control nurse specialist, and David Williams, MD of Approved Air, who has 30 years' experience in validation and verification of ventilation and ultraclean ventilation systems, examine changing requirements for, and trends in, operating theatre ventilation. Validation and verification reporting on such vital HVAC equipment should not, they argue, merely be viewed as a 'tick-box exercise'; it should instead 'comprehensively inform key stakeholders, and ultimately form part of clinical governance, thus protecting those ultimately named responsible for organisation-wide safety at Trust board level'.
Montón, C; Ewig, S; Torres, A; El-Ebiary, M; Filella, X; Rañó, A; Xaubet, A
1999-07-01
The aim of the study was to assess the potential role of glucocorticoids (GC) in modulating systemic and pulmonary inflammatory responses in mechanically ventilated patients with severe pneumonia. Twenty mechanically ventilated patients with pneumonia treated at a respiratory intensive care unit (RICU) of a 1,000-bed teaching hospital were prospectively studied. All patients had received prior antimicrobial treatment. Eleven patients received GC (mean+/-SD dose of i.v. methylprednisolone 677+/-508 mg for 9+/-7 days), mainly for bronchial dilatation. Serum and bronchoalveolar lavage fluid (BALF) tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6 and C-reactive protein levels were measured in all patients. The inflammatory response was attenuated in patients receiving GC, both systemically (IL-6 1,089+/-342 versus 630+/-385 pg x mL(-1), p=0.03; C-reactive protein 34+/-5 versus 19+/-5 mg x L(-1), p=0.04) and locally in BALF (TNF-alpha 118+/-50 versus 24+/-5 pg x mL(-1), p= 0.05; neutrophil count: 2.4+/-1.1 x 10(9) cells x L(-1) (93+/-3%) versus 1.9+/-1.8 x 10(9) cells x L(-1) (57+/-16%), p=0.03). Four of the 11 (36%) patients receiving GC died compared to six (67%) who were not receiving GC (p=0.37). The present pilot study suggests that glucocorticoids decrease systemic and lung inflammatory responses in mechanically ventilated patients with severe pneumonia receiving antimicrobial treatment.
33 CFR 183.620 - Natural ventilation system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...
33 CFR 183.620 - Natural ventilation system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets the...
Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R
2014-01-01
The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y; Kadoya, N; Kabus, S
Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less
Cost of ventilation and effect of digestive state on the ventilatory response of the tegu lizard.
Skovgaard, Nini; Wang, Tobias
2004-07-12
We performed simultaneous measurements of ventilation, oxygen uptake and carbon dioxide production in the South American lizard, Tupinambis merianae, equipped with a mask and maintained at 25 degrees C. Ventilation of resting animals was stimulated by progressive exposure to hypercapnia (2, 4 and 6%) or hypoxia (15, 10, 8 and 6%) in inspired gas mixture. This was carried out in both fasting and digesting animals. The ventilatory response to hypercapnia and hypoxia were affected by digestive state, with a more vigorous ventilatory response in digesting animals compared to fasting animals. Hypoxia doubled total ventilation while hypercapnia led to a four-fold increase in total ventilation both accomplished through an increase in tidal volume. Oxygen uptake remained constant during all hypercapnic exposures while there was an increase during hypoxia. Cost of ventilation was estimated to be 17% during hypoxia but less than 1% during hypercapnia. Our data indicate that ventilation can be greatly elevated at a small energetic cost.
Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J
2016-03-01
Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO 2 -based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system.
Dols, W. Stuart.; Emmerich, Steven J.; Polidoro, Brian J.
2016-01-01
Building energy analysis tools are available in many forms that provide the ability to address a broad spectrum of energy-related issues in various combinations. Often these tools operate in isolation from one another, making it difficult to evaluate the interactions between related phenomena and interacting systems, forcing oversimplified assumptions to be made about various phenomena that could otherwise be addressed directly with another tool. One example of such interdependence is the interaction between heat transfer, inter-zone airflow and indoor contaminant transport. In order to better address these interdependencies, the National Institute of Standards and Technology (NIST) has developed an updated version of the multi-zone airflow and contaminant transport modelling tool, CONTAM, along with a set of utilities to enable coupling of the full CONTAM model with the TRNSYS simulation tool in a more seamless manner and with additional capabilities that were previously not available. This paper provides an overview of these new capabilities and applies them to simulating a medium-size office building. These simulations address the interaction between whole-building energy, airflow and contaminant transport in evaluating various ventilation strategies including natural and demand-controlled ventilation. Practical Application CONTAM has been in practical use for many years allowing building designers, as well as IAQ and ventilation system analysts, to simulate the complex interactions between building physical layout and HVAC system configuration in determining building airflow and contaminant transport. It has been widely used to design and analyse smoke management systems and evaluate building performance in response to chemical, biological and radiological events. While CONTAM has been used to address design and performance of buildings implementing energy conserving ventilation systems, e.g., natural and hybrid, this new coupled simulation capability will enable users to apply the tool to couple CONTAM with existing energy analysis software to address the interaction between indoor air quality considerations and energy conservation measures in building design and analysis. This paper presents two practical case studies using the coupled modelling tool to evaluate IAQ performance of a CO2-based demand-controlled ventilation system under different levels of building envelope airtightness and the design and analysis of a natural ventilation system. PMID:27099405
Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas
2017-09-01
Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn
2010-01-01
The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
Investigation of air cleaning system response to accident conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrae, R.W.; Bolstad, J.W.; Foster, R.D.
1980-01-01
Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.
Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L
2014-01-01
When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats. PMID:24492841
Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L
2014-04-15
When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.
SY Tank Farm ventilation isolation option risk assessment report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, T.B.; Morales, S.D.
The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Rudd and D. Bergey
Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.« less
In hamsters the D1 receptor antagonist SCH23390 depresses ventilation during hypoxia.
Schlenker, Evelyn H
2008-01-02
During exposure of animals to hypoxia, brain and blood dopamine levels increase stimulating dopaminergic receptors which influence the integrated ventilatory response to low oxygen. The purpose of the present study is to test the hypothesis that in conscious hamsters, systemic antagonism of D(1) receptors would depress their breathing in air and in response to hypoxic and hypercapnic challenges. Nine male hamsters were treated with saline or 0.25 mg/kg SCH-23390 (SCH), a D(1) receptor antagonist that crosses the blood-brain barrier. Ventilation was determined using the barometric method, and oxygen consumption and CO(2) production were evaluated utilizing the flow-through method. During exposure to air, SCH decreased frequency of breathing. During exposure to hypoxia (10% oxygen in nitrogen), relative to saline, SCH-treated hamsters decreased minute ventilation by decreasing tidal volume and oxygen consumption but not CO(2) production. During exposure to hypercapnia (5% CO(2) in 95% O(2)), frequency of breathing was decreased with SCH, but there was no significant effect on minute ventilation. Relative to saline treatment body temperature was lower in SCH-treated hamsters by 0.6 degrees C. These results demonstrate that in hamsters D(1) receptors can modulate control of ventilation in air and during hypoxia and hypercapnic exposures. Whether D(1) receptors located centrally or on carotid bodies modulate these effects is not clear from this study.
Mobile communication devices causing interference in invasive and noninvasive ventilators.
Dang, Bao P; Nel, Pierre R; Gjevre, John A
2007-06-01
The aim of this study was to assess if common mobile communication systems would cause significant interference on mechanical ventilation devices and at what distances would such interference occur. We tested all the invasive and noninvasive ventilatory devices used within our region. This consisted of 2 adult mechanical ventilators, 1 portable ventilator, 2 pediatric ventilators, and 2 noninvasive positive pressure ventilatory devices. We operated the mobile devices from the 2 cellular communication systems (digital) and 1 2-way radio system used in our province at varying distances from the ventilators and looked at any interference they created. We tested the 2-way radio system, which had a fixed operation power output of 3.0 watts, the Global Systems for Mobile Communication cellular system, which had a maximum power output of 2.0 watts and the Time Division Multiple Access cellular system, which had a maximum power output of 0.2 watts on our ventilators. The ventilators were ventilating a plastic lung at fixed settings. The mobile communication devices were tested at varying distances starting at zero meter from the ventilator and in all operation modes. The 2-way radio caused the most interference on some of the ventilators, but the maximum distance of interference was 1.0 m. The Global Systems for Mobile Communication system caused significant interference only at 0 m and minor interference at 0.5 m on only 1 ventilator. The Time Division Multiple Access system caused no interference at all. Significant interference consisted of a dramatic rise and fluctuation of the respiratory rate, pressure, and positive end-expiratory pressure of the ventilators with no normalization when the mobile device was removed. From our experiment on our ventilators with the communication systems used in our province, we conclude that mobile communication devices such as cellular phones and 2-way radios are safe and cause no interference unless operated at very close distances of less than 1 meter.
Analysis of radon reduction and ventilation systems in uranium mines in China.
Hu, Peng-hua; Li, Xian-jie
2012-09-01
Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.
Julien, Cécile A; Joseph, Vincent; Bairam, Aida
2011-08-15
In human neonates, caffeine therapy for apnoea of prematurity, especially when associated with hypoxemia, is maintained for several weeks after birth. In the present study, we used newborn rats and whole-body plethysmography to test whether chronic exposure to neonatal caffeine treatment (NCT), alone or combined with neonatal intermittent hypoxia (n-IH) alters: (1) baseline ventilation and response to hypoxia (12% O(2), 20 min); and (2) response to acute i.p. injection of caffeine citrate (20 mg/kg) or domperidone, a peripheral dopamine D2 receptor antagonist (1 mg/kg). Four groups of rats were studied as follows: raised under normal conditions with daily gavage with water (NWT) or NCT, or exposed to n-IH (n-IH+NWT and n-IH+NCT) from postnatal days 3 to 12. In n-IH+NCT rats, baseline ventilation was higher than in the other groups. Caffeine or domperidone enhanced baseline ventilation only in NWT and n-IH+NWT rats, but neither caffeine nor domperidone affected the hypoxic ventilatory response in these groups. In n-IH+NWT rats, the response during the early phase of hypoxia (<10 min) was higher than in other groups. During the late response phase to hypoxia (20 min), ventilation was lower in n-IH+NWT and n-IH+NCT rats compared to NWT or NCT, and were not affected by caffeine or domperidone injection. NCT or caffeine injection decreased baseline apnoea frequency in all groups. These data suggest that chronic exposure to NCT alters both carotid body dopaminergic and adenosinergic systems and central regulation of breathing under baseline conditions and in response to hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.
Peinado, Ana B; Rojo, Jesús J; Calderón, Francisco J; Maffulli, Nicola
2014-01-01
The anaerobic threshold (AT) has been one of the most studied of all physiological variables. Many authors have proposed the use of several markers to determine the moment at with the AT is reached. The present work discusses the physiological responses made to exercise - the measurement of which indicates the point at which the AT is reached - and how these responses might be controlled by the central nervous system. The detection of the AT having been reached is a sign for the central nervous system (CNS) to respond via an increase in efferent activity via the peripheral nervous system (PNS). An increase in CNS and PNS activities are related to changes in ventilation, cardiovascular function, and gland and muscle function. The directing action of the central command (CC) allows for the coordination of the autonomous and motor systems, suggesting that the AT can be identified in the many ways: changes in lactate, ventilation, plasma catecholamines, heart rate (HR), salivary amylase and muscular electrical activity. This change in response could be indicative that the organism would face failure if the exercise load continued to increase. To avoid this, the CC manages the efferent signals that show the organism that it is running out of homeostatic potential.
2014-01-01
The anaerobic threshold (AT) has been one of the most studied of all physiological variables. Many authors have proposed the use of several markers to determine the moment at with the AT is reached. The present work discusses the physiological responses made to exercise - the measurement of which indicates the point at which the AT is reached - and how these responses might be controlled by the central nervous system. The detection of the AT having been reached is a sign for the central nervous system (CNS) to respond via an increase in efferent activity via the peripheral nervous system (PNS). An increase in CNS and PNS activities are related to changes in ventilation, cardiovascular function, and gland and muscle function. The directing action of the central command (CC) allows for the coordination of the autonomous and motor systems, suggesting that the AT can be identified in the many ways: changes in lactate, ventilation, plasma catecholamines, heart rate (HR), salivary amylase and muscular electrical activity. This change in response could be indicative that the organism would face failure if the exercise load continued to increase. To avoid this, the CC manages the efferent signals that show the organism that it is running out of homeostatic potential. PMID:24818009
Code of Federal Regulations, 2014 CFR
2014-01-01
... serve the load. Eligible borrower means a utility system that has direct or indirect responsibility for... analysis of energy flows in a building, process, or system with the goal of identifying opportunities to... output. HVAC means heating, ventilation, and air conditioning. Load means the Power delivered to power...
Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator
Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou
2014-01-01
Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318
Ventilation System Effectiveness and Tested Indoor Air Quality Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin; Bergey, Daniel
In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less
Ventilation System Effectiveness and Tested Indoor Air Quality Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudd, Armin; Bergey, Daniel
Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less
Analysis of the systems of ventilation of residential houses of Ukraine and Estonia
NASA Astrophysics Data System (ADS)
Savchenko, Olena; Zhelykh, Vasyl; Voll, Hendrik
2017-12-01
The most common ventilation system in residential buildings in Ukraine is natural ventilation. In recent years, due to increased tightness of structures, an increase in the content of synthetic finishing materials in them, the quality of microclimate parameters deteriorated. One of the measures to improve the parameters of indoor air in residential buildings is the use of mechanical inflow and exhaust ventilation system. In this article the regulatory documents concerning the design of ventilation systems in Ukraine and Estonia and the requirements for air exchange in residential buildings are considered. It is established that the existing normative documents in Ukraine are analogous to European norms, which allow design the system of ventilation of residential buildings according to European standards. However, the basis for the design of ventilation systems in Ukraine is the national standards, in which mechanical ventilation, unfortunately, is provided only for the design of high-rise buildings. To maintain acceptable microclimate parameters in residential buildings, it is advisable for designers to apply the requirements for designing ventilation systems in accordance with European standards.
Krajewski, Wojciech; Kucharska, Malgorzata; Wesolowski, Wiktor; Stetkiewicz, Jan; Wronska-Nofer, Teresa
2007-03-01
The aim of this study was to assess the level of occupational exposure to nitrous oxide (N(2)O) in operating rooms (ORs), as related to different ventilation and scavenging systems used to remove waste anaesthetic gases from the work environment. The monitoring of N(2)O in the air covered 35 ORs in 10 hospitals equipped with different systems for ventilation and anaesthetic scavenging. The examined systems included: natural ventilation with supplementary fresh air provided by a pressure ventilation system (up to 6 air changes/h); pressure and exhaust ventilation systems equipped with ventilation units supplying fresh air to and discharging contaminated air outside the working area (more than 10 air changes/h); complete air-conditioning system with laminar air flow (more than 15 air changes/h). The measurements were carried out during surgical procedures (general anaesthesia induced intravenously and maintained with inhaled N(2)O and sevofluran delivered through cuffed endotracheal tubes) with connected or disconnected air scavenging. Air was collected from the breathing zone of operating personnel continuously through the whole time of anaesthesia to Tedlar((R)) bags, and N(2)O concentrations in air samples were analyzed by adsorption gas chromatography/mass spectrometry. N(2)O levels in excess of the occupational exposure limit (OEL) value of 180mg/m(3) were registered in all ORs equipped with ventilation systems alone. The OEL value was exceeded several times in rooms with natural ventilation plus supplementary pressure ventilations and twice or less in those with pressure/exhaust ventilation systems or air conditioning. N(2)O levels below or within the OEL value were observed in rooms where the system of air conditioning or pressure/exhaust ventilation was combined with scavenging systems. Systems combining natural/pressure ventilation with scavenging were inadequate to maintain N(2)O concentration below the OEL value. Air conditioning and an efficient pressure/exhaust ventilation (above 12 air exchanges/h) together with efficient active scavenging systems are sufficient to sustain N(2)O exposure in ORs at levels below or within the OEL value of 180mg/m(3).
Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.
2016-06-20
In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
46 CFR 153.312 - Ventilation system standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... (approx. 32.8 ft) from openings into or ventilation intakes for, accommodation or service spaces. (b) A...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, William; Walker, Iain
One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less
Clark, T J; Godfrey, S
1969-05-01
1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.
2013-01-01
Introduction Polytrauma often results in significant hypoxemia secondary to direct lung contusion or indirectly through atelectasis, systemic inflammatory response, large volume fluid resuscitation and blood product transfusion. In addition to causing hypoxemia, atelectasis and acute lung injury can lead to right ventricular failure through an acute increase in pulmonary vascular resistance. Mechanical ventilation is often applied, accompanied with recruitment maneuvers and positive end-expiratory pressure in order to recruit alveoli and reverse atelectasis, while preventing excessive alveolar damage. This strategy should lead to the reversal of the hypoxemic condition and the detrimental heart–lung interaction that may occur. However, as described in this case report, hemodynamic instability and intractable alveolar atelectasis sometimes do not respond to conventional ventilation strategies. Case presentation We describe the case of a 21-year-old Caucasian man with severe chest trauma requiring surgical interventions, who developed refractory hypoxemia and overt right ventricular failure. After multiple failed attempts of recruitment using conventional ventilation, the patient was ventilated with high-frequency oscillatory ventilation. This mode of ventilation allowed the reversal of the hemodynamic effects of severe hypoxemia and of the acute cor pulmonale. We use this case report to describe the physiological advantages of high-frequency oscillatory ventilation in patients with chest trauma, and formulate the arguments to explain the positive effect observed in our patient. Conclusions High-frequency oscillatory ventilation can be used in the context of a blunt chest trauma accompanied by severe hypoxemia due to atelectasis. The positive effect is due to its capacity to recruit the collapsed alveoli and, as a result, the relief of increased pulmonary vascular resistance and subsequently the reversal of acute cor pulmonale. This approach may represent an alternative in case of failure of the conventional ventilation strategy. PMID:23855954
Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.
Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S
2017-08-01
Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.
Patient-ventilator asynchrony affects pulse pressure variation prediction of fluid responsiveness.
Messina, Antonio; Colombo, Davide; Cammarota, Gianmaria; De Lucia, Marta; Cecconi, Maurizio; Antonelli, Massimo; Corte, Francesco Della; Navalesi, Paolo
2015-10-01
During partial ventilatory support, pulse pressure variation (PPV) fails to adequately predict fluid responsiveness. This prospective study aims to investigate whether patient-ventilator asynchrony affects PPV prediction of fluid responsiveness during pressure support ventilation (PSV). This is an observational physiological study evaluating the response to a 500-mL fluid challenge in 54 patients receiving PSV, 27 without (Synch) and 27 with asynchronies (Asynch), as assessed by visual inspection of ventilator waveforms by 2 skilled blinded physicians. The area under the curve was 0.71 (confidence interval, 0.57-0.83) for the overall population, 0.86 (confidence interval, 0.68-0.96) in the Synch group, and 0.53 (confidence interval, 0.33-0.73) in the Asynch group (P = .018). Sensitivity and specificity of PPV were 78% and 89% in the Synch group and 36% and 46% in the Asynch group. Logistic regression showed that the PPV prediction was influenced by patient-ventilator asynchrony (odds ratio, 8.8 [2.0-38.0]; P < .003). Of the 27 patients without asynchronies, 12 had a tidal volume greater than or equal to 8 mL/kg; in this subgroup, the rate of correct classification was 100%. Patient-ventilator asynchrony affects PPV performance during partial ventilatory support influencing its efficacy in predicting fluid responsiveness. Copyright © 2015 Elsevier Inc. All rights reserved.
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
46 CFR 111.103-3 - Machinery space ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the supply...
Academic Emergency Medicine Physicians' Knowledge of Mechanical Ventilation.
Wilcox, Susan R; Strout, Tania D; Schneider, Jeffrey I; Mitchell, Patricia M; Smith, Jessica; Lutfy-Clayton, Lucienne; Marcolini, Evie G; Aydin, Ani; Seigel, Todd A; Richards, Jeremy B
2016-05-01
Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM) education or clinical practice. The objective of this study was to quantify EM attendings' education, experience, and knowledge regarding mechanical ventilation in the emergency department. We developed a survey of academic EM attendings' educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings' scores on the assessment instrument and their training, education, and comfort with ventilation. Of 394 EM attendings surveyed, 211 responded (53.6%). Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46%) reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one's own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians' comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians' performance on an assessment tool for mechanical ventilation is most strongly correlated with their self-reported comfort with mechanical ventilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhainaut, J.F.; Devaux, J.Y.; Monsallier, J.F.
1986-07-01
Continuous positive pressure ventilation is associated with a reduction in left ventricular preload and cardiac output, but the mechanisms responsible are controversial. The decrease in left ventricular preload may result exclusively from a decreased systemic venous return due to increased pleural pressure, or from an additional effect such as decreased left ventricular compliance. To determine the mechanisms responsible, we studied the changes in cardiac output induced by continuous positive pressure ventilation in eight patients with the adult respiratory distress syndrome. We measured cardiac output by thermodilution, and biventricular ejection fraction by equilibrium gated blood pool scintigraphy. Biventricular end-diastolic volumes weremore » then calculated by dividing stroke volume by ejection fraction. As positive end-expiratory pressure increased from 0 to 20 cm H/sub 2/O, stroke volume and biventricular end-diastolic volumes fell about 25 percent, and biventricular ejection fraction remained unchanged. At 20 cm H/sub 2/O positive end-expiratory pressure, volume expansion for normalizing cardiac output restored biventricular end-diastolic volumes without markedly changing biventricular end-diastolic transmural pressures. The primary cause of the reduction in left ventricular preload with continuous positive pressure ventilation appears to be a fall in venous return and hence in right ventricular stroke volume, without evidence of change in left ventricular diastolic compliance.« less
Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.
Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy
2014-07-01
In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.
When a disaster strikes without warning: how effective is your response plan?
Steiner, P J
2001-01-01
When an outside high-pressure natural gas line was cut near the intakes to a hospital's ventilation system, gas was quickly dispersed throughout the building. The facility's disaster management plan faced a real-life test.
Aliabadi, Amir A.; Rogak, Steven N.; Bartlett, Karen H.; Green, Sheldon I.
2011-01-01
Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813
Aliabadi, Amir A; Rogak, Steven N; Bartlett, Karen H; Green, Sheldon I
2011-01-01
Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk.
Artificial humidification for the mechanically ventilated patient.
Selvaraj, N
Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.
VENTILATION TECHNOLOGY SYSTEMS ANALYSIS
The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...
Measure Guideline: Passive Vents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, David; Neri, Robin
2016-02-05
This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less
Coupling of three-dimensional field and human thermoregulatory models in a crowded enclosure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, H.; Kang, Z.J.; Bong, T.Y.
1999-11-12
Health, comfort, and energy conservation are important factors to consider in the design of a building and its HVAC systems. Advanced tools are required to evaluate parameters regarding airflow, temperature, and humidity ratio in buildings, with the end results being better indoor air quality and thermal environment as well as increased confidence in the performance of buildings. A numerical model coupling the three-dimensional field and human thermoregulatory models is proposed and developed. A high-Re {kappa}-{epsilon} turbulence model is used for the field simulation. A modified 25-mode model of human thermoregulation is adopted to predict human thermal response in physiological parameters,more » such as body temperature and body heat loss. Distributions of air velocity, temperature, and moisture content are demonstrated in a crowded enclosure with mechanical ventilation under two ventilation rates. The results are analyzed and discussed. The coupling model is useful in assisting and verifying ventilation and air-conditioning system designs.« less
Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D
2017-09-01
Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.
Lanspa, Michael J.; Grissom, Colin K.; Hirshberg, Eliotte L.; Jones, Jason P.; Brown, Samuel M.
2013-01-01
Background Volume expansion is a mainstay of therapy in septic shock, although its effect is difficult to predict using conventional measurements. Dynamic parameters, which vary with respiratory changes, appear to predict hemodynamic response to fluid challenge in mechanically ventilated, paralyzed patients. Whether they predict response in patients who are free from mechanical ventilation is unknown. We hypothesized that dynamic parameters would be predictive in patients not receiving mechanical ventilation. Methods This is a prospective, observational, pilot study. Patients with early septic shock and who were not receiving mechanical ventilation received 10 ml/kg volume expansion (VE) at their treating physician's discretion after initial resuscitation in the emergency department. We used transthoracic echocardiography to measure vena cava collapsibility index (VCCI) and aortic velocity variation (AoVV) prior to VE. We used a pulse contour analysis device to measure stroke volume variation (SVV). Cardiac index was measured immediately before and after VE using transthoracic echocardiography. Hemodynamic response was defined as an increase in cardiac index ≥ 15%. Results 14 patients received VE, 5 of which demonstrated a hemodynamic response. VCCI and SVV were predictive (Area under curve = 0.83, 0.92, respectively). Optimal thresholds were calculated: VCCI ≥ 15% (Positive predictive value, PPV 62%, negative predictive value, NPV 100%, p = 0.03); SVV ≥ 17% (PPV 100%, NPV 82%, p = 0.03). AoVV was not predictive. Conclusions VCCI and SVV predict hemodynamic response to fluid challenge patients with septic shock who are not mechanically ventilated. Optimal thresholds differ from those described in mechanically ventilated patients. PMID:23324885
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.
2009-01-01
The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for CSSE pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
Effects of types of ventilation system on indoor particle concentrations in residential buildings.
Park, J S; Jee, N-Y; Jeong, J-W
2014-12-01
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single-family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2 , were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings. Results of this study confirm that mechanical ventilation with filtration can significantly reduce indoor particle levels compared with natural ventilation. The I/O ratios of particles substantially varied at the naturally ventilated apartments because of the influence of variable window opening conditions and unsteadiness of wind flow on the penetration of outdoor air particles. For better prediction of the exposure to outdoor particles in naturally ventilated residential buildings, it is important to understand the penetration of outdoor particles with variable window opening conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Functional differences in bi-level pressure preset ventilators.
Highcock, M P; Shneerson, J M; Smith, I E
2001-02-01
The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.
Félix, Nuno M; Leal, Rodolfo O; Goy-Thollot, I; Walton, Ronald S; Gil, Solange A; Mateus, Luísa M; Matos, Ana S; Niza, Maria M R E
2017-01-01
Objective(s): Buprenorphine is a common analgesic in experimental research, due to effectiveness and having few side-effects, including a limited influence in the immune and endocrine systems. However, how buprenorphine affects cytokine levels and the adrenal and thyroid response during general anesthesia and surgery is incompletely understood. This study aimed to assess whether buprenorphine modulated significantly those responses in rats submitted to general anesthesia, mechanical ventilation, and surgical insertion of intravascular catheters. Materials and Methods: Animals were anesthetized with isoflurane, mechanically ventilated, and surgically instrumented for carotid artery and the femoral vein catheter placement. The test group (n=16), received buprenorphine subcutaneously before surgery, whereas the control group (n=16) received normal saline. Blood sampling to determine plasma levels of adrenocorticotropic hormone (ACTH), corticosterone (CS), total thyroxine (TT4), total triiodothyronine (TT3), thyroid-stimulating hormone (TSH), TNF-α, IL6, IL10, TNF-α, IL6, and IL10 mRNA was performed at 10 min after completion of all surgical procedures and at 90, 150, 240, and 300 min thereafter, with the animals still anesthetized and with mechanical ventilation. Results: Buprenorphine-treated animals had higher levels of ACTH, CS, and TT4 at several time points (P<0.05) and TSH and TT3 at all-time points (P<0.05). They also had increased IL10, TNF-α, and IL10 mRNA levels. Conclusion: In this model, buprenorphine significantly modulated the intra-operative cytokine and endocrine response to anesthesia, mechanical ventilation, and surgical placement of intravascular catheters. The mechanism and significance of these findings remain undetermined. Researchers should be aware of these effects when considering the use of buprenorphine for analgesic purposes. PMID:28804607
Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCDANIEL, K.S.
1999-08-31
Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.
Jain, Rajnish K; Swaminathan, Srinivasan
2013-09-01
Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.
46 CFR 111.106-15 - Ventilation of hazardous locations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... its operational controls outside the ventilated space, if the system is mechanical; and (3) Have a... opening. (c) The mechanical ventilation of enclosed flammable or combustible liquid cargo handling or.... The power ventilation system must be designed to remove vapors from the bottom of the space at points...
Silveira, Carmen Salum Thomé; Leonardi, Kamila Maia; Melo, Ana Paula Carvalho Freire; Zaia, José Eduardo; Brunherotti, Marisa Afonso Andrade
2015-12-01
Noninvasive ventilation (NIV) in preterm infants is currently applied using intermittent positive pressure (2 positive-pressure levels) or in a conventional manner (one pressure level). However, there are no studies in the literature comparing the chances of failure of these NIV methods. The aim of this study was to evaluate the occurrence of failure of 2 noninvasive ventilatory support systems in preterm neonates over a period of 48 h. A randomized, prospective, clinical study was conducted on 80 newborns (gestational age < 37 weeks, birthweight < 2,500 g). The infants were randomized into 2 groups: 40 infants were treated with nasal CPAP and 40 infants with nasal intermittent positive-pressure ventilation (NIPPV). The occurrence of apnea, progression of respiratory distress, nose bleeding, and agitation was defined as ventilation failure. The need for intubation and re-intubation after failure was also observed. There were no significant differences in birth characteristics between groups. Ventilatory support failure was observed in 25 (62.5%) newborns treated with nasal CPAP and in 12 (30%) newborns treated with NIPPV, indicating an association between NIV failure and the absence of intermittent positive pressure (odds ratio [OR] 1.22, P < .05). Apnea (32.5%) was the main reason for nasal CPAP failure. After failure, 25% (OR 0.33) of the newborns receiving nasal CPAP and 12.5% (OR 0.14) receiving NIPPV required invasive mechanical ventilation. Ventilatory support failure was significantly more frequent when nasal CPAP was used. Copyright © 2015 by Daedalus Enterprises.
Zhang, Yang; Liu, Gongjian; Dull, Randal O.; Schwartz, David E.
2014-01-01
The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:24838752
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
46 CFR 153.310 - Ventilation system type.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent...
Bearg, D W
1998-09-01
This article summarizes an approach for improving the indoor air quality (IAQ) in a building by providing feedback on the performance of the ventilation system. The delivery of adequate quantities of ventilation to all building occupants is necessary for the achievement of good IAQ. Feedback on the performance includes information on the adequacy of ventilation provided, the effectiveness of the distribution of this air, the adequacy of the duration of operation of the ventilation system, and the identification of leakage into the return plenum, either of outdoor or supply air. Keeping track of ventilation system performance is important not only in terms of maintaining good IAQ, but also making sure that this system continues to perform as intended after changes in building use. Information on the performance of the ventilation system is achieved by means of an automated sampling system that draws air from multiple locations and delivers it to both a carbon dioxide monitor and dew point sensor. The use of single shared sensors facilitates calibration checks as well as helps to guarantee data integrity. This approach to monitoring a building's ventilation system offers the possibility of achieving sustainable performance of this important aspect of good IAQ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Walker, Iain; Tang, Yihuan
2014-06-01
Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less
Pulmonary edema in meningococcal septicemia associated with reduced epithelial chloride transport.
