Sample records for ventilatory activity selenium

  1. Ventilatory demand and dynamic hyperinflation induced during ADL-based tests in Chronic Obstructive Pulmonary Disease patients

    PubMed Central

    dos Santos, Karoliny; Gulart, Aline A.; Munari, Anelise B.; Karloh, Manuela; Mayer, Anamaria F.

    2016-01-01

    ABSTRACT Background Airflow limitation frequently leads to the interruption of activities of daily living (ADL) in patients with Chronic Obstructive Pulmonary Disease (COPD). These patients commonly show absence of ventilatory reserve, reduced inspiratory reserve volume, and dynamic hyperinflation (DH). Objective To investigate ventilatory response and DH induced by three ADL-based protocols in COPD patients and compare them to healthy subjects. Method Cross-sectional study. COPD group: 23 patients (65±6 years, FEV1 37.2±15.4%pred); control group: 14 healthy subjects (64±4 years) matched for age, sex, and body mass index. Both groups performed all three tests: Glittre-ADL test; an activity test that involved moving objects on a shelf (TSHELF); and a modified shelf protocol isolating activity with upper limbs (TSHELF-M). Ventilatory response and inspiratory capacity were evaluated. Results Baseline ventilatory variables were similar between groups (p>0.05). The ventilatory demand increased and the inspiratory capacity decreased significantly at the end of the tests in the COPD group. Ventilatory demand and DH were higher (p<0.05) in the TSHELF than in the TSHELF–M in the COPD group (p<0.05). There were no differences in DH between the three tests in the control group (p>0.05) and ventilatory demand increased at the end of the tests (p<0.05) but to a lower extent than the COPD group. Conclusion The TSHELF induces similar ventilatory responses to the Glittre-ADL test in COPD patients with higher ventilatory demand and DH. In contrast, the ventilatory response was attenuated in the TSHELF-M, suggesting that squatting and bending down during the Glittre-ADL test could trigger significant ventilatory overload. PMID:27333482

  2. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jinsong; Wang Huali; Yu Hanqing

    2007-10-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes upmore » and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels.« less

  3. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    PubMed

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2  = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization. Copyright © 2017 the American Physiological Society.

  4. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia

    PubMed Central

    Arbogast, Tara E.; Moya, Esteban A.; Fu, Zhenxing; Powell, Frank L.

    2017-01-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization. PMID:28100653

  5. Ibuprofen does not reverse ventilatory acclimatization to chronic hypoxia.

    PubMed

    De La Zerda, D J; Stokes, J A; Do, J; Go, A; Fu, Z; Powell, F L

    2017-07-27

    Ventilatory acclimatization to hypoxia involves an increase in the acute hypoxic ventilatory response that is blocked by non-steroidal anti-inflammatory drugs administered during sustained hypoxia. We tested the hypothesis that inflammatory signals are necessary to sustain ventilatory acclimatization to hypoxia once it is established. Adult, rats were acclimatized to normoxia or chronic hypoxia (CH, [Formula: see text] =70Torr) for 11-12days and treated with ibuprofen or saline for the last 2days of hypoxia. Ventilation, metabolic rate, and arterial blood gas responses to O 2 and CO 2 were not affected by ibuprofen after acclimatization had been established. Immunohistochemistry and image analysis showed acute (1h) hypoxia activated microglia in a medullary respiratory center (nucleus tractus solitarius, NTS) and this was blocked by ibuprofen administered from the beginning of hypoxic exposure. Microglia returned to the control state after 7days of CH and were not affected by ibuprofen administered for 2 more days of CH. In contrast, NTS astrocytes were activated by CH but not acute hypoxia and activation was not reversed by administering ibuprofen for the last 2days of CH. Hence, ibuprofen cannot reverse ventilatory acclimatization or astrocyte activation after they have been established by sustained hypoxia. The results are consistent with a model for microglia activation or other ibuprofen-sensitive processes being necessary for the induction but not maintenance of ventilatory acclimatization to hypoxia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Selenium requirement of shrimp Penaeus chinensis

    NASA Astrophysics Data System (ADS)

    Tian, Yuchuan; Liu, Fayi

    1993-09-01

    Penaeus chinensis were reared in fibreglass tanks for the study of their selenium requirements. The shrimp were fed semipurified diets containing graded levels of selenium, and weight gains, activities of glutatione peroxidase (GSH-Px) and selenium contents in muscle and hepatopancreas were determined. Weight gain and GSH-Px activity were the highest when the shrimp were fed diet containing 20 mg/kg selenium. Good linear correlation was found between GSH-Px activities and selenium contents in the diets, and the number of healthy shrimp. The experiment showed that 20 mg/kg selenium in the diet is optimal for the shrimp and that GSH-Px activity can be an important biochemical index of the selenium nutrition status of the animal.

  7. Early life sensory ability-ventilatory responses of thornback ray embryos (Raja clavata) to predator-type electric fields.

    PubMed

    Ball, Rachel Emma; Oliver, Matthew Kenneth; Gill, Andrew Bruce

    2016-07-01

    Predator avoidance is fundamental for survival and it can be particularly challenging for prey animals if physical movement away from a predatory threat is restricted. Many sharks and rays begin life within an egg capsule that is attached to the sea bed. The vulnerability of this sedentary life stage is exacerbated in skates (Rajidae) as the compulsory ventilatory activity of embryos makes them conspicuous to potential predators. Embryos can reduce this risk by mediating ventilatory activity if they detect the presence of a predator using an acute electrosense. To determine how early in embryonic life predator elicited behavioral responses can occur, the reactions of three different age groups (1/3 developed, 2/3 developed, and near hatching) of embryonic thornback rays Raja clavata were tested using predator-type electric field stimuli. Egg capsules were exposed to continuous or intermittent stimuli in order to assess varying predator-type encounter scenarios on the ventilatory behavior of different developmental stages. All embryos reacted with a "freeze response" following initial electric field (E-field) exposure, ceasing ventilatory behavior in response to predator presence, demonstrating electroreceptive functionality for the first time at the earliest possible stage in ontogeny. This ability coincided with the onset of egg ventilatory behavior and may represent an effective means to enhance survival. A continuous application of stimuli over time revealed that embryos can adapt their behavior and resume normal activity, whereas when presented intermittently, the E-field resulted in a significant reduction in overall ventilatory activity across all ages. Recovery from stimuli was significantly quicker in older embryos, potentially indicative of the trade-off between avoiding predation and adequate respiration. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 721-729, 2016. © 2015 Wiley Periodicals, Inc.

  8. Selenium-Enriched Foods Are More Effective at Increasing Glutathione Peroxidase (GPx) Activity Compared with Selenomethionine: A Meta-Analysis

    PubMed Central

    Bermingham, Emma N.; Hesketh, John E.; Sinclair, Bruce R.; Koolaard, John P.; Roy, Nicole C.

    2014-01-01

    Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity. PMID:25268836

  9. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs12

    PubMed Central

    Sunde, Roger A; Li, Jin-Long; Taylor, Rachel M

    2016-01-01

    To gain insights into nutrient biomarkers and setting of dietary nutrient requirements, selenium biomarker levels and requirements in response to multiple graded levels of dietary selenium were compared between day-old turkeys and chickens versus weanling rats and mice and 2-d-old lambs supplemented with sodium selenite. In rodents, there was no significant effect of dietary selenium on growth, indicating that the minimum selenium requirement was <0.007 μg Se/g diet. In contrast, there was a significant effect in turkeys, chicks, and lambs, which showed selenium requirements for growth of 0.05, 0.025, and 0.05 μg Se/g diet, respectively. Liver glutathione peroxidase (GPX) 1 activity fell in all species to <4% of selenium-adequate levels, plasma GPX3 activity fell to <3% in all species except for mice, and liver GPX4 activity fell to <10% in avians but only to ∼50% of selenium-adequate levels in rodents. Selenium-response curves for these biomarkers reached well-defined plateaus with increasing selenium supplementation in all species, collectively indicating minimum selenium requirements of 0.06–0.10 μg Se/g for rats, mice, and lambs but 0.10–0.13 μg Se/g for chicks and 0.23–0.33 μg Se/g for turkeys. In contrast, increasing dietary selenium did not result in well-defined plateaus for erythrocyte GPX1 activity and liver selenium in most species. Selenium-response curves for GPX1 mRNA for rodents and avians had well-defined plateaus and similar breakpoints. GPX4 mRNA was not significantly regulated by dietary selenium in rodents, but GPX4 mRNA in avians decreased in selenium deficiency to ∼35% of selenium-adequate plateau levels. Notably, no selenoprotein activities or mRNA were effective biomarkers for supernutritional selenium status. Robust biomarkers, such as liver GPX1 and plasma GPX3 activity for selenium, should be specific for the nutrient, fall dramatically in deficiency, and reach well-defined plateaus. Differences in biomarker-response curves may help researchers better understand nutrient metabolism and targeting of tissues in deficiency, thus to better characterize requirements. PMID:28140330

  10. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs.

    PubMed

    Sunde, Roger A; Li, Jin-Long; Taylor, Rachel M

    2016-11-01

    To gain insights into nutrient biomarkers and setting of dietary nutrient requirements, selenium biomarker levels and requirements in response to multiple graded levels of dietary selenium were compared between day-old turkeys and chickens versus weanling rats and mice and 2-d-old lambs supplemented with sodium selenite. In rodents, there was no significant effect of dietary selenium on growth, indicating that the minimum selenium requirement was <0.007 μg Se/g diet. In contrast, there was a significant effect in turkeys, chicks, and lambs, which showed selenium requirements for growth of 0.05, 0.025, and 0.05 μg Se/g diet, respectively. Liver glutathione peroxidase (GPX) 1 activity fell in all species to <4% of selenium-adequate levels, plasma GPX3 activity fell to <3% in all species except for mice, and liver GPX4 activity fell to <10% in avians but only to ∼50% of selenium-adequate levels in rodents. Selenium-response curves for these biomarkers reached well-defined plateaus with increasing selenium supplementation in all species, collectively indicating minimum selenium requirements of 0.06-0.10 μg Se/g for rats, mice, and lambs but 0.10-0.13 μg Se/g for chicks and 0.23-0.33 μg Se/g for turkeys. In contrast, increasing dietary selenium did not result in well-defined plateaus for erythrocyte GPX1 activity and liver selenium in most species. Selenium-response curves for GPX1 mRNA for rodents and avians had well-defined plateaus and similar breakpoints. GPX4 mRNA was not significantly regulated by dietary selenium in rodents, but GPX4 mRNA in avians decreased in selenium deficiency to ∼35% of selenium-adequate plateau levels. Notably, no selenoprotein activities or mRNA were effective biomarkers for supernutritional selenium status. Robust biomarkers, such as liver GPX1 and plasma GPX3 activity for selenium, should be specific for the nutrient, fall dramatically in deficiency, and reach well-defined plateaus. Differences in biomarker-response curves may help researchers better understand nutrient metabolism and targeting of tissues in deficiency, thus to better characterize requirements. © 2016 American Society for Nutrition.

  11. Ventilatory effects of substance P, vasoactive intestinal peptide, and nitroprusside in humans.

    PubMed

    Maxwell, D L; Fuller, R W; Dixon, C M; Cuss, F M; Barnes, P J

    1990-01-01

    Animal studies suggest that the neuropeptides, substance P and vasoactive intestinal peptide (VIP), may influence carotid body chemoreceptor activity and that substance P may take part in the carotid body response to hypoxia. The effects of these peptides on resting ventilation and on ventilatory responses to hypoxia and to hypercapnia have been investigated in six normal humans. Infusions of substance P (1 pmol.kg-1.min-1) and of VIP (6 pmol.kg-1.min-1) were compared with placebo and with nitroprusside (5 micrograms.kg-1.min-1) as a control for the hypotensive action of the peptides. Both peptides caused significantly less hypotension than nitroprusside. Substance P and nitroprusside caused significantly greater increases in ventilation and in the hypoxic ventilatory response than VIP. No changes were seen in hypercapnic sensitivity. The stimulation of ventilation and the differential effects on ventilatory chemosensitivity that accompanied hypotension are consistent either with stimulation of carotid body chemoreceptor activity or with an interaction with peripheral chemoreceptor input to the respiratory center, as is seen in animals. The similar cardiovascular but different ventilatory effects of the peptides suggest that substance P may also stimulate the carotid body in a manner independent of the effect of hypotension. This is consistent with a role of substance P in the hypoxic ventilatory response in humans.

  12. Mechanism of bio molecule stabilized selenium nanoparticles against oxidation process and Clostridium Botulinum.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-02-01

    The bio molecules from plant leaf extract utilized in the preparation of selenium material at the nano scale. The selenium ion was reduced to selenium nanoparticles in the presence of molecule residue of the plant leaf extract. The bio molecule stabilized selenium nanoparticles were grown gradually in the reaction mixture. The selenium nanoparticles were characterized using atomic absorption spectroscopy, fourier transform inferred spectroscopy, X-ray diffraction, scanning electronic microscope and transmission electronic microscope. The selenium nanoparticles were synthesized successfully as the nano-crystalline pure hexagonal phase and the size range of 26-41 nm with spherical in shape. The activity and mechanism of nanoparticles suggested that the selenium nanoparticles are causes of leakage of reducing sugars and protein of pathogens membrane cell. The selenium nano are responsible for death and fully inhibited the microbial growth of pathogen. The bio molecule stabilized selenium nanoparticles were also investigated for the antioxidant agent. Selenium nanoparticles showed scavenging activity up to 94.48%. These results recommended that the advantages of using this method for synthesis of selenium nanoparticles with excellent antioxidant and antimicrobial mechanism and activity, which can be used as the antioxidant and antibiotic agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.

    2002-01-01

    In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.

  14. Effect of chemical form of selenium on tissue glutathione peroxidase activity in developing rats

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Strength, Ralph; Johnson, Janet; White, Marguerite T.

    1991-01-01

    The hypothesis that the stage of development of rats may affect the availability of various forms of selenium for the activity of glutathione peroxidase (GSHPx) in the rat was experimentally investigated. One experiment evaluated the availability of selenium as selenite or selenomethionine for GSPHx activity during three developmental states in rats: fetus and 7-day old and 14-day old nursing pups. In all tissues studied, GSHPx activity was highest in the 14-day-old pups whose dams were in the selenomethionine group. Rat pups given intraperitoneal selenite had higher liver and kidney GSHPx activity than pups given the same amount of selenium as intraperitoneal selenomethionine. In a second experiment, all dams were fed the same basal diet and pups were weaned to diets containing one of two levels of selenium and one of three forms of selenium (selenite, selenomethionine, or selenocystine). The results also supported the hypothesis these dietary forms of selenium are differentially available for GSHPx activity.

  15. Deficient selenium status of a healthy adult Spanish population.

    PubMed

    Millán Adame, E; Florea, D; Sáez Pérez, L; Molina López, J; López-González, B; Pérez de la Cruz, A; Planells del Pozo, E

    2012-01-01

    Selenium is an essential micronutrient for human health, being a cofactor for enzymes with antioxidant activity that protect the organism from oxidative damage. An inadequate intake of this mineral has been associated with the onset and progression of chronic diseases such as hypertension, diabetes, coronary diseases, asthma, and cancer. For this reason, knowledge of the plasma and erythrocyte selenium levels of a population makes a relevant contribution to assessment of its nutritional status. The objective of the present study was to determine the nutritional status of selenium and risk of selenium deficiency in a healthy adult population in Spain by examining food and nutrient intake and analyzing biochemical parameters related to selenium metabolism, including plasma and erythrocyte levels and selenium-dependent glutathione peroxidase (GPx) enzymatic activity. We studied 84 healthy adults (31 males and 53 females) from the province of Granada, determining their plasma and erythrocyte selenium concentrations and the association of these levels with the enzymatic activity of glutathione peroxidase (GPx) and with life style factors. We also gathered data on their food and nutrient intake and the results of biochemical analyses. Correlations were studied among all of these variables. The mean plasma selenium concentration was 76.6 ± 17.3 μg/L (87.3 ± 17.4 μg/L in males, 67.3 ± 10.7 μg/L in females), whereas the mean erythrocyte selenium concentration was 104.6 μg/L (107.9 ± 26.1 μg/L in males and 101.7 ± 21.7 μg/L in females). The nutritional status of selenium was defined by the plasma concentration required to reach maximum GPx activity, establishing 90 μg/L as reference value. According to this criterion, 50% of the men and 53% of the women were selenium deficient. Selenium is subjected to multiple regulation mechanisms. Erythrocyte selenium is a good marker of longer term selenium status, while plasma selenium appears to be a marker of short-term nutritional status. The present findings indicate a positive correlation between plasma selenium concentration and the practice of physical activity. Bioavailability studies are required to establish appropriate reference levels of this mineral for the Spanish population.

  16. Ventilatory responses to acute and chronic hypoxia are altered in female but not male Paskin-deficient mice.

    PubMed

    Soliz, Jorge; Soulage, Christophe; Borter, Emanuela; van Patot, Martha Tissot; Gassmann, Max

    2008-08-01

    Proteins harboring a Per-Arnt-Sim (PAS) domain are versatile and allow archaea, bacteria, and plants to sense oxygen partial pressure, as well as light intensity and redox potential. A PAS domain associated with a histidine kinase domain is found in FixL, the oxygen sensor molecule of Rhizobium species. PASKIN is the mammalian homolog of FixL, but its function is far from being understood. Using whole body plethysmography, we evaluated the ventilatory response to acute and chronic hypoxia of homozygous deficient male and female PASKIN mice (Paskin-/-). Although only slight ventilatory differences were found in males, female Paskin-/- mice increased ventilatory response to acute hypoxia. Unexpectedly, females had an impaired ability to reach ventilatory acclimatization in response to chronic hypoxia. Central control of ventilation occurs in the brain stem respiratory centers and is modulated by catecholamines via tyrosine hydroxylase (TH) activity. We observed that TH activity was altered in male and female Paskin-/- mice. Peripheral chemoreceptor effects on ventilation were evaluated by exposing animals to hyperoxia (Dejours test) and domperidone, a peripheral ventilatory stimulant drug directly affecting the carotid sinus nerve discharge. Male and female Paskin-/- had normal peripheral chemosensory (carotid bodies) responses. In summary, our observations suggest that PASKIN is involved in the central control of hypoxic ventilation, modulating ventilation in a gender-dependent manner.

  17. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome.

    PubMed

    Spicuzza, Lucia; Bernardi, Luciano; Balsamo, Rossella; Ciancio, Nicola; Polosa, Riccardo; Di Maria, Giuseppe

    2006-09-01

    The increase in peripheral chemoreflex sensitivity in patients with obstructive sleep apnea (OSA) is associated with activation of autonomic nervous system and hemodynamic responses. Nasal CPAP (nCPAP) is an effective treatment for OSA, but little is known on its effect on chemoreflex sensitivity. To assess the effect of nCPAP treatment or placebo (sham nCPAP) on ventilatory control in patients with OSA. Sleep laboratory of Azienda Ospedaliera Garibaldi. Twenty-five patients with moderate-to-severe OSA. Patients were randomly assigned to either therapeutic nCPAP (use of optimal pressure, n = 15) or sham nCPAP (suboptimal pressure of 1 to 2 cm H2O, n = 10) in a double-blind fashion and treated for 1 month. A rebreathing test to assess ventilatory response to normocapnic hypoxia and normoxic hypercapnia was performed at basal condition and after 1 month of treatment. The use of therapeutic nCPAP or sham nCPAP did not affect daytime percentage of arterial oxygen saturation (SaO2%) or end-tidal P(CO2). The normocapnic hypoxic ventilatory response was reduced after 1 month of treatment with nCPAP (the slope was 1.08 +/- 0.02 L/min/SaO2% at basal condition and 0.53 +/- 0.07 L/min/SaO2% after 1 month of treatment, p = 0.008) [mean +/- SD], but not in patients treated with sham nCPAP (slope, 0.83 +/- 0.09 L/min/SaO2% and 0.85 +/- 0.19 L/min/SaO2% at basal condition and after 1 month, respectively). The normoxic hypercapnic ventilatory response remained unchanged after 1 month in both groups. No changes in ventilatory response to either hypoxia or hypercapnia were observed after a single night of nCPAP treatment. The ventilatory response to hypoxia is reduced during regular treatment, but not after short-term treatment, with nCPAP. Readjusted peripheral oxygen chemosensitivity during nCPAP treatment may be a side effect of both reduced sympathetic activity and increased baroreflex activity, or a possible continuous positive airway pressure-related mechanism leading to a reduced activation of autonomic nervous system per se.

  18. Arousal from sleep does not lead to reduced dilator muscle activity or elevated upper airway resistance on return to sleep in healthy individuals.

    PubMed

    Jordan, Amy S; Cori, Jennifer M; Dawson, Andrew; Nicholas, Christian L; O'Donoghue, Fergal J; Catcheside, Peter G; Eckert, Danny J; McEvoy, R Doug; Trinder, John

    2015-01-01

    To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Observational study. Two sleep physiology laboratories. 35 men and 25 women with no medical or sleep disorders. Auditory tones to induce 3-s to 15-s cortical arousals from sleep. During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7±0.4 and 5.5±0.3 L/min, peak genioglossus activity 3.4%±1.0% and 4.8%±1.0% maximum, upper airway resistance 4.7±0.7 and 5.5±1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. © 2014 Associated Professional Sleep Societies, LLC.

  19. Features of selenium metabolism in humans living under the conditions of North European Russia.

    PubMed

    Parshukova, Olga; Potolitsyna, Natalya; Shadrina, Vera; Chernykh, Aleksei; Bojko, Evgeny

    2014-08-01

    Selenium supplementation and its effects on Northerners have been little studied. The aim of our study was to assess the selenium levels of the inhabitants of North European Russia, the seasonal aspects of selenium supplementation, and the interrelationships between selenium levels and the levels of thyroid gland hormones. To study the particular features of selenium metabolism in Northerners over the course of 1 year, 19 healthy male Caucasian volunteers (18-21 years old) were recruited for the present study. The subjects were military guards in a Northern European region of Russia (Syktyvkar, Russia, 62°N latitude) who spent 6-10-h outdoors daily. The study was conducted over a 12-month period. Selenium levels, glutathione peroxidase (GP) activity, as well as total triiodothyronine (T3), total thyroxin (T4), free thyroxin, free triiodothyronine, and thyrotropin (TSH) levels, were determined in the blood serum. The study subjects showed low levels of plasma selenium throughout the year. We observed a noticeable decrease in plasma selenium levels during the period from May to August, with the lowest levels in July. Selenium levels in the military guards correlated with the levels of selenium-dependent GP enzyme activity throughout the year. Additionally, we demonstrated a significant correlation between selenium and pituitary-thyroid axis hormones (total T3, free T4, and TSH) in periods in which plasma selenium levels were lower than the established normal ranges. Over the course of 1 year, low levels of plasma selenium affect GP activity and thyroid hormone levels in humans living in North European Russia.

  20. Respiratory symptoms and ventilatory performance in workers exposed to grain and grain based food dusts.

    PubMed

    Deacon, S P; Paddle, G M

    1998-05-01

    A health surveillance study of male grain food manufacturing workers used a respiratory health questionnaire and spirometry to assess the prevalence of work-related respiratory symptoms and impaired ventilatory performance. The prevalence of cough, breathlessness, wheeze and chest tightness was between 8-13% but was 20% for rhinitis. Rhinitis was the most common symptom with 37% of those reporting rhinitis describing this as work-related. A case-control analysis of workers reporting rhinitis did not identify any specific occupational activities associated with increased risk of rhinitis. Smoking habit and all respiratory symptoms apart from rhinitis had a significant effect upon ventilatory performance. Occupational exposure to raw grains, flour, ingredients and finished food was categorized as high, medium or low in either continuous or intermediate patterns. Multiple regression analysis confirmed the effects of height, age and smoking upon ventilatory performance. However, occupational exposure to grain, flour, food ingredients and cooked food dusts had no effect upon ventilatory performance. It is concluded that smoking habit is the major determinant of respiratory symptoms and impaired ventilatory function. The excess complaints of rhinitis warrant further study but it would appear that the current occupational exposure limits for grain, flour, food ingredients and cooked food dusts are adequate to protect workers against impairment of ventilatory performance.

  1. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium.

    PubMed

    Bachiega, Patricia; Salgado, Jocelem Mastrodi; de Carvalho, João Ernesto; Ruiz, Ana Lúcia T G; Schwarz, Kélin; Tezotto, Tiago; Morzelle, Maressa Caldeira

    2016-01-01

    In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    PubMed

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  3. Alcohol, gestation and breastfeeding: selenium as an antioxidant therapy.

    PubMed

    Ojeda, Ma Luisa; Nogales, Fatima; Vázquez, Beatriz; Delgado, Ma José; Murillo, Ma Luisa; Carreras, Olimpia

    2009-01-01

    The aim of this paper is to study the relationship between alcohol, selenium and oxidative stress in breastfeeding rat pups exposed to ethanol during gestation and lactation. We have also studied how a Se-supplemented diet among mothers could prevent different oxidative liver disorders in the pups. Pups of 21 days were randomized into four groups: control group (C), alcohol group (A), alcohol selenium group (AS) and control selenium group (CS). Alcohol was supplied to their mothers for 13 weeks (induction, reproduction, gestation and lactation periods). The selenium-supplemented diet contained 0.5 ppm as selenite. We determined serum and liver selenium by graphite-furnace atomic absorption spectrometry. We measured antioxidant enzyme activities: glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD); and lipid peroxidation (TBARS) and protein carbonyl (PC) by a spectrophotometric method in the liver. In the liver of pups, exposure to ethanol provoked a decrease in selenium and GPx activity and an increase in GR and CAT activity, as well as in carbonyl groups in protein. A pups had higher Se levels and GPx activity in serum than C pups. Administering Se with alcohol balances the activities of scavenging enzymes and reduces peroxidation protein products. These results suggest that selenium could be effective in neutralizing the damage of ethanol consumption during gestation and lactation in pups since it repairs selenium levels in liver as well as the activity of scavenging enzymes and peroxidation protein products. In serum, Se also recovers GPx activity and increases the levels of Se that are available to other organs.

  4. Association of selenium status and blood glutathione concentrations in blacks and whites

    PubMed Central

    Richie, John P.; Muscat, Joshua E.; Ellison, Irina; Calcagnotto, Ana; Kleinman, Wayne; El-Bayoumy, Karam

    2011-01-01

    Selenium deficiency has been linked with increased cancer risk and, in some studies, selenium supplementation was protective against certain cancers. Previous studies suggest that selenium chemoprevention may involve reduced oxidative stress through enhanced glutathione (GSH). Our objectives were to examine the relationships between selenium and GSH in blood and modifying effects of race and sex in free living adults and individuals supplemented with selenium. Plasma selenium concentrations and free and bound GSH concentrations and γ-glutamyl cysteine ligase (GCL) activity in blood were measured in 336 healthy adults, (161 blacks, 175 whites). Plasma selenium and blood GSH were also measured in 36 healthy men from our previously conducted placebo-controlled trial of selenium-enriched yeast (247 μg/day for 9 months). In free-living adults, selenium concentrations were associated with increased blood GSH concentration and GCL activity (P<0.05). Further, selenium was significantly higher in whites than in blacks (P<0.01). After 9 months of supplementation, plasma selenium was increased 114% in whites and 50% in blacks (P<0.05) and blood GSH was increased 35% in whites (P<0.05) but was unchanged in blacks. These results indicate a direct association between selenium and GSH in blood of both free-living and selenium-supplemented individuals, with race being an important modifying factor. PMID:21462082

  5. Plasma and erythrocyte glutathione peroxidase activity, serum selenium concentration, and plasma total antioxidant capacity in cats with IRIS stages I-IV chronic kidney disease.

    PubMed

    Krofič Žel, M; Tozon, N; Nemec Svete, A

    2014-01-01

    Serum selenium concentrations and the activity of plasma glutathione peroxidase (GPx) decrease with the progression of chronic kidney disease (CKD) in human patients. Selenium is considered a limiting factor for plasma GPx synthesis. Plasma total antioxidant capacity (TAC) is decreased in CKD cats in comparison to healthy cats. Serum selenium concentrations and plasma and erythrocyte GPx activity in cats with CKD are lower than in healthy cats. Serum selenium concentrations, the activity of enzymes, and plasma TAC progressively decrease with the progression of kidney disease according to IRIS (International Renal Interest Society) classification. Twenty-six client-owned cats in IRIS stages I-IV of CKD were compared with 19 client-owned healthy cats. A CBC, serum biochemical profile, urinalysis, plasma and erythrocyte GPx activity, serum selenium concentration, and plasma TAC were measured in each cat. Cats in IRIS stage IV CKD had a significantly higher (P = .025) activity of plasma GPx (23.44 ± 6.28 U/mL) than cats in the control group (17.51 ± 3.75 U/mL). There were no significant differences in erythrocyte GPx, serum selenium concentration, and plasma TAC, either among IRIS stages I-IV CKD cats or between CKD cats and healthy cats. Erythrocyte GPx activity, serum selenium concentration, and plasma TAC do not change in CKD cats compared with healthy cats. Selenium is not a limiting factor in feline CKD. Increased plasma GPx activity in cats with stage IV CKD suggests induction of antioxidant defense mechanisms. Antioxidant defense systems might not be exhausted in CKD in cats. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  6. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  7. [Effects of organic selenium supplement on glutathione peroxidase activities: a meta-analysis of randomized controlled trials].

    PubMed

    Jiang, Xia; Dong, Jiayi; Wang, Bo; Yin, Xuebin; Qin, Liqiang

    2012-01-01

    To study the effects of organic selenium supplementation on glutathione peroxidase (GPx) activities. Randomized controlled trials (RCT) published from January 1988 to December 2010 on the relationship between organic selenium supplementation and GPx activities were collected. Meta-analysis was applied to estimate the combined standardized mean difference (SMD) and 95% confidence interval (95% CI). A total of 10 RCTs were included. The number of studies observing GPx activities in plasma, erythrocyte and platelet was 8, 5 and 5, respectively. Compared with the controls, the combined SMD (95% CI) of GPx activities in plasma, erythrocyte and platelet of subjects supplemented with organic selenium was 0.46 (0.09 - 0.83), 0.36 (0.02 - 0.69) and 0.56 (-0.02 - 1.15). Supplementation with organic selenium increases GPx activities in healthy adults.

  8. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].

    PubMed

    Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu

    2004-03-01

    To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.

  9. The influence of chronic hypoxia upon chemoreception

    PubMed Central

    Powell, Frank L.

    2007-01-01

    Carotid body chemoreceptors are essential for time-dependent changes in ventilatory control during chronic hypoxia. Early theories of ventilatory acclimatization to hypoxia focused on time-dependent changes in known ventilatory stimuli, such as small changes in arterial pH that may play a significant role in some species. However, plasticity in the cellular and molecular mechanisms of carotid body chemoreception play a major role in ventilatory acclimatization to hypoxia in all species studied. Chronic hypoxia causes changes in (a) ion channels (potassium, sodium, calcium) to increase glomus cell excitability, and (b) neurotransmitters (dopamine, acetylcholine, ATP) and neuromodulators (endothelin-1) to increase carotid body afferent activity for a given PO2 and optimize O2-sensitivity. O2-sensing heme-containing molecules in the carotid body have not been studied in chronic hypoxia. Plasticity in medullary respiratory centers processing carotid body afferent input also contributes to ventilatory acclimatization to hypoxia. It is not known if the same mechanisms occur in patients with chronic hypoxemia from lung disease or high altitude natives. PMID:17291837

  10. Blockade of phosphodiesterase 4 reverses morphine-induced ventilatory disturbance without loss of analgesia.

    PubMed

    Kimura, Satoko; Ohi, Yoshiaki; Haji, Akira

    2015-04-15

    Ventilatory disturbance is a fatal side-effect of opioid analgesics. Separation of analgesia from ventilatory depression is important for therapeutic use of opioids. It has been suggested that opioid-induced ventilatory depression results from a decrease in adenosine 3',5'-cyclic monophosphate content in the respiratory-related neurons. Therefore, we examined the effects of caffeine, a methylxanthine non-selective phosphodiesterase (PDE) inhibitor with adenosine antagonistic activity, and rolipram, a racetam selective PDE4 inhibitor, on ventilatory depression induced by morphine. Spontaneous ventilation and paw withdrawal responses to nociceptive thermal stimulation were measured in anesthetized rats simultaneously. The efferent discharge of the phrenic nerve was recorded in anesthetized, vagotomized, paralyzed and artificially ventilated rats. Rolipram (0.1 and 0.3 mg/kg, i.v.) and caffeine (3.0 and 10.0 mg/kg, i.v.) relieved morphine (1.0 mg/kg, i.v.)-induced ventilatory depression but had no discernible effect on its analgesic action. Rolipram (0.3 and 1.0 mg/kg, i.v.) and caffeine (10.0 and 20.0 mg/kg, i.v.) recovered morphine (3.0 mg/kg, i.v.)-induced prolongation and flattening of inspiratory discharge in the phrenic nerve. Inhibition of PDE4 may be a possible approach for overcoming morphine-induced ventilatory depression without loss of analgesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    PubMed Central

    Nicastro, Holly L.; Dunn, Barbara K.

    2013-01-01

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention. PMID:23552052

  12. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  13. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis*

    PubMed Central

    Nelson, Shakira M.; Shay, Ashley E.; James, Jamaal L.; Carlson, Bradley A.; Urban, Joseph F.; Prabhu, K. Sandeep

    2016-01-01

    The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trspfl/flCreWT mice that express selenoproteins driven by tRNASec (Trsp), whereas N. brasiliensis-infected Trspfl/flCreLysM selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ12-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses. PMID:26644468

  14. Ventilatory and cardiometabolic responses to unilateral sanding in elderly women with ischemic heart disease: a pilot study.

    PubMed

    Muraki, T; Kujime, K; Kaneko, T; Su, M; Ueba, Y

    1991-08-01

    This study was undertaken to investigate how 8 elderly women with ischemic heart disease would respond to a unilateral sanding activity. Three ventilatory measures-expiratory tidal volume, respiratory rate, and expiratory volume--and four cardiometabolic measures--metabolic equivalent, systolic blood pressure, heart rate, and pressure rate product--were continuously recorded during the sanding activity. The two independent variables were angle of the sanding board and sanding velocity. The activity was graded to yield five conditions: (a) sitting at rest; (b) 0 degrees at 15 cycles per min (cpm); (c) 0 degrees at 30 cpm; (d) 15 degrees at 15 cpm; and (e) 15 degrees at 30 cpm. The findings indicated that increasing the angle of the board while holding the velocity constant did not always increase the mean values of the ventilatory and cardiometabolic measures. However, increasing the velocity while holding the angle constant always increased the mean values of the dependent variables. The data also indicated that the metabolic equivalent reached during the sanding activity was no greater than 2, which corresponds to a light activity, such as playing a musical instrument. Replication of the study with a larger sample size may further elucidate the behavior of these two functions during a graded sanding activity. In the present study, a unilateral sanding activity by elderly patients with cardiac impairment was shown to provide valuable data on ventilatory and cardiometabolic functions. The study also demonstrated that a unilateral sanding activity can be safely used as a graded activity in occupational therapy for the cardiac rehabilitation of elderly women.

  15. Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats.

    PubMed

    Taylor, Natalie C; Li, Aihua; Nattie, Eugene E

    2005-07-15

    Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT1A) agonist (R)-(+)-8-hydroxy-2(di-n-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mM DPAT into the MRR significantly decreased absolute ventilation values(VE) during 7% CO2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (VT) and not in frequency (f), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mM) changed room air breathing pattern by increasing f and decreasing VT. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mM DPAT into the MRR did not change the ventilatory response to 10% O2. Additionally, 10 and 30 mM DPAT MRR microdialysis decreased body temperature, and 30 mM DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT1A receptors are also involved in thermoregulation and arousal.

  16. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice.

    PubMed

    Dong, Ruixia; Wang, Dongxu; Wang, Xiaoxiao; Zhang, Ke; Chen, Pingping; Yang, Chung S; Zhang, Jinsong

    2016-12-01

    Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. [Assessment of efficiency of use of the developed supplement containing selenium on laboratory animals].

    PubMed

    Bazhenova, B A; Aslaliev, A D; Danilov, M B; Badmaeva, T M; Vtorushina, I A

    2015-01-01

    The article presents the results of a study of the effectiveness of wheat flour containing selenium in organic form. The organic form of trace element was achieved by transformation of selenium in selenium-methionine (Se-Met) at germination of wheat grains, moistened with a solution of sodium selenite. To determine the effectiveness of selenium- containing supplements experimental investigations were carried out on Long white rats with initial body weight 50 ± 2 g. The duration of the experiment was 30 days. The research model included four groups of animals: control group--animals were fed a complete vivarium diet; group 1--a model of selenium deficiency, which was achieved by feeding selenium-deficient food (grain growh in the Chita region of the Trans-Baikal Territory Zabaikalsky Krai); group 2--animals were administered selenium supplement in the form of enriched flour (0.025 µg Se per 50 g body weight of the animal) on the background of selenium-deficient diet; group 3--animals were treated with a high dose of selenium in the form of a solution of sodium selenite intragastrically through a tube (0.15 µg Se per 50 g body weight). Selenium-containing additive on the background of selenium-deficient diet had a positive impact on the appearance and behavior of animals, the body weight gain per head after 10 days in group 2 amounted to 47.9 g that was 4 fold larger than in rats of group 1. The study of selenium content showed that in the blood, liver, lungs and heart of rats treated with the additive on the background of selenium-deficient diet (group 2), selenium level did not differ from those in the control group and was within physiological norms. The experiment showed that selenium deficiency and rich in selenium rich diet has a significantly different effect on the studied parameters of oxidative-antioxidative status. The activity of blood glutathione peroxidase in animals of group 2 (did not differ from that in group 3) was almost 2 fold higher than in blood of control animals and was seven fold higher than that in blood of animals kept on selenium deficient diet (35.57 ± 3.36 µmol/g per 1 min) A similar dependence was established when studying the activity of glutathione reductase. It has been revealed thatthe oxidative-antioxidative status of animals from experimental groups 1 and 3 was lower than from control group and group 2. Thus, blood antioxidant activity in animals receiving diet with selenium deficiency and high dose of this trace element, was less than in the control group by 43.1 and 25.4%, respectively. Liver MDA level in animals kept on a diet with selenium deficiency exceeded the value of this indicator in the group 2 more than 1.5 fold (110.5 ± 10.70 vs. 72.5 ± 4.30 nmol/mg). When using selenium-containing supplement, this parameter decreased to the control level. In blood plasma of the animals of group 2 total antioxidant activity increased by about five times as compared with the indicators of animals kept on selenium-deficient diet, and was 25% higher than in control. Thus, the introduction of a selenium supplements in the deficient diet contributes to the development of endogenous antioxidants that suppress lipid oxidation. High biological effectiveness of supplements containing organic form of selenium has been proved.

  18. Selenium nanoparticles: potential in cancer gene and drug delivery.

    PubMed

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  19. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  20. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    PubMed Central

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability. PMID:24746049

  1. Investigations into effects on performance and glutathione peroxidase activity in broilers when increasing selenium contents of complete diets appropriate to animals' selenium requirements by adding different selenium compounds (organic vs. inorganic).

    PubMed

    Salman, Mustafa; Muğlali, Omer Hakan; Selçuk, Zehra

    2009-06-01

    The aim of this study was to compare the effects of inorganic and organic selenium compounds supplementations to diets containing adequate selenium in broilers on performance, carcass traits, plasma and tissue glutathione peroxidase activity. A total of 150 one-day-old broilers were randomized into one control and two treatment groups each containing 50 birds; each group was then divided into 3 replicate groups. The experiment lasted 42 days. All groups were fed with broiler starter diet from day 1 to 21 and finisher diet from day 22 to 42. The basal diet for control group included adequate selenium due to vitamin-mineral premix and feeds. The basal diet was supplemented with 0.2 mg/kg organic selenium (selenomethionine, treatment group 1) and 0.2 mg/kg inorganic selenium (sodium selenite, treatment group 2). Although no significant differences were determined between treatment group 1 and the control group for mean body weights, the differences between the group given inorganic selenium and the other groups were statistically significant (p < 0.01). There was no significant difference between control and treatment groups with regard to mean feed intake and feed efficiency. The dressing percentages of the second treatment group were found to be lower than the first treatment group. Treatment groups were observed to have increased levels of glutathione peroxidase in plasma (p <0.01), kidney (p < 0.05), femoral muscle (p < 0.05), heart (p < 0.01) and liver tissue (p < 0.01) compared with the control group. Results of this study indicated that the supplementation of organic selenium to diets containing adequate selenium increased plasma, liver, femoral muscle, kidney and heart tissue glutathione peroxidase activity in broilers.

  2. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  3. Selenium Status in Patients with Turner Syndrome: a Biochemical Assessment Related with Body Composition.

    PubMed

    Pires, Liliane Viana; Siviero-Miachon, Adriana Aparecida; Spinola-Castro, Angela Maria; Pimentel, José Alexandre Coelho; Nishimura, Luciana Sigueta; Maia, Carla Soraya Costa; Cozzolino, Silvia Maria Franciscato

    2017-04-01

    Studies about selenium status in patients with Turner syndrome (TS) are non-existent in the literature. The aim of this study was to evaluate selenium status in patients with TS, while considering the different ages of the studied population and the relation with body composition. In total, 33 patients with TS were evaluated and grouped according to their developmental stages (children, adolescents, and adults). Selenium concentrations in their plasma, erythrocytes, urine, and nails were determined by using hydride generation atomic absorption spectrometry and erythrocyte glutathione peroxidase activity were measured by using Randox commercial kits. Additionally, height, weight, body fat percentage, waist circumference, and waist-height ratio were measured to characterize the patients. No differences in the selenium concentrations in the plasma, erythrocyte, urine, and nails or in the glutathione peroxidase activity were observed among the age groups (p > 0.05). The evaluated selenium levels were less than the established normal ones. The patients with larger waist circumference, body fat percentage, body mass index, and waist-height ratio showed lower glutathione peroxidase enzyme activity (p = 0.023). The present study shows that most patients with TS are deficient in selenium and that those with a greater accumulation of body fat have a lower GPx activity.

  4. Selenium in the environment, metabolism and involvement in body functions.

    PubMed

    Mehdi, Youcef; Hornick, Jean-Luc; Istasse, Louis; Dufrasne, Isabelle

    2013-03-13

    Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals.

  5. Plasma Selenium Concentrations Are Sufficient and Associated with Protease Inhibitor Use in Treated HIV-Infected Adults123

    PubMed Central

    Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A

    2015-01-01

    Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: <20–600). Median plasma selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P < 0.01 within group), but the change did not differ between groups (+13.1 vs. +5.3 μg/L; P = 0.14 between groups). Conclusions: Plasma selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use and higher selenium may have implications for ART allocation, especially in resource-limited countries. Also, it appears that statin therapy may increase selenium concentrations; however, larger studies are necessary to confirm this finding. This trial was registered at clinicaltrials.gov as NCT01218802. PMID:26269240

  6. Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women1

    PubMed Central

    Mao, Jinyuan; Vanderlelie, Jessica J; Perkins, Anthony V; Redman, Christopher WG; Ahmadi, Kourosh R; Rayman, Margaret P

    2016-01-01

    Background: Low selenium status in pregnancy has been associated with a number of adverse conditions. In nonpregnant populations, the selenium status or response to supplementation has been associated with polymorphisms in dimethylglycine dehydrogenase (DMGDH), selenoprotein P (SEPP1) and the glutathione peroxidases [cytosolic glutathione peroxidase (GPx1) and phospholipid glutathione peroxidase (GPx4)]. Objective: We hypothesized that, in pregnant women, these candidate polymorphisms would be associated with selenium status in early pregnancy, its longitudinal change, and the interindividual response to selenium supplementation at 60 μg/d. Design: With the use of stored samples and data from the United Kingdom Selenium in Pregnancy Intervention (SPRINT) study in 227 pregnant women, we carried out genetic-association studies, testing for associations between selenium status, its longitudinal change, and response to supplementation and common genetic variation in DMGDH (rs921943), SEPP1 (rs3877899 and rs7579), GPx1 (rs1050450) and GPx4 (rs713041). Selenium status was represented by the concentration of whole-blood selenium at 12 and 35 wk of gestation, the concentration of toenail selenium at 16 wk of gestation, and plasma glutathione peroxidase (GPx3) activity at 12 and 35 wk of gestation. Results: Our results showed that DMGDH rs921943 was significantly associated with the whole-blood selenium concentration at 12 wk of gestation (P = 0.032), which explained ≤2.0% of the variance. This association was replicated with the use of toenail selenium (P = 0.043). In unsupplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in whole-blood selenium from 12 to 35 wk of gestation (P = 0.005), which explained 8% of the variance. In supplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in GPx3 activity from 12 to 35 wk of gestation (P = 0.01), which explained 5.3% of the variance. Selenium status was not associated with GPx1, GPx4, or SEPP1 rs7579. Conclusions: In agreement with previous studies, we show that the genetic variant rs921943 in DMGDH is significantly associated with selenium status in United Kingdom pregnant women. Notably, our study shows that women who carry the SEPP1 rs3877899 A allele are better able to maintain selenium status during pregnancy, and their GPx3 activity increases more with supplementation, which suggests better protection from low selenium status. The SPRINT study was registered at www.isrctn.com as ISRCTN37927591. PMID:26675765

  7. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  8. Reduction of selenite to elemental selenium nanoparticles by activated sludge.

    PubMed

    Jain, Rohan; Matassa, Silvio; Singh, Satyendra; van Hullebusch, Eric D; Esposito, Giovanni; Lens, Piet N L

    2016-01-01

    Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L(-1)) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L(-1) and 30 °C when fed with 172 mg L(-1) (1 mM) Na2SeO3 and 2.0 g L(-1) COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L(-1) removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L(-1), respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes. Graphical Abstract Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process.

  9. Arousal from Sleep Does Not Lead to Reduced Dilator Muscle Activity or Elevated Upper Airway Resistance on Return to Sleep in Healthy Individuals

    PubMed Central

    Jordan, Amy S.; Cori, Jennifer M.; Dawson, Andrew; Nicholas, Christian L.; O'Donoghue, Fergal J.; Catcheside, Peter G.; Eckert, Danny J.; McEvoy, R. Doug; Trinder, John

    2015-01-01

    Study Objectives: To compare changes in end-tidal CO2, genioglossus muscle activity and upper airway resistance following tone-induced arousal and the return to sleep in healthy individuals with small and large ventilatory responses to arousal. Design: Observational study. Setting: Two sleep physiology laboratories. Patients or Participants: 35 men and 25 women with no medical or sleep disorders. Interventions: Auditory tones to induce 3-s to 15-s cortical arousals from sleep. Measurements and Results: During arousal from sleep, subjects with large ventilatory responses to arousal had higher ventilation (by analytical design) and tidal volume, and more marked reductions in the partial pressure of end-tidal CO2 compared to subjects with small ventilatory responses to arousal. However, following the return to sleep, ventilation, genioglossus muscle activity, and upper airway resistance did not differ between high and low ventilatory response groups (Breath 1 on return to sleep: ventilation 6.7 ± 0.4 and 5.5 ± 0.3 L/min, peak genioglossus activity 3.4% ± 1.0% and 4.8% ± 1.0% maximum, upper airway resistance 4.7 ± 0.7 and 5.5 ± 1.0 cm H2O/L/s, respectively). Furthermore, dilator muscle activity did not fall below the pre-arousal sleeping level and upper airway resistance did not rise above the pre-arousal sleeping level in either group for 10 breaths following the return to sleep. Conclusions: Regardless of the magnitude of the ventilatory response to arousal from sleep and subsequent reduction in PETCO2, healthy individuals did not develop reduced dilator muscle activity nor increased upper airway resistance, indicative of partial airway collapse, on the return to sleep. These findings challenge the commonly stated notion that arousals predispose to upper airway obstruction. Citation: Jordan AS, Cori JM, Dawson A, Nicholas CL, O'Donoghue FJ, Catcheside PG, Eckert DJ, McEvoy RD, Trinder J. Arousal from sleep does not lead to reduced dilator muscle activity or elevated upper airway resistance on return to sleep in healthy individuals. SLEEP 2015;38(1):53–59. PMID:25325511

  10. Comparison of methods to determine selenium species in saturation extracts of soils from the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Fujii, Roger

    1988-01-01

    Undigested organic matter in some of the extracts inhibited selenium detection when using the digestion and Sep-Pac C18 methods, but the interference was removed by using the XAD-8 method. Combining XAD-8 resin and activated charcoal was an unacceptable method, because the activated charcoal removed selenite and selenate. Ninety-eight percent of the selenium in the extracts was selenate and about 100 percent of the isolated organic selenium was associated with the humic acid fraction of dissolved-organic matter.

  11. Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial123

    PubMed Central

    Burk, Raymond F; Hill, Kristina E; Motley, Amy K; Byrne, Daniel W; Norsworthy, Brooke K

    2015-01-01

    Background: Selenomethionine, which is the principal dietary form of selenium, is metabolized by the liver to selenide, which is the form of the element required for the synthesis of selenoproteins. The liver synthesizes selenium-rich selenoprotein P (SEPP1) and secretes it into the plasma to supply extrahepatic tissues with selenium. Objectives: We conducted a randomized controlled trial to determine whether cirrhosis is associated with functional selenium deficiency (the lack of selenium for the process of selenoprotein synthesis even though selenium intake is not limited) and, if it is, whether the deficiency is associated with impairment of selenomethionine metabolism. Design: Patients with Child-Pugh (C-P) classes A, B, and C (mild, moderate, and severe, respectively) cirrhosis were supplemented with a placebo or supranutritional amounts of selenium as selenate (200 or 400 μg/d) or as selenomethionine (200 μg/d) for 4 wk. Plasma SEPP1 concentration and glutathione peroxidase (GPX) activity, the latter due largely to the selenoprotein GPX3 secreted by the kidneys, were measured before and after supplementation. Results: GPX activity was increased more by both doses of selenate than by the placebo in C-P class B patients. The activity was not increased more by selenomethionine supplementation than by the placebo in C-P class B patients. Plasma selenium was increased more by 400 μg Se as selenate than by the placebo in C-P class C patients. Within the groups who responded to selenate, there was a considerable variation in responses. Conclusion: These results indicate that severe cirrhosis causes mild functional selenium deficiency in some patients that is associated with impaired metabolism of selenomethionine. This trial was registered at clinicaltrials.gov as NCT00271245. PMID:26468123

  12. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  13. The influence of weight loss on anaerobic threshold in obese women.

    PubMed

    Zak-Golab, Agnieszka; Zahorska-Markiewicz, Barbara; Langfort, Józef; Kocelak, Piotr; Holecki, Michal; Mizia-Stec, Katarzyna; Olszanecka-Glinianowicz, Magdalena; Chudek, Jerzy

    2010-01-01

    Obesity is associated with decreased physical activity. The aim of the study was to assess the anaerobic threshold in obese and normal weight women and to analyse the effect of weight-reduction therapy on the determined thresholds. 42 obese women without concomitant disease (age 30.5 ± 6.9y; BMI 33.6 ± 3.7 kg·m(-2)) and 19 healthy normal weight women (age 27.6 ± 7.0y; BMI 21.2 ± 1.9 kg·m(-2)) performed cycle ergometer incremental ramp exercise test up to exhaustion. The test was repeated in 19 obese women after 12.3 ± 4.2% weight loss. The lactate threshold (LT) and the ventilatory threshold (VT) were determined. Obese women had higher lactate (expressed as oxygen consumption) and ventilator threshold than normal weight women. The lactate threshold was higher than ventilatory one both in obese and normal weight women (1.11 ± 0.21 vs 0.88 ± 0.18 L·min(-1), p < 0.001; 0.94 ± 0.15 vs 0.79 ± 0.23 L·min(- 1), p < 0.01, respectively). After weight reduction therapy neither the lactate nor the ventilatory threshold changed significantly. The results concluded that; 1. The higher lactate threshold noted in obese women may be related to the increased fat acid usage in metabolism. 2. Both in obese and normal weight women lactate threshold appears at higher oxygen consumption than ventilatory threshold. 3. The obtained weight reduction, without weight normalisation was insufficient to cause significant changes of lactate and ventilatory thresholds in obese women. Key pointsResults showed that adolescent young female gymnasts have an altered serum inflammatory markers and endothelial activation, compared to their less physically active peers.Physical activities improved immune system.Differences in these biochemical data kept significant after adjustment for body weight and height.

  14. Dietary incorporation of feedstuffs naturally high in organic selenium for racing pigeons (Columba livia): effects on plasma antioxidant markers after a standardised simulation of a flying effort.

    PubMed

    Schoonheere, N; Dotreppe, O; Pincemail, J; Istasse, L; Hornick, J L

    2009-06-01

    Selenium is a trace element of importance for animal health. It is essential for adequate functioning of many enzymes such as, the antioxidant enzyme, glutathione peroxidase, which protects the cell against free radicals. A muscular effort induces a rise in reactive oxygen species production which, in turn, can generate an oxidative stress. Two groups of eight racing pigeons were fed respectively with a diet containing 30.3 (control group) and 195.3 (selenium group) microg selenium/kg diet. The pigeons were submitted to a standardised simulation of a flying effort during 2 h. Blood was taken before and after the effort to measure antioxidant markers and blood parameters related to muscle metabolism. Plasma selenium concentration and glutathione peroxidase activity were significantly higher in the selenium group. There were no significant differences for the other measured parameters. As a consequence of the effort, the pigeons of the selenium group showed a higher increase of glutathione peroxidase activity and a smaller increase of plasma lactate concentration. Variations because of the effort in the other markers were not significantly different between the two groups. It is concluded that the selenium status was improved with the feeding of feedstuffs high in Selenium.

  15. Male infertility: decreased levels of selenium, zinc and antioxidants.

    PubMed

    Türk, Silver; Mändar, Reet; Mahlapuu, Riina; Viitak, Anu; Punab, Margus; Kullisaar, Tiiu

    2014-04-01

    In this study, we aimed to compare the level of zinc, selenium, glutathione peroxidase activity and antioxidant status in following populations of men: severe inflammation in prostate (>10(6) white blood cells in prostate secretion; n=29), severe leukocytospermia, (>10(6) white blood cells in semen; n=31), mild inflammation, (0.2-1M white blood cells in semen or prostate secretion; n=24), non-inflammatory oligozoospermia (n=32) and healthy controls (n=27). Male partners of infertile couples had reduced level of antioxidative activity, selenium and zinc in their seminal plasma. Most importantly, reduced selenium levels were evident in all patient groups regardless of inflammation status. Therefore, these patients might gain some benefit from selenium supplementation. Copyright © 2014. Published by Elsevier GmbH.

  16. Hair mercury association with selenium, serum lipid spectrum, and gamma-glutamyl transferase activity in adults.

    PubMed

    Tinkov, Alexey A; Skalnaya, Margarita G; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2014-12-01

    The primary objective of the research is to estimate the dependence between hair mercury content, hair selenium, mercury-to-selenium ratio, serum lipid spectrum, and gamma-glutamyl transferase (GGT) activity in 63 adults (40 men and 23 women). Serum triglyceride (TG) concentration in the high-mercury group significantly exceeded the values obtained for low- and medium-mercury groups by 72 and 42 %, respectively. Serum GGT activity in the examinees from high-Hg group significantly exceeded the values of the first and the second groups by 75 and 28 %, respectively. Statistical analysis of the male sample revealed similar dependences. Surprisingly, no significant changes in the parameters analyzed were detected in the female sample. In all analyzed samples, hair mercury was not associated with hair selenium concentrations. Significant correlation between hair mercury content and serum TG concentration (r = 0.531) and GGT activity (r = 0.524) in the general sample of the examinees was detected. The respective correlations were observed in the male sample. Hair mercury-to-selenium ratios significantly correlated with body weight (r = 0.310), body mass index (r = 0.250), serum TG (r = 0.389), atherogenic index (r = 0.257), and GGT activity (r = 0.393). The same correlations were observed in the male sample. Hg/Se ratio in women did not correlate with the analyzed parameters. Generally, the results of the current study show the following: (1) hair mercury is associated with serum TG concentration and GGT activity in men, (2) hair selenium content is not related to hair mercury concentration, and (3) mercury-to-selenium ratio correlates with lipid spectrum parameters and GGT activity.

  17. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  18. Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar): Gross, histological and biochemical deficiency signs

    USGS Publications Warehouse

    Poston, Hugh A.; Combs, G.F.; Leibovitz, Louis

    1976-01-01

    Either simultaneous or separate dietary deficiencies of vitamin E and selenium in Atlantic salmon during first 4 weeks of feeding caused twice the mortality shown in fish fed both supplemental vitamin E (0.5 IU/g dry diet) and selenium (0.1 µg/g). Subsequent dietary repletion with both vitamin E and selenium significantly reduced mortality during the following 2 weeks. Larger salmon (0.9 g initial mean weight), with vitamin E deficiency with or without selenium resulted in the following deficiency signs: extreme anemia, pale gills, anisocytosis, poikilocytosis, elevated plasma protein, exudative diathesis, dermal depigmentation, in vitro ascorbic acid-stimulated peroxidation in hepatic microsomes, yellow-orange liver color, yellow-brown intestinal contents, enlarged gall bladder distended with dark green bile, low vitamin E in carcass and hepatic tissue, muscular dystrophy, increased carcass fat and water, and a response to handling characterized by a transitory fainting with interruption in swimming. A deficiency of dietary selenium suppressed plasma glutathione peroxidase activity. Supplemental selenium with vitamin E significantly increased tocopherol activity in hepatic, but not carcass tissues. Supplements of both vitamin E and selenium were necessary to prevent muscular dystrophy.

  19. Quality assurance program for the determination of selenium in foods and diets by instrumental neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.H.; Chatt, A.

    1996-12-31

    The biological essentially of selenium for animals was first evidenced in 1957. However, it was not until 1973 that an enzyme called glutathione peroxidase was proven to be a selenoenzyme. At present, selenium is known to be a normal component of several enzymes, proteins, and some aminoacryl transfer nucleic acids. A few selenium compounds have been reported to possess anticarcinogenic properties. There is an increasing interest in understanding the role of selenium in human nutrition and metabolism. Analytical methods are being developed in several laboratories for the determination of total and species-specific selenium in whole blood, serum, urine, soft andmore » hard tissues, food, water, proteins, etc. We have developed several instrumental neutron activation analysis (INAA) methods using the, Dalhousie University SLOWPOKE-2 reactor facility for the determination of parts-per-billion levels of selenium. These methods include cyclic INAA (CINAA) and pseudocyclic INAA (PCINAA) using both conventional and anticoincidence gamma-ray spectrometry. Considering the immense health significance, it is imperative that the selenium levels in foods and diets be measured under an extensive quality assurance program for routine monitoring purposes.« less

  20. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kieć-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-07-31

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  1. Brain stem NO modulates ventilatory acclimatization to hypoxia in mice.

