Osadchii, Oleg E
2012-11-01
Flecainide is nonselective Na(+) channel blocker which may also inhibit I(Kr), the rapid component of the delayed rectifier. This study was designed to explore if proarrhythmic responses to flecainide noted in cardiac patients may be partly attributed to abnormal changes in repolarization and refractoriness. Monophasic action potential duration (APD) and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated perfused guinea-pig heart preparations. Flecainide was found to prolong ventricular repolarization, with effect being greater at the left ventricular compared with the right ventricular epicardium. This change translated to reversal of the normal right ventricular-to-left ventricular transepicardial APD difference determined before drug infusion. An inverse correlation between local epicardial APD and corresponding activation time values seen at baseline was eliminated in flecainide-treated hearts, indicating the activation-to-repolarization uncoupling. Over transmural plane, flecainide produced a greater ERP lengthening at endocardium than epicardium, thus markedly increasing ERP dispersion across ventricular wall. Spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 45% of heart preparations upon flecainide infusion. In conclusion, in nonischemic guinea-pig heart, flecainide-induced proarrhythmia may be partly attributed to abnormal spatial gradients in repolarization and refractoriness and impaired transepicardial activation-to-repolarization coupling.
Nayyar, Sachin; Hasan, Muhammad A; Roberts-Thomson, Kurt C; Sullivan, Thomas; Baumert, Mathias
2017-06-01
Heart rate variability (HRV) modulates dynamics of ventricular repolarization. A diminishing value of HRV is associated with increased vulnerability to life-threatening ventricular arrhythmias, however the causal relationship is not well-defined. We evaluated if fixed-rate atrial pacing that abolishes the effect of physiological HRV, will alter ventricular repolarization wavefronts and is relevant to ventricular arrhythmogenesis. The study was performed in 16 subjects: 8 heart failure patients with spontaneous ventricular tachycardia [HFVT], and 8 subjects with structurally normal hearts (H Norm ). The T-wave heterogeneity descriptors [total cosine angle between QRS and T-wave loop vectors (TCRT, negative value corresponds to large difference in the 2 loops), T-wave morphology dispersion, T-wave loop dispersion] and QT intervals were analyzed in a beat-to-beat manner on 3-min records of 12-lead surface ECG at baseline and during atrial pacing at 80 and 100 bpm. The global T-wave heterogeneity was expressed as mean values of each of the T-wave morphology descriptors and variability in QT intervals (QTV) as standard deviation of QT intervals. Baseline T-wave morphology dispersion and QTV were higher in HFVT compared to H Norm subjects (p ≤ 0.02). While group differences in T-wave morphology dispersion and T-wave loop dispersion remained unaltered with atrial pacing, TCRT tended to fall more in HFVT patients compared to H Norm subjects (interaction p value = 0.086). Atrial pacing failed to reduce QTV in both groups, however group differences were augmented (p < 0.0001). Atrial pacing and consequent loss of HRV appears to introduce unfavorable changes in ventricular repolarization in HFVT subjects. It widens the spatial relationship between wavefronts of ventricular depolarization and repolarization. This may partly explain the concerning relation between poorer HRV and the risk of ventricular arrhythmias.
Perspective: A Dynamics-Based Classification of Ventricular Arrhythmias
Weiss, James N.; Garfinkel, Alan; Karagueuzian, Hrayr S.; Nguyen, Thao P.; Olcese, Riccardo; Chen, Peng-Sheng; Qu, Zhilin
2015-01-01
Despite key advances in the clinical management of life-threatening ventricular arrhythmias, culminating with the development of implantable cardioverter-defibrillators and catheter ablation techniques, pharmacologic/biologic therapeutics have lagged behind. The fundamental issue is that biological targets are molecular factors. Diseases, however, represent emergent properties at the scale of the organism that result from dynamic interactions between multiple constantly changing molecular factors. For a pharmacologic/biologic therapy to be effective, it must target the dynamic processes that underlie the disease. Here we propose a classification of ventricular arrhythmias that is based on our current understanding of the dynamics occurring at the subcellular, cellular, tissue and organism scales, which cause arrhythmias by simultaneously generating arrhythmia triggers and exacerbating tissue vulnerability. The goal is to create a framework that systematically links these key dynamic factors together with fixed factors (structural and electrophysiological heterogeneity) synergistically promoting electrical dispersion and increased arrhythmia risk to molecular factors that can serve as biological targets. We classify ventricular arrhythmias into three primary dynamic categories related generally to unstable Ca cycling, reduced repolarization, and excess repolarization, respectively. The clinical syndromes, arrhythmia mechanisms, dynamic factors and what is known about their molecular counterparts are discussed. Based on this framework, we propose a computational-experimental strategy for exploring the links between molecular factors, fixed factors and dynamic factors that underlie life-threatening ventricular arrhythmias. The ultimate objective is to facilitate drug development by creating an in silico platform to evaluate and predict comprehensively how molecular interventions affect not only a single targeted arrhythmia, but all primary arrhythmia dynamics categories as well as normal cardiac excitation-contraction coupling. PMID:25769672
Coronary Artery Disease Alters Ventricular Repolarization Dynamics in Type 2 Diabetes
NASA Technical Reports Server (NTRS)
Vrtovec, Bojan; Sinkovec, Matjaz; Starc, Vito; Radovancevic, Branislav; Schlegel, Todd T.
2005-01-01
Ventricular repolarization dynamics (VRD) is an important predictor of outcome in diabetes. We examined the potential impact of coronary artery disease (CAD) on VRD in type 2 diabetic patients. We recorded 5-min high-resolution resting electrocardiograms (ECG) in 38 diabetic patients undergoing elective coronary angiography, and in 38 age- and gender- matched apparently healthy subjects (Controls). Using leads I and II, time-domain indices of VRD were calculated. Coronary angiography was regarded as positive if a 350% stenosis was found. Angiography was positive in 21 diabetic patients (55%). Patients with CAD had a significantly higher degree of VRD than Controls (SDNN(QT): 15.81+/-7.22 ms vs. 8.94+/-6.04 ms; P <0.001, rMSSD(QT): 21.02k7.07 ms vs. 11.18k7.45 ms; P <0.001). VRD in diabetic patients with negative angiograms did not differ from VRD in Controls (SDNN(QT): 8.94+/-6.04 ms vs. 7.44+/-5.72 ms; P=0.67, rMSSD(QT): 11.18+/-7.45 ms vs. 10.22+/-5.35 ms; P=O. 82). CAD increases VRD in patients with type 2 diabetes. Therefore, changes in ventricular repolarization in diabetic patients may be due to silent CAD rather than to diabetes per se.
Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B
1986-11-01
We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.
Floré, Vincent; Willems, Rik
2012-12-01
In this review, we focus on temporal variability of cardiac repolarization. This phenomenon has been related to a higher risk for ventricular arrhythmia and is therefore interesting as a marker of sudden cardiac death risk. We review two non-invasive clinical techniques quantifying repolarization variability: T-wave alternans (TWA) and beat-to-beat variability of repolarization (BVR). We discuss their pathophysiological link with ventricular arrhythmia and the current clinical relevance of these techniques.
Sugiyama, Atsushi; Takahara, Akira; Yatomi, Yutaka; Satoh, Yoshioki; Nakamura, Yuji; Hashimoto, Keitaro
2003-06-01
Given the limited information, physiological roles of Rho-kinase in the cardiac conduction system and ventricular repolarization process were assessed in comparison with those in the coronary vascular tone. A specific Rho-kinase inhibitor Y-27632 was administered to the nutrient coronary artery of the canine isolated, blood-perfused atrioventricular node preparation under the monitoring of the ventricular monophasic action potentials. Administration of Y-27632 moderately suppressed the atrioventricular nodal conduction, slightly but significantly accelerated the repolarization process, and potently increased the coronary blood flow, whereas it hardly affected the intraventricular conduction. The estimated concentrations of Y-27632 causing the currently observed effects were enough to inhibit Rho-kinase. These results suggest that constitutional Rho-kinase functions to moderately facilitate the atrioventricular nodal conduction, slightly delay ventricular repolarization process, and significantly increase the coronary vascular tone.
Takahashi, Naohiko; Shinohara, Tetsuji; Hara, Masahide; Saikawa, Tetsunori
2012-01-01
We encountered a 39-year-old man with documented ventricular fibrillation (VF). His ECGs showed intermittent Wolff-Parkinson-White (WPW) syndrome pattern. During electrophysiological study, no ventricular preexcitation was observed. An accessory pathway located at the posterior mitral annulus was identified, and successfully eliminated by radiofrequency catheter ablation. VF was not induced. His ECGs in the absence of delta waves demonstrated early repolarization in the inferior leads. This case raises the possibility that patients with manifest WPW syndrome may have an arrhythmogenic substrate associated with early repolarization, and the characteristic J waves can be masked by the presence of ventricular preexcitation.
Couderc, Jean-Philippe
2009-01-01
Ventricular repolarization (VR) is a crucial step in cardiac electrical activity because it corresponds to a recovery period setting the stage for the next heart contraction. Small perturbations of the VR process can predispose an individual to lethal arrhythmias. In this review, I aim to provide an overview of the methods developed to analyse static and dynamic aspects of the VR process when recorded from a surface electrocardiogram (ECG). The first section describes the list of physiological and clinical factors that can affect the VR. Technical aspects important to consider when digitally processing ECGs are provided as well. Special attention is given to the analysis of the effect of heart rate on the VR and its regulation by the autonomic nervous system. The final section provides the rationale for extending the analysis of the VR from its duration to its morphology. Several modelling techniques and measurement methods will be presented and their role within the arena of cardiac safety will be discussed. PMID:19324709
NASA Astrophysics Data System (ADS)
Bondarenko, V. E.; Doedel, E. J.; Rasmusson, R. L.
2000-02-01
We applied bifurcation analysis to the Luo-Rudy model of the guinea pig cardiac ventricular cell to investigate the behavior of repolarization in response to a simulated form of inherited arrhythmia, long QT syndrome. In this paper, we simulate pathological changes in cardiac repolarization through reductions in IKr. Decreased expression of this current has been linked to an inherited form of long QT syndrome which results in a high mortality, presumably due to sudden cardiac death from ventricular fibrillation.
Ventricular repolarization variability for hypoglycemia detection.
Ling, Steve; Nguyen, H T
2011-01-01
Hypoglycemia is the most acute and common complication of Type 1 diabetes and is a limiting factor in a glycemic management of diabetes. In this paper, two main contributions are presented; firstly, ventricular repolarization variabilities are introduced for hypoglycemia detection, and secondly, a swarm-based support vector machine (SVM) algorithm with the inputs of the repolarization variabilities is developed to detect hypoglycemia. By using the algorithm and including several repolarization variabilities as inputs, the best hypoglycemia detection performance is found with sensitivity and specificity of 82.14% and 60.19%, respectively.
Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.
Osadchii, Oleg E
2016-01-01
Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.
Electrophysiological determinants of hypokalaemia-induced arrhythmogenicity in the guinea-pig heart.
Osadchii, O E; Olesen, S P
2009-12-01
Hypokalaemia is an independent risk factor contributing to arrhythmic death in cardiac patients. In the present study, we explored the mechanisms of hypokalaemia-induced tachyarrhythmias by measuring ventricular refractoriness, spatial repolarization gradients, and ventricular conduction time in isolated, perfused guinea-pig heart preparations. Epicardial and endocardial monophasic action potentials from distinct left ventricular (LV) and right ventricular (RV) recording sites were monitored simultaneously with volume-conducted electrocardiogram (ECG) during steady-state pacing and following a premature extrastimulus application at progressively reducing coupling stimulation intervals in normokalaemic and hypokalaemic conditions. Hypokalaemic perfusion (2.5 mm K(+) for 30 min) markedly increased the inducibility of tachyarrhythmias by programmed ventricular stimulation and rapid pacing, prolonged ventricular repolarization and shortened LV epicardial and endocardial effective refractory periods, thereby increasing the critical interval for LV re-excitation. Hypokalaemia increased the RV-to-LV transepicardial repolarization gradients but had no effect on transmural dispersion of APD(90) and refractoriness across the LV wall. As determined by local activation time recordings, the LV-to-RV transepicardial conduction and the LV transmural (epicardial-to-endocardial) conduction were slowed in hypokalaemic heart preparations. This change was attributed to depressed diastolic excitability as evidenced by increased ventricular pacing thresholds. These findings suggest that hypokalaemia-induced arrhythmogenicity is attributed to shortened LV refractoriness, increased critical intervals for LV re-excitation, amplified RV-to-LV transepicardial repolarization gradients and slowed ventricular conduction in the guinea-pig heart.
Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Ardell, Jeffrey L; Armour, J Andrew
2009-01-28
Ganglionated plexuses (GPs) are major constituents of the intrinsic cardiac nervous system, the final common integrator of regional cardiac control. We hypothesized that nicotinic stimulation of individual GPs exerts divergent regional influences, affecting atrial as well as ventricular functions. In 22 anesthetized canines, unipolar electrograms were recorded from 127 atrial and 127 ventricular epicardial loci during nicotine injection (100 mcg in 0.1 ml) into either the 1) right atrial (RA), 2) dorsal atrial, 3) left atrial, 4) inferior vena cava-inferior left atrial, 5) right ventricular, 6) ventral septal ventricular or 7) cranial medial ventricular (CMV) GP. In addition to sinus and AV nodal function, neural effects on atrial and ventricular repolarization were identified as changes in the area subtended by unipolar recordings under basal conditions and at maximum neurally-induced effects. Animals were studied with intact AV node or following ablation to achieve ventricular rate control. Atrial rate was affected in response to stimulation of all 7 GPs with an incidence of 50-95% of the animals among the different GPs. AV conduction was affected following stimulation of 6/7 GP with an incidence of 22-75% among GPs. Atrial and ventricular repolarization properties were affected by atrial as well as ventricular GP stimulation. Distinct regional patterns of repolarization changes were identified in response to stimulation of individual GPs. RAGP predominantly affected the RA and posterior right ventricular walls whereas CMVGP elicited biatrial and biventricular repolarization changes. Spatially divergent and overlapping cardiac regions are affected in response to nicotinic stimulation of neurons in individual GPs.
Arteyeva, Natalia V; Azarov, Jan E
2017-01-01
The changes in ventricular repolarization gradients lead to significant alterations of the electrocardiographic body surface T waves up to the T wave inversion. However, the contribution of a specific gradient remains to be elucidated. The objective of the present investigation was to study the role of the transmural repolarization gradient in the inversion of the body surface T wave with a mathematical model of the hypothermia-induced changes of ventricular repolarization. By means of mathematical simulation, we set the hypothermic action potential duration (APD) distribution on the rabbit ventricular epicardium as it was previously experimentally documented. Then the parameters of the body surface potential distribution were tested with the introduction of different scenarios of the endocardial and epicardial APD behavior in hypothermia resulting in the unchanged, reversed or enlarged transmural repolarization gradient. The reversal of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) caused the inversion of the T waves regardless of the direction of the transmural repolarization gradient. However, the most realistic body surface potentials were obtained when the endocardial APDs were not changed under hypothermia while the epicardial APDs prolonged. This produced the reversed and increased transmural repolarization gradient in absolute magnitude. The body surface potentials simulated under the unchanged transmural gradient were reduced in comparison to those simulated under the reversed transmural gradient. The simulations demonstrated that the transmural repolarization gradient did not play a crucial role in the cardiac electric field inversion under hypothermia, but its magnitude and direction contribute to the T wave amplitude. © 2016 Wiley Periodicals, Inc.
Osadchii, Oleg E.
2014-01-01
Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K+) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients. PMID:25141124
2018-01-01
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development. PMID:29494628
Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R
2017-09-01
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017 the American Physiological Society.
Russo, Vincenzo; Papa, Andrea Antonio; Rago, Anna; D'Ambrosio, Paola; Cimmino, Giovanni; Palladino, Alberto; Nigro, Gerardo
2016-01-01
Sudden cardiac death in myotonic dystrophy type I (DM1) patients can be attributed to atrioventricular blocks as far as to the development of life-threatening arrhythmias which occur even in hearts with normal left ventricular systolic and diastolic function. Heterogeneity of ventricular repolarization is considered to provide an electrophysiological substrate for malignant arrhythmias. QTc dispersion (QTc-D), JTc dispersion (JTc-D) and transmural dispersion of repolarization (TDR) could reflect the physiological variability of regional and transmural ventricular repolarization. Aim of the present study was to investigate the heterogeneity of ventricular repolarization in patients with DM1 and preserved diastolic and systolic cardiac function. The study enrolled 50 DM1 patients (mean age 44 ± 5 years; M:F: 29:21) with preserved systolic and diastolic function of left ventricle among 247 DM1 patients followed at Cardiomyology and Medical Genetics of Second University of Naples, and 50 sexand age-matched healthy controls. The electrocardiographic parameters investigated were the following: Heart Rate, QRS duration, maximum and minimum QT and JT intervals, QTc- D, JTc-D and TDR. Compared to the controls, the DM1 group presented increased values of QTc-D (86.7 ± 40.1 vs 52.3 ± 11.9 ms; p = 0.03), JTc-D (78.6 ± 31.3 vs 61.3 ± 10.2 ms; p = 0.001) and TDR (101.6 ± 18.06 vs 90.1 ± 14.3 ms; p = 0.004) suggesting a significant increase in regional and transmural heterogeneity of the ventricular repolarization in these patients, despite a preserved systolic and diastolic cardiac function. PMID:28344440
Osadchii, Oleg E
2014-12-01
In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.
Sah, Rajan; Mesirca, Pietro; Mason, Xenos; Gibson, William; Bates-Withers, Christopher; Van den Boogert, Marjolein; Chaudhuri, Dipayan; Pu, William T; Mangoni, Matteo E; Clapham, David E
2013-07-09
Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.
Pastore, J M; Girouard, S D; Laurita, K R; Akar, F G; Rosenbaum, D S
1999-03-16
Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials were recorded simultaneously from 128 epicardial sites with voltage-sensitive dyes. Alternans of the repolarization phase of the action potential was observed above a critical threshold heart rate (HR) (209+/-46 bpm) that was significantly lower (by 57+/-36 bpm) than the HR threshold for alternation of action potential depolarization. The magnitude (range, 2.7 to 47.0 mV) and HR threshold (range, 171 to 272 bpm) of repolarization alternans varied substantially between cells across the epicardial surface. T-wave alternans on the surface ECG was explained primarily by beat-to-beat alternation in the time course of cellular repolarization. Above a critical HR, membrane repolarization alternated with the opposite phase between neighboring cells (ie, discordant alternans), creating large spatial gradients of repolarization. In the presence of discordant alternans, a small acceleration of pacing cycle length produced a characteristic sequence of events: (1) unidirectional block of an impulse propagating against steep gradients of repolarization, (2) reentrant propagation, and (3) the initiation of ventricular fibrillation. Repolarization alternans at the level of the single cell accounts for T-wave alternans on the surface ECG. Discordant alternans produces spatial gradients of repolarization of sufficient magnitude to cause unidirectional block and reentrant ventricular fibrillation. These data establish a mechanism linking T-wave alternans of the ECG to the pathogenesis of sudden cardiac death.
Patocskai, Bence; Barajas-Martinez, Hector; Hu, Dan; Gurabi, Zsolt; Koncz, István; Antzelevitch, Charles
2016-06-01
Early repolarization syndrome (ERS) is associated with polymorphic ventricular tachycardia (PVT) and ventricular fibrillation, leading to sudden cardiac death. The present study tests the hypothesis that the transient outward potassium current (Ito)-blocking effect of phosphodiesterase-3 (PDE-3) inhibitors plays a role in reversing repolarization heterogeneities responsible for arrhythmogenesis in experimental models of ERS. Transmembrane action potentials (APs) were simultaneously recorded from epicardial and endocardial regions of coronary-perfused canine left ventricular (LV) wedge preparations, together with a transmural pseudo-electrocardiogram. The Ito agonist NS5806 (7-15 μM) and L-type calcium current (ICa) blocker verapamil (2-3 μM) were used to induce an early repolarization pattern and PVT. After stable induction of arrhythmogenesis, the PDE-3 inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All were effective in restoring the AP dome in the LV epicardium, thus abolishing the repolarization defects responsible for phase 2 reentry and PVT. Arrhythmic activity was suppressed in 7 of 8 preparations by cilostazol (10 μM), 6 of 7 by milrinone (2.5 μM), and 7 of 8 by isoproterenol (0.1-1 μM). Using voltage clamp techniques applied to LV epicardial myocytes, both cilostazol (10 μM) and milrinone (2.5 μM) were found to reduce Ito by 44.4% and 40.4%, respectively, in addition to their known effects to augment ICa. Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting of ERS by producing an inward shift in the balance of current during the early phases of the epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing the repolarization defects underlying the development of phase 2 reentry and ventricular tachycardia/ventricular fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Jani, Ylber; Kamberi, Ahmet; Xhunga, Sotir; Pocesta, Bekim; Ferati, Fatmir; Lala, Dali; Zeqiri, Agim; Rexhepi, Atila
2015-01-01
Objective: To assess the influence of type 2 DM and gender, on the QT dispersion, Tpeak-Tend dispersion of ventricular repolarization, in patients with sub-clinic left ventricular diastolic dysfunction of the heart. Background: QT dispersion, that reflects spatial inhomogeneity in ventricular repolarization, Tpeak-Tend dispersion, this on the other hand reflects transmural inhomogeneity in ventricular repolarization, that is increased in an early stage of cardiomyopathy, and in patients with left ventricular diastolic dysfunction, as well. The left ventricular diastolic dysfunction, a basic characteristic of diabetic heart disease (diabetic cardiomyopathy), that developes earlier than systolic dysfunction, suggests that diastolic markers might be sensitive for early cardiac injury. It is also demonstrated that gender has complex influence on indices of myocardial repolarization abnormalities such as QT interval and QT dispersion. Material and methods: We performed an observational study including 300 diabetic patients with similar epidemiological-demographic characteristics recruited in our institution from May 2009 to July 2014, divided into two groups. Demographic and laboratory echocardiographic data were obtained, twelve lead resting electrocardiography, QT, QTc, Tpeak-Tend-intervals and dispersion, were determined manually, and were compared between various groups. For statistical analysis a t-test, X2 test, and logistic regression are used according to the type of variables. A p value <0.05 was considered statistically significant for a confidence interval of 95%. Results: QTc max. interval, QTc dispersion and Tpeak-Tend dispersion, were significantly higher in diabetic group with subclinical LV (left ventricular) diastolic dysfunction, than in diabetic group with normal left ventricular diastolic function (445.24±14.7 ms vs. 433.55±14.4 ms, P<0.000; 44.98±18.78 ms vs. 32.05±17.9 ms, P<0.000; 32.60±1.6 ms vs. 17.46±2.0 ms, P<0.02. Prolonged QTc max. interval was found in 33% of patients, indiabetic group with subclinical left ventricular diastolic dysfunction vs. 13.3% of patients in diabetic group with normal left ventricular diastolic function, (Chi-square: 16.77, P<0.0001). A prolonged QTc dispersion, was found in 40.6% of patients, in diabetic group with subclinical left ventricular diastolic dysfunction vs. 20% of patients in diabetic group with normal left ventricular diastolic function Chi-square: 14.11, P<0.0002). A prolonged dispersion of Tpeak-Tend interval was found in 24% of patients in diabetic group with subclinical left ventricular diastolic dysfunction vs. 13.3% of patients in diabetic group with normal left ventricular diastolic function (Chi-square: 12.00, P<0.005). Females in diabetic group with subclinical left ventricular diastolic dysfunction in comparison with males in diabetic group with subclinical left ventricular diastolic dysfunction, have a significantly prolonged: mean QTc max. interval (23.3% vs. 10%, Chisquare: 12.0, P<0.005), mean QTc dispersion (27.3% vs. 13.3%, Chi-square: 10.24, P<0.001), mean Tpeak-Tend interval (10% vs. 3.3%, Chi-square: 5.77, P<0.01), mean Tpek-Tend dispersion (16.6% vs. 6.6%, Chi-square: 8.39, P<0.003). Conclusion: The present study has shown that influences of type 2 diabetes and gender in diabetics with sub-clinical left-ventricular diastolic dysfunction are reflected in a set of electrophysiological parameters that indicate a prolonged and more heterogeneous repolarization than in diabetic patients with normal diastolic function. In addition, it demonstrates that there exist differences between diabetic females with sub-clinic LV dysfunction and those with diabetes and normal LV function in the prevalence of increased set of electrophysiological parameters that indicate a prolonged and more heterogeneous repolarization. PMID:26550530