Eisenhut, Michael; Wallace, Helen; Barton, Paul; Gaillard, Erol; Newland, Paul; Diver, Michael; Southern, Kevin W
2006-03-01
To test the hypothesis that meningococcal septicemia-related pulmonary edema is associated with a systemic abnormality of epithelial sodium and chloride transport and to investigate an association with hormones regulating Na transport. Prospective observational study. The 24-bed pediatric intensive care unit and pediatric wards of Royal Liverpool Children's Hospital. Consecutive children admitted to the pediatric intensive care unit and pediatric wards with a diagnosis of meningococcal septicemia and children (controls) with noninfectious critical illness receiving ventilatory support in the pediatric intensive care unit. We measured sweat and saliva electrolytes, renal electrolyte excretion, nasal potential difference, and aldosterone, thyroxine, and cortisol levels. Pulmonary edema was diagnosed by chest radiography and its severity quantified by calculation of ventilation index at admission and duration of mechanical ventilation. We recruited 17 patients with severe meningococcal septicemia (nine patients with pulmonary edema), 14 patients with mild meningococcal septicemia, and 20 controls. Sweat and saliva Na and Cl concentrations and renal Na excretion were significantly (p < .05) higher in patients with pulmonary edema compared with controls. Nasal potential difference and amiloride response in patients with pulmonary edema were not significantly different to controls, but response to a low Cl solution was reduced in the nasal airway of patients with pulmonary edema (p < .05). Sweat and saliva chloride concentrations correlated significantly and better with ventilation index and duration of ventilation than sodium concentrations. Aldosterone, thyroxine, and cortisol levels were not significantly different between groups. We have confirmed that meningococcal septicemia-related pulmonary edema is associated with reduced systemic sodium and chloride transport. Features of reduced Cl transport were most closely associated with markers of respiratory compromise, and this was supported by the reduced chloride channel function detected on nasal potential difference measurement.
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
Home mechanical ventilation in Canada: a national survey.
Rose, Louise; McKim, Douglas A; Katz, Sherri L; Leasa, David; Nonoyama, Mika; Pedersen, Cheryl; Goldstein, Roger S; Road, Jeremy D
2015-05-01
No comprehensive Canadian national data describe the prevalence of and service provision for ventilator-assisted individuals living at home, data critical to health-care system planning for appropriate resourcing. Our objective was to generate national data profiling service providers, users, types of services, criteria for initiation and monitoring, ventilator servicing arrangements, education, and barriers to home transition. Eligible providers delivering services to ventilator-assisted individuals (adult and pediatric) living at home were identified by our national provider inventory and referrals from other providers. The survey was administered via a web link from August 2012 to April 2013. The survey response rate was 152/171 (89%). We identified 4,334 ventilator-assisted individuals: an estimated prevalence of 12.9/100,000 population, with 73% receiving noninvasive ventilation (NIV) and 18% receiving intermittent mandatory ventilation (9% not reported). Services were delivered by 39 institutional providers and 113 community providers. We identified variation in initiation criteria for NIV, with polysomnography demonstrating nocturnal hypoventilation (57%), daytime hypercapnia (38%), and nocturnal hypercapnia (32%) as the most common criteria. Various models of ventilator servicing were reported. Most providers (64%) stated that caregiver competency was a prerequisite for home discharge; however, repeated competency assessment and retraining were offered by only 45%. Important barriers to home transition were: insufficient funding for paid caregivers, equipment, and supplies; a shortage of paid caregivers; and negotiating public funding arrangements. Ventilatory support in the community appears well-established, with most individuals managed with NIV. Although caregiver competency is a prerequisite to discharge, ongoing assessment and retraining were infrequent. Funding and caregiver availability were important barriers to home transition. Copyright © 2015 by Daedalus Enterprises.
Bench-test comparison of 26 emergency and transport ventilators.
L'Her, Erwan; Roy, Annie; Marjanovic, Nicolas
2014-10-15
Numerous emergency and transport ventilators are commercialized and new generations arise constantly. The aim of this study was to evaluate a large panel of ventilators to allow clinicians to choose a device, taking into account their specificities of use. This experimental bench-test took into account general characteristics and technical performances. Performances were assessed under different levels of FIO2 (100%, 50% or Air-Mix), respiratory mechanics (compliance 30,70,120 mL/cmH2O; resistance 5,10,20 cmH2O/mL/s), and levels of leaks (3.5 to 12.5 L/min), using a test lung. In total 26 emergency and transport ventilators were analyzed and classified into four categories (ICU-like, n = 5; Sophisticated, n = 10; Simple, n = 9; Mass-casualty and military, n = 2). Oxygen consumption (7.1 to 15.8 L/min at FIO2 100%) and the Air-Mix mode (FIO2 45 to 86%) differed from one device to the other. Triggering performance was heterogeneous, but several sophisticated ventilators depicted triggering capabilities as efficient as ICU-like ventilators. Pressurization was not adequate for all devices. At baseline, all the ventilators were able to synchronize, but with variations among respiratory conditions. Leak compensation in most ICU-like and 4/10 sophisticated devices was able to correct at least partially for system leaks, but with variations among ventilators. Major differences were observed between devices and categories, either in terms of general characteristics or technical reliability, across the spectrum of operation. Huge variability of tidal volume delivery with some devices in response to modifications in respiratory mechanics and FIO2 should make clinicians question their use in the clinical setting.
Altered respiratory response to substance P in capsaicin-treated rats.
Towle, A C; Mueller, R A; Breese, G R; Lauder, J
1985-01-01
The present investigation sought to examine the importance of substance P in the altered respiratory activity after neonatal capsaicin administration. Halothane-anesthetized adult rats given capsaicin neonatally exhibit a decreased basal minute ventilation with PaCO2 equal to and PaO2 greater than vehicle injected controls. In addition, the minute ventilation-PaCO2 curve was displaced to the right. Acute bilateral cervical vagotomy severely blunted the minute ventilation response to PaCO2 and abolished the differences in ventilation between capsaicin treated and control rats. Neonatal capsaicin significantly reduced pons-medulla substance P content but not TRH, serotonin or 5-hydroxyindole acetic acid. Immunohistochemical studies revealed that substance P fibers of the trigeminal spinal nucleus were the most severely affected in the brain stem and that substance P fibers in the lung were totally absent. The intracerebroventricular administration of substance P increased minute ventilation similarly in both control and capsaicin treated rats, largely as a result of increases in tidal volume. The minute ventilation-PaCO2 curve was similar in both groups after substance P administration. Simultaneous administration of the peptidase inhibitor captopril with substance P increased the respiratory response to substance P in normal rats. Administration of captopril to capsaicin treated rats restored the ventilation-PaCO2 curve to the position observed in normal rats. The hypotensive response to intracerebroventricular captopril alone in control rats was less profound in rats given neonatal capsaicin. These results are consistent with the thesis that respiratory depression after capsaicin treatment is at least in part due to the loss of substance P primary afferent nerve terminals in the brain stem, suggesting that substance P fibers in the brain stem may participate in the normal modulation of respiratory activity.
The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
14 CFR 252.9 - Ventilation systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever...
Music therapy, a review of the potential therapeutic benefits for the critically ill.
Mofredj, A; Alaya, S; Tassaioust, K; Bahloul, H; Mrabet, A
2016-10-01
Intensive care units are a stressful milieu for patients, particularly when under mechanical ventilation which they refer to as inhumane and anxiety producing. Anxiety can impose harmful effects on the course of recovery and overall well-being of the patient. Resulting adverse effects may prolong weaning and recovery time. Music listening, widely used for stress release in all areas of medicine, tends to be a reliable and efficacious treatment for those critically ill patients. It can abate the stress response, decrease anxiety during mechanical ventilation, and induce an overall relaxation response without the use of medication. This relaxation response can lower cardiac workload and oxygen consumption resulting in more effective ventilation. Music may also improve sleep quality and reduce patient's pain with a subsequent decrease in sedative exposure leading to an accelerated ventilator weaning process and a speedier recovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yi; Li, Hua; Zou, Honglin; Li, Yaxiong
2015-08-01
This study analyzed major complaints from patients during mechanical ventilation after cardiac surgery and identified the most common complaints to reduce adverse psychologic responses. Retrospective. A single tertiary university hospital. Patients with heart disease who were on mechanical ventilation after cardiac surgery (N = 800). The major complaints of the patients during mechanical ventilation after cardiac surgery were analyzed. Patients' comfort was evaluated using a visual analog scale, and the factors affecting comfort were analyzed. The average visual analog scale score in all patients was 5.8±2.0, and most patients presented moderate discomfort. The factors affecting comfort included dry mouth, thirst, tracheal intubation, aspiration of sputum, communication barriers, limited mobility, fear/anxiety, patient-ventilator dyssynchrony, and poor environmental conditions. Of these factors, 8 were independent predictors of the visual analog scale score. Patients considered mechanical ventilation to be the worst part of their hospitalization. The study identified 8 independent factors causing discomfort in patients during mechanical ventilation after cardiac surgery. Clinicians should take appropriate measures and implement nursing interventions to reduce suffering, physical and psychologic trauma, and adverse psychologic responses and to promote recovery. Copyright © 2015 Elsevier Inc. All rights reserved.
Design and calibration of a high-frequency oscillatory ventilator.
Simon, B A; Mitzner, W
1991-02-01
High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].
Cruces, Pablo; Erranz, Benjamín; Donoso, Alejandro; Carvajal, Cristóbal; Salomón, Tatiana; Torres, María Fernanda; Díaz, Franco
2013-11-01
The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI. © 2013 John Wiley & Sons Ltd.
Hentschel, Roland; Semar, Nicole; Guttmann, Josef
2012-09-01
To study appropriateness of respiratory system compliance calculation using an inflation hold and compare it with ventilator readouts of pressure and tidal volume as well as with measurement of compliance of the respiratory system with the single-breath-single-occlusion technique gained with a standard lung function measurement. Prospective clinical trial. Level III neonatal unit of a university hospital. Sixty-seven newborns, born prematurely or at term, ventilated for a variety of pathologic conditions. A standardized sigh maneuver with a predefined peak inspiratory pressure of 30 cm H2O, termed inspiratory capacity at inflation hold, was applied. Using tidal volume, exhaled from inspiratory pause down to ambient pressure, as displayed by the ventilator, and predefined peak inspiratory pressure, compliance at inspiratory capacity at inflation hold conditions could be calculated as well as ratio of tidal volume and ventilator pressure using tidal volume and differential pressure at baseline ventilator settings: peak inspiratory pressure minus positive end-expiratory pressure. For the whole cohort, the equation for the regression between tidal volume at inspiratory capacity at inflation hold and compliance of the respiratory system was: compliance of the respiratory system = 0.052 * tidal volume at inspiratory capacity at inflation hold - 0.113, and compliance at inspiratory capacity at inflation hold conditions was closely related to the standard lung function measurement method of compliance of the respiratory system (R = 0.958). In contrast, ratio of tidal volume and ventilator pressure per kilogram calculated from the ventilator readouts and displayed against compliance of the respiratory system per kilogram yielded a broad scatter throughout the whole range of compliance; both were only weakly correlated (R = 0.309) and also the regression line was significantly different from the line of identity (p < .05). Peak inspiratory pressure at study entry did not affect the correlation between compliance at inspiratory capacity at inflation hold conditions and compliance of the respiratory system. After a standard sigh maneuver, inspiratory capacity at inflation hold and the derived quantity compliance at inspiratory capacity at inflation hold conditions can be regarded as a valid, accurate, and reliable surrogate measure for standard compliance of the respiratory system in contrast to ratio of tidal volume and ventilator pressure calculated from the ventilator readouts during ongoing mechanical ventilation at respective ventilator settings.
Crew Survivability After a Rapid Cabin Depressurization Event
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder expectations to validate the functionality being imposed; (2) review/refinement of concept of operations to establish the potential triggers for such an event and define the response of the spacecraft and suit ventilation loop pressure control systems; and (3) assessment of system capabilities with respect to structural capability and pressure control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less
Oliveira-Costa, Clarice Daniele Alves de; Friedman, Gilberto; Vieira, Sílvia Regina Rios; Fialkow, Léa
2012-07-01
To determine the utility of pulse pressure variation (ΔRESP PP) in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T) and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC) showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74). Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76). A ΔRESP PP ≥ 10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57) or pulmonary wedge pressure (AUC = 051). Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP ≥ 10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%). The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP ≥ 10% may be particularly useful for identifying responders in patients with septic shock.
Decisional responsibility for mechanical ventilation and weaning: an international survey
2011-01-01
Introduction Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our objective was to describe the professional group with responsibility for key ventilation and weaning decisions and to examine organizational characteristics associated with nurse involvement. Methods A multi-center, cross-sectional, self-administered survey was sent to nurse managers of adult intensive care units (ICUs) in Denmark, Germany, Greece, Italy, Norway, Switzerland, Netherlands and United Kingdom (UK). We summarized data as proportions (95% confidence intervals (CIs)) and calculated odds ratios (OR) to examine ICU organizational variables associated with collaborative decision making. Results Response rates ranged from 39% (UK) to 92% (Switzerland), providing surveys from 586 ICUs. Interprofessional collaboration (nurses and physicians) was the most common approach to initial selection of ventilator settings (63% (95% CI 59 to 66)), determination of extubation readiness (71% (67 to 75)), weaning method (73% (69 to 76)), recognition of weaning failure (84% (81 to 87)) and weaning readiness (85% (82 to 87)), and titration of ventilator settings (88% (86 to 91)). A nurse-to-patient ratio other than 1:1 was associated with decreased interprofessional collaboration during titration of ventilator settings (OR 0.2, 95% CI 0.1 to 0.6), weaning method (0.4 (0.2 to 0.9)), determination of extubation readiness (0.5 (0.2 to 0.9)) and weaning failure (0.4 (0.1 to 1.0)). Use of a weaning protocol was associated with increased collaborative decision making for determining weaning (1.8 (1.0 to 3.3)) and extubation readiness (1.9 (1.2 to 3.0)), and weaning method (1.8 (1.1 to 3.0). Country of ICU location influenced the profile of responsibility for all decisions. Automated weaning modes were used in 55% of ICUs. Conclusions Collaborative decision making for ventilation and weaning was employed in most ICUs in all countries although this was influenced by nurse-to-patient ratio, presence of a protocol, and varied across countries. Potential clinical implications of a lack of collaboration include delayed adaptation of ventilation to changing physiological parameters, and delayed recognition of weaning and extubation readiness resulting in unnecessary prolongation of ventilation. PMID:22169094
Ventilation planning at Energy West's Deer Creek mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonc, L.; Prosser, B.; Gamble, G.
2009-08-15
In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.
On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies
Mumovic, D.
2009-01-01
Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Ventilation System Surveillance Requirements To Operate for 10 Hours per Month,'' Using the Consolidated Line... currently require operating the ventilation system for at least 10 continuous hours with the heaters... Technical Specifications (TSs) Task Force (TSTF) Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
Recruitment Maneuver Does not Increase the Risk of Ventilator Induced Lung Injury
Akıncı, İbrahim Özkan; Atalan, Korkut; Tuğrul, Simru; Özcan, Perihan Ergin; Yılmazbayhan, Dilek; Kıran, Bayram; Basel, Ahmet; Telci, Lutfi; Çakar, Nahit
2013-01-01
Background: Mechanical ventilation (MV) may induce lung injury. Aims: To assess and evaluate the role of different mechanical ventilation strategies on ventilator-induced lung injury (VILI) in comparison to a strategy which includes recruitment manoeuvre (RM). Study design: Randomized animal experiment. Methods: Thirty male Sprague-Dawley rats were anaesthetised, tracheostomised and divided into 5 groups randomly according to driving pressures; these were mechanically ventilated with following peak alveolar opening (Pao) and positive end-expiratory pressures (PEEP) for 1 hour: Group 15-0: 15 cmH2O Pao and 0 cmH2O PEEP; Group 30-10: 30 cmH2O Pao and 10 cmH2O PEEP; Group 30-5: 30 cmH2O Pao and 5 cmH2O PEEP; Group 30-5&RM: 30 cmH2O Pao and 5 cmH2O PEEP with additional 45 cmH2O CPAP for 30 seconds in every 15 minutes; Group 45-0: 45 cmH2O Pao and 0 cmH2O PEEP Before rats were sacrificed, blood samples were obtained for the evaluation of cytokine and chemokine levels; then, the lungs were subsequently processed for morphologic evaluation. Results: Oxygenation results were similar in all groups; however, the groups were lined as follows according to the increasing severity of morphometric evaluation parameters: Group 15-0: (0±0.009) < Group 30-10: (0±0.14) < Group 30-5&RM: (1±0.12) < Group 30-5: (1±0.16) < Group 45-0: (2±0.16). Besides, inflammatory responses were the lowest in 30-5&RM group compared to all other groups. TNF-α, IL-1β, IL-6, MCP-1 levels were significantly different between group 30-5&RM and group 15-0 vs. group 45-0 in each group. Conclusion: RM with low PEEP reduces the risk of ventilator-induced lung injury with a lower release of systemic inflammatory mediators in response to mechanical ventilation. PMID:25207105
Ventilation and hypoxic ventilatory responsiveness in Chinese-Tibetan residents at 3,658 m.
Curran, L S; Zhuang, J; Sun, S F; Moore, L G
1997-12-01
When breathing ambient air at rest at 3,658 m altitude, Tibetan lifelong residents of 3,658 m ventilate as much as newcomers acclimatized to high altitude; they also ventilate more and have greater hypoxic ventilatory responses (HVRs) than do Han ("Chinese") long-term residents at 3,658 m. This suggests that Tibetan ancestry is advantageous in protecting resting ventilation levels during years of hypoxic exposure and is of interest in light of the permissive role of hypoventilation in the development of chronic mountain sickness, which is nearly absent among Tibetans. The existence of individuals with mixed Tibetan-Chinese ancestry (Han-Tibetans) residing at 3,658 m affords an opportunity to test this hypothesis. Eighteen men born in Lhasa, Tibet, China (3,658 m) to Tibetan mothers and Han fathers were compared with 27 Tibetan men and 30 Han men residing at 3,658 m who were previously studied. We used the same study procedures (minute ventilation was measured with a dry-gas flowmeter during room air breathing and hyperoxia and with a 13-liter spirometer-rebreathing system during the hypoxic and hypercapnic tests). During room air breathing at 3,658 m (inspired O2 pressure = 93 Torr), Han-Tibetans resembled Tibetans in ventilation (12.1 +/- 0.6 vs. 11.5+/- 0.5 l/min BTPS, respectively) but had HVR that were blunted (63 +/- 16 vs. 121 +/- 13, respectively, for HVR shape parameter A) and declined with increasing duration of high-altitude residence. During administered hyperoxia (inspired O2 pressure = 310 Torr) at 3,658 m, the paradoxical hyperventilation previously seen in Tibetan but not Han residents at 3,658 m (11.8 +/- 0.5 vs. 10.1 +/- 0.5 l/min BTPS) was absent in these Han-Tibetans (9.8 +/- 0.6 l/min BTPS). Thus, although longer duration of high-altitude residence appears to progressively blunt HVR among Han-Tibetans born and residing at 3, 658 m, their Tibetan ancestry appears protective in their maintenance of high resting ventilation levels despite diminished chemosensitivity.
Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard
2018-06-01
Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Pipe sizes and discharge rates for enclosed ventilation... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. (a) The minimum pipe size for the initial...
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Short-term airing by natural ventilation - modeling and control strategies.
Perino, M; Heiselberg, P
2009-10-01
The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and IAQ control. However, in order to promote a wider applications of these systems, an improvement in the knowledge of their working principles and the availability of new design and simulation tools is necessary. In this context, the paper analyses and presents the results of a research that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ. Practical Implications Numerical and experimental analyses have proved that short-term airing by intermittent ventilation is an effective measure to satisfactorily control IAQ. Different control strategies have been investigated to optimize the capabilities of the systems. The proposed zonal model has provided good performances and could be adopted as a design tool, while CFD simulations can be profitably used for detailed studies of the pollutant concentration distribution in a room and to address local discomfort problems.
Smart ventilation energy and indoor air quality performance in residential buildings: A review
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
2017-12-30
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Smart ventilation energy and indoor air quality performance in residential buildings: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.
To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less
Outcomes management of mechanically ventilated patients: utilizing informatics technology.
Smith, K R
1998-11-01
This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.
B-Plant Canyon Ventilation Control System Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCDANIEL, K.S.
1999-08-31
Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.
Vaschetto, Rosanna; Clemente, Nausicaa; Pagni, Aline; Esposito, Teresa; Longhini, Federico; Mercalli, Francesca; Boggio, Elena; Boldorini, Renzo; Chiocchetti, Annalisa; Dianzani, Umberto; Navalesi, Paolo
2017-12-01
Patients with severe pneumonia often develop septic shock. IgM-enriched immunoglobulins have been proposed as a potential adjuvant therapy for septic shock. While in vitro data are available on the possible mechanisms of action of IgM-enriched immunoglobulins, the results of the in vivo experimental studies are non-univocal and, overall, unconvincing. We designed this double blinded randomized controlled study to test whether IgM-enriched immunoglobulins administered as rescue treatment in a pneumonia model developing shock, could either limit lung damage and/or contain systemic inflammatory response. Thirty-eight Sprague Dawley rats were ventilated with injurious ventilation for 30min to prime the lung. The rats were subsequently randomized to received intratracheal instillation of either lipopolysaccharide (LPS) (12mg/kg) or placebo followed by 3.5h of protective mechanical ventilation. IgM-enriched immunoglobulins at 25mg/h (0.5mL/h) or saline were intravenously administered in the last hour of mechanical ventilation. During the experiment, gas exchange and hemodynamic measurements were recorded. Thereafter, the animals were sacrificed, and blood and organs were stored for cytokines measurements. Despite similar lung and hemodynamic findings, the administration of IgM-enriched immunoglobulins compared to placebo significantly modulates the inflammatory response by increasing IL-10 levels in the bloodstream and by decreasing TNF-α in bronchoalveolar lavage (BAL) fluid. Furthermore, in vitro data suggest that IgM-enriched immunoglobulins induce monocytes production of IL-10 after LPS stimulation. In an in vivo model of pneumonia developing shock, IgM-enriched immunoglobulins administered as rescue treatment enhance the anti-inflammatory response by increasing blood levels of IL-10 and reducing TNF-α in BAL fluid. Copyright © 2017 Elsevier GmbH. All rights reserved.
Biermann, A; Geissler, A
2016-09-01
Diagnosis-related groups (DRGs) have been used to reimburse hospitals services in Germany since 2003/04. Like any other reimbursement system, DRGs offer specific incentives for hospitals that may lead to unintended consequences for patients. In the German context, specific procedures and their documentation are suspected to be primarily performed to increase hospital revenues. Mechanical ventilation of patients and particularly the duration of ventilation, which is an important variable for the DRG-classification, are often discussed to be among these procedures. The aim of this study was to examine incentives created by the German DRG-based payment system with regard to mechanical ventilation and to identify factors that explain the considerable increase of mechanically ventilated patients in recent years. Moreover, the assumption that hospitals perform mechanical ventilation in order to gain economic benefits was examined. In order to gain insights on the development of the number of mechanically ventilated patients, patient-level data provided by the German Federal Statistical Office and the German Institute for the Hospital Remuneration System were analyzed. The type of performed ventilation, the total number of ventilation hours, the age distribution, mortality and the DRG distribution for mechanical ventilation were calculated, using methods of descriptive and inferential statistics. Furthermore, changes in DRG-definitions and changes in respiratory medicine were compared for the years 2005-2012. Since the introduction of the DRG-based payment system in Germany, the hours of ventilation and the number of mechanically ventilated patients have substantially increased, while mortality has decreased. During the same period there has been a switch to less invasive ventilation methods. The age distribution has shifted to higher age-groups. A ventilation duration determined by DRG definitions could not be found. Due to advances in respiratory medicine, new ventilation methods have been introduced that are less prone to complications. This development has simultaneously improved survival rates. There was no evidence supporting the assumption that the duration of mechanical ventilation is influenced by the time intervals relevant for DRG grouping. However, presumably operational routines such as staff availability within early and late shifts of the hospital have a significant impact on the termination of mechanical ventilation.
Mechanical Ventilation as a Therapeutic Tool to Reduce ARDS Incidence.
Nieman, Gary F; Gatto, Louis A; Bates, Jason H T; Habashi, Nader M
2015-12-01
Trauma, hemorrhagic shock, or sepsis can incite systemic inflammatory response syndrome, which can result in early acute lung injury (EALI). As EALI advances, improperly set mechanical ventilation (MV) can amplify early injury into a secondary ventilator-induced lung injury that invariably develops into overt ARDS. Once established, ARDS is refractory to most therapeutic strategies, which have not been able to lower ARDS mortality below the current unacceptably high 40%. Low tidal volume ventilation is one of the few treatments shown to have a moderate positive impact on ARDS survival, presumably by reducing ventilator-induced lung injury. Thus, there is a compelling case to be made that the focus of ARDS management should switch from treatment once this syndrome has become established to the application of preventative measures while patients are still in the EALI stage. Indeed, studies have shown that ARDS incidence is markedly reduced when conventional MV is applied preemptively using a combination of low tidal volume and positive end-expiratory pressure in both patients in the ICU and in surgical patients at high risk for developing ARDS. Furthermore, there is evidence from animal models and high-risk trauma patients that superior prevention of ARDS can be achieved using preemptive airway pressure release ventilation with a very brief duration of pressure release. Preventing rather than treating ARDS may be the way forward in dealing with this recalcitrant condition and would represent a paradigm shift in the way that MV is currently practiced.
Antibody response to Prevotella spp. in patients with ventilator-associated pneumonia.
Grollier, G; Doré, P; Robert, R; Ingrand, P; Gréjon, C; Fauchere, J L
1996-01-01
Although anaerobic bacteria are frequently isolated from the oropharyngeal flora, their potential pathogenic role in ventilator-associated pneumonia (VAP) has been poorly investigated. In order to evaluate the pathogenic role of Prevotella spp. isolated from protected specimen brushes, we investigated the systemic humoral response with the enzyme-linked immunosorbent assay (ELISA) and Western blot (immunoblot) in 13 patients who developed a VAP associated with Prevotella species (group I). The antigen used was a mixture of whole-cell proteins taken from four reference Prevotella strains. We compared the antibody levels observed in these patients with those measured in 30 patients who developed a VAP unrelated to anaerobic bacteria (group II), in 27 patients with dental stumps (group III), and in 30 healthy patients (group IV) who had Prevotella species on dental plaque. The ELISA levels obtained in the four groups showed significant differences between group I and each of the three control groups (P < 0.05). The antibody profiles obtained by Western blot showed an intensity of response roughly superposable over levels obtained by ELISA and a species specificity. These findings suggested that colonization of these patients with Prevotella species may have been associated with an infectious process leading to a systemic humoral response and that these bacteria could play a role in VAP. PMID:8770505
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
Field evaluation of ventilation system performance in enclosed parking garages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, A.M.; Grot, D.A.; Krarti, M.
2000-07-01
This paper summarizes the results of a field study to determine the ventilation requirements and the contaminant levels in existing enclosed parking garages. The testing was conducted in seven parking garages with different sizes, traffic flow patterns, vehicle types, and locations. In particular, the study compares the actual ventilation rates measured using the tracer gas technique with the ventilation requirements of ANSI/ASHRAE Standard 62-1989. In addition, the field test evaluated the effectiveness of the existing ventilation systems in maintaining acceptable contaminant levels within enclosed parking garages.
Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System
NASA Astrophysics Data System (ADS)
Macías, R.; García, M. A.; Ramos, J.; Bragós, R.; Fernández, M.
2013-04-01
Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-11-18
Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-01-01
Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933
Animal biocalorimeter and waste management system
NASA Technical Reports Server (NTRS)
Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)
1995-01-01
A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.
Contaminants in ventilated filling boxes
NASA Astrophysics Data System (ADS)
Bolster, D. T.; Linden, P. F.
While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.
ERIC Educational Resources Information Center
Ahmed, Gehan EL Nabawy; Abosamra, Omyma Mostafa
2015-01-01
Ventilator associated pneumonia (VAP) is a costly, preventable, and often fatal consequence of medical therapy that increases hospital and intensive care stays in mechanically ventilated patients. The prevention of VAP is primarily the responsibility of the bedside nurse whose knowledge, beliefs, and practices influence the health outcome of ICU…
Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng
2012-12-01
RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.
Space station ventilation study
NASA Technical Reports Server (NTRS)
Colombo, G. V.; Allen, G. E.
1972-01-01
A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.
Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H
2014-01-01
Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.
Personalizing mechanical ventilation for acute respiratory distress syndrome.
Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul
2016-03-01
Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.
Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V
2010-01-01
Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.
Muscimol microinjected in the arcuate nucleus affects metabolism, body temperature & ventilation.
Schlenker, Evelyn H
2016-06-15
Effects of microinjection of 2 doses of γ-aminobutyric acid (GABA)A receptor agonist, muscimol (M), into the hypothalamic arcuate nucleus on oxygen consumption and control of ventilation over time and body temperature (BT) at the end of the experiment were compared in adult male and female rats. Relative to cerebrospinal fluid (CSF, 0 nmol), BT was decreased only in male rats with both doses of M, while in female rats, the 5 nmol dose depressed oxygen consumption. Ventilation was depressed by 5 nmol M in male and 10 nmol M in female rats by decreasing tidal volume. M did not affect the ventilatory response of male or female rats to hypoxia, whereas in females 5 and 10 nmol M and in males 10 nmol M depressed the ventilatory response to hypercapnia. Thus, in rats GABAA receptors in the arcuate nucleus modulate BT, oxygen consumption, and ventilation in air and in response to hypercapnia in a sexually dimorphic manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Pretest Predictions for Ventilation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Sun; H. Yang; H.N. Kalia
The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that canmore » be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.« less
NASA Astrophysics Data System (ADS)
Raatschen, W.; Sjoegren, M.
The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.
Enhanced deep ocean ventilation and oxygenation with global warming
NASA Astrophysics Data System (ADS)
Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.
2014-12-01
Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.
NASA Astrophysics Data System (ADS)
Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan
Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.
46 CFR 194.20-5 - Ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND... Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The... based upon the volume of the compartment. (1) Power ventilation units shall have nonsparking impellers...