    PubMed

    El Hasnaoui-Saadani, R; Alayza, R Cardenas; Launay, T; Pichon, A; Quidu, P; Beaudry, M; Léon-Velarde, F; Richalet, J P; Duvallet, A; Favret, F

    2007-11-01

    The objective of our study was to assess the role of neuronal nitric oxide synthase (nNOS) in the ventilatory acclimatization to hypoxia. We measured the ventilation in acclimatized Bl6/CBA mice breathing 21% and 8% oxygen, used a nNOS inhibitor, and assessed the expression of N-methyl-d-aspartate (NMDA) glutamate receptor and nNOS (mRNA and protein). Two groups of Bl6/CBA mice (n = 60) were exposed during 2 wk either to hypoxia [barometric pressure (PB) = 420 mmHg] or normoxia (PB = 760 mmHg). At the end of exposure the medulla was removed to measure the concentration of nitric oxide (NO) metabolites, the expression of NMDA-NR1 receptor, and nNOS by real-time RT-PCR and Western blot. We also measured the ventilatory response [fraction of inspired O(2) (Fi(O(2))) = 0.21 and 0.08] before and after S-methyl-l-thiocitrulline treatment (SMTC, nNOS inhibitor, 10 mg/kg ip). Chronic hypoxia caused an increase in ventilation that was reduced after SMTC treatment mainly through a decrease in tidal volume (Vt) in normoxia and in acute hypoxia. However, the difference observed in the magnitude of acute hypoxic ventilatory response [minute ventilation (Ve) 8% - Ve 21%] in acclimatized mice was not different. Acclimatization to hypoxia induced a rise in NMDA receptor as well as in nNOS and NO production. In conclusion, our study provides evidence that activation of nNOS is involved in the ventilatory acclimatization to hypoxia in mice but not in the hypoxic ventilatory response (HVR) while the increased expression of NMDA receptor expression in the medulla of chronically hypoxic mice plays a role in acute HVR. These results are therefore consistent with central nervous system plasticity, partially involved in ventilatory acclimatization to hypoxia through nNOS.

  2. Respiratory constraints during activities in daily life and the impact on health status in patients with early-stage COPD: a cross-sectional study.

    PubMed

    van Helvoort, Hanneke Ac; Willems, Laura M; Dekhuijzen, Pn Richard; van Hees, Hieronymus Wh; Heijdra, Yvonne F

    2016-10-13

    In patients with chronic obstructive pulmonary disease (COPD), exercise capacity is reduced, resulting over time in physical inactivity and worsened health status. It is unknown whether ventilatory constraints occur during activities of daily life (ADL) in early stages of COPD. The aim of this study was to assess respiratory mechanics during ADL and to study its consequences on dyspnoea, physical activity and health status in early-stage COPD compared with healthy controls. In this cross-sectional study, 39 early-stage COPD patients (mean FEV 1 88±s.d. 12% predicted) and 20 controls performed 3 ADL: climbing stairs, vacuum cleaning and displacing groceries in a cupboard. Respiratory mechanics were measured during ADL. Physical activity was measured with accelerometry. Health status was assessed by the Nijmegen Clinical Screening Instrument. Compared with controls, COPD patients had greater ventilatory inefficiency and higher ventilatory requirements during ADL (P<0.05). Dyspnoea scores were increased in COPD compared with controls (P<0.001). During ADL, >50% of the patients developed dynamic hyperinflation in contrast to 10-35% of the controls. Higher dyspnoea was scored by patients with dynamic hyperinflation. Physical activity was low but comparable between both groups. From the patients, 55-84% experienced mild-to-severe problems in health status compared with 5-25% of the controls. Significant ventilatory constraints already occur in early-stage COPD patients during common ADL and result in increased dyspnoea. Physical activity level is not yet reduced, but many patients already experience limitations in health status. These findings reinforce the importance of early diagnosis of COPD and assessment of more than just spirometry.

  3. Plasma Selenium Biomarkers in Low Income Black and White Americans from the Southeastern United States

    PubMed Central

    Hargreaves, Margaret K.; Liu, Jianguo; Buchowski, Maciej S.; Patel, Kushal A.; Larson, Celia O.; Schlundt, David G.; Kenerson, Donna M.; Hill, Kristina E.; Burk, Raymond F.; Blot, William J.

    2014-01-01

    Biomarkers of selenium are necessary for assessing selenium status in humans, since soil variation hinders estimation of selenium intake from foods. In this study, we measured the concentration of plasma selenium, selenoprotein P (SEPP1), and glutathione peroxidase (GPX3) activity and their interindividual differences in 383 low-income blacks and whites selected from a stratified random sample of adults aged 40–79 years, who were participating in a long-term cohort study in the southeastern United States (US). We assessed the utility of these biomarkers to determine differences in selenium status and their association with demographic, socio-economic, dietary, and other indicators. Dietary selenium intake was assessed using a validated food frequency questionnaire designed for the cohort, matched with region-specific food selenium content, and compared with the US Recommended Dietary Allowances (RDA) set at 55 µg/day. We found that SEPP1, a sensitive biomarker of selenium nutritional status, was significantly lower among blacks than whites (mean 4.4±1.1 vs. 4.7±1.0 mg/L, p = 0.006), with blacks less than half as likely to have highest vs. lowest quartile SEPP1 concentration (Odds Ratio (OR) 0.4, 95% Confidence Interval (CI) 0.2–0.8). The trend in a similar direction was observed for plasma selenium among blacks and whites, (mean 115±15.1 vs. 118±17.7 µg/L, p = 0.08), while GPX3 activity did not differ between blacks and whites (136±33.3 vs. 132±33.5 U/L, p = 0.320). Levels of the three biomarkers were not correlated with estimated dietary selenium intake, except for SEPP1 among 10% of participants with the lowest selenium intake (≤57 µg/day). The findings suggest that SEPP1 may be an effective biomarker of selenium status and disease risk in adults and that low selenium status may disproportionately affect black and white cohort participants. PMID:24465457

  4. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    PubMed

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  5. [Diaphragm pacing for the ventilatory support of the quadriplegic patients with respiratory paralysis].

    PubMed

    Cheng, H; Wang, L S; Pan, H C; Shoung, H M; Lee, L S

    1992-02-01

    Electrical stimulation of the phrenic nerve to pace the diaphragm in patients with chronic ventilatory insufficiency has been an established therapeutic modality since William W.L. Glenn first described using radiofrequency signals in 1978 to stimulate the phrenic nerves. Before this event, patients who were ventilator-dependent and thus bedridden because of respiratory paralysis associated with quadriplegia usually anticipated little chance for physical or psychosocial rehabilitation. Two cases of C1-C2 subluxtion with cord injury and chronic ventilatory insufficiency were implanted at VGH-Taipei with diaphragm pacemaker in 1988. Postoperative phrenic nerve stimulation was given according to individual training schedule. One case with total phrenic paralysis received bilateral phrenic nerve stimulation and became weaned from the ventilator 6 months later. The other case with partially active ventilatory function received unilateral phrenic nerve stimulation to compensate the ventilation. However, its final outcome still showed the necessity of a bilateral mode to achieve adequate ventilation irrespective of strenuous training for 2 years.

  6. Gas exchange and ventilation during dormancy in the tegu lizard tupinambis merianae

    PubMed

    de Andrade DV; Abe

    1999-12-01

    The tegu lizard Tupinambis merianae exhibits an episodic ventilatory pattern when dormant at 17 degrees C but a uniform ventilatory pattern when dormant at 25 degrees C. At 17 degrees C, ventilatory episodes were composed of 1-22 breaths interspaced by non-ventilatory periods lasting 1.8-26 min. Dormancy at the higher body temperature was accompanied by higher rates of O(2) consumption and ventilation. The increase in ventilation was due only to increases in breathing frequency with no change observed in tidal volume. The air convection requirement for O(2) did not differ at the two body temperatures. The respiratory quotient was 0.8 at 17 degrees C and 1.0 at 25 degrees C. We found no consistent relationship between expired gas composition and the start/end of the ventilatory period during episodic breathing at 17 degrees C. However, following non-ventilatory periods of increasing duration, there was an increase in the pulmonary O(2) extraction that was not coupled to an equivalent increase in elimination of CO(2) from the lungs. None of the changes in the variables studied could alone explain the initiation/termination of episodic ventilation in the tegus, suggesting that breathing episodes are shaped by a complex interaction between many variables. The estimated oxidative cost of breathing in dormant tegus at 17 degrees C was equivalent to 52.3 % of the total metabolic rate, indicating that breathing is the most costly activity during dormancy.

  7. Combined selenium and vitamin C deficiency causes cell death in guinea pig skeletal muscle.

    PubMed

    Hill, Kristina E; Motley, Amy K; May, James M; Burk, Raymond F

    2009-03-01

    Combined antioxidant deficiencies of selenium and vitamin E or vitamin E and vitamin C in guinea pigs result in clinical illness. We hypothesized that combined selenium and vitamin C deficiency would have clinical consequences because in vitro interactions of these antioxidant nutrients have been reported. Because guinea pigs are dependent on dietary vitamin C, weanling male guinea pigs were fed selenium-deficient or control diet for 15 weeks before imposing vitamin C deficiency. Four dietary groups were formed and studied 3 weeks later: controls, vitamin C deficient, selenium deficient, and doubly deficient. Deficiencies were confirmed by determinations of glutathione peroxidase activity and vitamin C concentration in liver and skeletal muscle. Plasma creatine phosphokinase activity and liver, kidney, heart, and quadriceps histopathology were determined. Doubly deficient animals had moderately severe skeletal muscle cell death as judged by histopathology and plasma creatine phosphokinase activity of 6630 +/- 4400 IU/L (control, 70 + or - 5; vitamin C deficient, 95 + or - 110; selenium deficient, 280 + or - 250). Liver, kidney, and heart histology was normal in all groups. Muscle alpha-tocopherol levels were not depressed in the doubly deficient group, but muscle F2 isoprostane concentrations were elevated in them and correlated with markers of cell death. We conclude that combining selenium and vitamin C deficiencies in the guinea pig causes cell death in skeletal muscle that is more severe than the injury caused by selenium deficiency. The elevation of muscle F2 isoprostanes is compatible with the cell death being caused by oxidative stress.

  8. Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration

    PubMed Central

    Burk, Raymond F.; Lawrence, Richard A.; Lane, James M.

    1980-01-01

    Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase activity of liver, kidney, lung, or plasma at 10 h. This suggests that a selenium-dependent factor in addition to glutathione peroxidase exists that protects against lipid peroxidation. Images PMID:7364936

  9. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    PubMed Central

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; <65 μg/L, 65–85 μg/L, and >85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration group a mortality of 14.0% in the non-treated group, and 6.0% in the actively treated group could be demonstrated; thus, there was an absolute risk reduction of 8.0%. In the group with a serum concentration of >85 μg/L, a cardiovascular mortality of 17.5% in the non-treated group, and 13.0% in the actively treated group was observed. No significant risk reduction by supplementation could thus be found in this group. Conclusions In this evaluation of healthy elderly Swedish municipality members, two important results could be reported. Firstly, a low mean serum selenium concentration, 67 μg/L, was found among the participants, and the cardiovascular mortality was higher in the subgroup with the lower selenium concentrations <65 μg/L in comparison with those having a selenium concentration >85 μg/L. Secondly, supplementation was cardio-protective in those with a low selenium concentration, ≤85 at inclusion. In those with serum selenium>85 μg/L and no apparent deficiency, there was no effect of supplementation. This is a small study, but it presents interesting data, and more research on the impact of lower selenium intake than recommended is therefore warranted. Trial Registration Clinicaltrials.gov NCT01443780 PMID:27367855

  10. Ventilatory response to the onset of passive and active exercise in human subjects.

    PubMed

    Miyamura, M; Ishida, K; Yasuda, Y

    1992-01-01

    Ventilatory responses at the onset of passive and active exercise with different amount of exercising muscle mass were studied in 10 healthy male subjects. Four exercise tests were performed for each subject with appropriate intervals on the same day, i.e., two voluntary exercises of one leg or both legs and two passive exercises of one leg or both legs. Inspiratory minute volume (VI), end-tidal CO2 and O2 partial pressures (PETCO2, PETO2) were measured breath-by-breath using a hot-wire flowmeter, infrared CO2 analyzer, and a rapid O2 analyzer. Average values of VI were obtained from 5 breaths at rest preceding exercise and the first and second breaths after the onset of exercise. The ventilatory response to exercise was calculated as the difference (delta) between the mean of exercise VI and mean of resting VI. In this study, the PETCO2 decreased by about 0.5 Torr in four exercise tests, though the decrement of PETCO2 was not statistically significant. The average values and standard deviation of delta VI were 4.22 +/- 1.63 l/min for the one leg and 6.46 +/- 1.80 l/min for the two legs in the active exercise, and were 2.46 +/- 1.12 l/min for the one leg and 3.44 +/- 1.55 l/min for the two legs in the passive exercise, respectively. These results suggest that in awake conditions, the ventilatory response at the onset of passive or active exercise does not increase additively with the increasing amount of muscle mass being exercised.

  11. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota

    PubMed Central

    Kasaikina, Marina V.; Kravtsova, Marina A.; Lee, Byung Cheon; Seravalli, Javier; Peterson, Daniel A.; Walter, Jens; Legge, Ryan; Benson, Andrew K.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Colonization of the gastrointestinal tract and composition of the microbiota may be influenced by components of the diet, including trace elements. To understand how selenium regulates the intestinal microflora, we used high-throughput sequencing to examine the composition of gut microbiota of mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets. The microbiota diversity increased as a result of selenium in the diet. Specific phylotypes showed differential effects of selenium, even within a genus, implying that selenium had unique effects across microbial taxa. Conventionalized germ-free mice subjected to selenium diets gave similar results and showed an increased diversity of the bacterial population in animals fed with higher levels of selenium. Germ-free mice fed selenium diets modified their selenoproteome expression similar to control mice but showed higher levels and activity of glutathione peroxidase 1 and methionine-R-sulfoxide reductase 1 in the liver, suggesting partial sequestration of selenium by the gut microorganisms, limiting its availability for the host. These changes in the selenium status were independent of the levels of other trace elements. The data show that dietary selenium affects both composition of the intestinal microflora and colonization of the gastrointestinal tract, which, in turn, influence the host selenium status and selenoproteome expression.—Kasaikina, M. V., Kravtsova, M. A., Lee, B. C., Seravalli, J., Peterson, D. A., Walter, J., Legge, R., Benson, A. K., Hatfield, D. L., Gladyshev, V. N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. PMID:21493887

  12. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Selenium: the physiopathological and clinical implications].

    PubMed

    Tato Rocha, R E; Cárdenas Viedma, E; Herrero Huerta, E

    1994-09-01

    Selenium is an ultra-trace element widely distributed in the environment, although its consumption varies significantly depending on the region. Its daily requirements range between 50 and 200 micrograms/day (or a minimum of 1 microgram/kg/day), which are supplied by animal and vegetal foods. Its essentiality in human nutrition is derived from its antioxidative action, being a part of the glutation-peroxidase system (GPx). Thus, it is a protective agent against the harmful action of free radicals. Determination of the selenium-dependent GPx activity seems to be the best index for the assessment of nutritional status. A deficit of selenium will result in a decrease of the GPx activity and, therefore, in a increase of cell damage which cannot be counter-balanced by other antioxidative systems. Diet has a relevant role for the maintenance of selenium status. Deficiency conditions may appear in different population groups when the selenium content in the diet is inadequate. Toxicity states are rare, but some diseases are sensitive to this element, which is mainly involved in cancer prevention.

  14. Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China.

    PubMed

    Li, Yu-Feng; Dong, Zeqin; Chen, Chunying; Li, Bai; Gao, Yuxi; Qu, Liya; Wang, Tianchen; Fu, Xin; Zhao, Yuliang; Chai, Zhifang

    2012-10-16

    Due to a long history of extensive mercury mining and smelting activities, local residents in Wanshan, China, are suffering from elevated mercury exposure. The objective of the present study was to study the effects of oral supplementation with selenium-enriched yeast in these long-term mercury-exposed populations. One hundred and three volunteers from Wanshan area were recruited and 53 of them were supplemented with 100 μg of organic selenium daily as selenium-enriched yeast while 50 of them were supplemented with the nonselenium-enriched yeast for 3 months. The effects of selenium supplementation on urinary mercury, selenium, and oxidative stress-related biomarkers including malondialdehyde and 8-hydroxy-2-deoxyguanosine were assessed. This 3-month selenium supplementation trial indicated that organic selenium supplementation could increase mercury excretion and decrease urinary malondialdehyde and 8-hydroxy-2-deoxyguanosine levels in local residents.

  15. Search for relevant indications for selenium supplementation in thyroid diseases.

    PubMed

    Wojciechowska-Durczynska, Katarzyna; Lewinski, Andrzej

    2017-08-01

    Selenium plays a significant role in the thyroid function and its deficiency is considered by some authors to be a cause of thyroid disorders. The potential therapeutic influence of selenium supplementation in thyroid disease was investigated in several studies and some results were encouraging, however results were inconsistent and did not allow conclusion to be drawn. For that reason, we have performed a review study on relevance of selenium supplementation in thyroid disease. Till now, there is no strong evidence that selenium supplementation leads to clinical improvement in the course of autoimmune thyroiditis, nodular goitre or thyroid cancer. On the other hand, there is some evidence that selenium is effective in the treatment of orbitopathy; thus, the European Group on Graves' Orbitopathy (EUGOGO) recommends selenium administration in mild active orbitopathy.

  16. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles.

    PubMed

    Zinicovscaia, I; Chiriac, T; Cepoi, L; Rudi, L; Culicov, O; Frontasyeva, M; Rudic, V

    2017-01-01

    The process of selenium uptake by biomass of the cyanobacterium Arthrospira (Spirulina) platensis was investigated by neutron activation analysis at different selenium concentrations in solution and at different contact times. Experimental data showed good fit with the Freundlich adsorption isotherm model, with a regression coefficient value of 0.99. In terms of absorption dependence on time, the maximal selenium content was adsorbed in the first 5 min of interaction without significant further changes. It was also found that A. platensis biomass forms spherical selenium nanoparticles. Biochemical analysis was used to assess the changes in the main components of spirulina biomass (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation.

  17. Measuring Ventilatory Activity with Structured Light Plethysmography (SLP) Reduces Instrumental Observer Effect and Preserves Tidal Breathing Variability in Healthy and COPD

    PubMed Central

    Niérat, Marie-Cécile; Dubé, Bruno-Pierre; Llontop, Claudia; Bellocq, Agnès; Layachi Ben Mohamed, Lila; Rivals, Isabelle; Straus, Christian; Similowski, Thomas; Laveneziana, Pierantonio

    2017-01-01

    The use of a mouthpiece to measure ventilatory flow with a pneumotachograph (PNT) introduces a major perturbation to breathing (“instrumental/observer effect”) and suffices to modify the respiratory behavior. Structured light plethysmography (SLP) is a non-contact method of assessment of breathing pattern during tidal breathing. Firstly, we validated the SLP measurements by comparing timing components of the ventilatory pattern obtained by SLP vs. PNT under the same condition; secondly, we compared SLP to SLP+PNT measurements of breathing pattern to evaluate the disruption of breathing pattern and breathing variability in healthy and COPD subjects. Measurements were taken during tidal breathing with SLP alone and SLP+PNT recording in 30 COPD and healthy subjects. Measurements included: respiratory frequency (Rf), inspiratory, expiratory, and total breath time/duration (Ti, Te, and Tt). Passing-Bablok regression analysis was used to evaluate the interchangeability of timing components of the ventilatory pattern (Rf, Ti, Te, and Tt) between measurements performed under the following experimental conditions: SLP vs. PNT, SLP+PNT vs. SLP, and SLP+PNT vs. PNT. The variability of different ventilatory variables was assessed through their coefficients of variation (CVs). In healthy: according to Passing-Bablok regression, Rf, TI, TE and TT were interchangeable between measurements obtained under the three experimental conditions (SLP vs. PNT, SLP+PNT vs. SLP, and SLP+PNT vs. PNT). All the CVs describing “traditional” ventilatory variables (Rf, Ti, Te, Ti/Te, and Ti/Tt) were significantly smaller in SLP+PNT condition. This was not the case for more “specific” SLP-derived variables. In COPD: according to Passing-Bablok regression, Rf, TI, TE, and TT were interchangeable between measurements obtained under SLP vs. PNT and SLP+PNT vs. PNT, whereas only Rf, TE, and TT were interchangeable between measurements obtained under SLP+PNT vs. SLP. However, most discrete variables were significantly different between the SLP and SLP+PNT conditions and CVs were significantly lower when COPD patients were assessed in the SLP+PNT condition. Measuring ventilatory activity with SLP preserves resting tidal breathing variability, reduces instrumental observer effect and avoids any disruptions in breathing pattern induced by the use of PNT-mouthpiece-nose-clip combination. PMID:28572773

  18. Measuring Ventilatory Activity with Structured Light Plethysmography (SLP) Reduces Instrumental Observer Effect and Preserves Tidal Breathing Variability in Healthy and COPD.

    PubMed

    Niérat, Marie-Cécile; Dubé, Bruno-Pierre; Llontop, Claudia; Bellocq, Agnès; Layachi Ben Mohamed, Lila; Rivals, Isabelle; Straus, Christian; Similowski, Thomas; Laveneziana, Pierantonio

    2017-01-01

    The use of a mouthpiece to measure ventilatory flow with a pneumotachograph (PNT) introduces a major perturbation to breathing ("instrumental/observer effect") and suffices to modify the respiratory behavior. Structured light plethysmography (SLP) is a non-contact method of assessment of breathing pattern during tidal breathing. Firstly, we validated the SLP measurements by comparing timing components of the ventilatory pattern obtained by SLP vs. PNT under the same condition; secondly, we compared SLP to SLP+PNT measurements of breathing pattern to evaluate the disruption of breathing pattern and breathing variability in healthy and COPD subjects. Measurements were taken during tidal breathing with SLP alone and SLP+PNT recording in 30 COPD and healthy subjects. Measurements included: respiratory frequency (R f ), inspiratory, expiratory, and total breath time/duration (Ti, Te, and Tt). Passing-Bablok regression analysis was used to evaluate the interchangeability of timing components of the ventilatory pattern (R f , Ti, Te, and Tt) between measurements performed under the following experimental conditions: SLP vs. PNT, SLP+PNT vs. SLP, and SLP+PNT vs. PNT. The variability of different ventilatory variables was assessed through their coefficients of variation (CVs). In healthy: according to Passing-Bablok regression, Rf, TI, TE and TT were interchangeable between measurements obtained under the three experimental conditions (SLP vs. PNT, SLP+PNT vs. SLP, and SLP+PNT vs. PNT). All the CVs describing "traditional" ventilatory variables (R f , Ti, Te, Ti/Te, and Ti/Tt) were significantly smaller in SLP+PNT condition. This was not the case for more "specific" SLP-derived variables. In COPD: according to Passing-Bablok regression, Rf, TI, TE, and TT were interchangeable between measurements obtained under SLP vs. PNT and SLP+PNT vs. PNT, whereas only Rf, TE, and TT were interchangeable between measurements obtained under SLP+PNT vs. SLP. However, most discrete variables were significantly different between the SLP and SLP+PNT conditions and CVs were significantly lower when COPD patients were assessed in the SLP+PNT condition. Measuring ventilatory activity with SLP preserves resting tidal breathing variability, reduces instrumental observer effect and avoids any disruptions in breathing pattern induced by the use of PNT-mouthpiece-nose-clip combination.

  19. Involvement of Superoxide Dismutases in the Response of Escherichia coli to Selenium Oxides

    PubMed Central

    Bébien, Magali; Lagniel, Gilles; Garin, Jérôme; Touati, Danièle; Verméglio, André; Labarre, Jean

    2002-01-01

    Selenium can provoke contrasting effects on living organisms. It is an essential trace element, and low concentrations have beneficial effects, such as the reduction of the incidence of cancer. However, higher concentrations of selenium salts can be toxic and mutagenic. The bases for both toxicity and protection are not clearly understood. To provide insights into these mechanisms, we analyzed the proteomic response of Escherichia coli cells to selenate and selenite treatment under aerobic conditions. We identified 23 proteins induced by both oxides and ca. 20 proteins specifically induced by each oxide. A striking result was the selenite induction of 8 enzymes with antioxidant properties, particularly the manganese and iron superoxide dismutases (SodA and SodB). The selenium inductions of sodA and sodB were controlled by the transcriptional regulators SoxRS and Fur, respectively. Strains with decreased superoxide dismutase activities were severely impaired in selenium oxide tolerance. Pretreatment with a sublethal selenite concentration triggered an adaptive response dependent upon SoxRS, conferring increased selenite tolerance. Altogether, our data indicate that superoxide dismutase activity is essential for the cellular defense against selenium salts, suggesting that superoxide production is a major mechanism of selenium toxicity under aerobic conditions. PMID:11872706

  20. Low-dose morphine elicits ventilatory excitant and depressant responses in conscious rats: Role of peripheral μ-opioid receptors.

    PubMed

    Henderson, Fraser; May, Walter J; Gruber, Ryan B; Young, Alex P; Palmer, Lisa A; Gaston, Benjamin; Lewis, Stephen J

    2013-08-01

    The systemic administration of morphine affects ventilation via a mixture of central and peripheral actions. The aims of this study were to characterize the ventilatory responses elicited by a low dose of morphine in conscious rats; to determine whether tolerance develops to these responses; and to determine the potential roles of peripheral μ-opioid receptors (μ-ORs) in these responses. Ventilatory parameters were monitored via unrestrained whole-body plethysmography. Conscious male Sprague-Dawley rats received an intravenous injection of vehicle or the peripherally-restricted μ-OR antagonist, naloxone methiodide (NLXmi), and then three successive injections of morphine (1 mg/kg) given 30 min apart. The first injection of morphine in vehicle-treated rats elicited an array of ventilatory excitant (i.e., increases in frequency of breathing, minute volume, respiratory drive, peak inspiratory and expiratory flows, accompanied by decreases in inspiratory time and end inspiratory pause) and inhibitory (i.e., a decrease in tidal volume and an increase in expiratory time) responses. Subsequent injections of morphine elicited progressively and substantially smaller responses. The pattern of ventilatory responses elicited by the first injection of morphine was substantially affected by pretreatment with NLXmi whereas NLXmi minimally affected the development of tolerance to these responses. Low-dose morphine elicits an array of ventilatory excitant and depressant effects in conscious rats that are subject to the development of tolerance. Many of these initial actions of morphine appear to involve activation of peripheral μ-ORs whereas the development of tolerance to these responses does not.

  1. Selenium in blood, semen, seminal plasma and spermatozoa of stallions and its relationship to sperm quality.

    PubMed

    Bertelsmann, H; Keppler, S; Höltershinken, M; Bollwein, H; Behne, D; Alber, D; Bukalis, G; Kyriakopoulos, A; Sieme, H

    2010-01-01

    The essential trace element selenium is indispensable for male fertility in mammals. Until now, little data existed regarding the relationship between selenium and sperm quality in the stallion. Selenium, or selenium-dependent glutathione peroxidase activity, was determined in red blood cells, semen, seminal plasma and spermatozoa, and the percentages of spermatozoa with progressive motility (PMS), intact membranes (PMI), altered (positive) acrosomal status (PAS) and detectable DNA damage, determined by the sperm chromatin structure assay, were evaluated in 41 healthy stallions (three samples each). The pregnancy rate per oestrus cycle (PRC) served as an estimation of fertility. An adverse effect on stallion fertility caused by low dietary selenium intake was excluded, as all stallions had sufficient selenium levels in their blood. Interestingly, no significant correlations (P > 0.05) between the selenium level in blood and the selenium level in seminal plasma or spermatozoa were found, suggesting that the selenium level in blood is no indicator of an adequate selenium supply for spermatogenesis. The selenium level in spermatozoa (nmol billion(-1)) was correlated with PMI, PMS and PAS (r = 0.40, r = 0.31 and r = -0.42, respectively; P

  2. Both Selenium Deficiency and Modest Selenium Supplementation Lead to Myocardial Fibrosis in Mice via Effects on Redox-Methylation Balance

    PubMed Central

    Metes-Kosik, Nicole; Luptak, Ivan; DiBello, Patricia M.; Handy, Diane E.; Tang, Shiow-Shih; Zhi, Hui; Qin, Fuzhong; Jacobsen, Donald W.; Loscalzo, Joseph; Joseph, Jacob

    2013-01-01

    Scope Selenium has complex effects in vivo on multiple homeostatic mechanisms such as redox balance, methylation balance, and epigenesis, via its interaction with the methionine-homocysteine cycle. In this study, we examined the hypothesis that selenium status would modulate both redox and methylation balance and thereby modulate myocardial structure and function. Methods and Results We examined the effects of selenium deficient (<0.025 mg/kg), control (0.15 mg/kg), and selenium supplemented (0.5 mg/kg) diets on myocardial histology, biochemistry and function in adult C57/BL6 mice. Selenium deficiency led to reactive myocardial fibrosis and systolic dysfunction accompanied by increased myocardial oxidant stress. Selenium supplementation significantly reduced methylation potential, DNA methyltransferase activity and DNA methylation. In mice fed the supplemented diet, inspite of lower oxidant stress, myocardial matrix gene expression was significantly altered resulting in reactive myocardial fibrosis and diastolic dysfunction in the absence of myocardial hypertrophy. Conclusions Our results indicate that both selenium deficiency and modest selenium supplementation leads to a similar phenotype of abnormal myocardial matrix remodeling and dysfunction in the normal heart. The crucial role selenium plays in maintaining the balance between redox and methylation pathways needs to be taken into account while optimizing selenium status for prevention and treatment of heart failure. PMID:23097236

  3. Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters.

    PubMed

    LeBlanc, Kelly L; Wallschläger, Dirk

    2016-06-21

    Laboratory algal cultures exposed to selenate were shown to produce and release selenomethionine, selenomethionine oxide, and several other organic selenium metabolites. Released discrete organic selenium species accounted for 1.6-13.1% of the selenium remaining in the media after culture death, with 1.3-6.1% of the added selenate recovered as organic metabolites. Analysis of water from an industrially impacted river collected immediately after the death of massive annual algal blooms showed that no selenomethionine or selenomethionine oxide was present. However, other discrete organic selenium species, including a cyclic oxidation product of selenomethionine, were observed, indicating the previous presence of selenomethionine. Industrial biological treatment systems designed for remediation of selenium-contaminated waters were shown to increase both the concentration of organic selenium species in the effluent, relative to influent water, and the fraction of organic selenium to up to 8.7% of the total selenium in the effluent, from less than 1.1% in the influent. Production and emission of selenomethionine, selenomethionine oxide, and other discrete organic selenium species were observed. These findings are discussed in the context of potentially increased selenium bioavailability caused by microbial activity in aquatic environments and biological treatment systems, despite overall reductions in total selenium concentration.

  4. Ventilatory baroreflex sensitivity in humans is not modulated by chemoreflex activation

    PubMed Central

    Rivera, Eileen; Clarke, Debbie A.; Baugham, Ila L.; Ocon, Anthony J.; Taneja, Indu; Terilli, Courtney; Medow, Marvin S.

    2011-01-01

    Increasing arterial blood pressure (AP) decreases ventilation, whereas decreasing AP increases ventilation in experimental animals. To determine whether a “ventilatory baroreflex” exists in humans, we studied 12 healthy subjects aged 18–26 yr. Subjects underwent baroreflex unloading and reloading using intravenous bolus sodium nitroprusside (SNP) followed by phenylephrine (“Oxford maneuver”) during the following “gas conditions:” room air, hypoxia (10% oxygen)-eucapnia, and 30% oxygen-hypercapnia to 55–60 Torr. Mean AP (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), expiratory minute ventilation (VE), respiratory rate (RR), and tidal volume were measured. After achieving a stable baseline for gas conditions, we performed the Oxford maneuver. VE increased from 8.8 ± 1.3 l/min in room air to 14.6 ± 0.8 l/min during hypoxia and to 20.1 ± 2.4 l/min during hypercapnia, primarily by increasing tidal volume. VE doubled during SNP. CO increased from 4.9 ± .3 l/min in room air to 6.1 ± .6 l/min during hypoxia and 6.4 ± .4 l/min during hypercapnia with decreased TPR. HR increased for hypoxia and hypercapnia. Sigmoidal ventilatory baroreflex curves of VE versus MAP were prepared for each subject and each gas condition. Averaged curves for a given gas condition were obtained by averaging fits over all subjects. There were no significant differences in the average fitted slopes for different gas conditions, although the operating point varied with gas conditions. We conclude that rapid baroreflex unloading during the Oxford maneuver is a potent ventilatory stimulus in healthy volunteers. Tidal volume is primarily increased. Ventilatory baroreflex sensitivity is unaffected by chemoreflex activation, although the operating point is shifted with hypoxia and hypercapnia. PMID:21317304

  5. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  6. Ecology and biotechnology of selenium-respiring bacteria.

    PubMed

    Nancharaiah, Y V; Lens, P N L

    2015-03-01

    In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  8. Relationship of dietary intake of fish and non-fish selenium to serum lipids in Japanese rural coastal community.

    PubMed

    Miyazaki, Yukiko; Koyama, Hiroshi; Nojiri, Masami; Suzuki, Shosuke

    2002-01-01

    Several studies have suggested that dietary selenium deficiency may be associated with an increased risk of coronary heart disease (CHD). In the present study, 55 men and 71 women were selected from participants in a health examination in a rural coastal community in Japan. The mean dietary selenium intake calculated from the simple food frequency questionnaire (SFFQ) was 127.5 micrograms/day. Fish was the major source of dietary selenium and it contributed to 68.7% of the daily total. HDL cholesterol was higher in the middle selenium intake group and in the high selenium intake group than in the low selenium intake group in all subjects and for males, and a significant difference was found between the middle selenium intake group and the low selenium intake group. The atherogenic index was significantly higher in the low selenium intake group than in the middle selenium intake group and in the high selenium intake group in males. GPx activity, total cholesterol and triacylglycerols did not show any significant differences among the three different selenium intake groups. Dietary intake of non-fish Se had a positive correlation with HDL cholesterol, and an inverse correlation with the atherogenic index in all subjects and for females. On the other hand, dietary intake of fish-Se had no relationship with any serum lipids. Non-fish Se is an important factor in selenium status for the prevention of CHD.

  9. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorak-Pokrajac, M.; Dermelj, M.; Slejkovec, Z.

    In the domain of the essential trace elements, the role of selenium is extremely important. As one of the volatile elements it can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main streammore » cigarette smoke, obtained by destructive neutron activation analysis.« less

  10. Environmental implications of excessive selenium: a review.

    PubMed

    Lemly, A D

    1997-12-01

    Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.

  11. [Deficiency of selenium in pneumonia: an accident or regularity? Problem of nutriciology and gastroenterology].

    PubMed

    Orlov, A M; Bakulin, I G; Mazo, V K

    2013-01-01

    Study of features of community-acquired pneumonia in young adults with deficiency of trace element selenium and the development directions of optimization of treatment. The study of 114 patients with community-acquired pneumonia, were evaluated nutritional deficiencies, the level of selenium in the blood plasma and the efficiency of application selenium biologically active additives in treatment of community acquired pneumonia. The vast majority of the 114 patients with community-acquired pneumonia is marked by malnutrition and selenium varying degrees of symptoms. Application of selenium dietary supplement in patients with community-acquired pneumonia contributes to earlier periods of permission of pneumonia and increase outcomes from full resolution infiltrative pulmonary field changes according to the radiographic study in patients of this category.

  12. Effects of intracerebroventricular administered fluoxetine on cardio-ventilatory functions in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Kermorgant, Marc; Lancien, Frédéric; Mimassi, Nagi; Tyler, Charles R; Le Mével, Jean-Claude

    2014-09-01

    Fluoxetine (FLX) is a selective serotonin (5-HT) reuptake inhibitor present in the aquatic environment which is known to bioconcentrate in the brains of exposed fish. FLX acts as a disruptor of various neuroendocrine functions in the brain, but nothing is known about the possible consequence of FLX exposure on the cardio-ventilatory system in fish. Here we undertook to investigate the central actions of FLX on ventilatory and cardiovascular function in unanesthetized rainbow trout (Oncorhynchus mykiss). Intracerebroventricular (ICV) injection of FLX (dosed between 5 and 25 μg) resulted in a significantly elevated total ventilation (VTOT), with a maximum hyperventilation of +176% (at a dose of 25μg) compared with vehicle injected controls. This increase was due to an increase in ventilatory amplitude (VAMP: +126%) with minor effects on ventilatory frequency. The highest dose of FLX (25 μg) produced a significant increase in mean dorsal aortic blood pressure (PDA: +20%) without effects on heart rate (ƒH). In comparison, intra-arterial injections of FLX (500-2,500 μg) had no effect on ventilation but the highest doses increased both PDA and ƒH. The ICV and IA cardio-ventilatory effects of FLX were very similar to those previously observed following injections of 5-HT, indicating that FLX probably acts via stimulating endogenous 5-HT activity through inhibition of 5-HT transporter(s). Our results demonstrate for the first time in fish that FLX administered within the brain exerts potent stimulatory effects on ventilation and blood pressure increase. The doses of FLX given to fish in our study are higher than the brain concentrations of FLX in fish that result from acute exposure to FLX through the water. Nonetheless, our results indicate possible disrupting action of long term exposure to FLX discharged into the environment on central target sites sensitive to 5-HT involved in cardio-ventilatory control. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  14. Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation.

    PubMed

    Prateeksha; Singh, Braj R; Shoeb, M; Sharma, S; Naqvi, A H; Gupta, Vijai K; Singh, Brahma N

    2017-01-01

    Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro . Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery.

  15. Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry.

    PubMed

    Vinceti, Marco; Maraldi, Tullia; Bergomi, Margherita; Malagoli, Carlotta

    2009-01-01

    The latest developments of epidemiologic and biochemical research suggest that current upper limits of intake for dietary selenium and for overall selenium exposure may be inadequate to protect human health. In particular, recent experimental and observational prospective studies indicate a diabetogenic effect of selenium at unexpectedly low levels of intake. Experimental evidence from laboratory studies and veterinary medicine appears to confirm previous epidemiologic observations that selenium overexposure is associated with an increased risk of amyotrophic lateral sclerosis, and a recent large trial indicated no beneficial effect in preventing prostate cancer. Moreover, the pro-oxidant properties of selenium species and the observation that the selenium-containing enzymes glutathione peroxidases are induced by oxidative stress imply that the increase in enzymatic activity induced by this metalloid may represent at least in part a compensatory response. Taken together, the data indicate that the upper safe limit of organic and inorganic selenium intake in humans may be lower than has been thought and that low-dose chronic overexposure to selenium may be considerably more widespread than supposed.

  16. Aquatic selenium pollution is a global environmental safety issue

    Treesearch

    A. Dennis Lemly

    2004-01-01

    Selenium pollution is a worldwide phenomenon and is associated with a broad spectrum of human activities, ranging from the most basic agricultural practices to the most high-tech industrial processes. Consequently, selenium contamination of aquatic habitats can take place in urban, suburban, and rural settings alike--from mountains to plains, from deserts to...

  17. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  18. Inverse association between gluthathione peroxidase activity and both selenium-binding protein 1 levels and gleason score in human prostate tissue

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND. Data from human epidemiological studies, cultured mammalian cells, and animal models have supported a potentially beneficial role of selenium (Se) in prostate cancer prevention. In addition, Se-containing proteins including members of the gutathione peroxidase (GPx) family and Selenium-B...

  19. Selenium and Human Health: Witnessing a Copernican Revolution?

    PubMed

    Jablonska, Ewa; Vinceti, Marco

    2015-01-01

    In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.

  20. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  1. Combined effect of selenium and ascorbic acid on alcohol induced hyperlipidemia in male guinea pigs.

    PubMed

    Asha, G S; Indira, M

    2004-02-01

    Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.

  2. Respiration and the generation of rhythmic outputs in insects.

    PubMed

    Kammer, A E

    1976-07-01

    In insects gas exchange may be: 1) entirely passive, when metabolic rate is low; 2) enhanced automatically by muscle contractions that produce movements, e.g., wing movements in flight; or 3) produced by ventilatory movements, particularly of the abdomen. In terrestrial insects such as locusts and cockroaches ventilatory movements are governed by a dominant oscillator in the metathoracic or anterior abdominal ganglion. The dominant oscillator overrides local oscillators in the abdominal ganglia and thus sets the rhythm for the entire abdomen, and it also controls spiracle opening and closing in several thoracic and abdominal segments. This ventilatory control mechanism appears to be different from that generating metachronal rhythms such as occur in the ventilatory and locomotory movements of aquatic arthropods. There are now several examples of rhythms, both ventilatory and locomotory, that can be generated by the central nervous system in the absence of phasic sensory feedback, but the mechanism of rhythm production is not known. Studies of ganglionic output suggest that neuronal oscillators can produce a range of frequencies and that some oscillators may be employed in more than one function or behavior. The mechanisms by which central oscillators are coupled to the output motorneurons are also not known; large phase changes suggest that in some cases different coupling interneurons are active. Intracellular recordings from identified neurons have begun to clarify the important roles of interneurons in the production of motor patterns.

  3. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  4. Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance.

    PubMed

    Metes-Kosik, Nicole; Luptak, Ivan; Dibello, Patricia M; Handy, Diane E; Tang, Shiow-Shih; Zhi, Hui; Qin, Fuzhong; Jacobsen, Donald W; Loscalzo, Joseph; Joseph, Jacob

    2012-12-01

    Selenium has complex effects in vivo on multiple homeostatic mechanisms such as redox balance, methylation balance, and epigenesis, via its interaction with the methionine-homocysteine cycle. In this study, we examined the hypothesis that selenium status would modulate both redox and methylation balance and thereby modulate myocardial structure and function. We examined the effects of selenium-deficient (<0.025 mg/kg), control (0.15 mg/kg), and selenium-supplemented (0.5 mg/kg) diets on myocardial histology, biochemistry and function in adult C57/BL6 mice. Selenium deficiency led to reactive myocardial fibrosis and systolic dysfunction accompanied by increased myocardial oxidant stress. Selenium supplementation significantly reduced methylation potential, DNA methyltransferase activity and DNA methylation. In mice fed the supplemented diet, inspite of lower oxidant stress, myocardial matrix gene expression was significantly altered resulting in reactive myocardial fibrosis and diastolic dysfunction in the absence of myocardial hypertrophy. Our results indicate that both selenium deficiency and modest selenium supplementation leads to a similar phenotype of abnormal myocardial matrix remodeling and dysfunction in the normal heart. The crucial role selenium plays in maintaining the balance between redox and methylation pathways needs to be taken into account while optimizing selenium status for prevention and treatment of heart failure. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Study on the effect of promoting intelligence development and preventing hypoxia/reoxygenation injury of selenium-banqiao-Codonopsis pilosula-overground part in mice].

    PubMed

    Xiao, Benjian; Chen, Guodong; Lan, Zongping

    2005-08-01

    To study on the effect of promoting intelligence development and preventing Hypoxia/Reoxygenation injury of Selenium-Banqiao-Codonopsis pilosula-overground part in mice. Promoting Intelligence Development experiment was induced by PIA; Hypoxia/reoxygenation ingury model was established to observe the activity of ROS, SOD, MOD and CAT in blood. Selenium-Banqiao-Codonopsis pilosula-overground part could enhance the learning and memory ability of old mice and obviously extend the swimming time of mice. It could also decrease the quality of ROS and MDA, increase the activity of SOD, but no significant effect on CAT. Selenium-Banqiao-Codonopsis pilosula-overground part has effect on promoting intelligence development and preventing hypoxia/reoxygenation injury.

  6. Protective effects of selenium on fluoride induced alterations in certain enzymes in brain of mice.

    PubMed

    Reddy, K Pratap; Sailaja, G; Krishnaiah, Chirumari

    2009-09-01

    This study reports the protective effects of selenium on fluoride induced alterations in the activities of pro-oxidative (xanthine oxidase (XOD), lipid peroxidation (LPO) free radical scavenging, [catalase, superoxide dismutase (SOD), glutathione-s-transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione) and metabolic (glucose-6-phosphate dehydrogenase, alanine amino transferase (ALAT), aspartate aminotransferase (AAT), creatine phosphokinase (CPK), acid phosphatase (AP), alkaline phosphatase (ALP)] enzymes along with fluoride and selenium levels in brain of mice. Animals were divided into control, NaF treated group (20 mg kg(-1) body wt.(-1) intraperitonial) and Selenium+NaF treated group (sodium selenite, 5 microg of selenium/0.2 ml distilled water kg(-1) body wt.(-1) day) and were maintained for 14 days on respective treatments. The decreased bodyweight (-11.35%) as well as organosomatic index (-15.1%) of brain in NaF group were recovered in treatment of selenium along with NaF. The increased accumulation of fluoride (32.1%) in brain observed in NaF treated group compared to control was diminished in selenium+NaF treated group. Selenium levels (3.03%) increased in selenium+NaF treated group in compared to decrement in NaF treatment. The SOD (-16.6%), Catalase (-21.5%), GST(-13.72%), GPX (-19.16%), GR (-44.97%) activities and Glutathione (-23%) content in NaF treated group were decreased significantly compared to controls, which were significantly (p < 0.01) recovered in selenium+NaF group. Increased XOD (10.85%) and LPO (8.61%) levels observed in brain of NaF treated mice were reversed with selenium treatment. Glucose-6-phosphate dehydrogenase (-46.98%), ALAT (-10.44%), AAT (-10.21%), CPK (-27.98%) were decreased and alkaline phosphatase (10.6%), acid phosphatase (24.09%) increased in brain of mice after administration of NaF. All metabolic enzymes were significantly (p < 0.01) reversed after administration of selenium to the NaF treated group. Thus, the adverse effects of NaF on oxidative and metabolic enzymes of brain were reversible with ameliorative action of selenium supplementation. As evident in this study the antioxidative nature of selenium coupled with its reversal effect on metabolic enzymes in brain of mice treated with fluoride suggests its use as antidote agent against fluorosis.

  7. Effects of selenium supplementation on the oxidative state of acute heat stress-exposed quails.

    PubMed

    Del Vesco, A P; Gasparino, E; Zancanela, V; Grieser, D O; Stanquevis, C E; Pozza, P C; Oliveira Neto, A R

    2017-02-01

    This study aimed to evaluate the effect of heat stress (HS) and selenium supplementation on markers of stress, meat quality and gene expression. For this, meat quails of 42 days of age were fed a diet that either met [0.33 mg/kg, nutritional demand for selenium (SS)] or did not meet [0.11 mg/kg, selenium deficient (SD)] the nutritional demands for selenium during the 7 days of evaluation. In addition, the animals were kept at either a thermal comfort temperature (25 °C) or exposed to HS (38 °C for 24 h). Glutathione synthetase (GSS), glutathione reductase (GSR) and uncoupling protein (UCP) gene expression were influenced by the interaction between temperature and diet. Animals subjected to HS and fed the SS diet exhibited the highest GSS and GSR gene expression. In terms of UCP gene expression, the lowest values were observed in HS animals on the SD diet. Glutathione peroxidase 7 (GPX7) gene expression, body temperature (BT) and creatine kinase (CK) activity were influenced by both selenium supplementation and HS. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) activity and creatinine content all were influenced by the diet/environment interaction. The highest AST activity, ALT activity and creatinine levels were observed in animals that were both on the SD diet and exposed to HS. HS animals also exhibited an increased heterophil/lymphocyte ratio and lower triiodothyronine (T3) hormone levels than birds that remained at the comfortable temperature. Animals subjected to HS and fed with selenium supplemented diet showed better results regarding gene expression and, thus, better results for the activities of enzymes used as stress markers, which could be due to the higher antioxidant capacity provided by the action of the studied genes. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  8. Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles.

    PubMed

    Dutta, Raj Kumar; Nenavathu, Bhavani Prasad; Talukdar, Soumita

    2014-02-01

    Selenium doped ZnO nanoparticles synthesized by mechanochemical method were spherically shaped of size distribution of 10.2±3.4 nm measured by transmission electron microscopy. Diffused reflectance spectroscopy revealed increase in the band gap, ranging between 3.47 eV and 3.63 eV due to Se doping in ZnO nanoparticles. The antibacterial activity of pristine and Se doped ZnO nanoparticles was attributed to ROS (reactive oxygen species) generation in culture media confirmed by TBARS assay. Compared to complete inhibition of growth by 0.45 mg/mL of pristine ZnO nanoparticles, the batches of 0.45 mg/mL of selenium doped ZnO nanoparticles exhibited only 51% inhibition of growth of Escherichia coli. The reduced antibacterial activity of selenium doped ZnO nanoparticles was attributed to two opposing factors, e.g., ROS generation for inhibition of growth, countered by sustaining growth of E. coli due to availability of Se micronutrients in culture media, confirmed by inductively coupled plasma mass spectrometer measurement. Higher ROS generation by selenium doped ZnO nanoparticles was attributed to creation of oxygen vacancies, confirmed from green emission peak observed at 565 nm. The impact of higher ROS generation by selenium doped ZnO nanoparticles was evident from enhanced photocatalytic degradation of trypan blue dye, than pristine ZnO nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Selenium and sulphur derivatives of hydroxytyrosol: inhibition of lipid peroxidation in liver microsomes of vitamin E-deficient rats.

    PubMed

    Rodríguez-Gutiérrez, Guillermo; Rubio-Senent, Fátima; Gómez-Carretero, Antonio; Maya, Inés; Fernández-Bolaños, Juan; Duthie, Garry G; de Roos, Baukje

    2018-05-28

    The objective of this study was to evaluate the capacity of modified phenols synthesized from hydroxytyrosol, a natural olive oil phenol, specifically those containing a selenium or sulphur group, to inhibit lipid peroxidation. The compounds' abilities to inhibit lipid peroxidation in liver microsomes obtained from vitamin E-deficient rats were compared to hydroxytyrosol. All synthetic compounds had a significant higher ability to inhibit lipid peroxidation than hydroxytyrosol. Selenium derivates displayed a higher antioxidant activity than sulphur derivatives. In addition, the antioxidant activity increased with a higher number of heteroatoms in the hydroxytyrosol molecular structure. The study shows, for the first time, the ability of synthetic compounds, derived from the most active phenol present in olives in free form (hydroxytyrosol), and containing one or two atoms of sulphur or selenium, to inhibit the lipid peroxidation of vitamin E-deficient microsomes. The antioxidant activity of five thioureas, a disulfide, a thiol, three selenoureas, a diselenide, and a selenonium were evaluated and the results showed a higher inhibition of lipid peroxidation than the natural phenol. Selenium and sulphur derivatives of hydroxytyrosol are novel antioxidants with the potential to supplement the lack of vitamin E in the diet as natural alternatives for the prevention of diseases related to oxidative damage.

  10. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  11. Glutathione peroxidase response in tissues of rats fed diets containing fish protein concentrate prepared from shark flesh of known mercury and selenium contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, S.J.; Andrewartha, K.A.

    1981-01-01

    Studies have been reported using experimental animals and synthetic diets containing selenium and mercury compounds to demonstrate detoxification of mercury by selenium. The mechanism of detoxification remains obscure. Most experiments have involved the use of high levels of both elements and relied on the observation of gross symptoms. The measurement of enzyme systems may be useful in detecting effects of mercury at a lower, subclinical level and in elucidating the biochemistry of mercury/selenium interactions. The activity of the selenoenzyme glutathione peroxidase (GSH-Px) in rats is dependent on dietary selenium and attempts have been made to use this enzyme as anmore » indicator of mercury/selenium interactions. The research described in this paper was designed to investigate the effect of mercury, in the form and amounts which occur naturally in seafood, on the availability of selenium at levels approximating the nutritional requirement. In anticipation of mercury lowering the GSH-Px response a range of selenium concentrations was used, from nutritional deficiency to three times the nutritional requirement.« less

  12. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing

    2008-06-25

    Both selenium and phycocyanin have been reported to show potent cancer chemopreventive activities. In this study, we investigated the in vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin (Se-PC) purified from selenium-enriched Spirulina platensis. The antioxidant activity of Se-PC was evaluated by using four different free radical scavenging assays, namely, the 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, superoxide anion scavenging assay, and erythrocyte hemolysis assay. The results indicated that Se-PC exhibited stronger antioxidant activity than phycocyanin by scavenging ABTS, DPPH, superoxide anion, and 2,2'-azobis-(2-amidinopropane)dihydrochloride free radicals. Se-PC also showed dose-dependent protective effects on erythrocytes against H 2O 2-induced oxidative DNA damage as evaluated by the Comet assay. Moreover, Se-PC was identified as a potent antiproliferative agent against human melanoma A375 cells and human breast adenocarcinoma MCF-7 cells. Induction of apoptosis in both A375 and MCF-7 cells by Se-PC was evidenced by accumulation of sub-G1 cell populations, DNA fragmentation, and nuclear condensation. Further investigation on intracellular mechanisms indicated that depletion of mitochondrial membrane potential (DeltaPsi m) was involved in Se-PC-induced cell apoptosis. Our findings suggest that Se-PC is a promising organic Se species with potential applications in cancer chemoprevention.

  13. Substance P-induced respiratory excitation is blunted by delta-receptor specific opioids in the rat medulla oblongata.

    PubMed

    Chen, Z; Hedner, J; Hedner, T

    1996-06-01

    The effects of substance P (SP) and the naturally occurring met-enkephalin and the synthetic mu-specific opioid agonist, DAGO (Tyr-D-Ala-Gly-N-Methy-Phe-Gly-ol) and the delta-specific opioid agonist DADL (Tyr-D-Ala-Gly-Phe-D-Leu) on basal ventilation were investigated in halothane-anaesthetized rats. Local injections of SP (0.75-1.5 nmol) in the ventrolateral medulla oblongata (VLM), e.g. nucleus paragigantocellularis, and nucleus reticularis lateralis increased ventilation because of an elevation of tidal volume. Met-enkephalin induced a short-lasting ventilatory depression mainly because of a depression of tidal volume. Activation of delta- and mu-opioid receptors in the VLM by local application of DADL and DAGO, respectively, induced ventilatory depression, which was later in onset and more long-lasting. Local administration of met-enkephalin into the VLM also produced a long-lasting inhibition of the SP-induced ventilatory excitation. A similar blockade of the SP-induced excitatory ventilatory response could be elicited by DADL but not by DAGO. This antagonistic effect was attenuated by local application of the delta-opioid receptor antagonist ICI 154. 129. We conclude that the naturally occurring met-enkephalin as well as synthetic mu- and delta-specific enkephalin analogues (DAGO and DADL, respectively) in VLM depress basal ventilation by an effect on inspiratory drive. There is a functional antagonism between activation of delta-opioid receptors and SP receptors into the VLM in respect to respiratory regulation.

  14. New scientific challenges - the possibilities of using selenium in poultry nutrition and impact on meat quality

    NASA Astrophysics Data System (ADS)

    Marković, R.; Glišić, M.; Bošković, M.; Baltić, M. Ž.

    2017-09-01

    Physiological stress is one of many concerns facing modern broiler production. In conditions when birds are exposed to stress, supplementation of selenium, which is a crucial glutathione peroxidase enzymatic cofactor, increases the antioxidant capacity of the animals and decreases the harmful effects of free radicals. Dietary selenium improves production performance and health of animals, and positively affects the immune system, the quality, selenium content and fatty acid composition of meat and eggs. There are several different forms of selenium, the most common dietary supplements being an inorganic form (sodium selenite) and anorganic form (selenomethionine). However, in recent years, new forms of selenium, such as a 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) and nanoselenium, which have more bioavailability, bioefficacy, and low toxicity have been designed. In this short comparative overview discusses the effects of inorganic, organic and nanoforms of selenium on production results, glutathione peroxidase activity, meat quality and level of toxicity in poultry.

  15. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.

    PubMed

    Coates, E L; Ballam, G O

    1987-01-01

    1. Tidal volume, end-tidal CO2, and ventilatory frequency in Tupinambis nigropunctatus were measured in response to CO2 (1-4%) delivered to either the mouth or nares. Additionally, the sensitivity of the ventilatory response to nasal CO2 was evaluated at CO2 concentrations less than 1%. The ventilatory parameters were also measured in response to CO2 (1-4%) delivered to the nares after the olfactory peduncle was transected. 2. It was found that (0.4-4%) nasal CO2 depressed ventilatory frequency by 9% to 83% respectively, while tidal volume was not significantly altered. CO2 (1-4%) delivered to the mouth produced no apparent changes in any of the ventilatory parameters. Following transection of the olfactory peduncle, nasal CO2 was ineffective in producing any change in ventilatory frequency or depth. 3. These findings indicate that CO2-sensitive receptors are located in either the nasal or vomeronasal membranes of tegu lizards and that the olfactory peduncle must be intact for these receptors to affect ventilatory changes in response to elevated CO2 concentrations. The receptors are capable of mediating a ventilatory response to CO2 concentrations lower than those found in either expired air or in confined spaces such as occupied burrows. 4. The discrepancies in the ventilatory responses of lizards and snakes to inspired CO2 reported in past experiments may be partially explained by the presence of nasal or vomeronasal CO2-sensitive receptors.

  16. Selenium status and fungi in the protein-losing enteropathy of persistent diarrhea.

    PubMed

    Dwipoerwantoro, Pramita G; Lukito, Widjaja; Aulia, Diana; Arnaud, Josiane; Roussel, Anne-Marie

    2017-06-01

    A vicious cycle of infection, malabsorption, and malnutrition has been implicated in the perpetuation of diarrheal disease. This study examined whether persistent diarrhea is associated with changes in selenium status and stool alpha-1 antitrypsin (AAT) concentration. This cross-sectional study included 30 children aged 1-12 years with persistent diarrhea who were hospitalized in Cipto Mangunkusumo Hospital and Fatmawati Hospital, Jakarta, and 30 apparently healthy children who were matched by age and sex and lived in a rural area of Jakarta. Clinical examinations, blood routine tests, erythrocyte glutathione peroxidase (GPX) activity and plasma selenium levels as well as AAT in fresh stool samples were performed in all the subjects. Of 30 children with persistent diarrhea, 17 had moderate malnutrition and 13 had severe malnutrition. The mean plasma selenium was significantly lower in children with persistent diarrhea than in children without diarrhea (86.0 μg/L [95% CI: 76.1-95.9] vs 110 μg/L [95% CI: 104-116, p<0.0001). The mean stool AAT concentration was significantly higher in children with persistent diarrhea than in those without diarrhea (115 mg/dL [95% CI: 38.5-191] vs 16 mg/dL [95% CI: 4.0-13.5, p<0.0001]). Selenium correlated with AAT (p=0.05). Fecal fungi were persistently present. Although selenium status in both groups was optimal for the obtained plasma GPX activity, children with persistent diarrhea exhibited lower plasma selenium levels. This study suggests that the decrease in the plasma selenium level may be the consequence of protein loss and that fungi may be involved.