Jani, Ylber; Kamberi, Ahmet; Xhunga, Sotir; Pocesta, Bekim; Ferati, Fatmir; Lala, Dali; Zeqiri, Agim; Rexhepi, Atila
2015-01-01
To assess the influence of type 2 DM and gender, on the QT dispersion, Tpeak-Tend dispersion of ventricular repolarization, in patients with sub-clinic left ventricular diastolic dysfunction of the heart. QT dispersion, that reflects spatial inhomogeneity in ventricular repolarization, Tpeak-Tend dispersion, this on the other hand reflects transmural inhomogeneity in ventricular repolarization, that is increased in an early stage of cardiomyopathy, and in patients with left ventricular diastolic dysfunction, as well. The left ventricular diastolic dysfunction, a basic characteristic of diabetic heart disease (diabetic cardiomyopathy), that developes earlier than systolic dysfunction, suggests that diastolic markers might be sensitive for early cardiac injury. It is also demonstrated that gender has complex influence on indices of myocardial repolarization abnormalities such as QT interval and QT dispersion. We performed an observational study including 300 diabetic patients with similar epidemiological-demographic characteristics recruited in our institution from May 2009 to July 2014, divided into two groups. Demographic and laboratory echocardiographic data were obtained, twelve lead resting electrocardiography, QT, QTc, Tpeak-Tend-intervals and dispersion, were determined manually, and were compared between various groups. For statistical analysis a t-test, X(2) test, and logistic regression are used according to the type of variables. A p value <0.05 was considered statistically significant for a confidence interval of 95%. QTc max. interval, QTc dispersion and Tpeak-Tend dispersion, were significantly higher in diabetic group with subclinical LV (left ventricular) diastolic dysfunction, than in diabetic group with normal left ventricular diastolic function (445.24±14.7 ms vs. 433.55±14.4 ms, P<0.000; 44.98±18.78 ms vs. 32.05±17.9 ms, P<0.000; 32.60±1.6 ms vs. 17.46±2.0 ms, P<0.02. Prolonged QTc max. interval was found in 33% of patients, indiabetic group with subclinical left ventricular diastolic dysfunction vs. 13.3% of patients in diabetic group with normal left ventricular diastolic function, (Chi-square: 16.77, P<0.0001). A prolonged QTc dispersion, was found in 40.6% of patients, in diabetic group with subclinical left ventricular diastolic dysfunction vs. 20% of patients in diabetic group with normal left ventricular diastolic function Chi-square: 14.11, P<0.0002). A prolonged dispersion of Tpeak-Tend interval was found in 24% of patients in diabetic group with subclinical left ventricular diastolic dysfunction vs. 13.3% of patients in diabetic group with normal left ventricular diastolic function (Chi-square: 12.00, P<0.005). Females in diabetic group with subclinical left ventricular diastolic dysfunction in comparison with males in diabetic group with subclinical left ventricular diastolic dysfunction, have a significantly prolonged: mean QTc max. interval (23.3% vs. 10%, Chisquare: 12.0, P<0.005), mean QTc dispersion (27.3% vs. 13.3%, Chi-square: 10.24, P<0.001), mean Tpeak-Tend interval (10% vs. 3.3%, Chi-square: 5.77, P<0.01), mean Tpek-Tend dispersion (16.6% vs. 6.6%, Chi-square: 8.39, P<0.003). The present study has shown that influences of type 2 diabetes and gender in diabetics with sub-clinical left-ventricular diastolic dysfunction are reflected in a set of electrophysiological parameters that indicate a prolonged and more heterogeneous repolarization than in diabetic patients with normal diastolic function. In addition, it demonstrates that there exist differences between diabetic females with sub-clinic LV dysfunction and those with diabetes and normal LV function in the prevalence of increased set of electrophysiological parameters that indicate a prolonged and more heterogeneous repolarization.
Iizuka, Chifumi; Sato, Masahito; Kitazawa, Hitoshi; Ikeda, Yoshio; Okabe, Masaaki; Kugiyama, Kiyotaka; Aizawa, Yoshifusa
2016-01-01
A 21-year-old man developed ventricular fibrillation (VF) while drinking alcohol and was admitted to our hospital. An electrocardiogram (ECG) on admission revealed remarkably prominent slurs on the terminal part of QRS complexes in the left precordial leads and a coved type ST elevation at higher intercostal spaces. After hypothermia therapy, he underwent implantation of an implantable cardioverter-defibrillator (ICD). Standard twelve-lead follow-up ECGs revealed early repolarization pattern and an intermittent coved type ST elevation. When the coved type ST elevation appeared, the early repolarization pattern in the inferior and left precordial leads was attenuated. Prominent early repolarization pattern was the most likely trigger of the VF storm in this Brugada patient. Copyright © 2016 Elsevier Inc. All rights reserved.
Shimizu, Wataru
2010-01-01
This review article sought to describe patterns of repolarization on the surface electrocardiogram in inherited cardiac arrhythmias and to discuss how the knowledge of genetic makeup and cellular data can affect the analysis based on the data derived from the experimental studies using arterially perfused canine ventricular wedge preparations. Molecular genetic studies have established a link between a number of inherited cardiac arrhythmia syndromes and mutations in genes encoding cardiac ion channels or membrane components during the past 2 decades. Twelve forms of congenital long QT syndrome have been so far identified, and genotype-phenotype correlations have been investigated especially in the 3 major genotypes-LQT1, LQT2, and LQT3. Abnormal T waves are reported in the LQT1, LQT2, and LQT3, and the differences in the time course of repolarization of the epicardial, midmyocardial, and endocardial cells give rise to voltage gradients responsible for the manifestation of phenotypic appearance of abnormal T waves. Brugada syndrome is characterized by ST-segment elevation in leads V1 to V3 and an episode of ventricular fibrillation, in which 7 genotypes have been reported. An intrinsically prominent transient outward current (I(to))-mediated action potential notch and a subsequent loss of action potential dome in the epicardium, but not in the endocardium of the right ventricular outflow tract, give rise to a transmural voltage gradient, resulting in ST-segment elevation, and a subsequent phase 2 reentry-induced ventricular fibrillation. In conclusion, transmural electrical heterogeneity of repolarization across the ventricular wall profoundly affects the phenotypic manifestation of repolarization patterns on the surface electrocardiogram in inherited cardiac arrhythmias. Copyright © 2010 Elsevier Inc. All rights reserved.
Verduyn, S C; Vos, M A; Leunissen, H D; van Opstal, J M; Wellens, H J
1999-02-01
In the anesthetized dog with complete chronic AV block (CAVB), we evaluated and compared the acute electrophysiologic effects of dronedarone i.v. (Dron, 2 times 2.5 mg/kg/10 min) and amiodarone i.v. (Amio, 2 times 5 mg/kg/10 min). This canine model with a high sensitivity for acquired torsade de pointes (TdP) provides an ideal substrate to evaluate ventricular repolarization abnormalities. Six ECG leads and two endocardial monophasic action potential (MAP) recordings in the left and right ventricle (LV and RV) were simultaneously recorded to measure QT time, action-potential duration (APD), interventricular dispersion (deltaAPD = LV(APD) - RV(APD)), early afterdepolarizations (EADs), ectopic beats (EBs), and TdP. Measurements were made at the spontaneous idioventricular rhythm (IVR) and 1,000-ms steady-state pacing. To investigate its short-term, antiarrhythmic properties, Dron was given after almokalant (0.12 mg/kg)-induced TdP. Furthermore, in another set of experiments, oral Dron (20 mg/kg, b.i.d) was given for 3 weeks to conscious CAVB dogs. Dron, i.v., shortened ventricular repolarization (QT, 435 +/- 60 to 360 +/- 55; LV(APD) 395 +/- 75 to 335 +/- 60 ms; p < 0.05), whereas IVR and ventricular effective refractory period (VERP, 225 +/- 30 to 230 +/- 30 ms) remained similar. Therefore the VERP/QT ratio increased (0.55 +/- 0.04 to 0.61 +/- 0.03; p < 0.05). Similar results were obtained with Amio, i.v.. Almokalant-induced TdP was characterized by an increased repolarization duration, deltaAPD, and EADs. Dron, i.v., suppressed the EADs, EBs, and TdP by a reduction and homogenization of repolarization (LV(APD), 505 +/- 110 to 455 +/- 80 ms, and deltaAPD, 110 +/- 55 to 65 +/- 40 ms). Long-term oral Dron increased the PP interval, CL-IVR, and QT(c) time. In contrast to oral treatment, Dron i.v. shortens ventricular repolarization parameters, resulting in suppression of EAD-dependent acquired TdP. The increased VERP/QT ratio after Dron i.v. may indicate an important second antiarrhythmic property.
Cardiac action potential repolarization revisited: early repolarization shows all-or-none behaviour.
Trenor, Beatriz; Cardona, Karen; Saiz, Javier; Noble, Denis; Giles, Wayne
2017-11-01
In healthy mammalian hearts the action potential (AP) waveform initiates and modulates each contraction, or heartbeat. As a result, AP height and duration are key physiological variables. In addition, rate-dependent changes in ventricular AP duration (APD), and variations in APD at a fixed heart rate are both reliable biomarkers of electrophysiological stability. Present guidelines for the likelihood that candidate drugs will increase arrhythmias rely on small changes in APD and Q-T intervals as criteria for safety pharmacology decisions. However, both of these measurements correspond to the final repolarization of the AP. Emerging clinical evidence draws attention to the early repolarization phase of the action potential (and the J-wave of the ECG) as an additional important biomarker for arrhythmogenesis. Here we provide a mechanistic background to this early repolarization syndrome by summarizing the evidence that both the initial depolarization and repolarization phases of the cardiac action potential can exhibit distinct time- and voltage-dependent thresholds, and also demonstrating that both can show regenerative all-or-none behaviour. An important consequence of this is that not all of the dynamics of action potential repolarization in human ventricle can be captured by data from single myocytes when these results are expressed as 'repolarization reserve'. For example, the complex pattern of cell-to-cell current flow that is responsible for AP conduction (propagation) within the mammalian myocardium can change APD and the Q-T interval of the electrocardiogram alter APD stability, and modulate responsiveness to pharmacological agents (such as Class III anti-arrhythmic drugs). © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart.
Osadchii, Oleg E
2012-12-01
Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.