Protective garment ventilation system
NASA Technical Reports Server (NTRS)
Lang, R. (Inventor)
1970-01-01
A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.
Carbon Dioxide Detection and Indoor Air Quality Control.
Bonino, Steve
2016-04-01
When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.
A new system for continuous and remote monitoring of patients receiving home mechanical ventilation
NASA Astrophysics Data System (ADS)
Battista, L.
2016-09-01
Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.
A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.
Battista, L
2016-09-01
Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.
Mechanical Ventilation Alters the Development of Staphylococcus aureus Pneumonia in Rabbit
Barbar, Saber-Davide; Pauchard, Laure-Anne; Bruyère, Rémi; Bruillard, Caroline; Hayez, Davy; Croisier, Delphine; Pugin, Jérôme; Charles, Pierre-Emmanuel
2016-01-01
Ventilator-associated pneumonia (VAP) is common during mechanical ventilation (MV). Beside obvious deleterious effects on muco-ciliary clearance, MV could adversely shift the host immune response towards a pro-inflammatory pattern through toll-like receptor (TLRs) up-regulation. We tested this hypothesis in a rabbit model of Staphylococcus aureus VAP. Pneumonia was caused by airway challenge with S. aureus, in either spontaneously breathing (SB) or MV rabbits (n = 13 and 17, respectively). Pneumonia assessment regarding pulmonary and systemic bacterial burden, as well as inflammatory response was done 8 and 24 hours after S. aureus challenge. In addition, ex vivo stimulations of whole blood taken from SB or MV rabbits (n = 7 and 5, respectively) with TLR2 agonist or heat-killed S. aureus were performed. Data were expressed as mean±standard deviation. After 8 hours of infection, lung injury was more severe in MV animals (1.40±0.33 versus [vs] 2.40±0.55, p = 0.007), along with greater bacterial concentrations (6.13±0.63 vs. 4.96±1.31 colony forming units/gram, p = 0.002). Interleukin (IL)-8 and tumor necrosis factor (TNF)-αserum concentrations reached higher levels in MV animals (p = 0.010). Whole blood obtained from MV animals released larger amounts of cytokines if stimulated with TLR2 agonist or heat-killed S. aureus (e.g., TNF-α: 1656±166 vs. 1005±89; p = 0.014). Moreover, MV induced TLR2 overexpression in both lung and spleen tissue. MV hastened tissue injury, impaired lung bacterial clearance, and promoted a systemic inflammatory response, maybe through TLR2 overexpression. PMID:27391952
Epithelial and endothelial damage induced by mechanical ventilation modes.
Suki, Béla; Hubmayr, Rolf
2014-02-01
The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. Although lung injury is typically viewed through the lens of altered barrier properties and mechanical ventilation-associated immune responses, in this review, we call attention to the importance of heterogeneity and the physical failure of the load bearing cell and tissue elements in the pathogenesis of ARDS. Specifically, we introduce a simple elastic network model to better understand the deformations of lung regions, intra-acinar alveoli and cells within a single alveolus, and consider the role of regional distension and interfacial stress-related injury for various ventilation modes. Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.
Comfort parameters - Ventilation of a subway wagon
NASA Astrophysics Data System (ADS)
Petr, Pavlíček; Ladislav, Tříska
2017-09-01
Research and development of a ventilation system is being carried out as a part of project TA04030774 of the Technology Agency of the Czech Republic. Name of the project is "Research and Development of Mass-optimized Components for Rail Vehicles". Problems being solved are development and testing of a new concept for ventilation systems for public transport vehicles. The main improvements should be a reduction of the mass of the whole system, easy installation and reduction of the noise of the ventilation system. This article is focused on the comfort parameters in a subway wagon (measurement and evaluation carried out on a function sample in accordance with the regulations). The input to the project is a ventilator hybrid casing for a subway wagon, which was manufactured and tested during the Ministry of Industry and Trade project TIP FR-TI3/449.
Interim report on nuclear waste depository thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altenbach, T.J.
1978-07-25
A thermal analysis of a deep geologic depository for spent nuclear fuel is being conducted. The TRUMP finite difference heat transfer code is used to analyze a 3-dimensional model of the depository. The model uses a unit cell consisting of one spent fuel canister buried in salt beneath a ventilated room in the depository. A base case was studied along with several parametric variations. It is concluded that this method is appropriate for analyzing the thermal response of the system, and that the most important parameter in determining the maximum temperatures is the canister heat generation rate. The effects ofmore » room ventilation and different depository media are secondary.« less
40 CFR 98.323 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... systems (metric tons CH4). CH4V = Quarterly CH4 liberated from each ventilation monitoring point (metric... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system... CH4 liberated from a ventilation monitoring point (metric tons CH4). V = Volumetric flow rate for the...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
24 CFR 3280.710 - Venting, ventilation and combustion air.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...
Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption
NASA Astrophysics Data System (ADS)
Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.
2018-02-01
The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.
Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R
2013-03-01
The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.
Hannink, J D C; van Hees, H W H; Dekhuijzen, P N R; van Helvoort, H A C; Heijdra, Y F
2014-02-01
Systemic inflammation in patients with chronic obstructive pulmonary disease (COPD) has been related to the development of comorbidities. The level of systemic inflammatory mediators is aggravated as a response to exercise in these patients. The aim of this study was to investigate whether unloading of the respiratory muscles attenuates the inflammatory response to exercise in COPD patients. In a cross-over design, eight muscle-wasted stable COPD patients performed 40 W constant work-rate cycle exercise with and without non-invasive ventilation support (NIV vs control). Patients exercised until symptom limitation for maximally 20 min. Blood samples were taken at rest and at isotime or immediately after exercise. Duration of control and NIV-supported exercise was similar, both 12.9 ± 2.8 min. Interleukin- 6 (IL-6) plasma levels increased significantly by 25 ± 9% in response to control exercise, but not in response to NIV-supported exercise. Leukocyte concentrations increased similarly after control and NIV-supported exercise by ∼15%. Plasma concentrations of C-reactive protein, carbonylated proteins, and production of reactive oxygen species by blood cells were not affected by both exercise modes. This study demonstrates that NIV abolishes the IL-6 response to exercise in muscle-wasted patients with COPD. These data suggest that the respiratory muscles contribute to exercise-induced IL-6 release in these patients. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Model of aircraft passenger acceptance
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1978-01-01
A technique developed to evaluate the passenger response to a transportation system environment is described. Reactions to motion, noise, temperature, seating, ventilation, sudden jolts and descents are modeled. Statistics are presented for the age, sex, occupation, and income distributions of the candidates analyzed. Values are noted for the relative importance of system variables such as time savings, on-time arrival, convenience, comfort, safety, the ability to read and write, and onboard services.
Special Considerations in Neonatal Mechanical Ventilation.
Dalgleish, Stacey; Kostecky, Linda; Charania, Irina
2016-12-01
Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems
2017-02-22
patients using long-term liquid oxygen differ from those on traditional treatment with oxygen concentrators and/or compressed gas cylinders? A...AFRL-SA-WP-SR-2017-0006 Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems Thomas Blakeman, MSc, RRT; Dario...To) August 2014 – September 2016 4. TITLE AND SUBTITLE Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems 5a. CONTRACT NUMBER
Energy Use Consequences of Ventilating a Net-Zero Energy House
Ng, Lisa C.; Payne, W. Vance
2016-01-01
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776
Energy Use Consequences of Ventilating a Net-Zero Energy House.
Ng, Lisa C; Payne, W Vance
2016-03-05
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.
46 CFR 127.260 - Ventilation for accommodations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for accommodations. 127.260 Section 127.260... ARRANGEMENTS Particular Construction and Arrangements § 127.260 Ventilation for accommodations. (a) Each... vessel of 100 or more gross tons must be provided with a mechanical ventilation system unless the...
A perfluorochemical loss/restoration (L/R) system for tidal liquid ventilation.
Libros, R; Philips, C M; Wolfson, M R; Shaffer, T H
2000-01-01
Tidal liquid ventilation is the transport of dissolved respiratory gases via volume exchange of perfluorochemical (PFC) liquid to and from the PFC-filled lung. All gas-liquid surface tension is eliminated, increasing compliance and providing lung protection due to lower inflation pressures. Tidal liquid ventilation is achieved by cycling fluid from a reservoir to and from the lung by a ventilator. Current approaches are microprocessor-based with feedback control. During inspiration, warmed oxygenated PFC liquid is pumped from a fluid reservoir/gas exchanger into the lung. PFC fluid is conserved by condensing (60-80% efficiency) vapor in the expired gas. A feedback-control system was developed to automatically replace PFC lost due to condenser inefficiency. This loss/restoration (L/R) system consists of a PFC-vapor thermal detector (+/- 2.5%), pneumatics, amplifiers, a gas flow detector (+/- 1%), a PFC pump (+/- 5%), and a controller. Gravimetric studies of perflubron loss from a flask due to evaporation were compared with experimental L/R results and found to be within +/- 1.4%. In addition, when L/R studies were conducted with a previously reported liquid ventilation system over a four-hour period, the L/R system maintained system perflubron volume to within +/- 1% of prime volume and 11.5% of replacement volume, and the difference between experimental PFC loss and that of the L/R system was 1.8 mL/hr. These studies suggest that the PFC L/R system may have significant economic (appropriate dosing for PFC loss) as well as physiologic (maintenance of PFC inventory in the lungs and liquid ventilator) impact on liquid ventilation procedures.
A simple model of the effect of ocean ventilation on ocean heat uptake
NASA Astrophysics Data System (ADS)
Nadiga, Balu; Urban, Nathan
2017-11-01
Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.
Niane, Lalah M; Joseph, Vincent; Bairam, Aida
2012-08-01
We hypothesized that the combined blockade of peripheral cholinergic and purinergic receptors alters the baseline breathing pattern and respiratory responses to carotid body stimuli (hypoxia, hyperoxia and hypercapnia). Rat pups at 4 (P4) and 12 days of postnatal age (P12) received an intraperitoneal injection of either saline vehicle or hexamethonium + suramin (Hex, 1 mg kg(-1), nicotinic receptor antagonist; Sur, 40 mg kg(-1), P2X receptor antagonist; both of which act mainly on peripheral receptors). Compared with the control animals (saline-injected rats), the Hex + Sur-treated rats demonstrated the following features: (1) decreased baseline ventilation and increased frequency of apnoea and breath-by-breath irregularities, with a larger effect in the P4 than in the P12 rats; (2) a decreased peak minute ventilation and respiratory frequency response to hypoxia (fractional inspired oxygen 12%), with a greater effect in the P12 than in the P4 rats; (3) an attenuated decline of the respiratory frequency during hyperoxia (fractional inspired oxygen 50%) to a similar magnitude in rats of both ages; and (4) a decreased hypercapnic ventilatory response (fractional inspired carbon dioxide 5%) to a similar magnitude in rats of both ages. We conclude that the cholinergic nicotinic and purinergic P2X receptors are essential to maintain an adequate baseline pattern in normoxia. They also contribute, albeit not exclusively, to the hypoxic ventilatory response, with an age-specific effect, most probably linked to the cholinergic component, which might partly underlie the postnatal maturation of peripheral chemoreceptors.
Temperature of gas delivered from ventilators.
Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji
2013-01-01
Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.
Magrin, L; Brscic, M; Lora, I; Rumor, C; Tondello, L; Cozzi, G; Gottardo, F
2017-06-01
This research aimed at assessing the effects of a ceiling fan ventilation system on health, feeding, social behaviour and growth response of finishing young bulls fattened indoors during a mild summer season. A total of 69 Charolais young bulls were housed in six pens without any mechanical ventilation system (Control) and in six pens equipped with ceiling fans. The experimental period lasted 98 days from June until mid-September 2014. Four experimental days were considered in order to assess the effect of the ventilation system under two different microclimatic conditions: 2 alert days at monthly interval with temperature humidity index (THI) between 75 and 78, and 2 normal days with THI⩽74. Health and behaviour of the bulls were evaluated through 8-h observation sessions starting after morning feed delivery. The study was carried out during a rather cool summer with a climate average THI of 68.9 and 4 days with average THI>75. Despite these mild climate conditions, ceiling fans lowered litter moisture and acted as a preventive measure for bulls' dirtiness (odd ratio=47.9; 95% CI 19.6 to 117.4). The risk of abnormal breathing was increased for Control bulls (odd ratio=40.7; 95% CI 5.4 to 304.2). When exposed to alert THI conditions, respiration rate and panting scores increased and rumination duration dropped in Control bulls compared with bulls provided with a ceiling fan. During observations under alert THI, bulls spent less time eating, more time being inactive and consumed more water compared with normal THI conditions. Bulls' daily dry matter intake measured during the observation sessions decreased on alert compared with normal THI days (P<0.001) due to a drop of intake during the daylight hours. Ceiling fan treatment had no effect on bulls' growth performance or water consumption but these results most likely depended on the mild climate conditions. Ceiling fans proved to mitigate some of the negative effects of heat stress on bulls' behaviour (rumination, lying down and drinking water) and respiration rate, however. The lack of a significant improvement of bulls' growth response should not discourage beef farmers from using ceiling fans in indoor systems, considering the likely increase in frequency and intensity of heat waves in the planet's temperate areas induced by global warming.
Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises
NASA Astrophysics Data System (ADS)
Litvinova, N. A.
2017-11-01
The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1990-01-01
METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non-venting heat-sink subsystem for the EMU is recommended.
Tunnel Ventilation Control Using Reinforcement Learning Methodology
NASA Astrophysics Data System (ADS)
Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung
The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.
Buildings operations and ETS exposure.
Spengler, J D
1999-01-01
Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS. Images Figure 1 Figure 2 Figure 3 PMID:10375293
Bacterial burden in the operating room: impact of airflow systems.
Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin
2012-09-01
Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
46 CFR 194.15-5 - Ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
....15-5 Ventilation. (a) Operations, reactions or experiments which produce toxic, noxious or corrosive...) Ventilation of air conditioning systems serving the chemical laboratory shall be designed so that air cannot...
Bordes, Julien; Erwan d'Aranda; Savoie, Pierre-Henry; Montcriol, Ambroise; Goutorbe, Philippe; Kaiser, Eric
2014-09-01
Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. A solution is to use a ventilator able to function with an oxygen concentrator. We tested the SeQual Integra™ (SeQual, San Diego, CA) 10-OM oxygen concentrator paired with the Pulmonetic System(®) LTV 1000 ventilator (Pulmonetic Systems, Minneapolis, MN) and evaluated the delivered fraction of inspired oxygen (FiO2) across a range of minute volumes and combinations of ventilator settings. Two LTV 1000 ventilators were tested. The ventilators were attached to a test lung and FiO2 was measured by a gas analyzer. Continuous-flow oxygen was generated by the OC from 0.5 L/min to 10 L/min and injected into the oxygen inlet port of the LTV 1000. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered FiO2. The LTV 1000 ventilator is a turbine ventilator that is able to deliver high FiO2 when functioning with an oxygen concentrator. However, modifications of the ventilator settings such as increase in minute ventilation affect delivered FiO2 even if oxygen flow is constant on the oxygen concentrator. The ability of an oxygen concentrator to deliver high FiO2 when used with a turbine ventilator makes this method of oxygen delivery a viable alternative to cylinders in austere environments when used with a turbine ventilator. However, FiO2 has to be monitored continuously because delivered FiO2 decreases when minute ventilation is increased. Copyright © 2014 Elsevier Inc. All rights reserved.
Selim, Bernardo; Ramar, Kannan
2016-09-01
Volume assured pressure support (VAPS) and adaptive servo ventilation (ASV) are non-invasive positive airway pressure (PAP) modes with sophisticated negative feedback control systems (servomechanism), having the capability to self-adjust in real time its respiratory controlled variables to patient's respiratory fluctuations. However, the widespread use of VAPS and ASV is limited by scant clinical experience, high costs, and the incomplete understanding of propriety algorithmic differences in devices' response to patient's respiratory changes. Hence, we will review and highlight similarities and differences in technical aspects, control algorithms, and settings of each mode, focusing on the literature search published in this area. One hundred twenty relevant articles were identified by Scopus, PubMed, and Embase databases from January 2010 to 2016, using a combination of MeSH terms and keywords. Articles were further supplemented by pearling. Recommendations were based on the literature review and the authors' expertise in this area. Expert commentary: ASV and VAPS differ in their respiratory targets and response to a respiratory fluctuation. The VAPS mode targets a more consistent minute ventilation, being recommended in the treatment of sleep related hypoventilation disorders, while ASV mode attempts to provide a more steady breathing airflow pattern, treating successfully most central sleep apnea syndromes.
Particulate matter in animal rooms housing mice in microisolation caging.
Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E
2006-11-01
Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.
Particle transport in low-energy ventilation systems. Part 1: theory of steady states.
Bolster, D T; Linden, P F
2009-04-01
Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.
Characterization of natural ventilation in wastewater collection systems.
Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne
2011-03-01
The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.
Are we fully utilizing the functionalities of modern operating room ventilators?
Liu, Shujie; Kacmarek, Robert M; Oto, Jun
2017-12-01
The modern operating room ventilators have become very sophisticated and many of their features are comparable with those of an ICU ventilator. To fully utilize the functionality of modern operating room ventilators, it is important for clinicians to understand in depth the working principle of these ventilators and their functionalities. Piston ventilators have the advantages of delivering accurate tidal volume and certain flow compensation functions. Turbine ventilators have great ability of flow compensation. Ventilation modes are mainly volume-based or pressure-based. Pressure-based ventilation modes provide better leak compensation than volume-based. The integration of advanced flow generation systems and ventilation modes of the modern operating room ventilators enables clinicians to provide both invasive and noninvasive ventilation in perioperative settings. Ventilator waveforms can be used for intraoperative neuromonitoring during cervical spine surgery. The increase in number of new features of modern operating room ventilators clearly creates the opportunity for clinicians to optimize ventilatory care. However, improving the quality of ventilator care relies on a complete understanding and correct use of these new features. VIDEO ABSTRACT: http://links.lww.com/COAN/A47.
Houses need to breathe--right?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.
2004-10-01
Houses need to breathe, but we can no longer leave the important functions associated with ventilation to be met accidentally. A designed ventilation system must be considered as much a part of a home as its heating system. Windows are a key part of that system because they allow a quick increase in ventilation for unusual events, but neither they nor a leaky building shell can be counted on to provide minimum levels.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Guoqiang
2008-05-01
A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.
[Lung protective ventilation - pathophysiology and diagnostics].
Uhlig, Stefan; Frerichs, Inéz
2008-06-01
Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.
NASA Technical Reports Server (NTRS)
Dinh, Khanh
1994-01-01
Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.
Assessing Respiratory System Mechanical Function.
Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo
2016-12-01
The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... maintaining a safe and healthful working environment. A well planned mine ventilation system is necessary to assure a fresh air supply to miners at all working places, to control the amounts of harmful airborne... usually present harsh and hostile working environments. The ventilation system is the most vital life...
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 58.01-45 - Machinery space, ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery space, ventilation. 58.01-45 Section 58.01-45... MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-45 Machinery space, ventilation. Each machinery space must be ventilated to ensure that, when machinery or boilers are operating at full power in all...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 116.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of enclosed and partially enclosed spaces... spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must be capable of being...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
46 CFR 177.600 - Ventilation of enclosed and partially enclosed spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of enclosed and partially enclosed spaces... enclosed and partially enclosed spaces. (a) An enclosed or partially enclosed space within a vessel must be adequately ventilated in a manner suitable for the purpose of the space. (b) A power ventilation system must...
Limiting ventilator-induced lung injury through individual electronic medical record surveillance.
Herasevich, Vitaly; Tsapenko, Mykola; Kojicic, Marija; Ahmed, Adil; Kashyap, Rachul; Venkata, Chakradhar; Shahjehan, Khurram; Thakur, Sweta J; Pickering, Brian W; Zhang, Jiajie; Hubmayr, Rolf D; Gajic, Ognjen
2011-01-01
To improve the safety of ventilator care and decrease the risk of ventilator-induced lung injury, we designed and tested an electronic algorithm that incorporates patient characteristics and ventilator settings, allowing near-real-time notification of bedside providers about potentially injurious ventilator settings. Electronic medical records of consecutive patients who received invasive ventilation were screened in three Mayo Clinic Rochester intensive care units. The computer system alerted bedside providers via the text paging notification about potentially injurious ventilator settings. Alert criteria included a Pao2/Fio2 ratio of <300 mm Hg, free text search for the words "edema" or "bilateral + infiltrates" on the chest radiograph report, a tidal volume of >8 mL/kg predicted body weight (based on patient gender and height), a plateau pressure of >30 cm H2O, and a peak airway pressure of >35 cm H2O. Respiratory therapists answered a brief online satisfaction survey. Ventilator-induced lung injury risk was compared before and after the introduction of ventilator-induced lung injury alert. The prevalence of acute lung injury was 42% (n = 490) among 1,159 patients receiving >24 hrs of invasive ventilation. The system sent 111 alerts for 80 patients, with a positive predictive value of 59%. The exposure to potentially injurious ventilation decreased after the intervention from 40.6 ± 74.6 hrs to 26.9 ± 77.3 hrs (p = .004). Electronic medical record surveillance of mechanically ventilated patients accurately detects potentially injurious ventilator settings and is able to influence bedside practice at moderate costs. Its implementation is associated with decreased patient exposure to potentially injurious mechanical ventilation settings.
Külpmann, Rüdiger; Christiansen, Bärbel; Kramer, Axel; Lüderitz, Peter; Pitten, Frank-Albert; Wille, Frank; Zastrow, Klaus-Dieter; Lemm, Friederike; Sommer, Regina; Halabi, Milo
2016-01-01
Since the publication of the first "Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems) in hospitals" (http://www.krankenhaushygiene.de/informationen/fachinformationen/leitlinien/12) in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section "Ventilation and air conditioning technology" attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.
SUNRAYCE 1995: Working safely with lead-acid batteries and photovoltaic power systems
NASA Astrophysics Data System (ADS)
Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.
1994-05-01
This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.
Machado, Humberto S; Nunes, Catarina S; Sá, Paula; Couceiro, Antonio; da Silva, Álvaro Moreira; Águas, Artur
2014-01-01
Mechanical ventilation is a well-known trigger for lung inflammation. Research focuses on tidal volume reduction to prevent ventilator-induced lung injury. Mechanical ventilation is usually applied with higher than physiological oxygen fractions. The purpose of this study was to investigate the after effect of oxygen supplementation during a spontaneous ventilation set up, in order to avoid the inflammatory response linked to mechanical ventilation. A prospective randomised study using New Zealand rabbits in a university research laboratory was carried out. Rabbits (n = 20) were randomly assigned to 4 groups (n = 5 each group). Groups 1 and 2 were submitted to 0.5 L/min oxygen supplementation, for 20 or 75 minutes, respectively; groups 3 and 4 were left at room air for 20 or 75 minutes. Ketamine/xylazine was administered for induction and maintenance of anaesthesia. Lungs were obtained for histological examination in light microscopy. All animals survived the complete experiment. Procedure duration did not influence the degree of inflammatory response. The hyperoxic environment was confirmed by blood gas analyses in animals that were subjected to oxygen supplementation, and was accompanied with lower mean respiratory rates. The non-oxygen supplemented group had lower mean oxygen arterial partial pressures and higher mean respiratory rates during the procedure. All animals showed some inflammatory lung response. However, rabbits submitted to oxygen supplementation showed significant more lung inflammation (Odds ratio = 16), characterized by more infiltrates and with higher cell counts; the acute inflammatory response cells was mainly constituted by eosinophils and neutrophils, with a relative proportion of 80 to 20% respectively. This cellular observation in lung tissue did not correlate with a similar increase in peripheral blood analysis. Oxygen supplementation in spontaneous breathing is associated with an increased inflammatory response when compared to breathing normal room air. This inflammatory response was mainly constituted with polymorphonuclear cells (eosinophils and neutrophils). As confirmed in all animals by peripheral blood analyses, the eosinophilic inflammatory response was a local organ event.
Modulation of human sinus node function by systemic hypoxia
NASA Technical Reports Server (NTRS)
Eckberg, D. L.; Bastow, H., III; Scruby, A. E.
1982-01-01
The present study was conducted to determine whether bradycardia develops during systemic hypoxia in supine conscious human volunteers when respiratory frequency and tidal volume are maintained at constant levels. The obtained results suggest that mild hypoxia provokes cardioacceleration in humans, independent of changes of ventilation or baroreflex responsiveness. The earliest cardioacceleration is more prominent in the inspiratory than in the expiratory phase of respiration, and occurs with very small reductions of arterial oxygen saturation. Moderate systemic hypoxia dampens fluctuations of heart rate during the respiratory cycle.
The School Advanced Ventilation Engineering Software (SAVES)
The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
1991-05-01
Building Component Maintenance and Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems by Edgar S. Neely Robert D. Neathammer...Repair Data Base: Heating, Ventilating, and Air Conditioning (HVAC) Systems RDTE dated 1980EIMB 1984 - 1989 6. AUTHOR(S) Edgar S. Neely, Robert D...Laboratory (USACERL). The Principal Investigators were Dr. Edgar Neely and Mr. Robert Neathammer (USACERL-FS). The primary contractor for much of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Heat recovery ventilators (HRVs) differ from other mechanical ventilation devices by their ability to exchange heat between supply and exhaust air streams, which reduces the cost of heating or cooling fresh air. This booklet discusses the need for mechanical ventilation in conventional and energy-efficient homes, an explains the components of a HRV system, how to operate and maintain the system, and how to solve operating problems. A maintenance chart and schedule and a HRV troubleshooting guide are included.
Three-year experience with neonatal ventilation from a tertiary care hospital in Delhi.
Singh, M; Deorari, A K; Paul, V K; Mittal, M; Shanker, S; Munshi, U; Jain, Y
1993-06-01
Ninety neonates were ventilated over a period of 33 months of whom 50 (55.5%) survived. Fifty seven babies received IPPV while 33 CPAP. IPPV mode was being used more frequently recently and survival rates have steadily improved over past 3 years. Survival was cent per cent in babies above 1.5 kg on CPAP mode while 16/26 (57.7%) survived on IPPV mode. Of 22 extremely VLBW (< 1 kg) babies, six survived. HMD was the commonest indication of ventilation (50%), of which 53% (24/45) survived. The other important indications of ventilation were apnea in 13 and transient tachypnea in 11 babies. All babies requiring ventilation for transient tachypnea survived. Nosocomial infections were common in association with ventilation 34/90 (37.7%), out of which in 14 was responsible for about a third of deaths. Pulmonary air leaks developed in 12 babies of which 6 died. Two babies developed BPD and one ROP. Neonatal ventilation should be ventured in centres where basic facilities for level II care already exist. It may not be cost effective to ventilate extremely low birth weight neonates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, T; Du, K; Bayouth, J
2015-06-15
Purpose: Longitudinal changes in lung ventilation following radiation therapy can be mapped using four-dimensional computed tomography(4DCT) and image registration. This study aimed to predict ventilation changes caused by radiation therapy(RT) as a function of pre-RT ventilation and delivered dose. Methods: 4DCT images were acquired before and 3 months after radiation therapy for 13 subjects. Jacobian ventilation maps were calculated from the 4DCT images, warped to a common coordinate system, and a Jacobian ratio map was computed voxel-by-voxel as the ratio of post-RT to pre-RT Jacobian calculations. A leave-one-out method was used to build a response model for each subject: post-RTmore » to pre-RT Jacobian ratio data and dose distributions of 12 subjects were applied to the subject’s pre-RT Jacobian map to predict the post-RT Jacobian. The predicted Jacobian map was compared to the actual post-RT Jacobian map to evaluate efficacy. Within this cohort, 8 subjects had repeat pre-RT scans that were compared as a reference for no ventilation change. Maps were compared using gamma pass rate criteria of 2mm distance-to-agreement and 6% ventilation difference. Gamma pass rates were compared using paired t-tests to determine significant differences. Further analysis masked non-radiation induced changes by excluding voxels below specified dose thresholds. Results: Visual inspection demonstrates the predicted post-RT ventilation map is similar to the actual map in magnitude and distribution. Quantitatively, the percentage of voxels in agreement when excluding voxels receiving below specified doses are: 74%/20Gy, 73%/10Gy, 73%/5Gy, and 71%/0Gy. By comparison, repeat scans produced 73% of voxels within the 6%/2mm criteria. The agreement of the actual post-RT maps with the predicted maps was significantly better than agreement with pre-RT maps (p<0.02). Conclusion: This work validates that significant changes to ventilation post-RT can be predicted. The differences between the predicted and actual outcome are similar to differences between repeat scans with equivalent ventilation. This work was supported by NIH grant CA166703 and a Pilot Grant from University of Iowa Carver College of Medicine.« less
Soliz, Jorge; Soulage, Christophe; Borter, Emanuela; van Patot, Martha Tissot; Gassmann, Max
2008-08-01
Proteins harboring a Per-Arnt-Sim (PAS) domain are versatile and allow archaea, bacteria, and plants to sense oxygen partial pressure, as well as light intensity and redox potential. A PAS domain associated with a histidine kinase domain is found in FixL, the oxygen sensor molecule of Rhizobium species. PASKIN is the mammalian homolog of FixL, but its function is far from being understood. Using whole body plethysmography, we evaluated the ventilatory response to acute and chronic hypoxia of homozygous deficient male and female PASKIN mice (Paskin-/-). Although only slight ventilatory differences were found in males, female Paskin-/- mice increased ventilatory response to acute hypoxia. Unexpectedly, females had an impaired ability to reach ventilatory acclimatization in response to chronic hypoxia. Central control of ventilation occurs in the brain stem respiratory centers and is modulated by catecholamines via tyrosine hydroxylase (TH) activity. We observed that TH activity was altered in male and female Paskin-/- mice. Peripheral chemoreceptor effects on ventilation were evaluated by exposing animals to hyperoxia (Dejours test) and domperidone, a peripheral ventilatory stimulant drug directly affecting the carotid sinus nerve discharge. Male and female Paskin-/- had normal peripheral chemosensory (carotid bodies) responses. In summary, our observations suggest that PASKIN is involved in the central control of hypoxic ventilation, modulating ventilation in a gender-dependent manner.
Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M
2017-01-30
Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel's exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems.
Particle transport in low-energy ventilation systems. Part 2: Transients and experiments.