  17. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population.

    PubMed

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik; Debrabant, Birgit; Nybo, Mads; Cold, Søren; Hegedüs, Laszlo

    2015-06-01

    Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake. The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast or matching yeast-based placebo tablets (n=126). A total of 361 participants, equally distributed across treatment groups, completed the 5-year intervention period. Plasma samples were analyzed for selenium and serum samples for TSH, free triiodothyronine (FT3), and free thyroxine (FT4) at baseline, and after 6 months, and 5 years of supplementation. Plasma selenium concentrations increased significantly and dose-dependently in treatment groups receiving selenium (P<0.001). Serum TSH and FT4 concentrations decreased significantly and dose-dependently by 0.066 mIU/l (P=0.010) and 0.11 pmol/l (P=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared with placebo, by decreasing serum TSH and FT4 concentrations. Based on these findings, selenium supplementation is not warranted under conditions of marginal selenium deficiency. However, a role for selenium supplementation in the treatment of autoimmune thyroid diseases is still unresolved. © 2015 European Society of Endocrinology.

  18. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate.

    PubMed

    Larsen, Erik H; Lobinski, Ryszard; Burger-Meÿer, Karin; Hansen, Marianne; Ruzik, Rafal; Mazurowska, Lena; Rasmussen, Peter Have; Sloth, Jens J; Scholten, Olga; Kik, Chris

    2006-07-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 microg g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma-glutamyl-Se-methyl-selenocysteine and gamma-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.

  19. Selenium concentrations in the razorback sucker (Xyrauchen texanus): Substitution of non-lethal muscle plugs for muscle tissue in contaminant assessment

    USGS Publications Warehouse

    Waddell, B.; May, T.

    1995-01-01

    A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.

  20. Intermittent hypercapnic hypoxia during sleep does not induce ventilatory long-term facilitation in healthy males.

    PubMed

    Deacon, Naomi L; McEvoy, R Doug; Stadler, Daniel L; Catcheside, Peter G

    2017-09-01

    Intermittent hypoxia-induced ventilatory neuroplasticity is likely important in obstructive sleep apnea pathophysiology. Although concomitant CO 2 levels and arousal state critically influence neuroplastic effects of intermittent hypoxia, no studies have investigated intermittent hypercapnic hypoxia effects during sleep in humans. Thus the purpose of this study was to investigate if intermittent hypercapnic hypoxia during sleep induces neuroplasticity (ventilatory long-term facilitation and increased chemoreflex responsiveness) in humans. Twelve healthy males were exposed to intermittent hypercapnic hypoxia (24 × 30 s episodes of 3% CO 2 and 3.0 ± 0.2% O 2 ) and intermittent medical air during sleep after 2 wk washout period in a randomized crossover study design. Minute ventilation, end-tidal CO 2 , O 2 saturation, breath timing, upper airway resistance, and genioglossal and diaphragm electromyograms were examined during 10 min of stable stage 2 sleep preceding gas exposure, during gas and intervening room air periods, and throughout 1 h of room air recovery. There were no significant differences between conditions across time to indicate long-term facilitation of ventilation, genioglossal or diaphragm electromyogram activity, and no change in ventilatory response from the first to last gas exposure to suggest any change in chemoreflex responsiveness. These findings contrast with previous intermittent hypoxia studies without intermittent hypercapnia and suggest that the more relevant gas disturbance stimulus of concomitant intermittent hypercapnia frequently occurring in sleep apnea influences acute neuroplastic effects of intermittent hypoxia. These findings highlight the need for further studies of intermittent hypercapnic hypoxia during sleep to clarify the role of ventilatory neuroplasticity in the pathophysiology of sleep apnea. NEW & NOTEWORTHY Both arousal state and concomitant CO 2 levels are known modulators of the effects of intermittent hypoxia on ventilatory neuroplasticity. This is the first study to investigate the effects of combined intermittent hypercapnic hypoxia during sleep in humans. The lack of neuroplastic effects suggests a need for further studies more closely replicating obstructive sleep apnea to determine the pathophysiological relevance of intermittent hypoxia-induced ventilatory neuroplasticity. Copyright © 2017 the American Physiological Society.

  1. Erythrocyte selenium concentration predicts intensive care unit and hospital mortality in patients with septic shock: a prospective observational study

    PubMed Central

    2014-01-01

    Introduction Selenoenzymes can modulate the extent of oxidative stress, which is recognized as a key feature of septic shock. The pathophysiologic role of erythrocyte selenium concentration in patients with septic shock remains unknown. Therefore, the objective of this study was to evaluate the association of erythrocyte selenium concentration with glutathione peroxidase (GPx1) activity, GPx1 polymorphisms and with ICU and hospital mortality in septic shock patients. Methods This prospective study included all patients older than 18 years with septic shock on admission or during their ICU stay, admitted to one of the three ICUs of our institution, from January to August 2012. At the time of the patients’ enrollment, demographic information was recorded. Blood samples were taken within the first 72 hours of the patients’ admission or within 72 hours of the septic shock diagnosis for determination of selenium status, protein carbonyl concentration, GPx1 activity and GPx1 Pro198Leu polymorphism (rs 1050450) genotyping. Results A total of 110 consecutive patients were evaluated. The mean age was 57.6 ± 15.9 years, 63.6% were male. Regarding selenium status, only erythrocyte selenium concentration was lower in patients who died in the ICU. The frequencies for GPx1 Pro198Leu polymorphism were 55%, 38% and 7% for Pro/Pro, Pro/Leu and Leu/Leu, respectively. In the logistic regression models, erythrocyte selenium concentration was associated with ICU and hospital mortality in patients with septic shock even after adjustment for protein carbonyl concentration and acute physiology and chronic health evaluation II score (APACHE II) or sequential organ failure assessment (SOFA). Conclusions Erythrocyte selenium concentration was a predictor of ICU and hospital mortality in patients with septic shock. However, this effect was not due to GPx1 activity or Pro198Leu polymorphism. PMID:24887198

  2. The Hypolipidemic and Pleiotropic Effects of Rosuvastatin Are Not Enhanced by Its Association with Zinc and Selenium Supplementation in Coronary Artery Disease Patients: A Double Blind Randomized Controlled Study

    PubMed Central

    Sena-Evangelista, Karine Cavalcanti Maurício; Pedrosa, Lucia Fatima Campos; Paiva, Maria Sanali Moura Oliveira; Dias, Paula Cristina Silveira; Ferreira, Diana Quitéria Cabral; Cozzolino, Sílvia Maria Franciscato; Faulin, Tanize Espírito Santo; Abdalla, Dulcinéia Saes Parra

    2015-01-01

    Objective Statins treatment may modify the levels of zinc and selenium, minerals that can improve vascular function and reduce oxidative damage and inflammation in atherosclerotic patients. This study aimed to evaluate the effects of rosuvastatin, alone or associated with zinc and selenium supplementation, on lipid profile, antioxidant enzymes and mineral status in coronary artery disease patients. Material and Methods A double-blind randomized clinical trial was performed in which patients (n = 76) were treated with 10 mg rosuvastatin over 4 months associated or not with zinc (30 mg/d) and selenium (150 μg/d) supplementation. The following parameters were analyzed before and after the intervention: anthropometric measurements, lipid profile, high sensitivity C-reactive protein (hs-CRP), electronegative low density lipoprotein (LDL(-)) concentrations, activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), zinc and selenium concentrations in blood plasma and erythocytes. Significance was determined using an α of 5% (two-tailed). Results We found that rosuvastatin therapy was efficient in reducing total cholesterol, LDL-cholesterol, non-HDL cholesterol, triglycerides, and hs-CRP independently of mineral supplementation. Neither treatment was associated with significant changes in LDL(-). Similarly, the antioxidant enzymes GPx and SOD activity were unchanged by treatments. Neither treatment was associated with significant differences in concentrations of zinc or selenium in blood plasma and erythocytes of studied groups. Conclusion Rosuvastatin treatment did not affect zinc and selenium levels in coronary artery disease patients. The zinc and selenium supplementation at doses used in this study did not change lipid profile or SOD and GPx activity in patients receiving rosuvastatin. Further studies should be focused on testing alternative doses and supplements in different populations to contribute for a consensus on the ideal choice of antioxidants to be used as possible complementary therapies in atherosclerotic patients. Trial Registration ClinicalTrials.gov NCT01547377 PMID:25785441

  3. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  4. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  5. Probing for the Activities of Arsenic and Selenium Metabolizing Microbes

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.

    2007-12-01

    Microbial activities can directly impact the mobility and toxicity of arsenic and selenium in the environment. Arsenic is cycled through oxidation/reduction and methylation/demethylation reactions as part of resistance and respiratory processes. The requirement for selenium is primarily for incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can also serve as an electron acceptor in anaerobic respiration. Both culture and culture-independent methods have been developed to detect the presence and activity of organisms capable of arsenic and selenium transformations. Enrichment media have been successful at cultivating arsenate respiring bacteria from a variety of environments, however, both electron donor and the concentration of arsenic can exert strong selective pressure. Thus, the organisms in the enrichment culture may not be the dominant organisms in the environment. Culture-independent methods, including immunological approaches (e.g., polyclonal antibodies to ArrA) and PCR-based technologies, have also had mixed success. PCR-primers designed to amplify portions of genes involved in resistance (e.g., arsC, acr3), respiration (e.g., arrA), and oxidation (e.g., aoxB) have been useful in several environments. Applications include T-RFLP, rt-PCR, and DGGE analyses. Nevertheless, these primers do not work with certain organisms suggesting the existence of additional enzymes and pathways. Although the biosynthetic pathway (and the proteins involved) for selenocysteine has been described in detail, much less is known about selenium methylation, assimilation and respiration. Only one respiratory selenate reductase has been characterized and its close sequence identity with chlorate and perchlorate reductases has complicated efforts to design a functional probe. Thus many aspects of the biogeochemical cycle of selenium remains to be explored.

  6. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  7. The Association between Hantavirus Infection and Selenium Deficiency in Mainland China

    PubMed Central

    Fang, Li-Qun; Goeijenbier, Marco; Zuo, Shu-Qing; Wang, Li-Ping; Liang, Song; Klein, Sabra L.; Li, Xin-Lou; Liu, Kun; Liang, Lu; Gong, Peng; Glass, Gregory E.; van Gorp, Eric; Richardus, Jan H.; Ma, Jia-Qi; Cao, Wu-Chun; de Vlas, Sake J.

    2015-01-01

    Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses and transmitted by rodents is a significant public health problem in China, and occurs more frequently in selenium-deficient regions. To study the role of selenium concentration in HFRS incidence we used a multidisciplinary approach combining ecological analysis with preliminary experimental data. The incidence of HFRS in humans was about six times higher in severe selenium-deficient and double in moderate deficient areas compared to non-deficient areas. This association became statistically stronger after correction for other significant environment-related factors (low elevation, few grasslands, or an abundance of forests) and was independent of geographical scale by separate analyses for different climate regions. A case-control study of HFRS patients admitted to the hospital revealed increased activity and plasma levels of selenium binding proteins while selenium supplementation in vitro decreased viral replication in an endothelial cell model after infection with a low multiplicity of infection (MOI). Viral replication with a higher MOI was not affected by selenium supplementation. Our findings indicate that selenium deficiency may contribute to an increased prevalence of hantavirus infections in both humans and rodents. Future studies are needed to further examine the exact mechanism behind this observation before selenium supplementation in deficient areas could be implemented for HFRS prevention. PMID:25609306

  8. Simultaneous quantitation and identification of organic and inorganic selenium in diet supplements by liquid chromatography with tandem mass spectrometry.

    PubMed

    Zembrzuska, Joanna; Matusiewicz, Henryk; Polkowska-Motrenko, Halina; Chajduk, Ewelina

    2014-01-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for selenium speciation in dietary supplements. Chromatographic separation was performed on a TSK-Gel ODS-100V column using a mixture of 5mM ammonium acetate water solution and methanol as a mobile phase. Conditions chosen for this process allowed to separate all investigated chemical compounds of selenium: seleno-l-methionine, methyl-seleno-l-cysteine, l-selenocystine, methaneseleninic acid, selenite and selenate. A tandem mass spectrometer with an ion trap operating in negative or positive ion mode according to the selenium form being determined was used as a detector. Three extraction procedures: water extraction, enzymatic hydrolysis and sequential extraction were used for preparation of samples for the determination of the actual forms of selenium in diet supplements. The developed method was used for analysis of six dietary supplements containing selenium bought in a pharmacy and supermarket. Apart from speciation analysis of selenium content in supplements total selenium content was determined using instrumental neutron activation analysis (INAA). All expected forms of selenium except for selenite were determined using LC-MS/MS technique. It should be stressed that amounts of selenate were smaller than expected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity.

    PubMed

    Gao, Zhenzhen; Chen, Jin; Qiu, Shulei; Li, Youying; Wang, Deyun; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Li, Hongquan; Hu, Yuanliang

    2016-01-20

    Garlic polysaccharide (GPS) was modified in selenylation respectively by nitric acid-sodium selenite (NA-SS), glacial acetic acid-selenous acid (GA-SA), glacial acetic acid-sodium selenite (GA-SS) and selenium oxychloride (SOC) methods each under nine modification conditions of L9(3(4)) orthogonal design and each to obtain nine selenizing GPSs (sGPSs). Their structures were identified, yields and selenium contents were determined, selenium yields were calculated, and the immune-enhancing activities of four sGPSs with higher selenium yields were compared taking unmodified GPS as control. The results showed that among four methods the selenylation efficiency of NA-SS method were the highest, the activity of sGPS5 was the strongest and significantly stronger than that of unmodified GPS. This indicates that selenylation modification can significantly enhance the immune-enhancing activity of GPS, NA-SS method is the best method and the optimal conditions are 0.8:1 weight ratio of sodium selenite to GPS, reaction temperature of 70 °C and reaction time of 10h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of dietary selenium and moisture on the physical activity and thyroid axis of cats

    Treesearch

    S. E. Hooper; R. Backus; S. Amelon

    2018-01-01

    Consumption of canned cat food is considered a risk factor for the development of feline hyperthyroidism. Because selenium and water are substantially higher in canned diets compared to dry diets, objectives of this study were to determine whether increased dietary selenium or water alters the function of the hypothalamic–pituitary– thyroid axis and leads to an...

  11. Increased plasma selenium is associated with better outcomes in children with systemic inflammation.

    PubMed

    Leite, Heitor Pons; Nogueira, Paulo Cesar Koch; Iglesias, Simone Brasil de Oliveira; de Oliveira, Susyane Vieira; Sarni, Roseli Oselka Saccardo

    2015-03-01

    The aim of this study was to assess the effects of changes in plasma selenium on the outcome of critically ill children. Plasma selenium was prospectively measured in 99 children with acute systemic inflammation. The exposure variables were selenium level on admission and on day 5 of stay in the intensive care unit (ICU) and the difference in selenium concentrations between day 5 post-admission and the ICU admission (delta selenium). Selenium was given only as part of enteral diets. Age, malnutrition, red cell glutathione peroxidase-1 activity, serum C-reactive protein, Pediatric Index of Mortality 2, and Pediatric Logistic Organ Dysfunction scores were analyzed as covariates. The outcome variables were ventilator-free days, ICU-free days, and 28-d mortality. Plasma selenium concentrations increased from admission (median 23.4 μg/L, interquartile range 12.0-30.8) to day 5 (median 25.1 μg/L, interquartile range 16.0-39.0; P = 0.018). After adjustment for confounding factors, a delta selenium increase of 10 μg/L was associated with reductions in ventilator days (1.3 d; 95% confidence interval [CI], 0.2-2.3; P = 0.017) and ICU days (1.4 d; 95% CI, 0.5-2.3; P < 0.01). Delta selenium >0 was associated with decreased 28-d mortality on a univariate model (odds ratio, 0.67; 95% CI, 0.46-0.97; P = 0.036). The mean daily selenium intake (6.82 μg; range 0-48.66 μg) was correlated with the increase in selenium concentrations on day 5. An increase in plasma selenium is independently associated with shorter times of ventilation and ICU stay in children with systemic inflammation. These findings raise the hypothesis that selenium supplementation could be beneficial in children with critical illnesses. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Exercise Ventilatory Limitation: The Role Of Expiratory Flow Limitation

    PubMed Central

    Babb, Tony G.

    2012-01-01

    Ventilatory limitation to exercise remains an important unresolved clinical issue; as a result, many individuals misinterpret the effects of expiratory flow limitation as an all-or-nothing phenomenon. Expiratory flow limitation is not all-or-none; approaching maximal expiratory flow can have important effects not only on ventilatory capacity but also on breathing mechanics, ventilatory control, and possibly exertional dyspnea and exercise intolerance. PMID:23038244

  13. Influence of selenium and fluoride on blood antioxidant capacity of rats.

    PubMed

    Feng, Pei; Wei, Jun-ren; Zhang, Zi-gui

    2012-09-01

    This study is to explore the effect of selenium and fluoride on blood antioxidant capacity of rats, and try to find out the optimal level of selenium in drinking water against fluorosis. Animals were divided into control group, sodium fluoride treated group (NaF, 50 mg/L) and selenium+NaF treated group (sodium selenite 0.375, 0.75, 1.5 mg/L) in water were respectively administered to male rats, which were decapitated after 6 months. Their blood was collected for GSH-Px activity, plasma SOD activity, T-AOC assay, uric acid assay, sialic acid (SA) content and MDA content, and the fluidity of erythrocyte membrane by electron spin resonance (ESR) was analyzed. The results showed that, compared with the control group, the blood antioxidant capacity of the rats exposed to fluoride was down-regulated significantly (P<0.05, P<0.01), MDA content increased significantly (P<0.05), the fluidity of erythrocyte membrane decreased (P<0.05, P<0.01). Meanwhile, the treatments of selenium along with NaF compared with fluorosis group, SOD activity, GSH-Px activity and T-AOC assay increased respectively, MDA content decreased significantly (P<0.05) in NaF+Se (Se 0.75, 1.5 mg/L) treated groups, uric acid level was up-regulated, but had no statistical significant difference (P>0.05). The fluidity of erythrocyte membrane showed significant increase (P<0.05), the content of SA was lower. Fluorosis could induce the decline of blood antioxidant capacity and the fluidity of erythrocyte membrane, as evident in this study, and Se at different levels possess some antagonistic effects on blood induced by fluoride. However, high dose of selenium (1.5 mg/L) is the optimum concentration. Copyright © 2010 Elsevier GmbH. All rights reserved.

  14. The obstructive sleep apnoea syndrome in adolescents.

    PubMed

    Marcus, Carole L; Keenan, Brendan T; Huang, Jingtao; Yuan, Haibo; Pinto, Swaroop; Bradford, Ruth M; Kim, Christopher; Bagchi, Sheila; Comyn, Francois-Louis; Wang, Stephen; Tapia, Ignacio E; Maislin, Greg; Cielo, Christopher M; Traylor, Joel; Torigian, Drew A; Schwab, Richard J

    2017-08-01

    The obstructive sleep apnoea syndrome (OSAS) results from a combination of structural and neuromotor factors; however, the relative contributions of these factors have not been studied during the important developmental phase of adolescence. We hypothesised that adenotonsillar volume (ATV), nasopharyngeal airway volume (NPAV), upper airway critical closing pressure (Pcrit) in the hypotonic and activated neuromotor states, upper airway electromyographic response to subatmospheric pressure and the ventilatory response to CO 2 during sleep would be major predictors of OSAS risk. 42 obese adolescents with OSAS and 37 weight-matched controls underwent upper airway MRI, measurements of Pcrit, genioglossal electromyography and ventilatory response to CO 2 during wakefulness and sleep. ATV, NPAV, activated and hypotonic Pcrit, genioglossal electromyography and ventilatory response to CO 2 during sleep were all associated with OSAS risk. Multivariate models adjusted for age, gender, body mass index and race indicated that ATV, NPAV and activated Pcrit each independently affected apnoea risk in adolescents; genioglossal electromyography was independently associated in a reduced sample. There was significant interaction between NPAV and activated Pcrit (p=0.021), with activated Pcrit more strongly associated with OSAS in adolescents with larger NPAVs and NPAV more strongly associated with OSAS in adolescents with more negative activated closing pressure. OSAS in adolescents is mediated by a combination of anatomic (ATV, NPAV) and neuromotor factors (activated Pcrit). This may have important implications for the management of OSAS in adolescents. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Influence of HIV infection and the use of antiretroviral therapy on selenium and selenomethionine concentrations and antioxidant protection.

    PubMed

    Watanabe, Lígia Moriguchi; Barbosa Júnior, Fernando; Jordão, Alceu Afonso; Navarro, Anderson Marliere

    2016-01-01

    The aim of the present study was to evaluate whether HIV infection and antiretroviral therapy (ART) use are associated with oxidative stress, concentrations of selenium and selenomethionine, and antioxidant protection. Individuals were classified as HIV negatives: control group (CG; n = 40); HIV positives: group 1 (G1; taking ART for >5 y, n = 40) and group 2 (G2; taking ART for <5 y, n = 40). Plasma and erythrocyte selenium, selenomethionine, glutathione (GSH), glutathione peroxidase activity (GPX), and malondialdehyde (MDA) were evaluated. Selenium deficiency (plasma selenium 45 μg/L) was not observed in any of the participants, and plasma selenium in CG (69.4 μg/L) was lower than in G1 and G2 (88.4 and 72.5 μg/L, respectively). G1 and G2 showed higher concentrations of MDA and GPX and lower concentration of GSH than CG. Multiple linear regression analysis indicated an association of MDA, GPX, and GSH with HIV status. CG participants showed higher concentrations of selenomethionine than G1 and G2 individuals and we observed a significant negative correlation between the concentration of selenomethionine and the use of ART. Prolonged ART use seems to increase the selenium in plasma, but influences the reduction of selenomethionine. HIV infection was associated with increased oxidative stress and appears to affect in protective activity of GPX. Finally, more studies are required to further address the importance of selenium and selenometabolites in the pathogenesis of infection and metabolism of HIV-positive individuals in prolonged use of ART. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  17. Selenium suppresses leukemia through the action of endogenous eicosanoids

    PubMed Central

    Gandhi, Ujjawal H.; Kaushal, Naveen; Hegde, Shailaja; Finch, Emily R.; Kudva, Avinash K.; Kennett, Mary J.; Jordan, Craig T.; Paulson, Robert F.; Prabhu, K. Sandeep

    2014-01-01

    Eradicating cancer stem-like cells (CSC) may be essential to fully eradicate cancer. Metabolic changes in CSC could hold a key to their targeting. Here we report that the dietary micronutrient selenium can trigger apoptosis of CSC derived from chronic or acute myelogenous leukemias when administered at supraphysiological but non-toxic doses. In leukemia CSC, selenium treatment activated ATM-p53-dependent apoptosis accompanied by increased intracellular levels of reactive oxygen species. Importantly, the same treatment did not trigger apoptosis in hematopoietic stem cells. Serial transplantation studies with BCR-ABL-expressing CSC revealed that the selenium status in mice was a key determinant of CSC survival. Selenium action relied upon the endogenous production of the cyclooxygenase-derived prostaglandins Δ12-PGJ2 and 15d-PGJ2. Accordingly, non-steroidal anti-inflammatory drugs and NADPH oxidase inhibitors abrogated the ability of selenium to trigger apoptosis in leukemia CSC. Our results reveal how selenium-dependent modulation of arachidonic acid metabolism can be directed to trigger apoptosis of primary human and murine CSC in leukemia. PMID:24872387

  18. Reproduction in eastern screech-owls fed selenium

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Hoffman, D.J.

    1996-01-01

    Raptors are occasionally exposed to excessive selenium from contaminated prey, but the effects of this exposure on reproduction are unknown. Therefore, we fed captive eastern screech-owls (Otus asio) diets containing 0, 4.4, or 13.2 ppm (wet wt) added selenium in the form of seleno-DL-methionine. Adult mass at sacrifice and reproductive success of birds receiving 13.2 ppm selenium were depressed (P < 0.05) relative to controls. Parents given 4.4 ppm selenium produced no malformed nestlings, but femur lengths of young were shorter (P = 0.015) than those of controls. Liver biochemistries indicative of oxidative stress were affected (P < 0.05) in 5-day-old nestlings from parents fed 4.4 ppm selenium and included a 19% increase in glutathione peroxidase activity, a 43% increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), and a 17% increase in lipid peroxidation. Based on reproductive effects relative to dietary exposure, sensitivity of eastern screech-owls to selenium was similar to that of black-crowned night-herons (Nycticorax nycticorax) but less than that of mallards (Anas platyrhynchos).

  19. An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health.

    PubMed

    Khan, Kifayat Ullah; Zuberi, Amina; Fernandes, João Batista Kochenborger; Ullah, Imdad; Sarwar, Huda

    2017-12-01

    In the present review, the ongoing researches about selenium research in fish nutrition have been comprehensively discussed. Selenium research is getting popularity in fish nutrition as it is required for the normal growth and proper physiological and biochemical functions in fish. Its deficiency or surplus amounts create severe problems in fish. It is available as inorganic form, organic form, and nano form. In fish, most of the previous research is about the selenium requirements for fish by using only one selenium source mainly the inorganic one. Selenium shows maximum biological activity and bioavailability when it is supplied in proper form. However, to differentiate the more bioavailable and less toxic form of selenium, sufficient information is needed about the comparative bioavailability of different selenium forms in different fish species. In fish, important data about the new forms of selenoproteins is still scarce. Therefore, it is necessary to focus on the determination and elucidation of the new selenoproteins in fish through the utilization of recent approaches of molecular biology and proteomics. The adaptation of these new approaches will replace the old fashioned methodologies regarding the selenium research in fish nutrition. Moreover, the use of molecular biology and proteomics-based new approaches in combination with selenium research will help in optimizing the area of fish nutrition and will improve the feed intake, growth performance, and more importantly the flesh quality which has a promising importance in the consumer market.

  20. Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing.

    PubMed

    Juhász, Péter; Lengyel, Szvetlana; Udvari, Zsolt; Sándor, Alex Nagy; Stündl, László

    2017-09-01

    Selenium is an essential microelement for the normal functioning of life processes. Moreover, it is a component of enzymes with antioxidant effects. However, it has the smallest window of any micronutrient between requirement and toxicity. Selenium is a regularly used element in fish feeds; moreover, enriching zooplankton with selenium to rear larvae is also a well-known technology. It is accepted that the most common starter foods of fish larvae, natural rotifers contain the smallest dosage of selenium, but providing selenium enriched Artemia sp. instead could increase survival and growth rate of fish. However, no such references are available for the red drum (Sciaenops ocellatus) larvae. Therefore, in this study, Artemia sp. was enriched with nano-selenium of verified low toxicity and easy availability in 5 treatments (1, 5, 10, 50, 100 mg/l Se), and then, fish larvae were fed with four of these enriched Artemia stocks (1, 5, 10, 50 mg/l Se) and a control group. At the end of the 9-day-long experiment, survival rate (S) and growth parameters (SL, W, K-factor, SGR) of fish larvae were calculated as well as their selenium retention and glutathione peroxidase enzyme activity were analysed. It was revealed that a moderate level of selenium enrichment (~4 mg/kg dry matter) of Artemia sp. positively influences the rearing efficiency (i.e. survival and growth) of fish larvae, but higher dosages of selenium could cause adverse effects.

  1. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography.

    PubMed

    Terrill, Philip I; Edwards, Bradley A; Nemati, Shamim; Butler, James P; Owens, Robert L; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew; Sands, Scott A

    2015-02-01

    Elevated loop gain, consequent to hypersensitive ventilatory control, is a primary nonanatomical cause of obstructive sleep apnoea (OSA) but it is not possible to quantify this in the clinic. Here we provide a novel method to estimate loop gain in OSA patients using routine clinical polysomnography alone. We use the concept that spontaneous ventilatory fluctuations due to apnoeas/hypopnoeas (disturbance) result in opposing changes in ventilatory drive (response) as determined by loop gain (response/disturbance). Fitting a simple ventilatory control model (including chemical and arousal contributions to ventilatory drive) to the ventilatory pattern of OSA reveals the underlying loop gain. Following mathematical-model validation, we critically tested our method in patients with OSA by comparison with a standard (continuous positive airway pressure (CPAP) drop method), and by assessing its ability to detect the known reduction in loop gain with oxygen and acetazolamide. Our method quantified loop gain from baseline polysomnography (correlation versus CPAP-estimated loop gain: n=28; r=0.63, p<0.001), detected the known reduction in loop gain with oxygen (n=11; mean±sem change in loop gain (ΔLG) -0.23±0.08, p=0.02) and acetazolamide (n=11; ΔLG -0.20±0.06, p=0.005), and predicted the OSA response to loop gain-lowering therapy. We validated a means to quantify the ventilatory control contribution to OSA pathogenesis using clinical polysomnography, enabling identification of likely responders to therapies targeting ventilatory control. Copyright ©ERS 2015.

  2. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography

    PubMed Central

    Terrill, Philip I.; Edwards, Bradley A.; Nemati, Shamim; Butler, James P.; Owens, Robert L.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew; Sands, Scott A.

    2015-01-01

    Elevated loop gain, consequent to hypersensitive ventilatory control, is a primary nonanatomical cause of obstructive sleep apnoea (OSA) but it is not possible to quantify this in the clinic. Here we provide a novel method to estimate loop gain in OSA patients using routine clinical polysomnography alone. We use the concept that spontaneous ventilatory fluctuations due to apnoeas/hypopnoeas (disturbance) result in opposing changes in ventilatory drive (response) as determined by loop gain (response/disturbance). Fitting a simple ventilatory control model (including chemical and arousal contributions to ventilatory drive) to the ventilatory pattern of OSA reveals the underlying loop gain. Following mathematical-model validation, we critically tested our method in patients with OSA by comparison with a standard (continuous positive airway pressure (CPAP) drop method), and by assessing its ability to detect the known reduction in loop gain with oxygen and acetazolamide. Our method quantified loop gain from baseline polysomnography (correlation versus CPAP-estimated loop gain: n=28; r=0.63, p<0.001), detected the known reduction in loop gain with oxygen (n=11; mean±SEM change in loop gain (ΔLG) −0.23±0.08, p=0.02) and acetazolamide (n=11; ΔLG −0.20±0.06, p=0.005), and predicted the OSA response to loop gain-lowering therapy. We validated a means to quantify the ventilatory control contribution to OSA pathogenesis using clinical polysomnography, enabling identification of likely responders to therapies targeting ventilatory control. PMID:25323235

  3. Recent advances on the functional and evolutionary morphology of the amniote respiratory apparatus.

    PubMed

    Lambertz, Markus

    2016-02-01

    Increased organismic complexity in metazoans was achieved via the specialization of certain parts of the body involved in different faculties (structure-function complexes). One of the most basic metabolic demands of animals in general is a sufficient supply of all tissues with oxygen. Specialized structures for gas exchange (and transport) consequently evolved many times and in great variety among bilaterians. This review focuses on some of the latest advancements that morphological research has added to our understanding of how the respiratory apparatus of the primarily terrestrial vertebrates (amniotes) works and how it evolved. Two main components of the respiratory apparatus, the lungs as the "exchanger" and the ventilatory apparatus as the "active pump," are the focus of this paper. Specific questions related to the exchanger concern the structure of the lungs of the first amniotes and the efficiency of structurally simple snake lungs in health and disease, as well as secondary functions of the lungs in heat exchange during the evolution of sauropod dinosaurs. With regard to the active pump, I discuss how the unique ventilatory mechanism of turtles evolved and how understanding the avian ventilatory strategy affects animal welfare issues in the poultry industry. © 2016 New York Academy of Sciences.

  4. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi

    2016-06-03

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less

  5. Effect of dietary vitamin E or selenium on prostaglandin dehydrogenase in hyperoxic rat lung

    NASA Technical Reports Server (NTRS)

    North, L. N.; Mathias, M. M.; Schatte, C. L.

    1984-01-01

    Weanling male rats were fed semipurified diets supplemented with 0, 60, or 600 IU/kg vitamin E or 0, 100, or 1000 ppb selenium. One group was injected daily with vitamin E at a rate equivalent to consumption of 60 IU/kg. Animals from all groups were sacrificed after exposure to normobaric oxygen or air for 48 h. Lung tissue was analyzed for the combined activity of prostaglandin dehydrogenase and reductase. Using the decline in enzyme activity as an indicator of susceptibility to oxygen poisoning, protection against hyperoxia was directly related to the level of vitamin E supplementation. Selenium supplemented at 100 ppb provided significant protection when compared to 0 ppb or 1000 ppb. The latter dose may have been marginally toxic. Thus dietary supplementation of vitamin E and selenium may influence the relative susceptibility of an animal to pulmonary oxygen poisoning.

  6. [Respiratory symptoms and obstructive ventilatory disorder in Tunisian woman exposed to biomass].

    PubMed

    Kwas, H; Rahmouni, N; Zendah, I; Ghedira, H

    2017-04-01

    In some Tunisian cities, especially semi-urbanized, the exposure to the smoke produced during combustion of the biomass, main source of pollution of indoor air, remains prevalent among non-smoking women. To assess the relationship between exposure to biomass smoke and the presence of obstructive ventilatory disorder in the non-smoking women in semi-urban areas of Tunisia. Cross etiological study, using a questionnaire, including 140 non-smoking women responsible for cooking and/or exposed during heating by traditional means with objective measurement of their respiratory functions. We found 81 women exposed to biomass for a period of≥20 hours-years and 59 unexposed women. Exposed women reported more respiratory symptoms namely exertional dyspnea and/or chronic cough than unexposed. Of the 140 women, 14 women have an FEV/FEV6<70% of which 13 are exposed to biomass. We found a correlation between respiratory symptoms and obstructive ventilatory disorder in exposed women. The air pollution inside the home during the traditional activities of cooking and/or heating is a respiratory risk factor for non-smoking women over the age of 30 years. Exposure to biomass smoke can cause chronic respiratory symptoms and persistent obstructive ventilatory disorder that can consistent with COPD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The need for a reassessment of the safe upper limit of selenium in drinking water.

    PubMed

    Vinceti, Marco; Crespi, Catherine M; Bonvicini, Francesca; Malagoli, Carlotta; Ferrante, Margherita; Marmiroli, Sandra; Stranges, Saverio

    2013-01-15

    Results of recent epidemiologic studies suggest the need to reassess the safe upper limit in drinking water of selenium, a metalloid with both toxicological and nutritional properties. Observational and experimental human studies on health effects of organic selenium compounds consumed through diet or supplements, and of inorganic selenium consumed through drinking water, have shown that human toxicity may occur at much lower levels than previously surmised. Evidence indicates that the chemical form of selenium strongly influences its toxicity, and that its biological activity may differ in different species, emphasizing the importance of the few human studies on health effects of the specific selenium compounds found in drinking water. Epidemiologic studies that investigated the effects of selenate, an inorganic selenium species commonly found in drinking water, together with evidence of toxicity of inorganic selenium at low levels in from in vitro and animal studies, indicate that health risks may occur at exposures below the current European Union and World Health Organization upper limit and guideline of 10 and 40 μg/l, respectively, and suggest reduction to 1 μg/l in order to adequately protect human health. Although few drinking waters are currently known to have selenium concentrations exceeding this level, the public health importance of this issue should not be overlooked, and further epidemiologic research is critically needed in this area. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Selenium

    USGS Publications Warehouse

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There, waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  9. Intricate but tight coupling of spiracular activity and abdominal ventilation during locust discontinuous gas exchange cycles.

    PubMed

    Talal, Stav; Gefen, Eran; Ayali, Amir

    2018-03-15

    Discontinuous gas exchange (DGE) is the best studied among insect gas exchange patterns. DGE cycles comprise three phases, which are defined by their spiracular state: closed, flutter and open. However, spiracle status has rarely been monitored directly; rather, it is often assumed based on CO 2 emission traces. In this study, we directly recorded electromyogram (EMG) signals from the closer muscle of the second thoracic spiracle and from abdominal ventilation muscles in a fully intact locust during DGE. Muscular activity was monitored simultaneously with CO 2 emission, under normoxia and under various experimental oxic conditions. Our findings indicate that locust DGE does not correspond well with the commonly described three-phase cycle. We describe unique DGE-related ventilation motor patterns, coupled to spiracular activity. During the open phase, when CO 2 emission rate is highest, the thoracic spiracles do not remain open; rather, they open and close rapidly. This fast spiracle activity coincides with in-phase abdominal ventilation, while alternating with the abdominal spiracle and thus facilitating a unidirectional air flow along the main trachea. A change in the frequency of rhythmic ventilation during the open phase suggests modulation by intra-tracheal CO 2 levels. A second, slow ventilatory movement pattern probably serves to facilitate gas diffusion during spiracle closure. Two flutter-like patterns are described in association with the different types of ventilatory activity. We offer a modified mechanistic model for DGE in actively ventilating insects, incorporating ventilatory behavior and changes in spiracle state. © 2018. Published by The Company of Biologists Ltd.

  10. Determination of selenium in fish from designated critical habitat in the Gunnison River, Colorado, March through October, 2012

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.

    2013-01-01

    This report presents results for the summer 2012 sam-pling of muscle plugs from common carp (Cyprinus carpio), bonytail chub (Gila elegans), Colorado pikeminnow (Ptycho-cheilus lucius), and razorback suckers (Xyrauchen texanus) inhabiting critical habitat in the Gunnison River in western Colorado. Total selenium in fish muscle plugs was determinedby instrumental neutron activation analysis. Total selenium concentrations (range and mean ± standard deviation) in micrograms per gram dry weight were 6.0 to 10.7, 8.8 ± 1.3 for common carp; 2.9 to 8.7, 5.6 ± 2.4 for Colorado pikemin-now; and 1.4 to 7.3, 3.4 ± 2.7 for razorback sucker. The selenium concentration for one bonytail chub sample was 0.8 micrograms per gram dry weight. Selenium concentrations in muscle plugs from 1 Colorado pikeminnow and 12 common carp exceeded the 8 micrograms per gram dry weight toxicity guideline for selenium in fish muscle tissue.

  11. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    PubMed

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone.

    PubMed

    Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui

    2013-02-01

    The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.

  13. Selenium Biomarkers in Prostate Cancer Cell Lines and Influence of Selenium on Invasive Potential of PC3 Cells

    PubMed Central

    Hendrickx, Wouter; Decock, Julie; Mulholland, Francis; Bao, Yongping; Fairweather-Tait, Susan

    2013-01-01

    Dietary selenium intake has been linked to reduced cancer risk, however the underlying mechanisms are yet unknown. We question the commonly used practice of applying selenium concentrations found in human blood to in vitro studies and evaluated the utility of biomarkers, e.g., glutathione peroxidase 1 (GPx1) and thioredoxin reductase 1 (TrxR1), to determine appropriate selenium levels for in vitro work. Furthermore, we investigated the effects of Se-methylselenocysteine (SeMSC) on prostate cancer cell migration and invasion. After excluding cytotoxicity, we demonstrated that prostate cancer cell lines respond differently to selenium treatment as observed through biomarker assessment. We found that the maximum levels of GPx1 activity and TrxR1 expression were reached at lower selenium concentrations in LNCaP compared to PC3 cells, and PC3 compared to DU145 cells. Therefore the use of selenium concentrations extrapolated from human studies for in vitro work may be applicable when further informed using a readout of selenium repletion including use of selenium responsive biomarkers. No effect on PC3 migration or invasion was observed after long term SeMSC treatment; however a slight increase was found when treatment was solely administered during the assay. The opposite could be observed when cells were cultured under low serum conditions, with a significant increase in migration upon long term but not upon acute SeMSC treatment. To conclude, these findings indicate that it is imperative to study the selenium sensitivity of an in vitro model preferably using biomarkers before investigating any effects on biological processes, or before comparing models. PMID:24066278

  14. Hepatic metabolite profiles in mice with a suboptimal selenium status.

    PubMed

    Geillinger, Kerstin E; Rathmann, Daniel; Köhrle, Josef; Fiamoncini, Jarlei; Daniel, Hannelore; Kipp, Anna P

    2014-09-01

    Selenium is an essential trace element and mediates its functions via various selenoproteins such as glutathione peroxidases or thioredoxin reductases. A suboptimal selenium supply causes metabolic disturbances and is associated with an increased risk to develop different disorders, including cancer or cardiovascular diseases. This study aimed to assess the impact of a suboptimal selenium status on the hepatic metabolome of male mice analyzed by a targeted liquid chromatography/tandem mass spectrometry and a method based on non-targeted gas chromatography hyphenated with mass spectrometry. Feeding animals a diet with about half of the recommended selenium content supplied as selenomethionine caused liver glutathione peroxidase and thioredoxin reductase activities to decline and lipid peroxidation to increase. Serum T3 thyroid hormone concentration also declined via a reduced hepatic deiodinase activity. Metabolite profiling revealed predominantly changes in cysteine and carbon-1 metabolism as well as in selected lipid subclasses. In particular the concentrations of palmitoylcarnitines and oleoylcarnitines (C18:1 and C16:1) and various phosphatidylcholine species containing saturated fatty acids were elevated. Increased taurine levels suggested an enhanced cysteine flux through the salvage pathway whereas increased homocysteine levels appeared to be a consequence of a massive down-regulation of cystathionine β lyase (cystathionine β synthase) and a reduced flux through the transsulfuration pathway. The findings demonstrate that a suboptimal selenium status causes alterations in lipid and carbon-1 metabolism in mouse liver. These changes may contribute to the development of diseases associated with a suboptimal selenium status. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The relative importance of small selenium compounds versus selenoproteins in the cancer-protective activity of Se is unresolved, but the main form of Se in animal ...

  16. Inorganic versus organic selenium supplementation: a review.

    PubMed

    Mahima; Verma, Amit Kumar; Kumar, Amit; Rahal, Anu; Kumar, Vinod; Roy, Debashis

    2012-05-01

    Selenium is an essential trace element in the diets which is required for maintenance of health, growth and biochemical-physiological functions. The area covered in this review has been rapidly unfolding in recent years and has already acquired a vast spread. This study presents a concise introductory overview of the effect of organic and inorganic selenium on growth performance, carcass traits, daily egg production, egg quality, Se uptake in various tissues and plasma and plasma glutathione peroxidase activity in animals.

  17. Selenium and inflammatory bowel disease.

    PubMed

    Kudva, Avinash K; Shay, Ashley E; Prabhu, K Sandeep

    2015-07-15

    Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD. Copyright © 2015 the American Physiological Society.

  18. Variable Inhibition by Falling CO2 of Hypoxic Ventilatory Response in Man,

    DTIC Science & Technology

    1983-06-21

    alkalosis which, in turn, inhibits the ventilatory response to hypoxia (4,5,11). Thus for the usual measurement of the acute ventilatory response to...rest for 20 minutes. All of the ventilatory response tests were performed with the subject breathing through a respiratory valve (Model 2700, Hans...increase ventilation because the inhibition by hypocapnic alkalosis is prevented by adding CO2 to the inspired air to maintain C02 and pH at their

  19. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    NASA Astrophysics Data System (ADS)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  20. Biomarkers of selenium status

    USDA-ARS?s Scientific Manuscript database

    The essential trace element selenium (Se) has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potentia...

  1. Peripheral chemoreceptor activity in sleeping neonates exposed to warm environments.

    PubMed

    Chardon, K; Bach, V; Telliez, F; Tourneux, P; Elabbassi, E B; Cardot, V; Gaultier, C; Libert, J P

    2003-09-01

    In neonates, it is often assumed that ventilatory control and heat stress interact. Thus the two factors have been implicated in various pathologies (apnoea, sudden infant death syndrome). However, little is known about the mechanisms of this interaction, and the influence of sleep is still debated. This study aimed at determining the influence of warm exposure on the decrease in ventilation during a hyperoxic test (HT), which is considered to be a measure of peripheral chemoreceptor activity. The test was performed in active (AS) and quiet sleep (QS) in 12 neonates exposed to thermoneutral or warm environments. The HT consisted of 30 s of inspired, 100% O(2). The ventilatory response was assessed in terms of a response time, defined as the time elapsing between HT onset and the first significant change in V(E). Our results show that, in both thermal conditions, the fall in V(E) was higher in AS than in QS. Warm exposure significantly enhanced the ventilatory response in AS (-27.5 +/- 8.7% vs. -38.3 +/- 8.8%, P < 0.01) but not in QS. A thermometabolic drive or inputs from thermoreceptors could be involved in the reinforcement of peripheral chemoreceptor activity in AS in warmer environments, which could contribute to an increasing risk of apnoea in neonates with altered chemoreceptor function. Since hypothalamic structures are involved in thermoregulatory, sleep processes and (probably) in respiratory control, it could well be the principal site where this interaction occurs.

  2. Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia

    PubMed Central

    Soliz, Jorge; Gassmann, Max; Joseph, Vincent

    2007-01-01

    While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the expression and function of the soluble Epo receptor (sEpoR) remain unknown. Here we demonstrate that sEpoR, a negative regulator of Epo's binding to the EpoR, is present in the mouse brain and is down-regulated by 62% after exposure to normobaric chronic hypoxia (10% O2 for 3 days). Furthermore, while normoxic minute ventilation increased by 58% in control mice following hypoxic acclimatization, sEpoR infusion in brain during the hypoxic challenge efficiently reduced brain Epo concentration and abolished the ventilatory acclimatization to hypoxia (VAH). These observations imply that hypoxic downregulation of sEpoR is required for adequate ventilatory acclimatization to hypoxia, thereby underlying the function of Epo as a key factor regulating oxygen delivery not only by its classical activity on red blood cell production, but also by regulating ventilation. PMID:17584830

  3. Synthesis of isosteric selenium analog of the PPARbeta/delta agonist GW501516 and comparison of biological activity.

    PubMed

    Sharma, Arun K; Sk, Ugir Hossain; He, Pengfei; Peters, Jeffrey M; Amin, Shantu

    2010-07-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and members of the nuclear hormone receptor superfamily. Herein, we describe an efficient synthesis of a novel isosteric selenium analog of the highly specific PPARbeta/delta ligand 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516; 1). The study examined the efficiency of the novel selenium analog 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-selenazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (2) to activate PPARbeta/delta and the effect of ligand activation of PPARbeta/delta on cell proliferation and target gene expression in human HaCaT keratinocytes. The results showed that similar to GW501516, the Se-analog 2 increased expression of the known PPARbeta/delta target gene angiopoietin-like protein 4 (ANGPTL4); the compound 2 was comparable in efficacy as compared to GW501516. Consistent with a large body of evidence, the Se-analog inhibited cell proliferation in HaCaT keratinocytes similar to that observed with GW501516. In summary, the novel Se-analog 2 has been developed as a potent PPARbeta/delta ligand that may possess additional anti-cancer properties of selenium. 2010 Elsevier Ltd. All rights reserved.

  4. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    PubMed

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  5. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion

    PubMed Central

    Jobeili, Lara; Rousselle, Patricia; Béal, David; Blouin, Eric; Roussel, Anne-Marie; Damour, Odile; Rachidi, Walid

    2017-01-01

    Skin is constantly exposed to environmental factors such as pollutants, chemicals and ultra violet radiation (UV), which can induce premature skin aging and increase the risk of skin cancer. One strategy to reduce the effect of oxidative stress produced by environmental exposure is the application of antioxidant molecules. Among the endogenous antioxidants, selenoproteins play a key role in antioxidant defense and in maintaining a reduced cellular environment. Selenium, essential for the activity of selenoproteins, is a trace element that is not synthesized by organisms and must be supplied by diet or supplementation. The aim of this study is to evaluate the effect of Selenium supplementation on skin aging, especially on keratinocytes, the main cells of the epidermis. Our results demonstrate for the first time to our knowledge, the major role of Selenium on the replicative life span of keratinocytes and on aging skin. Selenium protects keratinocyte stem cells (KSCs) against senescence via preservation of their stemness phenotype through adhesion to the basement membrane. Additionally, Selenium supplementation maintains the homeostasis of skin during chronological aging in our senescent skin equivalent model. Controlled supplementation with Selenium could be a new strategy to protect skin against aging. PMID:29176034

  6. Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork.

    PubMed

    Jiang, Jiang; Tang, Xinyue; Xue, Yan; Lin, Gang; Xiong, Youling L

    2017-09-01

    Cross-bred pigs were fed a control diet (with 0.3ppm sodium selenite and 1.5% soybean oil) or organic selenium diets (0.3ppm Se-Yeast with 1.5% soybean or linseed oil) to investigate nutrient supplement effects on meat quality and oxidative stability. The organic selenium diets increased muscular selenium content up to 54%, and linseed oil increased n-3 fatty acids two-fold while lowering the n-6/n-3 fatty acid ratio from 13.9 to 5.9 over the selenite control diet (P<0.05). Organic selenium yeast treatments with linseed oil reduced pork drip loss by 58-74% when compared with diets with soybean oil. Lightness of fresh pork was slightly less for organic selenium groups than inorganic (P<0.05), but redness was mostly similar. Lipid oxidation (TBARS) and protein oxidation (sulfhydryl) during meat storage (4°C up to 6days) showed no appreciable difference (P>0.05) between diets, in agreement with the lack of notable difference in endogenous antioxidant enzyme activity between these meat groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis.

    PubMed

    Shakibaie, Mojtaba; Forootanfar, Hamid; Golkari, Yaser; Mohammadi-Khorsand, Tayebe; Shakibaie, Mohammad Reza

    2015-01-01

    The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80-220nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Ventilatory responses to dynamic exercise elicited by intramuscular sensors

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Gallagher, K. M.; Norton, K. H.; Querry, R. G.; Welch-O'Connor, R. M.; Raven, P. B.

    1999-01-01

    PURPOSE: Eight subjects, aged 27.0+/-1.6 yr, performed incremental workload cycling to investigate the contribution of skeletal muscle mechano- and metaboreceptors to ventilatory control during dynamic exercise. METHODS: Each subject performed four bouts of exercise: exercise with no intervention (CON); exercise with bilateral thigh cuffs inflated to 90 mm Hg (CUFF); exercise with application of lower-body positive pressure (LBPP) to 45 torr (PP); and exercise with 90 mm Hg thigh cuff inflation and 45 torr LBPP (CUFF+PP). Ventilatory responses and pulmonary gas exchange variables were collected breath-by-breath with concomitant measurement of leg intramuscular pressure. RESULTS: Ventilation (VE) was significantly elevated from CON during PP and CUFF+PP at workloads corresponding to > or = 60% CON peak oxygen uptake (VO2peak) and during CUFF at workloads > or = 80% CON VO2peak, P < 0.05. The VO2 at which ventilatory threshold occurred was significantly reduced from CON (2.17+/-0.28 L x min(-1)) to 1.60+/-0.19 L x min(-1), 1.45+/-0.15 L x min(-1), and 1.15+/-0.11 L x min(-1) during CUFF, PP, and CUFF+PP, respectively. The slope of the linear regression describing the VE/CO2 output relationship was increased from CON by approximately 22% during CUFF, 40% during PP, and 41% during CUFF+PP. CONCLUSIONS: As intramuscular pressure was significantly elevated immediately upon application of LBPP during PP and CUFF+PP without a concomitant increase in VE, it seems unlikely that LBPP-induced increases in VE can be attributed to activation of the mechanoreflex. These findings suggest that LBPP-induced reductions in perfusion pressure and decreases in venous outflow resulting from inflation of bilateral thigh cuffs may generate a metabolite sensitive intramuscular ventilatory stimulus.

  9. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  10. Cross sectional study of serum selenium concentration and esophageal squamous dysplasia in western Kenya.

    PubMed

    Pritchett, Natalie R; Burgert, Stephen L; Murphy, Gwen A; Brockman, John D; White, Russell E; Lando, Justus; Chepkwony, Robert; Topazian, Mark D; Abnet, Christian C; Dawsey, Sanford M; Mwachiro, Michael M

    2017-12-08

    Low serum selenium status has been associated with increased risk of esophageal squamous cell carcinoma (ESCC). East Africa is a region of high ESCC incidence and is known to have low soil selenium levels, but this association has not previously been evaluated. In this study we assessed the association of serum selenium concentration and the prevalence of esophageal squamous dysplasia (ESD), the precursor lesion of ESCC, in a cross-sectional study of subjects from Bomet, Kenya. 294 asymptomatic adult residents of Bomet, Kenya completed questionnaires and underwent endoscopy with Lugol's iodine staining and biopsy for detection of ESD. Serum selenium concentrations were measured by instrumental neutron activation analysis. Odds ratios (OR) and confidence intervals (95% CI) for associations between serum selenium and ESD were calculated using unconditional logistic regression. The mean serum selenium concentration was 85.5 (±28.3) μg/L. Forty-two ESD cases were identified (14% of those screened), including 5 (12%) in selenium quartile 1 (Q1), 5 (12%) in Q2, 15 (36%) in Q3, and 17 (40%) in Q4. Higher serum selenium was associated with prevalence of ESD (Q4 vs Q1: OR: 3.03; 95% CI: 1.05-8.74) and this association remained after adjusting for potential confounders (Q4 vs Q1: OR: 3.87; 95% CI: 1.06-14.19). This is the first study to evaluate the association of serum selenium concentration and esophageal squamous dysplasia in an African population at high risk for ESCC. We found a positive association between higher serum selenium concentration and prevalence of ESD, an association contrary to our original hypothesis. Further work is needed to better understand the role of selenium in the etiology of ESCC in this region, and to develop effective ESCC prevention and control strategies.

  11. Global advances in selenium research from theory to application

    USDA-ARS?s Scientific Manuscript database

    Selenium is without question one of the most influential natural-occurring trace elements for biological systems worldwide. The multi-faceted connections between the environment, food crops, human and animal health and selenium’s function through selenoprotein activity, have been well characterized....

  12. Complex of vitamins and antioxidants protects low-density lipoproteins in blood plasma from free radical oxidation and activates antioxidants enzymes in erythrocytes from patients with coronary heart disease.

    PubMed

    Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V

    2003-08-01

    We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.

  13. 21 CFR 358.710 - Active ingredients for the control of dandruff, seborrheic dermatitis, or psoriasis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...

  14. 21 CFR 358.710 - Active ingredients for the control of dandruff, seborrheic dermatitis, or psoriasis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...

  15. 21 CFR 358.710 - Active ingredients for the control of dandruff, seborrheic dermatitis, or psoriasis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...

  16. 21 CFR 358.710 - Active ingredients for the control of dandruff, seborrheic dermatitis, or psoriasis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...

  17. 21 CFR 358.710 - Active ingredients for the control of dandruff, seborrheic dermatitis, or psoriasis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to be applied and left on the skin or scalp. (4) Salicylic acid, 1.8 to 3 percent. (5) Selenium sulfide, 1 percent. (6) Selenium sulfide, micronized, 0.6 percent. (7) Sulfur, 2 to 5 percent. (b) Active...) Pyrithione zinc, 0.1 to 0.25 percent when formulated to be applied and left on the skin or scalp. (4...

  18. Determination of selenium in fish from designated critical habitat of the Gunnison River, Colorado, summer 2011

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.

    2012-01-01

    This report presents results for the summer 2011 sampling of muscle plugs from common carps (Cyprinus Linnaeus), roundtail chub (Gila robusta), and bonytail chub (Gila elegans) inhabiting critical habitat in the Gunnison River in Western Colorado. Total selenium in fish muscle plugs was determined by instrumental neutron activation analysis. Total selenium concentrations (range and mean ± standard deviation) in micrograms per gram dry weight for each species were as follows: common carp: 8.5 to 35, 13 ± 7.8; roundtail chub: 5.5 to 11.2, 7.3 ± 1.6; bonytail chub: 0.8 to 8.6, 3.9 ± 4.2. Selenium concentrations in muscle plugs from 4 out of 15 roundtail chub, all 15 common carp, and 2 out of 5 bonytail chub exceeded the 8 micrograms per gram dry weight toxicity guideline for selenium in fish muscle tissue.

  19. High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation.

    PubMed

    Barlow, Jacob; Gozzi, Kevin; Kelley, Chase P; Geilich, Benjamin M; Webster, Thomas J; Chai, Yunrong; Sridhar, Srinivas; van de Ven, Anne L

    2017-01-01

    Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(D,L-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.

  20. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  1. REAL-TIME MONITORING FOR TOXICITY CAUSED BY HARMFUL ALGAL BLOOMS AND OTHER WATER QUALITY PERTURBATIONS

    EPA Science Inventory

    This project, sponsored by EPA's Environmental Monitoring for Public Access and Community Tracking (EMPACT) program, evaluated the ability of an automated biological monitoring system that measures fish ventilatory responses (ventilatory rate, ventilatory depth, and cough rate) t...

  2. "Optimal" application of ventilatory assist in Cheyne-Stokes respiration: a simulation study.

    PubMed

    Khoo, M C; Benser, M E

    2005-01-01

    Although a variety of ventilator therapies have been employed to treat Cheyne-Stokes respiration (CSR), these modalities do not completely eliminate CSR. As well, most current strategies require that ventilatory assist be provided continuously. We used a computer model of the respiratory control system to determine whether a ventilatory assist strategy could be found that would substantially reduce the severity of CSR while minimizing the application of positive airway pressure. We assessed the effects of different levels of ventilatory assist applied during breaths that fell below selected hypopneic thresholds. These could be applied during the descending, ascending, or both phases of the CSR cycle. We found that ventilatory augmentation equal to 30-40% of eupneic drive, applied whenever ventilation fell below 70% of the eupneic level during the ascending or descending-and-ascending phases of CSR led to the greatest regularization of breathing with minimal ventilator intervention. Application of ventilatory assist during the descending phase produced little effect.

  3. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    PubMed

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Nrf2 target genes are induced under marginal selenium-deficiency

    PubMed Central

    Müller, Mike; Banning, Antje; Brigelius-Flohé, Regina

    2010-01-01

    A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2. PMID:21189866

  5. [Respiratory symptoms and obstructive ventilatory disorder in Tunisian woman exposed to biomass].

    PubMed

    Kwas, H; Rahmouni, N; Zendah, I; Ghédira, H

    2017-06-01

    In some Tunisian cities, especially semi-urbanized, the exposure to the smoke produced during combustion of the biomass, main source of pollution of indoor air, remains prevalent among non-smoking women. To assess the relationship between exposure to biomass smoke and the presence of obstructive ventilatory disorder in the non-smoking women in semi-urban areas of Tunisia. Cross etiological study, using a questionnaire, including 140 non-smoking women responsible for cooking and/or exposed during heating by traditional means with objective measurement of their respiratory functions. We found 81 women exposed to biomass for a period > or equal to 20 hours-years and 59 unexposed women. Exposed women reported more respiratory symptoms namely exertional dyspnea and/or chronic cough than unexposed. Of the 140 women, 14 women have an FEV/FEV6 <70 % of which 13 are exposed to biomass. We found a correlation between respiratory symptoms and obstructive ventilatory disorder in exposed women. The air pollution inside the home during the traditional activities of cooking and/or heating is a respiratory risk factor for non-smoking women over the age of 30 years. Exposure to biomass smoke can cause chronic respiratory symptoms and persistent obstructive ventilatory disorder that can be consistent with COPD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Selenium-Dependent Biogenesis of Formate Dehydrogenase in Campylobacter jejuni Is Controlled by the fdhTU Accessory Genes

    PubMed Central

    Shaw, Frances L.; Mulholland, Francis; Le Gall, Gwénaëlle; Porcelli, Ida; Hart, Dave J.; Pearson, Bruce M.