Antzelevitch, Charles
2007-01-01
This review examines the role of spatial electrical heterogeneity within ventricular myocardium on the function of the heart in health and disease. The cellular basis for transmural dispersion of repolarization (TDR) is reviewed and the hypothesis that amplification of spatial dispersion of repolarization underlies the development of life-threatening ventricular arrhythmias associated with inherited ion channelopathies is evaluated. The role of TDR in the long QT, short QT and Brugada syndromes as well as catecholaminergic polymorphic ventricular tachycardia (CPVT) are critically examined. In the long QT Syndrome, amplification of TDR is often secondary to preferential prolongation of the action potential duration (APD) of M cells, whereas in the Brugada Syndrome, it is thought to be due to selective abbreviation of the APD of right ventricular (RV) epicardium. Preferential abbreviation of APD of either endocardium or epicardium appears to be responsible for amplification of TDR in the short QT syndrome. In catecholaminergic polymorphic VT, reversal of the direction of activation of the ventricular wall is responsible for the increase in TDR. In conclusion, the long QT, short QT, Brugada and catecholaminergic polymorphic VT syndromes are pathologies with very different phenotypes and etiologies, but which share a common final pathway in causing sudden cardiac death. PMID:17586620
Elitok, Ali; Öz, Fahrettin; Panc, Cafer; Sarıkaya, Remzi; Sezikli, Selim; Pala, Yasin; Bugan, Övgü Sinem; Ateş, Müge; Parıldar, Hilal; Ayaz, Mustafa Buğra; Atıcı, Adem; Oflaz, Hüseyin
2016-01-01
Objective: Energy drinks (EDs) are widely consumed products of the beverage industry and are often chosen by teenagers and young adults. Several adverse cardiovascular events and malignant cardiac arrhythmias following consumption of EDs have been reported in the literature. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-e) may correspond to the dispersion of repolarization and that an increased Tp-e interval and Tp-e/QT ratio are associated with malignant ventricular arrhythmias. This study investigated the acute effects of Red Bull ED on ventricular repolarization as assessed by the Tp-e interval and Tp-e/QT ratio. Methods: A prospective, open-label study design was used. After an 8-h fast, 50 young, healthy subjects consumed 355 mL of Red Bull ED. The Tp-e interval, Tp-e/QTc ratio, and several other electrocardiographic parameters were measured at baseline and 2 h after ingestion of Red Bull ED. Results: No significant changes in the Tp-e interval or Tp-e/QTc ratio were observed with Red Bull ED consumption. Red Bull ED consumption led to increases in both systolic and diastolic blood pressures, which were associated with an increased heart rate. Conclusion: Although ingestion of Red Bull ED increases the heart rate and diastolic and systolic blood pressures, it does not cause alterations in ventricular repolarization as assessed by the Tp-e interval and Tp-e/QTc ratio. PMID:25868042
Elitok, Ali; Öz, Fahrettin; Panc, Cafer; Sarıkaya, Remzi; Sezikli, Selim; Pala, Yasin; Bugan, Övgü Sinem; Ateş, Müge; Parıldar, Hilal; Ayaz, Mustafa Buğra; Atıcı, Adem; Oflaz, Hüseyin
2015-11-01
Energy drinks (EDs) are widely consumed products of the beverage industry and are often chosen by teenagers and young adults. Several adverse cardiovascular events and malignant cardiac arrhythmias following consumption of EDs have been reported in the literature. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-e) may correspond to the dispersion of repolarization and that an increased Tp-e interval and Tp-e/QT ratio are associated with malignant ventricular arrhythmias. This study investigated the acute effects of Red Bull ED on ventricular repolarization as assessed by the Tp-e interval and Tp-e/QT ratio. A prospective, open-label study design was used. After an 8-h fast, 50 young, healthy subjects consumed 355 mL of Red Bull ED. The Tp-e interval, Tp-e/QTc ratio, and several other electrocardiographic parameters were measured at baseline and 2 h after ingestion of Red Bull ED. No significant changes in the Tp-e interval or Tp-e/QTc ratio were observed with Red Bull ED consumption. Red Bull ED consumption led to increases in both systolic and diastolic blood pressures, which were associated with an increased heart rate. Although ingestion of Red Bull ED increases the heart rate and diastolic and systolic blood pressures, it does not cause alterations in ventricular repolarization as assessed by the Tp-e interval and Tp-e/QTc ratio.
Aburawi, Elhadi H; Souid, Abdul-Kader; Liuba, Petru; Zoubeidi, Taoufik; Pesonen, Erkki
2013-09-10
In adults, impaired myocardial repolarization and increased risk of arrhythmia are known consequences of open heart surgery. Little is known, however, about post-operative consequences of cardiopulmonary bypass surgery in children. The aim of this study was to assess ventricular repolarization and coronary perfusion after bypass surgery for atrial septal defect (ASD) repair in children. Twelve patients with ASD were assessed one day before and 5-6 days after ASD repair. Myocardial repolarization (corrected QT interval, QTc, QT dispersion, QTd, and PQ interval) was determined on 12-lead electrocardiograms. Coronary flow in proximal left anterior descending artery (peak flow velocity in diastole, PFVd) was assessed by transthoracic Doppler echocardiography. Ten of the 12 (83%) children had normal myocardial repolarization before and after surgery. After surgery, QTc increased 1-9% in 5 (42%) patients, decreased 2-11% in 5 (42%) patients and did not change in 2 (16%) patients. Post-op QTc positively correlated with bypass time (R=0.686, p=0.014) and changes in PFVd (R=0.741, p=0.006). After surgery, QTd increased 33-67% in 4 (33%) patients, decreased 25-50% in 6 patients (50%) and did not change in 2 (16%) patients. After surgery, PQ interval increased 5-30% in 4 (33%) patients, decreased 4-29% in 6 (50%) patients and did not change in 1 (8%) patient. Post-op PQ positively correlated with bypass time (R=0.636, p=0.027). As previously reported, PFVd significantly increased after surgery (p<0.001). Changes in QTc, PQ and PFVd are common in young children undergoing surgery for ASD repair. Post-op QTc significantly correlates with bypass time, suggesting prolonged cardiopulmonary bypass may impair ventricular repolarization. Post-op QTc significantly correlates with PFVd changes, suggesting increased coronary flow may also impair ventricular repolarization. The clinical significance and reversibility of these alternations require further investigations.
Impact of ionic current variability on human ventricular cellular electrophysiology.
Romero, Lucía; Pueyo, Esther; Fink, Martin; Rodríguez, Blanca
2009-10-01
Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.
Ventricular stimulus site influences dynamic dispersion of repolarization in the intact human heart
Orini, Michele; Simon, Ron B.; Providência, Rui; Khan, Fakhar Z.; Segal, Oliver R.; Babu, Girish G.; Bradley, Richard; Rowland, Edward; Ahsan, Syed; Chow, Anthony W.; Lowe, Martin D.; Taggart, Peter
2016-01-01
The spatial variation in restitution properties in relation to varying stimulus site is poorly defined. This study aimed to investigate the effect of varying stimulus site on apicobasal and transmural activation time (AT), action potential duration (APD) and repolarization time (RT) during restitution studies in the intact human heart. Ten patients with structurally normal hearts, undergoing clinical electrophysiology studies, were enrolled. Decapolar catheters were placed apex to base in the endocardial right ventricle (RVendo) and left ventricle (LVendo), and an LV branch of the coronary sinus (LVepi) for transmural recording. S1–S2 restitution protocols were performed pacing RVendo apex, LVendo base, and LVepi base. Overall, 725 restitution curves were analyzed, 74% of slopes had a maximum slope of activation recovery interval (ARI) restitution (Smax) > 1 (P < 0.001); mean Smax = 1.76. APD was shorter in the LVepi compared with LVendo, regardless of pacing site (30-ms difference during RVendo pacing, 25-ms during LVendo, and 48-ms during LVepi; 50th quantile, P < 0.01). Basal LVepi pacing resulted in a significant transmural gradient of RT (77 ms, 50th quantile: P < 0.01), due to loss of negative transmural AT-APD coupling (mean slope 0.63 ± 0.3). No significant transmural gradient in RT was demonstrated during endocardial RV or LV pacing, with preserved negative transmural AT-APD coupling (mean slope −1.36 ± 1.9 and −0.71 ± 0.4, respectively). Steep ARI restitution slopes predominate in the normal ventricle and dynamic ARI; RT gradients exist that are modulated by the site of activation. Epicardial stimulation to initiate ventricular activation promotes significant transmural gradients of repolarization that could be proarrhythmic. PMID:27371682
Effects of sildenafil on cardiac repolarization.
Chiang, Chern-En; Luk, Hsiang-Ning; Wang, Tsui-Min; Ding, Philip Yu-An
2002-08-01
Sudden death has occasionally been reported in patients taking sildenafil. The objective of this study was to investigate the effect of sildenafil on cardiac repolarization. We used conventional microelectrode recording technique in isolated guinea pig papillary muscles and canine Purkinje fibers, whole-cell patch clamp techniques in guinea pig ventricular myocytes, and in vivo ECG measurements in guinea pigs. Action potential duration at 90% repolarization (APD(90)) was not affected by sildenafil in the therapeutic ranges (< or =1 microM), but shortened by higher concentration (> or =10 microM) in both guinea pig papillary muscles and canine Purkinje fibers. D-Sotalol prolonged APD(90) in the same preparations with concentrations > or =1 microM in a reverse frequency-dependent manner. Co-administration of sildenafil (10 and 30 microM) abolished the APD-prolonging effects of D-sotalol (30 microM) and amiodarone (100 microM). Sildenafil, with concentrations up to 30 microM, had no significant effect on both the rapid (I(Kr)) and the slow (I(Ks)) components of the delayed rectifier potassium currents in guinea pig ventricular myocytes. Sildenafil dose-dependently blocked L-type Ca(2+) current (I(Ca,L)), but had no effect on persistent Na(+) current in guinea pig ventricular myocytes. ECG recordings in intact guinea pigs revealed significant shortening of QTc interval by sildenafil (10 and 30 mg/kg orally). The QT-prolonging effects by D,L-sotalol (50 mg/kg) and amiodarone (100 mg/kg) were abolished by sildenafil (30 mg/kg). Sildenafil does not prolong cardiac repolarization. Instead, in supra-therapeutic concentrations, it accelerates cardiac repolarization, presumably through its blocking effect on I(Ca,L).
Kontonika, Marianthi; Barka, Eleonora; Roumpi, Maria; La Rocca, Vassilios; Lekkas, Panagiotis; Daskalopoulos, Evangelos P; Vilaeti, Agapi D; Baltogiannis, Giannis G; Vlahos, Antonios P; Agathopoulos, Simeon; Kolettis, Theofilos M
2017-02-01
Experimental studies indicate improved ventricular function after treatment with growth hormone (GH) post-myocardial infarction, but its effect on arrhythmogenesis is unknown. Here, we assessed the medium-term electrophysiologic remodeling after intra-myocardial GH administration in (n = 33) rats. GH was released from an alginate scaffold, injected around the ischemic myocardium after coronary ligation. Two weeks thereafter, ventricular tachyarrhythmias were induced by programmed electrical stimulation. Monophasic action potentials were recorded from the infarct border, coupled with evaluation of electrical conduction and repolarization from a multi-electrode array. The arrhythmia score was lower in GH-treated rats than in alginate-treated rats or controls. The shape and the duration of the action potential at the infarct border were preserved, and repolarization-dispersion was attenuated after GH; moreover, voltage rise was higher and activation delay was shorter. GH normalized also right ventricular parameters. Intra-myocardial GH preserved electrical conduction and repolarization-dispersion at the infarct border and decreased the incidence of induced tachyarrhythmias in rats post-ligation. The long-term antiarrhythmic potential of GH merits further study.
Huang, Jen-Hung; Lin, Ying-Qin; Pan, Nan-Hung; Chen, Yi-Jen
2010-11-01
Aging plays an essential role in cardiac pathophysiology. Knowledge on the ventricular repolarization in very old individuals is limited. An increase of QT dispersion is associated with higher cardiovascular mortality. The purpose of this study is to investigate whether aging changes the QT dispersion in the very old. Heart rate, P wave duration, PR interval, QRS axis, QRS duration, QT interval, and QTc interval were measured from 12-lead resting ECG. QT dispersion (46 ± 21, 47 ± 17, 69 ± 31 ms, p < 0.005) was significantly increased in the age group ≧85 years (n = 29, 89 ± 4 years) than in the age group 75-84 years (n = 33, 79 ± 3 years) and the age group 65-74 years (n = 32, 68 ± 3 years). Aging modulates dispersion of ventricular repolarization, which may contribute to the cardiac mortality in the very old Asian population.
Ventricular fibrillation associated with early repolarization in a patient with thyroid storm.
Ueno, Akira; Yamamoto, Takeshi; Sato, Naoki; Tanaka, Keiji
2010-11-01
We present a case of a 69-year-old male who was hospitalized for the treatment of thyroid storm due to Grave's disease, who presented with unexpected ventricular fibrillation (VF). The possible etiology was early repolarization (ER), characterized by J-point elevation in inferior and posterolateral leads, unmasked by the attenuation of beta-adrenergic effect with normalization of thyroid hormones and following the administration of a beta-blocker. Our case focuses attention on the occurrence of VF in a patient with ER during the treatment of hyperthyroidism, which to our knowledge is the first such report.