Bolster, D T; Linden, P F
2009-04-01
Providing adequate indoor air quality while reducing energy consumption is a must for efficient ventilation system design. In this work, we study the transport of particulate contaminants in a displacement-ventilated space, using the idealized 'emptying filling box' model (P.F. Linden, G.F. Lane-serff and D.A. Smeed (1990) Emptying filling boxes: the fluid mechanics of natural ventilation, J. fluid Mech., 212, 309-335.). In this paper, we focused on transient contaminant transport by modeling three transient contamination scenarios, namely the so called 'step-up', 'step-down', and point source cases. Using analytical integral models and numerical models we studied the transient behavior of each of these three cases. We found that, on average, traditional and low-energy systems can be similar in overall pollutant removal efficiency, although quite different vertical gradients can exist. This plays an important role in estimating occupant exposure to contaminant. A series of laboratory experiments were conducted to validate the developed models. The results presented here illustrate that the source location plays a very important role in the distribution of contaminant concentration for spaces ventilated by low energy displacement-ventilation systems. With these results and the knowledge of typical contaminant sources for a given type of space practitioners can design or select more effective systems for the purpose at hand.
Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, J. Chris; Wray, Craig P.
2013-04-01
Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems.more » Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).« less
Lv, Jinze; Zhu, Lizhong
2013-03-01
Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.
A proactive approach for managing indoor air quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, R.E.; Casey, J.M.; Williams, P.L.
1997-11-01
Ventilation and maintenance, followed by psychosocial issues, are the factors most often implicated in indoor air quality (IAQ) investigations. The absence of accepted exposure standards and the presence of a wide variety of building designs, ages, ventilation systems, and usages often make IAQ complaint investigations ineffective. Thus, the best approach to achieving IAQ is to prevent problems from occurring. This paper presents the framework for a proactive approach to managing the causes most often implicated in IAQ investigations. It is the aim of this proactive protocol to provide a cost-effective guide for preventing IAQ problems in nonindustrial settings and inmore » buildings for which there are no current IAQ complaints. The proposed protocol focuses on heating, ventilation, and air-conditioning (HVAC) system maintenance and operation; psychosocial factors; and the handling and investigation of complaints. An IAQ manager is designated to implement and manage the protocol. The HVAC system portion of the protocol focuses on proper maintenance of the components often identified as sources of problems in IAQ studies, documentation of the maintenance procedures, and training of individuals responsible for building maintenance. The protocol addresses the psychosocial factors with an environmental survey that rates the occupants` perceptions of the indoor air to identify potential IAQ problems. The psychosocial portion of the protocol also incorporates occupant education and awareness. Finally, a three-step initial investigation procedure for addressing IAQ problems is presented.« less
Wu, Wei; Skye, Harrison M; Domanski, Piotr A
2018-02-15
HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.
Preoperational test report, recirculation ventilation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, F.T.
1997-11-11
This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.
Optimal ventilation of the anesthetized pediatric patient.
Feldman, Jeffrey M
2015-01-01
Mechanical ventilation of the pediatric patient is challenging because small changes in delivered volume can be a significant fraction of the intended tidal volume. Anesthesia ventilators have traditionally been poorly suited to delivering small tidal volumes accurately, and pressure-controlled ventilation has become used commonly when caring for pediatric patients. Modern anesthesia ventilators are designed to deliver small volumes accurately to the patient's airway by compensating for the compliance of the breathing system and delivering tidal volume independent of fresh gas flow. These technology advances provide the opportunity to implement a lung-protective ventilation strategy in the operating room based upon control of tidal volume. This review will describe the capabilities of the modern anesthesia ventilator and the current understanding of lung-protective ventilation. An optimal approach to mechanical ventilation for the pediatric patient is described, emphasizing the importance of using bedside monitors to optimize the ventilation strategy for the individual patient.
A new prototype of an electronic jet-ventilator and its humidification system
Kraincuk, Paul; Kepka, Anton; Ihra, Gerald; Schabernig, Christa; Aloy, Alexander
1999-01-01
Background: Adequate humidification in long-term jet ventilation is a critical aspect in terms of clinical safety. Aim: To assess a prototype of an electronic jet-ventilator and its humidification system. Methods: Forty patients with respiratory insufficiency were randomly allocated to one of four groups. The criterion for inclusion in this study was respiratory insufficiency exhibiting a Murray score above 2. The four groups of patients were ventilated with three different respirators and four different humidification systems. Patients in groups A and B received superimposed high-frequency jet ventilation (SHFJV) by an electronic jet-ventilator either with (group A) or without (group B) an additional humidification system. Patients in group C received high-frequency percussive ventilation (HFPV) by a pneumatic high-frequency respirator, using a hot water humidifier for warming and moistening the inspiration gas. Patients in group D received conventional mechanical ventilation using a standard intensive care unit respirator with a standard humidification system. SHFJV and HFPV were used for a period of 100 h (4days). Results: A significantly low inspiration gas temperature was noted in patients in group B, initially (27.2 ± 2.5°C) and after 2 days (28.0 ± 1.6°C) (P < 0.05). The percentage of relative humidity of the inspiration gas in patients in group B was also initially significantly low (69.8 ± 4.1%; P < 0.05) but rose to an average of 98 ± 2.8% after 2 h. The average percentage across all four groups amounted to 98 ± 0.4% after 2 h. Inflammation of the tracheal mucosa was found in patients in group B and the mucosal injury score (MIS) was significantly higher than in all the other groups. Patients in groups A, C and D showed no severe evidence of airway damage, exhibiting adequate values of relative humidity and temperature of the inspired gas. Conclusion: The problems of humidification associated with jet ventilation can be fully prevented by using this new jet-ventilator. These data were sustained by nondeteriorating MIS values at the end of the 4-day study period in groups A, C and D. PMID:11056732
Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.
Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas
2018-01-01
In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike
2014-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Bascompta, Marc; Castañón, Ana María; Sanmiquel, Lluís; Oliva, Josep
2016-11-01
Gases such as CO, CO2 or NOx are constantly generated by the equipment in any underground mine and the ventilation layout can play an important role in keeping low concentrations in the working faces. Hence, a method able to control the workplace environment is crucial. This paper proposes a geographical information system (GIS) for such goal. The system created provides the necessary tools to manage and analyse an underground environment, connecting pollutants and temperatures with the ventilation characteristics over time. Data concerning the ventilation system, in a case study, has been taken every month since 2009 and integrated into the management system, which has quantified the gasses concentration throughout the mine due to the characteristics and evolution of the ventilation layout. Three different zones concerning CO, CO2, NOx and effective temperature have been found as well as some variations among workplaces within the same zone that suggest local airflow recirculations. The system proposed could be a useful tool to improve the workplace conditions and efficiency levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
Ventilator-Related Adverse Events: A Taxonomy and Findings From 3 Incident Reporting Systems.
Pham, Julius Cuong; Williams, Tamara L; Sparnon, Erin M; Cillie, Tam K; Scharen, Hilda F; Marella, William M
2016-05-01
In 2009, researchers from Johns Hopkins University's Armstrong Institute for Patient Safety and Quality; public agencies, including the FDA; and private partners, including the Emergency Care Research Institute and the University HealthSystem Consortium (UHC) Safety Intelligence Patient Safety Organization, sought to form a public-private partnership for the promotion of patient safety (P5S) to advance patient safety through voluntary partnerships. The study objective was to test the concept of the P5S to advance our understanding of safety issues related to ventilator events, to develop a common classification system for categorizing adverse events related to mechanical ventilators, and to perform a comparison of adverse events across different adverse event reporting systems. We performed a cross-sectional analysis of ventilator-related adverse events reported in 2012 from the following incident reporting systems: the Pennsylvania Patient Safety Authority's Patient Safety Reporting System, UHC's Safety Intelligence Patient Safety Organization database, and the FDA's Manufacturer and User Facility Device Experience database. Once each organization had its dataset of ventilator-related adverse events, reviewers read the narrative descriptions of each event and classified it according to the developed common taxonomy. A Pennsylvania Patient Safety Authority, FDA, and UHC search provided 252, 274, and 700 relevant reports, respectively. The 3 event types most commonly reported to the UHC and the Pennsylvania Patient Safety Authority's Patient Safety Reporting System databases were airway/breathing circuit issue, human factor issues, and ventilator malfunction events. The top 3 event types reported to the FDA were ventilator malfunction, power source issue, and alarm failure. Overall, we found that (1) through the development of a common taxonomy, adverse events from 3 reporting systems can be evaluated, (2) the types of events reported in each database were related to the purpose of the database and the source of the reports, resulting in significant differences in reported event categories across the 3 systems, and (3) a public-private collaboration for investigating ventilator-related adverse events under the P5S model is feasible. Copyright © 2016 by Daedalus Enterprises.
Ventilation during cardiopulmonary bypass: impact on heat shock protein release.
Beer, L; Szerafin, T; Mitterbauer, A; Kasiri, M M; Debreceni T Palotás, L; Dworschak, M; Roth, G A; Ankersmit, H J
2014-12-01
Cardiopulmonary bypass (CPB), utilized in on-pump coronary artery bypass graft procedures (CABG) induces generalized immune suppression, release of heat shock proteins (HSP), inflammatory markers and apoptosis-specific proteins. We hypothesized that continued mechanical ventilation during cardiopulmonary bypass attenuates immune response and HSP liberation. Thirty patients undergoing conventional coronary artery bypass graft (CABG) operation were randomized into a ventilated on CPB (VG; N.=15) and a non-ventilated CPB group (NVG; N.=15). Blood samples were drawn at the beginning and end of surgery, as well as on the five consecutive postoperative days (POD). Molecular markers were measured by ELISA. Data are given as mean ± (SD). Mann-Whitney-U-test was used for statistical analysis. Serum concentrations of HSP70 were significantly lower in VG compared to NVG on POD-1 (VG: 1629±608 vs. NVG: 5203±2128.6 pg/mL, P<0.001). HSP27 and HSP60 depicted a minor increase in both study groups at the end of surgery without any intergroup differences (HSP27: VG 6207.9±1252.5 vs. NVG 7424.1±2632.5; HSP60: VG 1046.2±478.8 vs. NVG 1223.5±510.1). IL-8 and CK-18 M30 evidenced the highest serum concentrations at the end of surgery (IL-8: VG 119.5±77.9 vs. NVG 148.0±184.55; CK-18 M30: VG 62.1±39.2 vs. NVG 67.5±33.9) with no differences between groups. Decreased ICAM-1 serum concentrations were detected postoperatively, however ICAM-1 concentrations on POD-1 to POD-5 showed slightly elevated concentrations in both study groups with no intergroup differences. Significantly less HSP70 was detectable in patients receiving uninterrupted mechanical lung ventilation on CPB, indicating either different inflammatory response, cellular stress or cell damage between the ventilated and non-ventilated group. These data suggest that continued mechanical ventilation has a modulatory effect on the immune response in patients after CABG surgery.
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
32 CFR 644.450 - Items excluded from usual restoration obligation.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., ventilators, and metal ceilings. (8) Structural steel or iron. (9) Fire escapes. (10) Heating systems. (11) Plumbing systems. (12) Ventilating systems and air conditioning systems. (13) Power plants. (14) Electric wiring. (15) Lighting fixtures (or replacement). (16) Sprinkler systems. (f) Settling or subsidence. (g...
Ventilation Transport Trade Study for Future Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
Kempf, Robert; Vogel, Matthew; Paul, Heather L.
2008-01-01
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH
Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...
Ventilation and infiltration in high-rise apartment buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, R.C.; Feustel, H.E.; Dickerhoff, D.J.
1996-03-01
Air flow, air leakage measurements and numerical simulations were made on a 13-story apartment building to characterize the ventilation rates for the individual apartments. Parametric simulations were performed for specific conditions, e.g., height, orientation, outside temperature and wind speed. Our analysis of the air flow simulations suggest that the ventilation to the individual units varies considerably. With the mechanical ventilation system disabled and no wind, units at the lower level of the building have adequate ventilation only on days with high temperature differences, while units on higher floors have no ventilation at all. Units facing the windward side will bemore » over-ventilated when the building experiences wind directions between west and north. At the same time, leeward apartments did not experience any fresh air-because, in these cases, air flows enter the apartments from the corridor and exit through the exhaust shafts and the cracks in the facade. Even with the mechanical ventilation system operating, we found wide variation in the air flows to the individual apartments. In addition to the specific case presented here, these findings have more general implications for energy retrofits and health and comfort of occupants in high-rise apartment buildings.« less
Liñán, C; Del Rosal, Y; Carrasco, F; Vadillo, I; Benavente, J; Ojeda, L
2018-08-01
This study shows the utilization of the air CO 2 exhaled by a very high number of visitors in the Nerja Cave as both a tracer and an additional tool to precisely evaluate the air circulation through the entire karst system, which includes non-touristic passages, originally free of anthropogenic CO 2 . The analysis of the temporal - spatial evolution of the CO 2 content and other monitoring data measured from January 2015 to December 2016 in the Nerja-Pintada system, including air microbiological controls, has allowed us to define a new general ventilation model, of great interest for the conservation of the subterranean environment. During the annual cycle four different ventilation regimes and two ventilation modes (UAF-mode and DAF-mode) exist which determine the significance of the anthropogenic impact within the caves. During the winter regime, the strong ventilation regime and the airflow directions from the lowest to the highest entrance (UAF-mode) contribute to the rapid elimination of anthropogenic CO 2 , and this affects the whole karstic system. During the summer regime the DAF-mode ventilation (with airflows from the highest to the lowest entrances) is activated. Although the number of visitors is maximum and the natural ventilation of the karstic system is the lowest of the annual cycle, the anthropogenic impact only affects the Tourist Galleries. The transitional ventilation regimes -spring and autumn- are the most complex of the annual cycle, with changing air-flow directions (from UAF-mode to DAF-mode and vice versa) at diurnal and poly diurnal scale, which conditions the range of the anthropogenic impact in each sector of the karst system. The activation of the DAF-mode has been observed when the temperature difference between the external and air cave is higher than 5°C. Copyright © 2018 Elsevier B.V. All rights reserved.
West, N H; Burggren, W W
1982-02-01
Gill ventilation frequency (fG), the pressure amplitude (PBC) and stroke volume (VS) of buccal ventilation cycles, the frequency of air breaths (fL), water flow over the gills (VW), gill oxygen uptake (MGO2), oxygen utilization (U), and heart frequency (fH) have been measured in unanaesthetized, air breathing Rana catesbeiana tadpoles (stage XVI-XIX). The animals were unrestrained except for ECG leads or cannulae, and were able to surface voluntarily for air breathing. They were subjected to aquatic normoxia, hyperoxia and three levels of aquatic hypoxia, and their respiratory responses recorded in the steady state. The experiments were performed at 20 +/- 0.5 degrees C. In hyperoxia there was an absence of air breathing, and fG, PBC and VW fell from the normoxic values, while U increased, resulting in no significant change in MGO2. Animals in normoxia showed a very low fL which increased in progressively more hypoxic states. VW increased from the normoxic value in mild hypoxia (PO2 = 96 +/- 2 mm Hg), but fell, associated with a reduction in PBC, in moderate (PO2 = 41 +/- 1 mm Hg) and severe (PO2 = 21 +/- 3 mm Hg) hypoxia in the presence of lung ventilation. Gill MGO2 was not significantly different from the normoxic value in mild hypoxia but fell in moderate hypoxia, while in severe hypoxia oxygen was lost to the ventilating water from the blood perfusing the gills. There was no significant change in fH from the normoxic value in either hypoxia or hyperoxia. These data indicate, that in the bimodally breathing bullfrog tadpole, aquatic PO2 exerts a strong control over both gill and lung ventilation. Furthermore, there is an interaction between gill and lung ventilation such that the onset of a high frequency of lung ventilation in moderate and severe hypoxia promotes a suppression of gill ventilation cycles.
NASA Astrophysics Data System (ADS)
Arney, David; Goldman, Julian M.; Whitehead, Susan F.; Lee, Insup
When a x-ray image is needed during surgery, clinicians may stop the anesthesia machine ventilator while the exposure is made. If the ventilator is not restarted promptly, the patient may experience severe complications. This paper explores the interconnection of a ventilator and simulated x-ray into a prototype plug-and-play medical device system. This work assists ongoing interoperability framework development standards efforts to develop functional and non-functional requirements and illustrates the potential patient safety benefits of interoperable medical device systems by implementing a solution to a clinical use case requiring interoperability.
Radionuclide assessment of the effects of chest physical therapy on ventilation in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCesare, J.A.; Babchyck, B.M.; Colten, H.R.
1982-06-01
This study assesses the use of /sup 81m/Kr scintigraphy as a measurement tool in evaluating the effectiveness of bronchial drainage with percussion and vibration on peripheral ventilation in patients with cystic fibrosis. Ten patients with cystic fibrosis participated. Each patient underwent a /sup 81m/Kr ventilation study and traditional pulmonary function tests. Forty-five minutes later, these studies were repeated before and after a chest physical therapy treatment. Each patient acted as his own control. All /sup 81m/Kr scintiscans were recorded and analyzed visually and numerically using a digital computer to assess distribution of ventilation. Visual analysis of the scintiscans indicated individualmore » variation in treatment response: in some patients ventilation improved with therapy; in others, no change was noted; still others had changes independent of treatment. Numerical data derived from the scintiscans and pulmonary function tests showed no important differences among the three studies of each patient. Airway abnormalities characteristic of cystic fibrosis, progression of the disease, sputum production, or a combination of these factors may account for the individual variation in response to treatment. /sup 81m/Kr scintigraphy is a reliable measure of regional ventilation and should be useful for assessing the efficacy of chest physical therapy because of the consistent, high quality visual data retrieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M
Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less
46 CFR 111.33-9 - Ventilation exhaust.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-9 Ventilation exhaust. The exhaust of each forced-air semiconductor rectifier system must: (a) Terminate in a location other than a hazardous location...
Indoor Air Quality in Chemistry Laboratories.
ERIC Educational Resources Information Center
Hays, Steve M.
This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…
Transactive Control of Commercial Buildings for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Corbin, Charles D.; Kalsi, Karanjit
Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Severalmore » case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.« less
Adaptive support ventilation: State of the art review
Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico
2013-01-01
Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471
NASA Technical Reports Server (NTRS)
1982-01-01
The ventilation and fire safety requirements for subway tunnels with dipped profiles between stations as compared to subway tunnels with level profiles were evaluated. This evaluation is based upon computer simulations of a train fire emergency condition. Each of the tunnel configurations evaluated was developed from characteristics that are representative of modern transit systems. The results of the study indicate that: (1) The level tunnel system required about 10% more station cooling than dipped tunnel systems in order to meet design requirements; and (2) The emergency ventilation requirements are greater with dipped tunnel systems than with level tunnel systems.
Hartog, A; Vazquez de Anda, G F; Gommers, D; Kaisers, U; Verbrugge, S J; Schnabel, R; Lachmann, B
1999-01-01
We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm H2O), partial liquid ventilation or ventilation with low PEEP (8 cm H2O) (ventilated controls). Blood-gas values were measured hourly. At the end of the 4-h study, in six animals per group, pressure-volume curves were constructed and bronchoalveolar lavage (BAL) was performed, whereas in the remaining animals lung injury was assessed. In the ventilated control group, arterial oxygenation did not improve and protein concentration of BAL and conversion of active to non-active surfactant components increased significantly. In the three treatment groups, PaO2 increased rapidly to > 50 kPa and remained stable over the next 4 h. The protein concentration of BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active to non-active surfactant components increased significantly in the partial liquid ventilation group and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation groups, less lung injury was found compared with the ventilated control group and the group ventilated with high PEEP. We conclude that although all three strategies improved PaO2 to > 50 kPa, the impact on protein transfer into the alveoli, surfactant system and lung injury differed markedly.
Winkler, Bernd E; Muellenbach, Ralf M; Wurmb, Thomas; Struck, Manuel F; Roewer, Norbert; Kranke, Peter
2017-02-01
While controlled ventilation is most frequently used during cardiopulmonary resuscitation (CPR), the application of continuous positive airway pressure (CPAP) and passive ventilation of the lung synchronously with chest compressions and decompressions might represent a promising alternative approach. One benefit of CPAP during CPR is the reduction of peak airway pressures and therefore a potential enhancement in haemodynamics. We therefore evaluated the tidal volumes and airway pressures achieved during CPAP-CPR. During CPR with the LUCAS™ 2 compression device, a manikin model was passively ventilated at CPAP levels of 5, 10, 20 and 30 hPa with the Boussignac tracheal tube and the ventilators Evita ® V500, Medumat ® Transport, Oxylator ® EMX, Oxylog ® 2000, Oxylog ® 3000, Primus ® and Servo ® -i as well as the Wenoll ® diver rescue system. Tidal volumes and airway pressures during CPAP-CPR were recorded and analyzed. Tidal volumes during CPAP-CPR were higher than during compression-only CPR without positive airway pressure. The passively generated tidal volumes increased with increasing CPAP levels and were significantly influenced by the ventilators used. During ventilation at 20 hPa CPAP via a tracheal tube, the mean tidal volumes ranged from 125 ml (Medumat ® ) to 309 ml (Wenoll ® ) and the peak airway pressures from 23 hPa (Primus ® ) to 49 hPa (Oxylog ® 3000). Transport ventilators generated lower tidal volumes than intensive care ventilators or closed-circuit systems. Peak airway pressures during CPAP-CPR were lower than those during controlled ventilation CPR reported in literature. High peak airway pressures are known to limit the applicability of ventilation via facemask or via supraglottic airway devices and may adversely affect haemodynamics. Hence, the application of ventilators generating high tidal volumes with low peak airway pressures appears desirable during CPAP-CPR. The limited CPAP-CPR capabilities of transport ventilators in our study might be prerequisite for future developments of transport ventilators.
Immediate ventilatory response to sudden changes in venous return in humans.
Cummin, A R; Iyawe, V I; Jacobi, M S; Mehta, N; Patil, C P; Saunders, K B
1986-01-01
We changed venous return transiently by postural manoeuvres, and by lower body positive pressure, to see what happened simultaneously to ventilation. Cardiac output was measured by a Doppler technique. In seven subjects, after inflation of a pressure suit to 80 and 40 mmHg at 30 deg head-up tilt, both cardiac output and ventilation increased. Ventilation increased rapidly to a peak in the first 5 s, cardiac output more slowly to a steady state in about 20 s, at 80 mmHg inflation. After inflation to 80 mmHg in six subjects at 12.5 deg head-up and 30 deg head-down tilt, cardiac output did not change in the first, and fell in the second case. There were no significant changes in ventilation. On release of pressure there were transient increases in both cardiac output and ventilation, with ventilation lagging behind cardiac output, in contrast to (2) above. In five subjects, elevation of the legs at 30 deg head-up tilt caused a rise in both cardiac output and ventilation, but in two subjects neither occurred. In all seven subjects there was a transient increase in cardiac output and ventilation when the legs were lowered. Ventilation and cardiac output changes were approximately in phase. We were therefore unable to dissociate entirely increasing cardiac output from increasing ventilation. The relation between them was certainly not a simple proportional one. PMID:3612571
Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A
2008-01-01
The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.
Methane emissions and airflow patterns along longwall faces and through bleeder ventilation systems
Schatzel, Steven J.; Dougherty, Heather N.
2015-01-01
The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of longwall face and bleeder ventilation systems using tracer gas experiments and computer network ventilation. The condition of gateroad entries, along with the caved material’s permeability and porosity changes as the longwall face advances, determine the resistance of the airflow pathways within the longwall’s worked-out area of the bleeder system. A series of field evaluations were conducted on a four-panel longwall district. Tracer gas was released at the mouth of the longwall section or on the longwall face and sampled at various locations in the gateroads inby the shield line. Measurements of arrival times and concentrations defined airflow/gas movements for the active/completed panels and the bleeder system, providing real field data to delineate these pathways. Results showed a sustained ability of the bleeder system to ventilate the longwall tailgate corner as the panels retreated. PMID:26925166
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike
2015-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barley, C. D.; Anderson, R.; Hendron, B.
2007-12-01
This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.
Romano, Francesco; Gustén, Jan; De Antonellis, Stefano; Joppolo, Cesare M.
2017-01-01
Air cleanliness in operating theatres (OTs) is an important factor for preserving the health of both the patient and the medical staff. Particle contamination in OTs depends mainly on the surgery process, ventilation principle, personnel clothing systems and working routines. In many open surgical operations, electrosurgical tools (ESTs) are used for tissue cauterization. ESTs generate a significant airborne contamination, as surgical smoke. Surgical smoke is a work environment quality problem. Ordinary surgical masks and OT ventilation systems are inadequate to control this problem. This research work is based on numerous monitoring campaigns of ultrafine particle concentrations in OTs, equipped with upward displacement ventilation or with a downward unidirectional airflow system. Measurements performed during ten real surgeries highlight that the use of ESTs generates a quite sharp and relevant increase of particle concentration in the surgical area as well within the entire OT area. The measured contamination level in the OTs are linked to surgical operation, ventilation principle, and ESTs used. A better knowledge of airborne contamination is crucial for limiting the personnel’s exposure to surgical smoke. Research results highlight that downward unidirectional OTs can give better conditions for adequate ventilation and contaminant removal performances than OTs equipped with upward displacement ventilation systems. PMID:28146089
VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence
NASA Astrophysics Data System (ADS)
Chen, Austin H.; Chen, Guan-Ting
How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.
The necessity of HVAC system for the registered architectural cultural heritage building
NASA Astrophysics Data System (ADS)
Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian
2018-02-01
This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.
Burbank performs the scheduled extensive cleanup of ventilation systems
2012-02-22
ISS030-E-093414 (22 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs the scheduled extensive cleanup of ventilation systems in the Columbus laboratory of the International Space Station.
7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 ...
7. DETAIL, VENTILATION SYSTEM; EAST FRONT OF QUARANTINE GREENHOUSE #3 (BUILDING 31) - U.S. Plant Introduction Station, Quarantine Headhouses & Greenhouses, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD
NEW IMPROVEMENTS TO MFIRE TO ENHANCE FIRE MODELING CAPABILITIES.
Zhou, L; Smith, A C; Yuan, L
2016-06-01
NIOSH's mine fire simulation program, MFIRE, is widely accepted as a standard for assessing and predicting the impact of a fire on the mine ventilation system and the spread of fire contaminants in coal and metal/nonmetal mines, which has been used by U.S. and international companies to simulate fires for planning and response purposes. MFIRE is a dynamic, transient-state, mine ventilation network simulation program that performs normal planning calculations. It can also be used to analyze ventilation networks under thermal and mechanical influence such as changes in ventilation parameters, external influences such as changes in temperature, and internal influences such as a fire. The program output can be used to analyze the effects of these influences on the ventilation system. Since its original development by Michigan Technological University for the Bureau of Mines in the 1970s, several updates have been released over the years. In 2012, NIOSH completed a major redesign and restructuring of the program with the release of MFIRE 3.0. MFIRE's outdated FORTRAN programming language was replaced with an object-oriented C++ language and packaged into a dynamic link library (DLL). However, the MFIRE 3.0 release made no attempt to change or improve the fire modeling algorithms inherited from its previous version, MFIRE 2.20. This paper reports on improvements that have been made to the fire modeling capabilities of MFIRE 3.0 since its release. These improvements include the addition of fire source models of the t-squared fire and heat release rate curve data file, the addition of a moving fire source for conveyor belt fire simulations, improvement of the fire location algorithm, and the identification and prediction of smoke rollback phenomena. All the improvements discussed in this paper will be termed as MFIRE 3.1 and released by NIOSH in the near future.
The effect of closed system suction on airway pressures when using the Servo 300 ventilator.
Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M
2001-12-01
To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.
Carlucci, Annalisa; Ceriana, Piero; Mancini, Marco; Cirio, Serena; Pierucci, Paola; D'Artavilla Lupo, Nadia; Gadaleta, Felice; Morrone, Elisa; Fanfulla, Francesco
2015-01-01
Background: Ventilation with continuous positive airway pressure (CPAP) is the gold standard therapy for obstructive sleep apnea (OSA). However, it was recently suggested that a novel mode of ventilation, Bilevel-auto, could be equally effective in treating patients unable to tolerate CPAP. The aim of this study was to investigate the ability of Bilevel-auto to treat OSA patients whose nocturnal ventilatory disturbances are not completely corrected by CPAP. Methods: We enrolled 66 consecutive OSA patients, not responsive to (group A) or intolerant of (group B) CPAP treatment, after a full night of manual CPAP titration in a laboratory. Full polysomnography data and daytime sleepiness score were compared for each group in the three different conditions: basal, during CPAP, and during Bilevel-auto. Results: The apnea-hypopnea index decreased significantly during CPAP in both groups; however, in the group A, there was a further significant improvement during Bilevel-auto. The same trend was observed for oxygenation indices, while the distribution and the efficiency of sleep did not differ following the switch from CPAP to Bilevel-auto. Conclusions: This study confirmed the role of Bilevel-auto as an effective therapeutic alternative to CPAP in patients intolerant of this latter mode of ventilation. Moreover, extending the use of Bilevel-auto to those OSA patients not responsive to CPAP, we showed a significantly better correction of nocturnal respiratory disturbances. Citation: Carlucci A, Ceriana P, Mancini M, Cirio S, Pierucci P, D'Artavilla Lupo N, Gadaleta F, Morrone E, Fanfulla F. Efficacy of Bilevel-auto treatment in patients with obstructive sleep apnea not responsive to or intolerant of continuous positive airway pressure ventilation. J Clin Sleep Med 2015;11(9):981–985. PMID:25902825
Effects of exercise position on the ventilatory responses to exercise in chronic heart failure.
Armour, W; Clark, A L; McCann, G P; Hillis, W S
1998-09-01
Patients with heart failure frequently complain of orthopnoea. The objective was to assess the ventilatory response of patients with chronic heart failure during erect and supine exercise. Maximal incremental exercise testing with metabolic gas exchange measurements in erect and supine positions conducted in random order. Tertiary referral centre for cardiology. Nine patients with heart failure (aged 61.9+/-6.1 years) and 10 age matched controls (63.8+/-4.6). Metabolic gas exchange measurements. The slope of the relation between ventilation and carbon dioxide production. Ratings of perceived breathlessness during exercise. Oxygen consumption (VO2) and ventilation were higher during erect exercise at each stage in each group. Peak VO2 was [mean (SD)] 17.12 ml/kg/min (4.07) erect vs 12.92 (3.61) supine in the patients (P<0.01) and 22.62 (5.03) erect-supine vs 19.16 (3.78) erect (P<0.01) in the controls. Ratings of perceived exertion were higher in the patients at each stage, but unaffected by posture. There was no difference in the slope of the relation between ventilation and carbon dioxide production between erect and supine exercise 36.39 (6.12) erect vs 38.42 (8.89) supine for patients; 30.05 (4.52) vs 28.80 (3.96) for controls. In this group of patients during exercise, there was no change in the perception of breathlessness, nor the ventilatory response to carbon dioxide production with change in posture, although peak ventilation was greater in the erect position. The sensation of breathlessness may be related to the appropriateness of the ventilatory response to exertion rather than to the absolute ventilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppiti, James; Nelson, Roger; MacMillan, Walter J.