    2012-01-01

    The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C. jejuni, demonstrate that they are involved in selenium-controlled production of FDH, and propose the names fdhT and fdhU, respectively. Insertional inactivation of fdhT or fdhU in C. jejuni resulted in the absence of FdhA and FdhB protein expression, reduced fdhABC RNA levels, the absence of FDH enzyme activity, and the lack of formate utilization, as assessed by 1H nuclear magnetic resonance. The fdhABC genes are transcribed from a single promoter located two genes upstream of fdhA, and the decrease in fdhABC RNA levels in the fdhU mutant is mediated at the posttranscriptional level. FDH activity and the ability to utilize formate were restored by genetic complementation with fdhU and by supplementation of the growth media with selenium dioxide. Disruption of SeC synthesis by inactivation of the selA and selB genes also resulted in the absence of FDH activity, which could not be restored by selenium supplementation. Comparative genomic analysis suggests a link between the presence of selA and fdhTU orthologs and the predicted presence of SeC in FdhA. The fdhTU genes encode accessory proteins required for FDH expression and activity in C. jejuni, possibly by contributing to acquisition or utilization of selenium. PMID:22609917

  7. Histopathology of chondronecrosis development in knee articular cartilage in a rat model of Kashin-Beck disease using T-2 toxin and selenium deficiency conditions.

    PubMed

    Guan, Fang; Li, Siyuan; Wang, Zhi-Lun; Yang, Haojie; Xue, Senghai; Wang, Wei; Song, Daiqing; Zhou, Xiaorong; Zhou, Wang; Chen, Jing-Hong; Caterson, Bruce; Hughes, Clare

    2013-01-01

    The objective of this study is to observe pathogenic lesions of joint cartilages in rats fed with T-2 toxin under a selenium deficiency nutrition status in order to determine possible etiological factors causing Kashin-Beck disease (KBD). Sprague-Dawley rats were fed selenium-deficient or control diets for 4 weeks prior to their being exposed to T-2 toxin. Six dietary groups were formed and studied 4 weeks later, i.e., controls, selenium-deficient, low T-2 toxin, high T-2 toxin, selenium-deficient diet plus low T-2 toxin, and selenium-deficient diet plus high T-2 toxin. Selenium deficiencies were confirmed by the determination of glutathione peroxidase activity and selenium levels in serum. The morphology and pathology (chondronecrosis) of knee joint cartilage of experimental rats were observed using light microscopy and the expression of proteoglycans was determined by histochemical staining. Chondronecrosis in deep zone of articular cartilage of knee joints was seen in both the low and high T-2 toxin plus selenium-deficient diet groups, these chondronecrotic lesions being very similar to chondronecrosis observed in human KBD. However, the chondronecrosis observed in the rat epiphyseal growth plates of animals treated with T-2 toxin alone or T-2 toxin plus selenium-deficient diets were not similar to that found in human KBD. Our results indicate that the rat can be used as a suitable animal model for studying etiological factors contributing to the pathogenesis (chondronecrosis) observed in human KBD. However, those changes seen in epiphyseal growth plate differ from those seen in human KBD probably because of the absence of growth plate closure in the rat.

  8. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis.

    PubMed

    Burk, Raymond F; Hill, Kristina E

    2005-01-01

    Selenoprotein P is an abundant extracellular glycoprotein that is rich in selenocysteine. It has two domains with respect to selenium content. The N-terminal domain of the rat protein contains one selenocysteine residue in a UxxC redox motif. This domain also has a pH-sensitive heparin-binding site and two histidine-rich amino acid stretches. The smaller C-terminal domain contains nine selenocysteine and ten cysteine residues. Four isoforms of selenoprotein P are present in rat plasma. They share the same N terminus and amino acid sequence. One isoform is full length and the three others terminate at the positions of the second, third, and seventh selenocysteine residues. Selenoprotein P turns over rapidly in rat plasma with the consequence that approximately 25% of the amount of whole-body selenium passes through it each day. Evidence supports functions of the protein in selenium homeostasis and oxidant defense. Selenoprotein P knockout mice have very low selenium concentrations in the brain, the testis, and the fetus, with severe pathophysiological consequences in each tissue. In addition, those mice waste moderate amounts of selenium in the urine. Selenoprotein P binds to endothelial cells in the rat, and plasma levels of the protein correlate with prevention of diquat-induced lipid peroxidation and hepatic endothelial cell injury. The mechanisms of these apparent functions remain speculative and much work on the mechanism of selenoprotein P function lies ahead. Measurement of selenoprotein P in human plasma has shown that it is depressed by selenium deficiency and by cirrhosis. Selenium supplementation of selenium-deficient human subjects showed that glutathione peroxidase activity was optimized before selenoprotein P concentration was optimized, indicating that plasma selenoprotein P is the better index of human selenium nutritional status.

  9. Selecting Lentil Accessions for Global Selenium Biofortification

    USDA-ARS?s Scientific Manuscript database

    Biofortification of lentil (Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 ...

  10. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  11. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  12. Effect of sodium selenite on chosen anti- and pro-oxidative parameters in rats treated with lithium: A pilot study.

    PubMed

    Musik, Irena; Kocot, Joanna; Kiełczykowska, Małgorzata

    2015-06-01

    Selenium is an essential element of antioxidant properties. Lithium is widely used in medicine but its administration can cause numerous side effects including oxidative stress. The present study aimed at evaluating if sodium selenite could influence chosen anti- and pro-oxidant parameters in rats treated with lithium. The experiment was performed on four groups of Wistar rats: I (control) - treated with saline; II (Li) - treated with lithium (2.7 mgLi/kg b.w. as Li2CO3), III (Se) - treated with selenium (0.5 mgSe/kg b.w. as Na2SeO3), IV (Li+Se) - treated with Li2CO3 and Na2SeO3 together at the same doses as in group II and III, respectively. All treatments were performed by stomach tube for three weeks in form of water solutions. The following anti- and pro-oxidant parameters: total antioxidant status (TAS) value, catalase (CAT) activity, concentrations of ascorbic acid (AA) and malonyldialdehyde (MDA) in plasma as well as whole blood superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured. Selenium given alone markedly enhanced whole blood GPx and diminished plasma CAT vs. Lithium significantly decreased plasma CAT and slightly increased AA vs. Selenium co-administration restored these parameters to the values observed in control animals. Furthermore, selenium co-administration significantly increased GPx in Li-treated rats. All other parameters (TAS, SOD and MDA) were not affected by lithium and/or selenium. Further research seems to be warranted to decide if application of selenium as an adjuvant in lithium therapy is worth considering. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Selenium Level and Dyslipidemia in Rural Elderly Chinese

    PubMed Central

    Su, Liqin; Gao, Sujuan; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Xin, Pengju; Chen, Chen; Liu, Jingyi; Ma, Feng; Bian, Jianchao; Li, Ping; Jin, Yinlong

    2015-01-01

    Objective Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status. Methods A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDLC) and low-density lipoprotein-cholesterol (LDLC), nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and <1.04 mmol/L for Low-HDLC according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. Logistic models adjusting for age, gender, APOE genotype, body mass index, alcohol consumption, smoking, physical activity, medication use for cardiovascular diseases were used to examine the relationship between selenium levels and the risk of dyslipidemia. Results Mean nail selenium concentration was 0.465μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p < 0.0001). Compared with the lowest selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of dyslipidemia. Conclusions Our results suggest long-term selenium exposure level may be associated with the risk of dyslipidemia in elderly population. Future studies are needed to examine the underlying mechanism of the association. PMID:26380972

  14. Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells.

    PubMed

    Ma, Yan-Mei; Ibeanu, Gordon; Wang, Li-Yao; Zhang, Jian-Zhong; Chang, Yue; Dong, Jian-Da; Li, P Andy; Jing, Li

    2017-01-19

    Previous studies have indicated that selenium supplementation may be beneficial in neuroprotection against glutamate-induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. However, the exact mechanisms by which selenium protects against glutamate-provoked mitochondrial perturbation remain ambiguous. In this study glutamate exposed murine hippocampal neuronal HT22 cell was used as a model to investigate the underlying mechanisms of selenium-dependent protection against mitochondria damage. We find that glutamate-induced cytotoxicity was associated with enhancement of superoxide production, activation of caspase-9 and -3, increases of mitochondrial fission marker and mitochondrial morphological changes. Selenium significantly resolved the glutamate-induced mitochondria structural damage, alleviated oxidative stress, decreased Apaf-1, caspases-9 and -3 contents, and altered the autophagy process as observed by a decline in the ratio of the autophagy markers LC3-I and LC3-II. These findings suggest that the protection of selenium against glutamate stimulated cell damage of HT22 cells is associated with amelioration of mitochondrial dynamic imbalance.

  15. [Selenium deficiency in an organic extensive water buffalo farm].

    PubMed

    Große, Reinhard; Binici, Cagri; Pieper, Robert; Müller, Kerstin E

    2018-06-01

    This case report presents investigations of muscle problems in three male water buffaloes (1-2 years) kept extensively (loose housing, pasture). The bulls were presented because of listlessness and increased lying periods. They displayed difficulties to stand up, a stilted gait, and tremor in the legs. The determination of the selenium concentration by the measurement of glutathione peroxidase activity in whole blood samples (EDTA) demonstrated selenium deficiency in all three buffaloes. This confirmed the tentative diagnosis of nutritive myodystrophy due to selenium deficiency. Following a single injection of 1500 mg all-rac-alpha-tocopherol acetate and 11 mg sodium selenite, the bulls recovered clinically. The whole blood samples taken subsequently from seven adult water buffaloes on the farm showed selenium deficiency in all animals. Consequently, slow-release multi-trace element boluses were administered once orally - as far as possible - to all adult animals of the herd. After 1 year, a good to very good selenium supply was observed in all these buffaloes, except for one cow, in which bolus application had failed. Schattauer GmbH.

  16. Dietary supplementation with selenium yeast and tea polyphenols improve growth performance and nitrite tolerance of Wuchang bream (Megalobrama amblycephala).

    PubMed

    Long, Meng; Lin, Wang; Hou, Jie; Guo, Honghui; Li, Li; Li, Dapeng; Tang, Rong; Yang, Fan

    2017-09-01

    In order to explore the effects of dietary selenium yeast, tea polyphenols and their combination on growth of Wuchang bream (Megalobrama amblycephala) and its resistance to nitrite stress, 360 healthy Wuchang bream with initial body weight of (55.90 ± 2.60) g were randomly divided into four groups: a control group fed with basal diet and three treated groups fed with basal diets supplemented with 0.50 mg/kg selenium yeast, 50 mg/kg tea polyphenols, and the combination of 0.50 mg/kg selenium yeast and 50 mg/kg tea polyphenols, respectively. After 60 d of feeding, the growth performance of Wuchang bream was measured. Then 25 fish per tank were exposed to nitrite stress of 15.0 mg/L. The serum stress hormones, liver histology and hepatic antioxidant responses were evaluated before nitrite exposure (0 h) and at 6, 12, 24, 48 and 96 h after exposure. The results showed that before nitrite exposure, compared with the control, the weight gain, specific growth rate, liver total antioxidant capacity, the activities and transcriptional levels of hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in the selenium yeast and combination groups were significantly increased, while feed conversion rate was decreased significantly, which suggested that the combined use of selenium yeast and tea polyphenols as well as the single selenium yeast supplementation improved growth performance and enhanced antioxidant capacity in fish. After nitrite exposure, compared with the control, liver total antioxidant capacity as well as the activities and transcription levels of catalase superoxide dismutase and glutathione peroxidase in three treatment groups were significantly increased in varying degrees whereas serum cortisol contents and liver malondialdehyde levels were decreased significantly. By contrast, the combined use of selenium yeast and tea polyphenols was more effective than the single supplementation with selenium yeast or tea polyphenols. In consistent with this, alterations of the liver histostructure in three treatment groups were slower and less severe than in the control group after nitrite exposure. In conclusion, a basal diet supplemented with the combination of 0.50 mg/kg selenium yeast and 50 mg/kg tea polyphenols could effectively improve growth performance and nitrite resistance in Wuchang bream. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of Different Amounts of Supplemental Selenium and Vitamin E on the Incidence of Retained Placenta, Selenium, Malondialdehyde, and Thyronines Status in Cows Treated with Prostaglandin F2α for the Induction of Parturition

    PubMed Central

    Jovanović, Ivan B.; Veličković, Miljan; Vuković, Dragan; Milanović, Svetlana; Valčić, Olivera; Gvozdić, Dragan

    2013-01-01

    The incidence of retained placenta (RP) in cows increases in cases of parturition induced by prostaglandin F2α. We analyzed the effects of different doses of supplemental selenium and vitamin E on the incidence of RP, blood selenium, plasma thyronines, and malondialdehyde concentration. Thirty-three clinically healthy, multiparous Holstein-Frisian cows were assigned to 3 groups and supplemented with a single intramuscular injection of sodium selenite (SS) and tocopherol acetate (TAc) between days 250 to 255 of gestation: control—unsupplemented; group A—10 mg SS + 400 mg TAc; group B—20 mg SS + 800 mg TAc. Parturition was induced using PGF2α not before day 275 of gestation. The RP incidence was reduced from 66.7% in the control to 38.2 and 30.8% in groups A and B, respectively. Blood selenium and glutathione peroxidase activity in treated groups were significantly higher compared to control, with no significant difference between groups A and B. Plasma malondialdehyde in group B was significantly lower than that in control and group A, while thyronines levels were not affected. Comparison of RP and non-RP cows, independently of supplement treatment, revealed higher blood selenium and glutathione peroxidase activity and lower MDA and thyroxine in non-RP animals, while triiodothyronine level did not differ. PMID:26464914

  18. Ventilatory Responses to Hypercapnia during Wakefulness and Sleep in Obese Adolescents With and Without Obstructive Sleep Apnea Syndrome

    PubMed Central

    Yuan, Haibo; Pinto, Swaroop J.; Huang, Jingtao; McDonough, Joseph M.; Ward, Michelle B.; Lee, Yin N.; Bradford, Ruth M.; Gallagher, Paul R.; Shults, Justine; Konstantinopoulou, Sophia; Samuel, John M.; Katz, Eliot S.; Hua, Shucheng; Tapia, Ignacio E.; Marcus, Carole L.

    2012-01-01

    Study Objectives: Abnormal ventilatory drive may contribute to the pathophysiology of the childhood obstructive sleep apnea syndrome (OSAS). Concomitant with the obesity epidemic, more adolescents are developing OSAS. However, few studies have specifically evaluated the obese adolescent group. The authors hypothesized that obese adolescents with OSAS would have a blunted hypercapnic ventilatory response (HCVR) while awake and blunted ventilatory responses to carbon dioxide (CO2) during sleep compared with obese and lean adolescents without OSAS. Design: CVR was measured during wakefulness. During nonrapid eye movement (NREM) and rapid eye movement (REM) sleep, respiratory parameters and genioglossal electromyogram were measured during CO2 administration in comparison with room air in obese adolescents with OSAS, obese control study participants, and lean control study participants. Setting: Sleep laboratory. Participants: Twenty-eight obese patients with OSAS, 21 obese control study participants, and 37 lean control study participants. Results: The obese OSAS and obese control groups had a higher HCVR compared with the lean control group during wakefulness. During both sleep states, all 3 groups had a response to CO2; however, the obese OSAS group had lower percentage changes in minute ventilation, inspiratory flow, inspiratory time, and tidal volume compared with the 2 control groups. There were no significance differences in genioglossal activity between groups. Conclusions: HCVR during wakefulness is increased in obese adolescents. Obese adolescents with OSAS have blunted ventilatory responses to CO2 during sleep and do not have a compensatory prolongation of inspiratory time, despite having normal CO2 responsivity during wakefulness. Central drive may play a greater role than upper airway neuromotor tone in adapting to hypercapnia. Citation: Yuan H; Pinto SJ; Huang J; McDonough JM; Ward MB; Lee YN; Bradford RM; Gallagher PR; Shults J; Konstantinopoulou S; Samuel JM; Katz ES; Hua S; Tapia IE; Marcus CL. Ventilatory responses to hypercapnia during wakefulness and sleep in obese adolescents with and without obstructive sleep apnea syndrome. SLEEP 2012;35(9):1257–1267. PMID:22942504

  19. 20 CFR 410.430 - Ventilatory studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Ventilatory studies. 410.430 Section 410.430... studies. Spirometric tests to measure ventilatory function must be expressed in liters or liters per... least 20 millimeters (mm.) per second. The height of the individual must be recorded. Studies should not...

  20. 20 CFR 410.430 - Ventilatory studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Ventilatory studies. 410.430 Section 410.430... studies. Spirometric tests to measure ventilatory function must be expressed in liters or liters per... least 20 millimeters (mm.) per second. The height of the individual must be recorded. Studies should not...

  1. OBESITY: CHALLENGES TO VENTILATORY CONTROL DURING EXERCISE A BRIEF REVIEW

    PubMed Central

    Babb, Tony G.

    2013-01-01

    Obesity is a national health issue in the US. Among the many physiological changes induced by obesity, it also presents a unique challenge to ventilatory control during exercise due to increased metabolic demand of moving larger limbs, increased work of breathing due to extra weight on the chest wall, and changes in breathing mechanics. These challenges to ventilatory control in obesity can be inconspicuous or overt among obese adults but for the most part adaptation of ventilatory control during exercise in obesity appears remarkably unnoticed in the majority of obese people. In this brief review, the changes to ventilatory control required for maintaining normal ventilation during exercise will be examined, especially the interaction between respiratory neural drive and ventilation. Also, gaps in our current knowledge will be discussed. PMID:23707540

  2. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives

    NASA Astrophysics Data System (ADS)

    Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna

    2017-08-01

    Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.

  3. Adverse systemic arterial function in patients with selenium deficiency.

    PubMed

    Chan, Y-H; Siu, C-W; Yiu, K-H; Chan, H-T; Li, S-W; Tam, S; Cheung, B M; Lau, C-P; Lam, T H; Tse, H-F

    2012-01-01

    Experimental studies have shown that selenium is involved in the synthesis of selenoproteins which might contribute to cardiovascular protection. However, the relationship between selenium deficiency and vascular function in clinical context remains unknown. To investigate for any relationship between selenium deficiency and systemic arterial function in patients with high risk of vascular events. Cross-sectional study. 306 consecutive patients with high risk for cardiovascular events (coronary artery disease 35%, acute/ recurrent ischemic stroke 40%, diabetes mellitus 54%) followed up at internal medicine outpatient clinics. Non-invasive brachial-ankle pulse wave velocity (PWV) was determined using vascular profiling system (VP-2000). Long-term intake of selenium was determined by a validated food frequency questionnaire. Mean daily selenium intake was 59.5 ± 52.1 mcg/day, and mean PWV was 1782.4 ± 418.4 cm/s. Patients with selenium intake <10th percentile had significantly higher PWV as compared to patients with intake ≥ 10th percentile (1968.2 ± 648.9 cm/s versus 1762.2 ± 381.6 cm/s, P=0.010). After adjusting for potential confounders including age, gender, history of hypertension, hyperlipidemia, diabetes and cardiovascular disease, smoking status, use of cardiovascular medications, waist-hip ratio, education/ financial status, physical activity, calorie intake and intake of antioxidant vitamins, deficient selenium intake <10th percentile remained independently predictive of increased PWV by +363.4 cm/s [95% CI: 68.1 to 658.6, P=0.016, relative increase 21%]. Selenium deficiency is associated with adverse arterial function in patients with high risk for vascular events.

  4. Antioxidant effects of selenium on lung injury in paraquat intoxicated rats

    USGS Publications Warehouse

    Kim, K.S.; Suh, G.J.; Kwon, W.Y.; Kwak, Y.H.; Lee, Kenneth; Lee, H.J.; Jeong, K.Y.; Lee, M.W.

    2012-01-01

    CONTEXT: Paraquat (PQ) causes lethal intoxication by inducing oxidant injury to the lung. Selenium is a cofactor for glutathione peroxidase (GPx), which is one of the major endogenous antioxidant enzymes. OBJECTIVE: To determine whether selenium post-treatment activates GPx, decreases lung injury, and improves survival in PQ intoxicated rats. MATERIALS AND METHODS: Male Spraque-Dawley rats were categorized into three groups: sham (n = 6), PQ (n = 12), and PQ + Se (n = 12). In the PQ and PQ + Se groups, 50 mg/kg of PQ was administered intraperitoneally. After 10 minutes, 60 μg/kg of Se (PQ + Se) or saline (PQ) was administered via the tail vein. Six rats per group were euthanized 6 hours or 24 hours later. Lung tissues were harvested for the measurement of GPx activity, reduced glutathione (GSH), glutathione disulfide (GSSG) and malondialdehyde (MDA) and for histological analysis. Using separated set of rats, survival of PQ (n = 10) and PQ + Se (n = 10) were observed for 72 hours. RESULTS: GPx activity in the PQ group at the 6-hour and 24-hour time points was lower than in the sham group (p CONCLUSION: Single dose of selenium post-treatment activates GPx and attenuates lipid peroxidation and lung injury early after paraquat intoxication, but does not improve 72 hours of survival.

  5. Modulation of nano-selenium on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons.

    PubMed

    Yuan, Huijun; Lan, Tonghan; Lin, Jiarui

    2005-01-01

    Nano-Selenium, a novel Nano technology production, was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Selenium on tetrodotoxin-sensitive (TTX-S) voltage-dependent Na+channels in isolated rat dorsal root ganglion neurons, using whole-cell patch-clamp method. Nano-Selenium irreversibly decreased TTX-S Na+current (INa) in a concentration-dependent manner and shifted the maximum of the current/voltage relationship from -67mV to -52mV, without modifying the threshold potential of the current. Nano-Selenium shifted the steady-state activation and inactivation curves to the left. In the contrast of Na2SeO3, the inhibition effect of 1nM Nano-Se was much stronger. The cell treated with 1nM Na2SeO3firstly, still respond to futher addition of 1nM Nano-Selenium. These results prove Nano-Selenium to be a novel antiagonist, acted within the channel pore, not on or near the exterior surface of the channel protein where it would experience the membrane electric field, which possesses a distinct binding site from Na2SeO3.

  6. Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation.

    PubMed

    Zhang, Haobin; Chen, Tianfeng; Jiang, Jie; Wong, Yum-Shing; Yang, Fang; Zheng, Wenjie

    2011-08-24

    Both selenium and allophycocyanin (APC) have been reported to show novel antioxidant activities. In this study, a fast protein liquid chromatographic method for purification of selenium-containing allophycocyanin (Se-APC) from selenium-enriched Spirulina platensis and the protective effect of Se-APC on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress have been described. After fractionation by ammonium sulfate precipitation, and separation by DEAE-Sepharose ion-exchange and Sephacryl S-300 size exclusion chromatography, Se-APC with purity ratio (A652/A280) of 5.30 and Se concentration of 343.02 μg g(-1) protein was obtained. Se-APC exhibited stronger antioxidant activity than APC by scavenging ABTS (2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid) and AAPH free radicals. The oxidative hemolysis and morphological changes induced by AAPH in human erythrocytes were effectively reversed by coincubation with Se-APC. Lipid oxidation induced by the pro-oxidant agent cupric chloride in human plasma, as evaluated by formation of conjugated diene, was blocked by Se-APC. The accumulation of malondialdehyde, loss of reduced glutathione, and increase in enzyme activities of glutathione peroxidase and reductase induced by AAPH in human erythrocytes were effectively suppressed by Se-APC. Furthermore, Se-APC significantly prevented AAPH-induced intracellular reactive oxygen species (ROS) generation. Taken together, our results suggest that Se-APC demonstrates application potential in treatment of diseases in which excess production of ROS acts as a casual or contributory factor.

  7. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.

    PubMed

    Liu, Zijian; Fu, Xiang; Huang, Wei; Li, Chunxia; Wang, Xinyan; Huang, Bei

    2018-03-01

    Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Selenium and Antioxidant Status in Dairy Cows at Different Stages of Lactation.

    PubMed

    Gong, Jian; Xiao, Min

    2016-05-01

    Thirty-five multiparous Holstein cows averaging 550 ± 50 kg of body weight and in 2 to 4 parity were divided into three groups according to lactation stage (group A: nine cows from 4 to 1 weeks prepartum; group B: 11 cows from 1 to 30 days postpartum; group C: 15 cows from 30 to 100 days postpartum). Selenium concentration, malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) activity, thioredoxin reductase (TrxR) activity, and total antioxidant status (TAS) in serum were determined to evaluate selenium and antioxidant status in dairy cows at different stages of lactation. The results showed that mean serum selenium concentration, MDA level, and GSH-Px activity of cows in early lactation increased significantly (P < 0.05) when compared with cows in the dry period and peak lactation. Conversely, serum TrxR activity and TAS declined during this period (P < 0.05). The increase of serum MDA level during early lactation indicate that the reactive oxygen species, including lipid hydroperoxides, increase in this period, thus placing the cows at a greater risk of oxidative stress. The significant decrease in TrxR activity that is accompanied with a decrease in TAS during early lactation suggests that dairy cows have low antioxidant defense in this period and TrxR may be an important antioxidant defense mechanism in transition dairy cows.

  9. Mitochondria-Mediated Protein Regulation Mechanism of Polymorphs-Dependent Inhibition of Nanoselenium on Cancer Cells

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Guo, Yuming; Yang, Gai; Yang, Lin; Ma, Xiaoming; Wang, Kui; Zhu, Lin; Sun, Jiaojiao; Wang, Xiaobing; Zhang, Hua

    2016-08-01

    The present study was (i) to prepare two types of selenium nanoparticles, namely an amorphous form of selenium quantum dots (A-SeQDs) and a crystalline form of selenium quantum dots (C-SeQDs); and (ii) to investigate the nano-bio interactions of A-SeQDs and C-SeQDs in MCF-7, HepG2, HeLa, NIH/3T3, L929 cells and BRL-3A cells. It was found that A-SeQDs could induce the mitochondria-mediated apoptosis, necrosis and death of cells, while C-SeQDs had much weaker effects. This polymorphs-dependent anti-proliferative activity of nano-selenium was scarcely reported. Further investigation demonstrated that A-SeQDs could differentially regulate 61 proteins and several pathways related to stress response, protein synthesis, cell migration and cell cycle, including “p38 MAPK Signaling”, “p53 Signaling”, “14-3-3-mediated Signaling”, “p70S6K Signaling” and “Protein Ubiquitination Pathway”. This was the first report to demonstrate the involvement of protein synthesis and post-translational modification pathways in the anti-proliferative activity associated with NMs. Compared with previously fragmentary studies, this study use a nanomics approach combining bioinformatics and proteomics to systematically investigate the nano-bio interactions of selenium nanoparticles in cancer cells.

  10. Microbial transformation of elements: the case of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.; Basu, P.; Oremland, R.

    2002-01-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  11. Microbial transformation of elements: the case of arsenic and selenium.

    PubMed

    Stolz, J F; Basu, P; Oremland, R S

    2002-12-01

    Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements.

  12. Ventilatory responses to hypercapnia and hypoxia after 6 h passive hyperventilation in humans

    PubMed Central

    Ren, Xiaohui; Robbins, Peter A

    1999-01-01

    Acute exposure to hypoxia stimulates ventilation and induces hypocapnia. Long-term exposure to hypoxia generates changes in respiratory control known as ventilatory acclimatization to hypoxia. The object of this study was to investigate the degree to which the hyperventilation and hypocapnia can induce the changes known as ventilatory acclimatization to hypoxia, in the absence of the primary hypoxic stimulus itself.Three 6 h protocols were each performed on twelve healthy volunteers: (1) passive hypocapnic hyperventilation, with end-tidal CO2 pressure (PET,CO2) held 10 Torr below the eupnoeic value; (2) passive eucapnic hyperventilation, with PET,CO2 maintained eucapnic; (3) control.Ventilatory responses to acute hypercapnia and hypoxia were assessed before and half an hour after each protocol.The presence of prior hypocapnia, but not prior hyperventilation, caused a reduction in air-breathing PET,CO2 (P < 0·05, ANOVA), and a leftwards shift of the ventilatory response to hypercapnia (P < 0·05). The presence of prior hyperventilation, but not prior hypocapnia, caused an increase in the ventilatory sensitivity to CO2 (P < 0·05). No significant effects of any protocol were detected on the ventilatory sensitivity to hypoxia.We conclude that following 6 h of passive hyperventilation: (i) the left shift of the VE-PET,CO2 relationship is due to alkalosis and not to hyperventilation; (ii) the increase in slope of the VE-PET,CO2 relationship is due to the hyperventilation and not the alkalosis; and (iii) ventilatory sensitivity to hypoxia is unaltered. PMID:9882758

  13. Tetrodotoxin as a Tool to Elucidate Sensory Transduction Mechanisms: The Case for the Arterial Chemoreceptors of the Carotid Body

    PubMed Central

    Rocher, Asuncion; Caceres, Ana Isabel; Obeso, Ana; Gonzalez, Constancio

    2011-01-01

    Carotid bodies (CBs) are secondary sensory receptors in which the sensing elements, chemoreceptor cells, are activated by decreases in arterial PO2 (hypoxic hypoxia). Upon activation, chemoreceptor cells (also known as Type I and glomus cells) increase their rate of release of neurotransmitters that drive the sensory activity in the carotid sinus nerve (CSN) which ends in the brain stem where reflex responses are coordinated. When challenged with hypoxic hypoxia, the physiopathologically most relevant stimulus to the CBs, they are activated and initiate ventilatory and cardiocirculatory reflexes. Reflex increase in minute volume ventilation promotes CO2 removal from alveoli and a decrease in alveolar PCO2 ensues. Reduced alveolar PCO2 makes possible alveolar and arterial PO2 to increase minimizing the intensity of hypoxia. The ventilatory effect, in conjunction the cardiocirculatory components of the CB chemoreflex, tend to maintain an adequate supply of oxygen to the tissues. The CB has been the focus of attention since the discovery of its nature as a sensory organ by de Castro (1928) and the discovery of its function as the origin of ventilatory reflexes by Heymans group (1930). A great deal of effort has been focused on the study of the mechanisms involved in O2 detection. This review is devoted to this topic, mechanisms of oxygen sensing. Starting from a summary of the main theories evolving through the years, we will emphasize the nature and significance of the findings obtained with veratridine and tetrodotoxin (TTX) in the genesis of current models of O2-sensing. PMID:22363245

  14. Determination of selenium in the environment and in biological material.

    PubMed Central

    Bem, E M

    1981-01-01

    This paper reviews the following problems, sampling, decomposition procedures and most important analytical methods used for selenium determination, e.g., neutron activation analysis, atomic absorption spectrometry, gas-liquid chromatography, spectrophotometry, fluorimetry, and x-ray fluorescence. This review covers the literature mainly from 1975 to 1977. PMID:7007035

  15. Effect of exercise training on ventilatory efficiency in patients with heart disease: a review.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Furlan, V

    2016-06-20

    The analysis of ventilatory efficiency in cardiopulmonary exercise testing has proven useful for assessing the presence and severity of cardiorespiratory diseases. During exercise, efficient pulmonary gas exchange is characterized by uniform matching of lung ventilation with perfusion. By contrast, mismatching is marked by inefficient pulmonary gas exchange, requiring increased ventilation for a given CO2 production. The etiology of increased and inefficient ventilatory response to exercise in heart disease is multifactorial, involving both peripheral and central mechanisms. Exercise training has been recommended as non-pharmacological treatment for patients with different chronic cardiopulmonary diseases. In this respect, previous studies have reported improvements in ventilatory efficiency after aerobic exercise training in patients with heart disease. Against this background, the primary objective of the present review was to discuss the pathophysiological mechanisms involved in abnormal ventilatory response to exercise, with an emphasis on both patients with heart failure syndrome and coronary artery disease. Secondly, special focus was dedicated to the role of aerobic exercise training in improving indices of ventilatory efficiency among these patients, as well as to the underlying mechanisms involved.

  16. Analysis of respiratory and muscle activity by means of cross information function between ventilatory and myographic signals.

    PubMed

    Alonso, J F; Mañanas, M A; Hoyer, D; Topor, Z L; Bruce, E N

    2004-01-01

    Analysis of respiratory muscle activity is a promising technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Evaluation of interactions between muscles is very useful in order to determine the muscular pattern during an exercise. These interactions have already been assessed by means of different linear techniques like cross-spectrum, magnitude squared coherence or cross-correlation. The aim of this work is to evaluate interactions between respiratory and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF), and finding out what information can be extracted from it. Some parameters are defined and calculated from CMIF between ventilatory and myographic signals of three respiratory muscles. Finally, differences in certain parameters were obtained between OSAS patients and healthy subjects indicating different respiratory muscle couplings.

  17. Hypothyroidism Attenuates SCH 23390-mediated Depression of Breathing and Decreases D1 Receptor Expression in Carotid Bodies, PVN and Striatum of Hamsters

    PubMed Central

    Schlenker, Evelyn H.; Schultz, Harold D.

    2011-01-01

    Hypothyroidism can lead to depressed breathing. We determined if propylthiouracil (PTU)–induced hypothyroidism in hamsters (HH) altered dopamine D1 receptor expression, D1 receptor-modulated ventilation, and ventilatory chemoreflex activation by hypoxia or hypercapnia. Hypothyroidism was induced by administering 0.04% PTU in drinking water for three months. Ventilation was evaluated following saline or 0.25 mg/kg SCH 23390, a D1 receptor antagonist, while awake hamsters breathed normoxic (21% O2 in N2), hypoxic (10% O2 in N2) and hypercapnic (5% CO2 in O2) air. Relative to euthyroid hamsters (EH), HH exhibited decreased D1 receptor protein levels in carotid bodies, striatum, and hypothalamic paraventricular nucleus, but not in the nucleus tractus solitarius. Relative to EH, HH exhibited lower ventilation during exposure to normoxia, hypoxia, or hypercapnia, but comparable ventilatory responsiveness to chemoreflex activation. SCH 23390 decreased ventilation of EH hamsters exposed to normoxia, hypoxia, and hypercapnia. In HH SCH 23390 increased ventilation during baseline normoxia and did not affect ventilation during exposure to hypoxia and hypercapnia, resulting in reduced ventilatory responsivess to chemoreflex activation by hypoxia and hypercapnia. Furthermore, in HH D1 receptor protein levels are decreased in several brain regions and within the carotid bodies. Moreover, D1 receptor-modulation of breathing at rest and during gas exposures were depressed in EH but not HH. PMID:21669406

  18. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.

    PubMed

    Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L

    2015-04-01

    Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Obesity: challenges to ventilatory control during exercise--a brief review.

    PubMed

    Babb, Tony G

    2013-11-01

    Obesity is a national health issue in the US. Among the many physiological changes induced by obesity, it also presents a unique challenge to ventilatory control during exercise due to increased metabolic demand of moving larger limbs, increased work of breathing due to extra weight on the chest wall, and changes in breathing mechanics. These challenges to ventilatory control in obesity can be inconspicuous or overt among obese adults but for the most part adaptation of ventilatory control during exercise in obesity appears remarkably unnoticed in the majority of obese people. In this brief review, the changes to ventilatory control required for maintaining normal ventilation during exercise will be examined, especially the interaction between respiratory neural drive and ventilation. Also, gaps in our current knowledge will be discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High fat diet blunts the effects of leptin on ventilation and on carotid body activity.

    PubMed

    Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V

    2017-12-22

    Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca 2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. [Cheyne-Stokes respiration and cardiovascular risk].

    PubMed

    Duchna, H-W; Schultze-Werninghaus, G

    2009-07-01

    Due to its high prevalence in patients with heart failure and its negative predictive value concerning morbidity and mortality, Cheyne-Stokes respiration (CSR) is a sleep disorders of major interest. CSR correlates with the degree of heart failure and is characterised by a typical crescendo/decrescendo breathing pattern combined with phases of central sleep apnoea, caused by pulmonary oedema and oscillation of ventilatory control. Thus, CSR is a marker of the severity of heart failure. Treatment of CSR first involves optimisation of heart failure therapy by cardiologists and then application of non-invasive means of ventilatory support. Treatment of patients with severe heart failure with non-invasive positive pressure ventilatory support leads to a significant reduction of CSR, sympathetic activity, and daytime sleepiness and improves cardiac output and 6-minute walking distance. At present, a prospective randomised, controlled intervention-study (Serve-HF study) is being conducted in order to show if therapy of CSR can improve patient survival. This review describes the pathophysiology, epidemiology, and therapeutic options of CSR with a special focus on the elevated cardiovascular risk of patients with CSR.

  2. DNA damage and oxidative stress response to selenium yeast in the non-smoking individuals: a short-term supplementation trial with respect to GPX1 and SEPP1 polymorphism.

    PubMed

    Jablonska, E; Raimondi, S; Gromadzinska, J; Reszka, E; Wieczorek, E; Krol, M B; Smok-Pieniazek, A; Nocun, M; Stepnik, M; Socha, K; Borawska, M H; Wasowicz, W

    2016-12-01

    Selenium, both essential and toxic element, is considered to protect against cancer, though human supplementation trials have generated many inconsistent data. Genetic background may partially explain a great variability of the studies related to selenium and human health. The aim of this study was to assess whether functional polymorphisms within two selenoprotein-encoding genes modify the response to selenium at the level of oxidative stress, DNA damage, and mRNA expression, especially in the individuals with a relatively low selenium status. The trial involved 95 non-smoking individuals, stratified according to GPX1 rs1050450 and SEPP1 rs3877899 genotypes, and supplemented with selenium yeast (200 µg) for 6 weeks. Blood was collected at four time points, including 4 weeks of washout. After genotype stratification, the effect of GPX1 rs1050450 on lower GPx1 activity responsiveness was confirmed; however, in terms of DNA damage, we failed to indicate that individuals homozygous for variant allele may especially benefit from the increased selenium intake. Surprisingly, considering gene and time interaction, GPX1 polymorphism was observed to modify the level of DNA strand breaks during washout, showing a significant increase in GPX1 wild-type homozygotes. Regardless of the genotype, selenium supplementation was associated with a selectively suppressed selenoprotein mRNA expression and inconsistent changes in oxidative stress response, indicating for overlapped, antioxidant, and prooxidant effects. Intriguingly, DNA damage was not influenced by supplementation, but it was significantly increased during washout. These results point to an unclear relationship between selenium, genotype, and DNA damage.

  3. The Roles of the Interaction of BCL2-Antagonist/Killer 1, Apoptotic Peptidase Activating Factor 1 and Selenium in the Pathogenesis of Kashin-Beck Disease.

    PubMed

    Wang, Sen; Duan, Chen; Zhang, Feng; Wang, Xi; Guo, Xiong

    2016-03-01

    BCL2-antagonist/killer 1 (BAK1) and apoptotic peptidase activating factor 1 (APAF1) are significant genes in apoptosis signalling pathway of Kashin-Beck disease (KBD). We aimed to verify the protein expression levels of BAK1 and APAF1 in the cartilage and chondrocytes of patients with KBD. Additionally, we explored the relationship between the levels of these proteins and selenium concentration. Chondrocytes was cultured and treated with sodium selenite in vitro. Immunohistochemistry and Western blotting were used to verify the expression levels of BAK1 and APAF1. Compared with the control samples, APAF1 was upregulated and BAK1 was downregulated in the cartilage and chondrocytes of KBD patients. APAF1 expression was higher in the middle and deep zone in the KBD cartilage. APAF1 levels decreased gradually with the increasing selenium concentration (0.05, 0.10 and 0.25 mg/L). BAK1 expression in the 0.25 mg/L selenium group was lower than that of the control group. Different selenium concentrations had varying effects on BAK1 and APAF1 levels. APAF1 may play an important role in the pathogenesis of KBD. APAF1-related apoptosis was more pronounced in the middle and deep zones of the KBD cartilage. APAF may represent a potentially novel molecular target, which may be a biomarker of the role of selenium on the prevention and treatment of KBD. The role of BAK1 in the pathogenesis of KBD requires further study.

  4. Ventilatory drive and the apnea-hypopnea index in six-to-twelve year old children

    PubMed Central

    Fregosi, Ralph F; Quan, Stuart F; Jackson, Andrew C; Kaemingk, Kris L; Morgan, Wayne J; Goodwin, Jamie L; Reeder, Jenny C; Cabrera, Rosaria K; Antonio, Elena

    2004-01-01

    Background We tested the hypothesis that ventilatory drive in hypoxia and hypercapnia is inversely correlated with the number of hypopneas and obstructive apneas per hour of sleep (obstructive apnea hypopnea index, OAHI) in children. Methods Fifty children, 6 to 12 years of age were studied. Participants had an in-home unattended polysomnogram to compute the OAHI. We subsequently estimated ventilatory drive in normoxia, at two levels of isocapnic hypoxia, and at three levels of hyperoxic hypercapnia in each subject. Experiments were done during wakefulness, and the mouth occlusion pressure measured 0.1 seconds after inspiratory onset (P0.1) was measured in all conditions. The slope of the relation between P0.1 and the partial pressure of end-tidal O2 or CO2 (PETO2 and PETCO2) served as the index of hypoxic or hypercapnic ventilatory drive. Results Hypoxic ventilatory drive correlated inversely with OAHI (r = -0.31, P = 0.041), but the hypercapnic ventilatory drive did not (r = -0.19, P = 0.27). We also found that the resting PETCO2 was significantly and positively correlated with the OAHI, suggesting that high OAHI values were associated with resting CO2 retention. Conclusions In awake children the OAHI correlates inversely with the hypoxic ventilatory drive and positively with the resting PETCO2. Whether or not diminished hypoxic drive or resting CO2 retention while awake can explain the severity of sleep-disordered breathing in this population is uncertain, but a reduced hypoxic ventilatory drive and resting CO2 retention are associated with sleep-disordered breathing in 6–12 year old children. PMID:15117413

  5. Increased ventilatory response to carbon dioxide in COPD patients following vitamin C administration

    PubMed Central

    Hartmann, Sara E.; Kissel, Christine K.; Szabo, Lian; Walker, Brandie L.; Leigh, Richard; Anderson, Todd J.

    2015-01-01

    Patients with chronic obstructive pulmonary disease (COPD) have decreased ventilatory and cerebrovascular responses to hypercapnia. Antioxidants increase the ventilatory response to hypercapnia in healthy humans. Cerebral blood flow is an important determinant of carbon dioxide/hydrogen ion concentration at the central chemoreceptors and may be affected by antioxidants. It is unknown whether antioxidants can improve the ventilatory and cerebral blood flow response in individuals in whom these are diminished. Thus, we aimed to determine the effect of vitamin C administration on the ventilatory and cerebrovascular responses to hypercapnia during healthy ageing and in COPD. Using transcranial Doppler ultrasound, we measured the ventilatory and cerebral blood flow responses to hyperoxic hypercapnia before and after an intravenous vitamin C infusion in healthy young (Younger) and older (Older) subjects and in moderate COPD. Vitamin C increased the ventilatory response in COPD patients (mean (95% CI) 1.1 (0.9–1.1) versus 1.5 (1.1–2.0) L·min−1·mmHg−1, p<0.05) but not in Younger (2.5 (1.9–3.1) versus 2.4 (1.9–2.9) L·min−1·mmHg−1, p>0.05) or Older (1.3 (1.0–1.7) versus 1.3 (1.0–1.7) L·min−1·mmHg−1, p>0.05) healthy subjects. Vitamin C did not affect the cerebral blood flow response in the young or older healthy subjects or COPD subjects (p>0.05). Vitamin C increases the ventilatory but not cerebrovascular response to hyperoxic hypercapnia in patients with moderate COPD. PMID:27730137

  6. Ventilatory thresholds determined from HRV: comparison of 2 methods in obese adolescents.

    PubMed

    Quinart, S; Mourot, L; Nègre, V; Simon-Rigaud, M-L; Nicolet-Guénat, M; Bertrand, A-M; Meneveau, N; Mougin, F

    2014-03-01

    The development of personalised training programmes is crucial in the management of obesity. We evaluated the ability of 2 heart rate variability analyses to determine ventilatory thresholds (VT) in obese adolescents. 20 adolescents (mean age 14.3±1.6 years and body mass index z-score 4.2±0.1) performed an incremental test to exhaustion before and after a 9-month multidisciplinary management programme. The first (VT1) and second (VT2) ventilatory thresholds were identified by the reference method (gas exchanges). We recorded RR intervals to estimate VT1 and VT2 from heart rate variability using time-domain analysis and time-varying spectral-domain analysis. The coefficient correlations between thresholds were higher with spectral-domain analysis compared to time-domain analysis: Heart rate at VT1: r=0.91 vs. =0.66 and VT2: r=0.91 vs. =0.66; power at VT1: r=0.91 vs. =0.74 and VT2: r=0.93 vs. =0.78; spectral-domain vs. time-domain analysis respectively). No systematic bias in heart rate at VT1 and VT2 with standard deviations <6 bpm were found, confirming that spectral-domain analysis could replace the reference method for the detection of ventilatory thresholds. Furthermore, this technique is sensitive to rehabilitation and re-training, which underlines its utility in clinical practice. This inexpensive and non-invasive tool is promising for prescribing physical activity programs in obese adolescents. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  8. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  9. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung.

    PubMed

    Mayo, P; Volpicelli, G; Lerolle, N; Schreiber, A; Doelken, P; Vieillard-Baron, A

    2016-07-01

    On a regular basis, the intensivist encounters the patient who is difficult to wean from mechanical ventilatory support. The causes for failure to wean from mechanical ventilatory support are often multifactorial and involve a complex interplay between cardiac and pulmonary dysfunction. A potential application of point of care ultrasonography relates to its utility in the process of weaning the patient from mechanical ventilatory support. This article reviews some applications of ultrasonography that may be relevant to the process of weaning from mechanical ventilatory support. The authors have divided these applications of ultrasonography into four separate categories: the assessment of cardiac, diaphragmatic, and lung function; and the identification of pleural effusion; which can all be evaluated with ultrasonography during a dynamic process in which the intensivist is uniquely positioned to use ultrasonography at the point of care. Ultrasonography may have useful application during the weaning process from mechanical ventilatory support.

  10. Ptaquiloside reduces NK cell activities by enhancing metallothionein expression, which is prevented by selenium

    USDA-ARS?s Scientific Manuscript database

    Pteridium aquilinum, one of the most important poisonous plants in the world, is known to be carcinogenic to animals and humans. Moreover, our previous studies showed that the immunosuppressive effects of ptaquiloside, its main toxic agent, were prevented by selenium in mouse natural killer (NK) cel...

  11. Dietary selenium supplementation and whole blood gene expression in healthy North American men

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is a trace nutrient required in microgram amounts by all animals, with a recommended dietary allowance of 55 µg/d in humans. The biological functions of Se are performed by a group of 25 selenoproteins containing the unusual amino acid selenocysteine at their active sites. The selenopr...

  12. Selenium compounds activate ATM-dependent DNA damage responses via the mismatch repair protein hMLH1 in colorectal cancer cells

    USDA-ARS?s Scientific Manuscript database

    Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR) process. Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells ...

  13. [Erythremia: the activity of erythrocyte antioxidant enzymes and the association with iron deficiency].

    PubMed

    Petukhov, V I; Kumerova, A O; Letse, A G; Silova, A A; Shkesters, A P; Krishchuna, M A; Mironova, N A

    1997-01-01

    Concentration of malonic dialdehyde (MDA) and activity of antioxidant enzymes G-6-PD, glutation peroxidase (GP), glutation reductase, catalase, superoxide dismutase were measured in red cells of patients with polycythemia vera. Plasmic ions Fe3+ were estimated by means of electron-paramagnetic resonance. MDA concentration and antioxidant enzymes (except GP) in polycythemia red cells were found increased, while the activity of selenium-dependent GP was reduced, the inhibition being greatest in severe iron deficiency. It is suggested that GP activity in red cells depends on both selenium levels in the body and concentrations of non-hematic iron.

  14. Selenium biochemistry and its role for human health.

    PubMed

    Roman, Marco; Jitaru, Petru; Barbante, Carlo

    2014-01-01

    Despite its very low level in humans, selenium plays an important and unique role among the (semi)metal trace essential elements because it is the only one for which incorporation into proteins is genetically encoded, as the constitutive part of the 21st amino acid, selenocysteine. Twenty-five selenoproteins have been identified so far in the human proteome. The biological functions of some of them are still unknown, whereas for others there is evidence for a role in antioxidant defence, redox state regulation and a wide variety of specific metabolic pathways. In relation to these functions, the selenoproteins emerged in recent years as possible biomarkers of several diseases such as diabetes and several forms of cancer. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important requisite to elucidate its preventing/therapeutic effect for human diseases. This review summarizes the most recent findings on the biochemistry of active selenium species in humans, and addresses the latest evidence on the link between selenium intake, selenoproteins functionality and beneficial health effects. Primary emphasis is given to the interpretation of biochemical mechanisms rather than epidemiological/observational data. In this context, the review includes the following sections: (1) brief introduction; (2) general nutritional aspects of selenium; (3) global view of selenium metabolic routes; (4) detailed characterization of all human selenoproteins; (5) detailed discussion of the relation between selenoproteins and a variety of human diseases.

  15. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    PubMed

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  16. Dietary Selenium Deficiency or Excess Reduces Sperm Quality and Testicular mRNA Abundance of Nuclear Glutathione Peroxidase 4 in Rats.

    PubMed

    Zhou, Ji-Chang; Zheng, Shijie; Mo, Junluan; Liang, Xiongshun; Xu, Yuanfei; Zhang, Huimin; Gong, Chunmei; Liu, Xiao-Li; Lei, Xin Gen

    2017-10-01

    Background: Glutathione peroxidase (GPX) 4 and selenoprotein P (SELENOP) are abundant, and several variants are expressed in the testis. Objective: We determined the effects of dietary selenium deficiency or excess on sperm quality and expressions of GPX4 and SELENOP variants in rat testis and liver. Methods: After weaning, male Sprague-Dawley rats were fed a Se-deficient basal diet (BD) for 5 wk until they were 9 wk old [mean ± SEM body weight (BW) = 256 ± 5 g]. They were then fed the BD diet alone (deficient) or with 0.25 (adequate), 3 (excess), or 5 (excess) mg Se/kg for 4 wk. Testis, liver, blood, and semen were collected to assay for selenoprotein mRNA and protein abundances, selenium concentration, GPX activity, 8-hydroxy-deoxyguanosine concentration, and sperm quality. Results: Dietary selenium supplementations elevated ( P < 0.05) tissue selenium concentrations and GPX activities. Compared with those fed BD + 0.25 mg Se/kg, rats fed BD showed lower ( P < 0.05) BW gain (86%) and sperm density (57%) but higher ( P < 0.05) plasma 8-hydroxy-deoxyguanosine concentrations (189%), and nonprogressive sperm motility (4.4-fold). Likewise, rats fed BD + 5 mg Se/kg had ( P = 0.06) lower BW gain and higher (1.9-fold) sperm deformity rates than those in the selenium-adequate group. Compared with the selenium-adequate group, dietary selenium deficiency (BD) or excess (BD + 3 or 5 mg Se/kg) resulted in 45-77% lower ( P < 0.05) nuclear Gpx4 ( nGpx4 ) mRNA abundance in the testis. Rats fed BD had lower ( P < 0.05) mRNA levels of 2 Selenop variants in both testis and liver than those in the other groups. Testicular SELENOP was 155-170% higher ( P < 0.05) in rats fed BD + 5 mg Se/kg and hepatic c/mGPX4 was 13-15% lower ( P < 0.05) in rats fed BD than in the other groups. Conclusions: The mRNA abundance of rat testicular nGPX4 responded to dietary selenium concentrations in similar ways to sperm parameters and may be used as a sensitive marker to assess appropriate Se status for male function. © 2017 American Society for Nutrition.

  17. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks.

    PubMed

    Zhao, Ling; Sun, Lv-Hui; Huang, Jia-Qiang; Briens, Mickael; Qi, De-Sheng; Xu, Shi-Wen; Lei, Xin Gen

    2017-05-01

    Background: A new organic selenium compound, 2-hydroxy-4-methylselenobutanoic acid (SeO), displayed a greater bioavailability than sodium selenite (SeNa) or seleno-yeast (SeY) in several species. Objective: This study sought to determine the regulation of the speciation of selenium, expression of selenogenome and selenocysteine biosynthesis and degradation-related genes, and production of selenoproteins by the 3 forms of selenium in the tissues of broiler chicks. Methods: Day-old male chicks ( n = 6 cages/diet, 6 chicks/cage) were fed a selenium-deficient, corn and soy-based diet [base diet (BD), 0.05 mg Se/kg] or the BD + SeNa, SeY, or SeO at 0.2 mg Se/kg for 6 wk. Plasma, livers, and pectoral and thigh muscles were collected at weeks 3 and 6 to assay for total selenium, selenomethionine, selenocysteine, redox status, and selected genes, proteins, and enzymes. Results: Although both SeY and SeO produced greater concentrations ( P < 0.05) of total selenium (20-172%) and of selenomethionine (≤15-fold) in the liver, pectoral muscle, and thigh than those of SeNa, SeO further raised ( P < 0.05) these concentrations by 13-37% and 43-87%, respectively, compared with SeY. Compared with the BD, only SeO enhanced ( P < 0.05) the mRNA of selenoprotein ( Seleno ) s and methionine sulfoxide reductase B1 ( Msrb1 ) in the liver and thigh (62-98%) and thioredoxin reductase (TXRND) activity in the pectoral and thigh muscles (20-37%) at week 3. Furthermore, SeO increased ( P < 0.05) the expression of glutathione peroxidase ( Gpx ) 3 , GPX4, SELENOP, and SELENOU relative to the SeNa group by 26-207%, and the expression of Selenop, O-phosphoseryl-transfer RNA (tRNA):selenocysteinyl-tRNA synthase , GPX4, and SELENOP relative to the SeY group by 23-55% in various tissues. Conclusions: Compared with SeNa or SeY, SeO demonstrated a unique ability to enrich selenomethionine and total selenium depositions, to induce the early expression of Selenos and Mrsb1 mRNA and TXRND activity, and to enhance the protein production of GPX4, SELENOP, and SELENOU in the tissues of chicks. © 2017 American Society for Nutrition.

  18. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach.

    PubMed

    Hammad, Ghania; Legrain, Yona; Touat-Hamici, Zahia; Duhieu, Stéphane; Cornu, David; Bulteau, Anne-Laure; Chavatte, Laurent

    2018-01-20

    Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05) to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i) spots varying between young and presenescent cells, (ii) spots varying in response to selenium concentration in young cells, and (iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.

  19. Antioxidant Actions of Selenium in Orbital Fibroblasts: A Basis for the Effects of Selenium in Graves' Orbitopathy.

    PubMed

    Rotondo Dottore, Giovanna; Leo, Marenza; Casini, Giamberto; Latrofa, Francesco; Cestari, Luca; Sellari-Franceschini, Stefano; Nardi, Marco; Vitti, Paolo; Marcocci, Claudio; Marinò, Michele

    2017-02-01

    A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H 2 O 2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. H 2 O 2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H 2 O 2 -treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H 2 O 2 did not significantly affect HA release, but it was reduced by SeMCys. H 2 O 2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H 2 O 2 -induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.

  20. Studies of Ventilatory Capacity and Histamine Response during Exposure to Isocyanate Vapour in Polyurethane Foam Manufacture

    PubMed Central

    Gandevia, Bryan

    1963-01-01

    Complaints of respiratory symptoms amongst workers in a factory using isocyanate to produce polyurethane foam led to a study of changes in ventilatory capacity in the course of several working days. Mean decreases of the order of 0·181. were observed in the forced expiratory volume at one second in 15 employees during each of three normal working shifts. No significant change occurred on days when a process involving the liberation of isocyanate was stopped, or when the men were given an oral aminophylline compound prophylactically. An aerosol of isoprenaline failed to reverse the decrease in ventilatory capacity observed during one normal working day. Approximately half the subjects studied were found to show increased bronchial sensitivity to a histamine aerosol; all were smokers, whereas none of the non-smokers showed a significant (over 10%) reduction in ventilatory capacity after histamine. Smokers and/or positive histamine reactors tended to show a greater decrease in ventilatory capacity during a working day than non-smokers or non-reactors. The present findings, which confirm clinical reports of adverse respiratory effects of isocyanate in low concentrations, are compared with other studies of ventilatory capacity during occupational exposure to respiratory irritants. PMID:14046157

  1. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats

    PubMed Central

    Fu, Zhenxing; Powell, Frank L.

    2011-01-01

    During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco2 levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO2-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po2 = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH. PMID:21593425

  2. Comparison of glutathione peroxidase 1 and iodothyronine deiodinase 1 mRNA expression in murine liver after feeding selenite or selenized yeast.

    PubMed

    Qin, Shunyi; Huang, Kehe; Gao, Jianzhong; Huang, Da; Cai, Tanxi; Pan, Cuiling

    2009-01-01

    The experiment was conducted to compare the effect of different selenium sources on the expression of glutathione peroxidase 1 (GPx1) and iodothyronine deiodinase 1 (Dio1) mRNA in mice by quantitative real-time PCR. A total of 60 male Kunming mice at average body weight of 20 g were allotted to three groups in a randomized complete block design, namely two treatments and one control. Mice in Group 1 were fed a basal diet as control, while mice in Groups 2 and 3 were fed the basal diet supplemented with 0.1mg/kg selenium as sodium selenite or selenized yeast, respectively. Whole feeding experiment lasted for 30 d. At the end of the feeding trial, liver mRNA levels of GPx1 and Dio1 were determined by quantitative real-time PCR, as well as growth performance, body composition, blood and GPx activity were determined. The results showed that no significant differences in overall growth performance and body composition, including body weight, body length, heart weight, kidney weight and liver weight, were found between the experimental groups (P>0.05). Blood GPx activity increased in all of the selenium supplemented groups compared with control group (P<0.01). However, blood GPx activity in selenized yeast group was higher than that in sodium selenite group (P<0.05). Liver mRNA levels of GPx1 and Dio1 also increased in the two selenium supplemented groups compared with the control group (P<0.05), while there was no significant difference between the sodium selenite and selenized yeast groups (P>0.05). In conclusion, selenium increased the mRNA expression of GPx1 and Dio1 genes in murine liver, and there was no significant difference between the organic or inorganic form of selenium used.

  3. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers.