Sahakian, A V; Peterson, M S; Shkurovich, S; Hamer, M; Votapka, T; Ji, T; Swiryn, S
2001-03-01
While the recording of extracellular monophasic action potentials (MAPs) from single epicardial or endocardial sites has been performed for over a century, we are unaware of any previous successful attempt to record MAPs simultaneously from a large number of sites in vivo. We report here the design and validation of an array of MAP electrodes which records both depolarization and repolarization simultaneously at up to 16 epicardial sites in a square array on the heart in vivo. The array consists of 16 sintered Ag-AgCl electrodes mounted in a common housing with individual suspensions allowing each electrode to exert a controlled pressure on the epicardial surface. The electrodes are arranged in a square array, with each quadrant of four having an additional recessed sintered Ag-AgCl reference electrode at its center. A saline-soaked sponge establishes ionic contact between the reference electrodes and the tissue. The array was tested on six anesthetized open-chested pigs. Simultaneous diagnostic-quality MAP recordings were obtained from up to 13 out of 16 ventricular sites. Ventricular MAPs had amplitudes of 10-40 mV with uniform morphologies and stable baselines for up to 30 min. MAP duration at 90% repolarization was measured and shown to vary as expected with cycle length during sustained pacing. The relationship between MAP duration and effective refractory period was also confirmed. The ability of the array to detect local differences in repolarization was tested in two ways. Placement of the array straddling the atrioventricular (AV) junction yielded simultaneous atrial or ventricular recordings at corresponding sites during 1:1 and 2:1 AV conduction. Localized ischemia via constriction of a coronary artery branch resulted in shortening of the repolarization phase at the ischemic, but not the nonischemic, sites. In conclusion, these results indicate that the simultaneous multichannel MAP electrode array is a viable method for in vivo epicardial repolarization mapping. The array has the potential to be expanded to increase the number of sites and spatial resolution.
Weiss, Eric H.; Merchant, Faisal M.; d’Avila, Andre; Foley, Lori; Reddy, Vivek Y.; Singh, Jagmeet P.; Mela, Theofanie; Ruskin, Jeremy N.; Armoundas, Antonis A.
2011-01-01
Background Electrical alternans is a pattern of variation in the shape of electrocardiographic waveform that occurs every other beat. In humans, alternation in ventricular repolarization, known as repolarization alternans (RA), has been associated with increased vulnerability to ventricular tachycardia/fibrillation and sudden cardiac death. Methods and Results This study investigates the spatio-temporal variability of intracardiac RA and its relationship to body surface RA in an acute myocardial ischemia model in swine. We developed a real-time multi-channel repolarization signal acquisition, display and analysis system to record electrocardiographic signals from catheters in the right ventricle, coronary sinus, left ventricle, and epicardial surface prior to and following circumflex coronary artery balloon occlusion. We found that RA is detectable within 4 minutes following the onset ischemia, and is most prominently seen during the first half of the repolarization interval. Ischemia-induced RA was detectable on unipolar and bipolar leads (both in near- and far-field configurations) and on body surface leads. Far-field bipolar intracardiac leads were more sensitive for RA detection than body surface leads, with the probability of body surface RA detection increasing as the number of intracardiac leads detecting RA increased, approaching 100% when at least three intracardiac leads detected RA. We developed a novel, clinically-applicable intracardiac lead system based on a triangular arrangement of leads spanning the right ventricular (RV) and coronary sinus (CS) catheters which provided the highest sensitivity for intracardiac RA detection when compared to any other far-field bipolar sensing configurations (p < 0.0001). Conclusions In conclusion, intracardiac alternans, a complex spatio-temporal phenomenon associated with arrhythmia susceptibility and sudden cardiac death, can be reliably detected through a novel triangular RV-CS lead configuration. PMID:21430127
Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V; Antzelevitch, Charles
2014-02-01
Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome and examines the effectiveness of quinidine, cilostazol, and milrinone to prevent hypothermia-induced arrhythmias. Transmembrane action potentials were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3-10 μmol/L) and verapamil (1 μmol/L) was used to pharmacologically model the genetic mutations responsible for ER syndrome. Acetylcholine (3 μmol/L) was used to simulate increased parasympathetic tone, which is known to promote ER. In controls, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J-wave area on the ECG and accentuated epicardial action potential notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial action potential notch, leading to loss of the action potential dome at some sites but not others, thus creating the substrate for development of phase 2 reentry and VT/VF. Addition of the transient outward current antagonist quinidine (5 μmol/L) or the phosphodiesterase III inhibitors cilostazol (10 μmol/L) or milrinone (5 μmol/L) diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase 2 reentry. Quinidine, cilostazol, and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities.
Saegusa, Noriko; Garg, Vivek
2013-01-01
The contribution of transient outward current (Ito) to changes in ventricular action potential (AP) repolarization induced by acidosis is unresolved, as is the indirect effect of these changes on calcium handling. To address this issue we measured intracellular pH (pHi), Ito, L-type calcium current (ICa,L), and calcium transients (CaTs) in rabbit ventricular myocytes. Intracellular acidosis [pHi 6.75 with extracellular pH (pHo) 7.4] reduced Ito by ∼50% in myocytes with both high (epicardial) and low (papillary muscle) Ito densities, with little effect on steady-state inactivation and activation. Of the two candidate α-subunits underlying Ito, human (h)Kv4.3 and hKv1.4, only hKv4.3 current was reduced by intracellular acidosis. Extracellular acidosis (pHo 6.5) shifted Ito inactivation toward less negative potentials but had negligible effect on peak current at +60 mV when initiated from −80 mV. The effects of low pHi-induced inhibition of Ito on AP repolarization were much greater in epicardial than papillary muscle myocytes and included slowing of phase 1, attenuation of the notch, and elevation of the plateau. Low pHi increased AP duration in both cell types, with the greatest lengthening occurring in epicardial myocytes. The changes in epicardial AP repolarization induced by intracellular acidosis reduced peak ICa,L, increased net calcium influx via ICa,L, and increased CaT amplitude. In summary, in contrast to low pHo, intracellular acidosis has a marked inhibitory effect on ventricular Ito, perhaps mediated by Kv4.3. By altering the trajectory of the AP repolarization, low pHi has a significant indirect effect on calcium handling, especially evident in epicardial cells. PMID:23585132
Evaluation of Tp-e interval and Tp-e/QT ratio in patients with rheumatoid arthritis.
Acar, Gu Rkan; Akkoyun, Murat; Nacar, Alper Bugra; Dirnak, Imran; Yıldırım Çetin, Gözde; Nur Yıldırım, Makbule; Zencir, Cemil; Karaman, Kayıhan; Cetin, Mustafa; Sayarlıoğlu, Mehmet
2014-01-01
Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-e) may correspond to the transmural dispersion of repolarization and that increased Tp-e interval and Tp-e/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate ventricular repolarization by using the Tp-e interval and Tp-e/QT ratio in patients with rheumatoid arthritis (RA), and to assess the relation with inflammation. Ninety-six patients (72 females, 24 males; mean age 43.8±11.8 years) with RA and 50 controls (35 females, 15 males; mean age 44.2±11.1 years) were included. From the 12-lead electrocardiogram, Tp-e interval and Tp-e/QT ratio were measured. Blood samples were taken for erythrocyte sedimentation rate (ESR) and plasma levels of C-reactive protein (CRP). These parameters were compared between groups. The relationship between ventricular repolarization and inflammation was assessed by Pearson correlation coefficients. Tp-e interval and Tp-e/QT ratio were increased in RA patients compared to the controls (72.6±8.2 vs 66.4±8.5 ms, 0.20±0.02 vs 0.18±0.02; p<0.001 and p<0.001, respectively). The Tp-e interval was significantly correlated with CRP, ESR, and disease activity score (DAS-28) (r=0.56, p<0.001, r=0.57, p<0.001, and r=0.29, p=0.02, respectively). The Tp-e/QT ratio was also correlated with CRP, ESR, and DAS-28 score (r=0.43, p<0.001, r=0.53, p<0.001, and r=0.25, p=0.03, respectively). In RA patients, the increased frequency of ventricular arrhythmias may be explained by increased indexes of ventricular repolarization and their relationship with inflammation.
Bai, Rong; Lü, Jiagao; Pu, Jun; Liu, Nian; Zhou, Qiang; Ruan, Yanfei; Niu, Huiyan; Zhang, Cuntai; Wang, Lin; Kam, Ruth
2005-10-01
Benefits of cardiac resynchronization therapy (CRT) are well established. However, less is understood concerning its effects on myocardial repolarization and the potential proarrhythmic risk. Healthy dogs (n = 8) were compared to a long QT interval (LQT) model (n = 8, induced by cesium chloride, CsCl) and a dilated cardiomyopathy with congestive heart failure (DCM-CHF, induced by rapid ventricular pacing, n = 5). Monophasic action potential (MAP) recordings were obtained from the subendocardium, midmyocardium, subepicardium, and the transmural dispersion of repolarization (TDR) was calculated. The QT interval and the interval from the peak to the end of the T wave (T(p-e)) were measured. All these characteristics were compared during left ventricular epicardial (LV-Epi), right ventricular endocardial (RV-Endo), and biventricular (Bi-V) pacing. In healthy dogs, TDR prolonged to 37.54 ms for Bi-V pacing and to 47.16 ms for LV-Epi pacing as compared to 26.75 ms for RV-Endo pacing (P < 0.001), which was parallel to an augmentation in T(p-e) interval (Bi-V pacing, 64.29 ms; LV-Epi pacing, 57.89 ms; RV-Endo pacing, 50.29 ms; P < 0.01). During CsCl exposure, Bi-V and LV-Epi pacing prolonged MAPD, TDR, and T(p-e) interval as compared to RV-Endo pacing. The midmyocardial MAPD (276.30 ms vs 257.35 ms, P < 0.0001) and TDR (33.80 ms vs 27.58 ms, P=0.002) were significantly longer in DCM-CHF dogs than those in healthy dogs. LV-Epi and Bi-V pacing further prolonged the MAPD and TDR in this model. LV-Epi and Bi-V pacing result in prolongation of ventricular repolarization time, and increase of TDR accounted for a parallel augmentation of the T(p-e) interval, which provides evidence that T(p-e) interval accurately represents TDR. These effects are magnified in the LQT and DCM-CHF canine models in addition to their intrinsic transmural heterogeneity in the intact heart. This mechanism may contribute to the development of malignant ventricular arrhythmias, such as torsades de pointes (TdP) in congestive heart failure (CHF) patients treated with CRT.
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice
Park, Hyelim; Mun, Dasom; Lee, Seung-Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui-Nam; Lee, Moon-Hyoung
2018-01-01
Purpose The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. Materials and Methods We measured current amplitudes and the expression levels of voltage-gated K+ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a−/−-NP). Results During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a−/−-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Conclusion Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. PMID:29436197
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung
2018-03-01
The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018
Lux, Robert L.; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P.; Tristani-Firouzi, Martin; Saarel, Elizabeth V.
2014-01-01
Background Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). Methods RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. Results All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. Conclusion These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements. PMID:24454918
Lux, Robert L; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P; Tristani-Firouzi, Martin; Saarel, Elizabeth V
2014-01-01
Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements.
Galetta, F; Franzoni, F; Fallahi, P; Tocchini, L; Graci, F; Gaddeo, C; Rossi, M; Cini, G; Carpi, A; Santoro, G; Antonelli, A
2010-10-01
The aim of the present study was to evaluate the effect of subclinical hyperthyroidism (SHT) on cardiovascular autonomic function and ventricular repolarization. Thirty subjects (25 females; mean age 49.6 ± 9.8 years) with SHT, as judged by reduced TSH serum levels and normal free T4 and T3 serum levels, and 30 age and sex-matched control subjects underwent standard 12-lead ECG, and 24h ambulatory ECG monitoring. The dispersion of the QT interval, an index of inhomogeneity of repolarization, and the heart rate variability (HRV), a measure of cardiac autonomic modulation, were studied. Patients with SHT showed higher QT dispersion (p<0.001) and lower HRV measures (0.01>p<0.001) than controls. In SHT patients, QT dispersion was inversely related to HRV (r=-0.47, p<0.01). The results of the present study demonstrated that SHT is associated with a sympathovagal imbalance, characterized by increased sympathetic activity in the presence of diminished vagal tone, and with an increased inhomogeneity of ventricular recovery times. The assessment of HRV and QT dispersion in patients with SHT may represent a useful tool in monitoring the cardiovascular risk of this condition. Copyright © 2009 Elsevier Masson SAS. All rights reserved.