The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less
Short-term airing by natural ventilation - implication on IAQ and thermal comfort.
Heiselberg, P; Perino, M
2010-04-01
The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.
Control of ventilation during intravenous CO2 loading in the awake dog.
Stremel, R W; Huntsman, D J; Casaburi, R; Whipp, B J; Wasserman, K
1978-02-01
The ventilatory response to venous CO2 loading and its effect on arterial CO2 tension was determined in five awake dogs. Blood, 200-500 ml/min, was diverted from a catheter in the right common carotid artery through a membrane gas exchanger and returned to the right jugular vein. CO2 loading was accomplished by changing the gas ventilating the gas exchanger from a mixture of 5% CO2 in air to 100% CO2. The ventilatory responses to this procedure were compared with those resulting from increased inspired CO2 concentrations (during which ventilation of the gas exchanger with the air and 5% CO2 mixture continued). The ventilatory response to each form of CO2 loading was computed as deltaVE/deltaPaco9. The mean ventilatory response to airway CO2 loading was 1.61 1/min per Torr PaCO2. The mean response for the venous CO2 loading was significantly higher and not significantly different from "infinite" CO2 sensitivity (i.e., isocapnic response). The results provide further evidence for a CO2-linked hyperpnea, not mediated by significant changes in mean arterial PCO2.
Compartmentalization of Inflammatory Response Following Gut Ischemia Reperfusion.
Collange, O; Charles, A-L; Lavaux, T; Noll, E; Bouitbir, J; Zoll, J; Chakfé, N; Mertes, M; Geny, B
2015-01-01
Gut ischemia reperfusion (IR) is thought to trigger systemic inflammation, multiple organ failure, and death. The aim of this study was to investigate inflammatory responses in blood and in two target organs after gut IR. This was a controlled animal study. Adult male Wistar rats were randomized into two groups of eight rats: control group and gut IR group (60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion). Lactate and four cytokines (tumor necrosis factor-a, interleukin [IL]-1b, IL-6, and IL-10) were measured in mesenteric and systemic blood. The relative gene expression of these cytokines was determined by real time polymerase chain reaction in the gut, liver, and lung. Gut IR significantly increased lactate levels in mesenteric (0.9 ± 0.4 vs. 3.7 ± 1.8 mmol/L; p < .001) and in systemic blood (1.3 ± 0.2 vs. 4.0 ± 0.3 mmol/L; p < .001). Gut IR also increased the levels of four cytokines in mesenteric and systemic blood. IL-6 and IL-10 were the main circulating cytokines; there were no significant differences between mesenteric and systemic cytokine levels. IL-10 was upregulated mainly in the lung,suggesting that this organ could play a major role during gut reperfusion. The predominance of IL-10 over other cytokines in plasma and the dissimilar organ responses,especially of the lung, might be a basis for the design of therapies, for example lung protective ventilation strategies, to limit the deleterious effects of the inflammatory cascade. A multi-organ protective approach might involve gut directed therapies, protective ventilation, hemodynamic optimization, and hydric balance.
Respiratory Toxicity of Dimethyl Sulfoxide.
Takeda, Kotaro; Pokorski, Mieczyslaw; Sato, Yutaka; Oyamada, Yoshitaka; Okada, Yasumasa
2016-01-01
Dimethyl sulfoxide (DMSO) is one of the most commonly used solvents for hydrophobic substances in biological experiments. In addition, the compound exhibits a plethora of bioactivities, which makes it of potential pharmacological use of its own. The influence on respiration, and thus on arterial blood oxygenation, of DMSO is unclear, contentious, and an area of limited study. Thus, in the present investigation we set out to determine the influence on lung ventilation of cumulated doses of DMSO in the amount of 0.5, 1.5, 3.5, 7.5, and 15.5 g/kg; each dose given intraperitoneally at 1 h interval in conscious mice. Ventilation and its responses to 7 % hypoxia (N(2) balanced) were recorded in a whole body plethsymograph. We demonstrate a dose-dependent inhibitory effect of DMSO on lung ventilation and its hypoxic responsiveness, driven mostly by changes in the tidal component. The maximum safe dose of DMSO devoid of meaningful consequences for respiratory function was 3.5 g/kg. The dose of 7.5 g/kg of DMSO significantly dampened respiration, with yet well preserved hyperventilatory response to hypoxia. The highest dose of 15.5 g/kg severely impaired ventilation and its responses. The study delineates the safety profile of DMSO regarding the respiratory function which is essential for maintaining proper tissue oxygenation. Caution should be exercised concerning dose concentration of DMSO.
Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basementmore » with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments« less
Innovative ventilation system for animal anatomy laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, D.R.; Smith, D.C.
1997-04-01
A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less
Change-over natural and mechanical ventilation system energy consumption in single-family buildings
NASA Astrophysics Data System (ADS)
Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata
2017-11-01
The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.
Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues
ACHP | News | ACHP Issues Program Comment for GSA on Select Repairs and
to windows, lighting, roofing, and heating, ventilating, and air-conditioning (HVAC) systems within Upgrades Windows Lighting Roofing Heating, Ventilation, and Air Conditioning (HVAC) Systems Updated March
SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT
This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...
Turner, W A; Bearg, D W; Brennan, T
1995-01-01
This chapter begins with an overview of the history of ventilation guidelines, which has led to the guidelines that are in effect today. Of particular interest is the most recent return in the past 5 years to ventilation rates that more closely reflect a mean or average of the range of guidelines that have existed over the past century. OSHA's and the EPA's recognition of the need to operate ventilation systems in buildings in an accountable manner is also of note. Of even more interest is the resurgence of the concept of minimum mixing and once-through ventilation air that has been pursued in parts of Northern Europe for the past 10 years, and in a school that is being designed with this concept in New Hampshire. In addition, the design concept of equipping office buildings with low pressure drop high efficiency particle filtration to remove fine particles from all of the air that is supplied to the occupants is being used increasingly in the U.S. This chapter also presents an overview of the various types of ventilation systems found in homes and commercial office buildings and the common indoor air quality problems that may be associated with them. It also offers an overview of common HVAC evaluation techniques that can be used to determine if a ventilation system is performing in a manner that makes sense for the use of the space and the needs of the occupants. Are the occupants receiving a reasonable supply of outdoor air? Is the air that they receive of reasonable quality? Are obvious pollutants being exhausted? Ventilation systems have become extremely complex and more difficult to run and maintain over the past 40 years. This trend will continue to drive the need for professionally maintained HVAC equipment that is serviced and run by individuals who are accountable for the quality of the air that the system delivers.
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operational controls outside the ventilated space. (g) No ventilation duct for a gas-dangerous space may pass... Section 154.1205 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...
Kim, Ji Hoon; Beom, Jin Ho; You, Je Sung; Cho, Junho; Min, In Kyung; Chung, Hyun Soo
2018-01-01
Several auditory-based feedback devices have been developed to improve the quality of ventilation performance during cardiopulmonary resuscitation (CPR), but their effectiveness has not been proven in actual CPR situations. In the present study, we investigated the effectiveness of visual flashlight guidance in maintaining high-quality ventilation performance. We conducted a simulation-based, randomized, parallel trial including 121 senior medical students. All participants were randomized to perform ventilation during 2 minutes of CPR with or without flashlight guidance. For each participant, we measured mean ventilation rate as a primary outcome and ventilation volume, inspiration velocity, and ventilation interval as secondary outcomes using a computerized device system. Mean ventilation rate did not significantly differ between flashlight guidance and control groups (P = 0.159), but participants in the flashlight guidance group exhibited significantly less variation in ventilation rate than participants in the control group (P<0.001). Ventilation interval was also more regular among participants in the flashlight guidance group. Our results demonstrate that flashlight guidance is effective in maintaining a constant ventilation rate and interval. If confirmed by further studies in clinical practice, flashlight guidance could be expected to improve the quality of ventilation performed during CPR.
NASA Astrophysics Data System (ADS)
Huang, Tao; Xiang, Yutong; Wang, Yonghong
2017-05-01
In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SEDERBURG, J.P.
1999-09-30
This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.
Study of Alternate Material for Pedal Ventilator Kits.
1980-04-01
to fans with diameters of 36 inches or less, revealed that a shelter ventilation system of minimum cost would require three units with 36-inch...doorways, it was decided, with OCD approval, to develop pre-assembled one and two-operator bicycle ventilator kits utilizing a fan and ducting system of...polypropylene matrix. According to Ford Motor Company, an enthusiastic user, this material hybrid offers large potential savings in direct substitution for glass
Water spray ventilator system for continuous mining machines
Page, Steven J.; Mal, Thomas
1995-01-01
The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.
Miyamoto, Kenji; Fujisawa, Masahide; Hozumi, Hajime; Tsuboi, Tatsuo; Kuwashima, Shigeko; Hirao, Jun-ichi; Sugita, Kenichi; Arisaka, Osamu
2013-10-01
Respiratory syncytial virus (RSV) is a cause of neurological complications in infants. We report a rare case of RSV encephalopathy in an infant who presented with poor sucking and hypothermia at 17 days of age after suffering from rhinorrhea and a cough for several days. After hospitalization, the patient presented with stupor and hypotonia lasting for at least 24 h, and was intubated, sedated, and ventilated for treatment of pneumonia. These symptoms led to diagnosis of pediatric systemic inflammatory response syndrome (SIRS) caused by RSV infection. High-dose steroid therapy was combined with artificial ventilation because the initial ventilation therapy was ineffective. Interleukin (IL)-6 levels in spinal fluid were markedly increased upon admission, and serum IL-6 and IL-8 levels showed even greater elevation. The patient was diagnosed with RSV encephalopathy. On day 5, high signal intensity in the bilateral hippocampus was observed on diffusion-weighted magnetic resonance imaging (MRI). On day 14, the patient presented with delayed partial seizure and an electroencephalogram showed occasional unilateral spikes in the parietal area, but the hippocampal abnormality had improved to normal on MRI. (99m)Tc-labeled ethylcysteinate dimer single-photon emission computed tomography (SPECT) on day 18 showed hypoperfusion of the bilateral frontal and parietal regions and the unilateral temporal region. SPECT at 3 months after onset still showed hypoperfusion of the bilateral frontal region and unilateral temporal region, but hypoperfusion of the bilateral parietal region had improved. The patient has no neurological deficit at 6 months. These findings suggest that RSV encephalopathy with cytokine storm induces several symptoms and complications, including SIRS and prolonged brain hypoperfusion on SPECT.
International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.
2009-01-01
The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.
Alves, Abel Eduardo; Pereira, José Manuel
2018-03-01
The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which can significantly decrease the use of antibiotics in critically ventilated patients.
Mechanical ventilation and sepsis induce skeletal muscle catabolism in neonatal pigs
USDA-ARS?s Scientific Manuscript database
Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...
Surgical clothing systems in laminar airflow operating room: a numerical assessment.
Sadrizadeh, Sasan; Holmberg, Sture
2014-01-01
This study compared two different laminar airflow distribution strategies - horizontal and vertical - and investigated the effectiveness of both ventilation systems in terms of reducing the sedimentation and distribution of bacteria-carrying particles. Three different staff clothing systems, which resulted in source strengths of 1.5, 4 and 5 CFU/s per person, were considered. The exploration was conducted numerically using a computational fluid dynamics technique. Active and passive air sampling methods were simulated in addition to recovery tests, and the results were compared. Model validation was performed through comparisons with measurement data from the published literature. The recovery test yielded a value of 8.1 min for the horizontal ventilation scenario and 11.9 min for the vertical ventilation system. Fewer particles were captured by the slit sampler and in sedimentation areas with the horizontal ventilation system. The simulated results revealed that under identical conditions in the examined operating room, the horizontal laminar ventilation system performed better than the vertical option. The internal constellation of lamps, the surgical team and objects could have a serious effect on the movement of infectious particles and therefore on postoperative surgical site infections. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Bianchi, Biagio; Giametta, Ferruccio; La Fianza, Giovanna; Gentile, Andrea; Catalano, Pasquale
2015-01-01
The environment in the broiler house is a combination of physical and biological factors generating a complex dynamic system of interactions between birds, husbandry system, light, temperature, and the aerial environment. Ventilation plays a key role in this scenario. It is pivotal to remove carbon dioxide and water vapor from the air of the hen house. Adequate ventilation rates provide the most effective method of controlling temperature within the hen house. They allow for controlling the relative humidity and can play a key role in alleviating the negative effects of high stocking density and of wet litter. In the present study the results of experimental tests performed in a breeding broiler farm are shown. In particular the efficiency of a semi transversal ventilation system was studied against the use of a pure transversal one. In order to verify the efficiency of the systems, fluid dynamic simulations were carried out using the software Comsol multiphysics. The results of this study show that a correct architectural and structural design of the building must be supported by a design of the ventilation system able to maintain the environmental parameters within the limits of the thermo‑neutral and welfare conditions and to achieve the highest levels of productivity.
Giraud, O; Seince, P F; Rolland, C; Leçon-Malas, V; Desmonts, J M; Aubier, M; Dehoux, M
2000-12-01
Several studies suggest that anesthetics modulate the immune response. The aim of this study was to investigate the effect of halothane and thiopental on the lung inflammatory response. Rats submitted or not to intratracheal (IT) instillation of lipopolysaccharides (LPS) were anesthetized with either halothane (0. 5, 1, or 1.5%) or thiopental (60 mg. kg(-1)) and mechanically ventilated for 4 h. Control rats were treated or not by LPS without anesthesia. Lung inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluids (BALF) and by cytokine measurements (tumor necrosis factor-alpha [TNF-alpha], interleukin-6 [IL-6], macrophage inflammatory protein-2 [MIP-2], and monocyte chemoattractant protein-1 [MCP-1]) in BALF and lung homogenates. In the absence of LPS treatment, neither halothane nor thiopental modified the moderate inflammatory response induced by tracheotomy or mechanical ventilation. Cell recruitment and cytokine concentrations were increased in all groups receiving IT LPS. However, in halothane-anesthetized rats (halothane > or = 1%), but not in thiopental-anesthetized rats, the LPS-induced lung inflammation was altered in a dose-dependent manner. Indeed, when using 1% halothane, polymorphonuclear leukocyte (PMN) recruitment was decreased by 55% (p < 0.001) and TNF-alpha, IL-6, and MIP-2 concentrations in BALF and lung homogenates were decreased by more than 60% (p < 0.001) whereas total protein and MCP-1 concentrations remained unchanged. The decrease of MIP-2 (observed at the protein and messenger RNA [mRNA] level) was strongly correlated to the decrease of PMN recruitment (r = 0.73, p < 0.05). This halothane-reduced lung inflammatory response was transient and was reversed 20 h after the end of the anesthesia. Our study shows that halothane > or = 1%, delivered during 4 h by mechanical ventilation, but not mechanical ventilation per se, alters the early LPS-induced lung inflammation in the rat, suggesting a specific effect of halothane on this response.
Digital simulation and experimental evaluation of the CO2-H(plus) control of pulmonary ventilation
NASA Technical Reports Server (NTRS)
Milhorn, H. T., Jr.; Reynolds, W. J.
1972-01-01
Previous models of the CO2-H(+) control of ventilation have been concerned either with the response to CO2 inhalation, or the response to perfusion of the surface of the medulla with mock cerebrospinal fluid having a high P sub CO2. Simulation of both responses with the same model has not been attempted. The purpose of the present study was two fold; first to develop such a model and, second, to obtain experimental data from human subjects for both developing this model and for evaluating this and future models.
Code of Federal Regulations, 2013 CFR
2013-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii)(A) The employer shall ensure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2012 CFR
2012-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii)(A) The employer shall ensure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2010 CFR
2010-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii) The employer shall assure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2014 CFR
2014-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii)(A) The employer shall ensure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Code of Federal Regulations, 2011 CFR
2011-07-01
... annually to reflect the current status of the program. (3) Mechanical ventilation. When ventilation is used... potentially harmful effects of exposure to lead. (vii) The employer shall assure that the containers of... remove lead from any surface unless the compressed air is used in conjunction with a ventilation system...
Shi, Chang; Boehme, Stefan; Bentley, Alexander H; Hartmann, Erik K; Klein, Klaus U; Bodenstein, Marc; Baumgardner, James E; David, Matthias; Ullrich, Roman; Markstaller, Klaus
2014-01-01
Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation. Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R(2) = 0.96. Bland-Altman analysis showed a bias of -1.07±24.71 ml and limits of agreement of -49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R(2) values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT. Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT.
Assessment of Natural Ventilation System for a Typical Residential House in Poland
NASA Astrophysics Data System (ADS)
Antczak-Jarząbska, Romana; Krzaczek, Marek
2016-09-01
The paper presents the research results of field measurements campaign of natural ventilation performance and effectiveness in a residential building. The building is located in the microclimate whose parameters differ significantly in relation to a representative weather station. The measurement system recorded climate parameters and the physical variables characterizing the air flow in the rooms within 14 days of the winter season. The measurement results showed that in spite of proper design and construction of the ventilation system, unfavorable microclimatic conditions that differed from the predicted ones caused significant reduction in the efficiency of the ventilation system. Also, during some time periods, external climate conditions caused an opposite air flow direction in the vent inlets and outlets, leading to a significant deterioration of air quality and thermal comfort measured by CO2 concentration and PMV index in a residential area.
Regenerative Blower for EVA Suit Ventilation Fan
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Paul, Heather L.
2010-01-01
Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.
Weaning from mechanical ventilation: why are we still looking for alternative methods?
Frutos-Vivar, F; Esteban, A
2013-12-01
Most patients who require mechanical ventilation for longer than 24 hours, and who improve the condition leading to the indication of ventilatory support, can be weaned after passing a first spontaneous breathing test. The challenge is to improve the weaning of patients who fail that first test. We have methods that can be referred to as traditional, such as the T-tube, pressure support or synchronized intermittent mandatory ventilation (SIMV). In recent years, however, new applications of usual techniques as noninvasive ventilation, new ventilation methods such as automatic tube compensation (ATC), mandatory minute ventilation (MMV), adaptive support ventilation or automatic weaning systems based on pressure support have been described. Their possible role in weaning from mechanical ventilation among patients with difficult or prolonged weaning remains to be established. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Predicting the response of the injured lung to the mechanical breath profile
Smith, Bradford J.; Lundblad, Lennart K. A.; Kollisch-Singule, Michaela; Satalin, Joshua; Nieman, Gary; Habashi, Nader
2015-01-01
Mechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (Vt) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-Vt ventilation. To gain insight into the relative merits of these two ventilation modes, we measured lung mechanics and derecruitability in rats before and following Tween lavage. We fit to these lung mechanics measurements a computational model of the lung that accounts for both the degree of tissue distension of the open lung and the amount of lung derecruitment that takes place as a function of time. Using this model, we predicted how tissue distension, open lung fraction, and intratidal recruitment vary as a function of ventilator settings both for conventional low-Vt ventilation and for APRV. Our predictions indicate that APRV is more effective at recruiting the lung than low-Vt ventilation, but without causing more overdistension of the tissues. On the other hand, low-Vt ventilation generally produces less intratidal recruitment than APRV. Predictions such as these may be useful for deciding on the relative benefits of different ventilation modes and thus may serve as a means for determining how to ventilate a given lung in the least injurious fashion. PMID:25635004
ERIC Educational Resources Information Center
Strickland, Gary
2001-01-01
Explains how changes in school design in the last 10 years have caused heating, ventilation, and cooling system (HVAC) designers to reexamine their choice of classroom unit ventilators (UV). The influence of indoor lighting systems, insulation, indoor air quality, energy code compliance, and HVAC system design on UV decision making are also…
Radiostethoscopes: an innovative solution for auscultation while wearing protective gear.
Candiotti, Keith A; Rodriguez, Yiliam; Curia, Luciana; Saltzman, Bruce; Shekhter, Ilya; Rosen, Lisa; Birnbach, David J
2011-01-01
To demonstrate a radiostethoscope that could be modified and successfully used while wearing protective gear to solve the problem of auscultation in a hazardous material or infectious disease setting. This study was a randomized, prospective, and blinded investigation. The study was conducted at the University of Miami-Jackson Memorial Hospital Center for Patient Safety. Two blinded anesthesiologists using a radiostethoscope performed a total of 100 assessments (50 each) to evaluate endotracheal tube position on a human patient simulator (HPS). Each lung of the HPS was ventilated separately using a double lumen tube. Four ventilation patterns (ie, right lung ventilation only; left lung ventilation only; ventilation of both lungs; and an esophageal intubation or no breath sounds) were simulated. The ventilation pattern was determined randomly and participants were blinded. An Ambu-Bag was used for ventilation. An assistant moved the radiostethoscope to the right and left lung fields and then to the abdomen of the HPS while ventilating. Subjects had to identify the ventilation pattern after listening to all three locations. A third member of the research team collected responses. Each subject, who wore both types of respirator (positive and negative), performed a total of 25 trials. Participants later compared the two types of respirators and their ability to auscultate for breath sounds. Subjects were able to verify the correct ventilation pattern in all attempts (100 percent). Radiostethoscopes appear to provide a viable solution for the problem of patient auscultation while wearing protective gear.
Griffel, M I; Astiz, M E; Rackow, E C; Weil, M H
1990-01-01
We studied the effect of mechanical ventilation on systemic oxygen extraction and lactic acidosis in peritonitis and shock in rats. Sepsis was induced by cecal ligation and perforation. After tracheostomy, rats were randomized to spontaneous breathing (S) or mechanical ventilation with paralysis (V). Five animals were studied in each group. The V animals were paralyzed with pancuronium bromide to eliminate respiratory effort. Mechanical ventilation consisted of controlled ventilation using a rodent respirator with periodic adjustment of minute ventilation to maintain PaCO2 and pH within normal range. Arterial and central venous blood gases and thermodilution cardiac output were measured at baseline before abdominal surgery, and sequentially at 0.5, 3.5, and 6 h after surgery. At 6 h, cardiac output was 193 +/- 30 ml/kg.min in S animals and 199 +/- 32 ml/kg.min in V animals (NS). The central venous oxygen saturation was 27.4 +/- 4.7% in S animals and 30.0 +/- 6.4% in V animals (NS). Systemic oxygen extraction was 70 +/- 5% in S animals and 67 +/- 6% in V animals (NS). Arterial lactate was 2.4 +/- 0.4 mmol/L in S animals and 2.2 +/- 0.5 mmol/L in V animals (NS). The S animals developed lethal hypotension at 6.6 +/- 0.4 h compared to 6.8 +/- 0.4 h in V animals (NS). These data suggest that mechanical ventilation does not decrease systemic oxygen extraction or ameliorate the development of lactic acidosis during septic shock.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike
2016-01-01
NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.
Spieth, P M; Güldner, A; Carvalho, A R; Kasper, M; Pelosi, P; Uhlig, S; Koch, T; Gama de Abreu, M
2011-09-01
Setting and strategies of mechanical ventilation with positive end-expiratory pressure (PEEP) in acute lung injury (ALI) remains controversial. This study compares the effects between lung-protective mechanical ventilation according to the Acute Respiratory Distress Syndrome Network recommendations (ARDSnet) and the open lung approach (OLA) on pulmonary function and inflammatory response. Eighteen juvenile pigs were anaesthetized, mechanically ventilated, and instrumented. ALI was induced by surfactant washout. Animals were randomly assigned to mechanical ventilation according to the ARDSnet protocol or the OLA (n=9 per group). Gas exchange, haemodynamics, pulmonary blood flow (PBF) distribution, and respiratory mechanics were measured at intervals and the lungs were removed after 6 h of mechanical ventilation for further analysis. PEEP and mean airway pressure were higher in the OLA than in the ARDSnet group [15 cmH(2)O, range 14-18 cmH(2)O, compared with 12 cmH(2)O; 20.5 (sd 2.3) compared with 18 (1.4) cmH(2)O by the end of the experiment, respectively], and OLA was associated with improved oxygenation compared with the ARDSnet group after 6 h. OLA showed more alveolar overdistension, especially in gravitationally non-dependent regions, while the ARDSnet group was associated with more intra-alveolar haemorrhage. Inflammatory mediators and markers of lung parenchymal stress did not differ significantly between groups. The PBF shifted from ventral to dorsal during OLA compared with ARDSnet protocol [-0.02 (-0.09 to -0.01) compared with -0.08 (-0.12 to -0.06), dorsal-ventral gradients after 6 h, respectively]. According to the OLA, mechanical ventilation improved oxygenation and redistributed pulmonary perfusion when compared with the ARDSnet protocol, without differences in lung inflammatory response.
Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.
Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L
2016-06-23
Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.
Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia
Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.
2016-01-01
Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106
Respiratory system dynamical mechanical properties: modeling in time and frequency domain.
Carvalho, Alysson Roncally; Zin, Walter Araujo
2011-06-01
The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.
Risk factors associated with development of ventilator associated pneumonia.
Noor, Ahmed; Hussain, Syed Fayyaz
2005-02-01
To assess the risk factors associated with development of ventilator associated pneumonia (VAP). A case control study. Intensive Care Unit (ICU) at the Aga Khan University Hospital, Karachi, between January 1999 and June 2000. All patients with assisted mechanical ventilation were assessed for the development of VAP. Risk factors associated with development of VAP were determined. Adult patients who developed pneumonia, 48 hours after ventilation, were called cases while those who did not develop pneumonia were called controls. Seventy (28%) out of 250 mechanically ventilated patients developed VAP (rate of VAP was 26 cases per 1000 ventilator days). Shock during first 48 hours of ventilation (odds ratio (OR), 5.95; 95% confidence interval (CI), 2.83-12.52), transport out of ICU during mechanical ventilation (OR, 6.0; 95% CI, 2.92-12.37), re-intubation (OR, 4.23; 95% CI, 2.53-9.85), prior episode of aspiration of gastric content (OR, 3.07; 95% CI, 1.35-7.01), and use of antibiotics prior to intubation (OR,2.55; 95% CI, 1.20-5.41) were found to be independently associated with a higher risk of developing VAP. Gram negative organisms and Staphylococcus aureus were responsible for over 90% of cases. Patients with VAP had higher crude mortality rate (57.1%) compared with controls (32.2%). Ventilator associated pneumonia is associated with a high mortality. This study has identified risk factors associated with VAP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, Joseph
2017-01-01
The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lstiburek, Joseph
The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamilymore » units that satisfies the requirements of ASHRAE 62.2-2016.« less
Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent
2007-09-01
The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.
Akkanti, Bindu; Rajagopal, Keshava; Patel, Kirti P; Aravind, Sangeeta; Nunez-Centanu, Emmanuel; Hussain, Rahat; Shabari, Farshad Raissi; Hofstetter, Wayne L; Vaporciyan, Ara A; Banjac, Igor S; Kar, Biswajit; Gregoric, Igor D; Loyalka, Pranav
2017-06-01
Extracorporeal carbon dioxide removal (ECCO 2 R) permits reductions in alveolar ventilation requirements that the lungs would otherwise have to provide. This concept was applied to a case of hypercapnia refractory to high-level invasive mechanical ventilator support. We present a case of an 18-year-old man who developed post-pneumonectomy acute respiratory distress syndrome (ARDS) after resection of a mediastinal germ cell tumor involving the left lung hilum. Hypercapnia and hypoxemia persisted despite ventilator support even at traumatic levels. ECCO 2 R using a miniaturized system was instituted and provided effective carbon dioxide elimination. This facilitated establishment of lung-protective ventilator settings and lung function recovery. Extracorporeal lung support increasingly is being applied to treat ARDS. However, conventional extracorporeal membrane oxygenation (ECMO) generally involves using large cannulae capable of carrying high flow rates. A subset of patients with ARDS has mixed hypercapnia and hypoxemia despite high-level ventilator support. In the absence of profound hypoxemia, ECCO 2 R may be used to reduce ventilator support requirements to lung-protective levels, while avoiding risks associated with conventional ECMO.
The impact of particle filtration on indoor air quality in a classroom near a highway.
van der Zee, S C; Strak, M; Dijkema, M B A; Brunekreef, B; Janssen, N A H
2017-03-01
A pilot study was performed to investigate whether the application of a new mechanical ventilation system with a fine F8 (MERV14) filter could improve indoor air quality in a high school near the Amsterdam ring road. PM10, PM2.5, and black carbon (BC) concentrations were measured continuously inside an occupied intervention classroom and outside the school during three sampling periods in the winter of 2013/2014. Initially, 3 weeks of baseline measurements were performed, with the existing ventilation system and normal ventilation habits. Next, an intervention study was performed. A new ventilation system was installed in the classroom, and measurements were performed during 8 school weeks, in alternating 2-week periods with and without the filter in the ventilation system under otherwise identical ventilation conditions. Indoor/outdoor ratios measured during the weeks with filter were compared with those measured without filter to evaluate the ability of the F8 filter to improve indoor air quality. During teaching hours, the filter reduced BC exposure by, on average, 36%. For PM10 and PM2.5, a reduction of 34% and 30% was found, respectively. This implies that application of a fine filter can reduce the exposure of schoolchildren to traffic exhaust at hot spot locations by about one-third. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
[Monitorization of respiratory mechanics in the ventilated patient].
García-Prieto, E; Amado-Rodríguez, L; Albaiceta, G M
2014-01-01
Monitoring during mechanical ventilation allows the measurement of different parameters of respiratory mechanics. Accurate interpretation of these data can be useful for characterizing the situation of the different components of the respiratory system, and for guiding ventilator settings. In this review, we describe the basic concepts of respiratory mechanics, their interpretation, and their potential use in fine-tuning mechanical ventilation. Copyright © 2013 Elsevier España, S.L. y SEMICYUC. All rights reserved.
Ooi, Soo Shen; Mak, Joon Wah; Chen, Donald K F; Ambu, Stephen
2017-02-07
The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants' complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants' sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system.
OOI, Soo Shen; MAK, Joon Wah; CHEN, Donald K.F.; AMBU, Stephen
2016-01-01
The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants’ complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants’ sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system. PMID:27476379
Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel
NASA Astrophysics Data System (ADS)
Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei
2018-03-01
In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.
USDA-ARS?s Scientific Manuscript database
Increasing broiler house size and ventilation capacity have resulted in increased light ingress through ventilation system component apertures. The effective photoperiod for broilers may create local increases in light intensity, which may also impact broiler’ body homeostasis. The objective of this...
30 CFR 75.326 - Mean entry air velocity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per minute reaching each working face where coal is being cut, mined, drilled for blasting, or loaded, and to any... the inby end of the line curtain, ventilation tubing, or other face ventilation control devices. [61...