    PubMed

    Cai, S J; Wu, C X; Gong, L M; Song, T; Wu, H; Zhang, L Y

    2012-10-01

    This study was conducted to investigate the effect of nano-selenium (nano-Se) on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. A total of five hundred forty 1-d-old male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The 5 treatments consisted of corn-soybean meal-based diets supplemented with 0.0, 0.3, 0.5, 1.0, or 2.0 mg/kg of nano-Se. The selenium content of the unsupplemented control diet was 0.09 mg/kg for the starter phase (0 to 21 d) and 0.08 mg/kg for the grower phase (22 to 42 d). There were no significant differences (P > 0.05) in performance, meat color, or immune organ index (thymus, bursa, and spleen) due to supplementation with nano-Se. On d 42, a significant quadratic effect of nano-Se was observed on glutathione peroxidase activity, free radical inhibition, contents of IgM, glutathione, and malondialdehyde in serum, on glutathione peroxidase activity, free radical inhibition in liver, and on glutathione peroxidase activity in muscle, with birds fed 0.30 mg/kg of nano-Se exhibiting the best effect and birds fed 2.0 mg/kg of nano-Se showing the worst effect on these parameters. Liver and muscle selenium content increased linearly and quadratically as the dietary nano-Se level increased (P < 0.01), and reached the highest value when 2.0 mg/kg of nano-Se was fed. Based on a consideration of all experiment indexes, 0.3 to 0.5 mg/kg is suggested to be the optimum level of supplementation of nano-Se, and the maximum supplementation of nano-Se could not be more than 1.0 mg/kg in broilers.

  4. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans.

    PubMed

    Stefanello, Sílvio Terra; Gubert, Priscila; Puntel, Bruna; Mizdal, Caren Rigon; de Campos, Marli Matiko Anraku; Salman, Syed M; Dornelles, Luciano; Avila, Daiana Silva; Aschner, Michael; Soares, Félix Alexandre Antunes

    Organic selenium compounds possess numerous biological properties, including antioxidant activity. Yet, the high toxicity of some of them, such as diphenyl diselenide (DPDS), is a limiting factor in their current usage. Accordingly, we tested four novel organic selenium compounds in the non-parasite nematode Caenorhabditis elegans and compared their efficacy to DPDS. The novel organic selenium compounds are β-selenoamines (1-phenyl-3-( p -tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS (1,2-bis (2-methoxyphenyl) diselenide (C3) and 1,2-bis p -tolyldiselenide (C4). Synchronized worms at the L4 larval stage were exposed for one hour in M9 buffer to these compounds. Oxidative stress conditions were induced by juglone (200 μM) and heat shock (35 °C). Moreover, we evaluated Caenorhabditis elegans behavior, GST-4::GFP (glutathione S-transferase) expression and the activity of acetylcholinesterase (AChE). All tested compounds efficiently restored viability in juglone stressed worms. However, DPDS, C2, C3 and C4 significantly decreased the defecation cycle time. Juglone-induced GST-4::GFP expression was not attenuated in worms pretreated with the novel compounds, except with C2. Finally, AChE activity was reduced by DPDS, C2, C3 and C4. To our knowledge, this is study firstly showed the effects of C1, C2, C3 and C4 selenium-derived compounds in Caenorhabditis elegans . Low toxic effects were noted, except for reduction in the defecation cycle, which is likely associated with AChE inhibition. The juglone-induced stress (reduced viability) was fully reversed by compounds to control animal levels. C2 was also efficient in reducing the juglone-induced GST-4::GFP expression, suggesting the latter may mediate the stress induced by this compound. Future studies could be profitably directed at addressing additional molecular mechanisms that mediate the protective effects of these novel organic selenium compounds.

  5. Nephroprotective and antioxidant significance of selenium and α-tocopherol on lead acetate-induced toxicity of Nile Tilapia (Oreochromis niloticus).

    PubMed

    Hashish, Emad A; Elgaml, Shimaa A; El-Murr, Abdelhakeem; Khalil, Ryad

    2015-06-01

    The kidney plays an important physiological function, maintaining the osmoregulation and electrolyte balance of Nile tilapia (Oreochromis niloticus). Selenium and α-tocopherol (α-toc) are potent antioxidants, which improve the aquaculture health. In this study, we tested the potential ability of selenium and α-toc to alleviate the oxidative stress in the kidney induced by lead toxicity. Two hundred and twenty-five O. niloticus were divided into five groups. The control group received a basal diet. Lead nephrotoxicity was induced by daily application of 73.40 mg lead acetate/liter water for up to 10 weeks. Selenium and α-tocopherol were given 1 week before lead intoxication. Selenium was administered as sodium selenite, 4 mg/kg dry diet. Alpha-tocopherol acetate was administered as α-toc, 200 mg/kg dry diet. The last group received a mixture of selenium and α-toc in diet. Fish treated with selenium and/or α-toc (groups III-V) showed an amelioration of the adverse effects of lead toxicity and significant improvement in serum electrolytes (calcium, inorganic phosphate, and magnesium) and creatinine level compared with the positive control group (P ≤ 0.05). Treated groups showed significant decrease in superoxide dismutase (SOD) and reduced glutathione (GSH) activity with significant increase in malondialdehyde (MDA; P ≤ 0.05). It could be concluded that selenium and α-toc have a potential antioxidant effect and have the ability to improve the kidney function after lead intoxication of O. niloticus.

  6. Phase I/II Trial of Adeno-Associated Virus–Mediated Alpha-Glucosidase Gene Therapy to the Diaphragm for Chronic Respiratory Failure in Pompe Disease: Initial Safety and Ventilatory Outcomes

    PubMed Central

    Smith, Barbara K.; Collins, Shelley W.; Conlon, Thomas J.; Mah, Cathryn S.; Lawson, Lee Ann; Martin, Anatole D.; Fuller, David D.; Cleaver, Brian D.; Clément, Nathalie; Phillips, Dawn; Islam, Saleem; Dobjia, Nicole

    2013-01-01

    Abstract Pompe disease is an inherited neuromuscular disease caused by deficiency of lysosomal acid alpha-glucosidase (GAA) leading to glycogen accumulation in muscle and motoneurons. Cardiopulmonary failure in infancy leads to early mortality, and GAA enzyme replacement therapy (ERT) results in improved survival, reduction of cardiac hypertrophy, and developmental gains. However, many children have progressive ventilatory insufficiency and need additional support. Preclinical work shows that gene transfer restores phrenic neural activity and corrects ventilatory deficits. Here we present 180-day safety and ventilatory outcomes for five ventilator-dependent children in a phase I/II clinical trial of AAV-mediated GAA gene therapy (rAAV1-hGAA) following intradiaphragmatic delivery. We assessed whether rAAV1-hGAA results in acceptable safety outcomes and detectable functional changes, using general safety measures, immunological studies, and pulmonary functional testing. All subjects required chronic, full-time mechanical ventilation because of respiratory failure that was unresponsive to both ERT and preoperative muscle-conditioning exercises. After receiving a dose of either 1×1012 vg (n=3) or 5×1012 vg (n=2) of rAAV1-hGAA, the subjects' unassisted tidal volume was significantly larger (median [interquartile range] 28.8% increase [15.2–35.2], p<0.05). Further, most patients tolerated appreciably longer periods of unassisted breathing (425% increase [103–851], p=0.08). Gene transfer did not improve maximal inspiratory pressure. Expected levels of circulating antibodies and no T-cell-mediated immune responses to the vector (capsids) were observed. One subject demonstrated a slight increase in anti-GAA antibody that was not considered clinically significant. These results indicate that rAAV1-hGAA was safe and may lead to modest improvements in volitional ventilatory performance measures. Evaluation of the next five patients will determine whether earlier intervention can further enhance the functional benefit. PMID:23570273

  7. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor.

    PubMed

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-12-16

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32-1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis.

  8. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    PubMed Central

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna

    2015-01-01

    Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592

  9. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1

    PubMed Central

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed. PMID:26005349

  10. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1.

    PubMed

    Ahmad, Maged Sayed; Yasser, Manal Mohamed; Sholkamy, Essam Nageh; Ali, Ali Mohamed; Mehanni, Magda Mohamed

    2015-01-01

    Selenium is an important component of human diet and a number of studies have declared its chemopreventive and therapeutic properties against cancer. However, very limited studies have been conducted about the properties of selenium nanostructured materials in comparison to other well-studied selenospecies. Here, we have shown that the anticancer property of biostabilized selenium nanorods (SeNrs) synthesized by applying a novel strain Ess_amA-1 of Streptomyces bikiniensis. The strain was grown aerobically with selenium dioxide and produced stable SeNrs with average particle size of 17 nm. The optical, structural, morphological, elemental, and functional characterizations of the SeNrs were carried out using techniques such as UV-vis spectrophotometry, transmission electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectrophotometry, respectively. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the biosynthesized SeNrs induces cell death of Hep-G2 and MCF-7 human cancer cells. The lethal dose (LD50%) of SeNrs on Hep-G2 and MCF-7 cells was recorded at 75.96 μg/mL and 61.86 μg/mL, respectively. It can be concluded that S. bikiniensis strain Ess_amA-1 could be used as renewable bioresources of biosynthesis of anticancer SeNrs. A hypothetical mechanism for anticancer activity of SeNrs is also proposed.

  11. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation.

    PubMed

    Sonkusre, Praveen; Cameotra, Swaranjit Singh

    2017-06-07

    Selenium is well documented to inhibit cancer at higher doses; however, the mechanism behind this inhibition varies widely depending on the cell type and selenium species. Previously, we have demonstrated that Bacillus licheniformis JS2 derived biogenic selenium nanoparticles (SeNPs) induce non-apoptotic cell death in prostate adenocarcinoma cell line, PC-3, at a minimal concentration of 2 µg Se/ml, without causing toxicity to the primary cells. However, the mechanism behind its anticancer activity was elusive. Our results have shown that these SeNPs at a concentration of 2 µg Se/ml were able to induce reactive oxygen species (ROS) mediated necroptosis in PC-3 cells by gaining cellular internalization. Real-time qPCR analysis showed increased expression of necroptosis associated tumor necrotic factor (TNF) and interferon regulatory factor 1 (IRF1). An increased expression of RIP1 protein was also observed at the translational level upon SeNP treatment. Moreover, the cell viability was significantly increased in the presence of necroptosis inhibitor, Necrostatin-1. Data suggest that our biogenic SeNPs induce cell death in PC-3 cells by the ROS-mediated activation of necroptosis, independent to RIP3 and MLKL, regulated by a RIP1 kinase.

  12. JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Zhuang; Christopher Martin; John Pavlish

    2009-03-31

    This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficientmore » mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.« less

  13. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats.

    PubMed

    Hamza, Reham Z; Al-Harbi, Mohammad S

    2014-01-01

    Monosodium glutamate (MSG) has been recognized as flavor enhancer that adversely affects male reproductive systems. The present study was carried out to evaluate the potential protective role of vitamin E (vit E) or selenium against MSG induced oxidative stress and histopathological changes in testis tissues of rats. Mature male Wistar rats weighing 150-200 g BW were allocated to evenly twelve groups each group of ten animals, the first group was maintained as control group, the 2nd, 3rd and 4th groups were administered MSG in three different dose levels (low, medium and high) (6, 17.5 and 60 mg/kg BW), the 5th and 6th groups were given vit E in two doses (low and high) (150 and 200 mg/kg), the 7th and 8th groups were administered selenium in two doses (low and high) (0.25 and 1 mg/kg) daily via gavage for a period of 30 days. Meanwhile the 9th and 10th groups were given combinations of MSG (high dose) and vit E while, the 11th and 12th groups were given MSG (high dose) plus selenium in two recommended doses for each one. Monosodium glutamate caused an elevation in lipid peroxidation level parallel with significant decline in SOD, CAT as well as GPx activities in testis tissues. Administration of vit E or selenium to MSG-treated groups declined lipid peroxidation, increased SOD, CAT, GPx activities. Selenium or vit E significantly reduced MSG induced histopathological changes by the entire restoration of the histological structures and the testicular antioxidant status to great extent in treated rats. In conclusion, supplementation of selenium or vit E could ameliorate the MSG induced testicular toxicity to great extent and reduce the oxidative stress on testis tissues.

  14. Peripheral muscle ergoreceptors and ventilatory response during exercise recovery in heart failure.

    PubMed

    Francis, N; Cohen-Solal, A; Logeart, D

    1999-03-01

    Recent studies have suggested that the increased ventilatory response during exercise in patients with chronic heart failure was related to the activation of muscle metaboreceptors. To address this issue, 23 patients with heart failure and 7 normal subjects performed arm and leg bicycle exercises with and without cuff inflation around the arms or the thighs during recovery. Obstruction slightly reduced ventilation and gas exchange variables at recovery but did not change the kinetics of recovery of these parameters compared with nonobstructed recovery: half-time of ventilation recovery was 175 +/- 54 to 176 +/- 40 s in patients and 155 +/- 66 to 127 +/- 13 s in controls (P < 0.05, patients vs. controls, not significant within each group from baseline to obstructed recovery). We conclude that muscle metaboreceptor activation does not seem to play a role in the exertion hyperventilation of patients with heart failure.

  15. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep.

    PubMed

    Kojouri, Gholam Ali; Sadeghian, Sirous; Mohebbi, Abdonnaser; Mokhber Dezfouli, Mohammad Reza

    2012-05-01

    The present study was designed to compare the effects of nano-selenium and of sodium selenite on the chemotactic and respiratory burst activities of neutrophils in sheep. Fifteen sheep were randomly divided into three groups. Groups 1 and 2 received selenium nanoparticles (1 mg/kg) or sodium selenite (1 mg/kg) orally, respectively, for ten consecutive days, and the third group was considered as the control. To determine the chemotactic and respiratory burst activities of the neutrophils, the leading front assay and the NBT test were used on heparinized blood samples that were collected at different intervals (days 0, 10th, 20th, and 30th). The results obtained showed that the chemotactic activities in groups 1 and 2 increased significantly on the 10th, 20th, and 30th day, compared to day 0, and on the 20th day in comparison with the 10th day, while in group 2, there was a significant decrease on the 30th day compared to the 20th day. The chemotactic activities in group 1 were significantly higher than in group 2 on the 10th day and in the control group on the 10th, 20th, and 30th day, but the chemotactic activities in group 2 were significantly higher than those in the control group only on the 20th day. On the 30th day into the experiment, the respiratory bursts in groups 1 and 2 were significantly stronger in comparison with those at day 0. Overall, nano-selenium increased the chemotactic and respiratory burst activities more significantly than sodium selenite, which is suggestive of a stronger stimulatory effect of the Se nanoparticles on intracellular activities.

  16. Photon-induced selenium migration in TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioi, David B.; Gosztola, David J.; Wiederrecht, Gary P.

    2017-02-20

    TiSe 2 is a member of the transition metal dichalcogenide family of layered van der Waals materials which exhibits some distinct electronic and optical properties. Here, we perform Raman spectroscopy and microscopy studies on single crystal TiSe 2 to investigate thermal and photon-induced defects associated with diffusion of selenium to the surface. Additional phonon peaks near 250 cm -1 are observed in the laser- irradiated regions that are consistent with formation of amorphous and nanocrys- talline selenium on the surface. Temperature dependent studies of the threshold temperature and laser intensity necessary to initiate selenium migration to the surface show anmore » activation barrier for the process of 1.55 eV. The impact of these results on the properties of strongly correlated electron states in TiSe 2 are discussed« less

  17. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command.

    PubMed

    Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana

    2016-11-01

    When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.

  18. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth and cancer xenografts in C57BL/6 mice

    USDA-ARS?s Scientific Manuscript database

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo but its role in colon cancer prevention remains to be characterized. This study tested the hypothesis that methylselenol inhibits the growth of colon cancer cells and tumors. We found that submicr...

  19. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    USDA-ARS?s Scientific Manuscript database

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  20. Deep-Sea Water Containing Selenium Provides Intestinal Protection against Duodenal Ulcers through the Upregulation of Bcl-2 and Thioredoxin Reductase 1

    PubMed Central

    Yang, Chih-Ching; Yao, Chien-An; Lin, Yi-Ruu; Yang, Jyh-Chin; Chien, Chiang-Ting

    2014-01-01

    Deep-sea water (DSW), which is rich in micronutrients and minerals and with antioxidant and anti-inflammatory qualities, may be developed as marine drugs to provide intestinal protection against duodenal ulcers. We determined several characteristics in the modified DSW. We explored duodenal pressure, oxygenation, microvascular blood flow, and changes in pH and oxidative redox potential (ORP) values within the stomach and duodenum in response to tap water (TW, hardness: 2.48 ppm), DSW600 (hardness: 600 ppm), and DSW1200 (hardness: 1200 ppm) in Wistar rats and analyzed oxidative stress and apoptosis gene expressions by cDNA and RNA microarrays in the duodenal epithelium. We compared the effects of drinking DSW, MgCl2, and selenium water on duodenal ulcers using pathologic scoring, immunohistochemical analysis, and Western blotting. Our results showed DSW has a higher pH value, lower ORP value, higher scavenging H2O2 and HOCl activity, higher Mg2+ concentrations, and micronutrients selenium compared with TW samples. Water infusion significantly increased intestinal pressure, O2 levels, and microvascular blood flow in DSW and TW groups. Microarray showed DSW600, DSW1200, selenium water upregulated antioxidant and anti-apoptotic genes and downregulated pro-apoptotic gene expression compared with the TW group. Drinking DSW600, DSW1200, and selenium water but not Mg2+ water significantly enhanced Bcl-2 and thioredoxin reductase 1 expression. Bax/Bcl-2/caspase 3/poly-(ADP-ribose)-polymerase signaling was activated during the pathogenesis of duodenal ulceration. DSW drinking reduced ulcer area as well as apoptotic signaling in acetic acid-induced duodenal ulcers. DSW, which contains selenium, provides intestinal protection against duodenal ulcers through the upregulation of Bcl-2 and thioredoxin reductase 1. PMID:24984066

  1. Fluctuations of the fractal dimension of the electroencephalogram during periodic breathing in heart failure patients.

    PubMed

    Maestri, Roberto; La Rovere, Maria Teresa; Robbi, Elena; Pinna, Gian Domenico

    2010-06-01

    The physiological mechanisms responsible for periodic breathing (PB) in heart failure (HF) patients are still debated. A role for rhythmic shifts in the level of wakefulness has been suggested, but their existence has never been proven. In this study we investigated the existence of an oscillation in EEG activity during PB in these patients and assessed its relationship with the ventilatory oscillation. EEG activity was measured by the fractal dimension (FD) and by a spectral technique (weighted mean frequency, WMF) in 17 stable HF patients (mean age +/- SD: 57+/-10 yrs, NYHA class: 2.6 +/- 0.4, LVEF: 24 +/- 6%), with sustained PB during supine rest. The relationship between minute ventilation (MV) signal and FD and WMF was assessed by coherence analysis. Most patients (10/17) showed a well defined oscillation in FD and WMF at the frequency of PB closely linked (coherence > 0.7) with the oscillation of MV. In the remaining patients, neither FD nor WMF showed a clear oscillatory pattern synchronous with MV. Overall, the two EEG-derived parameters showed the same coherence with the ventilatory oscillation (mean coherence +/- SD: 0.65 +/- 0.25 vs 0.66 +/- 0.23, for FD and WMF respectively, p = 0.44). Our results provide evidence that during PB in HF patients, EEG activity often, but not always, fluctuates synchronously with the ventilatory oscillation. These fluctuations can be effectively detected by the fractal dimension, but classical spectral methods provide substantially the same information. Other mechanisms, particularly chemical instability in the respiratory control system, are likely to play a role in the genesis of PB.

  2. Phrenic Motor Unit Recruitment during Ventilatory and Non-Ventilatory Behaviors

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2011-01-01

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. PMID:21763470

  3. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    PubMed

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Selenium protects cerebral cells by cisplatin induced neurotoxicity.

    PubMed

    Karavelioglu, Ergun; Boyaci, Mehmet Gazi; Simsek, Nejdet; Sonmez, Mehmet Akif; Koc, Rabia; Karademir, Mustafa; Guven, Mustafa; Eser, Olcay

    2015-06-01

    To evaluate the central nervous system toxicity of cisplatin and neuroprotective effect of selenium. Twenty-one male Wistar albino rats were divided into three groups: control (C), cisplatin (CS), cisplatin and selenium (CSE, n=7 in each group). Cisplatin (12 mg/kg/day, i.p.) was administered to CS and CSE groups for three days. Furthermore, CSE group received 3mg/kg/day (twice-a-day as 1.5 mg/kg) selenium via oral gavage five days before cisplatin injection and continued for 11 consecutive days. The same volumes of saline were administered to C group intraperitoneally and orally at same time. Heterochromatic and vacuolated neurons and dilated capillary vessels in the brain were observed in the histochemical examinations of cisplatin treated group. Rats that were given a dose of 3mg/kg/day selenium decreased the cisplatin induced histopathological changes in the brain, indicating a protective effect. In addition, cytoplasmic staining of the cell for bcl-2, both cytoplasmic and nuclear staining for bax were determined to be positive in the all groups. Bax positive cells were increased in the CS group compared to C group, in contrast to decreased bcl-2 positivity. Selenium limited apototic activity and histological changes due to the cisplatin related central neurotoxicity.

  5. Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease.

    PubMed

    Pitts, Matthew W; Kremer, Penny M; Hashimoto, Ann C; Torres, Daniel J; Byrns, China N; Williams, Christopher S; Berry, Marla J

    2015-11-18

    Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1(-/-) and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy. Copyright © 2015 the authors 0270-6474/15/3515326-13$15.00/0.

  6. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    PubMed

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Sustained microgravity reduces the human ventilatory response to hypoxia but not to hypercapnia.

    PubMed

    Prisk, G K; Elliott, A R; West, J B

    2000-04-01

    We measured the isocapnic hypoxic ventilatory response and the hypercapnic ventilatory response by using rebreathing techniques in five normal subjects (ages 37-47 yr) before, during, and after 16 days of exposure to microgravity (microG). Control measurements were performed with the subjects in the standing and supine postures. In both microG and in the supine position, the hypoxic ventilatory response, as measured from the slope of ventilation against arterial O(2) saturation, was greatly reduced, being only 46 +/- 10% (microG) and 52 +/- 11% (supine) of that measured standing (P < 0.01). During the hypercapnic ventilatory response test, the ventilation at a PCO(2) of 60 Torr was not significantly different in microG (101 +/- 5%) and the supine position (89 +/- 3%) from that measured standing. Inspiratory occlusion pressures agreed with these results. The findings can be explained by inhibition of the hypoxic but not hypercapnic drive, possibly as a result of an increase in blood pressure in carotid baroreceptors in microG and the supine position.

  8. Metabolic and ventilatory responses to submaximal and maximal exercise using different breathing assemblies.

    PubMed

    Evans, B W; Potteiger, J A

    1995-06-01

    This study compared ventilatory and metabolic responses during exercise using three breathing assemblies: mouthpiece/noseclip (BV); mouth/face mask (MM); and facemask (FM). Ten male runners completed three maximal treadmill tests with breathing assembly randomly assigned. Metabolic and ventilatory data were recorded every 15s, and heart rate (HR) and rating of perceived exertion (RPE) each min. No significant differences were found for treadmill run time, HRmax, respiratory exchange ratio (RER), and RPE, indicating similar efforts on all trials. No significant differences were found at maximal exercise for VO2 minute ventilation (VE), tidal volume (VT), and breathing frequency (f). At ventilatory threshold (TVENT), VO2, VE, and f were not significantly different. However, peak flow (PF) was significantly higher for BV than FM, and VT was significantly higher for BV than MM and FM. Results indicate alterations in ventilatory mechanics occur at TVENT, but type of breathing assembly does not significantly affect maximal values.

  9. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention?

    PubMed Central

    Diamond, Alan M.

    2013-01-01

    The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium’s impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies. PMID:23204505

  10. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  11. The Protective Effect of Selenium on Oxidative Stress Induced by Waterpipe (Narghile) Smoke in Lungs and Liver of Mice.

    PubMed

    Charab, Mohamad A; Abouzeinab, Noura S; Moustafa, Mohamed E

    2016-12-01

    Waterpipe smoking is common in the Middle East populations and results in health problems. In this study, we investigated the effects of exposure of mice to waterpipe smoke on oxidative stress in lungs and liver and the effects of selenium administration before smoke exposure on the oxidative stress. Twenty-four mice were divided equally into four groups: (i) the control mice received no exposure or treatment; (ii) mice exposed to waterpipe smoke; (iii) mice received intraperitoneal injection of 0.59 μg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke; and (iv) mice received intraperitoneal injection of 1.78 μg selenium/kg body weight as sodium selenite 15 min before the exposure to waterpipe smoke. Mice were exposed to waterpipe smoke every other day for four times within 8 successive days. Malondialdehyde and nitric oxide levels were significantly higher in the lungs and liver, while the activities of superoxide dismutase, glutathione peroxidase-1, and catalase were significantly lower in the waterpipe smoke group when compared to control mice. Treating mice with 1.78 μg selenium/kg body weight significantly restored the normal levels of these parameters. Histological examinations of lungs and liver confirmed the protective actions of selenium against the effects of exposure to waterpipe smoke. In conclusion, exposure of mice to waterpipe smoke-induced oxidative stress in lungs and liver. Administration of low level of selenium, 1.78 μg selenium/kg body weight as sodium selenite, exerted protective effects against oxidative stress induced by exposure to waterpipe smoke.

  12. Automated graphic assessment of respiratory activity is superior to pulse oximetry and visual assessment for the detection of early respiratory depression during therapeutic upper endoscopy.

    PubMed

    Vargo, John J; Zuccaro, Gregory; Dumot, John A; Conwell, Darwin L; Morrow, J Brad; Shay, Steven S

    2002-06-01

    Recommendations from the American Society of Anesthesiologists suggest that monitoring for apnea using the detection of exhaled carbon dioxide (capnography) is a useful adjunct in the assessment of ventilatory status of patients undergoing sedation and analgesia. There are no data on the utility of capnography in GI endoscopy, nor is the frequency of abnormal ventilatory activity during endoscopy known. The aims of this study were to determine the following: (1) the frequency of abnormal ventilatory activity during therapeutic upper endoscopy, (2) the sensitivity of observation and pulse oximetry in the detection of apnea or disordered respiration, and (3) whether capnography provides an improvement over accepted monitoring techniques. Forty-nine patients undergoing therapeutic upper endoscopy were monitored with standard methods including pulse oximetry, automated blood pressure measurement, and visual assessment. In addition, graphic assessment of respiratory activity with sidestream capnography was performed in all patients. Endoscopy personnel were blinded to capnography data. Episodes of apnea or disordered respiration detected by capnography were documented and compared with the occurrence of hypoxemia, hypercapnea, hypotension, and the recognition of abnormal respiratory activity by endoscopy personnel. Comparison of simultaneous respiratory rate measurements obtained by capnography and by auscultation with a pretracheal stethoscope verified that capnography was an excellent indicator of respiratory rate when compared with the reference standard (auscultation) (r = 0.967, p < 0.001). Fifty-four episodes of apnea or disordered respiration occurred in 28 patients (mean duration 70.8 seconds). Only 50% of apnea or disordered respiration episodes were eventually detected by pulse oximetry. None were detected by visual assessment (p < 0.0010). Apnea/disordered respiration occurs commonly during therapeutic upper endoscopy and frequently precedes the development of hypoxemia. Potentially important abnormalities in respiratory activity are undetected with pulse oximetry and visual assessment.

  13. A historical perspective on ventilator management.

    PubMed

    Shapiro, B A

    1994-02-01

    Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these patients. However, adequate analgesia, amnesia, and sedation are required. For patients with severe lung disease, alveolar overdistention and hyperoxia should be avoided and may be best accomplished by total ventilatory support techniques, such as pressure control. Total ventilatory support requires neuromuscular blockade and may not provide eucapnic ventilation.

  14. Phenotyping Pharyngeal Pathophysiology using Polysomnography in Patients with Obstructive Sleep Apnea.

    PubMed

    Sands, Scott A; Edwards, Bradley A; Terrill, Philip I; Taranto-Montemurro, Luigi; Azarbarzin, Ali; Marques, Melania; Hess, Lauren B; White, David P; Wellman, Andrew

    2018-05-01

    Therapies for obstructive sleep apnea (OSA) could be administered on the basis of a patient's own phenotypic causes ("traits") if a clinically applicable approach were available. Here we aimed to provide a means to quantify two key contributors to OSA-pharyngeal collapsibility and compensatory muscle responsiveness-that is applicable to diagnostic polysomnography. Based on physiological definitions, pharyngeal collapsibility determines the ventilation at normal (eupneic) ventilatory drive during sleep, and pharyngeal compensation determines the rise in ventilation accompanying a rising ventilatory drive. Thus, measuring ventilation and ventilatory drive (e.g., during spontaneous cyclic events) should reveal a patient's phenotypic traits without specialized intervention. We demonstrate this concept in patients with OSA (N = 29), using a novel automated noninvasive method to estimate ventilatory drive (polysomnographic method) and using "gold standard" ventilatory drive (intraesophageal diaphragm EMG) for comparison. Specialized physiological measurements using continuous positive airway pressure manipulation were employed for further comparison. The validity of nasal pressure as a ventilation surrogate was also tested (N = 11). Polysomnography-derived collapsibility and compensation estimates correlated favorably with those quantified using gold standard ventilatory drive (R = 0.83, P < 0.0001; and R = 0.76, P < 0.0001; respectively) and using continuous positive airway pressure manipulation (R = 0.67, P < 0.0001; and R = 0.64, P < 0.001; respectively). Polysomnographic estimates effectively stratified patients into high versus low subgroups (accuracy, 69-86% vs. ventilatory drive measures; P < 0.05). Traits were near-identical using nasal pressure versus pneumotach (N = 11, R ≥ 0.98, both traits; P < 0.001). Phenotypes of pharyngeal dysfunction in OSA are evident from spontaneous changes in ventilation and ventilatory drive during sleep, enabling noninvasive phenotyping in the clinic. Our approach may facilitate precision therapeutic interventions for OSA.

  15. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    PubMed

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  16. Sonotubometry, a useful tool for the evaluation of the Eustachian tube ventilatory function

    PubMed Central

    Borangiu, A; Popescu, CR; Purcarea, VL

    2014-01-01

    From the three Eustachian tube (ET) functions: middle ear protection, secretion clearance and middle ear ventilation, the ventilatory function is unanimously considered the most important one, because proper hearing is established only when tympanic membrane compliance is normal. This requires equilibrium between the middle ear and ambient gas pressure, which makes the normal functioning of active ET opening of critical importance. There are several methods and tests that can assess such a complex and variable mechanism. Sonotubometry is one such method; despite the fact that it has been continuously improved in the last 20 years, it is not yet systematically used to evaluate the ET ventilatory function, because its measurement pattern, context mapping (patient, clinic data, medication, treatment), validation, reproducibility and value for clinic practice, have not yet been fully consolidated and integrated in a knowledge-based, service-oriented system, that can provide decision support or even diagnostic. The paper reviews the role of tubal sonometry as a non-invasive, physiologic and easy to use method in assessing the ventilatory function and investigates the validity and reproducibility of a measuring pattern and test in a group of children. The paper describes the test pattern used, and the computer-based platform based on: (1) Digital Signal Processing (DSP) for sound acquisition and low-level processing; (2) Artificial Intelligence techniques to extract significant sound features from sonotubograms and learn a manifold context database. Results are reported from test series carried out in healthy children; a similar study between tests is included in the final Discussions section. PMID:25713631

  17. With age a lower individual breathing reserve is associated with a higher maximal heart rate.

    PubMed

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2018-01-01

    Maximal heart rate (HRmax) is linearly declining with increasing age. Regular exercise training is supposed to partly prevent this decline, whereas sex and habitual physical activity do not. High exercise capacity is associated with a high cardiac output (HR x stroke volume) and high ventilatory requirements. Due to the close cardiorespiratory coupling, we hypothesized that the individual ventilatory response to maximal exercise might be associated with the age-related HRmax. Retrospective analyses have been conducted on the results of 129 consecutively performed routine cardiopulmonary exercise tests. The study sample comprised healthy subjects of both sexes of a broad range of age (20-86 years). Maximal values of power output, minute ventilation, oxygen uptake and heart rate were assessed by the use of incremental cycle spiroergometry. Linear multivariate regression analysis revealed that in addition to age the individual breathing reserve at maximal exercise was independently predictive for HRmax. A lower breathing reserve due to a high ventilatory demand and/or a low ventilatory capacity, which is more pronounced at a higher age, was associated with higher HRmax. Age explained the observed variance in HRmax by 72% and was improved to 83% when the variable "breathing reserve" was entered. The presented findings indicate an independent association between the breathing reserve at maximal exercise and maximal heart rate, i.e. a low individual breathing reserve is associated with a higher age-related HRmax. A deeper understanding of this association has to be investigated in a more physiological scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Activity of Selected Antioxidant Enzymes, Selenium Content and Fatty Acid Composition in the Liver of the Brown Hare (Lepus europaeus L.) in Relation to the Season of the Year.

    PubMed

    Drozd, Radosław; Pilarczyk, Renata; Pilarczyk, Bogumiła; Drozd, Arleta; Tomza-Marciniak, Agnieszka; Bombik, Teresa; Bąkowska, Małgorzata; Bombik, Elżbieta; Jankowiak, Dorota; Wasak, Agata

    2015-12-01

    The aim of the study was to evaluate the effect of low concentrations of selenium in the environment on the activity of selected antioxidant enzymes: Se-GSHPx, total GSHPx, SOD, CAT, and GST as well as fatty acid profile in the livers of brown hares during winter and spring. Liver tissues obtained from 20 brown hares collected in the north-eastern Poland in the winter and spring season were analyzed. In the tissue analyzed, a significantly lower level of selenium was noticeable in the spring compared to winter; however, values measured in both seasons indicated a deficiency of this element in the analyzed population of brown hares. There were no differences found that could indicate the influence of Se deficiency on the activity of antioxidant enzymes. The determined activity of antioxidant enzymes and fatty acid composition suggest a negligible impact of the low concentration of Se on the analyzed biochemical parameters of brown hare livers.

  19. Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

    PubMed

    Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus

    2014-07-15

    A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study

    NASA Astrophysics Data System (ADS)

    Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan

    2014-02-01

    The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p < 0.05). Among the various combinations studied, the triplet combination of 3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine (1:1:1), exhibited enhancement in the target activity at same concentration level. Synthesized gold nanoparticle embedded 3,6-dihydroxyflavone further enhanced the target antioxidant activity. The combinational study including gold nanoparticle embedded 3,6-dihydroxyflavone with other native dietary nutrients showed remarkable increase in antioxidant activity at the same concentration level. The present in vitro study on combinational and nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.

  1. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  2. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  3. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effectmore » of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.« less

  4. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    USDA-ARS?s Scientific Manuscript database

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  5. Molecular consequences of genetic variations in the glutathione peroxidase 1 selenoenzyme.

    PubMed

    Zhuo, Pin; Goldberg, Marci; Herman, Lauren; Lee, Bao-Shiang; Wang, Hengbing; Brown, Rhonda L; Foster, Charles B; Peters, Ulrike; Diamond, Alan M

    2009-10-15

    Accumulating data have implicated the selenium-containing cytosolic glutathione peroxidase, GPx-1, as a determinant of cancer risk and a mediator of the chemopreventive properties of selenium. Genetic variants of GPx-1 have been shown to be associated with cancer risk for several types of malignancies. To investigate the relationship between GPx-1 enzyme activity and genotype, we measured GPx-1 enzyme activity and protein levels in human lymphocytes as a function of the presence of two common variations: a leucine/proline polymorphism at codon 198 and a variable number of alanine-repeat codons. Differences in GPx activity among these cell lines, as well as in the response to the low-level supplementation of the media with selenium, indicated that factors other than just genotype are significant in determining activity. To restrict the study to genotypic effects, human MCF-7 cells were engineered to exclusively express allelic variants representing a combination of either a codon 198 leucine or proline and either 5 or 7 alanine-repeat codons following transfection of GPx-1 expression constructs. Transfectants were selected and analyzed for GPx-1 enzyme activity and protein levels. GPx-1 with 5 alanines and a leucine at codon 198 showed a significantly higher induction when cells were incubated with selenium and showed a distinct pattern of thermal denaturation as compared with GPx-1 encoded by the other examined alleles. The collective data obtained using both lymphocytes and MCF-7 indicate that both intrinsic and extrinsic factors cooperate to ultimately determine the levels of this enzyme available to protect cells against DNA damage and mutagenesis.

  6. Stress-induced thermotolerance of ventilatory motor pattern generation in the locust, Locusta migratoria.

    PubMed

    Newman, Amy E M; Foerster, Melody; Shoemaker, Kelly L; Robertson, R Meldrum

    2003-11-01

    Ventilation is a crucial motor activity that provides organisms with an adequate circulation of respiratory gases. For animals that exist in harsh environments, an important goal is to protect ventilation under extreme conditions. Heat shock, anoxia, and cold shock are environmental stresses that have previously been shown to trigger protective responses. We used the locust to examine stress-induced thermotolerance by monitoring the ability of the central nervous system to generate ventilatory motor patterns during a subsequent heat exposure. Preparations from pre-stressed animals had an increased incidence of motor pattern recovery following heat-induced failure, however, prior stress did not alter the characteristics of the ventilatory motor pattern. During constant heat exposure at sub-lethal temperatures, we observed a protective effect of heat shock pre-treatment. Serotonin application had similar effects on motor patterns when compared to prior heat shock. These studies are consistent with previous studies that indicate prior exposure to extreme temperatures and hypoxia can protect neural operation against high temperature stress. They further suggest that the protective mechanism is a time-dependent process best revealed during prolonged exposure to extreme temperatures and is mediated by a neuromodulator such as serotonin.

  7. Influence of inorganic and organic selenium on number of living mycelial cells and their ultrastructure in culture of Hericium erinaceum (Bull.: Fr. Pers.).

    PubMed

    Slusarczyk, Joanna; Malinowska, Eliza; Krzyczkowski, W; Kuraś, M

    2013-03-01

    Mycelium of the white-rot fungus (Hericium erinaceum (Bull.: Fr. Pers.) produces polysaccharides showing anticancer and immunostimulating activity. In our previous works, we have shown that organic selenitetriglycerides (Selol) contribute to the increase of biosynthesis of exopolysaccharides (EPS) having antioxidative properties and containing large amounts of selenium. The present work is a study of influence of inorganic and organic form of selenium on viability of H. erinaceum mycelium and on ultrastructural changes taking place during its development in submerged culture. The mycelium was grown on media containing sodium selenite (Na2SeO3), a mixture of Na2SeO3 + Selol2% and on control medium (no selenium added). It was shown that mycelium cultured for 3 days in control conditions on standard media contained almost 100% of living cells, with over 80% after 24 days. Treatment with 100 ppm of Na2SeO3 lowered the number of viable cells to 11.8% and 9.1% after 3 and 24 days, respectively. The addition of 2% Selol caused the amounts of living cells to remain at ca 90%. Apparently, Selol helped the cells to cope with the toxic activity of inorganic selenium ions. The addition of sodium selenite induced degradative changes in cell organelles. Such changes were not observed in the case of Na2SeO3 + Selol mixture, in which case cells contained numerous ribosomes and small lipid bodies.

  8. Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial.

    PubMed

    Reid, Mary E; Duffield-Lillico, Anna J; Garland, Linda; Turnbull, Bruce W; Clark, Larry C; Marshall, James R

    2002-11-01

    Interest in the chemopreventive effects of the trace element selenium has spanned the past three decades. Of >100 studies that have investigated the effects of selenium in carcinogen-exposed animals, two-thirds have observed a reduction in tumor incidence and/or preneoplastic endpoints (G. F. Combs and S. B. Combs, The Role of Selenium in Nutrition Chapter 10, pp. 413-462. San Diego, CA: Academic Press, 1986, and B. H. Patterson and O. A. Levander, Cancer Epidemiol. Biomark. Prev., 6: 63-69, 1997). The Nutritional Prevention of Cancer Trial, a randomized clinical trial reported by Clark et al. (L. C. Clark et al., JAMA, 276: 1957-1963, 1996), showed as a secondary end point, a statistically significant decrease in lung cancer incidence with selenium supplementation. The adjusted hazard ratio (HR) was 0.56 [95% confidence interval (CI), 0.31-1.01; P = 0.05]. These results were based on active follow-up of 1312 participants. This reanalysis used an extended Nutritional Prevention of Cancer Trial participant follow-up through the end of the blinded clinical trial on February 1, 1996. The additional 3 years added 8 cases to the selenium-treated group and 4 cases to the placebo group, and increased follow-up to 7.9 years. The relative risk of 0.70 (95% CI, 0.40-1.21; P = 0.18) is not statistically significant. Whereas the overall adjusted HR is not significant (HR = 0.74; 95% CI, 0.44-1.24; P = 0.26), and the HR for current and former smokers was not significant, the trend is toward a reduction in risk of incident lung cancer with selenium supplementation. In a subgroup analysis there was a nominally significant HR among subjects with baseline plasma selenium in the lowest tertile (HR = 0.42; 95% CI, 0.18-0.96; P = 0.04). The analysis for the middle and highest tertiles of baseline showed HRs of 0.91 and 1.25. The current reanalysis indicates that selenium supplementation did not significantly decrease lung cancer incidence in the full population, but a significant decrease among individuals with low baseline selenium concentrations was observed.

  9. Synergistic Effects of SAM and Selenium Compounds on Proliferation, Migration and Adhesion of HeLa Cells.

    PubMed

    Sun, Licui; Zhang, Jianxin; Yang, Qiu; Si, Yang; Liu, Yiqun; Wang, Qin; Han, Feng; Huang, Zhenwu

    2017-08-01

    To determine the antitumor activities and molecular mechanism of selenium compounds in HeLa cells. Western blotting was used to detect ERK and AKT activation in HeLa cells induced by selenium compounds selenomethionine (SeMet), methylselenocysteine (MeSeCys) and methylseleninic acids (MeSeA). Using MTT, wound-healing and Matrigel adhesion assays, the antitumor effects of SAM and selenium compounds were evaluated in HeLa cells. MeSeA inhibited ERK and AKT signaling pathways and suppressed the proliferation (p<0.05 vs. HeLa control), migration (p<0.05 vs. HeLa control) and adhesion (p<0.01 vs. HeLa control) of HeLa cells. MeSeCys and SeMet inhibited AKT signaling pathways and the migration (p<0.05 vs. HeLa control) and adhesion (p<0.01 vs. HeLa control) of HeLa cells. The synergistic action of MeSeA with SAM led to a statistically significant inhibition of proliferation, migration and adhesion of HeLa cells. MeSeA, MeSeCys and SeMet exert different antitumor activities by inhibiting ERK and AKT signaling pathways. The combination of MeSeA and SAM exhibited better antitumor effects compared to the other treatments. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Antioxidant-Mediated Effects in a Gerbil Model of Iron Overload

    PubMed Central

    Otto-Duessel, Maya; Aguilar, Michelle; Moats, Rex; Wood, John C.

    2010-01-01

    Introduction Iron cardiomyopathy is a lethal complication of transfusion therapy in thalassemia major. Nutritional supplements decreasing cardiac iron uptake or toxicity would have clinical significance. Murine studies suggest taurine may prevent oxidative damage and inhibit Ca2+-channel-mediated iron transport. We hypothesized that taurine supplementation would decrease cardiac iron-overloaded toxicity by decreasing cardiac iron. Vitamin E and selenium served as antioxidant control. Methods Animals were divided into control, iron, taurine, and vitamin E/selenium groups. Following sacrifice, iron and selenium measurements, histology, and biochemical analyses were performed. Results No significant differences were found in heart and liver iron content between treatment groups, except for higher hepatic dry-weight iron concentrations in taurine-treated animals (p < 0.03). Serum iron increased with iron loading (751 ± 66 vs. 251 ± 54 μg/dl, p < 0.001) and with taurine (903 ± 136 μg/dl, p = 0.03). Conclusion Consistent with oxidative stress, iron overload increased cardiac malondialdehyde levels, decreased heart glutathione peroxidase (GPx) activity, and increased serum aspartate aminotransferase. Taurine ameliorated these changes, but only significantly for liver GPx activity. Selenium and vitamin E supplementation did not improve oxidative markers and worsened cardiac GPx activity. These results suggest that taurine acts primarily as an antioxidant rather than inhibiting iron uptake. Future studies should illuminate the complexity of these results. PMID:17940334

  11. Feasibility of measuring selenium in humans using in vivo neutron activation analysis.

    PubMed

    Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V

    2015-11-01

    Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.

  12. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    PubMed

    Alehagen, Urban; Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)-plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The changes in microRNA could be a part of mechanisms underlying the clinical effects earlier reported that reduced cardiovascular mortality, gave better cardiac function, and showed less signs of inflammation and oxdative stress following the intervention. However, more research is needed to understand biological mechanisms of the protective effects of selenium and Q10 supplementation.

  13. Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair.

    PubMed

    Seppänen, K; Kantola, M; Laatikainen, R; Nyyssönen, K; Valkonen, V P; Kaarlöpp, V; Salonen, J T

    2000-06-01

    The purpose of this study was to evaluate the effect of four months of yeast-based selenium supplementation on selenium and mercury status in subjects with low serum selenium. The study was carried out in Rakvere, Estonia. Pubic hair mercury, serum selenium and blood selenium concentrations in 23 subjects (serum selenium < 90 micrograms/l) were investigated before and after selenium supplementation. Thirteen subjects were randomized into the selenium supplementation group and ten into the placebo group. The selenium supplementation group received daily 100 micrograms of selenomethionine. Selenium supplementation reduced pubic hair mercury level by 34% (p = 0.005) and elevated serum selenium by 73% and blood selenium by 59% in the supplemented group (p < 0.001 for both). The study indicates that mercury accumulation in pubic hair can be reduced by dietary supplementation with small daily amounts of organic selenium in a short range of time.

  14. The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep

    PubMed Central

    Dempsey, Jerome A; Smith, Curtis A; Przybylowski, Tadeuez; Chenuel, Bruno; Xie, Ailiang; Nakayama, Hideaki; Skatrud, James B

    2004-01-01

    Sleep unmasks a highly sensitive hypocapnia-induced apnoeic threshold, whereby apnoea is initiated by small transient reductions in arterial CO2 pressure (PaCO2) below eupnoea and respiratory rhythm is not restored until PaCO2 has risen significantly above eupnoeic levels. We propose that the ‘CO2 reserve’ (i.e. the difference in PaCO2 between eupnoea and the apnoeic threshold (AT)), when combined with ‘plant gain’ (or the ventilatory increase required for a given reduction in PaCO2) and ‘controller gain’ (ventilatory responsiveness to CO2 above eupnoea) are the key determinants of breathing instability in sleep. The CO2 reserve varies inversely with both plant gain and the slope of the ventilatory response to reduced CO2 below eupnoea; it is highly labile in non-random eye movement (NREM) sleep. With many types of increases or decreases in background ventilatory drive and PaCO2, the slope of the ventilatory response to reduced PaCO2 below eupnoea remains unchanged from control. Thus, the CO2 reserve varies inversely with plant gain, i.e. it is widened with hyperventilation and narrowed with hypoventilation, regardless of the stimulus and whether it acts primarily at the peripheral or central chemoreceptors. However, there are notable exceptions, such as hypoxia, heart failure, or increased pulmonary vascular pressures, which all increase the slope of the CO2 response below eupnoea and narrow the CO2 reserve despite an accompanying hyperventilation and reduced plant gain. Finally, we review growing evidence that chemoreceptor-induced instability in respiratory motor output during sleep contributes significantly to the major clinical problem of cyclical obstructive sleep apnoea. PMID:15284345

  15. Why do nonsurvivors from community-acquired pneumonia not receive ventilatory support?

    PubMed

    Bauer, Torsten T; Welte, Tobias; Strauss, Richard; Bischoff, Helge; Richter, Klaus; Ewig, Santiago

    2013-08-01

    We investigated rates and predictors of ventilatory support during hospitalization in seemingly not severely compromised nonsurvivors of community-acquired pneumonia (CAP). We used the database from the German nationwide mandatory quality assurance program including all hospitalized patients with CAP from 2007 to 2011. We selected a population not residing in nursing homes, not bedridden, and not referred from another hospital. Predictors of ventilatory support were identified using a multivariate analysis. Overall, 563,901 patients (62.3% of the whole population) were included. Mean age was 69.4 ± 16.6 years; 329,107 (58.4%) were male. Mortality was 39,895 (7.1%). A total of 28,410 (5.0%) received ventilatory support during the hospital course, and 76.3% of nonsurvivors did not receive ventilatory support (62.6% of those aged <65 years and 78% of those aged ≥65 years). Higher age (relative risk (RR) 0.48, 95% confidence interval (CI) 0.44-0.51), failure to assess gas exchange (RR 0.18, 95% CI 0.14-0.25) and to administer antibiotics within 8 h of hospitalization (RR 0.48, 95% CI 0.39-0.59) were predictors of not receiving ventilatory support during hospitalization. Death from CAP occurred significantly earlier in the nonventilated group (8.2 ± 8.9 vs. 13.1 ± 14.1 days; p < 0.0001). The number of nonsurvivors without obvious reasons for withholding ventilatory support is disturbingly high, particularly in younger patients. Both performance predictors for not being ventilated remain ambiguous, because they may reflect either treatment restrictions or deficient clinical performance. Elucidating this ambiguity will be part of the forthcoming update of the quality assurance program.

  16. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation.

    PubMed

    Steen, Arvid; Strøm, Turid; Bernhoft, Aksel

    2008-03-31

    Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 microg/g) than ewe pens that received inorganic selenium (mean 0.24 microg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 microg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 microg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation.

  17. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation

    PubMed Central

    Steen, Arvid; Strøm, Turid; Bernhoft, Aksel

    2008-01-01

    Background Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Methods Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. Results In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 μg/g) than ewe pens that received inorganic selenium (mean 0.24 μg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 μg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 μg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Conclusion Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation. PMID:18377659

  18. Low Cardiorespiratory Fitness is Partially Linked to Ventilatory Factors in Obese Adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Tonini, Julia; Favre-Juvin, Anne; Guinot, Michel; Wuyam, Bernard; Flore, Patrice

    2016-02-01

    To examine the role of ventilatory constraint on cardiorespiratory fitness in obese adolescents. Thirty obese adolescents performed a maximal incremental cycling exercise and were divided into 2 groups based on maximal oxygen uptake (VO2peak): those presenting low (L; n = 15; VO2peak: 72.9 ± 8.6% predicted) or normal (N; n = 15; VO2peak: 113.6 ± 19.2% predicted) cardiorespiratory fitness. Both were compared with a group of healthy controls (C; n = 20; VO2peak: 103.1 ± 11.2% predicted). Ventilatory responses were explored using the flow volume loop method. Cardiorespiratory fitness (VO2peak, in % predicted) was lower in L compared with C and N and was moderately associated with the percent predicted forced vital capacity (FVC) (r = .52; p < .05) in L. At peak exercise, end inspiratory point was lower in L compared with N and C (77.4 ± 8.1, 86.4 ± 7.7, and 89.9 ± 7.6% FVC in L, N, and C, respectively; p < .05), suggesting an increased risk of ventilatory constraint in L, although at peak exercise this difference could be attributed to the lower maximal ventilation in L. Forced vital capacity and ventilatory strategy to incremental exercise slightly differed between N and L. These results suggest a modest participation of ventilatory factors to exercise intolerance.

  19. Effect of intraperitoneal selenium administration on liver glycogen levels in rats subjected to acute forced swimming.

    PubMed

    Akil, Mustafa; Bicer, Mursel; Kilic, Mehmet; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    There are a few of studies examining how selenium, which is known to reduce oxidative damage in exercise, influences glucose metabolism and exhaustion in physical activity. The present study aims to examine how selenium administration affects liver glycogen levels in rats subjected to acute swimming exercise. The study included 32 Sprague-Dawley type male rats, which were equally allocated to four groups: Group 1, general control; Group 2; selenium-supplemented control (6 mg/kg/day sodium selenite); Group 3, swimming control; Group 4, selenium-supplemented swimming (6 mg/kg/day sodium selenite). Liver tissue samples collected from the animals at the end of the study were fixed in 95% ethyl alcohol. From the tissue samples buried into paraffin, 5-µm cross-sections were obtained using a microtome, put on a microscope slide, and stained with PAS. Stained preparations were assessed using a Nikon Eclipse E400 light microscope. All images obtained with the light microscope were transferred to a PC and evaluated using Clemex PE 3.5 image analysis software. The highest liver glycogen levels were found in groups 1 and 2 (p < 0.05). The levels in group 4 were lower than those in groups 1 and 2 but higher than the levels in group 3 (p < 0.05). The lowest liver glycogen levels were obtained in group 3 (p < 0.05). Results of the study indicate that liver glycogen levels that decrease in acute swimming exercise can be restored by selenium administration. It can be argued that physiological doses of selenium administration can contribute to performance.

  20. Selenium accumulation in mammals exposed to contaminated California irrigation drainwater

    USGS Publications Warehouse

    Clark, D.R.

    1987-01-01

    In May 1984, 332 mammals of 10 species were collected at Kesterson Reservoir (San Joaquin Valley, Merced Co., CA), which had received selenium-laden irrigation drainwater, and at the nearby Volta Wildlife Area, which had not. The study concentrated on the California vole (Microtus californicus); 88 were taken at Kesterson, 89 at Volta. Mean selenium concentrations in livers were as much as 522 times higher at Kesterson. There were species-to-species differences at Kesterson; higher selenium concentrations occurred in carnivorous species and/or species that feed on foods closely linked to pond water. There were also pond-to-pond differences at Kesterson; drainwater historically was delivered to Ponds 1 and 2, where concentrations in 1984 were higher, with subsequent flow to other ponds, where they were lower. Whereas none of 50 adult female voles from Kesterson was pregnant, 12 of 41 (29%) from Volta were pregnant. However, this cessation of reproductive activity at Kesterson was probably not due to selenium toxicity but could have resulted because drying conditions at Kesterson forced voles to a seed diet earlier than at Volta. One malformation was found among five embryonic litters of three species from Kesterson. Mammals seem much less susceptible to selenium-induced embryonic abnormalities than birds. No adverse impacts of selenium on wild mammals were demonstrated; however, some sensitive species might have been extirpated from Kesterson before this study began. In addition, high concentrations in small mammal species at Kesterson may threaten predatory birds and mammals that feed on them, with the endangered San Joaquin kit fox (Vulpes macrotis mutica) of particular concern.

  1. Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.

    PubMed

    Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P

    2002-04-01

    Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.

  2. Activation of microglia and astrocytes in the nucleus tractus solitarius during ventilatory acclimatization to 10% hypoxia in unanesthetized mice.

    PubMed

    Tadmouri, A; Champagnat, J; Morin-Surun, M P

    2014-05-01

    Nucleus tractus solitarius (NTS) is the integrative sensory relay of autonomic functions in the brainstem. To explore the nonneuronal cellular basis of central chemosensitivity during the first 24 hr of ventilatory acclimatization to hypoxia (VHA), we have investigated glial activation markers in the NTS. Conscious mice (C57/BL6) were placed in a hermetic hypoxia chamber containing a plethysmograph to record ventilation. After 4 days of habituation to the normoxic environment, mice were subjected to physiological hypoxia (10% O2 ) for 1, 6, or 24 hr. To dissociate interactions between microglia and astrocytes, another group received daily minocycline, a microglia activation blocker. By immunochemical localization of astrocytes (GFAP), activated microglia (Cd11b), and total microglia (Iba-1), we identified an oxygen-sensing glial layer in the NTS, in which astrocytes are first activated after 1-6 hr of hypoxia, followed by microglia after 6-24 hr of hypoxia. Minocycline administration suppressed microglial activation and decreased astrocyte activation at 6 hr and VHA at 24 hr of hypoxia. These results suggest that astrocytes contribute to the neuronal response during the first hour of hypoxia, whereas microglial cells, via cross-talk with astrocytes, are involved in the VHA during the first 24 hr of acclimatization. Copyright © 2014 Wiley Periodicals, Inc.

  3. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.

    PubMed

    Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D

    2014-02-01

    What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P < 0.05 for both) at rest. The control subjects demonstrated no change in P(aCO(2)), P(aO(2)), ventilation, tidal volume or respiratory rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P < 0.05) due to a lower respiratory rate (30 ± 1 versus 26 ± 2 breaths min(-1), P < 0.05). The reduced ventilation resulted in lower P aO 2 (97.6 ± 2.5 versus 79.5 ± 3.0 mmHg, P < 0.05) and increased P(aCO(2)) (37.3 ± 0.9 versus 43.5 ± 1.1 mmHg, P < 0.05), with significant improvement in ventilatory efficiency (reduction in the ventilatory equivalent for carbon dioxide; P < 0.05 for all). The control subjects had no change in ventilation or measures of arterial blood gases. These data suggest that inhibition of afferent feedback from locomotor muscle significantly reduces the ventilatory response to exercise in HF patients.

  4. Protective effects of selenium on acrylamide toxicity in the liver of the rat. Effects on the oxidative stress.

    PubMed

    Teodor, V; Cuciureanu, Magdalena; Filip, Cristiana; Zamosteanu, Nina; Cuciureanu, Rodica

    2011-01-01

    Acrylamide (AA), obtained for the first time by Moureu in Germany in 1893, is presently used as polyacrylamide in water treatment and wastewater treatment, paper and pulp processing, mineral processing, crude-oil production processes. Acrylamide is a chemical product formed when frying, roasting, grilling or baking carbohydrate-rich foods at temperatures above 120 degrees C. Acrylamide is thus found in a number of foods, such as bread, crisps, French fries and coffee. Tobacco smoking also generates substantial amounts of acrylamide. Acrylamide administration is associated with significant increase of oxidative stress parameters; acrylamide caused disturbances in the oxidative status and enzyme activities and the effect was pronounced with the high doses. This study investigates the effect of selenium (as sodium selenite and as a selenium dietary supplements--Celnium) on the oxidative stress in Wistar rats which received high doses of acrylamide. The administration of sodium selenite and selenium dietary supplements (Celnium) significantly increased GSH and GPx levels and decreased MDA compared to group which received only acrylamide. Our results show that sodium selenite and selenium dietary supplements (Celnium) can partially prevent the biochemical changes in the liver of the rats which received high doses of acrylamide.

  5. [Effect of treatment with selenium electrophoresis on biochemical indices in patients suffering from ischaemic cardiac disease with a stable stenocardia of tension].

    PubMed

    Kurtsikidze, I

    2006-08-01

    Disturbances in lipid metabolism, intensification of lipid peroxidize oxidation and functions of sympatho-adrenal system play an important role in the development and progressing of ischaemic cardiac disease. As a result of investigations it has been established that microelement--selenium has an antiatherogenic action and suppresses peroxidize oxidation of lipids. The effect of treatment with selenium electrophoresis in patients suffering from ischaemic cardiac disease with a stable stenocardia of tension has been studied. Total of 76 patients with ICS:SST of I-II functional classes (FC) have been investigated. It has been established that treatment with selenium electrophoresis provokes a reduction of overall cholesterol, triglycerides and beta-lipoproteins content in blood serum, as well as a decrease of cholesterol amount in beta-lipoproteins, lipoproteins of low and very low density and diene conjugates in blood serum and adrenaline and norepinephrine excretion with urine; increase of lipoprotein amount of high density in blood serum, activity of catalase and selenium excretion with urine. Above-said positive changes in biochemical data were more pronounced for the ICS:SST of the first FC.