Impact of Ancillary Subunits on Ventricular Repolarization
Abbott, Geoffrey W.; Xu, Xianghua; Roepke, Torsten K.
2007-01-01
Voltage-gated potassium (Kv) channels generate the outward K+ ion currents that constitute the primary force in ventricular repolarization. Kv channels comprise tetramers of pore-forming α subunits and, in probably the majority of cases in vivo, ancillary or β subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane, and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as α subunits. Cytoplasmic ancillary subunits include the Kvβ subunits, which regulate a range of Kv channels and may link channel gating to redox potential; and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular Ito current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv α subunit subfamilies; and the putative 12-transmembrane domain KCR1 protein which modulates hERG. In some cases, such as the ventricular IKs channel complex, it is well-established that the KCNQ1 α subunit must co-assemble with the MinK (KCNE1) single transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating IKs current. In other cases it is not so clear-cut, and in particular the roles of the other MinK-related proteins (MiRPs 1–4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular IKr) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, e.g. KChIP2 and the epicardial-endocardial Ito current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium. PMID:17993327
Myocyte repolarization modulates myocardial function in aging dogs
Sorrentino, Andrea; Signore, Sergio; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A.; Wunimenghe, Oriyanhan; Michler, Robert E.; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G.; Anversa, Piero; Hintze, Thomas H.
2016-01-01
Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307
Walton, Richard D.; Benson, Alan P.; Hardy, Matthew E. L.; White, Ed; Bernus, Olivier
2013-01-01
Spatial dispersion of repolarization is known to play an important role in arrhythmogenesis. Electrotonic modulation of repolarization by the activation sequence has been observed in some species and tissue preparations, but to varying extents. Our study sought to determine the mechanisms underlying species- and tissue-dependent electrotonic modulation of repolarization in ventricles. Epi-fluorescence optical imaging of whole rat hearts and pig left ventricular wedges were used to assess epicardial spatial activation and repolarization characteristics. Experiments were supported by computer simulations using realistic geometries. Tight coupling between activation times (AT) and action potential duration (APD) were observed in rat experiments but not in pig. Linear correlation analysis found slopes of −1.03 ± 0.59 and −0.26 ± 0.13 for rat and pig, respectively (p < 0.0001). In rat, maximal dispersion of APD was 11.0 ± 3.1 ms but dispersion of repolarization time (RT) was relatively homogeneous (8.2 ± 2.7, p < 0.0001). However, in pig no such difference was observed between the dispersion of APD and RT (17.8 ± 6.1 vs. 17.7 ± 6.5, respectively). Localized elevations of APD (12.9 ± 8.3%) were identified at ventricular insertion sites of rat hearts both in experiments and simulations. Tissue geometry and action potential (AP) morphology contributed significantly to determining influence of electrotonic modulation. Simulations of a rat AP in a pig geometry decreased the slope of AT and APD relationships by 70.6% whereas slopes were increased by 75.0% when implementing a pig AP in a rat geometry. A modified pig AP, shortened to match the rat APD, showed little coupling between AT and APD with greatly reduced slope compared to the rat AP. Electrotonic modulation of repolarization by the activation sequence is especially pronounced in small hearts with murine-like APs. Tissue architecture and AP morphology play an important role in electrotonic modulation of repolarization. PMID:24115934
Electrocardiographic features of sudden unexpected death in epilepsy.
Chyou, Janice Y; Friedman, Daniel; Cerrone, Marina; Slater, William; Guo, Yu; Taupin, Daniel; O'Rourke, Sean; Priori, Silvia G; Devinsky, Orrin
2016-07-01
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of epilepsy-related mortality. We hypothesized that electrocardiography (ECG) features may distinguish SUDEP cases from living subjects with epilepsy. Using a matched case-control design, we compared ECG studies of 12 consecutive cases of SUDEP over 10 years and 22 epilepsy controls matched for age, sex, epilepsy type (focal, generalized, or unknown/mixed type), concomitant antiepileptic, and psychotropic drug classes. Conduction intervals and prevalence of abnormal ventricular conduction diagnosis (QRS ≥110 msec), abnormal ventricular conduction pattern (QRS <110 msec, morphology of incomplete right or left bundle branch block or intraventricular conduction delay), early repolarization, and features of inherited cardiac channelopathies were assessed. Abnormal ventricular conduction diagnosis and pattern distinguished SUDEP cases from matched controls. Abnormal ventricular conduction diagnosis was present in two cases and no controls. Abnormal ventricular conduction pattern was more common in cases than controls (58% vs. 18%, p = 0.04). Early repolarization was similarly prevalent in cases and controls, but the overall prevalence exceeded that of published community-based cohorts. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential
Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio
2001-01-01
The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703
Sung, Derrick; Mills, Robert W; Schettler, Jan; Narayan, Sanjiv M; Omens, Jeffrey H; McCulloch, Andrew D
2003-07-01
Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P < 0.0001) and correspondingly decreased average apparent surface conduction velocity by 16%+/- 7% (P = 0.007). Ventricular loading did not significantly alter action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P < 0.0001). The dispersion of APD20 was decreased with loading from 19 +/- 2 msec to 13 +/- 2 msec (P = 0.024), whereas the dispersion of APD80 was not significantly changed. These electrophysiologic changes with ventricular loading were not affected by the nonspecific stretch-activated channel blocker streptomycin (200 microM) and were not attributable to changes in myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.
Simons, G R; Newby, K H; Kearney, M M; Brandon, M J; Natale, A
1998-02-01
The objective of this study was to assess the safety and efficacy of transvenous low energy cardioversion of atrial fibrillation in patients with ventricular tachycardia and atrial fibrillation and to study the mechanisms of proarrhythmia. Previous studies have demonstrated that cardioversion of atrial fibrillation using low energy, R wave synchronized, direct current shocks applied between catheters in the coronary sinus and right atrium is feasible. However, few data are available regarding the risk of ventricular proarrhythmia posed by internal atrial defibrillation shocks among patients with ventricular arrhythmias or structural heart disease. Atrial defibrillation was performed on 32 patients with monomorphic ventricular tachycardia and left ventricular dysfunction. Shocks were administered during atrial fibrillation (baseline shocks), isoproterenol infusion, ventricular pacing, ventricular tachycardia, and atrial pacing. Baseline shocks were also administered to 29 patients with a history of atrial fibrillation but no ventricular arrhythmias. A total of 932 baseline shocks were administered. No ventricular proarrhythmia was observed after well-synchronized baseline shocks, although rare inductions of ventricular fibrillation occurred after inappropriate T wave sensing. Shocks administered during wide-complex rhythms (ventricular pacing or ventricular tachycardia) frequently induced ventricular arrhythmias, but shocks administered during atrial pacing at identical ventricular rates did not cause proarrhythmia. The risk of ventricular proarrhythmia after well-synchronized atrial defibrillation shocks administered during narrow-complex rhythms is low, even in patients with a history of ventricular tachycardia. The mechanism of proarrhythmia during wide-complex rhythms appears not to be related to ventricular rate per se, but rather to the temporal relationship between shock delivery and the repolarization time of the previous QRS complex.
Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade
NASA Technical Reports Server (NTRS)
Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.
1995-01-01
INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.
Dutta, Sara; Mincholé, Ana; Zacur, Ernesto; Quinn, T. Alexander; Taggart, Peter; Rodriguez, Blanca
2016-01-01
Aims Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. Methods and results A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. Conclusions Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve. PMID:26850675
Peng, Yi; Sun, Zhongwei
2011-01-01
This study is aimed to investigate the nonlinear dynamic properties of the fluctuations in ventricular repolarization, heart rate and their correlation during acute myocardial ischemia. From 13 ECG records in long-term ST-T database, 170 ischemic episodes were selected with the duration of 34 s to 23 min 18 s, and two 5-min episodes immediately before and after each ischemic episode as non-ischemic ones for comparison. QT interval (QTI) and RR interval (RRI) were extracted and the ectopic beats were removed. Recurrence quantification analysis (RQA) was performed on QTI and RRI series, respectively, and cross recurrence quantification analysis (CRQA) on paired normalized QTI and RRI series. Wilcoxon signed-rank test was used for statistical analysis. Results revealed that the RQA indexes for QTI and HRI series had the same changing trend during ischemia with more significantly changed indexes in QTI series. In the CRQA, indexes related to the vertical and horizontal structures in recurrence plot significantly increased, representing decreased dependency of QTI on RRI. Both QTI and RRI series showed reduced complexity during ischemia with higher sensitivity in ventricular repolarization. The weakened coupling between QTI and RRI suggests the decreased influence of sinoatrial node on QTI modulation during ischemia.
Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P
2000-06-01
We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).
Heterogeneity of ventricular repolarization in newborns with intrauterine growth restriction.
Fouzas, Sotirios; Karatza, Ageliki A; Davlouros, Periklis A; Chrysis, Dionisios; Alexopoulos, Dimitrios; Mantagos, Stefanos; Dimitriou, Gabriel
2014-12-01
Intrauterine growth restriction (IUGR) is associated with structural and functional cardiac alterations but the electrophysiological consequences of these disturbances remain unknown. To explore the distribution of ventricular repolarization and its relation to myocardial mechanics in newborns with IUGR. STUDY DESIGN, SUBJECTS AND OUTCOME MEASUREMENTS: Conventional and tissue Doppler echocardiographic data, and electrocardiographic parameters used to describe the distribution of ventricular repolarization (dispersion of QT [QTd] and JT [JTd]), were obtained on the second (D2) and fifth (D5) postnatal day and compared between 25 IUGR newborns and 25 matched-for-gestational age controls. IUGR was associated with relative interventricular septum hypertrophy, increased left ventricular (LV) E/E' ratio and higher LV myocardial performance index (MPI). On both study days, the IUGR infants presented higher QTd and JTd compared to controls (QTd-D2: 66±20 ms vs. 36±12 ms, P<0.001; JTd-D2: 54±13 ms vs. 34±9 ms, P<0.001; QTd-D5: 61±14 ms vs. 27±12 ms, P<0.001; JTd-D5: 54±13 ms vs. 27±9 ms, P<0.001). The association between QTd and LV E/E' (D2: regression coefficient beta 0.747, R(2) 0.585; D5: beta 0.843, R(2) 0.646) and QTd and MPI (D2: beta 0.680, R(2) 0.576; D5: beta 0.698, R(2) 0.650) was also significant (P<0.001 for all analyses). Our findings suggest that IUGR is associated with electrophysiological remodeling of the neonatal heart, a process which is closely related to the underlying alterations in ventricular mechanics and might predispose to adverse electrophysiological events. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)
2003-01-01
INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P < 0.0001) and correspondingly decreased average apparent surface conduction velocity by 16%+/- 7% (P = 0.007). Ventricular loading did not significantly alter action potential duration at 20% repolarization (APD20) but did at 80% repolarization (APD80), from 179 +/- 7 msec to 207 +/- 5 msec (P < 0.0001). The dispersion of APD20 was decreased with loading from 19 +/- 2 msec to 13 +/- 2 msec (P = 0.024), whereas the dispersion of APD80 was not significantly changed. These electrophysiologic changes with ventricular loading were not affected by the nonspecific stretch-activated channel blocker streptomycin (200 microM) and were not attributable to changes in myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.
Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation
Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.
2016-01-01
Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371
Edvardsson, Nils; Aunes, Maria; Frison, Lars; Berggren, Anders R
2016-05-01
The atrial fibrillatory rate (AFR) and the ventricular rate and repolarization (QTcF) were studied at baseline and under the influence of the combined potassium and sodium current blocker AZD7009. Ninety-two patients with atrial fibrillation (AF) were randomized to an intravenous infusion of AZD7009 or placebo. The atrial fibrillatory activity in lead V1 was extracted using spatiotemporal QRST cancellation. The exponential decay (ED) characterized the degree of atrial signal organization. The mean (SD) AFR at baseline was 396 ± 57 (range 253-584) and 410 ± 33 (range 363-469) bpm in patients randomized to AZD7009 and placebo, respectively. The AFR decreased within the first minutes of the AZD7009 infusion and reached its minimum of 235 ± 34 bpm after 18 minutes. On placebo, the AFR was unchanged. On AZD7009, the ED decreased from 1.2 ± 0.3 to reach its lowest level at 0.7 ± 0.2 after 14 minutes. The ventricular rate did not change significantly over time. The AFR was statistically significantly related to the ventricular repolarization at baseline, the QTcF being longer at lower AFR values, and this relationship remained during and after AZD7009. In the full multivariate linear regression model, including age, sex, left ventricular ejection fraction, QRS duration, heart rate, QTcF, AF episode duration, AF history duration, and right atrial or left atrial size, only QTcF and age were statistically significantly correlated with the AFR. The correlation remained when the uncorrected QT interval was used. The QTcF was inversely correlated with AFR, both at baseline and during administration of AZD7009. The AFR was not correlated with the ventricular rate. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gulothungan, G.; Malathi, R.