30 CFR 75.326 - Mean entry air velocity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per minute reaching each working face where coal is being cut, mined, drilled for blasting, or loaded, and to any... the inby end of the line curtain, ventilation tubing, or other face ventilation control devices. [61...
30 CFR 75.326 - Mean entry air velocity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per minute reaching each working face where coal is being cut, mined, drilled for blasting, or loaded, and to any... the inby end of the line curtain, ventilation tubing, or other face ventilation control devices. [61...
Patterson, E. K.; Yao, L. J.; Ramic, N.; Lewis, J. F.; Cepinskas, G.; McCaig, L.; Veldhuizen, R. A. W.; Yamashita, C. M.
2013-01-01
In the setting of acute lung injury, levels of circulating inflammatory mediators have been correlated with adverse outcomes. Previous studies have demonstrated that injured, mechanically ventilated lungs represent the origin of the host inflammatory response; however, mechanisms which perpetuate systemic inflammation remain uncharacterized. We hypothesized that lung-derived mediators generated by mechanical ventilation (MV) are amplified by peripheral organs in a “feed forward” mechanism of systemic inflammation. Herein, lung-derived mediators were collected from 129X1/SVJ mice after 2 hours of MV while connected to the isolated perfused mouse lung model setup. Exposure of liver endothelial cells to lung-derived mediators resulted in a significant increase in G-CSF, IL-6, CXCL-1, CXCL-2, and MCP-1 production compared to noncirculated control perfusate media (P < 0.05). Furthermore, inhibition of the NF-κB pathway significantly mitigated this response. Changes in gene transcription were confirmed using qPCR for IL-6, CXCL-1, and CXCL-2. Additionally, liver tissue obtained from mice subjected to 2 hours of in vivo MV demonstrated significant increases in hepatic gene transcription of IL-6, CXCL-1, and CXCL-2 compared to nonventilated controls. Collectively, this data demonstrates that lung-derived mediators, generated in the setting of MV, are amplified by downstream organs in a feed forward mechanism of systemic inflammation. PMID:23606793
Effect of Ventilation Strategies on Residential Ozone Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain S.; Sherman, Max H.
Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less
Energy and cost associated with ventilating office buildings in a tropical climate.
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish
2014-08-01
The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis ismore » based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.« less
Water supply rates for recirculating evaporative cooling systems in poultry housing
USDA-ARS?s Scientific Manuscript database
Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Ventilation System Surveillance Requirements to Operate for 10 hours per Month.'' DATES: Comment period....1, which currently require operating the heaters in the respective systems for at least 10... Adoption of Technical Specifications Task Force Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
Arora, Vandna; Tyagi, Asha; Kumar, Surendra; Kakkar, Aanchal; Das, Shukla
2017-01-01
Background and Aims: Benefits of intraoperative low tidal volume ventilation during laparoscopic surgery are not conclusively proven, even though its advantages were seen in other situations with intraoperative respiratory compromise such as one-lung ventilation. The present study compared the efficacy of intraoperative low tidal volume ventilatory strategy (6 ml/kg along with positive end-expiratory pressure [PEEP] of 10 cmH2O) versus one with higher tidal volume (10 ml/kg with no PEEP) on various clinical parameters and plasma levels of interleukin (IL)-6 in patients undergoing laparoscopic cholecystectomy. Material and Methods: A total of 58 adult patients with American Society of Anesthesiologists physical status I or II, undergoing laparoscopic cholecystectomy were randomized to receive the low or higher tidal volume strategy as above (n = 29 each). The primary outcome measure was postoperative PaO2. Systemic levels of IL-6 along with clinical indices of intraoperative gas exchange, pulmonary mechanics, and hemodynamic consequences were measured as secondary outcome measures. Results: There was no statistically significant difference in oxygenation; intraoperative dynamic compliance, peak airway pressures, or hemodynamic parameters, or the IL-6 levels between the two groups (P > 0.05). Low tidal volume strategy was associated with significantly higher mean airway pressure, lower airway resistance, greater respiratory rates, and albeit clinically similar, higher PaCO2and lower pH (P < 0.05). Conclusion: Strategy using 6 ml/kg tidal volume along with 10 cmH2O of PEEP was not associated with any significant improvement in gas exchange, hemodynamic parameters, or systemic inflammatory response over ventilation with 10 ml/kg volume without PEEP during laparoscopic cholecystectomy. PMID:28413273
Shingles, A; McKenzie, D J; Claireaux, G; Domenici, P
2005-01-01
In hypoxia, gray mullet surface to ventilate well-oxygenated water in contact with air, an adaptive response known as aquatic surface respiration (ASR). Reflex control of ASR and its behavioral modulation by perceived threat of aerial predation and turbid water were studied on mullet in a partly sheltered aquarium with free surface access. Injections of sodium cyanide (NaCN) into either the bloodstream (internal) or ventilatory water stream (external) revealed that ASR, hypoxic bradycardia, and branchial hyperventilation were stimulated by chemoreceptors sensitive to both systemic and water O2 levels. Sight of a model avian predator elicited bradycardia and hypoventilation, a fear response that inhibited reflex hyperventilation following external NaCN. The time lag to initiation of ASR following NaCN increased, but response intensity (number of events, time at the surface) was unchanged. Mullet, however, modified their behavior to surface under shelter or near the aquarium edges. Turbid water abolished the fear response and effects of the predator on gill ventilation and timing of ASR following external NaCN, presumably because of reduced visibility. However, in turbidity, mullet consistently performed ASR under shelter or near the aquarium edges. These adaptive modulations of ASR behavior would allow mullet to retain advantages of the chemoreflex when threatened by avian predators or when unable to perceive potential threats in turbidity.
Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.
Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus
2013-03-01
Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (P<0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P=0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO2 oscillations.
Shinoda, Koh; Oba, Jun
2010-03-01
In compliance with health and safety management guidelines against harmful formaldehyde (FA) levels in the gross anatomy laboratory, we newly developed a dissection-table-connected local ventilation system in 2006. The system was composed of (1) a simple plenum-chambered dissection table with low-cost filters, (2) a transparent vinyl flexible duct for easy mounting and removal, which connects the table and the exhaust pipe laid above the ceiling, and (3) an intake creating a downward-flow of air, which was installed on the ceiling just above each table. The dissection table was also designed as a separate-component system, of which the upper plate and marginal suction inlets can be taken apart for cleaning after dissection, and equipped with opening/closing side-windows for picking up materials dropped during dissection and a container underneath the table to receive exudate from the cadaver through a waste-fluid pipe. The local ventilation system dramatically reduced FA levels to 0.01-0.03 ppm in the gross anatomy laboratory room, resulting in no discomforting FA smell and irritating sensation while preserving the student's view of room and line of flow as well as solving the problems of high maintenance cost, sanitation issues inside the table, and working-inconvenience during dissection practice. Switching ventilation methods or power-modes, the current local ventilation system was demonstrated to be more than ten times efficient in FA reduction compared to the whole-room ventilation system and suggested that 11 m3/min/table in exhaust volume should decrease FA levels in both A- and B-measurements to less than 0.1 ppm in 1000 m3 space containing thirty-one 3.5%-FA-fixed cadavers.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
2012-02-01
for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings
USDA-ARS?s Scientific Manuscript database
Reduced rates of skeletal muscle accretion are a prominent feature of the metabolic response to sepsis in infants and children. Septic neonates often require medical support with mechanical ventilation (MV). The combined effects of MV and sepsis in muscle have not been examined in neonates, in whom ...
Clinical review: Long-term noninvasive ventilation
Robert, Dominique; Argaud, Laurent
2007-01-01
Noninvasive positive ventilation has undergone a remarkable evolution over the past decades and is assuming an important role in the management of both acute and chronic respiratory failure. Long-term ventilatory support should be considered a standard of care to treat selected patients following an intensive care unit (ICU) stay. In this setting, appropriate use of noninvasive ventilation can be expected to improve patient outcomes, reduce ICU admission, enhance patient comfort, and increase the efficiency of health care resource utilization. Current literature indicates that noninvasive ventilation improves and stabilizes the clinical course of many patients with chronic ventilatory failure. Noninvasive ventilation also permits long-term mechanical ventilation to be an acceptable option for patients who otherwise would not have been treated if tracheostomy were the only alternative. Nevertheless, these results appear to be better in patients with neuromuscular/-parietal disorders than in chronic obstructive pulmonary disease. This clinical review will address the use of noninvasive ventilation (not including continuous positive airway pressure) mainly in diseases responsible for chronic hypoventilation (that is, restrictive disorders, including neuromuscular disease and lung disease) and incidentally in others such as obstructive sleep apnea or problems of central drive. PMID:17419882
46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system compartment. 105.25-7 Section 105.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Additional Requirements-When Cargo Tanks Are Installed...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. 108.437 Section 108.437 Shipping COAST GUARD, DEPARTMENT OF... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for...
Health-hazard-evaluation report HETA 87-387-2050, Ithaca College, Ithaca, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almaguer, D.; Klein, M.; Klincewicz, S.
1990-06-01
In response to a request from an authorized representative of the employees of Ithaca College located in Ithaca, New York, a study was made of possible hazardous conditions at the college stemming from the use of formalin solutions during the embalming and fixing of primates for study. Samples were collected in the anatomy laboratory, the refrigeration room, and the hallway which separated the two rooms. Analyses of the 22 samples collected ranged from nondetectable to 0.12 parts per million for formaldehyde. Two samples which contained quantifiable levels of formaldehyde were collected in the anatomy laboratory. All tests for phenol andmore » ethylene-glycol showed nondetectable levels. Measurements indicated the ventilation system supplied air to the location in line with requirements but that air distribution and exhaust within the laboratory were not conducive to minimizing occupant exposure to contaminants. Only one set of exhaust conditions was under negative pressure. Ventilation may have been inadequate. The staff reported symptoms of headache, sinus congestion, odors in the office, sore throat, and itching and burning eyes. The authors conclude that exposures to low levels of formaldehyde existed at the time of the survey. Formaldehyde levels measured during the study were not deemed high enough to be causing reported symptoms. The authors recommend measures to improve the ventilation system.« less
SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)
The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...
Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung
NASA Technical Reports Server (NTRS)
Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)
2017-01-01
Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.
6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION ...
6. VIEW LOOKING SOUTHEAST AT VENTILATION EQUIPMENT IN SOUTH VENTILATION HOUSE. THIS AIR CONDITIONING SYSTEM WAS INSTALLED BY PARKS-CRAMER COMPANY OF FITCHBURG, MASSACHUSETTS WHEN THE MILL WAS CONSTRUCTED IN 1923-24. ONE AIR WASHER AND FAN ROOM EXTERIOR IS VISIBLE ON THE RIGHT. THE DUCTS FROM BOTH FAN ROOMS (CURVED METAL STRUCTURES AT CENTER AND LEFT OF PHOTO) ARE CONNECTED TO A COMMON AIR SHAFT. - Stark Mill, 117 Corinth Road, Hogansville, Troup County, GA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estill, C.F.; Kovein, R.J.; Jones, J.H.
1999-03-26
The National Institute for Occupational Safety and Health (NIOSH) is currently conducting research on ventilation controls to reduce furniture stripping exposures to methylene chloride to the OSHA PEL of 25 ppm. Low cost ventilation systems were designed by NIOSH researchers along with Benny Bixenman of Benco Sales, Inc. (Forney, TX). The controls were constructed and installed by Benco Sales. This report compares the methylene chloride levels of one worker stripping furniture using the recently installed ventilation controls and using the existing controls. During the survey, two different chemical stripping solutions (a standard formulation and a low methylene chloride content formulation)more » were used and compared. This survey tested three control combinations: (1) new ventilation, low methylene chloride stripper, (2) new ventilation, standard stripping solution, and (3) old ventilation, standard stripping solution. During each test, sorbent tube sampling and real-time sampling were employed. Sorbent tube, data collected in the worker's breathing zone, ranged from 300 to 387 ppm. Real-time data showed breathing zone exposures to range from 211 to 383 ppm while stripping and 164 to 230 ppm while rinsing. Data were inconclusive to determine which ventilation system or stripping solution produced the lowest exposures. Recommendations are made in the report to improve the newly installed ventilation controls.« less
Final Environmental Assessment Addressing a Proposed Commissary at Dobbins Air Reserve Base, Georgia
2012-11-01
Response HMMS Hazardous Materials Management System HQ Headquarters HUD U.S. Department of Housing and Urban Development HVAC heating, ventilation ...Environmental Protection Agency USFWS U.S. Fish and Wildlife Service USGS U.S Geological Survey UST underground storage tank VOC volatile organic...li\\fPACT I conclude that the environmental effects of the proposed commissary at Dobbins ARB are not significant, that preparation of an
2011-01-01
Introduction Acetazolamide is commonly given to chronic obstructive pulmonary disease (COPD) patients with metabolic alkalosis. Little is known of the pharmacodynamics of acetazolamide in the critically ill. We undertook the pharmacodynamic modeling of bicarbonate response to acetazolamide in COPD patients under mechanical ventilation. Methods This observational, retrospective study included 68 invasively ventilated COPD patients who received one or multiple doses of 250 or 500 mg of acetazolamide during the weaning period. Among the 68 investigated patients, 207 time-serum bicarbonate observations were available for analysis. Population pharmacodynamics was modeled using a nonlinear mixedeffect model. The main covariates of interest were baseline demographic data, Simplified Acute Physiology Score II (SAPS II) at ICU admission, cause of respiratory failure, co-prescription of drugs interfering with the acid-base equilibrium, and serum concentrations of protein, creatinin, potassium and chloride. The effect of acetazolamide on serum bicarbonate levels at different doses and in different clinical conditions was subsequently simulated in silico. Results The main covariates interacting with acetazolamide pharmacodynamics were SAPS II at ICU admission (P = 0.01), serum chloride (P < 0.001) and concomitant administration of corticosteroids (P = 0.02). Co-administration of furosemide significantly decreased bicarbonate elimination. Acetazolamide induced a decrease in serum bicarbonate with a dose-response relationship. The amount of acetazolamide inducing 50% of the putative maximum effect was 117 ± 21 mg. According to our model, an acetazolamide dosage > 500 mg twice daily is required to reduce serum bicarbonate concentrations > 5 mmol/L in the presence of high serum chloride levels or coadministration of systemic corticosteroids or furosemide. Conclusions This study identified several covariates that influenced acetazolamide pharmacodynamics and could allow a better individualization of acetazolamide dosing when treating COPD patients with metabolic alkalosis. PMID:21917139
Brain stem NO modulates ventilatory acclimatization to hypoxia in mice.
El Hasnaoui-Saadani, R; Alayza, R Cardenas; Launay, T; Pichon, A; Quidu, P; Beaudry, M; Léon-Velarde, F; Richalet, J P; Duvallet, A; Favret, F
2007-11-01
The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were exposed during 2 wk either to hypoxia [barometric pressure (PB) = 420 mmHg] or normoxia (PB = 760 mmHg). At the end of exposure the medulla was removed to measure the concentration of nitric oxide (NO) metabolites, the expression of NMDA-NR1 receptor, and nNOS by real-time RT-PCR and Western blot. We also measured the ventilatory response [fraction of inspired O(2) (Fi(O(2))) = 0.21 and 0.08] before and after S-methyl-l-thiocitrulline treatment (SMTC, nNOS inhibitor, 10 mg/kg ip). Chronic hypoxia caused an increase in ventilation that was reduced after SMTC treatment mainly through a decrease in tidal volume (Vt) in normoxia and in acute hypoxia. However, the difference observed in the magnitude of acute hypoxic ventilatory response [minute ventilation (Ve) 8% - Ve 21%] in acclimatized mice was not different. Acclimatization to hypoxia induced a rise in NMDA receptor as well as in nNOS and NO production. In conclusion, our study provides evidence that activation of nNOS is involved in the ventilatory acclimatization to hypoxia in mice but not in the hypoxic ventilatory response (HVR) while the increased expression of NMDA receptor expression in the medulla of chronically hypoxic mice plays a role in acute HVR. These results are therefore consistent with central nervous system plasticity, partially involved in ventilatory acclimatization to hypoxia through nNOS.
Full-Scale Schlieren Visualization of Commercial Kitchen Ventilation Aerodynamics
NASA Astrophysics Data System (ADS)
Miller, J. D.; Settles, G. S.
1996-11-01
The efficient removal of cooking effluents from commercial kitchens has been identified as the most pressing energy-related issue in the food service industry. A full-scale schlieren optical system with a 2.1x2.7m field-of-view, described at previous APS/DFD meetings, images the convective airflow associated with a typical gas-fired cooking griddle and ventilation hood. Previous attempts to visualize plumes from cooking equipment by smoke and neutrally-buoyant bubbles were not sufficiently keyed to thermal convection. Here, the point where the ventilation hood fails to capture the effluent plume is clearly visible, thus determining the boundary condition for a balanced ventilation system. Further, the strong influence of turbulent entrainment is seen in the behavior of the combustion products vented by the griddle and the interference caused by a makeup-air outlet located too close to the lip of the ventilation hood. Such applications of traditional fluid dynamics techniques and principles are believed to be important to the maturing of ventilation technology. (Research supported by EPRI and IFMA, Inc.)
Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.
2016-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305
Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M
2014-01-01
Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.
Effects of adrenergic stimulation on ventilation in man
Heistad, Donald D.; Wheeler, Robert C.; Mark, Allyn L.; Schmid, Phillip G.; Abboud, Francois M.
1972-01-01
The mechanism by which catecholamines affect ventilation in man is not known. Ventilatory responses to catecholamines were observed in normal subjects before and after adrenergic receptor blockade. Intravenous infusions of norepinephrine and isoproterenol caused significant increases in minute volume and decreases in end-tidal PCo2 which were blocked by the administration of propranolol, a beta adrenergic receptor blocker. The hyperventilatory response to hypoxia was not altered by propranolol. Intravenous infusion of phenylephrine caused a small but significant decrease in minute volume which was antagonized by phentolamine, an alpha adrenergic receptor blocker. Angiotensin, a nonadrenergic pressor agent, also decreased minute volume significantly. 100% oxygen was administered to suppress arterial chemoreceptors. Increases in minute volume and decreases in arterial PCo2 in response to norepinephrine and isoproterenol were blocked by breathing 100% oxygen. The decrease in minute volume during phenylephrine was not altered by 100% oxygen. The results indicate that: (a) beta adrenergic receptors mediate the hyperventilatory response to norepinephrine and isoproterenol but not to hypoxia. (b) the pressor agents phenylephrine and angiotensin decrease ventilation, and (c) suppression of chemoreceptors blocks the ventilatory response to norepinephrine and isoproterenol but not to phenylephrine. Implications concerning the interaction of adrenergic receptors and chemoreceptors with respect to the hyperventilatory response to catecholamines are discussed. PMID:4336940
Gao, Shugeng; Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I; He, Jianxing; He, Jie; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua
2017-09-01
Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50-70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH 2 O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs such as nebulized budesonide, intravenous sivelestat and ulinastatin are reasonable and can be used to attenuate inflammatory response.
Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B.; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I.; He, Jianxing; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H.; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua
2017-01-01
Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50–70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH2O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs such as nebulized budesonide, intravenous sivelestat and ulinastatin are reasonable and can be used to attenuate inflammatory response. PMID:29221302
Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution
He, Mu; Driehuys, Bastiaan; Que, Loretta G.; Huang, Yuh-Chin T.
2017-01-01
Background Ventilation heterogeneity is impossible to detect with spirometry. Alternatively, pulmonary ventilation can be imaged 3-dimensionally using inhaled 129Xe MRI. To date such images have been quantified primarily based on ventilation defects. Here, we introduce a robust means to transform 129Xe MRI scans such that the underlying ventilation distribution and its heterogeneity can be quantified. Methods Quantitative 129Xe ventilation MRI was conducted in 12 younger (24.7±5.2 yrs), and 10 older (62.2±7.2 yrs) healthy individuals, as well as 9 younger (25.9±6.4 yrs) and 10 older (63.2±6.1 yrs) asthmatics. The younger healthy population was used to establish a reference ventilation distribution and thresholds for 6 intensity bins. These were used to display and quantify regions of ventilation defect (VDR), low ventilation (LVR) and high ventilation (HVR). Results The ventilation distribution in young subjects was roughly Gaussian with a mean and SD of 0.52±0.18, resulting in VDR=2.1±1.3%, LVR=15.6±5.4% and HVR=17.4±3.1%. Older healthy volunteers exhibited a significantly right-skewed distribution (0.46±0.20, p=0.034), resulting in significantly increased VDR (7.0±4.8%, p=0.008) and LVR (24.5±11.5%, p=0.025). In the asthmatics, VDR and LVR increased in the older population, and HVR was significantly reduced (13.5±4.6% vs 18.9±4.5%, p=0.009). Quantitative 129Xe MRI also revealed different ventilation distribution patterns in response to albuterol in two asthmatics with normal FEV1. Conclusions Quantitative 129Xe MRI provides a robust and objective means to display and quantify the pulmonary ventilation distribution, even in subjects who have airway function impairment not appreciated by spirometry. PMID:27617823
Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J
2008-01-01
Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P < 0.01). Levels of tumor necrosis factor alpha, IL-1alpha, IL-1beta, IL-6, macrophage inflammatory protein 1alpha, and macrophage inflammatory protein 1beta in the bronchoalveolar lavage fluid were not affected by mechanical ventilation. Plasma levels of IL-6 and IL-8 increased with mechanical ventilation, but there were no differences between the two ventilation groups. The use of lower tidal volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.
Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D
2012-08-01
This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.
Technology evaluation of heating, ventilation, and air conditioning for MIUS application
NASA Technical Reports Server (NTRS)
Gill, W. L.; Keough, M. B.; Rippey, J. O.
1974-01-01
Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
40 CFR 98.323 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: ER12JY10.005 Where: CH4VTotal = Total quarterly CH4 liberated from ventilation systems (metric tons CH4... and degasification systems, calculated using Equation FF-6 of this section (metric tons). (e) For the... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system...
40 CFR 98.323 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: ER12JY10.005 Where: CH4VTotal = Total quarterly CH4 liberated from ventilation systems (metric tons CH4... and degasification systems, calculated using Equation FF-6 of this section (metric tons). (e) For the... vent holes are collected, you must calculate the quarterly CH4 liberated from the ventilation system...
Ventilation-induced release of phosphatidylcholine from neonatal-rat lungs in vitro.
Nijjar, M S
1984-01-01
Factors regulating the release of phosphatidylcholine (PC) from neonatal-rat lungs were investigated. The results show that the release of prelabelled PC from the newborn-rat lung was augmented by air ventilation at the onset of breathing. This response was mimicked in lungs of pups delivered 1 day before term and allowed to breathe for different time intervals. Anoxia further augmented the ventilation-enhanced PC release from the newborn-rat lungs. The ventilation-induced release of PC was not abolished by the prior treatment of pups in utero or mothers in vivo with phenoxybenzamine, propranolol or atropine, suggesting the lack of receptor stimulation in the ventilation-enhanced PC release at birth. The results also show that ventilation stimulated [methyl-14C]choline incorporation into lung PC, presumably to replenish the depleted surfactant stores. The ratio of adenylate cyclase/cyclic AMP phosphodiesterase activities, which reflects cyclic AMP levels in the developing rat lungs, did not change during the 120 min of air ventilation when the release of PC was much enhanced, implying that cyclic AMP may not be involved. This confirms our conclusion that stimulation of beta-adrenergic receptor was not involved in the air-ventilation-enhanced release of PC. Since the cell number or size did not change during 120 min of ventilation when the alveolar-cell surface was maximally distended, it is suggested that distension of alveolar wall by air ventilation at the onset of breathing may bring the lamellar bodies containing surfactant close to the luminal surface of alveolar type II cells, thereby enhancing their fusion and extrusion by exocytosis. PMID:6477485
Newth, Christopher J L; Sward, Katherine A; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Holubkov, Richard; Doctor, Allan; Dean, J Michael; Jenkins, Tammara L; Nicholson, Carol E
2017-11-01
Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. Prospective observational study. Eight tertiary care U.S. PICUs, October 2011 to April 2012. One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p < 0.001). Intensivists made changes similar to protocol recommendations 29% of the time, opposite to the protocol's recommendation 12% of the time and no changes 56% of the time. Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a pediatric mechanical ventilation protocol offering adequately explicit instructions for given clinical situations. An accepted protocol could also reduce confounding by mechanical ventilation management in a clinical trial.
Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?
Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto
2002-09-01
Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore PMM. V(te), as measured by the VIP Bird and Drager paired with the Ventrak PMM, had a tendency to underestimate V(t) by up to 25% at the smallest V(te). However, when paired with the Bicore PMM, these same two ventilators read over target by up to 18%. Under controlled laboratory conditions, we demonstrated that true delivered V(te), as measured by the three ventilators and two freestanding PMM, differed markedly. In general, decreasing dynamic compliance of the tubing was not associated with greater inaccuracy in V(te) measurements. Copyright 2002 Wiley-Liss, Inc.
Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M
2017-09-01
Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ( 3 He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔR net ) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔR net showed significant correlation (P < .01) with changes in forced expiratory volume in 1 second (r = 0.70), forced vital capacity (r = 0.84), and %VV (r = 0.56). A significant (P < .01) positive treatment effect was detected with all metrics; however, ΔR net showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.
Marjanovic, Nicolas; Le Floch, Soizig; Jaffrelot, Morgan; L'Her, Erwan
2014-05-01
In the absence of endotracheal intubation, the manual bag-valve-mask (BVM) is the most frequently used ventilation technique during resuscitation. The efficiency of other devices has been poorly studied. The bench-test study described here was designed to evaluate the effectiveness of an automatic, manually triggered system, and to compare it with manual BVM ventilation. A respiratory system bench model was assembled using a lung simulator connected to a manikin to simulate a patient with unprotected airways. Fifty health-care providers from different professional groups (emergency physicians, residents, advanced paramedics, nurses, and paramedics; n = 10 per group) evaluated manual BVM ventilation, and compared it with an automatic manually triggered device (EasyCPR). Three pathological situations were simulated (restrictive, obstructive, normal). Standard ventilation parameters were recorded; the ergonomics of the system were assessed by the health-care professionals using a standard numerical scale once the recordings were completed. The tidal volume fell within the standard range (400-600 mL) for 25.6% of breaths (0.6-45 breaths) using manual BVM ventilation, and for 28.6% of breaths (0.3-80 breaths) using the automatic manually triggered device (EasyCPR) (P < .0002). Peak inspiratory airway pressure was lower using the automatic manually triggered device (EasyCPR) (10.6 ± 5 vs 15.9 ± 10 cm H2O, P < .001). The ventilation rate fell consistently within the guidelines, in the case of the automatic manually triggered device (EasyCPR) only (10.3 ± 2 vs 17.6 ± 6, P < .001). Significant pulmonary overdistention was observed when using the manual BVM device during the normal and obstructive sequences. The nurses and paramedics considered the ergonomics of the automatic manually triggered device (EasyCPR) to be better than those of the manual device. The use of an automatic manually triggered device may improve ventilation efficiency and decrease the risk of pulmonary overdistention, while decreasing the ventilation rate.
Liu, Qing-hua; Zhang, Jing; Lin, Dian-jie; Mou, Xiao-yan; He, Li-xian; Qu, Jie-ming; Li, Hua-yin; Hu, Bi-jie; Zhu, Ying-min; Zhu, Du-ming; Gao, Xiao-dong
2015-04-01
Gastropulmonary route of infection was considered to be an important mechanism of ventilator-associated pneumonia (VAP). However there is little evidence to support this assumption. Moreover, the prevalence of microaspiration in elderly ventilated patients was not well understood. To confirm gastropulmonary infection route and investigate the prevalence of microaspiration in elderly ventilated patients using genome macrorestriction-pulsed field gel electrophoresis (GM-PFGE). Patients over 60 years old, expected to receive mechanical ventilation longer than 48 h, were prospectively enrolled from October 2009 to January 2012. Clinical data were collected and recorded until they died, developed pneumonia, or were extubated. Samples from gastric fluid, subglottic secretion and lower respiratory tract (LRT) were collected during the follow-up for microbiological examination. To evaluate the homogeneity, GM-PFGE was performed on strains responsible for VAP that had the same biochemical phenotype as those isolated from gastric juice and subglottic secretions sequentially. Among 44 VAP patients, 76 strains were isolated from LRT and considered responsible for VAP. Twenty-two isolates had the same biochemical phenotype with the corresponding gastric isolates. The homology was further confirmed using GM-PFGE in 12 episodes of VAP. Nearly 30% of VAPs were caused by microaspiration based on the analysis of bacterial phenotype or GM-PFGE. In addition, 58.3% patients with gastric colonization developed VAP, especially late-onset VAP (LOP). Gastropulmonary infection route exists in VAP especially LOP in elderly ventilated patients. It is one of the important mechanisms in the development of VAP.
Bentley, Alexander H.; Hartmann, Erik K.; Klein, Klaus U.; Bodenstein, Marc; Baumgardner, James E.; David, Matthias; Ullrich, Roman; Markstaller, Klaus
2014-01-01
Background Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation. Methodology/Principal Findings Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R2 = 0.96. Bland-Altman analysis showed a bias of −1.07±24.71 ml and limits of agreement of −49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R2 values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT. Conclusions/Significance Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT. PMID:24475160
Tracy, Mark B; Shah, Dharmesh; Hinder, Murray; Klimek, Jan; Marceau, James; Wright, Audrey
2014-05-01
To determine changes in respiratory mechanics when chest compressions are added to mask ventilation, as recommended by the International Liaison Committee on Resuscitation (ILCOR) guidelines for newborn infants. Using a Laerdal Advanced Life Support leak-free baby manikin and a 240-mL self-inflating bag, 58 neonatal staff members were randomly paired to provide mask ventilation, followed by mask ventilation with chest compressions with a 1:3 ratio, for two minutes each. A Florian respiratory function monitor was used to measure respiratory mechanics, including mask leak. The addition of chest compressions to mask ventilation led to a significant reduction in inflation rate, from 63.9 to 32.9 breaths per minute (p < 0.0001), mean airway pressure reduced from 7.6 to 4.9 cm H2 O (p < 0.001), minute ventilation reduced from 770 to 451 mL/kg/min (p < 0.0001), and there was a significant increase in paired mask leak of 6.8% (p < 0.0001). Adding chest compressions to mask ventilation, in accordance with the ILCOR guidelines, in a manikin model is associated with a significant reduction in delivered ventilation and increase in mask leak. If similar findings occur in human infants needing an escalation in resuscitation, there is a potential risk of either delay in recovery or inadequate response to resuscitation. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Gallagher, R. R.
1974-01-01
Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama
2009-04-15
Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.
Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504
Kuwabara, Kazuaki; Matsuda, Shinya; Fushimi, Kiyohide; Ishikawa, Koichi B; Horiguchi, Hiromasa; Fujimori, Kenji
2012-01-01
Public health emergencies like earthquakes and tsunamis underscore the need for an evidence-based approach to disaster preparedness. Using the Japanese administrative database and the geographical information system (GIS), the interruption of hospital-based mechanical ventilation administration by a hypothetical disaster in three areas of the southeastern mainland (Tokai, Tonankai, and Nankai) was simulated and the repercussions on ventilator care in the prefectures adjacent to the damaged prefectures was estimated. Using the database of 2010 including 3,181,847 hospitalized patients among 952 hospitals, the maximum daily ventilator capacity in each hospital was calculated and the number of patients who were administered ventilation on October xx was counted. Using GIS and patient zip code, the straight-line distances among the damaged hospitals, the hospitals in prefectures nearest to damaged prefectures, and ventilated patients' zip codes were measured. The authors simulated that ventilated patients were transferred to the closest hospitals outside damaged prefectures. The increase in the ventilator operating rates in three areas was aggregated. One hundred twenty-four and 236 patients were administered ventilation in the damaged hospitals and in the closest hospitals outside the damaged prefectures of Tokai, 92 and 561 of Tonankai, and 35 and 85 of Nankai, respectively. The increases in the ventilator operating rates among prefectures ranged from 1.04 to 26.33-fold in Tokai; 1.03 to 1.74-fold in Tonankai, and 1.00 to 2.67-fold in Nankai. Administrative databases and GIS can contribute to evidenced-based disaster preparedness and the determination of appropriate receiving hospitals with available medical resources.
Shendell, D G; Winer, A M; Weker, R; Colome, S D
2004-06-01
The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Brian; May, Doug; Howlett, Don
2013-07-01
Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less
Kalema, T; Viot, M
2014-02-01
The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?
NASA Astrophysics Data System (ADS)
Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A.
2016-08-01
The Peruvian upwelling system encompasses the most intense and shallowest oxygen minimum zone (OMZ) in the ocean. This system shows pronounced submesoscale activity like filaments and fronts. We carried out glider-based observations off Peru during austral summer 2013 to investigate whether submesoscale frontal processes ventilate the Peruvian OMZ. We present observational evidence for the subduction of highly oxygenated surface water in a submesoscale cold filament. The subduction event ventilates the oxycline but does not reach OMZ core waters. In a regional submesoscale-permitting model we study the pathways of newly upwelled water. About 50% of upwelled virtual floats are subducted below the mixed layer within 5 days emphasizing a hitherto unrecognized importance of subduction for the ventilation of the Peruvian oxycline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, B.; /Fermilab
1999-10-08
A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics.more » Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface. Background material pertinent to the BYAC system will cover the separate water and air subsystems and their purposes. In addition programming and system automation will also be covered.« less
Comparison of indoor air pollutants concentration in two Romanian classrooms
NASA Astrophysics Data System (ADS)
Vasile, Vasilica; Dima, Alina; Zorila, Elena; Istrate, Andrei; Catalina, Tiberiu
2018-02-01
This paper investigates the air pollutions in space ventilated in two High School classrooms. The analysis consists of comparison of one classroom with hybrid ventilation system and another one stander-by classroom with natural ventilation. Several studies regarding indoor air quality during the experimental campaign have been done for VOC, CO2, CO, other pollutants, keeping monitored for humidity and temperature. The experimental demonstrated that the highest value for CO2 in stander-by classroom is 2691 ppm and in classroom with hybrid ventilation is 1897 ppm, while values for CO are 1.1 / 1.1 ppm and VOC 0.14 / 0.06 ppm, better use hybrid ventilation.
The ventilation problem in schools: literature review
Fisk, W. J.
2017-07-06
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
The ventilation problem in schools: literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W. J.
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
Cold stimulates the behavioral response to hypoxia in newborn mice.
Bollen, Bieke; Bouslama, Myriam; Matrot, Boris; Rotrou, Yann; Vardon, Guy; Lofaso, Frédéric; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge
2009-05-01
In newborns, hypoxia elicits increased ventilation, arousal followed by defensive movements, and cries. Cold is known to affect the ventilatory response to hypoxia, but whether it affects the arousal response remains unknown. The aim of the present study was to assess the effects of cold on the ventilatory and arousal responses to hypoxia in newborn mice. We designed an original platform measuring noninvasively and simultaneously the breathing pattern by whole body plethysmography, body temperature by infrared thermography, as well as motor and ultrasonic vocal (USV) responses. Six-day-old mice were exposed twice to 10% O(2) for 3 min at either cold temperature (26 degrees C) or thermoneutrality (33 degrees C). At 33 degrees C, hypoxia elicited a marked increase in ventilation followed by a small ventilatory decline, small motor response, and almost no USVs. Body temperature was not influenced by hypoxia, and oxygen consumption (Vo(2)) displayed minimal changes. At 26 degrees C, hypoxia elicited a slight increase in ventilation with a large ventilatory decline and a large drop of Vo(2). This response was accompanied by marked USV and motor responses. Hypoxia elicited a small decrease in temperature after the return to normoxia, thus precluding any causal influence on the motor and USV responses to hypoxia. In conclusion, cold stimulated arousal and stress responses to hypoxia, while depressing hypoxic hyperpnea. Arousal is an important defense mechanism against sleep-disordered breathing. The dissociation between ventilatory and behavioral responses to hypoxia suggests that deficits in the arousal response associated with sleep breathing disorders cannot be attributed to a depressed hypoxic response.
Remetti, R; Gigante, G E
2010-01-01
The study presents the results of a campaign of measurements on the daily radon concentration using a Genitron Alpha Guard spectrometer. All the measurements have been intended to highlight the radon concentration variability during the 24 hours of the day and trying to find correlations with other ambient parameters such as temperature and pressure or local conditions such as the presence or not of a forced ventilation system. The main part of the measurements have been carried in the area of the Nuclear Measurement Laboratory of the Department of Basic and Applied Sciences for Engineering of "Sapienza" University of Rome. Results show a rapid rise of radon concentration in the night, when the artificial ventilation system was off and with door and windows closed. In the morning, after the opening of door and windows, the concentration falls down abruptly. With artificial ventilation system in function concentration never reaches significant values.
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...
Code of Federal Regulations, 2013 CFR
2013-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2010 CFR
2010-01-01
... to high temperatures from exhaust system parts, must be fireproof. Each exhaust system component must... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2011 CFR
2011-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... could be subjected to high temperatures from exhaust system parts, must be fireproof. All exhaust system... ventilated to prevent points of excessively high temperature. (g) Each exhaust shroud must be ventilated or insulated to avoid, during normal operation, a temperature high enough to ignite any flammable fluids or...
EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...
46 CFR 193.15-35 - Enclosure openings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-35 Enclosure openings. (a) Where mechanical ventilation is provided for spaces which are protected by carbon dioxide extinguishing systems provisions... to that space. (b) Where natural ventilation is provided for spaces protected by a carbon dioxide...
Service bay area, pump room level, showing ventilation fans and ...
Service bay area, pump room level, showing ventilation fans and ducts association with evaporative-cooling system. Note battery bank at far right. View to the east - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ
Night ventilation control strategies in office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaojun; Yi, Lingli; Gao, Fusheng
2009-10-15
In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factorsmore » influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)« less
van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried
2018-04-24
This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.
Wan, M P; Chao, C Y H
2007-06-01
Expiratory droplets and droplet nuclei can be pathogen carriers for airborne diseases. Their transport characteristics were studied in detail in two idealized floor-supply-type ventilation flow patterns: Unidirectional-upward and single-side-floor, using a multiphase numerical model. The model was validated by running interferometric Mie imaging experiments using test droplets with nonvolatile content, which formed droplet nuclei, ultimately, in a class-100 clean-room chamber. By comparing the droplet dispersion and removal characteristics with data of two other ceiling-supply ventilation systems collected from a previous work, deviations from the perfectly mixed ventilation condition were found to exist in various cases to different extent. The unidirectional-upward system was found to be more efficient in removing the smallest droplet nuclei (formed from 1.5 mum droplets) by air extraction, but it became less effective for larger droplets and droplet nuclei. Instead, the single-side-floor system was shown to be more favorable in removing these large droplets and droplet nuclei. In the single-side-floor system, the lateral overall dispersion coefficients for the small droplets and nuclei (initial size =45 mum) were about an order of magnitude higher than those in the unidirectional-upward system. It indicated that bulk lateral airflow transport in the single-side-floor system was much stronger than the lateral dispersion mechanism induced mainly by air turbulence in the unidirectional-upward system. The time required for the droplets and droplet nuclei to be transported to the exhaust vent or deposition surfaces for removal varied with different ventilation flow patterns. Possible underestimation of exposure level existed if the perfectly mixed condition was assumed. For example, the weak lateral dispersion in the unidirectional ventilation systems made expiratory droplets and droplet nuclei stay at close distance to the source leading to highly nonuniform spatial distributions. The distance between the source and susceptible patients became an additional concern in exposure analysis. Relative significance of the air-extraction removal mechanism was studied. This can have impact to the performance evaluation of filtration and disinfection systems installed in the indoor environment. These findings revealed the need for further development in a risk-assessment model incorporating the effect of different ventilation systems on distributing expiratory droplets and droplet nuclei nonuniformly in various indoor spaces, such as buildings, aircraft cabins, trains, etc.
Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems
NASA Technical Reports Server (NTRS)
Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.
2013-01-01
A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.
Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P P; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G; Friedmannova, Maria; Dorrington, Keith L; Robbins, Peter A
2016-03-01
Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D
2014-02-01
What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P < 0.05 for both) at rest. The control subjects demonstrated no change in P(aCO(2)), P(aO(2)), ventilation, tidal volume or respiratory rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P < 0.05) due to a lower respiratory rate (30 ± 1 versus 26 ± 2 breaths min(-1), P < 0.05). The reduced ventilation resulted in lower P aO 2 (97.6 ± 2.5 versus 79.5 ± 3.0 mmHg, P < 0.05) and increased P(aCO(2)) (37.3 ± 0.9 versus 43.5 ± 1.1 mmHg, P < 0.05), with significant improvement in ventilatory efficiency (reduction in the ventilatory equivalent for carbon dioxide; P < 0.05 for all). The control subjects had no change in ventilation or measures of arterial blood gases. These data suggest that inhibition of afferent feedback from locomotor muscle significantly reduces the ventilatory response to exercise in HF patients.
Mechanisms of breathing instability in patients with obstructive sleep apnea.
Younes, Magdy; Ostrowski, Michele; Atkar, Raj; Laprairie, John; Siemens, Andrea; Hanly, Patrick
2007-12-01
The response to chemical stimuli (chemical responsiveness) and the increases in respiratory drive required for arousal (arousal threshold) and for opening the airway without arousal (effective recruitment threshold) are important determinants of ventilatory instability and, hence, severity of obstructive apnea. We measured these variables in 21 obstructive apnea patients (apnea-hypopnea index 91 +/- 24 h(-1)) while on continuous-positive-airway pressure. During sleep, pressure was intermittently reduced (dial down) to induce severe hypopneas. Dial downs were done on room air and following approximately 30 s of breathing hypercapneic and/or hypoxic mixtures, which induced a range of ventilatory stimulation before dial down. Ventilation just before dial down and flow during dial down were measured. Chemical responsiveness, estimated as the percent increase in ventilation during the 5(th) breath following administration of 6% CO(2) combined with approximately 4% desaturation, was large (187 +/- 117%). Arousal threshold, estimated as the percent increase in ventilation associated with a 50% probability of arousal, ranged from 40% to >268% and was <120% in 12/21 patients, indicating that in many patients arousal occurs with modest changes in chemical drive. Effective recruitment threshold, estimated as percent increase in pre-dial-down ventilation associated with a significant increase in dial-down flow, ranged from zero to >174% and was <110% in 12/21 patients, indicating that in many patients reflex dilatation occurs with modest increases in drive. The two thresholds were not correlated. In most OSA patients, airway patency may be maintained with only modest increases in chemical drive, but instability results because of a low arousal threshold and a brisk increase in drive following brief reduction in alveolar ventilation.
Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah
2016-10-01
Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals.
Influence of Applying Additional Forcing Fans for the Air Distribution in Ventilation Network
NASA Astrophysics Data System (ADS)
Szlązak, Nikodem; Obracaj, Dariusz; Korzec, Marek
2016-09-01
Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes necessary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing subsurface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in networks with a large number of installed fans). In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of overpressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan). Possibilities of increasing airflow rate in working areas were conducted.
46 CFR 154.1200 - Mechanical ventilation system: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gas-safe space in the cargo area. (4) Each space that contains inert gas generators, except main...) Each cargo compressor room, pump room, gas-dangerous cargo control station, and space that contains... following must have a supply-type mechanical ventilation system: (1) Each space that contains electric...
Parametric instabilities of rotor-support systems with application to industrial ventilators
NASA Technical Reports Server (NTRS)
Parszewski, Z.; Krodkiemski, T.; Marynowski, K.
1980-01-01
Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.
NASA Astrophysics Data System (ADS)
Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo
2017-11-01
European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.
Code System to Calculate Tornado-Induced Flow Material Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDRAE, R. W.
1999-11-18
Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less
2013-05-01
identified in the EA and referenced in this FONSI, will not have a significant effect on human health or the natural environment; therefore, an... EFFECTS .......................................... 4-54 4.12 COMPATIBILITY OF THE PROPOSED ACTION WITH OBJECTIVES OF FEDERAL, STATE, REGIONAL, AND...HICS Hardened Intersite Cable System HMERP Hazardous Materials Emergency Response Plan HSR Historic Structures Report HVAC heating, ventilation , and
Pretest Predictions for Phase II Ventilation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yiming Sun
The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limitedmore » to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).« less
Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.
Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R
2005-01-15
Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.
Friedrich, Lena; Boeckelmann, Irina
2018-01-11
Hygienic and microbiologically sterile air quality is essential for successful guideline-based work in operating theatres. To ensure clean air and to reduce contamination during surgery, ventilation systems are indispensable. Ventilation systems should be especially designed to keep the number of particles and germs under statutory limits. Therefore, they must be operated to recognised standards of good practice and be periodically inspected and maintained. The objective of this study was to prove, through the analysis of observation outside surgery time (rest condition), the effects of ventilation systems on air quality in a medical facility. Measurements were taken in 34 operating theatres annually over a period of ten years outside surgery time (resting condition) but with the air ventilation system operating under full load. 29 operating theatres were provided with laminar air flow and five theatres with turbulent air flow systems. In each operating theatre, air cleanliness was analysed by measuring the amount of airborne particles and airborne germs. Measuring points were determined 10 mm beneath the supply-air ceiling in the centre of the operating theatre and at one position outside the supply-air ceiling. The number of airborne particles at the supply-air ceiling was between 0/m³ and 4,441/m³ of air and, as such, the limiting factor was never exceeded. However, airborne germ measurements of between 0 CFU/m³ and 200 CFU/m³ (CFU: colony forming units) demonstrated that the limiting factor for this criterion was exceeded in 10.9% of occasions. In general, the values in the middle of the room were higher than at the supply-air ceiling. There were significant differences (p < 0.001) between the values at the supply-air ceiling, the surgery table and the values outside the supply-air ceiling. The results show the positive impact of ventilation systems on the air cleanliness in operating theatres. However, laminar airflow systems seem to create cleaner air than conventional ventilation systems. The size of the supply-air ceiling plays an important role in the prevention of the contamination of the staff, the surgical field, the instrument table and the patient. However, the effect on surgical site infections has not been verified. Improved measuring methods should be considered. Georg Thieme Verlag KG Stuttgart · New York.
The use of mechanical ventilation in the ED.
Easter, Benjamin D; Fischer, Christopher; Fisher, Jonathan
2012-09-01
Although EDs are responsible for the initial care of critically ill patients and the amount of critical care provided in the ED is increasing, there are few data examining mechanical ventilation (MV) in the ED. In addition, characteristics of ED-based ventilation may affect planning for ventilator shortages during pandemic influenza or bioterrorist events. The study examined the epidemiology of MV in US EDs, including demographic, clinical, and hospital characteristics; indications for MV; ED length of stay (LOS); and in-hospital mortality. This study was a retrospective review of the 1993 to 2007 National Hospital Ambulatory Medical Care Survey ED data sets. Ventilated patients were compared with ED patients admitted to the intensive care unit (ICU) and to all other ED visits. There were 3.6 million ED MV visits (95% confidence interval [CI], 3.2-4.0 million) over the study period. Sex, age, race, and payment source were similar for mechanically ventilated and ICU patients (P > .05 for all). Approximately 12.5% of ventilated patients underwent cardiopulmonary resuscitation compared with 1.7% of ICU admissions and 0.2% of all other ED visits (P < .0001). Accordingly, in-hospital mortality was significantly higher for ventilated patients (24%; 95% CI, 13.1%-34.9%) than both comparison groups (9.3% and 2.5%, respectively). Median LOS for ventilated patients was 197 minutes (interquartile range, 112-313 minutes) compared with 224 minutes for ICU admissions and 140 minutes for all other ED visits. Patients undergoing ED MV have particularly high in-hospital mortality rates, but their ED LOS is sufficient for implementation of evidence-based ventilator interventions. Copyright © 2012 Elsevier Inc. All rights reserved.
Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vettermann, J.; Brusasco, V.; Rehder, K.
1988-05-01
In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less
Kum, Oyeon
2018-06-01
An optimized air ventilation system design for a treatment room in Heavy-ion Medical Facility is an important issue in the aspects of nuclear safety because the activated air produced in a treatment room can directly affect the medical staff and the general public in the radiation-free area. Optimized design criteria of air ventilation system for a clinical room in 430 MeV/u carbon ion beam medical accelerator facility was performed by using a combination of MCNPX2.7.0 and CINDER'90 codes. Effective dose rate and its accumulated effective dose by inhalation and residual gamma were calculated for a normal treatment scenario (2 min irradiation for one fraction) as a function of decay time. Natural doses around the site were measured before construction and used as reference data. With no air ventilation system, the maximum effective dose rate was about 3 μSv/h (total dose of 90 mSv/y) and minimum 0.2 μSv/h (total dose of 6 mSv/y), which are over the legal limits for medical staff and for the general public. Although inhalation dose contribution was relatively small, it was considered seriously because of its long-lasting effects in the body. The integrated dose per year was 1.8 mSv/y in the radiation-free area with the 20-min rate of air ventilation system. An optimal air ventilation rate of 20 min is proposed for a clinical room, which also agrees with the best mechanical design value. © 2018 American Association of Physicists in Medicine.
Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina
Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.
SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA
2014-01-01
Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a “physically active” home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system. PMID:27182399
Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming
2009-09-01
To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.
Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R
2001-08-01
To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.
30 CFR 57.11059 - Respirable atmosphere for hoist operators underground.
Code of Federal Regulations, 2010 CFR
2010-07-01
... independent ventilation system shall convert, without contamination, to an approved and properly maintained 2... evacuation. Air for the enclosure's ventilation system shall be provided in one of the following ways: (1) Air coursed from the surface through a borehole into the hoist enclosure directly or through a metal...
A Qualitative Analogy for Respiratory Mechanics
ERIC Educational Resources Information Center
Baptista, Vander
2010-01-01
The geometric configuration and mechanical properties of the integral elements of the respiratory system, as well as the modus operandi of the interacting parts in the ventilation process, comprise a hard-to-visualize system, making the mechanics of pulmonary ventilation a confusing topic for students and a difficult task for the teacher. To…
This fact sheet provides practical information and guidance to auto refinish shops on proper ventilation of paint mixing rooms, including ventilation system basics and diagrams, risk reduction ideas, common mistakes, tips, and design considerations.
Comparison of freezing control strategies for residential air-to-air heat recovery ventilators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, E.G.; Bradley, L.C.; Chant, R.E.
1989-01-01
A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.
Andersson, B; Lundin, S; Lindgren, S; Stenqvist, O; Odenstedt Hergès, H
2011-02-01
Continuous positive airway pressure (CPAP) has been shown to improve oxygenation and a number of different CPAP systems are available. The aim of this study was to assess lung volume and ventilation distribution using three different CPAP techniques. A high-flow CPAP system (HF-CPAP), an ejector-driven system (E-CPAP) and CPAP using a Servo 300 ventilator (V-CPAP) were randomly applied at 0, 5 and 10 cmH₂O in 14 volunteers. End-expiratory lung volume (EELV) was measured by N₂ dilution at baseline; changes in EELV and tidal volume distribution were assessed by electric impedance tomography. Higher end-expiratory and mean airway pressures were found using the E-CPAP vs. the HF-CPAP and the V-CPAP system (P<0.01). EELV increased markedly from baseline, 0 cmH₂O, with increased CPAP levels: 1110±380, 1620±520 and 1130±350 ml for HF-, E- and V-CPAP, respectively, at 10 cmH₂O. A larger fraction of the increase in EELV occurred for all systems in ventral compared with dorsal regions (P<0.01). In contrast, tidal ventilation was increasingly directed toward dorsal regions with increasing CPAP levels (P<0.01). The increase in EELV as well as the tidal volume redistribution were more pronounced with the E-CPAP system as compared with both the HF-CPAP and the V-CPAP systems (P<0.05) at 10 cmH₂O. EELV increased more in ventral regions with increasing CPAP levels, independent of systems, leading to a redistribution of tidal ventilation toward dorsal regions. Different CPAP systems resulted in different airway pressure profiles, which may result in different lung volume expansion and tidal volume distribution. © 2010 The Authors. Journal compilation © 2010 The Acta Anaesthesiologica Scandinavica Foundation.
Indrehus, Oddny; Aralt, Tor Tybring
2005-04-01
Aerosol, NO and CO concentration, temperature, air humidity, air flow and number of running ventilation fans were measured by continuous analysers every minute for a whole week for six different one-week periods spread over ten months in 2001 and 2002 at measuring stations in the 7860 m long tunnel. The ventilation control system was mainly based on aerosol measurements taken by optical scatter sensors. The ventilation turned out to be satisfactory according to Norwegian air quality standards for road tunnels; however, there was some uncertainty concerning the NO2 levels. The air humidity and temperature inside the tunnel were highly influenced by the outside metrological conditions. Statistical models for NO concentration were developed and tested; correlations between predicted and measured NO were 0.81 for a partial least squares regression (PLS1) model based on CO and aerosol, and 0.77 for a linear regression model based only on aerosol. Hence, the ventilation control system should not solely be based on aerosol measurements. Since NO2 is the hazardous polluter, modelling NO2 concentration rather than NO should be preferred in any further optimising of the ventilation control.
Stoller, James K; Roberts, Vincent; Matt, David; Chom, Leslie; Sasidhar, Madhu; Chatburn, Robert L
2013-12-01
When respiratory therapists (RTs) seek respiratory care equipment, finding it quickly is desirable, both to expedite patient care and to avert RTs wasting time. To optimize RTs' ability to quickly locate ventilators, we developed and implemented a radio-frequency identification (RFID) tagging system called eTrak. The Clinical Engineering and Information Technology groups at Cleveland Clinic collaboratively developed a Wi-Fi-based RFID program that used active RFID tags. Altogether, 218 ventilators, 82 noninvasive ventilators, and various non-respiratory equipment were tagged, beginning in March 2010. We calculated the difference in time required to locate equipment before versus after implementation. The eTrak system had a mean 145 log-ons per week over the first year of use, and was associated with a decreased time required for RTs to locate ventilators: median 18 min (range 1-45 min) versus 3 min (range 1-6 min) (P < .001). Surveys of RTs regarding whether equipment was hard to find before versus after implementing eTrak showed a non-significant trend toward improvement. An RFID tracking system for respiratory equipment shortened the time to locate ventilators and non-significantly improved RT satisfaction with finding equipment. RFID tagging of equipment warrants further investigation.
Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans.
Somers, V K; Mark, A L; Zavala, D C; Abboud, F M
1989-11-01
The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.
Effect Of Ventilation On Chronic Health Risks In Schools And Offices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Srinandini; Fisk, William J.; McKone, Thomas E.
This study provides a risk assessment for chronic health risks from inhalation exposure to indoor air pollutants in offices and schools with a focus how ventilation impacts exposures to, and risks from, volatile organic compounds (VOCs) and particulate matter (PM2.5). We estimate how much health risks could change with varying ventilation rates under two scenarios: (i) halving the measured ventilation rates and (ii) doubling the measured ventilation rates. For the hazard characterization we draw upon prior papers that identified pollutants potentially affecting health with indoor air concentrations responsive to changes in ventilation rates. For exposure assessment we determine representative concentrationsmore » of pollutants using data available in current literature and model changes in exposures with changes in ventilation rates. As a metric of disease burden, we use disability adjusted life years (DALYs) to address both cancer and non-cancer effects. We also compare exposures to guidelines published by regulatory agencies to assess chronic health risks. Chronic health risks are driven primarily by particulate matter exposure, with an estimated baseline disease burden of 150 DALYs per 100,000 people in offices and 140 DALYs per 100,000 people in schools. Study results show that PM2.5-related DALYs are not very sensitive to changes in ventilation rates. Filtration is more effective at controlling PM2.5 concentrations and health effects. Non-cancer health effects contribute only a small fraction of the overall chronic health burden of populations in offices and schools (<1 DALY per 100,000 people). Cancer health effects dominate the disease burden in schools (3 DALYs per 100,000) and offices (5 DALYs per 100,000), with formaldehyde being the primary risk driver. In spite of large uncertainties in toxicological data and dose-response modeling, our results support the finding that ventilation rate changes do not have significant impacts on estimated chronic disease burdens. Median estimates of DALYs are approximately doubled when the ventilation rates are halved and there is little reduction in health risks associated with doubling ventilation rates, but the very low baseline disease burden from the indoor exposures we considered makes this unremarkable. In exploring the full range of exposure concentrations, to find the fraction exceeding the Office of Environmental Health and Hazard Assessment’s (OEHHAs) chronic reference exposure levels (cRELs) and United States Environmental Protection Agency’s (USEPA) chronic reference dose (RfD) we found only minor shifts in exposure safety margins when ventilation was doubled or halved. We combined our exposure estimates with cancer potency factors published by OEHHA and USEPA to determine that the annual excess cancer risk per capita are below 1 in a million under all ventilation rate scenarios for individual pollutants. The results indicate that chronic health risks (cancer and non-cancer) associated with VOC and PM2.5 exposure in offices and schools are low and thus the chronic disease burden or health benefits of ventilation changes are likely to be well below both the level of detection by health surveillance studies and the level of regulatory thresholds.« less
Promoting independence for children on long-term ventilation.
Lawrence, Sue
2011-12-01
It is the responsibility of children's nurses to enable children and young people who are on long-term ventilation (LTV) to live independent and varied lives. This article considers the common challenges faced by such children and reflects on personal experience in planning and undertaking a respite week for a young person on LTV with Duchenne's muscular dystrophy without his parents.
NASA Astrophysics Data System (ADS)
Ikhwan, M.; Hafil, A. F.; Bramanthyo, B.
2017-08-01
The Eustachian tube (ET) is responsible for the ventilation, protection, and cleaning of the middle ear. ET dysfunction plays an important role in the pathogenesis of otitis media cases, and thus the treatment and prognosis of these cases is extremely dependent on adequate ET function, which can ultimately affect the success rate of middle ear reconstruction practices. Data research on the ET’s ventilation function is needed to ensure the success of therapy and surgery treatments in the case of Chronic Suppurative Otitis Media (CSOM) patients. This study aims to investigate ET ventilation functioning in benign type CSOM and non-otitis media subjects and to develop another modality to measure ET ventilation functioning in patients with intact and perforated tympanic membranes. A comparative cross-sectional study of 36 benign type CSOM patients and 80 non-otitis media subjects will be conducted using sonotubometry and the rated parameter measurements of ET opening frequency, amplitude and ET opening duration. Malfunctioning ventilation of the ET is more common among benign type CSOM subjects (47%) than among non-otitis media subjects (18.75%). There is a significant difference (p = 0.002) between the ET ventilation functioning of benign type CSOM subjects and non-otitis media subjects—benign type CSOM subjects have rates of malfunctioning ET ventilation that are 3.88 times higher than those of non-otitis media subjects. Patients with benign type CSOM are more likely to experience malfunctioning ET ventilation than are non-otitis media subjects.
Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?
De Boeck, Gudrun; Wood, Chris M
2015-01-15
We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3(-)]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3(-)]a. Injection with NaHCO3 which increased pHa and [HCO3(-)]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream. Copyright © 2014 Elsevier B.V. All rights reserved.
Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce; Berend, Norbert; King, Gregory G
2007-01-01
Background Airway hyperresponsiveness is the ability of airways to narrow excessively in response to inhaled stimuli and is a key feature of asthma. Airway inflammation and ventilation heterogeneity have been separately shown to be associated with airway hyperresponsiveness. A study was undertaken to establish whether ventilation heterogeneity is associated with airway hyperresponsiveness independently of airway inflammation in subjects with asthma and to determine the effect of inhaled corticosteroids on this relationship. Methods Airway inflammation was measured in 40 subjects with asthma by exhaled nitric oxide, ventilation heterogeneity by multiple breath nitrogen washout and airway hyperresponsiveness by methacholine challenge. In 18 of these subjects with uncontrolled symptoms, measurements were repeated after 3 months of treatment with inhaled beclomethasone dipropionate. Results At baseline, airway hyperresponsiveness was independently predicted by airway inflammation (partial r2 = 0.20, p<0.001) and ventilation heterogeneity (partial r2 = 0.39, p<0.001). Inhaled corticosteroid treatment decreased airway inflammation (p = 0.002), ventilation heterogeneity (p = 0.009) and airway hyperresponsiveness (p<0.001). After treatment, ventilation heterogeneity was the sole predictor of airway hyperresponsiveness (r2 = 0.64, p<0.001). Conclusions Baseline ventilation heterogeneity is a strong predictor of airway hyperresponsiveness, independent of airway inflammation in subjects with asthma. Its persistent relationship with airway hyperresponsiveness following anti‐inflammatory treatment suggests that it is an important independent determinant of airway hyperresponsiveness. Normalisation of ventilation heterogeneity is therefore a potential goal of treatment that may lead to improved long‐term outcomes. PMID:17311839
New modes of assisted mechanical ventilation.
Suarez-Sipmann, F
2014-05-01
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.
Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery.