  6. Effect of atenolol on ventilatory and cardiac function in asthma.

    PubMed Central

    Vilsvik, J S; Schaanning, J

    1976-01-01

    The effects on ventilatory and cardiac function of atenolol, a new cardioselective beta-adrenoceptor blocking agent, were compared with those of practolol in a double-blind trial in 12 patients with asthma. Both drugs impaired ventilatory function--atenolol insignificantly and practolol significantly. Atenolol was if anything more cardioselective than practolol. Neither drug interfered significantly with the bronchodilator response to inhaled isoprenaline. Atenolol is suitable for use in patients for whom practolol would formerly have been chosen because of its cardioselectivity. PMID:8188

  7. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  8. Protection of methamphetamine nigrostriatal toxicity by dietary selenium.

    PubMed

    Kim, H C; Jhoo, W K; Choi, D Y; Im, D H; Shin, E J; Suh, J H; Floyd, R A; Bing, G

    1999-12-18

    Multiple dose administration of methamphetamine (MA) results in long-lasting toxic effects in the nigrostriatal dopaminergic system. These effects are considered to be primarily due to oxidative damage mediated by increased production of hydrogen peroxide or other reactive oxygen species in the dopaminergic system. The present study was designed to determine the protective effects of dietary antioxidant selenium on MA-induced neurotoxicity in the nigrostriatal dopaminergic system. Male C57BL/6J mice were fed either selenium-deficient (< 0.01 ppm Se) or selenium-replete (0.2 ppm Se) diets for 90 days. MA treatment decreased the dopamine (DA) levels in the striatum and substantia nigra (SN) of both Se-replete and Se-deficient animals. However, in Se-replete animals, this DA depletion was significantly attenuated in both the striatum and SN. A novel observation is that MA administration resulted in increased activity of Cu,Zn-SOD in the brains of both Se-deficient and Se-replete animals. However, MA administration to Se-deficient animals exhibited a higher Cu,Zn-SOD activity in the nigrostriatal system than the control animals. Elevated malondialdehyde (MDA) levels in the striatum and SN were also observed in Se-deficient MA-treated animals. Se repletion significantly increased the glutathione peroxidase (GPx) activity and the ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) in the MA-treated animals. In conclusion, we have shown that dietary Se attenuated methamphetamine neurotoxicity and that this protection involves GPx-mediated antioxidant mechanisms. Even though Cu,Zn-SOD activity was significantly elevated by MA treatment, the role of this enzyme in MA-mediated neurotoxicity is not yet clear.

  9. Spirometric evaluation of ventilatory function in adult male cigarette smokers in Sokoto metropolis.

    PubMed

    Isah, Muhammad D; Makusidi, Muhammad A; Abbas, Aminu; Okpapi, Juliana U; Njoku, Chibueze H; Abba, Abdullahi A

    2017-01-01

    Cigarette smoking is a widespread social habit in Nigeria with extensive deleterious multisystemic effect. Ventilatory dysfunction is one of the cigarette smoking-related illnesses that affect the respiratory system. Spirometry is an investigative method that can be used for the early detection of ventilatory dysfunction even before the onset of the symptoms. A questionnaire adapted from the European Community Respiratory Health Survey was administered to collect demographic, clinical, and cigarette smoking data. Ventilatory function test was conducted using Clement Clarke (One Flow) Spirometer, version 1.3. The highest value of each ventilatory function index was chosen for analysis, and individual(s) with ventilatory dysfunction were subjected to post bronchodilator spirometry. For the purpose of this research, 150 participants who were currently cigarette smokers were enrolled, and 50 apparently healthy, age-matched individuals who were never smokers served as controls in the ratio of 3:1. Eighty percent of participants and 68% of controls were aged 40 years or below. The mean age of participants (34.27 ± 8.91 years) and the controls (35.08 ± 10.35 years) was not significantly different (P = 0.592). Similarly, there were no statistically significant differences between the mean anthropometric indices (weight: P = 0.663, height: P = 0.084, and body mass index: P = 0.099) of both participants and controls. The mean values of FEV1 (forced expiratory flow in one second) and FEV1/FVC (FVC=forced vital capacity) were lower in the participants compared to the controls, and this difference was statistically significant (P < 0.001). There was a weak negative correlation between pack-years of cigarette smoking and FEV1 (r = -0.237 and P = 0.004). Obstructive ventilatory defect was found among six study participants (4%) and two controls (4%). Cigarette smoking is associated with decline in ventilatory function test indices (FEV1 and FEV1/FVC) in adult males. Decline in FEV1 is directly related to pack-years of cigarette smoking.

  10. Maternal-fetal transfer of selenium in the mouse.

    PubMed

    Burk, Raymond F; Olson, Gary E; Hill, Kristina E; Winfrey, Virginia P; Motley, Amy K; Kurokawa, Suguru

    2013-08-01

    Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.

  11. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues.

    PubMed

    Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco

    2013-09-01

    Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Acrolein inhalation alters myocardial synchrony and performance at and below exposure concentrations that cause ventilatory responses

    EPA Science Inventory

    Acrolein is an irritating aldehyde generated during combustion of organic compounds. Altered autonomic activity has been documented following acrolein inhalation, possibly impacting myocardial synchrony and function. Given the ubiquitous nature of acrolein in the environment, we ...

  13. Professional figures in intermediate intensive units.

    PubMed

    Quadri, A; Simoni, P; Clini, E; Errera, D; Foglio, K; Vitacca, M; Schena, M

    1994-12-01

    In Italy, respiratory intermediate intensive care units (IICUs) are not yet considered as autonomous hospital departments. The IICU of the Rehabilitation Department of the Medical Centre of Gussago (12 monitored beds) provides care for respiratory and cardiac patients. Ventilatory assistance and noninvasive modalities both in treatment and monitoring suggest a multidisciplinary approach to the patient. Highly professional figures should, therefore, be singled out to provide care in a respiratory IICU. The medical staff is composed of one anaesthesiologist, one cardiologist and one pulmonologist, who can integrate care when respiratory complications occur in a cardiological patient, or when cardiac events affect a respiratory patient. Nurses are capable of specific activities, especially when ventilatory assistance is required. The presence of a physiotherapist reduces the nursing workload, especially for ventilated individuals. The psychological aspect is undertaken by a specialist. Finally, an expert in nutrition provides an individualized dietary regimen. Our 4 year experience encourages such a multidisciplinary approach. An ideal integration of the professional activities should provide adequate and individual care for patients admitted to an IICU.

  14. Use of cardiopulmonary exercise testing to assess early ventilatory changes related to occupational particulate matter

    PubMed Central

    Chao, T.P.; Sperandio, E.F.; Ostolin, T.L.V.P.; Almeida, V.R.; Romiti, M.; Gagliardi, A.R.T.; Arantes, R.L.; Dourado, V.Z.

    2018-01-01

    Spirometry has been used as the main strategy for assessing ventilatory changes related to occupational exposure to particulate matter (OEPM). However, in some cases, as one of its limitations, it may not be sensitive enough to show abnormalities before extensive damage, as seen in restrictive lung diseases. Therefore, we hypothesized that cardiopulmonary exercise testing (CPET) may be better than spirometry to detect early ventilatory impairment caused by OEPM. We selected 135 male workers with at least one year of exposure. After collection of self-reported socioeconomic status, educational level, and cardiovascular risk data, participants underwent spirometry, CPET, body composition assessment (bioelectrical impedance), and triaxial accelerometry (for level of physical activity in daily life). CPET was performed using a ramp protocol on a treadmill. Metabolic, cardiovascular, ventilatory, and submaximal relationships were measured. We compared 52 exposed to 83 non-exposed workers. Multiple linear regressions were developed using spirometry and CPET variables as outcomes and OEPM as the main predictor, and adjusted by the main covariates. Our results showed that OEPM was associated with significant reductions in peak minute ventilation, peak tidal volume, and breathing reserve index. Exposed participants presented shallower slope of ΔVT/ΔlnV̇E (breathing pattern), i.e., increased tachypneic breathing pattern. The OEPM explained 7.4% of the ΔVT/ΔlnV̇E variability. We found no significant influence of spirometric indices after multiple linear regressions. We conclude that CPET might be a more sensitive feature of assessing early pulmonary impairment related to OEPM. Our cross-sectional results suggested that CPET is a promising tool for the screening of asymptomatic male workers. PMID:29590255

  15. Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers

    PubMed Central

    Zhuang, Jianguo; Zhao, Lei; Zang, Na

    2015-01-01

    Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia. PMID:25747962

  16. The Mediterranean diet and micronutrient levels in depressive patients.

    PubMed

    Ibarra, Olga; Gili, Margalida; Roca, Miguel; Vives, Margalida; Serrano, María Jesús; Pareja, Antonio; García-Campayo, Javier; Gómez-Juanes, Rocío; García-Toro, Mauro

    2014-10-03

    An inverse association between depression and some serum micronutrient levels (selenium, zinc, iron, magnesium, vitamin B and folic acid) has been reported. In addition, other studies reported that this micronutrient supplementation may improve depressed mood. The Mediterranean diet contains a sufficient amount of the micronutrients mentioned, although no study has reported an association between diet prescription and increased levels of them in depressive patients. To examine the impact of dietary patterns recommendations on micronutrient levels in depressive patients. 77 outpatients were randomly assigned either to the active (hygienic-dietary recommendations on diet, exercise, sleep, and sun exposure) or control group. Outcome measures were assessed before and after the six month intervention period. Serum selenium and zinc levels were slightly low at basal point and serum selenium was inversely correlated with severity of depression (r=-0.233; p=0.041). A better outcome of depressive symptoms was found in the active group. Nevertheless, no significant differences in micronutrient levels were observed after the Mediterranean diet pattern prescription, probably due to an insufficient adherence. Selenium, zinc, iron, magnesium, vitamin B12 and folic acid serum levels didn`t increase in depressed patients after six months of the Mediterranean diet pattern prescription. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Reaction Mechanism and Molecular Basis for Selenium/Sulfur Discrimination of Selenocysteine Lyase*

    PubMed Central

    Omi, Rie; Kurokawa, Suguru; Mihara, Hisaaki; Hayashi, Hideyuki; Goto, Masaru; Miyahara, Ikuko; Kurihara, Tatsuo; Hirotsu, Ken; Esaki, Nobuyoshi

    2010-01-01

    Selenocysteine lyase (SCL) catalyzes the pyridoxal 5′-phosphate-dependent removal of selenium from l-selenocysteine to yield l-alanine. The enzyme is proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residue as an essential component. The enzyme exhibits strict substrate specificity toward l-selenocysteine and no activity to its cognate l-cysteine. However, it remains unclear how the enzyme distinguishes between selenocysteine and cysteine. Here, we present mechanistic studies of selenocysteine lyase from rat. ESI-MS analysis of wild-type and C375A mutant SCL revealed that the catalytic reaction proceeds via the formation of an enzyme-bound selenopersulfide intermediate on the catalytically essential Cys-375 residue. UV-visible spectrum analysis and the crystal structure of SCL complexed with l-cysteine demonstrated that the enzyme reversibly forms a nonproductive adduct with l-cysteine. Cys-375 on the flexible loop directed l-selenocysteine, but not l-cysteine, to the correct position and orientation in the active site to initiate the catalytic reaction. These findings provide, for the first time, the basis for understanding how trace amounts of a selenium-containing substrate is distinguished from excessive amounts of its cognate sulfur-containing compound in a biological system. PMID:20164179

  18. Selenium modification of β-lactoglobulin (β-Lg) and its biological activity.

    PubMed

    Zheng, GuoQiang; Liu, HaoYu; Zhu, ZhenYuan; Zheng, Jie; Liu, AnJun

    2016-08-01

    β-Lg is a major whey protein in cow's milk. This study was aimed to find a new kind of organic selenium compound synthesized with β-Lg and selenium dioxide as raw materials under the conditions of vacuum and low temperature. Fourier transformed infrared spectroscopy revealed that seleno-β-lactoglobulin (Se-β-Lg) displayed a strong band at 878cm(-1), belonging to SeO. Circular dichroism spectra results indicated that the conformation of Se-β-Lg was transformed and α-helical, and unordered structures were increased by 9% and 11.2%, respectively, while β-sheet and β-turn were reduced by 14.2% and 6%, respectively. Electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry results showed that there were two protein bands (1-Seβ-Lg and 2-Seβ-Lg) in Se-β-Lg, only one β-Lg connected with selenate in 1-Seβ-Lg, but two β-Lgs, connected to each other, and with selenate, in 2-Seβ-Lg. Morphological observation and hematoxylin and eosin staining indicated that Se-β-lg could induce K562 cell apoptosis. These results indicated that Se-β-Lg could be synthesized by selenium conjugating β-Lg and it had antitumor activity. Copyright © 2016. Published by Elsevier Ltd.

  19. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction.

    PubMed

    Sun, Mei; Liu, Guijian; Wu, Qianghua

    2013-11-01

    A new method was developed for the determination of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry detection after cloud point extraction. Effective separation of organic and inorganic selenium in selenium-enriched rice was achieved by sequentially extracting with water and cyclohexane. Under the optimised conditions, the limit of detection (LOD) was 0.08 μg L(-1), the relative standard deviation (RSD) was 2.1% (c=10.0 μg L(-1), n=11), and the enrichment factor for selenium was 82. Recoveries of inorganic selenium in the selenium-enriched rice samples were between 90.3% and 106.0%. The proposed method was successfully applied for the determination of organic and inorganic selenium as well as total selenium in selenium-enriched rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Maternal-fetal transfer of selenium in the mouse

    PubMed Central

    Burk, Raymond F.; Olson, Gary E.; Hill, Kristina E.; Winfrey, Virginia P.; Motley, Amy K.; Kurokawa, Suguru

    2013-01-01

    Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.—Burk, R. F., Olson, G. E., Hill, K. E., Winfrey, V. P., Motley, A. K., and Kurokawa, S. Maternal-fetal transfer of selenium in the mouse. PMID:23651543

  1. Production of Selenoprotein P (Sepp1) by Hepatocytes Is Central to Selenium Homeostasis*

    PubMed Central

    Hill, Kristina E.; Wu, Sen; Motley, Amy K.; Stevenson, Teri D.; Winfrey, Virginia P.; Capecchi, Mario R.; Atkins, John F.; Burk, Raymond F.

    2012-01-01

    Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions. PMID:23038251

  2. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    PubMed

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  3. Ventilatory parameters and maximal respiratory pressure changes with age in Duchenne muscular dystrophy patients.

    PubMed

    Gayraud, Jerome; Ramonatxo, Michele; Rivier, François; Humberclaude, Véronique; Petrof, Basil; Matecki, Stefan

    2010-06-01

    The aim of this longitudinal study was to precise, in children with Duchenne muscular dystrophy, the respective functional interest of ventilatory parameters (Vital capacity, total lung capacity and forced expiratory volume in one second [FEV(1)]) in comparison to maximal inspiratory pressure (Pimax) during growth. In ten boys the mean age of 9.1 +/- 1 years) to mean age of 16 +/- 1.4 years followed over a period of 7 years, we found that: (1) ventilatory parameters expressed in percentage of predicted value, after a normal ascending phase, start to decrease between 11 and 12 years, (2) Pimax presented only a decreasing phase since the beginning of the study and thus was already at 67% of predicted value at 12 years while ventilatory parameters was still normal, (3) after 12 years the mean slopes of decrease per year of vital capacity and FEV1 were higher (10.7 and 10.4%) than that of Pimax (6.9%), (4) at 15 years mean values of vital capacity and FEV1 (53.3 and 49.5% of predicted values) was simlar to that of Pimax (48.3%). In conclusion, if at early stages of the disease, Pimax is a more reliable index of respiratory impaiment than ventilatory parameters, the follow-up of ventilatory parameters, when they start to decrease, is a better indicator of disease progression and, at advanced stages they provided same information about the functional impact of disease.

  4. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee,N.; Ma, J.; Dalia, A.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07more » x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.« less

  5. A study of nutritional myopathy in weaner sheep.

    PubMed

    Allen, J G; Steele, P; Masters, H G; D'Antuono, M F

    1986-01-01

    The effectiveness of various treatments upon, and pathological and biochemical changes in, ovine weaner nutritional myopathy were observed. Clinical myopathy was already apparent in the sheep at the start of the study, and they were fed decreasing amounts of a ration containing low levels of selenium and alpha-tocopherol, and periodically deprived of water. In spite of this management there was a spontaneous remission of the clinical myopathy in the sheep, but a subclinical myopathy was identified in some of the sheep at the end of the trail. The conclusions were that the myopathy was not caused by a low dietary intake of selenium and/or alpha-tocopherol alone, that alpha-tocopherol was involved in the aetiology, that alpha-tocopherol was completely effective and selenium possibly partially effective in treating it, and that the condition may be a Type II muscle fibre disease. Data on plasma creatine phosphokinase and erythrocyte glutathione peroxidase activities, and terminal liver selenium and alpha-tocopherol concentrations are presented, and their roles in the diagnosis of ovine weaner nutritional myopathy discussed.

  6. Expression of glutathione peroxidase I gene in selenium-deficient rats.

    PubMed Central

    Reddy, A P; Hsu, B L; Reddy, P S; Li, N Q; Thyagaraju, K; Reddy, C C; Tam, M F; Tu, C P

    1988-01-01

    We have characterized a cDNA pGPX1211 encoding rat glutathione peroxidase I. The selenocysteine in the protein corresponded to a TGA codon in the coding region of the cDNA, similar to earlier findings in mouse and human genes, and a gene encoding the formate dehydrogenase from E. coli, another selenoenzyme. The rat GSH peroxidase I has a calculated subunit molecular weight of 22,155 daltons and shares 95% and 86% sequence homology with the mouse and human subunits, respectively. The 3'-noncoding sequence (greater than 930 bp) in pGPX1211 is much longer than that of the human sequences. We found that glutathione peroxidase I mRNA, but not the polypeptide, was expressed under nutritional stress of selenium deficiency where no glutathione peroxidase I activity can be detected. The failure of detecting any apoprotein for the glutathione peroxidase I under selenium deficiency and results published from other laboratories supports the proposal that selenium may be incorporated into the glutathione peroxidase I co-translationally. Images PMID:2838821

  7. Toenail mercury and dyslipidemia: Interaction with selenium.

    PubMed

    Park, Kyong; Seo, Eunmin

    2017-01-01

    Although compelling evidences from in vivo and in vitro studies exist, limited studies have examined the association between chronic mercury exposure and dyslipidemia. Particularly, data are sparse regarding the influence of selenium on this association of mercury with dyslipidemia in humans. The purpose of the current study was to examine the associations of toenail mercury with dyslipidemia and its components, and to examine whether selenium in toenails modifies these associations. We performed cross-sectional analyses using baseline data from a cohort in the Yeungnam area in South Korea, including 232 men and 269 women. Toenail mercury and selenium concentrations were quantified using neutron activation analysis, and fasting serum lipid measurements were obtained through the medical examination. Odds ratios of the prevalent hypercholesterolemia, hyper-LDL-cholesterolemia, hypo-HDL-cholesterolemia, hypertriglyceridemia, and dyslipidemia in correlation with mercury levels were calculated using multivariable logistic regression. The mean levels of toenail mercury were 0.47μg/g for men and 0.34μg/g for women. After adjustment for multiple confounding variables, participants in the highest tertile of toenail mercury levels had 4.08 (95% CI 1.09-15.32, p for trend=0.02) times higher risk of hyper-LDL-cholesterolemia, and 2.24 (95% CI 1.15-4.37, p for trend=0.004) times higher risk of dyslipidemia than those in the lowest tertile. Selenium is a significant effect-modifier for these associations; the highest tertile of toenail mercury were significantly associated with a higher risk of hypercholesterolemia (OR 5.25, 95% CI 1.04-26.38) and dyslipidemia (OR 2.98, 95% CI 1.16-7.66) compared to the lowest tertile at toenail selenium levels ≤0.685μg/g, while these associations became weak and non-significant, showing OR 0.98 and 95% CI 0.25-3.80 for hypercholesterolemia and OR 1.99 and 95% CI 0.73-5.45 for dyslipidemia at toenail selenium levels >0.685μg/g. We confirmed the beneficial effects of selenium against the harmful effects of mercury in humans with relatively high consumption of fish. Our finding has important implications in making dietary recommendations regarding optimal levels of fish and selenium intakes. Further studies are warranted to determine the appropriate level of fish consumption, considering both methylmercury and selenium exposure, in a larger prospective cohort or RCT. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors.

    PubMed

    Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin

    2017-01-01

    Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1-1.5 mm in 2 ways: during the granules' preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13 C and 31 P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a "burst release" probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals' interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the "burst release" of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well.

  9. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors

    PubMed Central

    Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin

    2017-01-01

    Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1–1.5 mm in 2 ways: during the granules’ preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13C and 31P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a “burst release” probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals’ interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the “burst release” of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well. PMID:28848343

  10. Association Between Selenium and Malondialdehyde as an Efficient Biomarker of Oxidative Stress in Infantile Cardiac Surgery.

    PubMed

    de Oliveira Ulbrecht, Marlice Oliveira; Gonçalves, Daniel Araujo; Zanoni, Lourdes Zélia Garcia; do Nascimento, Valter Aragão

    2018-05-12

    The present work describes a method to quantify the level of oxidative stress in infantile cardiac surgery. Fifteen patients, 6 girls and 9 boys, aged between 3 months and 16 years were divided into three groups. The first group sought to quantify the oxidative stress from differing concentrations of selenium. The second group used malondialdehyde as an indicator of oxidative stress. Finally, the third group quantified oxidative stress by normalizing the selenium concentration via malondialdehyde. Blood aliquots of 1.50 ml, drawn from the radial artery, were collected and centrifuged for quantification of Se and MDA in plasma. The statistical method ANOVA was used with a 95% confidence interval to indicate significant statistical differences between the post- and pre-operative stage for each group. The concentrations of malondialdehyde were measured by using UV-Vis following the thiobarbituric acid reaction method. For quantification of selenium, the samples were submitted to assisted microwave digestion and measured by ICP OES. In the first two groups, it was not possible to affirm that selenium and malondialdehyde could be biomarkers of oxidative stress, so a statistic test (ANOVA) was performed. However, the selenium/malondialdehyde ratios in the pre-operative and post-operative stage were 2.10 ± 0.70 and 3.20 ± 0.40, respectively. The ANOVA test confirmed a statistically significant difference between the pre- and post-operative stages with p value = 0.004. Here, the ratio of selenium concentration by malondialdehyde was confirmed to be an effective parameter for demonstration and quantification of oxidative stress activity at the post-operative stage.

  11. Association between serum selenium level and conversion of bacteriological tests during antituberculosis treatment* **

    PubMed Central

    de Moraes, Milena Lima; Ramalho, Daniela Maria de Paula; Delogo, Karina Neves; Miranda, Pryscila Fernandes Campino; Mesquita, Eliene Denites Duarte; de Oliveira, Hedi Marinho de Melo Guedes; Ruffino-Netto, Antônio; de Almeida, Paulo César; Hauser-Davis, Rachel Ann; Campos, Reinaldo Calixto; Kritski, Afrânio Lineu; de Oliveira, Martha Maria

    2014-01-01

    Objective: To determine whether serum selenium levels are associated with the conversion of bacteriological tests in patients diagnosed with active pulmonary tuberculosis after eight weeks of standard treatment. Methods: We evaluated 35 healthy male controls and 35 male patients with pulmonary tuberculosis, the latter being evaluated at baseline, as well as at 30 and 60 days of antituberculosis treatment. For all participants, we measured anthropometric indices, as well as determining serum levels of albumin, C-reactive protein (CRP) and selenium. Because there are no reference values for the Brazilian population, we used the median of the serum selenium level of the controls as the cut-off point. At 30 and 60 days of antituberculosis treatment, we repeated the biochemical tests, as well as collecting sputum for smear microscopy and culture from the patients. Results: The mean age of the patients was 38.4 ± 11.4 years. Of the 35 patients, 25 (71%) described themselves as alcoholic; 20 (57.0%) were smokers; and 21 (60.0%) and 32 (91.4%) presented with muscle mass depletion as determined by measuring the triceps skinfold thickness and arm muscle area, respectively. Of 24 patients, 12 (39.2%) were classified as moderately or severely emaciated, and 15 (62.5%) had lost > 10% of their body weight by six months before diagnosis. At baseline, the tuberculosis group had lower serum selenium levels than did the control group. The conversion of bacteriological tests was associated with the CRP/albumin ratio and serum selenium levels 60 days after treatment initiation. Conclusions: Higher serum selenium levels after 60 days of treatment were associated with the conversion of bacteriological tests in pulmonary tuberculosis patients. PMID:25029650

  12. Association between serum selenium level and conversion of bacteriological tests during antituberculosis treatment.

    PubMed

    Moraes, Milena Lima de; Ramalho, Daniela Maria de Paula; Delogo, Karina Neves; Miranda, Pryscila Fernandes Campino; Mesquita, Eliene Denites Duarte; Oliveira, Hedi Marinho de Melo Guedes de; Ruffino-Netto, Antônio; Almeida, Paulo César de; Hauser-Davis, Rachel Ann; Campos, Reinaldo Calixto; Kritski, Afrânio Lineu; Oliveira, Martha Maria de

    2014-01-01

    To determine whether serum selenium levels are associated with the conversion of bacteriological tests in patients diagnosed with active pulmonary tuberculosis after eight weeks of standard treatment. We evaluated 35 healthy male controls and 35 male patients with pulmonary tuberculosis, the latter being evaluated at baseline, as well as at 30 and 60 days of antituberculosis treatment. For all participants, we measured anthropometric indices, as well as determining serum levels of albumin, C-reactive protein (CRP) and selenium. Because there are no reference values for the Brazilian population, we used the median of the serum selenium level of the controls as the cut-off point. At 30 and 60 days of antituberculosis treatment, we repeated the biochemical tests, as well as collecting sputum for smear microscopy and culture from the patients. The mean age of the patients was 38.4 ± 11.4 years. Of the 35 patients, 25 (71%) described themselves as alcoholic; 20 (57.0%) were smokers; and 21 (60.0%) and 32 (91.4%) presented with muscle mass depletion as determined by measuring the triceps skinfold thickness and arm muscle area, respectively. Of 24 patients, 12 (39.2%) were classified as moderately or severely emaciated, and 15 (62.5%) had lost > 10% of their body weight by six months before diagnosis. At baseline, the tuberculosis group had lower serum selenium levels than did the control group. The conversion of bacteriological tests was associated with the CRP/albumin ratio and serum selenium levels 60 days after treatment initiation. Higher serum selenium levels after 60 days of treatment were associated with the conversion of bacteriological tests in pulmonary tuberculosis patients.

  13. Short-Term Modulation of the Ventilatory Response to Exercise is Preserved in Obstructive Sleep Apnea

    PubMed Central

    Bernhardt, Vipa; Mitchell, Gordon S.; Lee, Won Y.; Babb, Tony G.

    2016-01-01

    Background The ventilatory response to exercise can be transiently adjusted in response to environmentally (e.g., breathing apparatus) or physiologically altered conditions (e.g., respiratory disease), maintaining constant relative arterial PCO2 regulation from rest to exercise (Mitchell and Babb, 2006); this augmentation is called short-term modulation (STM) of the exercise ventilatory response. Obesity and/or obstructive sleep apnea could affect the exercise ventilatory response and the capacity for STM due to chronically increased mechanical and/or ventilatory loads on the respiratory system, and/or recurrent (chronic) intermittent hypoxia experienced during sleep. We hypothesized that: 1) the exercise ventilatory response is augmented in obese OSA patients compared with obese non-OSA adults, and 2) the capacity for STM with added dead space is diminished in obese OSA patients. Methods Nine obese adults with OSA (age: 39 ± 6 yr, BMI: 40 ± 5 kg/m2, AHI: 25 ± 24 events/hr [range 6–73], mean ± SD) and 8 obese adults without OSA (age: 38 ± 10 yr, BMI: 37 ± 6 kg/m2, AHI: 1 ± 2) completed three, 20-min bouts of constant-load submaximal cycling exercise (8 min rest, 6 min at 10 and 30 W) with or without added external dead space (200 or 400 ml; 20 min rest between bouts). Steady-state measurements were made of ventilation (V̇E), oxygen consumption (V̇O2), carbon dioxide production (V̇CO2), and end-tidal PCO2 (PETCO2). The exercise ventilatory response was defined as the slope of the V̇E-V̇CO2 relationship (ΔV̇E/ΔV̇CO2). Results In control (i.e. no added dead space), the exercise ventilatory response was not significantly different between non-OSA and OSA groups (ΔV̇E/ΔV̇CO2 slope: 30.5 ± 4.2 vs 30.5 ± 3.8, p > 0.05); PETCO2 regulation from rest to exercise did not differ between groups (p > 0.05). In trials with added external dead space, ΔV̇E/ΔV̇CO2 increased with increased dead space (p < 0.05) and the PETCO2 change from rest to exercise remained small (<2 mmHg) in both groups, demonstrating STM. There were no significant differences between groups. Conclusions Contrary to our hypotheses: 1) the exercise ventilatory response is not increased in obese OSA patients compared with obese non-OSA adults, and 2) the capacity for STM with added dead space is preserved in obese OSA and non-OSA adults. PMID:27840272

  14. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of tissues collection in weeks. The feeding trial included a supplementation period of 8 weeks (i.e. SP8) followed by an elimination period of 4 weeks (i.e. EP4). Six turtles from each turtle group (i.e. control, SeMet1 and SeMet2) were sacrifice at each collection time, from T1 to T12. At T0, four turtles were sacrificed.

  15. Physiological Requirements to Perform the Glittre Activities of Daily Living Test by Subjects With Mild-to-Severe COPD.

    PubMed

    Souza, Gérson F; Moreira, Graciane L; Tufanin, Andréa; Gazzotti, Mariana R; Castro, Antonio A; Jardim, José R; Nascimento, Oliver A

    2017-08-01

    The Glittre activities of daily living (ADL) test is supposed to evaluate the functional capacity of COPD patients. The physiological requirements of the test and the time taken to perform it by COPD patients in different disease stages are not well known. The objective of this work was to compare the metabolic, ventilatory, and cardiac requirements and the time taken to carry out the Glittre ADL test by COPD subjects with mild, moderate, and severe disease. Spirometry, Medical Research Council questionnaire, cardiopulmonary exercise test, and 2 Glittre ADL tests were evaluated in 62 COPD subjects. Oxygen uptake (V̇ O 2 ), carbon dioxide production, pulmonary ventilation, breathing frequency, heart rate, S pO 2 , and dyspnea were analyzed before and at the end of the tests. Maximum voluntary ventilation, Glittre peak V̇ O 2 /cardiopulmonary exercise test (CPET) peak V̇ O 2 , Glittre V̇ E /maximum voluntary ventilation, and Glittre peak heart rate/CPET peak heart rate ratios were calculated to analyze their reserves. Subjects carried out the Glittre ADL test with similar absolute metabolic, ventilatory, and cardiac requirements. Ventilatory reserve decreased progressively from mild to severe COPD subjects ( P < .001 for Global Initiative for Chronic Obstructive Lung Disease [GOLD] 1 vs GOLD 2, P < .001 for GOLD 1 vs GOLD 3, and P < .001 for GOLD 2 vs GOLD 3). Severe subjects with COPD presented a significantly lower metabolic reserve than the mild and moderate subjects ( P = .006 and P = .043, respectively) and significantly lower Glittre peak heart rate/CPET peak heart rate than mild subjects ( P = .01). Time taken to carry out the Glittre ADL test was similar among the groups ( P = .82 for GOLD 1 vs GOLD 2, P = .19 for GOLD 1 vs GOLD 3, and P = .45 for GOLD 2 vs GOLD 3). As the degree of air-flow obstruction progresses, the COPD subjects present significant lower ventilatory reserve to perform the Glittre ADL test. In addition, metabolic and cardiac reserves may differentiate the severe subjects. These variables may be better measures to differentiate functional performance than Glittre ADL time. Copyright © 2017 by Daedalus Enterprises.

  16. Effects of movement and work load in patients with congenital central hypoventilation syndrome.

    PubMed

    Hager, Alfred; Koch, Walter; Stenzel, Heike; Hess, John; Schöber, Johannes

    2007-04-01

    Patients with congenital central hypoventilation syndrome lack ventilatory chemosensitivity and depend at least in part on the ergoreceptor function during exercise. In these patients a substantial increase of ventilation has been reported for passive movement during sleep as well as active movement on a treadmill. The aim of the study was to investigate ventilatory response to an increasing work load with constant movement. Eighteen patients and 17 healthy volunteers performed a cardiopulmonary exercise test on a bicycle pedaling at a constant rate of about 60 revolutions per minute throughout the entire test. The patients were able to exercise adequately and showed normal peak oxygen uptake. There was a steep rise in minute ventilation in both groups at the start of exercise, yet there was only a minor increase in both groups during the increase of workload up to the anaerobic threshold. After the anaerobic threshold, there was again an increase in ventilation in both groups, but the increase was less prominent in the patient group. Ventilation in patients with congenital central hypoventilation syndrome is increased during exercise caused both by movement (mechanoreceptors) and by anaerobic workload. This facilitates a normal ventilatory drive up to the anaerobic threshold and a normal exercise capacity in these patients.

  17. Ventilatory acclimatization to hypoxia in mice: Methodological considerations.

    PubMed

    Ivy, Catherine M; Scott, Graham R

    2017-01-01

    We examined ventilatory acclimatization to hypoxia (VAH) in CD1 mice, and contrasted results obtained using the barometric method on unrestrained mice with pneumotachography and pulse oximetry on restrained mice. Responses to progressive step reductions in O 2 fraction (21%-8%) were assessed in mice acclimated to normoxia and hypobaric hypoxia (barometric pressure of 60kPa for 6-8 weeks). Hypoxia acclimation increased the hypoxic ventilatory response (primarily by increasing breathing frequency rather than tidal volume), arterial O 2 saturation (Sa O2 ) and heart rate in deep hypoxia, hypoxic chemosensitivity (ventilatory O 2 /CO 2 equivalents versus Sa O2 ), and respiratory water loss, and it blunted the hypoxic depression of metabolism and body temperature. Although some effects of hypoxia acclimation were qualitatively similar between methods, the effects were often greater in magnitude when assessed using pneumotachography. Furthermore, whereas hypoxia acclimation reduced ventilatory O 2 equivalent and increased pulmonary O 2 extraction in barometric experiments, it had the opposite effects in pneumotachography experiments. Our findings highlight the importance of considering the impact of how breathing is measured on the apparent responses to hypoxia. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dietary selenium requirements based on tissue selenium concentration and glutathione peroxidase activities in old female rats.

    PubMed

    Sunde, Roger A; Thompson, Kevin M

    2009-01-01

    Dietary nutrient requirements for older animals have been studied far less than have requirements for young growing animals. To determine dietary selenium (Se) requirements in old rats, we fed female weanling rats a Se-deficient diet (0.007 microg Se/g) or supplemented rats with graded levels of dietary Se (0-0.3 microg Se/g) as Na(2)SeO(3) for 52 weeks. At no point did Se deficiency or level of Se supplementation have a significant effect (P>0.05) on growth. To determine Se requirements, Se response curves were determined for 7 Se-dependent parameters. We found that minimum dietary Se requirements in year-old female rats were at or below 0.05 microg Se/g diet based on liver Se, red blood cell glutathione peroxidase (Gpx1) activity, plasma Gpx3 activity, liver and kidney Gpx1 activity, and liver and kidney Gpx4 activity. In conclusion, this study found that dietary Se requirements in old female rats were decreased at least 50% relative to requirements found in young, rapidly growing female rats. Collectively, this indicates that the homeostatic mechanisms related to retention and maintenance of Se status are still fully functional in old female rats.

  19. Percutaneous absorption of selenium sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do notmore » indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.« less

  20. Selenium.

    PubMed

    Barceloux, D G

    1999-01-01

    The 4 natural oxidation states of selenium are elemental selenium (0), selenide (-2), selenite (+4), and selenate (+6). Inorganic selenate and selenite predominate in water whereas organic selenium compounds (selenomethionine, selenocysteine) are the major selenium species in cereal and in vegetables. The principal applications of selenium include the manufacture of ceramics, glass, photoelectric cells, pigments, rectifiers, semiconductors, and steel as well as use in photography, pharmaceutical production, and rubber vulcanizing. High concentrations of selenium in surface and in ground water usually occur in farm areas where irrigation water drains from soils with high selenium content (Kesterson Reservoir, California) or in lakes receiving condenser cooling water from coal-fired electric power plants (Belews Lake, North Carolina). For the general population, the primary pathway of exposure to selenium is food, followed by water and air. Both selenite and selenate possess substantial bioavailability. However, plants preferentially absorb selenates and convert them to organic compounds. Aquatic organisms (e.g., bivalves) can accumulate and magnify selenium in the food chain. Selenium is an essential component of glutathione peroxidase, which is an important enzyme for processes that protect lipids in polyunsaturated membranes from oxidative degradation. Inadequate concentrations of selenium in the Chinese diet account, at least in part, for the illness called Keshan disease. Selenium deficiency occurs in the geographic areas where Balkan nephropathy appears, but there is no direct evidence that selenium deficiency contributes to the development of this chronic, progressive kidney disease. Several lines of scientific inquiry suggest that an increased risk of cancer occurs as a result of low concentrations of selenium in the diet; however, insufficient evidence exists at the present time to recommend the use of selenium supplements for the prevention of cancer. The toxicity of most forms of selenium is low and the toxicity depends on the chemical form of selenium. The acute ingestion of selenious acid is almost invariably fatal, preceded by stupor, hypotension, and respiratory depression. Chronic selenium poisoning has been reported in China where changes in the hair and nails resulted from excessive environmental exposures to selenium. Garlic odor on the breath is an indication of excessive selenium exposure as a result of the expiration of dimethyl selenide. The US National Toxicology Program lists selenium sulfide as an animal carcinogen, but there is no evidence that other selenium compounds are carcinogens.

  1. Selenium, selected inorganic elements, and organochlorine pesticides in bottom material and biota from the Colorado River delta

    USGS Publications Warehouse

    Garcia-Hernandez, J.; King, K.A.; Velasco, A.L.; Shumilin, E.; Mora, M.A.; Glenn, E.P.

    2001-01-01

    Concentrations of selenium (Se) in bottom material ranged from 0.6 to 5.0 μg g−1, and from 0.5 to 18.3 μg g−1in biota; 23% of samples exceeded the toxic threshold. Concentrations of DDE in biota exceeded the toxic threshold in 30% of the samples. Greater concentrations of selenium in biota were found at sites with strongly reducing conditions, no output, alternating periods of drying and flooding or dredging activities, and at sites that received water directly from the Colorado River. The smallest Se concentrations in biota were found at sites where an outflow and exposure or physical disturbance of the bottom material were uncommon.

  2. [Glucooxidative stress and spontaneous abortion in pregnant women with diabetes mellitus type 1].

    PubMed

    Todorova, K; Ivanov, S; Mazneĭkova, V; Genova, M

    2005-01-01

    The pregnancies in women with Diabetes mellitus are in condition of increased glucooxidative stress, which could be toxic for the developing embryo. END-POINTS: To evaluate the levels of selenium and glutation peroxidase in pregnant women with Diabetes mellitus type 1 in the first trimester of pregnancy and to establish whether there is a correlation between the diabetic glycemic control and occurrence of spontaneous abortions. Prospective study of 75 women for 1 year period. he pregnant women were divided in 3 groups as follows: 1st group--30 pregnant women with Diabetes mellitus type 1 with normal outcome; 2nd group--16 pregnant women with Diabetes mellitus type 1 with spontaneous abortion; 3rd group--29 healthy pregnant controls. The activity of GI-Px in red blood cells was measured in hemolysat of EDTA plasma in Germany. The levels of glucosylated haemoglobin were also evaluated. 1. In all pregnant women the levels of selenium were lower without significant difference between them 1st group--0.12 +/- 0.6 mmol/l, 2ndd group 0.13 +/- 0.1 mmol/l, 3rd group 0.13 +/- 0.7 mmol/l (P > 0.05). 2. There is an increase in the activity of GI-Px, which is statistically significant in the healthy pregnant women 47.8 +/- 13.3 U/g Hb and diabetic pregnant women with normal outcome 48. 6 +/- 8.4 U/g Hb. There is no statistically significant difference in the activity of GI-Px in diabetic pregnant women with spontaneous abortions and the healthy controls (P > 0. 05). 3. Negative correlation between the levels of selenium and the activity of GI-Px was proved in healthy pregnant women (r = - 0.4; P < 0.05). No correlation was found between the level of the selenium and the activity of GI-Px into the two groups of diabetic pregnant women. 4. There is a correlation in the levels of diabetic pregnant women with spontaneous abortions (r = -0.38; P < 0.001). The increased activity of GI-Px in diabetic pregnant women with spontaneous abortions is a result of increased antioxidative defense of the cell. Probably the ineffective antioxidant defense, leading to a spontaneous abortion is due to the low levels of selenium and high level of pre-prandial glycaemia.

  3. Postural control and ventilatory drive during voluntary hyperventilation and carbon dioxide rebreathing.

    PubMed

    David, Pascal; Laval, David; Terrien, Jérémy; Petitjean, Michel

    2012-01-01

    The present study sought to establish links between hyperventilation and postural stability. Eight university students were asked to stand upright under two hyperventilation conditions applied randomly: (1) a metabolic hyperventilation induced by 5 min of hypercapnic-hyperoxic rebreathing (CO(2)-R); and, (2) a voluntary hyperventilation (VH) of 3 min imposed by a metronome set at 25 cycles per min. Recordings were obtained with eyes open, with the subjects standing on a force plate over 20-s periods. Ventilatory response, displacements in the centre of pressure in both the frontal and sagittal planes and fluctuations in the three planes of the ground reaction force were monitored in the time and frequency domains. Postural changes related to respiratory variations were quantified by coherence analysis. Myoelectric activities of the calf muscles were recorded using surface electromyography. Force plate measurements revealed a reduction in postural stability during both CO(2)-R and VH conditions, mainly in the sagittal plane. Coherence analysis provided evidence of a ventilatory origin in the vertical ground reaction force fluctuations during VH. Electromyographic analyses showed different leg muscles strategies, assuming the existence of links between the control of respiration and the control of posture. Our results suggest that the greater disturbing effects caused by voluntary hyperventilation on body balance are more compensated when respiration is under automatic control. These findings may have implications for understanding the organisation of postural and respiratory activities and suggest that stability of the body may be compromised in situations in which respiratory demand increases and requires voluntary control.

  4. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens

    PubMed Central

    Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Background Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Methods Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)–plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. Findings On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Conclusions Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The changes in microRNA could be a part of mechanisms underlying the clinical effects earlier reported that reduced cardiovascular mortality, gave better cardiac function, and showed less signs of inflammation and oxdative stress following the intervention. However, more research is needed to understand biological mechanisms of the protective effects of selenium and Q10 supplementation. PMID:28448590

  5. Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto's thyroiditis and hypothyroidism.

    PubMed

    Nourbakhsh, Mitra; Ahmadpour, Fatemeh; Chahardoli, Behnam; Malekpour-Dehkordi, Zahra; Nourbakhsh, Mona; Hosseini-Fard, Seyed Reza; Doustimotlagh, Amirhossein; Golestani, Abolfazl; Razzaghy-Azar, Maryam

    2016-03-01

    The essential trace element selenium (Se) is required for thyroid hormone synthesis and metabolism. Selenoproteins contain selenocysteine and are responsible for biological functions of selenium. Glutathione peroxidase (GPx) is one of the major selenoproteins which protects the thyroid cells from oxidative damage. Selenoprotein P (SePP) is considered as the plasma selenium transporter to tissues. The aim of this study was to evaluate serum Se and SePP levels, and GPx activity in erythrocytes of children and adolescents with treated Hashimoto's thyroiditis, hypothyroidism, and normal subjects. Blood samples were collected from 32 patients with Hashimoto's thyroiditis, 20 with hypothyroidism, and 25 matched normal subjects. All the patients were under treatment with levothyroxine and at the time of analysis all of the thyroid function tests were normal. GPx enzyme activity was measured by spectrophotometry at 340 nm. Serum selenium levels were measured by high-resolution continuum source graphite furnace atomic absorption. SePP, TPOAb (anti-thyroid peroxidase antibody), and TgAb (anti-thyroglobulin antibody) were determined by ELISA kits. T4, T3, T3 uptake and TSH were also measured. Neither GPx activity nor SePP levels were significantly different in patients with Hashimoto's thyroiditis or hypothyroidism compared to normal subjects. Although GPx and SePP were both lower in patients with hypothyroidism compared to those with Hashimoto's thyroiditis and normal subjects but the difference was not significant. Serum Se levels also did not differ significantly in patients and normal subjects. We did not find any correlation between GPx or SePP with TPOAb or TgAb but SePP was significantly correlated with Se. Results show that in patients with Hashimoto's thyroiditis or hypothyroidism who have been under treatment with levothyroxine and have normal thyroid function tests, the GPx, SePP and Se levels are not significantly different. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    PubMed

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner.

    PubMed

    Khera, Alisha; Vanderlelie, Jessica J; Holland, Olivia; Perkins, Anthony V

    2017-06-01

    The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.

  8. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans

    PubMed Central

    Fatemian, Marzieh; Herigstad, Mari; Croft, Quentin P. P.; Formenti, Federico; Cardenas, Rosa; Wheeler, Carly; Smith, Thomas G.; Friedmannova, Maria; Dorrington, Keith L.

    2015-01-01

    Key points Lung ventilation and pulmonary artery pressure rise progressively in response to 8 h of hypoxia, changes described as ‘acclimatization to hypoxia’. Acclimatization responses differ markedly between humans for unknown reasons.We explored whether the magnitudes of the ventilatory and vascular responses were related, and whether the degree of acclimatization could be predicted by acute measurements of ventilatory and vascular sensitivities.In 80 healthy human volunteers measurements of acclimatization were made before, during, and after a sustained exposure to 8 h of isocapnic hypoxia.No correlation was found between measures of ventilatory and pulmonary vascular acclimatization.The ventilatory chemoreflex sensitivities to acute hypoxia and hypercapnia all increased in proportion to their pre‐acclimatization values following 8 h of hypoxia. The peripheral (rapid) chemoreflex sensitivity to CO2, measured before sustained hypoxia against a background of hyperoxia, was a modest predictor of ventilatory acclimatization to hypoxia. This finding has relevance to predicting human acclimatization to the hypoxia of altitude. Abstract Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8‐h isocapnic exposure to hypoxia (end‐tidal P O2=55 Torr) in a purpose‐built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (GpO2) and hyperoxic hypercapnia, the latter divided into peripheral (G pC O2) and central (G cC O2) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For GpO2, G pC O2 and G cC O2, but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre‐acclimatization value. Additionally, the change in GpO2 during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G pC O2 predicted the subsequent rise in ventilation and change in GpO2 during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G pC O2 is a modest predictor of ventilatory acclimatization. PMID:25907672

  9. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    PubMed

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  10. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system.

    PubMed

    Zhu, Zhu; Chen, Yanli; Shi, Guoqing; Zhang, Xueji

    2017-03-15

    The antioxidant activity of selenium (Se) detoxifies reactive oxygen species (ROS) in plants and animals. In the present study, we elucidated the mechanism underlying Se induced fruit development and ripening. Our study showed that foliar pretreatment with 1mgL -1 sodium selenate effectively delayed fruit ripening and maintained fruit quality. Gene expression studies revealed that the repression of ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase decreased ethylene production and respiration rate. Moreover, Se treatment probably boosted the antioxidant defense system to reduce ROS generation and membrane damage. The enhanced antioxidative effect was attributed to higher glutathione content and increased activity of enzymes such as glutathione peroxidase and glutathione reductase. The upregulation of respiratory burst oxidase homologue genes in tomato fruit may also contribute to the enhanced antioxidative effect. Selenium treatment represents a promising strategy for delaying ripening and extending the shelf life of tomato fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of selenium in dietary supplements using elemental speciation.

    PubMed

    Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2017-03-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. Published by Elsevier Ltd.

  12. Evaluation of selenium in dietary supplements using elemental speciation

    PubMed Central

    Kubachka, Kevin M.; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A.; Falconer, Travis M.; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2016-01-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common “seleno-amino acids” and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. PMID:27719915

  13. Selenium metabolite levels in human urine after dosing selenium in different chemical forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasunuma, Ryoichi; Tsuda, Morizo; Ogawa, Tadao

    1993-11-01

    It has been well known that selenium in marine fish such as tuna and swordfish protects the toxicity of methylmercury in vivo. The protective potency might depend on the chemical forms of selenium in the meat of marine fish sebastes and sperm whale. Little has been revealed, however, on the chemical forms of selenium in the meat of these animals or the selenium metabolites in urine, because the amount of the element is very scarce. Urine is the major excretory route for selenium. The chemical forms of urinary selenium may reflect the metabolism of the element. We have developed methodologymore » for analysis of selenium-containing components in human urine. Using this method, we have observed the time courses of excretory levels of urinary selenium components after a single dose of selenium as selenious acid, selenomethionine, trimethylselenonium ion or tuna meat. 14 refs., 6 figs., 1 tab.« less

  14. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  15. Effects of low temperature on breathing pattern and ventilatory responses during hibernation in the golden-mantled ground squirrel.

    PubMed

    Webb, Cheryl L; Milsom, William K

    2017-07-01

    During entrance into hibernation in golden-mantled ground squirrels (Callospermophilus lateralis), ventilation decreases as metabolic rate and body temperature fall. Two patterns of respiration occur during deep hibernation. At 7 °C body temperature (T b ), a breathing pattern characterized by episodes of multiple breaths (20.6 ± 1.9 breaths/episode) separated by long apneas or nonventilatory periods (T nvp ) (mean = 11.1 ± 1.2 min) occurs, while at 4 °C T b , a pattern in which breaths are evenly distributed and separated by a relatively short T nvp (0.5 ± 0.05 min) occurs. Squirrels exhibiting each pattern have similar metabolic rates and levels of total ventilation (0.2 and 0.23 ml O 2 /hr/kg and 0.11 and 0.16 ml air/min/kg, respectively). Squirrels at 7 °C T b exhibit a significant hypoxic ventilatory response, while squirrels at 4 °C T b do not respond to hypoxia at any level of O 2 tested. Squirrels at both temperatures exhibit a significant hypercapnic ventilatory response, but the response is significantly reduced in the 4 °C T b squirrels. Carotid body denervation has little effect on the breathing patterns or on the hypercapnic ventilatory responses. It does reduce the magnitude and threshold for the hypoxic ventilatory response. Taken together the data suggest that (1) the fundamental rhythm generator remains functional at low temperatures; (2) the hypercapnic ventilatory response arises from central chemoreceptors that remain functional at very low temperatures; (3) the hypoxic ventilatory response arises from both carotid body and aortic chemoreceptors that are silenced at lower temperatures; and (4) there is a strong correlation between breathing pattern and chemosensitivity.

  16. Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    1998-01-01

    Adult mallards (Anas platyrhynchos) were fed a control diet or diets containing 10 ppm mercury as methylmercury chloride, 10 ppm selenium as seleno-DL-methionine, or 10 ppm mercury plus 10 ppm selenium. One of 12 adult males fed 10 ppm mercury died and 8 others suffered from paralysis of their legs by the time the study was terminated. However, when the diet contained 10 ppm selenium in addition to the 10 ppm mercury, none of 12 males became sick. In contrast to the protective effect of selenium against mercury poisoning in males, selenium plus mercury was worse than selenium or mercury alone for some measurements of reproductive success. Both selenium and mercury lowered duckling production through reductions in hatching success and survival of ducklings, but the combination of mercury plus selenium was worse than either mercury or selenium alone. Controls produced an average of 7.6 young per female, females fed 10 ppm selenium produced an average of 2.8 young, females fed 10 ppm mercury produced 1.1 young, and females fed both mercury and selenium produced 0.2 young. Teratogenic effects also were worse for the combined mercury plus selenium treatment; deformities were recorded in 6.1% of the embryos of controls, 16.4% for methylmercury chloride, 36.2% for selenomethionine, and 73.4% for the combination of methylmercury chloride and selenomethionine. The presence of methylmercury in the diet greatly enhanced the storage of selenium in tissues. The livers of males fed 10 ppm selenium contained a mean of 9.6 ppm selenium, whereas the livers of males fed 10 ppm selenium plus 10 ppm mercury contained a mean of 114 ppm selenium. However, selenium did not enhance the storage of mercury. The results show that mercury and selenium may be antagonistic to each other for adults and synergistic to young, even within the same experiment.

  17. Respiratory muscle activity and patient–ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed Central

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234

  18. Respiratory muscle activity and patient-ventilator asynchrony during different settings of noninvasive ventilation in stable hypercapnic COPD: does high inspiratory pressure lead to respiratory muscle unloading?

    PubMed

    Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J

    2017-01-01

    High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.

  19. [Selenium treatment in thyreopathies].

    PubMed

    Sotak, Štefan

    Selenium (latin Selenium) is a micronutrient embedded in several proteins. In adults, the thyroid is the organ with the highest amount of selenium per gram of tissue. Selenium levels in the body depend on the characteristics of the population and its diet and geographic area. In the thyroid, selenium is required for the antioxidant function and for the metabolism of thyroid hormones. The literature suggests that selenium supplementation of patients with Hashimotos thyroiditis is associated with a reduction in antithyroperoxidase antibody levels. Selenium supplementation also in mild Graves orbitopathy is associated with delayed progression of ocular disorders. As a consequence of this observation The European Group on Graves Orbitopathy recommend six months selenium preparates supportive therapy for patients with mild form of Graves orbitopathy.Key words: Graves-Basedows disease - Hashimotos thyroiditis - selenium - supplementation.

  20. Selenium content of foods purchased or produced in Ohio.

    PubMed

    Snook, J T; Kinsey, D; Palmquist, D L; DeLany, J P; Vivian, V M; Moxon, A L

    1987-06-01

    Approximately 450 samples of about 100 types of foods consumed by rural and urban Ohioans were analyzed for selenium. Meat, dairy products, eggs, and grain products produced in Ohio have considerably lower selenium content than corresponding products produced in high selenium areas, such as South Dakota. Retail Ohio foods with interregional distribution tended to be higher in selenium content than corresponding foods produced in Ohio. Best sources of selenium in Ohio foods commonly consumed were meat and pasta products. Poor sources of selenium were fruits, most vegetables, candies, sweeteners, and alcoholic and nonalcoholic beverages. Establishment of an accurate data base for selenium depends on knowledge of the interregional distribution of foods, the selenium content of foods at their production site, and the selenium content of foods with wide local distribution.

  1. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  2. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    PubMed

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  3. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  4. Selenium deficiency and the effects of supplementation on preterm infants

    PubMed Central

    Freitas, Renata Germano B. O. N.; Nogueira, Roberto José N.; Antonio, Maria Ângela R. G. M.; Barros-Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: This study aimed to review the literature about blood concentrations of selenium associated with gestational age, feeding, supplementation and related clinical features in preterm infants. Data sources: Systematic review in the following databases: MEDLINE, PubMed, Google academics, SciELO. org, ScienceDirect (Elsevier) and CINAHL-Plus with Full Text (EBSCO). Articles published up to January 2013 with the keywords "selenium deficiency", "selenium supplementation", "neonates", "infants", "newborn" and "preterm infants" were selected. Data synthesis: The studies reported that low blood selenium levels are associated with increased risk of respiratory diseases. Preterm infants, especially with low birth weight, presented lower selenium levels. Selenium deficiency has also been associated with the use of oral infant formula, enteral and parenteral nutrition (with or without selenium addition). The optimal dose and length of selenium supplementation is not well-established, since they are based only on age group and selenium ingestion by breastfed children. Furthermore, the clinical status of the infant affected by conditions that may increase oxidative stress, and consequently, selenium requirements is not taken into account. Conclusions: Prematurity and low birth weight can contribute to low blood selenium in premature infants. Selenium supplementation seems to minimize or prevent clinical complications caused by prematurity. PMID:24676200

  5. Anaesthetic management of sleep-disordered breathing in adults.

    PubMed

    Hillman, David R; Chung, Frances

    2017-02-01

    Anaesthesia and sleep are different states of unconsciousness with considerable physiological common ground. Because of their shared depressant effects on muscle activation and ventilatory drive, patients with anatomically compromised airways will tend to obstruct in either state and those with impaired ventilatory capacity will tend to hypoventilate. Breathing behaviour in one state is predictive of that in the other. An essential difference is that while arousal responses are preserved during sleep, they are depressed during sedation and abolished by anaesthesia. This renders patients with sleep-related breathing disorders vulnerable to hypoventilation and asphyxia when deeply sedated. Addressing this vulnerability requires a systematic approach to identification of patients and circumstances that magnify this risk, and methods of managing it that seek to reconcile the need for safety with cost-effective use of resources. © 2016 Asian Pacific Society of Respirology.

  6. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1.

    PubMed

    Prisk, G K; Guy, H J; Elliott, A R; Paiva, M; West, J B

    1995-02-01

    We used multiple-breath N2 washouts (MBNW) to study the inhomogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from 1) distribution of specific ventilation (SV) from mixed-expired and 2) end-tidal N2, 3) change of slope of N2 washout (semilog plot) with time, 4) change of slope of normalized phase III of successive breaths, 5) anatomic dead space, and 6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV (P < 0.05) and significantly greater changes in the changes in slope of the N2 washouts (P < 0.001), indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  7. Ageing and cardiorespiratory response to hypoxia.

    PubMed

    Lhuissier, François J; Canouï-Poitrine, Florence; Richalet, Jean-Paul

    2012-11-01

    The risk of severe altitude-induced diseases is related to ventilatory and cardiac responses to hypoxia and is dependent on sex, age and exercise training status. However, it remains unclear how ageing modifies these physiological adaptations to hypoxia. We assessed the physiological responses to hypoxia with ageing through a cross-sectional 20 year study including 4675 subjects (2789 men, 1886 women; 14-85 years old) and a longitudinal study including 30 subjects explored at a mean 10.4 year interval. The influence of sex, training status and menopause was evaluated. The hypoxia-induced desaturation and the ventilatory and cardiac responses to hypoxia at rest and exercise were measured. In men, ventilatory response to hypoxia increased (P < 0.002), while desaturation was less pronounced (P < 0.001) with ageing. Cardiac response to hypoxia was blunted with ageing in both sexes (P < 0.001). Similar results were found in the longitudinal study, with a decrease in cardiac and an increase in ventilatory response to hypoxia with ageing. These adaptive responses were less pronounced or absent in post-menopausal women (P < 0.01). At exercise, desaturation was greater in trained subjects but cardiac and ventilatory responses to hypoxia were preserved by training, especially in elderly people. In conclusion, respiratory response to hypoxia and blood oxygenation improve with ageing in men while cardiac response is blunted with ageing in both sexes. Training aggravates desaturation at exercise in hypoxia, improves the ventilatory response and limits the ageing-induced blunting of cardiac response to hypoxia. Training limits the negative effects of menopause in cardiorespiratory adaptations to hypoxia.