2018-04-01
Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet is in dysfunction resting potential state in the range -83 mV and ventricular sheet at time 295 ms is goes to 65% dysfunction resting state. Therefore we concluded that shorter APD, instability resting potential and affected calcium induced calcium release (CICR) due to dysfunction Ca2+ channels is potentially have a substantial effect on cardiac contractility and relaxation. Computational study on ventricular tissue AP and its underlying ionic channel currents could help to elucidate possible arrhythmogenic mechanism on a cellular level.
Kolios, Marios; Korantzopoulos, Panagiotis; Vlahos, Antonios P; Kapsali, Eleni; Briasoulis, Evangelos; Goudevenos, John A
2016-10-15
There seems to be a significant arrhythmia burden in β-thalassemia major (TM) patients without overt cardiomyopathy. Apart from conventional electrocardiographic (ECG) and arrhythmic risk markers we studied novel markers of ventricular repolarization and autonomic imbalance both at rest and after exercise testing. We studied 47 adult TM patients without systolic heart failure and 47 age and sex-matched healthy control subjects. The median age of the studied population was 36 [32-43] years, 57% men. Baseline demographic and clinical characteristics were recorded while 12-lead electrocardiograms, 24-hour ECG Holter recordings, and treadmill exercise stress tests were analyzed. TM patients exhibited increased QTc intervals in both 12-lead ECG recordings and in 24-hour Holter recordings. In addition, they had increased indexes of ventricular repolarization heterogeneity such as QT dispersion, and T peak-to-end/QT ratios. Furthermore, TM patients had decreased indexes of heart rate variability while the heart rate recovery after exercise was significantly attenuated compared to controls. Also, they had increased P wave and QRS duration while the QRS fragmentation was very prevalent. Finally, premature atrial extrasystoles and paroxysmal atrial fibrillation episodes were more frequent in TM patients. TM patients with preserved left ventricular systolic function have several ECG abnormalities including alterations in ventricular depolarization and repolarization. Also, cardiac autonomic dysfunction is evident in 24-hour ECG monitoring as well as in the recovery phase after exercise testing. The prognostic value of specific arrhythmic risk indexes in this setting remains to be elucidated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Szél, Tamás; Koncz, István; Antzelevitch, Charles
2013-01-01
Background: Brugada syndrome is an inherited disease associated with vulnerability to ventricular tachycardia and sudden cardiac death in young adults. Milrinone and cilostazol, oral phosphodiesterase (PDE) type III inhibitors, have been shown to increase ICa and modestly increase heart rate by elevating the level of intracellular cyclic AMP. Objective: The present study examines the effectiveness of these PDE inhibitors to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Methods: Action potential (AP) and ECG recordings were obtained from epicardial and endocardial sites of coronary-perfused canine right ventricular wedge preparations. The Ito agonist NS5806 (5 μM) and Ca2+ channel blocker verapamil (2 μM) were used to pharmacologically mimic Brugada phenotype. Results: The combination induced all-or-none repolarization at some epicardial sites but not others, leading to ST-segment elevation as well as an increase in both epicardial and transmural dispersion of repolarization. Under these conditions, phase 2 reentry developed as the epicardial AP dome propagated from sites where it was maintained to sites at which it was lost, generating closely coupled extrasystoles and ventricular tachycardia. Addition of the PDE inhibitor milrinone (2.5 μM) or cilostazol (5-10 μM) to the coronary perfusate restored the epicardial AP dome, reduced dispersion and abolished phase 2 reentry—induced extrasystoles and ventricular tachycardia. Conclusions: Our study identifies milrinone as a more potent alternative to cilostazol for reversing the repolarization defects responsible for the electrocardiographic and arrhythmic manifestations of Brugada syndrome. Both drugs normalize ST segment elevation, and suppress arrhythmogenesis in experimental models of Brugada syndrome. PMID:23911896
NASA Astrophysics Data System (ADS)
Caiani, Enrico G.; Pellegrini, Alessandro; Bolea, Juan; Sotaquira, Miguel; Almeida, Rute; Vaïda, Pierre
2013-10-01
The study of QT/RR relationship is important for the clinical evaluation of possible risk of acquired or congenital ventricular tachyarrhythmias. In the hypothesis that microgravity exposure could induce changes in the repolarization mechanisms, our aim was to test if a short 5-days strict 6° head-down bed-rest (HDBR) could induce alterations in the QT/RR relationship and spatial repolarization heterogeneity. Twenty-two healthy men (mean age 31±6) were enrolled as part of the European Space Agency HDBR studies. High fidelity (1000 Hz) 24 h Holter ECG (12-leads, Mortara Instrument) was acquired before (PRE), the last day of HDBR (HDT5), and four days after its conclusion (POST). The night period (23:00-06:30) was selected for analysis. X, Y, Z leads were derived and the vectorcardiogram computed. Selective beat averaging was used to obtain averages of P-QRS-T complexes preceded by the same RR (10 ms bin amplitude, in the range 900-1200 ms). For each averaged waveform (i.e., one for each bin), T-wave maximum amplitude (Tmax), T-wave area (Tarea), RTapex, RTend, ventricular gradient (VG) magnitude and spatial QRS-T angle were computed. Non-parametric Friedman test was applied. Compared to PRE, at HDT5 both RTapex and RTend resulted shortened (-4%), with a decrease in T-wave amplitude (-8%) and area (-13%). VG was diminished by 10%, and QRS-T angle increased by 14°. At POST, QT duration and area parameters, as well as QRS-T angle were restored while Tmax resulted larger than PRE (+5%) and VG was still decreased by 3%. Also, a marked loss in strength of the linear regression with RR was found at HDT5 in Tmax and Tarea, that could represent a new dynamic marker of increased risk for life-threatening arrhythmias. Despite the short-term HDBR, ventricular repolarization during the night period was affected. This should be taken into account in astronauts for risk assessment during space flight.
Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition
Xiao, Ling; Koopmann, Tamara T.; Ördög, Balázs; Postema, Pieter G.; Verkerk, Arie O.; Iyer, Vivek; Sampson, Kevin J.; Boink, Gerard J.J.; Mamarbachi, Maya A.; Varro, Andras; Jordaens, Luc; Res, Jan; Kass, Robert S.; Wilde, Arthur A.; Bezzina, C.R.; Nattel, Stanley
2015-01-01
Rationale A chromosomal haplotype producing cardiac overexpression of dipeptidyl peptidase-like protein-6 (DPP6) causes familial idiopathic ventricular fibrillation. The molecular basis of transient outward current (Ito) in Purkinje fibers (PFs) is poorly understood. We hypothesized that DPP6 contributes to PF Ito and that its overexpression might specifically alter PF Ito properties and repolarization. Objective To assess the potential role of DPP6 in PF Ito. Methods and Results Clinical data in 5 idiopathic ventricular fibrillation patients suggested arrhythmia origin in the PF-conducting system. PF and ventricular muscle Ito had similar density, but PF Ito differed from ventricular muscle in having tetraethylammonium sensitivity and slower recovery. DPP6 overexpression significantly increased, whereas DPP6 knockdown reduced, Ito density and tetraethylammonium sensitivity in canine PF but not in ventricular muscle cells. The K+-channel interacting β-subunit K+-channel interacting protein type-2, essential for normal expression of Ito in ventricular muscle, was weakly expressed in human PFs, whereas DPP6 and frequenin (neuronal calcium sensor-1) were enriched. Heterologous expression of Kv4.3 in Chinese hamster ovary cells produced small Ito; Ito amplitude was greatly enhanced by coexpression with K+-channel interacting protein type-2 or DPP6. Coexpression of DPP6 with Kv4.3 and K+-channel interacting protein type-2 failed to alter Ito compared with Kv4.3/K+-channel interacting protein type-2 alone, but DPP6 expression with Kv4.3 and neuronal calcium sensor-1 (to mimic PF Ito composition) greatly enhanced Ito compared with Kv4.3/neuronal calcium sensor-1 and recapitulated characteristic PF kinetic/pharmacological properties. A mathematical model of cardiac PF action potentials showed that Ito enhancement can greatly accelerate PF repolarization. Conclusions These results point to a previously unknown central role of DPP6 in PF Ito, with DPP6 gain of function selectively enhancing PF current, and suggest that a DPP6-mediated PF early-repolarization syndrome might be a novel molecular paradigm for some forms of idiopathic ventricular fibrillation. PMID:23532596
Identification of local myocardial repolarization time by bipolar electrode potential.
Namba, Tsunetoyo; Todo, Takahiro; Yao, Takenori; Ashihara, Takashi; Haraguchi, Ryo; Nakazawa, Kazuo; Ikeda, Takanori; Ohe, Tohru
2007-01-01
The aim of this study was to investigate whether bipolar electrode potentials (BEPs) reflect local myocardial repolarization dynamics, using computer simulation. Simulated action potential and BEP mapping of myocardial tissue during fibrillation was performed. The BEP was modified to make all the fluctuations have the same polarity. Then, the modified BEP (mBEP) was transformed to "dynamic relative amplitude" (DRA) designed to make all the fluctuations have the similar amplitude. The repolarization end point corresponded to the end of the repolarization-related small fluctuation that clearly appeared in the DRA of mBEP. Using the DRA of mBEP, we could reproduce the repolarization dynamics in the myocardial tissue during fibrillation. The BEP may facilitate identifying the repolarization time. Furthermore, BEP mapping has the possibility that it would be available for evaluating repolarization behavior in myocardial tissue even during fibrillation. The accuracy of activation-recovery interval was also reconfirmed.
Karashima, Shigehiro; Tsuda, Toyonobu; Wakabayashi, Yusuke; Kometani, Mitsuhiro; Demura, Masashi; Ichise, Taro; Kawashiri, Masa-Aki; Takeda, Yoshiyu; Hayashi, Kenshi; Yoneda, Takashi
2018-02-01
A J wave is a common electrocardiographic finding in the general population. Individuals with prominent J waves in multiple electrocardiogram (ECG) leads have a higher risk of lethal arrhythmias than those with low-amplitude J waves. There are few reports about the relationship between thyroid function and J-wave amplitude. We report the case of a 45-year-old man who had unexpected ventricular fibrillation (VF). He had dynamic J-point elevation in multiple ECG leads. Possible early repolarization syndrome was diagnosed. He also had thyrotoxicosis caused by silent thyroiditis, and his J-wave amplitude decreased according to changes in thyroid function because of spontaneous remission of silent thyroiditis. There was a positive correlation between serum triiodothyronine levels and J-wave amplitudes. The findings in case suggested silent thyroiditis may contribute to the occurrence of VF in a patient with dynamic changes in J-point elevation in multiple ECG leads. Thyrotoxicosis is a relatively common endocrine disease; therefore, clinicians should pay attention to J-wave amplitude in the ECG of patients with thyrotoxicosis.