Maia, Lígia de Albuquerque; Silva, Pedro Leme; Pelosi, Paolo; Rocco, Patricia Rieken Macedo
2017-06-01
The obesity prevalence is increasing in surgical population. As the number of obese surgical patients increases, so does the demand for mechanical ventilation. Nevertheless, ventilatory strategies in this population are challenging, since obesity results in pathophysiological changes in respiratory function. Areas covered: We reviewed the impact of obesity on respiratory system and the effects of controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. To date, there is no consensus regarding the optimal invasive mechanical ventilation strategy for obese surgical patients, and no evidence that possible intraoperative beneficial effects on oxygenation and mechanics translate into better postoperative pulmonary function or improved outcomes. Expert commentary: Before determining the ideal intraoperative ventilation strategy, it is important to analyze the pathophysiology and comorbidities of each obese patient. Protective ventilation with low tidal volume, driving pressure, energy, and mechanical power should be employed during surgery; however, further studies are required to clarify the most effective ventilation strategies, such as the optimal positive end-expiratory pressure and whether recruitment maneuvers minimize lung injury. In this context, an ongoing trial of intraoperative ventilation in obese patients (PROBESE) should help determine the mechanical ventilation strategy that best improves clinical outcome in patients with body mass index≥35kg/m 2 .
Javanese House’s Roof (Joglo) with the Opening as a Cooling Energy Provider
NASA Astrophysics Data System (ADS)
Pranoto S, M.
2018-01-01
Natural ventilation and air movement could be considered under the heading structural controls as it does not rely on any form of energy supply or mechanical installation but due to its importance for human comfort, it deserves a separate section. Air infiltration can destroy the performance of ventilation systems. Good ventilation design combined with optimum air tightness is needed to ensure energy efficient ventilation. Ultimately, ventilation needs depend on occupancy pattern and building use. A full cost and energy analysis is therefore needed to select an optimum ventilation strategy.The contains of paper is about the element of Javanese house (the roof) as the element of natural ventilation and a cooling energy provider. In this research, The Computational Fluid Dynamics Program, is used to draw and analysis. That tool can be track the pattern and the direction of movement of air also the air velocity in the object of ventilation of the roof Javanese house based. Finally, the ventilation of the roof of this Javanese house can add the velocity of air at indoor, average 0.4 m/s and give the effect of cooling, average 0.7°C.
Investigation of induced recirculation during planned ventilation system maintenance
Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.
2015-01-01
The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter (DPM) levels showed a high increase in district intake mass flow, but minor increases in exposure levels related to the recirculation percentage. Utilization of DPM mass flow rates allows input into ventilation modeling programs to better understand and plan for ventilation changes and district recirculation effects on miners’ health. PMID:26190862
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... the installation of a heating, ventilation, and air conditioning (HVAC) system at the City of La Ca... EE0000905, for the installation of a heating, ventilation, and air conditioning (HVAC) system at the at the... efforts and MEP's scouting process, it was determined that if the described HVAC system was manufactured...
Code of Federal Regulations, 2010 CFR
2010-10-01
... of the units' machinery, electrical, and ventilation systems. (See Notes 1 and 2). (b) For the purpose of this subpart “semi-enclosed location” means a location where natural conditions of ventilation...
Ventilation of an hydrofoil wake
NASA Astrophysics Data System (ADS)
Arndt, Roger; Lee, Seung Jae; Monson, Garrett
2013-11-01
Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.
Gal'perin, Iu Sh; Alkhimova, L R; Dmitriev, N D; Kozlova, I A; Nemirovskiĭ, S B; Makarov, M V; Safronov, A Iu
2005-01-01
In the new ventilator Avenir-221 P modern lines of development of ventilation support in intensive therapy of adults and children are implemented. The capacities of the ventilator are successfully combined with its technical decisions which include microprocessor parametrical controlling, programming-controlled electric drive, an information saturation, intuitively clear control system, protection against interruption of power supply sources and oxygen feeding falls. A set of functional characteristics (modes VCV, PCV, Ass/Contr, PSV, SIMV, PEEP, Sigh, etc.) in combination with an original design make the device the most accessible and promising for application in intensive care and resuscitation units of a wide network of Russian hospitals and clinics. The ventilator Avenir-221 P has passed all required tests and is presently commercially available.
Asthma prevalence in German Olympic athletes: A comparison of winter and summer sport disciplines.
Selge, Charlotte; Thomas, Silke; Nowak, Dennis; Radon, Katja; Wolfarth, Bernd
2016-09-01
Prevalence of asthma in elite athletes shows very wide ranges. It remains unclear to what extent this is influenced by the competition season (winter vs. summer) or the ventilation rate achieved during competition. The aim of this study was to evaluate prevalence of asthma in German elite winter and summer athletes from a wide range of sport disciplines and to identify high risk groups. In total, 265 German elite winter athletes (response 77%) and 283 German elite summer athletes (response 64%) answered validated respiratory questionnaires. Using logistic regression, the asthma risks associated with competition season and ventilation rate during competition, respectively, were investigated. A subset of winter athletes was also examined for their FENO-levels and lung function. With respect to all asthma outcomes, no association was found with the competition season. Regarding the ventilation rate, athletes in high ventilation sports were at increased risk of asthma, as compared to athletes in low ventilation sports (doctors' diagnosed asthma: OR 2.32, 95% CI 1.19-4.53; use of asthma medication: OR 4.46, 95% CI 1.52-13.10; current wheeze or use of asthma medication: OR 2.78, 95% CI 1.34-5.76). Athletes with doctors' diagnosed asthma were at an approximate four-fold risk of elevated FENO-values. The clinically relevant finding of this study is that athletes' asthma seems to be more common in sports with high ventilation during competition, whereas the summer or winter season had no impact on the frequency of the disease. Among winter athletes, elevated FENO suggested suboptimal control of asthma. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pantelic, J; Tham, K W; Licina, D
2015-12-01
The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems’ performance and can serve as an aid in making critical design decisions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Regional Lung Ventilation Analysis Using Temporally Resolved Magnetic Resonance Imaging.
Kolb, Christoph; Wetscherek, Andreas; Buzan, Maria Teodora; Werner, René; Rank, Christopher M; Kachelrie, Marc; Kreuter, Michael; Dinkel, Julien; Heuel, Claus Peter; Maier-Hein, Klaus
We propose a computer-aided method for regional ventilation analysis and observation of lung diseases in temporally resolved magnetic resonance imaging (4D MRI). A shape model-based segmentation and registration workflow was used to create an atlas-derived reference system in which regional tissue motion can be quantified and multimodal image data can be compared regionally. Model-based temporal registration of the lung surfaces in 4D MRI data was compared with the registration of 4D computed tomography (CT) images. A ventilation analysis was performed on 4D MR images of patients with lung fibrosis; 4D MR ventilation maps were compared with corresponding diagnostic 3D CT images of the patients and 4D CT maps of subjects without impaired lung function (serving as reference). Comparison between the computed patient-specific 4D MR regional ventilation maps and diagnostic CT images shows good correlation in conspicuous regions. Comparison to 4D CT-derived ventilation maps supports the plausibility of the 4D MR maps. Dynamic MRI-based flow-volume loops and spirograms further visualize the free-breathing behavior. The proposed methods allow for 4D MR-based regional analysis of tissue dynamics and ventilation in spontaneous breathing and comparison of patient data. The proposed atlas-based reference coordinate system provides an automated manner of annotating and comparing multimodal lung image data.
Winter ventilation rates at primary schools: comparison between Portugal and Finland.
Canha, N; Almeida, S M; Freitas, M C; Täubel, M; Hänninen, O
2013-01-01
This study focused on examination of ventilation rates in classrooms with two different types of ventilation systems: natural and mechanical. Carbon dioxide (CO2) measurements were conducted in primary schools of Portugal characterized by natural ventilation and compared to Finland where mechanical ventilation is the norm. The winter period was selected since this season exerts a great influence in naturally ventilated classrooms, where opening of windows and doors occurs due to outdoor atmospheric conditions. The ventilation rates were calculated by monitoring CO2 concentrations generated by the occupants (used as a tracer gas) and application of the buildup phase method. A comparison between both countries' results was conducted with respect to ventilation rates and how these levels corresponded to national regulatory standards. Finnish primary schools (n = 2) registered a mean ventilation rate of 13.3 L/s per person, which is higher than the recommended ventilation standards. However, the Finnish classroom that presented the lowest ventilation rate (7.2 L/s per person) displayed short-term CO2 levels above 1200 ppm, which is the threshold limit value (TLV) recommended by national guidelines. The Portuguese classrooms (n = 2) showed low ventilation rates with mean values of 2.4 L/s per person, which is markedly lower than the minimum recommended value of 7 L/s per person as defined by ASHRAE and 20% less than the REHVA minimum of 3 L/s per person. Carbon dioxide levels of 1000 ppm, close to the TLV of 1200 ppm, were also reached in both Portuguese classrooms studied. The situation in Portugal indicates a potentially serious indoor air quality problem and strengthens the need for intervention to improve ventilation rates in naturally ventilated classrooms.
Wilms, C T; Schober, P; Kalb, R; Loer, S A
2006-01-01
During partial liquid ventilation perfluorocarbons are instilled into the airways from where they subsequently evaporate via the bronchial system. This process is influenced by multiple factors, such as the vapour pressure of the perfluorocarbons, the instilled volume, intrapulmonary perfluorocarbon distribution, postural positioning and ventilatory settings. In our study we compared the effects of open and closed breathing systems, a heat-and-moisture-exchanger and a sodalime absorber on perfluorocarbon evaporation during partial liquid ventilation. Isolated rat lungs were suspended from a force transducer. After intratracheal perfluorocarbon instillation (10 mL kg(-1)) the lungs were either ventilated with an open breathing system (n = 6), a closed breathing system (n = 6), an open breathing system with an integrated heat-and-moisture-exchanger (n = 6), an open breathing system with an integrated sodalime absorber (n = 6), or a closed breathing system with an integrated heat-and-moisture-exchanger and a sodalime absorber (n = 6). Evaporative perfluorocarbon elimination was determined gravimetrically. When compared to the elimination half-life in an open breathing system (1.2 +/- 0.07 h), elimination half-life was longer with a closed system (6.4 +/- 0.9 h, P 0.05) when compared to a closed system. Evaporative perfluorocarbon loss can be reduced effectively with closed breathing systems, followed by the use of sodalime absorbers and heat-and-moisture-exchangers.
Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology
Smith, Thomas G; Brooks, Jerome T; Balanos, George M; Lappin, Terence R; Layton, D. Mark; Leedham, Dawn L; Liu, Chun; Maxwell, Patrick H; McMullin, Mary F; McNamara, Christopher J; Percy, Melanie J; Pugh, Christopher W; Ratcliffe, Peter J; Talbot, Nick P; Treacy, Marilyn; Robbins, Peter A
2006-01-01
Background The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. Methods and Findings Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. Conclusions The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF. PMID:16768548
Susceptibility to ventilator induced lung injury is increased in senescent rats
2013-01-01
Introduction The principal mechanisms of ventilator induced lung injury (VILI) have been investigated in numerous animal studies. However, prospective data on the effect of old age on VILI are limited. Under the hypothesis that susceptibility to VILI is increased in old age, we investigated the pulmonary and extrapulmonary effects of mechanical ventilation with high tidal volume (VT) in old compared to young adult animals. Interventions Old (19.1 ± 3.0 months) and young adult (4.4 ± 1.3 months) male Wistar rats were anesthetized and mechanically ventilated (positive end-expiratory pressure 5 cmH2O, fraction of inspired oxygen 0.4, respiratory rate 40/minute) with a tidal volume (VT) of either 8, 16 or 24 ml/kg for four hours. Respiratory and hemodynamic variables, including cardiac output, and markers of systemic inflammation were recorded throughout the ventilation period. Lung histology and wet-to-dry weight ratio, injury markers in lung lavage and respiratory system pressure-volume curves were assessed post mortem. Basic pulmonary characteristics were assessed in non-ventilated animals. Results Compared to young adult animals, high VT (24 ml/kg body weight) caused more lung injury in old animals as indicated by decreased oxygenation (arterial oxygen tension (PaO2): 208 ± 3 vs. 131 ± 20 mmHg; P <0.05), increased lung wet-to-dry-weight ratio (5.61 ± 0.29 vs. 7.52 ± 0.27; P <0.05), lung lavage protein (206 ± 52 mg/l vs. 1,432 ± 101; P <0.05) and cytokine (IL-6: 856 ± 448 vs. 3,283 ± 943 pg/ml; P <0.05) concentration. In addition, old animals ventilated with high VT had more systemic inflammation than young animals (IL-1β: 149 ± 44 vs. 272 ± 36 pg/ml; P <0.05 - young vs. old, respectively). Conclusions Ventilation with unphysiologically large tidal volumes is associated with more lung injury in old compared to young rats. Aggravated pulmonary and systemic inflammation is a key finding in old animals developing VILI. PMID:23710684
Small scale power generation from biomass-technical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepori, W.A.; Cardenas, M.M.; Carney, O.B.
1983-12-01
System and nursery pig performance data for the Winter of 1983 were collected for a 96-pig capacity modified-open-front (MOF) naturally ventilated and a 96-pig capacity mechanically ventilated swine nurseries. Both nurseries utilized active solar collectors to provide in-floor heating at the rear of each pen along with hovers. The mechanically ventilated nursery utilized solar preheated ventilation air. The naturally ventilated nursery had double glazed solar windows to passively heat the interior space. The relative humidity in the naturally ventilated (NV) nursery averaged 20 percentage points higher than the mechanically ventilated (MV) nursery with no significant differences in air temperature. Themore » MV nursery used 50% more energy than the NV nursery and the NV nursery required 1.9 kWh/pig marketed less than that needed for the MV nursery. Pig performance figure were not significantly different between the two buildings. The feed to gain ration were 2.0 + or - 0.35 and 1.96 + or 0.38 for the MV and NV nurseries respectively.« less
Jardine, E.; Wallis, C.
1998-01-01
Paediatric home ventilation is a feasible option and can be successful in a wide range of conditions and ages. Advances in ventilator technology and an ethos of optimism for home care has increased the possibilities for discharging chronically ventilated children from intensive care units and acute medical beds. With careful planning the process can succeed, but difficulties often thwart the responsible team, especially when attempting discharge for the first time. These core guidelines aim to assist a smooth, swift and successful transfer. They were developed by a working party of interested professionals spanning a wide range of health care disciplines and represent a synthesis of views accumulated from the experiences of individual teams throughout the UK. Three case scenarios provide further illustrative detail and guidance. PMID:10319058
Pirsaheb, Meghdad; Najafi, Farid; Haghparast, Abbas; Hemati, Lida; Sharafi, Kiomars; Kurd, Nematullah
2016-01-01
Background Building materials and the ventilation rate of a building are two main factors influencing indoor radon and thoron levels (two radioactive gases which have the most important role in human natural radiation exposure within dwellings). Objectives This analytical descriptive study was intended to determine the relationship between indoor radon and thoron concentrations and the building materials used in interior surfaces, as well as between those concentrations and the type of ventilation system (natural or artificial). Materials and Methods 102 measurements of radon and thoron levels were taken from different parts of three hospital buildings in the city of Kermanshah in the west of Iran, using an RTM-1688-2 radon meter. Information on the type of building material and ventilation system in the measurement location was collected and then analyzed using Stata 8 software and multivariate linear regression. Results In terms of radon and thoron emissions, travertine and plaster were found to be the most appropriate and inappropriate covering for walls, respectively. Furthermore, granite and travertine were discovered to be inappropriate materials for flooring, while plastic floor covering was found suitable. Natural ventilation performed better for radon, while artificial ventilation worked better for thoron. Conclusions Internal building materials and ventilation type affect indoor radon and thoron concentrations. Therefore, the use of proper materials and adequate ventilation can reduce the potential human exposure to radon and thoron. This is of utmost importance, particularly in buildings with a high density of residents, including hospitals. PMID:28180013
Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.
Shendell, D G; Prill, R; Fisk, W J; Apte, M G; Blake, D; Faulkner, D
2004-10-01
Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P < 0.05) with a 0.5-0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10-20% increase in student absence. Annual ADA was 2% higher (P < 0.0001) in traditional than in portable classrooms. This study provides motivation for larger school studies to investigate associations of student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.
Cluff, Mark; Kingston, Joseph; Hill, Denzil; Chen, Haiyan; Hoehne, Soeren; Malleske, Daniel T.; Kaur, Rajwinederjit
2012-01-01
Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies. PMID:22160307
A dynamic ventilation model for gravity sewer networks.
Wang, Y C; Nobi, N; Nguyen, T; Vorreiter, L
2012-01-01
To implement any effective odour and corrosion control technology in the sewer network, it is imperative that the airflow through gravity sewer airspaces be quantified. This paper presents a full dynamic airflow model for gravity sewer systems. The model, which is developed using the finite element method, is a compressible air transport model. The model has been applied to the North Head Sewerage Ocean Outfall System (NSOOS) and calibrated using the air pressure and airflow data collected during October 2008. Although the calibration is focused on forced ventilation, the model can be applied to natural ventilation as well.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... practice standards? (a) By-product hydrogen streams and end box ventilation system vents. (1) For all by-product hydrogen streams and all end box ventilation system vents, if applicable, you must demonstrate...
46 CFR 154.1205 - Mechanical ventilation system: Standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... openings to accommodations, service, control station, and other gas-safe spaces. (c) Each ventilation system under § 154.1200 (a) and (b)(1) must change the air in that space and its adjoining trunks at... top of each space that personnel enter during cargo handling operations. (b) The discharge end of each...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... safe and healthful working environment. A well planned mine ventilation system is necessary to assure a fresh air supply to miners at all working places, to control the amounts of harmful airborne... present harsh and hostile working environments. The ventilation system is the most vital life support...
Risk and prognostic factors of ventilator-associated pneumonia in trauma patients.
Cavalcanti, Manuela; Ferrer, Miquel; Ferrer, Ricard; Morforte, Ramon; Garnacho, Angel; Torres, Antoni
2006-04-01
To assess the risk and prognostic factors of ventilator-associated pneumonia in trauma patients, with an emphasis on the inflammatory response. Case-control study. Trauma intensive care unit. Of 190 consecutive mechanically ventilated patients, those with microbiologically confirmed pneumonia (n = 62) were matched with 62 controls without pneumonia. None. Clinical, microbiological, and outcome variables were recorded. Cytokines were measured in serum and blind bronchoalveolar lavage specimens at onset of pneumonia. Multivariate analyses of risk and prognostic factors for ventilator-associated pneumonia were done. Increased severity of head and neck injury (odds ratio, 11.9; p < .001) was the only independent predictor of pneumonia. Among patients with pneumonia, serum levels of interleukin-6 (p = .019) and interleukin-8 (p = .036) at onset of pneumonia were higher in nonresponders to treatment. Moreover, serum levels of tumor necrosis factor-alpha (p = .028) and interleukin-6 (p = .007) at onset of pneumonia were higher in nonsurvivors. Mortality in the intensive care unit was 23% in cases and controls. Nonresponse to antimicrobial treatment (odds ratio, 22.2; p = .001) and the use of hyperventilation (p = .021) were independent predictors of mortality in the intensive care unit for patients with pneumonia. Severe head and neck trauma is strongly associated with ventilator-associated pneumonia. A higher inflammatory response is associated with nonresponse to treatment and mortality among patients with pneumonia. Although pneumonia did not influence mortality, nonresponse to treatment independently predicted mortality among these patients.
[Appropriate dust control measures for jade carving operations].
Liu, Jiang; Wang, Qiushui; Liu, Guangquan
2002-12-01
To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.
Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.
2015-03-01
Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.
Hard metal exposures. Part 1: Observed performance of three local exhaust ventilation systems.
Guffey, S E; Simcox, N; Booth, D W; Hibbard, R; Stebbins, A
2000-04-01
Not every ventilation system performs as intended; much can be learned when they do not. The purpose of this study was to compare observed initial performance to expected levels for three saw-reconditioning shop ventilation systems and to characterize the changes in performance of the systems over a one-year period. These three local exhaust ventilation systems were intended to control worker exposures to cobalt, cadmium, and chromium during wet grinding, dry grinding, and welding/brazing activities. Prior to installation the authors provided some design guidance based on Industrial Ventilation, a Manual of Recommended Practice. However, the authors had limited influence on the actual installation and operation and no line authority for the systems. In apparent efforts to cut costs and to respond to other perceived needs, the installed systems deviated from the specifications used in pressure calculations in many important aspects, including adding branch ducts, use of flexible ducts, the choice of fans, and the construction of some hoods. After installation of the three systems, ventilation measurements were taken to determine if the systems met design specifications, and worker exposures were measured to determine effectiveness. The results of the latter will be published as a companion article. The deviations from design and maintenance failures may have adversely affected performance. From the beginning to the end of the study period the distribution of air flow never matched the design specifications for the systems. The observed air flows measured within the first month of installation did not match the predicated design air flows for any of the systems, probably because of the differences between the design and the installed system. Over the first year of operation, hood air flow variability was high due to inadequate cleaning of the sticky process materials which rapidly accumulated in the branch ducts. Poor distribution of air flows among branch ducts frequently produced individual hood air flows that were far below specified design levels even when the total air flow through that system was more than adequate. To experienced practitioners, it is not surprising that deviations from design recommendations and poor maintenance would be associated with poor system performance. Although commonplace, such experiences have not been documented in peer-reviewed publications to date. This publication is a first step in providing that documentation.
Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale
NASA Astrophysics Data System (ADS)
Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki
2017-10-01
The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.
2013-07-01
Mechanical ventilation in patients with respiratory failure represents one of the most important aspects of intensity care. It can be performed invasively and non-invasively depending on the clinical situation and the underlying disease. The expenditure and consumption of resources is the basis of the compensation for each patient case in the German diagnosis related group system. For ventilated patients it is calculated based on the hours of ventilation, according to the standard coding guideline. In this statement, the German Respiratory Society and the Association of Pneumological Clinics aim to clarify some aspects of the coding of invasive and non-invasive ventilation. © Georg Thieme Verlag KG Stuttgart · New York.
The vesicular glutamate transporter VGLUT3 contributes to protection against neonatal hypoxic stress
Miot, Stéphanie; Voituron, Nicolas; Sterlin, Adélaïde; Vigneault, Erika; Morel, Lydie; Matrot, Boris; Ramanantsoa, Nelina; Amilhon, Bénédicte; Poirel, Odile; Lepicard, Ève; El Mestikawy, Salah; Hilaire, Gérard; Gallego, Jorge
2012-01-01
Neonates respond to hypoxia initially by increasing ventilation, and then by markedly decreasing both ventilation (hypoxic ventilatory decline) and oxygen consumption (hypoxic hypometabolism). This latter process, which vanishes with age, reflects a tight coupling between ventilatory and thermogenic responses to hypoxia. The neurological substrate of hypoxic hypometabolism is unclear, but it is known to be centrally mediated, with a strong involvement of the 5-hydroxytryptamine (5-HT, serotonin) system. To clarify this issue, we investigated the possible role of VGLUT3, the third subtype of vesicular glutamate transporter. VGLUT3 contributes to glutamate signalling by 5-HT neurons, facilitates 5-HT transmission and is expressed in strategic regions for respiratory and thermogenic control. We therefore assumed that VGLUT3 might significantly contribute to the response to hypoxia. To test this possibility, we analysed this response in newborn mice lacking VGLUT3 using anatomical, biochemical, electrophysiological and integrative physiology approaches. We found that the lack of VGLUT3 did not affect the histological organization of brainstem respiratory networks or respiratory activity under basal conditions. However, it impaired respiratory responses to 5-HT and anoxia, showing a marked alteration of central respiratory control. These impairments were associated with altered 5-HT turnover at the brainstem level. Furthermore, under cold conditions, the lack of VGLUT3 disrupted the metabolic rate, body temperature, baseline breathing and the ventilatory response to hypoxia. We conclude that VGLUT3 expression is dispensable under basal conditions but is required for optimal response to hypoxic stress in neonates. PMID:22890712
Occupant-responsive optimal control of smart facade systems
NASA Astrophysics Data System (ADS)
Park, Cheol-Soo
Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.
2011-01-01
We describe difficult weaning after prolonged mechanical ventilation in three tracheostomized children affected by respiratory virus infection. Although the spontaneous breathing trials were successful, the patients failed all extubations. Therefore a tracheostomy was performed and the weaning plan was begun. The strategy for weaning was the decrease of ventilation support combining pressure control ventilation (PCV) with increasing periods of continuous positive airway pressure + pressure support ventilation (CPAP + PSV) and then CPAP + PSV with increasing intervals of T-piece. They presented acute respiratory distress syndrome on admission with high requirements of mechanical ventilation (MV). Intervening factors in the capabilities and loads of the respiratory system were considered and optimized. The average MV time was 69 days and weaning time 31 days. We report satisfactory results within the context of a directed weaning protocol. PMID:21244710
Automatic control of pressure support for ventilator weaning in surgical intensive care patients.
Schädler, Dirk; Engel, Christoph; Elke, Gunnar; Pulletz, Sven; Haake, Nils; Frerichs, Inéz; Zick, Günther; Scholz, Jens; Weiler, Norbert
2012-03-15
Despite its ability to reduce overall ventilation time, protocol-guided weaning from mechanical ventilation is not routinely used in daily clinical practice. Clinical implementation of weaning protocols could be facilitated by integration of knowledge-based, closed-loop controlled protocols into respirators. To determine whether automated weaning decreases overall ventilation time compared with weaning based on a standardized written protocol in an unselected surgical patient population. In this prospective controlled trial patients ventilated for longer than 9 hours were randomly allocated to receive either weaning with automatic control of pressure support ventilation (automated-weaning group) or weaning based on a standardized written protocol (control group) using the same ventilation mode. The primary end point of the study was overall ventilation time. Overall ventilation time (median [25th and 75th percentile]) did not significantly differ between the automated-weaning (31 [19-101] h; n = 150) and control groups (39 [20-118] h; n = 150; P = 0.178). Patients who underwent cardiac surgery (n = 132) exhibited significantly shorter overall ventilation times in the automated-weaning (24 [18-57] h) than in the control group (35 [20-93] h; P = 0.035). The automated-weaning group exhibited shorter ventilation times until the first spontaneous breathing trial (1 [0-15] vs. 9 [1-51] h; P = 0.001) and a trend toward fewer tracheostomies (17 vs. 28; P = 0.075). Overall ventilation times did not significantly differ between weaning using automatic control of pressure support ventilation and weaning based on a standardized written protocol. Patients after cardiac surgery may benefit from automated weaning. Implementation of additional control variables besides the level of pressure support may further improve automated-weaning systems. Clinical trial registered with www.clinicaltrials.gov (NCT 00445289).
Emhofer, Waltraud; Lichtenegger, Klaus; Haslinger, Walter; Hofbauer, Hermann; Schmutzer-Roseneder, Irene; Aigenbauer, Stefan; Lienhard, Martin
2015-01-01
Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (<30 tons storage capacity) residential pellet storage facilities, ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m(3) h(-1), depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Reimagining Building Sensing and Control (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polese, L.
2014-06-01
Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that openmore » the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.« less
Carlucci, Annalisa; Ceriana, Piero; Mancini, Marco; Cirio, Serena; Pierucci, Paola; D'Artavilla Lupo, Nadia; Gadaleta, Felice; Morrone, Elisa; Fanfulla, Francesco
2015-09-15
Ventilation with continuous positive airway pressure (CPAP) is the gold standard therapy for obstructive sleep apnea (OSA). However, it was recently suggested that a novel mode of ventilation, Bilevel-auto, could be equally effective in treating patients unable to tolerate CPAP. The aim of this study was to investigate the ability of Bilevel-auto to treat OSA patients whose nocturnal ventilatory disturbances are not completely corrected by CPAP. We enrolled 66 consecutive OSA patients, not responsive to (group A) or intolerant of (group B) CPAP treatment, after a full night of manual CPAP titration in a laboratory. Full polysomnography data and daytime sleepiness score were compared for each group in the three different conditions: basal, during CPAP, and during Bilevel-auto. The apnea-hypopnea index decreased significantly during CPAP in both groups; however, in the group A, there was a further significant improvement during Bilevel-auto. The same trend was observed for oxygenation indices, while the distribution and the efficiency of sleep did not differ following the switch from CPAP to Bilevel-auto. This study confirmed the role of Bilevel-auto as an effective therapeutic alternative to CPAP in patients intolerant of this latter mode of ventilation. Moreover, extending the use of Bilevel-auto to those OSA patients not responsive to CPAP, we showed a significantly better correction of nocturnal respiratory disturbances. © 2015 American Academy of Sleep Medicine.
Hasan, Djo; Blankman, Paul; Nieman, Gary F
2017-09-01
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Bustamante, Eliseo; Guijarro, Enrique; García-Diego, Fernando-Juan; Balasch, Sebastián; Hospitaler, Antonio; Torres, Antonio G.
2012-01-01
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms. PMID:22778611
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Serpa Neto, Ary; Hemmes, Sabrine N T; Barbas, Carmen S V; Beiderlinden, Martin; Biehl, Michelle; Binnekade, Jan M; Canet, Jaume; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; Hedenstierna, Göran; Hollmann, Markus W; Jaber, Samir; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Maslow, Andrew D; Memtsoudis, Stavros G; Reis Miranda, Dinis; Moine, Pierre; Ng, Thomas; Paparella, Domenico; Putensen, Christian; Ranieri, Marco; Scavonetto, Federica; Schilling, Thomas; Schmid, Werner; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N; Wolthuis, Esther K; Wrigge, Hermann; Gama de Abreu, Marcelo; Pelosi, Paolo; Schultz, Marcus J
2015-07-01
Recent studies show that intraoperative mechanical ventilation using low tidal volumes (VT) can prevent postoperative pulmonary complications (PPCs). The aim of this individual patient data meta-analysis is to evaluate the individual associations between VT size and positive end-expiratory pressure (PEEP) level and occurrence of PPC. Randomized controlled trials comparing protective ventilation (low VT with or without high levels of PEEP) and conventional ventilation (high VT with low PEEP) in patients undergoing general surgery. The primary outcome was development of PPC. Predefined prognostic factors were tested using multivariate logistic regression. Fifteen randomized controlled trials were included (2,127 patients). There were 97 cases of PPC in 1,118 patients (8.7%) assigned to protective ventilation and 148 cases in 1,009 patients (14.7%) assigned to conventional ventilation (adjusted relative risk, 0.64; 95% CI, 0.46 to 0.88; P < 0.01). There were 85 cases of PPC in 957 patients (8.9%) assigned to ventilation with low VT and high PEEP levels and 63 cases in 525 patients (12%) assigned to ventilation with low VT and low PEEP levels (adjusted relative risk, 0.93; 95% CI, 0.64 to 1.37; P = 0.72). A dose-response relationship was found between the appearance of PPC and VT size (R2 = 0.39) but not between the appearance of PPC and PEEP level (R2 = 0.08). These data support the beneficial effects of ventilation with use of low VT in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.