  8. Ventilatory response to hypercarbia in newborns of smoking and substance-misusing mothers.

    PubMed

    Ali, Kamal; Wolff, Kim; Peacock, Janet L; Hannam, Simon; Rafferty, Gerrard F; Bhat, Ravindra; Greenough, Anne

    2014-07-01

    Infants of mothers who smoked (S) or substance misused (SM) during pregnancy have an increased risk of sudden infant death syndrome (SIDS). To test the hypothesis that infants of S and SM mothers compared with infants of non-substance-misusing, nonsmoking mothers (control subjects) would have a reduced ventilatory response to hypercarbia and that any reduction would be greater in the SM infants. Infants were assessed before maternity/neonatal unit discharge. Maternal and infant urine samples were obtained and tested for cotinine, cannabinoids, opiates, amphetamines, methadone, cocaine, and benzodiazepines. Respiratory flow and Vt were measured using a pneumotachograph inserted into a face mask placed over the infant's mouth and nose. The ventilatory responses to three levels of inspired carbon dioxide (0 [baseline], 2, and 4% CO2) were assessed. Twenty-three SM, 34 S, and 22 control infants were assessed. The birth weight of the control subjects was higher than the SM and S infants (P = 0.017). At baseline, SM infants had a higher respiratory rate (P = 0.003) and minute volume (P = 0.007) compared with control subjects and S infants. Both the SM and S infants had a lower ventilatory response to 2% (P < 0.001) and 4% (P < 0.001) CO2 than the control subjects. The ventilatory response to CO2 was lower in the SM infants compared with the S infants (P = 0.009). These results are consistent with infants of smoking mothers and substance misuse/smoking mothers having a dampened ventilatory response to hypercarbia, which is particularly marked in the latter group.

  9. Functional significance and control of release of pulmonary surfactant in the lizard lung.

    PubMed

    Wood, P G; Daniels, C B; Orgeig, S

    1995-10-01

    The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern.

  10. Chest tube drainage of transudative pleural effusions hastens liberation from mechanical ventilation.

    PubMed

    Kupfer, Yizhak; Seneviratne, Chanaka; Chawla, Kabu; Ramachandran, Kavan; Tessler, Sidney

    2011-03-01

    Pleural effusions occur frequently in patients requiring mechanical ventilatory support. Treatment of the precipitating cause and resolution of the pleural effusion may take considerable time. We retrospectively studied the effect of chest tube drainage of transudative pleural effusions on the liberation of patients from mechanical ventilatory support. Patients in the medical ICU (MICU) at Maimonides Medical Center between January 1, 2009, and October 31, 2009, requiring mechanical ventilatory support with a transudative pleural effusion, were studied retrospectively. They were divided into two groups: standard care and standard care plus chest tube drainage. Chest tubes were placed under ultrasound guidance by trained intensivists. Duration of mechanical ventilatory support was the primary end point. Secondary end points included measures of oxygenation, amount of fluid drained, and complications associated with the chest tube. A total of 168 patients were studied; 88 were treated with standard care and 80 underwent chest tube drainage. Total duration of mechanical ventilatory support was significantly shorter for patients who had chest tube drainage: 3.8±0.5 days vs 6.5±1.1 days for the standard group (P=.03). No differences in oxygenation were noted between the two groups. The average amount of fluid drained was 1,220 mL. No significant complications were caused by chest tube drainage. Chest tube drainage of transudative pleural effusions resulted in more rapid liberation from mechanical ventilatory support. It is a very safe procedure when performed under ultrasound guidance by experienced personnel. ClinicalTrials.gov; Identifier: NCT0114285; URL: www.clinicaltrials.gov.

  11. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans

    PubMed Central

    Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran; Ellis, Erika; Zarndt, Rachel; Antonova, Julie; Hopkins, Susan R.; Powell, Frank L.

    2016-01-01

    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease. PMID:26726885

  12. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J. B.; Elliott, Ann R.; Paiva, Manuel; West, John B.

    1995-01-01

    We used multiple-breath N2 washouts (MBNW) to study the homogeneity of ventilation in four normal humans (mean age 42.5 yr) before, during, and after 9 days of exposure to microgravity on Spacelab Life Sciences-1. Subjects performed 20-breath MBNW at tidal volumes of approximately 700 ml and 12-breath MBNW at tidal volumes of approximately 1,250 ml. Six indexes of ventilatory inhomogeneity were derived from data from (1) distribution of specific ventilation (SV) from mixed-expired and (2) end-tidal N2, (3) change of slope of N2 washout (semilog plot) with time, (4) change of slope of normalized phase III of successive breaths, (5) anatomic lead dead space, and (6) Bohr dead space. Significant ventilatory inhomogeneity was seen in the standing position at normal gravity (1 G). When we compared standing 1 G with microgravity, the distributions of SV became slightly narrower, but the difference was not significant. Also, there were no significant changes in the change of slope of the N2 washout, change of normalized phase III slopes, or the anatomic and Bohr dead spaces. By contrast, transition from the standing to supine position in 1 G resulted in significantly broader distributions of SV and significantly greater changes in the changes in slope of the N2 washouts, indicating more ventilatory inhomogeneity in that posture. Thus these techniques can detect relatively small changes in ventilatory inhomogeneity. We conclude that the primary determinants of ventilatory inhomogeneity during tidal breathing in the upright posture are not gravitational in origin.

  13. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

    PubMed

    Basaran, Kemal Erdem; Villongco, Michael; Ho, Baran; Ellis, Erika; Zarndt, Rachel; Antonova, Julie; Hopkins, Susan R; Powell, Frank L

    2016-01-01

    Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR) that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400 mg every 8 hrs) or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m). Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease.

  14. The Association between Selenium and Lipid Levels: a Longitudinal Study in Rural Elderly Chinese

    PubMed Central

    Chen, Chen; Jin, Yinlong; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Liang, Chaoke; Ma, Feng; Su, Liqin; Liu, Jingyi; Bian, Jianchao; Li, Ping; Gao, Sujuan

    2014-01-01

    A protective effect of selenium on lipid levels has been reported in populations with relatively low selenium status. However, recent studies found that high selenium exposure may lead to adverse cardiometabolic effects, particularly in selenium-replete populations. We examined the associations of selenium status with changes in lipid levels in a 7-year follow up of an elderly Chinese cohort including participants from selenium-deplete areas. Study population consisted of 140 elderly Chinese aged 65 or older with nail selenium levels measured at baseline (2003-2005). Lipid concentrations were measured in fasting blood samples collected at baseline and the 7-year follow-up (2010-2012). Analysis of covariance (ANCOVA) models was used to determine the association between baseline selenium status and changes in lipid levels from baseline to follow-up adjusting for other covariates. Mean (±standard deviation) baseline selenium concentration was 0.41±0.2mg/kg. In prospective analysis, we found that individuals in the highest selenium quartile group showed 1.11 SD decrease on total-cholesterol (p<0.001), 0.41 SD increase on HDL-cholesterol (p<0.001) and 0.52 SD decrease on triglyceride after 7 years than those in the lowest selenium quartile group. The similar trends were seen with significant lipids changes in the 2th and 3th quartile groups. Selenium has modestly beneficial effects on blood lipid levels in a population with relatively low selenium status. Our result suggests adequate dietary selenium intake as a potential prevention strategy for lowering lipid levels in selenium deplete populations. PMID:25263027

  15. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Ghosh, Prosenjit; Biswas, Jaydip; Bhattacharya, Sudin

    2014-08-01

    Cyclophosphamide (CP) is the most commonly used chemotherapeutic drug for various types of cancer. However, its use causes severe cytotoxicity to normal cells in human. It is well known that the undesirable side effects are caused due to the formation of reactive oxygen species. Selenium is an essential micronutrient for both animals and humans and has antioxidant and membrane stabilizing property, but selenium is also toxic above certain level. Nano selenium has been well proved to be less toxic than inorganic selenium as well as certain organoselenium compounds. The objective of the study is to evaluate the protective role of Nano-Se against CP-induced hepatotoxicity and genotoxicity in Swiss albino mice. CP was administered intraperitoneally (25 mg/kg b.w.) and Nano-Se was given by oral gavages (2 mg Se/kg b.w.) in concomitant and pretreatment scheme. Intraperitoneal administration of CP induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases and increased the malonaldehyde level, depleted the glutathione content and antioxidant enzyme activity (glutathione peroxidase, glutathione-s-transferase, superoxide dismutase and catalase), and induced DNA damage and chromosomal aberration. Oral administration of Nano-Se caused a significant reduction in malonaldehyde, ROS level and glutathione levels, restoration of antioxidant enzyme activity, reduction in chromosomal aberration in bone marrow, and DNA damage in lymphocytes and also in bone marrow. Moreover, the chemoprotective efficiency of Nano-Se against CP induced toxicity was confirmed by histopathological evaluation. The results support the protective effect of Nano-Se against CP-induced hepatotoxicity and genotoxicity. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Chemical Kinetic and Molecular Genetic Study of Selenium Oxyanion Reduction by Enterobactor cloacae SLD1a-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma,J.; Kobayashi, D.; Yee, N.

    2007-01-01

    Microbial processes play an important role in the redox transformations of toxic selenium oxyanions. In this study, we employed chemical kinetic and molecular genetic techniques to investigate the mechanisms of Se(IV) and Se(VI) reduction by the facultative anaerobe Enterobacter cloacae SLD1a-1. The rates of microbial selenium oxyanion reduction were measured as a function of initial selenium oxyanion concentration (0-1.0 mM) and temperature (10-40 C), and mutagenesis studies were performed to identify the genes involved in the selenium oxyanion reduction pathway. The results indicate that Se(IV) reduction is significantly more rapid than the reduction of Se(VI). The kinetics of the reductionmore » reactions were successfully quantified using the Michaelis-Menten kinetic equation. Both the rates of Se(VI) and Se(IV) reduction displayed strong temperature-dependence with Ea values of 121 and 71.2 kJ/mol, respectively. X-ray absorption near-edge spectra collected for the precipitates formed by Se(VI) and Se(IV) reduction confirmed the formation of Se(0). A miniTn5 transposon mutant of E. cloacae SLD1a-1 was isolated that had lost the ability to reduce Se(VI) but was not affected in Se(IV) reduction activity. Nucleotide sequence analysis revealed the transposon was inserted within a tatC gene, which encodes for a central protein in the twin arginine translocation system. Complementation by the wild-type tatC sequence restored the ability of mutant strains to reduce Se(VI). The results suggest that Se(VI) reduction activity is dependent on enzyme export across the cytoplasmic membrane and that reduction of Se(VI) and Se(IV) are catalyzed by different enzymatic systems.« less

  17. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  18. Selenium: a brief review and a case report of selenium responsive cardiomyopathy

    PubMed Central

    2013-01-01

    Background The authors review the role of selenium and highlight possible low selenium levels in soil that may result in deficient states in Saudi Arabia. Case presentation The authors report a case of selenium-responsive cardiomyopathy in a 15-month old Saudi Arabian boy. This case of selenium deficiency causing dilated cardiomyopathy is presented with failure to thrive, prolonged fever and respiratory distress. The investigations revealed selenium deficiency. Selenium supplementation along with anti-failure therapy [Furosimide, Captopril] was administered for 6 months. Following therapy the cardiac function, hair, skin and the general health of the patient improved significantly. Conclusion The patient with dilated cardiomyopathy of unknown etiology, not responding to usual medication may be deficient in selenium. Serum selenium measurements should be included in the diagnostic work-up to ensure early detection and treatment of the disease. The selenium level in the Saudi population needs be determined. Vulnerable populations have to undergo regular selenium measurements and supplementation if indicated. Dependence on processed foods suggests that the Saudi population fortify themselves with nutrient and micronutrient supplements in accordance to the RDA. PMID:23530936

  19. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  20. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  1. Metabolic and immune response of young turkeys originating from parent flocks fed diets with inorganic or organic selenium.

    PubMed

    Jankowski, J; Zduńczyk, Z; Sartowska, K; Tykałowski, B; Stenzel, T; Wróblewska, M; Koncicki, A

    2011-01-01

    The aim of this study was to verify the hypothesis that the health and growth of turkey poults may be improved by supplementing diets fed to parent flocks with available selenium. Experimental poults originated from parent flocks fed with diets containing 0.3 mg/kg inorganic selenium (control group Se(M)) and organic selenium (experimental group Se(O)). Egg yolk selenium content was comparable in both flocks (0.72 and 0.70 mg/kg d.m., respectively). Eggs from the Se(O) flock had a significantly lower content of thiobarbituric acid reactive substances - TBARS (31.13 vs. 53.10 nmol/g, p > 0.001). Se(O) group poults were characterized by higher activity of glutathione peroxidase (7.54 vs. 5.92 U/mL, P = 0.001) and superoxide dismutase (89.30 vs. 79.23 U/mL, P = 0.026). The thigh muscles of Se(O) group birds had significantly higher selenium concentrations (0.74 vs. 0.57, p = 0.045) and a significantly lower TBARS content (38.42 vs. 65.01, p = 0.001). No differences were found between the groups with respect to the content of total protein, albumins and uric acid, and the activites of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (DLH) in day-old poults. On day 28, groups Se(O) and Se(M) differed in the activity of ALT (20.50 vs. 26.33, p = 0.05) and SOD (87.29 vs. 100.02 U/mL, p = 0.035). There were no differences between the groups regarding the percentages of T lymphocyte subpopulations CD4+, CD8+, CD4+CD8+ and B lymphocyte subpopulations (IgM+) at 1 and 28 days of age. Over the experimental period, mortality rates were similar in both groups (7.32 and 8.87%), and so were the final body weights of birds (1108 vs. 1135 g). The results of the study show that the dietary supplementation of organic selenium in turkey parent flocks reduces the rate of oxidation processes in the egg and in the tissues of newly-hatched poults, yet it has no effect on the analyzed parameters of cell-mediated immunity and the growth performance of birds during the first five weeks of their life.

  2. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animalsmore » fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with methylmercury or mercury exposures, mercury-selenium ratios appear to be far more accurate and effective in identifying risk and protecting human and environmental health. This study also finds that methylmercury toxicity can be effectively treated by dietary selenium, preventing the death and progressive disabilities that otherwise occur in methylmercury-treated subjects. Remarkably, the positive response to selenium therapy was essentially equivalent regardless of whether or not toxic amounts of methylmercury were still administered. The findings of the Physiologically Oriented Integration of Nutrients and Toxins (POINT) models of the effects of mercury and selenium developed in this project are consistent with the hypothesis that mercury toxicity arises because of mercury-dependent inhibition of selenium availability in brain and endocrine tissues. This appears to occur through synergistic effects of mercury-dependent inhibition of selenium transport to these tissues and selective sequestration of the selenium present in the tissues. Compromised transport of selenium to the brain and endocrine tissues would be particularly hazardous to the developing fetus because the rapidly growing tissues of the child have no selenium reserves. Therefore, maternal consumption of foods with high mercury-selenium ratios is hazardous. In summation, methylmercury exposure is unlikely to cause harm in populations that eat selenium-rich diets but may cause harm among populations that consume certain foods that have methylmercury present in excess of selenium.« less

  3. Reproduction in mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Krynitsky, A.J.; Weller, D.M.G.

    1987-01-01

    Mallards (Anas platyrhynchos) were fed diets containing 1, 5, 10, 25 or 100 ppm selenium as sodium selenite, a diet containing 10 ppm selenium as seleno-DL-methionine or a control diet. There were no effects of 1, 5 or 10 ppm selenium as sodium selenite on either weight or survival of adults or on reproductive success, and there did not appear to be a dose-response relationship at these lower levels. The 100 ppm selenium diet killed 11 of 12 adults; one adult male fed 25 ppm selenium died. Selenium at 25 and 100 ppm caused weight loss in adults. Females fed 25 ppm selenium took longer to begin laying eggs and intervals between eggs were longer than in females in other treatment groups. Hatching success appeared to be reduced in birds fed 10 ppm selenium at selenomethionine, but the reduction was not statistically significant. The survival of ducklings and the mean number of 21-d-old ducklings produced per female were reduced in the 25 ppm selenium as sodium selenite group and the 10 ppm selenium as selenomethionine group. Egg weights were not affected by any selenium treatment, but 25 ppm selenium lowered the Ratcliffe Index. Duckling weights at hatching and at 21 d of age were reduced 28 and 36%, respectively, in birds fed 25 ppm selenium, as compared with controls. Body weights measured on day 21 were lower for ducklings fed 10 ppm selenium as selenomethionine than in some other groups. Selenium in concentrations of 10 and 25 ppm as sodium selenite caused mainly embryotoxic effects, whereas 10 ppm as selenomethionine was more teratogenic, causing hydrocephaly, bill defects, eye defects (microphthalmia and anophthalmia) and foot and toe defects, including ectrodactyly. Selenomethionine was much more readily taken up by mallards and passed into their eggs than was sodium selenite, and a greater proportion of the selenium in the eggs ended up in the white when selenomethionine was fed. Adult males accumulated more selenium than did females, probably because of the females' ability to eliminate selenium in their eggs.

  4. Pulque, an alcoholic drink from rural Mexico, contains phytase. Its in vitro effects on corn tortilla.

    PubMed

    Tovar, Luis Raul; Olivos, Manuel; Gutierrez, Ma Eugenia

    2008-12-01

    Pulque is made by fermenting the agave sap or aguamiel of Agave atrovirens with a whole array of microorganisms present in the environment including several lactic acid bacteria and yeasts such as Saccharomyces cerevisiae. Ascorbic acid was determined in pulque and aguamiel, respectively. Phytase activity in lees, liquid and freeze-dried pulque was assayed by measuring the appearance of phosphate from phytate by a colorimetric method likewise phosphate from phytate present in fresh corn tortilla was measured after in vitro incubation with pulque. Iron, zinc, calcium, magnesium and selenium contents were measured in pulque and corn tortilla as well as in nixtamalized corn flour (NCF), the latter is used to make instant tortilla, since corn provides most of the energy as well as most of the phytate in the Mexican rural diet. Pulque showed phytase activity but much less ascorbic acid and iron than previously reported; additionally, phytase in pulque hydrolyzed most of phytate's corn tortilla. Lees, which is mostly made of pulque's microbiota, significantly accumulated iron and zinc but no selenium. NCF was fortified with iron by the manufacturers but poorly blended. There were significant differences on selenium content between tortillas samples, apparently some soils in central Mexico are selenium deficient. Moderate pulque intake appears to increase the bioavailability of iron and zinc bound by phytate in corn.

  5. Toxicity of organic and inorganic selenium to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1988-01-01

    The toxicity of selenomethionine and sodium selenite to mallard ducklings (Anas platyrhynchos) was measured by feeding each form from hatching to six weeks of age at dietary concentrations of 0, 10, 20, 40, and 80 ppm selenium. At 80 ppm selenium, sodium selenite caused 97.5% mortality by six weeks and selenomethionine caused 100% mortality. At 40 ppm, these two forms of selenium caused 25 and 12.5% mortality. No mortality occurred at 10 or 20 ppm. Diets containing 20, 40, or 80 ppm selenium in both forms caused decreases in food consumption and growth. The only statistically significant effect of 10 ppm selenium was with sodium selenite, which resulted in larger livers than controls. Selenomethionine was more readily stored in the liver than sodium selenite at levels above 10 ppm selenium in the diet. Based on comparisons of residues of selenium in livers of surviving and dead ducklings, concentrations in the liver were not diagnostic of death due to selenium poisoning. Because both forms of selenium resulted in severe reductions in food consumption, selenium-induced starvation may have been related to duckling mortality. It was not clear whether either form of selenium at 10 ppm in the diet resulted in a leveling off of selenium concentrations in the liver within six weeks.

  6. Ventilatory Function in Relation to Mining Experience and Smoking in a Random Sample of Miners and Non-miners in a Witwatersrand Town1

    PubMed Central

    Sluis-Cremer, G. K.; Walters, L. G.; Sichel, H. S.

    1967-01-01

    The ventilatory capacity of a random sample of men over the age of 35 years in the town of Carletonville was estimated by the forced expiratory volume and the peak expiratory flow rate. Five hundred and sixty-two persons were working or had worked in gold-mines and 265 had never worked in gold-mines. No difference in ventilatory function was found between the miners and non-miners other than that due to the excess of chronic bronchitis in miners. PMID:6017134

  7. Chronic Intermittent Hypoxia Blunts the Expression of Ventilatory Long Term Facilitation in Sleeping Rats.

    PubMed

    Edge, Deirdre; O'Halloran, Ken D

    2015-01-01

    We have previously reported that chronic intermittent hypoxia (CIH), a central feature of human sleep-disordered breathing, causes respiratory instability in sleeping rats (Edge D, Bradford A, O'halloran KD. Adv Exp Med Biol 758:359-363, 2012). Long term facilitation (LTF) of respiratory motor outputs following exposure to episodic, but not sustained, hypoxia has been described. We hypothesized that CIH would enhance ventilatory LTF during sleep. We examined the effects of 3 and 7 days of CIH exposure on the expression of ventilatory LTF in sleeping rats. Adult male Wistar rats were exposed to 20 cycles of normoxia and hypoxia (5 % O(2) at nadir; SaO(2) ~ 80 %) per hour, 8 h per day for 3 or 7 consecutive days (CIH, N = 7 per group). Corresponding sham groups (N = 7 per group) were subjected to alternating cycles of air under identical experimental conditions in parallel. Following gas exposures, breathing during sleep was assessed in unrestrained, unanaesthetized animals using the technique of whole-body plethysmography. Rats were exposed to room air (baseline) and then to an acute IH (AIH) protocol consisting of alternating periods of normoxia (7 min) and hypoxia (FiO(2) 0.1, 5 min) for 10 cycles. Breathing was monitored during the AIH exposure and for 1 h in normoxia following AIH exposure. Baseline ventilation was elevated after 3 but not 7 days of CIH exposure. The hypoxic ventilatory response was equivalent in sham and CIH animals after 3 days but ventilatory responses to repeated hypoxic challenges were significantly blunted following 7 days of CIH. Minute ventilation was significantly elevated following AIH exposure compared to baseline in sham but not in CIH exposed animals. LTF, determined as the % increase in minute ventilation from baseline following AIH exposure, was significantly blunted in CIH exposed rats. In summary, CIH leads to impaired ventilatory responsiveness to AIH. Moreover, CIH blunts ventilatory LTF. The physiological significance of ventilatory LTF is context-dependent but it is reasonable to consider that it can potentially destabilize respiratory control, in view of the potential for LTF to give rise to hypocapnia. CIH-induced blunting of LTF may represent a compensatory mechanism subserving respiratory homeostasis. Our results suggest that CIH-induced increase in apnoea index (Edge D, Bradford A, O'halloran KD. Adv Exp Med Biol 758:359-363, 2012) is not related to enhanced ventilatory LTF. We conclude that the mature adult respiratory system exhibits plasticity and metaplasticity with potential consequences for the control of respiratory homeostasis. Our results may have implications for human sleep apnoea.

  8. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food.

    PubMed

    Hart, D J; Fairweather-Tait, S J; Broadley, M R; Dickinson, S J; Foot, I; Knott, P; McGrath, S P; Mowat, H; Norman, K; Scott, P R; Stroud, J L; Tucker, M; White, P J; Zhao, F J; Hurst, R

    2011-06-15

    The retention and speciation of selenium in flour and bread was determined following experimental applications of selenium fertilisers to a high-yielding UK wheat crop. Flour and bread were produced using standard commercial practices. Total selenium was measured using inductively coupled plasma-mass spectrometry (ICP-MS) and the profile of selenium species in the flour and bread were determined using high performance liquid chromatography (HPLC) ICP-MS. The selenium concentration of flour ranged from 30ng/g in white flour and 35ng/g in wholemeal flour from untreated plots up to >1800ng/g in white and >2200ng/g in wholemeal flour processed from grain treated with selenium (as selenate) at the highest application rate of 100g/ha. The relationship between the amount of selenium applied to the crop and the amount of selenium in flour and bread was approximately linear, indicating minimal loss of Se during grain processing and bread production. On average, application of selenium at 10g/ha increased total selenium in white and wholemeal bread by 155 and 185ng/g, respectively, equivalent to 6.4 and 7.1μg selenium per average slice of white and wholemeal bread, respectively. Selenomethionine accounted for 65-87% of total extractable selenium species in Se-enriched flour and bread; selenocysteine, Se-methylselenocysteine selenite and selenate were also detected. Controlled agronomic biofortification of wheat crops for flour and bread production could provide an appropriate strategy to increase the intake of bioavailable selenium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Null activity of selenium and vitamin e as cancer chemopreventive agents in the rat prostate.

    PubMed

    McCormick, David L; Rao, K V N; Johnson, William D; Bosland, Maarten C; Lubet, Ronald A; Steele, Vernon E

    2010-03-01

    To evaluate the potential efficacy of selenium and vitamin E as inhibitors of prostate carcinogenesis, four chemoprevention studies using a common protocol were done in a rat model of androgen-dependent prostate cancer. After stimulation of prostate epithelial cell proliferation by a sequential regimen of cyproterone acetate followed by testosterone propionate, male Wistar-Unilever rats received a single i.v. injection of N-methyl-N-nitrosourea (MNU) followed by chronic androgen stimulation via subcutaneous implantation of testosterone pellets. At 1 week post-MNU, groups of carcinogen-treated rats (39-44/group) were fed either a basal diet or a basal diet supplemented with l-selenomethionine (3 or 1.5 mg/kg diet; study 1), dl-alpha-tocopherol (vitamin E, 4,000 or 2,000 mg/kg diet; study 2), l-selenomethionine + vitamin E (3 + 2,000 mg/kg diet or 3 + 500 mg/kg diet; study 3), or selenized yeast (target selenium levels of 9 or 3 mg/kg diet; study 4). Each chemoprevention study was terminated at 13 months post-MNU, and prostate cancer incidence was determined by histopathologic evaluation. No statistically significant reductions in prostate cancer incidence were identified in any group receiving dietary supplementation with selenium and/or vitamin E. These data do not support the hypotheses that selenium and vitamin E are potent cancer chemopreventive agents in the prostate, and when considered with the recent clinical data reported in the Selenium and Vitamin E Cancer Prevention Trial (SELECT), show the predictive nature of this animal model for human prostate cancer chemoprevention.

  10. Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

    PubMed Central

    Netto, Arlindo Saran; Zanetti, Marcus Antônio; Claro, Gustavo Ribeiro Del; de Melo, Mariza Pires; Vilela, Flávio Garcia; Correa, Lisia Bertonha

    2014-01-01

    Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat. PMID:25049978

  11. Volatilization of selenium from astragalus plants irrigated with selenium-laden water. Open file report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, D.J.; Lujan, M.J.; Ary, T.S.

    1989-01-01

    Living plants of Astragalus bisulcatus and Atriplex canescens were irrigated with solutions containing selenium to investigate the plants' ability to selectively remove selenium from selenium-contaminated water. The plants were grown from seed in an indoor environment and harvested for analysis at the end of a typical 7-month growing season. Of the total selenium applied to soil in which the plants were grown, only about 1% was incorporated in plant tissues of Astragalus, but approximately 18% of applied selenium was dissipated into the air from the living plants. Atriplex plants did not absorb or dissipate detectable amounts of selenium.

  12. Selenium and its supplementation in cardiovascular disease--what do we know?

    PubMed

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-04-27

    The trace element selenium is of high importance for many of the body's regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

  13. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    PubMed Central

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-01-01

    The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery. PMID:25923656

  14. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  15. Producing selenium-enriched eggs and meat to improve the selenium status of the general population.

    PubMed

    Fisinin, Vladimir I; Papazyan, Tigran T; Surai, Peter F

    2009-01-01

    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.

  16. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    PubMed Central

    Haug, Anna; Graham, Robin D.; Christophersen, Olav A.; Lyons, Graham H.

    2007-01-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations. PMID:18833333

  17. The role of spinal cord transmission in the ventilatory response to electrically induced exercise in the anaesthetized dog

    PubMed Central

    Cross, Brenda A.; Davey, A.; Guz, A.; Katona, P. G.; Maclean, M.; Murphy, K.; Semple, S. J. G.; Stidwill, R.

    1982-01-01

    1. The ventilatory response to electrically induced `exercise' was studied in six chloralose-anaesthetized dogs. The on-transient and steady-state responses to `exercise' were compared in the same dogs before and after spinal cord transection at T8/9 (dermatome level T6/7) on fifteen occasions. 2. Phasic hind limb `exercise' was induced for periods of 4 min by passing current (2 Hz modulated 50 Hz sine wave) between two needles inserted through the hamstring muscles. The maximum current used was 30 mA. This was below the level previously found to produce an artifactual stimulation of breathing with the cord intact. 3. Cord transection produced no significant change in either the resting values of ventilation (˙VI) and CO2 production (˙VCO2) or the ventilatory equivalent for CO2 during `exercise' (△ ˙VI/ △ ˙VCO2). 4. During the steady state of exercise Pa, CO2 was on average significantly lower than at rest with the cord intact (mean △Pa, CO2, - 2·1 mmHg; range - 5·7 to + 1), and higher, though not significantly, with the cord cut (mean Pa, CO2, + 1·2 mmHg; range - 1·5 to + 4·3). However, even in the absence of spinal cord transmission, the ventilatory response to exercise could not be accounted for on the basis of CO2 sensitivity; the △ ˙VI/ △Pa,CO2 obtained with exercise (apparent sensitivity) was significantly greater than that obtained with CO2 inhalation (true sensitivity) both before and after cord section. 5. ˙VI and ˙VCO2 increased more slowly with the cord cut than with the cord intact. This was thought to be due to a slower increase in venous return in the absence of sympathetic innervation of the lower half of the body following cord transection. 6. Similar experiments were performed during muscle paralysis (following gallamine triethiodide). Ventilation was maintained with a respirator controlled by phrenic nerve activity. These experiments showed an increase in ventilation, independent of muscle contraction, which was only present when the cord was intact and which was confined to the on-transient. Only in the absence of spinal cord transmission could there be certainty that the dynamics of the ventilatory response to electrically induced `exercise' was free of artifact. 7. It was concluded that spinal cord transmission is not necessary for the steady-state ventilatory response to electrically induced exercise of the hind limbs. 8. The dog with spinal cord transection provides a suitable model for the study of the chemical control of breathing during electrically induced exercise. PMID:6292406

  18. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cobalt Complexes as Antiviral and Antibacterial Agents

    DTIC Science & Technology

    2010-01-01

    observed. Complex 26 has antibacterial activity against E. coli, S. aureus and Micrococcus lysodeikiticus, showing better growth inhibitory activity in...complexes exhibited activity towards E. coli, B. subtilis, S. aureus and Micrococcus lysodeikiticus. Figure 15. Selenium containing and

  20. Selenium Speciation and Management in Wet FGD Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Richardson, M; Blythe, G

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less

  1. Selenistasis: Epistatic Effects of Selenium on Cardiovascular Phenotype

    PubMed Central

    Joseph, Jacob; Loscalzo, Joseph

    2013-01-01

    Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease. PMID:23434902

  2. [Pathophysiology of respiratory muscle weakness].

    PubMed

    Windisch, W

    2008-03-01

    The respiratory system consists of two parts which can be impaired independently from each other, the lungs and the respiratory pump. The latter is a complex system covering different anatomic structures: the breathing centre, the peripheral nervous system, the respiratory muscles, and the thorax. According to this complexity several underlying conditions can cause insufficiency of the respiratory pump, i. e. ventilatory failure. Disturbances of the breathing centre, different neuromuscular disorders, impairments of the mechanics, such as thoracic deformities or hyperinflation, and airway obstruction are example conditions responsible for ventilatory failure. Main characteristic of ventilatory failure is the occurrence of hypercapnia which is in contrast to pulmonary failure where diffusion disturbances typically not cause hypercapnia. Both acute and chronic ventilatory failure presenting with hypercapnia can develop. In acute ventilatory failure respiratory acidosis develops, but in chronic respiratory failure pH is normalized as a consequence of metabolic retention of bicarbonate. However, acute on chronic ventilatory failure can present with a combined picture, i. e. elevated bicarbonate levels, acidosis, and often severe hypercapnia. Clinical signs such as tachypnea, features of the underlying disease or hypercapnia are important diagnostic tools in addition to the measurement of pressures generated by the respiratory muscles. Non-invasive and widely available techniques, such as the assessment of the maximal ins- and expiratory mouth pressures (PImax, PEmax), should be used as screening instruments, but the reliability of these measurements is reduced due to the volitional character of the tests and due to the impossibility to define normal values. Inspiratory pressures can be assessed more accurately and independently from the patients' effort: with or without the insertion of oesophageal and gastric balloon catheters. However, this technique is more invasive and very complex. It is therefore restricted to centres with scientific aims.

  3. Impact of beta-blockers on cardiopulmonary exercise testing in patients with advanced liver disease.

    PubMed

    Wallen, M P; Hall, A; Dias, K A; Ramos, J S; Keating, S E; Woodward, A J; Skinner, T L; Macdonald, G A; Arena, R; Coombes, J S

    2017-10-01

    Patients with advanced liver disease may develop portal hypertension that can result in variceal haemorrhage. Beta-blockers reduce portal pressure and minimise haemorrhage risk. These medications may attenuate measures of cardiopulmonary performance, such as the ventilatory threshold and peak oxygen uptake measured via cardiopulmonary exercise testing. To determine the effect of beta-blockers on cardiopulmonary exercise testing variables in patients with advanced liver disease. This was a cross-sectional analysis of 72 participants who completed a cardiopulmonary exercise test before liver transplantation. All participants remained on their usual beta-blocker dose and timing prior to the test. Variables measured during cardiopulmonary exercise testing included the ventilatory threshold, peak oxygen uptake, heart rate, oxygen pulse, the oxygen uptake efficiency slope and the ventilatory equivalents for carbon dioxide slope. Participants taking beta-blockers (n = 28) had a lower ventilatory threshold (P <.01) and peak oxygen uptake (P = .02), compared to participants not taking beta-blockers. After adjusting for age, the model of end-stage liver-disease score, liver-disease aetiology, presence of refractory ascites and ventilatory threshold remained significantly lower in the beta-blocker group (P = .04). The oxygen uptake efficiency slope was not impacted by beta-blocker use. Ventilatory threshold is reduced in patients with advanced liver disease taking beta-blockers compared to those not taking the medication. This may incorrectly risk stratify patients on beta-blockers and has implications for patient management before and after liver transplantation. The oxygen uptake efficiency slope was not influenced by beta-blockers and may therefore be a better measure of cardiopulmonary performance in this patient population. © 2017 John Wiley & Sons Ltd.

  4. Increased ventilatory variability and complexity in patients with hyperventilation disorder.

    PubMed

    Bokov, Plamen; Fiamma, Marie-Noëlle; Chevalier-Bidaud, Brigitte; Chenivesse, Cécile; Straus, Christian; Similowski, Thomas; Delclaux, Christophe

    2016-05-15

    It has been hypothesized that hyperventilation disorders could be characterized by an abnormal ventilatory control leading to enhanced variability of resting ventilation. The variability of tidal volume (VT) often depicts a nonnormal distribution that can be described by the negative slope characterizing augmented breaths formed by the relationship between the probability density distribution of VT and VT on a log-log scale. The objectives of this study were to describe the variability of resting ventilation [coefficient of variation (CV) of VT and slope], the stability in respiratory control (loop, controller and plant gains characterizing ventilatory-chemoresponsiveness interactions) and the chaotic-like dynamics (embedding dimension, Kappa values characterizing complexity) of resting ventilation in patients with a well-defined dysfunctional breathing pattern characterized by air hunger and constantly decreased PaCO2 during a cardiopulmonary exercise test. Compared with 14 healthy subjects with similar anthropometrics, 23 patients with hyperventilation were characterized by increased variability of resting tidal ventilation (CV of VT median [interquartile]: 26% [19-35] vs. 36% [28-48], P = 0.020; slope: -6.63 [-7.65; -5.36] vs. -3.88 [-5.91; -2.66], P = 0.004) that was not related to increased chemical drive (loop gain: 0.051 [0.039-0.221] vs. 0.044 [0.012-0.087], P = 0.149) but that was related to an increased ventilatory complexity (Kappa values, P < 0.05). Plant gain was decreased in patients and correlated with complexity (with Kappa 5 - degree 5: Rho = -0.48, P = 0.006). In conclusion, well-defined patients suffering from hyperventilation disorder are characterized by increased variability of their resting ventilation due to increased ventilatory complexity with stable ventilatory-chemoresponsiveness interactions. Copyright © 2016 the American Physiological Society.

  5. Reducing the Indication for Ventilatory Support in the Severely Burned Patient: Results of a New Protocol Approach at a Regional Burn Center.

    PubMed

    Gille, Jochen; Bauer, Nicole; Malcharek, Michael J; Dragu, Adrian; Sablotzki, Armin; Taha, Hischam; Czeslick, Elke

    2016-01-01

    Initial management of the severely injured routinely includes sedation and mechanical ventilatory support. However, nonjudiciously applied mechanical ventilatory support can itself lead to poorer patient outcomes. In an attempt to reduce this iatrogenic risk, a standardized, in-house, five-point protocol providing clinical guidance on the use and duration of ventilation was introduced and analyzed, and the impact on patient outcomes was assessed. In 2007, a protocol for early spontaneous breathing was introduced and established in clinical practice. This protocol included: 1) early extubation (≤6 hours after admission) in the absence of absolute ventilatory indication; 2) avoidance of "routine intubation" in spontaneously breathing patients; 3) early postoperative extubation, including patients requiring multiple surgical interventions; 4) intensive chest and respiratory physiotherapy with routine application of expectorants; and 5) early active mobilization. A retrospective clinical study compared patients (group A) over a 2-year period admitted under the new protocol with a historical patient group (group B). Patients in group A (n = 38) had fewer ventilator days over the time-course of treatment (3 [1; 5.8] vs 18.5 days [0.5; 20.5]; P = .0001) with a lower rate of tracheostomies (15.8 vs 54%; P = .0003). Patients on ventilation at admission in group A had shorter ventilation periods after admission (4.75 [4; 22.25] vs 378 hours [8.5; 681.5]; P = .0003), and 66.7% of these patients were extubated within 6 hours of admission (vs 9.1% in group B). No patients fulfilling the inclusion criteria required re- or emergency intubation. In the first 5 days of treatment, significantly lower Sequential Organ Failure Assessment scores were recorded in group A. There was also a trend for lower mortality rates (0 [0%] vs 6 [14%]), sepsis rates (24 [63.2%] vs 37 [88.1%]), and cumulative fluid balance on days 3 and 7 in group A. In contrast, group A demonstrated an elevated rate of pneumonia (15 [39.5%] vs 8 [19%]). These trends, however, lacked statistical significance. Our five-point protocol was safe and easily translated into clinical practice. In the authors experience, this protocol significantly reduced the ventilatory period in severely injured. Furthermore, this study suggests that many injured may be over-treated with routine ventilation, which carries accompanying risks.

  6. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey.

    PubMed

    Emmanuelle, Barron; Virginie, Migeot; Fabienne, Séby; Isabelle, Ingrand; Martine, Potin-Gautier; Bernard, Legube; Sylvie, Rabouan

    2012-04-01

    Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration. We measured the individual selenium level of people exposed to selenium concentration in drinking water greater than the maximum recommended limit which is 10 μg/L. We carried out a prospective cohort study on 80 adults (40 exposed subjects i.e. living in the involved area and 40 non-exposed ones i.e. living elsewhere) in western France. We used three different approaches: (1) direct measurement of ingested selenium by the duplicate portion method, (2) dietary reconstitution with a food frequency questionnaire (FFQ) and (3) evaluation of the individual selenium status by measuring the selenium content in toenail clippings. Analyses were performed by inductively coupled plasma-mass spectrometry. The association between toenail selenium concentration and area of residence was analyzed using linear regression with repeated measurements. We estimated selenium intake from FFQ at 64±14 μg/day for exposed subjects as opposed to 52±14 μg/day for the non-exposed ones. On the basis of 305 duplicate diet samples, average intake was estimated at 64±26 μg/day for exposed subjects. Area of residence (p=0.0030) and smoking (p=0.0054) were independently associated with toenail selenium concentration. Whatever method used for estimating selenium intake, the selenium level in this studied area with high selenium concentrated drinking water is much lower than in seleniferous areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Recycling of high purity selenium from CIGS solar cell waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition tomore » the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.« less

  8. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  9. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thavarajah, D.; Vandenberg, A.; George, G.N.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentilsmore » is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.« less

  10. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation.

    PubMed

    Radenkovic, Filip; Holland, Olivia; Vanderlelie, Jessica J; Perkins, Anthony V

    2017-12-15

    Auranofin is a thiol-reactive gold (I)-containing compound with potential asa chemotherapeutic. Auranofin has the capacity to selectively inhibit endogenous antioxidant enzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx), resulting in oxidative stress and the initiation of a pro-apoptotic cascade. The effect of Auranofin exposure on TrxR and GPx, and the potential for cellular protection through selenium supplementation was examined in the non-cancerous human cell line Swan-71. Auranofin exposure resulted in a concentration dependent differential inhibition of selenoprotein antioxidants. Significant inhibition of TrxR was observed at 20nM Auranofin with inhibition of GPx from 10µM. Significant increases in reactive oxygen species (ROS) were associated with antioxidant inhibition at Auranofin concentrations of 100nM (TrxR inhibition) and 10µM (TrxR and GPx inhibition), respectively. Evaluation of mitochondrial respiration demonstrated significant reductions in routine and maximal respiration at both 100nM and 10μM Auranofin. Auranofin treatment at concentrations of 10μM and higher concentrations resulted in a ∼68% decrease in cellular viability and was associated with elevations in pro-apoptotic markers cytochrome c flux control factor (FCFc) at concentration of 100nM and mitochondrial Bax at 10μM. The supplementation of selenium (100nM) prior to treatment had a generalized protective affect through the restoration of antioxidant activity with a significant increase in TrxR and GPx activity, a significant reduction in ROS and associated improvement in mitochondrial respiration and cellular viability (10µM ∼48% increase). Selenium supplementation reduced the FCFc at low doses of Auranofin (<10μM) however no effect was noted on either FCFc or Bax at concentrations above 10μM. The inhibition of antioxidant systems in non-cancerous cells by Auranofin is strongly dose dependent, and this inhibition can be altered by selenium exposure. Therefore, Auranofin dose and the selenium status of patients are important considerations in the therapeutic use of Auranofin as an agent of chemosensitization. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenized yeast to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; LeCaptain, L.J.

    1996-01-01

    The toxicity of four chemical forms of selenium (seleno-L-methionine, seleno-DL-methionine, selenized yeast, and high selenium wheat) was compared in day-old mallard ducklings (Anas platyrhynchos). In the first experiment, in which the basal diet was 75% wheat, survival after 2 weeks was lower for ducklings fed 30 ?g/g selenium as seleno-L-methionine (36%) than for ducklings fed 30 ?g/g selenium as seleno-DL-methionine (100%) or 30 ?g/g selenium from high selenium yeast (88%). In a second experiment, in which the basal diet was a commercial duck feed, survival after 2 weeks was 100% in ducklings fed 30 ?g/g selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. The greater toxicity of the L form of selenomethionine was probably related to the palatability or nutritional nature of the wheat-based diet used in experiment 1, but the exact reason for the difference between the DL and L forms is unknown. Biologically incorporated selenium, derived from high selenium wheat was no more toxic than selenium derived from the two purified forms of selenomethionine, and the selenium in selenized yeast was not as toxic as that in the two forms of selenomethionine.

  12. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants

    PubMed Central

    Van Hoewyk, Doug

    2013-01-01

    Background Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. Scope This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. Conclusions Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium. PMID:23904445

  13. Health risk assessment of environmental selenium: Emerging evidence and challenges

    PubMed Central

    Vinceti, Marco; Filippini, Tommaso; Cilloni, Silvia; Bargellini, Annalisa; Vergoni, Anna Valeria; Tsatsakis, Aristides; Ferrante, Margherita

    2017-01-01

    New data have been accumulated in the scientific literature in recent years which allow a more adequate risk assessment of selenium with reference to human health. This new evidence comes from environmental studies, carried out in populations characterized by abnormally high or low selenium intakes, and from high-quality and large randomized controlled trials with selenium recently carried out in the US and in other countries. These trials have consistently shown no beneficial effect on cancer and cardiovascular risk, and have yielded indications of unexpected toxic effects of selenium exposure. Overall, these studies indicate that the minimal amount of environmental selenium which is source of risk to human health is much lower than anticipated on the basis of older studies, since toxic effects were shown at levels of intake as low as around 260 µg/day for organic selenium and around 16 µg/day for inorganic selenium. Conversely, populations with average selenium intake of less than 13–19 µg/day appear to be at risk of a severe cardiomyopathy, Keshan disease. Overall, there is the need to reconsider the selenium standards for dietary intake, drinking water, outdoor and indoor air levels, taking into account the recently discovered adverse health effects of low-dose selenium overexposure, and carefully assessing the significance of selenium-induced proteomic changes. PMID:28339083

  14. Health risk assessment of environmental selenium: Emerging evidence and challenges (Review).

    PubMed

    Vinceti, Marco; Filippini, Tommaso; Cilloni, Silvia; Bargellini, Annalisa; Vergoni, Anna Valeria; Tsatsakis, Aristides; Ferrante, Margherita

    2017-05-01

    New data have been accumulated in the scientific literature in recent years which allow a more adequate risk assessment of selenium with reference to human health. This new evidence comes from environmental studies, carried out in populations characterized by abnormally high or low selenium intakes, and from high-quality and large randomized controlled trials with selenium recently carried out in the US and in other countries. These trials have consistently shown no beneficial effect on cancer and cardiovascular risk, and have yielded indications of unexpected toxic effects of selenium exposure. Overall, these studies indicate that the minimal amount of environmental selenium which is source of risk to human health is much lower than anticipated on the basis of older studies, since toxic effects were shown at levels of intake as low as around 260 µg/day for organic selenium and around 16 µg/day for inorganic selenium. Conversely, populations with average selenium intake of less than 13-19 µg/day appear to be at risk of a severe cardiomyopathy, Keshan disease. Overall, there is the need to reconsider the selenium standards for dietary intake, drinking water, outdoor and indoor air levels, taking into account the recently discovered adverse health effects of low-dose selenium overexposure, and carefully assessing the significance of selenium-induced proteomic changes.

  15. Gender considerations in ventilatory and metabolic development in rats: special emphasis on the critical period

    PubMed Central

    LIU, QIULI; WONG-RILEY, MARGARET T.T

    2013-01-01

    In rats, a critical period exists around postnatal day (P) 12-13, when an imbalance between heightened inhibition and suppressed excitation led to a weakened ventilatory and metabolic response to acute hypoxia. An open question was whether the two genders follow the same or different developmental trends throughout the first 3 postnatal weeks and whether the critical period exists in one or both genders. The present large-scale, in-depth ventilatory and metabolic study was undertaken to address this question. Our data indicated that: 1) the ventilatory and metabolic rates in both normoxia and acute hypoxia were comparable between the two genders from P0 to P21; thus, gender was never significant as a main effect; and 2) the age effect was highly significant in all parameters studies for both genders, and both genders exhibited a significantly weakened response to acute hypoxia during the critical period. Thus, the two genders have comparable developmental trends, and the critical period exists in both genders in rats. PMID:23797186

  16. Alteration by hyperoxia of ventilatory dynamics during sinusoidal work.

    PubMed

    Casaburi, R; Stremel, R W; Whipp, B J; Beaver, W L; Wasserman, K

    1980-06-01

    The effects of hyperoxia on ventilatory and gas exchange dynamics were studied utilizing sinusoidal work rate forcings. Five subjects exercised on 14 occasions on a cycle ergometer for 30 min with a sinusoidally varying work load. Tests were performed at seven frequencies of work load during air or 100% O2 inspiration. From the breath-by-breath responses to these tests, dynamic characteristics were analyzed by extracting the mean level, amplitude of oscillation, and phase lag for each six variables with digital computer techniques. Calculation of the time constant (tau) of the ventilatory responses demonstrated that ventilatory kinetics were slower during hyperoxia than during normoxia (P less than 0.025; avg 1.56 and 1.13 min, respectively). Further, for identical work rate fluctuations, end-tidal CO2 tension fluctuations were increased by hyperpoxia. Ventilation during hyperoxia is slower to respond to variations in the level of metabolically produced CO2, presumably because hyperoxia attenuates carotid body output; the arterial CO2 tension is consequently less tightly regulated.

  17. Acute effects of jaw clenching using a customized mouthguard on anaerobic ability and ventilatory flows.

    PubMed

    Morales, Jose; Buscà, Bernat; Solana-Tramunt, Mònica; Miró, Adrià

    2015-12-01

    The latest findings on the ergogenic effects of a dentistry-design, bite-aligning mouthpiece require additional research to assess its impact on anaerobic ability and ventilatory parameters. This paper was aimed at determining the ergogenic acute effects of wearing a custom-made mouthpiece on oral airflow dynamics, 30-s Wingate Anaerobic Test performance parameters. Twenty-eight healthy and physically-active male subjects (age: 24.50 ± 3.32, height: 181.34 ± 7.4, weight: 78.14 ± 8.21), were voluntarily studied. The subjects were first briefed on the test protocols, and then performed the 30s Wingate test and Spirometer test. The experimental trials were performed in a random counterbalanced order. We evaluate maximum expiratory volume (VEmax L min(-1)), mean power (W kg(-1)), peak power (W kg(-1)), time to peak (s), rate to fatigue (Ws(-1)) and lactate production (mMol L(-1)), rate of perceived exertion (RPE). There were significant differences between mouthguard and no-mouthguard conditions in mean power (W kg(-1)), peak power (W kg(-1)), time to peak (s), and rate to fatigue (Ws(-1)) for the 30-s Wingate Anaerobic Test. Significantly lower lactate production (mMol L(-1)) was observed, in mouthguard condition but no significant differences were found in RPE. In airflow dynamics, the VEmax L min(-1) was significantly higher when comparing the mouthguard and the no mouthguard conditions in both forced and unforced conditions. In conclusion, wearing a customized mouthguard improves anaerobic ability and increases forced expiratory volume. This study will help practitioners improve athlete's performance in anaerobic activities where high intensity action might provoke jaw-clenching, contributing in reductions of lactate and fatigue, and improving ventilatory parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999.

    PubMed

    May, T W; Walther, M J; Petty, J D; Fairchild, J F; Lucero, J; Delvaux, M; Manring, J; Armbruster, M; Hartman, D

    2001-11-01

    The Republican River Basin of Colorado, Nebraska, and Kansas lies in a valley which contains Pierre Shale as part of its geological substrata. Selenium is an indigenous constituent in the shale and is readily leached into surrounding groundwater. The Basin is heavily irrigated through the pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water, sediment, benthic invertebrates, and/or fish were collected from 46 sites in the Basin and were analyzed for selenium to determine the potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects of selenium in biota. Resulting selenium concentrations were compared to published guidelines or biological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 microg L(-1), which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3-5 microg L(-1), constituting a moderate hazard. Selenium concentrations in sediment indicated little to no hazard for selenium accumulation from sediments into the benthic food chain. Ninety-five percent of benthic invertebrates collected exhibited selenium concentrations exceeding 3 microg g(-1), a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 microg g(-1) selenium, indicating a high potential for toxicity and reproductive effects. However, examination of weight profiles of various species of collected individual fish suggested successful recruitment in spite of selenium concentrations that exceeded published biological effects thresholds for health and reproductive success. This finding suggested that universal application of published guidelines for selenium may be inappropriate or at least may need refinement for systems similar to the Republican River Basin. Additional research is needed to determine the true impact of selenium on fish and wildlife resources in the Basin.

  19. Can high-intensity exercise be more pleasant?: attentional dissociation using music and video.

    PubMed

    Jones, Leighton; Karageorghis, Costas I; Ekkekakis, Panteleimon

    2014-10-01

    Theories suggest that external stimuli (e.g., auditory and visual) may be rendered ineffective in modulating attention when exercise intensity is high. We examined the effects of music and parkland video footage on psychological measures during and after stationary cycling at two intensities: 10% of maximal capacity below ventilatory threshold and 5% above. Participants (N = 34) were exposed to four conditions at each intensity: music only, video only, music and video, and control. Analyses revealed main effects of condition and exercise intensity for affective valence and perceived activation (p < .001), state attention (p < .05), and exercise enjoyment (p < .001). The music-only and music-and-video conditions led to the highest valence and enjoyment scores during and after exercise regardless of intensity. Findings indicate that attentional manipulations can exert a salient influence on affect and enjoyment even at intensities slightly above ventilatory threshold.

  20. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optical imaging of the ventral medullary surface of developing kittens during ventilatory challenges.

    PubMed

    Gozal, D; Dong, X W; Rector, D M; Harper, R K; Harper, R M

    1996-01-01

    We used large-array optical recording procedures to examine maturation of regional neural activity within the ventral medullary surface (VMS) of anaesthetized kittens during graded hypercapnic and hypoxic challenges. The VMS was exposed through a ventral surgical approach in 10, 20, 30, and 45-day-old kittens and in adult cats under sodium pentobarbital anaesthesia. Arterial pressure, costal diaphragmatic EMG, and ECG were continuously monitored. A coherent image conduit with 12 mu fibre resolution was attached to a charge-coupled-device camera and positioned over the VMS. Reflected 660 nm light was digitized continuously at 2-s intervals during a baseline period, hyperoxic hypercapnia, (3, 5, and 10% CO2 in O2), and poikylocapnic hypoxia (6%, 9%, and 12% O2 in N2), and recovery. Sixty to seventy-five images within each epoch were averaged, and subtracted from baseline. Regional differences within the image were determined by ANOVA procedures (alpha = 0.05). During hypercapnia, an overall decrease in neural activity (increase in scattered light) occurred, which was marginally age-dependent. By 30 days, regional bidirectional reflectance changes in response to CO2 emerged in a small proportion of animals, and were similar to adult responses. Hypoxia induced a dose- and age-dependent decrease in overall scattered light. Transient "on" and "off" responses were common under both ventilatory stimuli. In 20-30-day kittens, marked rebound responses in reflectance accompanied cessation of hypoxic stimuli; such patterns were absent at other ages. At 30 days, a caudal-rostral bidirectionality in response to mild hypoxia (12% O2) began to emerge in a subset of animals. We conclude that dose-dependent response to ventilatory stimuli occur in the VMS at all post-natal ages of the kitten; however, in hypoxia, the magnitude of the overall reflectance changes is diminished relative to adult patterns. Rebound responses to hypoxia are present at particular ages, and older kittens begin to show a topographical organization of neural activation.

  2. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mitochondrial Protein Profile in Mice with Low or Excessive Selenium Diets

    PubMed Central

    Hu, Lianmei; Wang, Congcong; Zhang, Qin; Yan, Hao; Li, Ying; Pan, Jiaqiang; Tang, Zhaoxin

    2016-01-01

    Dietary selenium putatively prevents oxidative damage, whereas excessive selenium may lead to animal disorder. In this study, we investigated the effects of low and excessive levels of dietary selenium on oxidative stress and mitochondrial proteins in mouse liver. Six to eight week old mice were fed a diet with low, excessive, or moderate (control) levels of selenium (sodium selenite). The selenium concentration and oxidative stress-related parameters in hepatic mitochondria were evaluated. Two-dimensional electrophoresis and mass spectrometry were applied to identify the differentially-expressed proteins associated with dietary selenium. The selenium content of the livers in mice with the low selenium diet was significantly lower than that of the control, while that of mice fed excessive levels was significantly higher. In both groups oxidative stress in hepatic mitochondria was found; accompanied by lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) levels and higher malondialdehyde (MDA) content, compared with the control group. Furthermore, ten proteins in the hepatic mitochondria of the selenium-low or -excessive groups with more than two-fold differences in abundance compared with the control group were identified. The differentially-expressed proteins in hepatic mitochondria may be associated with dietary (low or excessive) selenium-induced oxidative stress. PMID:27428959

  4. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  5. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinouski, M.; Kehr, S.; Finney, L.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less

  6. [Studies of bioavailability of different food sources of selenium in experiment].

    PubMed

    Egorova, E A; Gmoshinskiĭ, I V; Zorin, S I; Mazo, V K

    2006-01-01

    The selenium bioavailability in selenium enriched Spirulina (Arthrospira platensis), phycocyanin containing (Se-PC) protein isolate, separated from this micro algae and in sodium selenite was studied and compared in rats. The daily dose of selenium per one animal was 5 microgram in all experimental groups. The average selenium levels in blood serum and liver of animals that received sodium selenite during 14 days were the highest. The average selenium level in blood serum of animals fed with selenium enriched Spirulina platensis after 14 days of receiving was the same with the control group, but the average concentration of selenium in their liver was rather high and close to this parameter of sodium selenite animal group. The animals which were fed with Se-PC showed better results. Their average selenium level in blood serum was higher than in Spirulina group, but lower than in sodium selenite group. The average concentration of selenium in the liver of these animals was the same with sodium selenite animal group. As regards to animals that were fed with selenium enriched Spirulina, Se-PC and sodium selenite for 21 days, the average selenium levels ratio in their blood serum and liver was higher than in control group, but these results were not significantly different among each other. The concentrations of selenium in seminal glands in all groups of animals including control group both after 14 and 21 days feeding were close to each other.

  7. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2013-01-15

    A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study.

    PubMed

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-04-01

    Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Overall, mean (± SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P < 0.001). Compared with the highest baseline selenium tertile, low and middle tertiles were positively associated with a change in maternal plasma or breast-milk selenium from 2 or 6 to 24 wk postpartum (both P < 0.001). With the use of linear regression, we showed that LNS that contained selenium and ARV were not associated with changes in maternal plasma and breast-milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P < 0.001) regardless of the study arm. Selenite supplementation of HIV-infected Malawian women was not associated with a change in their plasma or breast-milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women.

  9. Biogenesis of Selenium Nanoparticles Using Green Chemistry.

    PubMed

    Shoeibi, Sara; Mozdziak, Paul; Golkar-Narenji, Afsaneh

    2017-11-09

    Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se 2- ) to SeNPs without charge (Se 0 ). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

  10. The in vitro antifungal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum and their efficacy as a shampoo in the treatment of experimental pityrosporosis in guinea pigs.

    PubMed

    Van Cutsem, J; Van Gerven, F; Fransen, J; Schrooten, P; Janssen, P A

    1990-06-01

    The fungistatic and fungicidal activity of ketoconazole, zinc pyrithione, and selenium sulfide against Pityrosporum, a yeast thought to play a pathogenic role in seborrheic dermatitis and dandruff, was assessed in Dixon broth for Pityrosporum ovale and Sabouraud broth for Pityrosporum pachydermatis. Ketoconazole inhibited growth at concentrations ranging from 0.001 to 1 micrograms/ml. For zinc pyrithione and selenium sulfide higher concentrations were needed. In a guinea pig model the efficacy of treatment with four shampoos (Nizoral [Jansen], EDS Zinc [Schering], Zinkan [Lederle], and Selsun [Abbott]) was compared. The animals were inoculated for 7 consecutive days on intact skin. The lesions were scored for erythema, folliculitis, and hyperkeratosis 24 hours after the last inoculation and after treatment. Final evaluations were made 13 days after infection (10 days after last shampoo application). Treatment with undiluted and diluted (1:10) shampoos showed consistently superior clinical and mycologic results for Nizoral shampoo. None of the shampoos produced side effects.

  11. Electrode materials for rechargeable batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  12. Adaptation of exercise ventilation during an actively-induced hyperthermia following passive heat acclimation.

    PubMed

    Beaudin, Andrew E; Clegg, Miriam E; Walsh, Michael L; White, Matthew D

    2009-09-01

    Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (VE) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that VE would adapt similar to human eccrine sweating (E(SW)) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50 degrees C and 20% relative humidity (RH) (n = 8, Acclimation group) or 24 degrees C and 32% RH (n = 4, Control group). Attainment of HA was confirmed by a significant decrease (P = 0.025) of the esophageal temperature (T(es)) threshold for the onset of E(SW) and a significantly elevated E(SW) (P < or = 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting T(es) (P = 0.006) and a significant increase in plasma volume (P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased T(es) thresholds (P < or = 0.005) for the onset of increases in the ventilatory equivalents for O(2) (VE/VO(2)) and CO(2) (VE/VCO(2)) and a significantly increased VE (P < or = 0.017) at all levels of T(es). Elevated VE was a function of a significantly greater tidal volume (P = 0.003) at lower T(es) and of breathing frequency (P < or = 0.005) at higher T(es). Following HA, the ventilatory threshold was uninfluenced and the relationships between VO(2) and either VE/VO(2) or VE/VCO(2) did not explain the resulting hyperventilation. In conclusion, the results support that exercise VE following passive HA responds similarly to E(SW), and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between VO(2) with each of VE/VO(2) and VE/VCO(2).

  13. Changes in respiratory control after three hours of isocapnic hypoxia in humans

    PubMed Central

    Mahamed, Safraaz; Cunningham, David A; Duffin, James

    2003-01-01

    Despite the obvious role of hypoxia in eliciting respiratory acclimatisation in humans, the function of the peripheral chemoreflex is uncertain. We investigated this uncertainty using 3 h of isocapnic hypoxia as a stimulus (end-tidal PCO2, 0.5–1.0 mmHg above eucapnia; end-tidal PO2, 50 mmHg), hypothesising that this stimulus would induce an enhancement of the peripheral chemoreflex ventilatory response to hypoxia. Current evidence conflicts as to whether this enhancement is mediated by an increase in the sensitivity or a decrease in the threshold of the peripheral chemoreflex ventilatory response to carbon dioxide. Employing a modified rebreathing technique to assess chemoreflex function, we found evidence of the latter in nine healthy volunteers (six male, three female). Testing consisted of pairs of isoxic rebreathing tests at high and low levels of oxygen, performed before, immediately after and 1 h after a 3 h isocapnic hypoxic exposure. No parameters changed significantly in the high-oxygen rebreathing tests. In the low-oxygen rebreathing tests there were no changes in non-chemoreflex ventilatory drives, or in the sensitivity to carbon dioxide, but the carbon dioxide response threshold decreased (≈1.5 mmHg) immediately after exposure, and the decrease persisted for 1 h (one-way repeated-measures ANOVA; P < 0.05). We repeated the protocol in five of the original nine volunteers, but this time exposing them to isocapnic normoxia. No trends or significant changes were observed in any of the rebreathing test parameters. These findings demonstrate that in the earliest stages of acclimatisation, there is a decrease in the threshold of the peripheral chemoreflex response to carbon dioxide, which persists for at least 1 h after the return to normoxia. We suggest that ventilatory acclimatisation to hypoxia results from this decreased threshold, reflecting an increase in the activity of the peripheral chemoreflex. PMID:12562969

  14. Real-Time Cameraless Measurement System Based on Bioelectrical Ventilatory Signals to Evaluate Fear and Anxiety.

    PubMed

    Soh, Zu; Matsuno, Motoki; Yoshida, Masayuki; Tsuji, Toshio

    2018-04-01

    Fear and anxiety in fish are generally evaluated by video-based behavioral analysis. However, it is difficult to distinguish the psychological state of fish exclusively through video analysis, particularly whether the fish are freezing, which represents typical fear behavior, or merely resting. We propose a system that can measure bioelectrical signals called ventilatory signals and simultaneously analyze swimming behavior in real time. Experimental results comparing the behavioral analysis of the proposed system and the camera system showed a low error level with an average absolute position error of 9.75 ± 3.12 mm (about one-third of the body length) and a correlation between swimming speeds of r = 0.93 ± 0.07 (p < 0.01). We also exposed the fish to zebrafish skin extracts containing alarm substances that induce fear and anxiety responses to evaluate their emotional changes. The results confirmed that this solution significantly changed all behavioral and ventilatory signal indices obtained by the proposed system (p < 0.01). By combining the behavioral and ventilatory signal indices, we could detect fear and anxiety with a discrimination rate of 83.3% ± 16.7%. Furthermore, we found that the decreasing fear and anxiety over time could be detected according to the peak frequency of the ventilatory signals, which cannot be measured through video analysis.

  15. Impact of backpack load on ventilatory function among 9-12 year old Saudi girls.

    PubMed

    Al-Katheri, Abeer E

    2013-12-01

    To explore the backpack load as a percentile of body weight (BW) and its impact on ventilatory function including tidal volume (Vt), vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FEV1/FVC, peak expiratory flow (PEF), and maximum voluntary ventilation (MVV) among 9-12 year old Saudi girls. This is a prospective, experimental study of 91 Saudi girls aged between 9-12 years from primary schools in Riyadh, Saudi Arabia. The study took place in King Saud University, Riyadh, Saudi Arabia between April 2012 and May 2012. Ventilatory function was measured under 2 conditions: a free standing position without carrying a backpack, and while carrying a backpack. The backpack load observed was 13.8% of the BW, which is greater than the recommended limit (10% BW). All values of ventilatory function were significantly reduced after carrying the backpack (p<0.001) with the exception of FEV1/FVC (p>0.178). The reduction was observed even with the lowest backpack load (7.4% BW). A significant reduction was reported for most of the ventilatory function parameters while carrying the backpack. This reduction was apparent even with the least backpack load (7.4% BW) carried by the participants. This study recommends that the upper safe limit of backpack load carried by Saudi girls aged 9-12 years should be less than 7.4% of BW.

  16. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.

  17. Benefits of Manometer in Non-Invasive Ventilatory Support.

    PubMed

    Lacerda, Rodrigo Silva; de Lima, Fernando Cesar Anastácio; Bastos, Leonardo Pereira; Fardin Vinco, Anderson; Schneider, Felipe Britto Azevedo; Luduvico Coelho, Yves; Fernandes, Heitor Gomes Costa; Bacalhau, João Marcus Ramos; Bermudes, Igor Matheus Simonelli; da Silva, Claudinei Ferreira; da Silva, Luiza Paterlini; Pezato, Rogério

    2017-12-01

    Introduction Effective ventilation during cardiopulmonary resuscitation (CPR) is essential to reduce morbidity and mortality rates in cardiac arrest. Hyperventilation during CPR reduces the efficiency of compressions and coronary perfusion. Problem How could ventilation in CPR be optimized? The objective of this study was to evaluate non-invasive ventilator support using different devices. The study compares the regularity and intensity of non-invasive ventilation during simulated, conventional CPR and ventilatory support using three distinct ventilation devices: a standard manual resuscitator, with and without airway pressure manometer, and an automatic transport ventilator. Student's t-test was used to evaluate statistical differences between groups. P values <.05 were regarded as significant. Peak inspiratory pressure during ventilatory support and CPR was significantly increased in the group with manual resuscitator without manometer when compared with the manual resuscitator with manometer support (MS) group or automatic ventilator (AV) group. The study recommends for ventilatory support the use of a manual resuscitator equipped with MS or AVs, due to the risk of reduction in coronary perfusion pressure and iatrogenic thoracic injury during hyperventilation found using manual resuscitator without manometer. Lacerda RS , de Lima FCA , Bastos LP , Vinco AF , Schneider FBA , Coelho YL , Fernandes HGC , Bacalhau JMR , Bermudes IMS , da Silva CF , da Silva LP , Pezato R . Benefits of manometer in non-invasive ventilatory support. Prehosp Disaster Med. 2017;32(6):615-620.

  18. Effect of forms of selenium on the accumulation of selenium, sulfur, and forms of nitrogen and phosphorus in forage cowpea (Vigna sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Singh, N.

    1979-05-01

    The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less

  19. Experimental substantiation of the possibility of developing selenium- and iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis.

    PubMed

    Mosulishvili, L M; Kirkesali, E I; Belokobylsky, A I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-08-22

    The great potential of using blue-green algae Spirulina platensis as a matrix for the production of selenium- and iodine-containing pharmaceuticals is shown experimentally. The background levels of 31 major, minor and trace elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (using (n,p) reaction), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg, Th) in S. platensis biomass were determined by means of epithermal neutron activation analysis. The dependence of selenium and iodine accumulation in spirulina biomass on a nutrient medium loading of the above elements was characterized. To demonstrate the possibilities of determining toxic element intake by spirulina biomass, mercury was selected. The technological parameters for production of iodinated treatment-and-prophylactic pills are developed.

  20. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study.

    PubMed

    Galan-Chilet, Inmaculada; Tellez-Plaza, Maria; Guallar, Eliseo; De Marco, Griselda; Lopez-Izquierdo, Raul; Gonzalez-Manzano, Isabel; Carmen Tormos, M; Martin-Nuñez, Gracia M; Rojo-Martinez, Gemma; Saez, Guillermo T; Martín-Escudero, Juan C; Redon, Josep; Javier Chaves, F

    2014-09-01

    The role of selenium exposure in preventing chronic disease is controversial, especially in selenium-repleted populations. At high concentrations, selenium exposure may increase oxidative stress. Studies evaluating the interaction of genetic variation in genes involved in oxidative stress pathways and selenium are scarce. We evaluated the cross-sectional association of plasma selenium concentrations with oxidative stress levels, measured as oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8-oxo-7,8-dihydroguanine (8-oxo-dG) in urine, and the interacting role of genetic variation in oxidative stress candidate genes, in a representative sample of 1445 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.76 µg/L. In fully adjusted models the geometric mean ratios for oxidative stress biomarker levels comparing the highest to the lowest quintiles of plasma selenium levels were 0.61 (0.50-0.76) for GSSG/GSH, 0.89 (0.79-1.00) for MDA, and 1.06 (0.96-1.18) for 8-oxo-dG. We observed nonlinear dose-responses of selenium exposure and oxidative stress biomarkers, with plasma selenium concentrations above ~110 μg/L being positively associated with 8-oxo-dG, but inversely associated with GSSG/GSH and MDA. In addition, we identified potential risk genotypes associated with increased levels of oxidative stress markers with high selenium levels. Our findings support that high selenium levels increase oxidative stress in some biological processes. More studies are needed to disentangle the complexity of selenium biology and the relevance of potential gene-selenium interactions in relation to health outcomes in human populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se 4+ ∙L -1 ) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis ,irrespective of the concentration. The highest amount of selenium (1841 μg∙g d.w. -1 ) was obtained after a 48-h culture in media containing 30 mg Se 4+ ∙L -1 . The highest content of selenomethionine (238.8 μg∙g d.w. -1 ) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se 4+ ∙L -1 . Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L -1 . The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  2. Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα

    PubMed Central

    Zhong, Nianxin; Ward, Jerrold M.; Perella, Christine M.; Hoffmann, Victoria J.; Rogers, Keith; Combs, Gerald F.; Schweizer, Ulrich; Merlino, Glenn; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2013-01-01

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors. PMID:23460847

  3. Impaired reproduction of mallards fed an organic form of selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1989-01-01

    We fed mallards (Anas platyrhynchos) diets supplemented with 0-, 1-, 2-, 4-, 8-, or 16-ppm selenium in the form of selenomethionine. We fed another group of mallards a diet containing 16-ppm selenium as selenocystine. Females fed the control diet produced a mean of 8.1 ducklings that survived to 6 days of age, which was significantly greater than the 4.6 young produced by females fed 8-ppm selenium as selenomethionine and the zero surviving young of females fed 16-ppm selenium as selenomethionine. Selenocystine did not impair reproduction. Diets containing 8- and 16-ppm selenium as selenomethionine caused malformations in 6.8 and 67.9%, respectively, of unhatched eggs compared with 0.6% for controls. The most common malformations were of eyes, bill, legs, and feet. Selenium did not affect the onset or frequency of egg laying, egg size, shell thickness, fertility of eggs, or sex ratio of ducklings. Reduced survival and growth occurred in ducklings hatched from groups whose parents had received 8- or 16-ppm selenium as selenomethionine, even though all ducklings were fed a control diet. Concentrations of selenium in eggs and liver of adults could be predicted from dietary concentrations. We conclude that the dietary threshold of selenium as selenomethionine necessary to impair reproduction is between 4 and 8 ppm. It is difficult to identify 1 level of selenium in eggs that will be diagnostic of reproductive impairment in the field because different chemical forms of selenium appear to have different toxicities in eggs. However, when eggs from a wild population contain .gtoreq. 1-ppm selenium on a wet-weight basis, reproductive impairment may be possible and should be evaluated in that population. At 5-ppm selenium in eggs, reproductive impairment is much more likely to occur.

  4. Impact of the Nationwide Intravenous Selenium Product Shortage on the Development of Selenium Deficiency in Infants Dependent on Long-Term Parenteral Nutrition.

    PubMed

    Chen, Connie H; Harris, Mary Beth; Partipilo, M Luisa; Welch, Kathleen B; Teitelbaum, Daniel H; Blackmer, Allison B

    2016-08-01

    For patients dependent on parenteral nutrition (PN), selenium must be supplemented intravenously. A nationwide intravenous selenium shortage began in April 2011. The impact of this shortage on PN-dependent infants was evaluated by examining the provision of selenium, development of biochemical deficiency, and costs associated with the shortage. This single-center, retrospective study included PN-dependent infants aged ≤1 year who weighed ≤30 kg, received PN for ≥1 month, and had ≥1 serum selenium measurement. The primary outcome was the incidence of biochemical selenium deficiency. Secondary outcomes included severity of biochemical deficiency, clinical manifestations, costs, and relationship between serum selenium levels and selenium dose. The average selenium dose decreased 2-fold during the shortage (2.1 ± 1.2 µg/kg/d; range, 0.2-4.6 µg/kg/d) versus the nonshortage period (3.8 ± 1 µg/kg/d; range, 2.4-6 µg/kg/d; P < .001). A linear relationship between serum selenium concentration and selenium dose was observed (r(2) = 0.42), with a dose of 6 µg/kg/d expected to result in normal serum levels in most cases. Similar proportions of patients developed biochemical deficiency in both groups: shortage period, 59.1%; nonshortage, 66.7%; P = .13. The severity of biochemical deficiency was similar between groups. A significant increase in incremental cost during the shortage was observed. This is the first study examining the impact of the intravenous selenium shortage on PN-dependent infants. Both groups exhibited similarly high incidences of biochemical selenium deficiency, suggesting higher empiric doses may benefit this population. However, ongoing shortages limit the ability to provide supplementation. © 2015 American Society for Parenteral and Enteral Nutrition.

  5. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  7. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  8. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms.

    PubMed

    Dolgova, N V; Hackett, M J; MacDonald, T C; Nehzati, S; James, A K; Krone, P H; George, G N; Pickering, I J

    2016-03-01

    Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported. A possible contributing factor may be that different chemical forms of selenium were used in different studies. Using larval stage zebrafish (Danio rerio) as a model organism, we report a comparison of the toxicities and tissue selenium distributions of four different chemical forms of selenium. We find that the organic forms of selenium tested (Se-methyl-l-selenocysteine and l-selenomethionine) show considerably more toxicity than inorganic forms (selenite and selenate), and that this appears to be correlated with the level of bioaccumulation. Despite differences in concentrations, the tissue specific pattern of selenium accumulation was similar for the chemical forms tested; selenium was found to be highly concentrated in pigment (melanin) containing tissues especially for the organic selenium treatments, with lower concentrations in eye lens, yolk sac and heart. These results suggest that pigmented tissues might serve as a storage reservoir for selenium.

  9. Selenium in diet

    MedlinePlus

    ... Meats produced from animals that ate grains or plants found in selenium-rich soil have higher levels of selenium. Brewer's yeast, wheat germ, and enriched breads are also good sources of selenium.

  10. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica.

    PubMed

    Modrzejewska-Sikorska, Anna; Konował, Emilia; Klapiszewski, Łukasz; Nowaczyk, Grzegorz; Jurga, Stefan; Jesionowski, Teofil; Milczarek, Grzegorz

    2017-10-01

    We report a novel room-temperature synthesis of selenium nanoparticles, which for the first time uses lignosulfonate as a stabilizer. Various lignosulfonates obtained both from hardwood and softwood were tested. Selenium oxide was used as the precursor of zero-valent selenium. Three different reducers were tested - sodium borohydride, hydrazine and ascorbic acid - and the latter proved most effective in terms of the particle size and stability of the final colloid. The lignosulfonate-stabilized selenium nanoparticles had a negative zeta potential, dependent on pH, which for some lignosulfonates reached -50mV, indicating the excellent stability of the colloid. When spherical silica particles were introduced to the synthesis mixture, selenium nanoparticles were deposited on their surface. Additionally, star-like structures consisting of sharp selenium needles with silica cores were observed. After drying, the selenium-functionalized silica had a grey metallic hue. The method reported here is simple and cost-effective, and can be used for the preparation of large quantities of selenium colloids or the surface modification of other materials with selenium. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Re-exposure of mallards to selenium after chronic exposure

    USGS Publications Warehouse

    Heinz, G.H.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed a control diet or a diet containing 15 ppm selenium as seleno-D,L-methionine for 21 weeks. After this initial exposure, the mallards were fed untreated food for 12 weeks, then were re-exposed to selenium at 100 ppm for five weeks. During re-exposure to 100 ppm selenium, the birds that had previously been exposed to 15 ppm selenium and those that had not previously been exposed did not differ in percentage of mortality (14.7 and 14.3%), weight loss in survivors (39.3 and 41.20%), selenium concentrations in the livers of survivors (35 and 53 ppm, wet weight), or selenium concentrations in the livers of birds that died (35 and 40 ppm, respectively). When the data from the birds that had previously been exposed to 15 ppm selenium were combined with the data from the birds that had not previously been exposed, selenium concentrations in the livers of birds that had died on the 100-ppm selenium treatment (38 ppm) did not differ from the concentrations in the livers of birds that had survived (43 ppm).

  12. [The selenium haemostasis during experimental anaphylaxis reaction in rats treated with reduced glutathione and selenium enriched spirulina].

    PubMed

    Golubkina, N A; Mazo, V K; Gmoshinskiĭ, I V; Zorin, S N; Tambiev, A Kh; Kirikova, N N

    2000-01-01

    The main events caused by anaphilaxis in selenium haemostasis in rats include significant increase of selenium excretion with urine (6.36 +/- 1.18 nM Se/18 h., n = 10, compared with 1.72 +/- 0.38 nM Se/18 h., n = 10) and decrease of selenium plasma/selenium erythrocytes ratio from 0.939 to 0.791. Reduced glutathione (G-SH) administration led to 1.5-fold decrease of plasma selenium level and 1.3-fold increase of selenium concentration in intestinal walls of sensitized rats (r = -0.720, P < 0.001). Chromatographic separation of plasma proteins showed that intragastric intubation of G-SH to sensibilized rats significantly decreased the protein P content and did not influence the concentration of Se-GSHPx, thus indicating the local selenium acceptor role of G-SH. G-SH administration did not influence the intestinal permeability in sensitised rats while use of complex additive: G-SH and selenium enriched spirulina--normalized the latter parameter and the ratio of protein P/Se-GSHPx in plasma.

  13. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  14. GPX1 Pro198Leu polymorphism and GSTM1 deletion do not affect selenium and mercury status in mildly exposed Amazonian women in an urban population.

    PubMed

    Rocha, Ariana V; Rita Cardoso, Bárbara; Zavarize, Bruna; Almondes, Kaluce; Bordon, Isabella; Hare, Dominic J; Teixeira Favaro, Déborah Inês; Franciscato Cozzolino, Silvia Maria

    2016-11-15

    Mercury is potent toxicant element, but its toxicity can be reduced by forming a complex with selenium for safe excretion. Considering the impact of mercury exposure in the Amazon region and the possible interaction between these two elements, we aimed to assess the effects of Pro198Leu polymorphism to GPX1 and GSTM1 deletion, on mercury levels in a population from Porto Velho, an urban locality in the Brazilian Amazon region. Two hundred women from the capital city of Rondônia state were recruited for this study with 149 deemed suitable to participate. We assessed dietary intake using 24-hour recall. Selenium levels in plasma and erythrocytes were measured using hydride generation quartz tube atomic absorption spectroscopy and total hair mercury using cold vapor atomic absorption spectrometry. Oxidative stress parameters (GPx activity, oxygen radical absorbency capacity [ORAC] and malondialdehyde [MDA]) were also analyzed. All participants were genotyped for Pro198Leu polymorphism and GSTM1 deletion. We observed that this population presented high prevalence of selenium deficiency, and also low levels of mercury, likely due to food habits that did not include selenium-rich food sources or significant consumption of fish (mercury biomagnifiers) regularly. Univariate statistical analysis showed that Pro198Leu and GSTM1 genotypes did not affect selenium and mercury levels in this population. Pro198Leu polymorphism and GSTM1 deletion had no effect on mercury levels in mildly exposed people, suggesting these genetic variants impact mercury levels only in highly exposed populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Variation in Sulfur and Selenium Accumulation Is Controlled by Naturally Occurring Isoforms of the Key Sulfur Assimilation Enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis Species Range1[W][OPEN

    PubMed Central

    Chao, Dai-Yin; Baraniecka, Patrycja; Danku, John; Koprivova, Anna; Lahner, Brett; Luo, Hongbing; Yakubova, Elena; Dilkes, Brian; Kopriva, Stanislav; Salt, David E.

    2014-01-01

    Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored. PMID:25245030

  16. Serum antioxidant levels and nutritional status in early and advanced stage lung cancer patients.

    PubMed

    Klarod, Kultida; Hongsprabhas, Pranithi; Khampitak, Tueanjit; Wirasorn, Kosin; Kiertiburanakul, Sasisopin; Tangrassameeprasert, Roongpet; Daduang, Jureerut; Yongvanit, Puangrat; Boonsiri, Patcharee

    2011-01-01

    Malnutrition frequently occurs in lung cancer patients. We aimed to determine nutritional status and antioxidant and mineral levels in Thai patients with lung cancer. A prospective study with matched case-control was conducted. Nutritional status was assessed by body mass index (BMI) and subjective global assessment (SGA). Eastern Cooperative Oncology Group (ECOG) performance status was used to assess the performance. The serum antioxidant and mineral levels were determined. Forty-nine patients with a mean age of 58.8 (range, 35-82) who were first diagnosed with lung cancer were enrolled. They were compared with 60 healthy controls, and levels of retinol, α-tocopherol, β-carotene, lycopene, β-cryptoxanthin, selenium, and zinc were lower (P < 0.05). However, peroxidase activity was higher (P = 0.002) in patients. Selenium levels were higher in early stage compared to advanced stage patients (P = 0.041). Overweight patients had higher selenium levels (0.04 mg/L) than normal BMI patients (β = 0.04, P = 0.035). Patients with SGA class C had lower selenium levels (0.03 mg/L) than those with class A (β = -0.03, P = 0.035). The poorer ECOG performance patients had significantly lower β-carotene (β = -0.192, P = 0.003) and selenium (β = -0.031, P = 0.011) levels compared with those with good ECOG performance status. Significantly lower levels of antioxidants and selenium were found in lung cancer patients compared to healthy controls. Levels of some antioxidants and minerals differed among categories of BMI, SGA categories, or ECOG performance status. These findings may be helpful for further studies, such as the effect of nutritional supplementation on clinical outcomes. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The investigation of the possible protective influence of selenium on antioxidant barrier in heart of rats exposed to lithium.

    PubMed

    Musik, Irena; Kocot, Joanna; Lewandowska, Anna; Żelazowska, Renata; Kiełczykowska, Małgorzata

    2015-07-01

    Selenium is an essential element possessing antioxidant properties and the treatment with it has displayed protective effects against toxicity of different substances occurring in the environment and food as well as against the side effects of some drugs. Lithium is used in medicine although numerous side effects can occur during therapy, including disturbances of the heart. For these reasons studies to find protective adjuvants have been performed. In the current study the possibility of selenium (as sodium selenite) application as a protective adjuvant in lithium treatment was studied. Male Wistar rats were treated: control - with saline; Li-group - with Li2CO3 (2.7 mg Li/kg b.w.); Se-group - with Na2SeO3 (0.5 mg Se/kg b.w.); Li+Se-group simultaneously with Li2CO3 and Na2SeO3 (2.7 mg Li/kg b.w. and 0.5 mg Se/kg b.w., respectively) by a stomach tube for a period of three weeks, once a day. In heart homogenate activities of antioxidant enzymes - catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of low-molecular-weight antioxidants - ascorbic acid (AA) and reduced glutathione (GSH) as well as total antioxidant status (TAS) values were determined. GPx/SOD and CAT/SOD ratios were evaluated. In comparison with control selenium caused no significant changes of the studied parameters except for GPx, whereas lithium slightly disturbed TAS and markedly GPx, CAT and CAT/SOD ratio. In Li-treated rats co-administration of selenium displayed tendency towards restoring the impaired parameters. The results suggest that research on selenium application as an adjuvant in lithium therapy is worthy to be continued. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells.

    PubMed

    Du, Peng; Saidu, Nathaniel Edward Bennett; Intemann, Johanna; Jacob, Claus; Montenarh, Mathias

    2014-06-01

    Chalcogen-based redox modulators over the years have attracted considerable attention as anti-cancer agents. New selenium- and tellurium-containing compounds with a polar head group and aryl-groups of various lengths have recently been reported as biologically active in several organisms. In the present study, we used the most active of the tellurium compound DP41, and its selenium counterpart DP31 to investigate their effects on the human cancer cell line HCT116. Cells were treated with DP41 or DP31 and the formation of superoxide radicals was determined using dihydroethidium. Cell cycle analysis and apoptosis was determined by cytofluorimetry. Proteins involved in ER signaling and apoptosis were determined by Western blot analysis and fluorescence microscopy. With 50μM of DP41, we observed an increase in O2(-) formation. There was, however, no such increase in O2(-) after treatment with the corresponding selenium compound under the same conditions. In the case of DP41, the production of O2(-) radicals was followed by an up-regulation of Nrf2, HO-1, phospho-eIF2α and ATF4. CHOP was also induced and cells entered apoptosis. Unlike the cancer cells, normal retinal epithelial ARPE-19 cells did not produce elevated levels of O2(-) radicals nor did they induce the ER signaling pathway or apoptosis. The tellurium-containing compound DP41, in contrast to the corresponding selenium compound, induces O2(-) radical formation and oxidative and ER stress responses, including CHOP activation and finally apoptosis. These results indicate that DP41 is a redox modulating agent with promising anti-cancer potentials. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Reproduction of mallards following overwinter exposure to selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Forty pairs of mallards (Anas platyrhynchos) were fed 15 ppm selenium as selenomethionine for about 21 weeks during winter. Twenty pairs served as controls. At the end of 21 weeks, which coincided with the onset of the reproductive season, selenium treatment was ended. Four birds died while on selenium treatment. Treated females lost weight, and their egg-laying was delayed. Hatching success of some of the first eggs laid by selenium-treated females was lower than that of controls, and a few of these early eggs contained deformed embryos, but, after a period of about two weeks off the selenium-treated diet, reproductive success returned to a level comparable with that of controls. The return to normal reproductive success was the result of a corresponding decrease in selenium concentrations in eggs once selenium treatment ended.

  20. Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus).

    PubMed

    Takahashi, Leonardo Susumu; Biller-Takahashi, Jaqueline Dalbello; Mansano, Cleber Fernando Menegasso; Urbinati, Elisabeth Criscuolo; Gimbo, Rodrigo Yukihiro; Saita, Marcos Vinícius

    2017-01-01

    Selenium (Se) is an essential nutrient for antioxidant defenses in fish because of its role in preventing immunosuppression caused by oxidative stress. In this study it was demonstrated the relation between the oxidative stress and immune status after a long Se supplementation period, as a result of the evaluation of immunological, hematological and antioxidant responses, as well as growth performance of pacu fed diets supplemented with different concentrations of organic selenium (0, 0.3, 0.6, 0.9, and 1.8 mg Se-yeast/kg, but the final analyzed selenium concentrations were 0.72, 0.94, 1.15, 1.57 and 2.51 mg/kg, respectively) for 65 days. Dietary Se supplementation at 1.15 mg Se-yeast/kg (analyzed value) restored the production of antioxidant enzymes (glutathione peroxidase (GPx) and glutathione S-transferase (GST)), and consequently allowed the increased of some immunological parameters (leukocyte respiratory burst activity and lysozyme activity), hematological parameters (red blood cell count (RBC), hematocrit (HTC), mean corpuscular volume (MCV), and white blood cell count (WBC)). Se supplementation in pacu diets at 1.15 mg Se-yeast/kg for 65 days improved immune response and antioxidant defenses, suggesting that oxidative stress impairs immune system response to prevent excessive reactive oxygen species in cells and indicating the occurrence of a physiological trade-off between immune and antioxidant systems. Higher Se levels, such as 1.57 mg Se-yeast/kg increased the leukocyte respiratory burst activity, the WBC and thrombocyte counts, the RBC and HTC, and the GST and GPx enzymes. However, 2.51 mg Se-yeast/kg decreased the lysozyme levels, the WBC and thrombocyte counts, the RBC, HTC and MCV, and the GST and GPx enzymes. Those findings are important to future studies because showed the negative effect of oxidative stress on immunity, and may help to prevent any inhibition of the expected immune response after immunomodulators administration and vaccination. Also it was possible to meet the dietary selenium requirement of pacu, that was estimated to be 1.56 mg/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999

    USGS Publications Warehouse

    May, T.W.; Walther, M.J.; Petty, J.D.; Fairchild, J.F.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.; Hartman, D.

    2001-01-01

    The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 μg L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 μg L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 μg g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 μg g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin.

  2. Ventilatory Responsiveness of Goats with Ablated Carotid Bodies,

    DTIC Science & Technology

    1982-06-03

    R.A.Gabel, D.E. Leith, and V. Fencl 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS US Army... vestigial ventilatory response to cyanide. These findings persisted throughout 10 the 5 months of our observation, in contrast with the observations of

  3. [Appreciation of selenium concentration in blood and tissues of male rat as a result of diet ingredients changes and its supplementation with chosen group B vitamins].

    PubMed

    Friedrich, Mariola; Goluch-Koniuszy, Zuzanna; Dolot, Anna; Pilarczyk, Bogumiła

    2011-01-01

    The influence of diet ingredients and its supplementation with chosen B group vitamins on concentration of selenium in blood serum and tissues and activity of glutathione peroxidase in blood and liver of male rats was examined in the conducted experiment. The animals, aged 5 months, were divided into three groups and fed ad libitum with granulated mixes. Group I with basic mix containing among other things full grains, Group II with modified mix in which full grains were exchanged for wheat flour and in part with saccharose and Group III with modified mix supplemented in excess with vitamins B1, B2, B6 and PP. The experiment was conducted for six weeks during which the amount of consumed feeding stuff was calculated currently and once a week body mass of the animals was checked. When the experiment was finished the activity of GSH-Px was determined by spectrophotometric method in blood and liver whereas concentration of selenium in blood serum, muscles and in liver by fluorometric method. It was ascertained that the change of diet ingredients and its supplementation with chosen group B vitamins was in favour of lowering the amount of selenium in the examined tissues, and the decrease was not only the result of lower amount of the consumed element, but also of its increased usage, forced by the changes taking place under the influence of diet components and its supplementation.

  4. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    PubMed Central

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  5. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.

    PubMed

    Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J

    2016-10-01

    Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016. © 2015 Wiley Periodicals, Inc.

  6. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    USDA-ARS?s Scientific Manuscript database

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  7. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  8. Life-Threatening Opioid Toxicity

    DTIC Science & Technology

    1987-01-01

    mu recep- Fentanyl (Sublimaze) tor has been determined to mediate analgesia Propoxyphene (Darvon) and ventilatory depre.;sion. Furthermore, it Pure...following opioid overdose . The reduction in ventilation is accompanied by Opioids produce their major effect on the a decreased chemosensitivity to...opiates a o d F Diphenoxylate (active ingredient in Lomotil)a mperidline overdose . Fuithermore, ven- rpxhe (avnmepedinePropoxyphene Darvon) titatory

  9. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210.

    PubMed

    Cui, Yin-Hua; Li, Ling-Li; Zhou, Nan-Qing; Liu, Jing-Hua; Huang, Qing; Wang, Hui-Juan; Tian, Jie; Yu, Han-Qing

    2016-12-01

    Nano-selenium has a great potential to be used in chemical, biological, medical and environmental fields. Biological methods for nano-selenium synthesis have attracted wide interests, because they can be operated at ambient temperature and pressure without complicated equipments. In this work, a protozoa, Tetrahymena thermophila (T. thermophila) SB210, was used to in vivo synthesize nano-selenium. The biosynthesized nano-selenium was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The synthesized amorphous spherical selenium nanoparticles had diameters of 50-500nm with the coexistence of irregular nano-selenium. The expressions of glutathione (GSH) synthesis related gene glutathione synthase, cysteine-rich protein metallothionein related gene metallothionein-1 and [2Fe-2S] cluster-binding protein related gene were up-regulated in the nano-selenium producing group. Also, the subsequent GSH detection and in vitro synthesis experimental results suggest the three proteins were likely to be involved in the nano-selenium synthesis process. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  11. Selenium in fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Bache, C.A.; Youngs, W.D.

    1976-03-05

    Selenium, at concentrations exceeding 200 parts per million (ppM) (dry weight), has been found in white sweet clover voluntarily growing on beds of fly ash in central New York State. Guinea pigs fed such clover concentrated selenium in their tissues. The contents of the honey stomachs of bees foraging on this seleniferous clover contained negligible selenium. Mature vegetables cultured on 10 percent (by weight) fly ash-amended soil absorbed up to 1 ppM of selenium. Fly ashes from 21 states contained total selenium contents ranging from 1.2 to 16.5 ppM. Cabbage grown on soil containing 10 percent (by weight) of thesemore » fly ashes absorbed selenium (up to 3.7 ppM) in direct proportion (correlation coefficient r = .89) to the selenium concentration in the respective fly ash. Water, aquatic weeds, algae, dragonfly nymphs, polliwogs, and tissues of bullheads and muskrats from a fly ash-contaminated pond contained concentrations of selenium markedly elevated over those of controls.« less

  12. Tissue distribution of selenium and effect of season and age on selenium content in roe deer from northwestern Poland.

    PubMed

    Pilarczyk, Bogumiła; Tomza-Marciniak, Agnieszka; Pilarczyk, Renata; Hendzel, Diana; Błaszczyk, Barbara; Bąkowska, Małgorzata

    2011-06-01

    The aim of the study was to compare selenium concentrations in different organs of roe deer from northwestern Poland. Samples of liver, kidneys, heart and lungs, collected from 74 roe deer shot during the hunting seasons of 2008-2009 in northwestern Poland, were studied. Selenium concentration in the organs was determined spectrofluorimetrically. Mean selenium concentration was 0.06 µg/g w.w. in the liver, 0.41 µg/g w.w. in the kidneys and 0.05 µg/g w.w. in the heart and lungs. Season had a significant effect on selenium concentration in the liver, kidneys, lungs and heart. In all the organs, the highest selenium concentration was found in spring and the lowest in autumn and winter. All animals studied were deficient in selenium. The low selenium concentration in the liver or heart can disturb their function, and in the future, it may be a factor contributing to the population decline of roe deer in the northwestern part of Poland.

  13. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study123

    PubMed Central

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-01-01

    Background: Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. Objective: We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. Design: HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Results: Overall, mean (±SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P < 0.001). Compared with the highest baseline selenium tertile, low and middle tertiles were positively associated with a change in maternal plasma or breast-milk selenium from 2 or 6 to 24 wk postpartum (both P < 0.001). With the use of linear regression, we showed that LNS that contained selenium and ARV were not associated with changes in maternal plasma and breast-milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P < 0.001) regardless of the study arm. Conclusions: Selenite supplementation of HIV-infected Malawian women was not associated with a change in their plasma or breast-milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women. This trial was registered at clinicaltrials.gov as NCT00164736. PMID:24500152

  14. Selenium Supranutrition: Are the Potential Benefits of Chemoprevention Outweighed by the Promotion of Diabetes and Insulin Resistance?

    PubMed Central

    Rocourt, Caroline R. B.; Cheng, Wen-Hsing

    2013-01-01

    Selenium was considered a toxin until 1957, when this mineral was shown to be essential in the prevention of necrotic liver damage in rats. The hypothesis of selenium chemoprevention is principally formulated by the observations that cancer incidence is inversely associated with selenium status. However, recent clinical and epidemiological studies demonstrate a role for some selenoproteins in exacerbating or promoting other disease states, specifically type 2 diabetes, although other data support a role of selenium in stimulating insulin sensitivity. Therefore, it is clear that our understanding in the role of selenium in glucose metabolism and chemoprevention is inadequate and incomplete. Research exploring the role of selenium in individual healthcare is of upmost importance and possibly will help explain how selenium is a double-edged sword in the pathologies of chronic diseases. PMID:23603996

  15. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P).

    PubMed

    Ekoue, Dede N; Zaichick, Sofia; Valyi-Nagy, Klara; Picklo, Matthew; Lacher, Craig; Hoskins, Kent; Warso, Michael A; Bonini, Marcelo G; Diamond, Alan M

    2017-01-01

    Selenium supplementation of the diets of rodents has consistently been shown to suppress mammary carcinogenesis and some, albeit not all, human epidemiological studies have indicated an inverse association between selenium and breast cancer risk. In order to better understand the role selenium plays in breast cancer, 30 samples of tumor tissue were obtained from women with breast cancer and analyzed for selenium concentration, the levels of several selenium-containing proteins and the levels of the MnSOD anti-oxidant protein. Polymorphisms within the genes for these same proteins were determined from DNA isolated from the tissue samples. There was a wide range of selenium in these tissues, ranging from 24 to 854ng/gm. The selenium levels in the tissues were correlated to the genotype of the SELENOP selenium carrier protein, but not to other proteins whose levels have been reported to be responsive to selenium availability, including GPX1, SELENOF and SBP1. There was an association between a polymorphism in the gene for MnSOD and the levels of the encoded protein. These studies were the first to examine the relationship between selenium levels, genotypes and protein levels in human tissues. Furthermore, the obtained data provide evidence for the need to obtain data about the effects of selenium in breast cancer by examining samples from that particular tissue type. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. [Is plasma selenium correlated to transthyretin levels in critically ill patients?

    PubMed

    Freitas, Renata G B O N; Nogueira, Roberto Jose Negrão; Cozzolino, Silvia Maria Franciscato; Vasques, Ana Carolina Junqueira; Ferreira, Matthew Thomas; Hessel, Gabriel

    2017-06-05

    Selenium is an essential trace element, but critically ill patients using total parenteral nutrition (PN) do not receive selenium because this mineral is not commonly offered. Threfore, the eval uation of plasma selenium levels is very important for treating or preventing this deficiency. Recent studies have shown that transthyretin may reflect the selenium intake and could be considered a biomarker. However, this issue is still little explored in the literature. This study aims to investigate the correlation of transthyretin with the plasma selenium of critically ill patients receiving PN. This was a prospective cohort study with 44 patients using PN without selenium. Blood samples were carried out in 3 stages: initial, 7th and 14th day of PN. In order to evaluate the clinical condition and the inflammatory process, albumin, C-reactive protein (CRP), transthyretin, creatinine and HDL cholesterol levels were observed. To assess the selenium status, plasma selenium and glutathione peroxidase (GPx) in whole blood were measured. Descriptive analyses were performed and the ANOVA, Mann-Whitney and Spearman's coefficient tests were conducted; we assumed a significance level of 5%. A positive correlation of selenium with the GPx levels (r = 0.46; p = 0.03) was identified. During two weeks, there was a positive correlation of transthyretin with plasma selenium (r = 0.71; p = 0.05) regardless of the CRP values. Transthyretin may have reflected plasma selenium, mainly because the correlation was verified after the acute phase.

  17. Optimization of selenizing conditions for Seleno-Lentinan and its characteristics.

    PubMed

    Ren, Guangming; Li, Koukou; Hu, Yang; Yu, Min; Qu, Juanjuan; Xu, Xiuhong

    2015-11-01

    Lentinan was successfully modified with nitric acid-sodium selenite method based on L9(3(4)) orthogonal experiments. The optimum selenizing conditions were obtained according to selenium conversion rate as follows: Lentinan of 1.0g, pH of 4.5, temperature of 70°C and sodium selenite of 1.50g. The antioxidant activity assays in vitro (DPPH, reducing power, superoxide radicals and hydroxyl radicals) proved that Lentinan had stronger antioxidant activity after selenizing. The elevations of serum alanine aminotransferase and aspartate aminotransferase, as well as the abnormal hepatic architecture, verified that oral administration of Seleno-Lentinan (SL2-1) markedly alleviated oxidative damage in the liver of mice induced by D-gal. In addition, SL2-1 significantly increased total antioxidant capacity, activities and protein expressions of catalase and glutathione peroxidase and lowered malondialdehyde levels in serum and liver. Fourier transform infrared spectroscopy analysis indicated that selenium of SL2-1 was mostly existed as the formations of OSeO, SeO and SeOC. Scanning electron microscope coupled with energy dispersive X-ray spectroscopy analysis revealed that the surface structure and elemental components of Lentinan significantly changed after selenizing. The results are instructive for the development of organic selenium-supplement resource. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus).

    PubMed

    Low, K W; Sin, Y M

    1998-06-18

    The immunotoxicological effects of mercuric chloride and sodium selenite on blue gourami were studied. Some immune responses ranging from non-specific to specific were investigated. These include tissue lysozyme activity, kidney lymphocyte proliferation and plasma agglutinating antibody titre against bacteria. After 2 weeks of chronic exposure, 0.09 mg/l of Hg2+ alone induced a significant increase of kidney lysozyme activity of 4196.3 +/- 1171.0 U/g, but it decreased to 1577.4 +/- 902.4 U/g when exposed simultaneously to equiconcentration of selenium. Plasma lysozyme activity was also increased by co-administration of Hg2+ and SeO3(2-). The level of plasma agglutinating antibody against Aeromonas hydrophila L37 was lowered in the chemical-treated fish. This indicates that the fish immunity was impaired by action of mercury and selenium. However, the in vitro lymphocyte proliferation test shows that mercury concentration lower than 0.045 mg/l Hg2+ enhanced the mitotic rate of kidney lymphocytes by approximately 30%. A high concentration of mercury caused irreversible damaging effects on con A-induced lymphoblastogenesis. In contrast, the inhibitory effect of low concentrations of mercury could be removed by washing. On the other hand, selenium showed a suppressive effect on the lymphocyte proliferation even at 0.5 mg/l.

  19. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    PubMed

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  20. Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment.

    PubMed

    Zhang, Liang; Li, Daping; Gao, Ping

    2012-12-01

    Nano-selenium/protein is a kind of lower toxic supplement to human. Many microorganisms can reduce selenite/selenate to intracellular or extracellular selenium nanoparticles. This study examined the influence of dissolved oxygen on the expulsion of extracellular selenium/protein produced in Saccharomyces cerevisiae. More of the added selenite was reduced to extracellular selenium nanoparticles by yeast cells only under oxygen-limited condition than under aerobic or anaerobic condition. For the first time, we evidenced that selenium/protein nanoparticles synthesized in vivo were transported out of the cells by vesicle-like structures under microaerophilic environment. The characterizations of the extracellular spherical selenium/protein nanoparticles were also examined by SEM, TEM, EDX and FTIR.

  1. Selenium Recycling in the United States in 2004

    USGS Publications Warehouse

    George, Micheal W.; Wagner, Lorie A.

    2009-01-01

    The vast majority of selenium consumption in the United States is in dissipative uses, such as alloys, animal feeds, fertilizers, glass decolorizer, and pigments. The nondissipative use as a photoreceptor for xerographic copiers is declining. As a result of a lack of a substantial supply of selenium-containing scrap, there are no longer selenium recycling facilities in the United States. Selenium-containing materials collected for recycling, primarily selenium-containing photocopier drums, are exported for processing in other countries. Of the estimated 350 metric tons (t) of selenium products that went to the U.S. market in 2004, an estimated 300 t went to dissipative uses. An estimated 4 t was recovered from old scrap and exported for recycling.

  2. Selenium species in selenium fortified dietary supplements.

    PubMed

    Niedzielski, Przemyslaw; Rudnicka, Monika; Wachelka, Marcin; Kozak, Lidia; Rzany, Magda; Wozniak, Magdalena; Kaskow, Zaneta

    2016-01-01

    This article presents a study of dietary supplements available on the Polish market. The supplements comprised a large group of products with selenium content declared by the producer. The study involved determination of dissolution time under different conditions and solubility as well as content and speciation of selenium. The total content was determined as well as organic selenium and the inorganic forms Se(IV) and Se(VI). The organic selenium content was calculated as the difference between total Se and inorganic Se. The values obtained were compared with producers' declarations. The work is the first such study of selenium supplements available on the market of an EU Member State. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Guinea Pig as a Model to Study the Carotid Body Mediated Chronic Intermittent Hypoxia Effects.

    PubMed

    Docio, Inmaculada; Olea, Elena; Prieto-LLoret, Jesus; Gallego-Martin, Teresa; Obeso, Ana; Gomez-Niño, Angela; Rocher, Asuncion

    2018-01-01

    Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O 2 ) and hypercapnia (5% CO 2 ) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH promoted cardiovascular adjustments by increasing heart rate and mean arterial blood pressure without cardiac ventricle hypertrophy. In conclusion, CIH does not sensitize CB chemoreceptor response to hypoxia but promotes cardiovascular adjustments probably not mediated by the CB. Guinea pigs could represent an interesting model to elucidate the mechanisms that underlie the long-term effects of CIH exposure to provide evidence for the role of the CB mediating pathological effects in sleep apnea diseases.

  4. Defining the Optimal Selenium Dose for Prostate Cancer Risk Reduction: Insights from the U-Shaped Relationship Between Selenium Status, DNA Damage, and Apoptosis

    USDA-ARS?s Scientific Manuscript database

    Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to ...

  5. Is selenium supplementation in autoimmune thyroid diseases justified?

    PubMed

    Winther, Kristian H; Bonnema, Steen J; Hegedüs, Laszlo

    2017-10-01

    This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. Epidemiological data suggest an increased prevalence of autoimmune thyroid diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves' disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism, and might benefit patients with mild Graves' orbitopathy. The use of selenium supplementation as adjuvant therapy to standard thyroid medication may be widespread, but a growing body of evidence yields equivocal results. The available evidence from trials does not support routine selenium supplementation in the standard treatment of patients with autoimmune thyroiditis or Graves' disease. However, correction of moderate to severe selenium deficiency may offer benefits in preventing, as well as treating, these disorders. Molecular mechanisms have been proposed, but further studies are needed.

  6. Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer

    PubMed Central

    ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT

    2008-01-01

    Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127

  7. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  8. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  9. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  10. Reproductive status of western mosquitofish inhabiting selenium- contaminated waters in the Grassland Water District, Merced County, California

    USGS Publications Warehouse

    Saiki, M.K.; Martin, B.A.; May, T.W.

    2004-01-01

    This study was implemented to determine if western mosquitofish (Gambusia affinis) populations in the Grassland Water District suffer from impaired reproduction because of seleniferous inflows of agricultural drainwater from the Grassland Bypass Project. During June to July 2001, laboratory trials with pregnant female fish collected from two seleniferous treatment sites exposed to selenium-laden drainwater and two nonseleniferous reference sites yielded fry that averaged >96% survival at birth. In addition, none of the newborn fry exhibited evidence of teratogenesis, a typical consequence of selenium toxicity. Chemical analysis of postpartum female fish and their newborn fry indicated that mosquitofish from seleniferous sites accumulated relatively high body burdens of selenium (3.96 to 17.5 μg selenium/g in postpartum female fish and 5.35 to 29.2 μg selenium/g in their fry), whereas those from nonseleniferous sites contained lower body burdens (0.40 to 2.72 μg selenium/g in postpartum female fish and 0.61 to 4.68 μg selenium/g in their fry). Collectively, these results strongly suggest that mosquitofish inhabiting selenium-contaminated waters are not experiencing adverse reproductive effects at current levels of selenium exposure.

  11. [Selenium supplementation trials for cancer prevention and the subsequent risk of type 2 diabetes mellitus: selenium and vitamin E cancer prevention trial and after].

    PubMed

    Koyama, Hiroshi; Mutakin; Abdulah, Rizky; Yamazaki, Chiho; Kameo, Satomi

    2013-01-01

    The essential trace element selenium has long been considered to exhibit cancer-preventive, antidiabetic and insulin-mimetic properties. However, recent epidemiological studies have indicated that supranutritional selenium intake and high plasma selenium levels are not necessarily preventive against cancer, and are possible risk factors for developing type 2 diabetes mellitus. The results of the SELECT, Selenium and Vitamin E Cancer Prevention Trial, in which it is hypothesized that the supplementations with selenium and/or vitamin E decrease the prostate cancer incidence among healthy men in the U.S., showed that the supplementation did not prevent the development of prostate cancer and that the incidence of newly diagnosed type 2 diabetes mellitus increased among the selenium-supplemented participants. The Nutritional Prevention of Cancer (NPC) trial showed a decreased risk of prostate cancer among participants taking 200 μg of selenium daily for 7.7 years. However, the results of the NPC trial also showed an increased risk of type 2 diabetes mellitus in the participants with plasma selenium levels in the top tertile at the start of the study. Recently, the association of serum selenium with adipocytokines, such as TNF-α, VCAM-1, leptin, FABP-4, and MCP-1, has been observed. Selenoprotein P has been reported to associated with adiponectin, which suggests new roles of selenoprotein P in cellular energy metabolism, possibly leading to the increased risk of type 2 diabetes mellitus and also the development of cancer. Further studies are required to elucidate the relationship between selenium and adipocytokines and the role of selenoprotein P in the development of type 2 diabetes mellitus and cancer at high levels of selenium.

  12. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    PubMed Central

    Haug, Anna; Eich-Greatorex, Susanne; Bernhoft, Aksel; Wold, Jens P; Hetland, Harald; Christophersen, Olav A; Sogn, Trine

    2007-01-01

    Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form) per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle). The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5), DPA (22:5) and DHA (22:6), thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form) may increase the concentration of very long-chain omega-3 fatty acids in muscle. PMID:17967172

  13. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  14. Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California

    USGS Publications Warehouse

    Gilliom, R.J.

    1989-01-01

    Selenium in tile drain water from parts of the western San Joaquin Valley, California, has adversely affected fish and waterfowl where drain water was impounded. Soils in these drained areas were derived from Coast Range marine sedimentary formations, were naturally saline and probably contained abundant soluble selenium. Decades of irrigation have redistributed the most soluble forms of selenium from the soil into groundwater and have caused the water table to rise 1 to 4 ft/year. Selenium in shallow groundwater has been further concentrated because of evapotranspiration. The rising water table has caused a large area of farmland to require artificial drainage of groundwater that contains high concentrations of selenium. The present areal distribution of selenium in shallow groundwater reflects the natural distribution of saline soils. The depth distribution of selenium in groundwater reflects the history of irrigation. The highest concentrations of selenium in groundwater (50 to more than 1,000 micrograms/L) are in a zone of variable thickness located between 20 and 150 ft below the water table. The toxic water in this zone was recharged during the first few decades of irrigation. The large volume of high selenium groundwater makes it desirable to leave this water where it is, rather than bring it to the land surface or allow it to move into parts of the aquifer that may be used for water supply. Selenium concentrations in the San Joaquin River depend on the magnitude of the selenium load from drain water and dilution by water with low concentrations of selenium from all other sources of streamflow. The San Joaquin Valley is a regional-scale example of how manipulation of the hydrologic system can cause water quality problems if naturally occurring toxic substances are mobilized. (USGS)

  15. Vicia root-mirconucleus and sister chromatid exchange assays on the genotoxicity of selenium compounds.

    PubMed

    Yi, Huilan; Si, Liangyan

    2007-06-15

    Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0mg/L, induced a 1.9-3.9-fold increase in MN frequency and a 1.5-1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P<0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15-80% decrease in mitotic indices (MI), but at the lowest concentration (0.005mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.

  16. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata).

    PubMed

    Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J

    2015-12-01

    Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.

  17. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  18. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish.

    PubMed

    Kumar, Neeraj; Krishnani, Kishore Kumar; Singh, Narendra Pratap

    2018-03-01

    Recent studies have demonstrated that selenium (Se) and selenium nanoparticles (Se-NPs) exhibited toxicity at a higher concentration. The lethal concentration of Se and Se-NPs was estimated as 5.29 and 3.97 mg/L at 96 h in Pangasius hypophthalmus. However, the effect of different definite concentration of Se (4.5, 5.0, 5.5, and 6.0 mg/L) and Se-NPs (2.5, 3.0, 3.5, and 4.0 mg/L) was decided for acute experiment. Selenium and Se-NPs alter the biochemical attributes such as anti-oxidative status [catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities], neurotransmitter enzyme, cellular metabolic enzymes, stress marker, and histopathology of P. hypophthalmus in a dose- and time-dependent manner. CAT, SOD, and GST were significantly elevated (p < 0.01) when exposed to Se and Se-NPs, and similarly, a neurotransmitter enzyme (acetylcholine esterase (AChE)) was significantly inhibited in a time- and dose-dependent manner. Further, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and malate hydrogenase were noticeably (p < 0.01) affected by Se and Se-NPs from higher concentration to lower concentration. Stress markers such as cortisol and HSP 70 were drastically enhanced by exposure to Se and Se-NPs. All the cellular metabolic and stress marker parameters were elevated which might be due to hyperaccumulation of Se and Se-NPs in the vital organ and target tissues. The histopathology of liver and gill was also altered such as large vacuole, cloudy swelling, focal necrosis, interstitial edema, necrosis in liver, and thickening of primary lamellae epithelium and curling of secondary lamellae due to Se and Se-NP exposure. The study suggested that essential trace element in both forms (inorganic and nano) at higher concentration in acute exposure of Se and Se-NPs led to pronounced deleterious alteration on histopathology and cellular and metabolic activities of P. hypophthalmus.

  19. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite.

    PubMed

    Sadeghian, Sirous; Kojouri, Gholam Ali; Mohebbi, Abdonnaser

    2012-06-01

    The present study was designed to compare the effects of nano red selenium and sodium selenite on the antioxidative activities of neutrophils and the hematological parameters in sheep. Fifteen sheep were randomly allocated into three groups. Groups 1 and 2 received selenium nanoparticles orally at 1 mg/kg and sodium selenite at 1 mg Se/kg for 10 consecutive days; group 3 served as the control. To assess the degrees of oxidative stress and of lipid peroxidation of the cellular membranes, the levels of thiobarbituric acid reactive substances (TBARS) were determined in serum samples that were collected at different supplementation intervals, i.e., after 0, 10, 20, and 30 days. In addition, hematological parameters in the serum samples were measured by routine procedures. It was found that TBARS levels in groups 1 and 2 were significantly higher on days 20 and 30 compared to the basal level on day 0. It was also found that on day 30, the TBARS activities in both treated groups were significantly higher than those of the controls (P < 0.05). These findings may explain the seemingly paradoxical effects of supplemental selenium on the indicators of oxidative stress, as the levels of TBARS were generally expected to decrease in the presence of selenium. There were no significant differences between the PCV and RBC values in the three groups. The white blood cell count (WBC) in group 1 showed a significant increase on days 20 and 30 in comparison with the control group. However, in group 2, there was a significant increase of the WBC value just on day 20 in comparison with the control group. Also, there were significant increases of the neutrophil counts and significant decreases of the lymphocyte counts on day 10 in group 1, in comparison with those in group 2 and controls, and on days 20 and 30 in groups 1 and 2 in comparison with those in the control group.

  20. A functional variant in NKX3.1 associated with prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    PubMed Central

    Martinez, Erin E.; Darke, Amy K.; Tangen, Catherine M.; Goodman, Phyllis J.; Fowke, Jay H.; Klein, Eric A.; Abdulkadir, Sarki A.

    2014-01-01

    NKX3.1 is an androgen-regulated prostate tumor suppressor protein. We previously found that antioxidant administration (N-acetylcysteine) in the Nkx3.1 knock-out mouse model promoted prostate epithelial proliferation, suggesting that NKX3.1 activity modifies the effect of antioxidant administration on prostate carcinogenesis. Interestingly, administration of the antioxidant vitamin E significantly increased prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT), suggesting our animal experiments may be relevant to humans. To determine whether NKX3.1 played a role in increased human prostate cancer risk associated with antioxidant administration in SELECT, we investigated the joint risk of antioxidant administration and NKX3.1 genotypes previously found to be associated with decreased NKX3.1 mRNA expression (rs11781886) or DNA-binding activity in vitro (rs2228013) in the SELECT biomarker case-cohort sub-study (1,866 cases; 3135 non-cases). Multivariable COX regression models were developed to determine the joint association of NKX3.1 genotypes with administration of vitamin E, selenium, or the combination, compared to placebo. The CC genotype at rs11781886 combined with selenium administration was associated with increased overall prostate cancer risk (HR 1.676, 95% CI 1.011-2.777, p=0.045) and low grade prostate cancer risk (HR 1.811, 95% CI 1.016-3.228, p=0.0441). Similarly, the rs11781886 minor allele (CC+CT) combined with vitamin E administration was significantly associated with increased prostate cancer risk (HR 1.450, 95% CI 1.117-1.882, p=0.0052). Our results indicate that variation in NKX3.1 expression combined with selenium or vitamin E treatment modifies the risk of prostate cancer. Genetic background may modulate the effects of antioxidant supplementation thought to act as chemoprevention agents. PMID:24894197

Top