Szél, Tamás; Koncz, István; Antzelevitch, Charles
2013-11-01
Brugada syndrome is an inherited disease associated with vulnerability to ventricular tachycardia and sudden cardiac death in young adults. Milrinone and cilostazol, oral phosphodiesterase (PDE) type III inhibitors, have been shown to increase L-type calcium channel current (ICa) and modestly increase heart rate by elevating the level of intracellular cyclic adenosine monophosphate. To examine the effectiveness of these PDE inhibitors to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Action potential (AP) and electrocardiographic recordings were obtained from epicardial and endocardial sites of coronary-perfused canine right ventricular wedge preparations. The Ito agonist NS5806 (5 μM) and Ca(2+) channel blocker verapamil (2 μM) were used to pharmacologically mimic Brugada phenotype. The combination induced all-or-none repolarization at some epicardial sites but not others, leading to ST-segment elevation as well as an increase in both epicardial and transmural dispersion of repolarization. Under these conditions, phase 2 reentry developed as the epicardial AP dome propagated from sites where it was maintained to sites at which it was lost, generating closely coupled extrasystoles and ventricular tachycardia. The addition of the PDE inhibitor milrinone (2.5 μM) or cilostazol (5-10 μM) to the coronary perfusate restored the epicardial AP dome, reduced dispersion, and abolished phase 2 reentry-induced extrasystoles and ventricular tachycardia. Our study identifies milrinone as a more potent alternative to cilostazol for reversing the repolarization defects responsible for the electrocardiographic and arrhythmic manifestations of Brugada syndrome. Both drugs normalize ST-segment elevation and suppress arrhythmogenesis in experimental models of Brugada syndrome. © 2013 Heart Rhythm Society. All rights reserved.
2018-01-01
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates. PMID:29352276
Osadchii, Oleg E
2018-01-01
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates.
NASA Technical Reports Server (NTRS)
Estes, N. A. 3rd; Michaud, G.; Zipes, D. P.; El-Sherif, N.; Venditti, F. J.; Rosenbaum, D. S.; Albrecht, P.; Wang, P. J.; Cohen, R. J.
1997-01-01
This investigation was performed to evaluate the feasibility of detecting repolarization alternans with the heart rate elevated with a bicycle exercise protocol. Sensitive spectral signal-processing techniques are able to detect beat-to-beat alternation of the amplitude of the T wave, which is not visible on standard electrocardiogram. Previous animal and human investigations using atrial or ventricular pacing have demonstrated that T-wave alternans is a marker of vulnerability to ventricular arrhythmias. Using a spectral analysis technique incorporating noise reduction signal-processing software, we evaluated electrical alternans at rest and with the heart rate elevated during a bicycle exercise protocol. In this study we defined optimal criteria for electrical alternans to separate patients from those without inducible arrhythmias. Alternans and signal-averaged electrocardiographic results were compared with the results of vulnerability to ventricular arrhythmias as defined by induction of sustained ventricular tachycardia or fibrillation at electrophysiologic evaluation. In 27 patients alternans recorded at rest and with exercise had a sensitivity of 89%, specificity of 75%, and overall clinical accuracy of 80% (p <0.003). In this patient population the signal-averaged electrocardiogram was not a significant predictor of arrhythmia vulnerability. This is the first study to report that repolarization alternans can be detected with heart rate elevated with a bicycle exercise protocol. Alternans measured using this technique is an accurate predictor of arrhythmia inducibility.
Porter, Bradley; van Duijvenboden, Stefan; Bishop, Martin J.; Orini, Michele; Claridge, Simon; Gould, Justin; Sieniewicz, Benjamin J.; Sidhu, Baldeep; Razavi, Reza; Rinaldi, Christopher A.; Gill, Jaswinder S.; Taggart, Peter
2018-01-01
Background: The temporal pattern of ventricular repolarization is of critical importance in arrhythmogenesis. Enhanced beat-to-beat variability (BBV) of ventricular action potential duration (APD) is pro-arrhythmic and is increased during sympathetic provocation. Since sympathetic nerve activity characteristically exhibits burst patterning in the low frequency range, we hypothesized that physiologically enhanced sympathetic activity may not only increase BBV of left ventricular APD but also impose a low frequency oscillation which further increases repolarization instability in humans. Methods and Results: Heart failure patients with cardiac resynchronization therapy defibrillator devices (n = 11) had activation recovery intervals (ARI, surrogate for APD) recorded from left ventricular epicardial electrodes alongside simultaneous non-invasive blood pressure and respiratory recordings. Fixed cycle length was achieved by right ventricular pacing. Recordings took place during resting conditions and following an autonomic stimulus (Valsalva). The variability of ARI and the normalized variability of ARI showed significant increases post Valsalva when compared to control (p = 0.019 and p = 0.032, respectively). The oscillatory behavior was quantified by spectral analysis. Significant increases in low frequency (LF) power (p = 0.002) and normalized LF power (p = 0.019) of ARI were seen following Valsalva. The Valsalva did not induce changes in conduction variability nor the LF oscillatory behavior of conduction. However, increases in the LF power of ARI were accompanied by increases in the LF power of systolic blood pressure (SBP) and the rate of systolic pressure increase (dP/dtmax). Positive correlations were found between LF-SBP and LF-dP/dtmax (rs = 0.933, p < 0.001), LF-ARI and LF-SBP (rs = 0.681, p = 0.001) and between LF-ARI and LF-dP/dtmax (rs = 0.623, p = 0.004). There was a strong positive correlation between the variability of ARI and LF power of ARI (rs = 0.679, p < 0.001). Conclusions: In heart failure patients, physiological sympathetic provocation induced low frequency oscillation (~0.1 Hz) of left ventricular APD with a strong positive correlation between the LF power of APD and the BBV of APD. These findings may be of importance in mechanisms underlying stability/instability of repolarization and arrhythmogenesis in humans. PMID:29670531
Protonotarios, Alexandros; Patrianakos, Alexandros; Spanoudaki, Elpida; Kochiadakis, Georgios; Michalodimitrakis, Emmanouel; Vardas, Panagiotis
2013-01-01
Left-dominant arrhythmogenic cardiomyopathy is a subtype of arrhythmogenic right ventricular cardiomyopathy characterized by early predominant left ventricular involvement. Α 34-year-old man presented with palpitations and a history of frequent ventricular extrasystoles of both LBBB and RBBB configuration. Cardiac workup revealed repolarization abnormalities at infero-lateral leads in the absence of diagnostic structural/functional alterations or obstructive coronary artery disease. Six months later he died suddenly. Histopathology was diagnostic for arrhythmogenic right ventricular cardiomyopathy affecting predominantly the left ventricle at subepicardial/midwall myocardial layers. Thus, ventricular arrhythmias accompanied by unexplained infero-lateral T-wave inversion should warn of a possible morbid association underlying left-dominant arrhythmogenic cardiomyopathy. Copyright © 2013 Elsevier Inc. All rights reserved.
Schmidleitner, Christina; Arzt, Michael; Tafelmeier, Maria; Ripfel, Sarah; Fauser, Miriam; Weizenegger, Teresa; Flörchinger, Bernhard; Camboni, Daniele; Wittmann, Sigrid; Zeman, Florian; Schmid, Christof; Maier, Lars S; Wagner, Stefan; Fisser, Christoph
2018-02-01
The development of malignant ventricular arrhythmias due to abnormal cardiac repolarization is a major complication after coronary artery bypass graft surgery (CABG). Sleep-disordered breathing (SDB) is linked to prolonged cardiac repolarization in non-surgical patients. This study evaluates cardiac repolarization in patients with and without SDB who underwent CABG. 100 patients who had received CABG (84% men, age 68 ± 10 years, body-mass-index [BMI] 28.7 ± 4.2 kg/m 2 ) were retrospectively evaluated. Polygraphy was recorded the night before CABG. SDB was defined as an apnea-hypopnea index (AHI) of ≥15/h and differentiated into central (CSA) and obstructive (OSA) sleep apnea. Cardiac repolarization was assessed by means of T-peak-to-end (TpTe) and QTc-intervals and TpTe/QT-ratios derived from 12-lead electrocardiography (ECG). 37% of patients had SDB, 14% CSA and 23% OSA. Before CABG, patients with CSA and OSA had longer TpTe intervals than those without SDB (TpTe: CSA 100 ± 26 vs. OSA 97 ± 19 vs. no SDB 85 ± 14 ms, p = 0.013). QTc intervals and TpTe/QT ratios differed between the two groups (QTc: 444 ± 54 vs. 462 ± 36 vs. 421 ± 32 ms, p < 0.001; TpTe/QT ratio: 0.24 ± 0.04 vs. 0.23 ± 0.05 vs. 0.21 ± 0.03, p = 0.045). SDB was associated with abnormal cardiac repolarization independent of known risk factors for cardiac arrhythmias, such as age, sex, BMI, N-terminal-pro-brain-natriuretic-peptide (NT-proBNP), and heart failure (TpTe: B-coefficient [95%CI]: 16.0, [7.6-24.3], p < 0.001; QTc: 27.2 [9.3-45.1], p = 0.003; TpTe/QT ratio: 2.9 [1.2-4.6], p < 0.001). Independent of known risk factors for cardiac arrhythmias, SDB was significantly associated with abnormal cardiac repolarization before CABG. Data suggest that SDB may contribute to an increased risk of ventricular arrhythmias after CABG. Copyright © 2018 Elsevier B.V. All rights reserved.
Romero, Daniel; Ringborn, Michael; Demidova, Marina; Koul, Sasha; Laguna, Pablo; Platonov, Pyotr G; Pueyo, Esther
2012-12-01
In this study, several electrocardiogram (ECG)-derived indices corresponding to both ventricular depolarization and repolarization were evaluated during acute myocardial ischemia in an experimental model of myocardial infarction produced by 40 min coronary balloon inflation in 13 pigs. Significant changes were rapidly observed from minute 4 after the start of coronary occlusion, achieving their maximum values between 11 and 22 min for depolarization and between 9 and 12 min for repolarization indices, respectively. Subsequently, these maximum changes started to decrease during the latter part of the occlusion. Depolarization changes associated with the second half of the QRS complex showed a significant but inverse correlation with the myocardium at risk (MaR) estimated by scintigraphic images. The correlation between MaR and changes of the downward slope of the QRS complex, [Formula: see text], evaluated at the two more relevant peaks observed during the occlusion, was r = -0.75, p < 0.01 and r = -0.79, p < 0.01 for the positive and negative deflections observed in [Formula: see text], temporal evolution, respectively. Repolarization changes, analyzed by evaluation of ST segment elevation at the main observed positive peak, also showed negative, however non-significant correlation with MaR: r = -0.34, p = 0.28. Our results suggest that changes evaluated in the latter part of the depolarization, such as those described by [Formula: see text], which are influenced by R-wave amplitude, QRS width and ST level variations simultaneously, correlate better with the amount of ischemia than other indices evaluated in the earlier part of depolarization or during the ST segment.
Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.
Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S
2016-09-01
Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and suggest that the optimal time to assess potentially transcriptionally mediated physiologic effects will be delayed relative to an epigenetic drug's Tmax/Cmax. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Andrews, Christopher M; Srinivasan, Neil T; Rosmini, Stefania; Bulluck, Heerajnarain; Orini, Michele; Jenkins, Sharon; Pantazis, Antonis; McKenna, William J; Moon, James C; Lambiase, Pier D; Rudy, Yoram
2017-07-01
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a significant cause of sudden cardiac death in the young. Improved noninvasive assessment of ARVC and better understanding of the disease substrate are important for improving patient outcomes. We studied 20 genotyped ARVC patients with a broad spectrum of disease using electrocardiographic imaging (a method for noninvasive cardiac electrophysiology mapping) and advanced late gadolinium enhancement cardiac magnetic resonance scar imaging. Compared with 20 healthy controls, ARVC patients had longer ventricular activation duration (median, 52 versus 42 ms; P =0.007) and prolonged mean epicardial activation-recovery intervals (a surrogate for local action potential duration; median, 275 versus 241 ms; P =0.014). In these patients, we observed abnormal and varied epicardial activation breakthrough locations and regions of nonuniform conduction and fractionated electrograms. Nonuniform conduction and fractionated electrograms were present in the early concealed phase of ARVC. Electrophysiological abnormalities colocalized with late gadolinium enhancement scar, indicating a relationship with structural disease. Premature ventricular contractions were common in ARVC patients with variable initiation sites in both ventricles. Premature ventricular contraction rate increased with exercise, and within anatomic segments, it correlated with prolonged repolarization, electric markers of scar, and late gadolinium enhancement (all P <0.001). Electrocardiographic imaging reveals electrophysiological substrate properties that differ in ARVC patients compared with healthy controls. A novel mechanistic finding is the presence of repolarization abnormalities in regions where ventricular ectopy originates. The results suggest a potential role for electrocardiographic imaging and late gadolinium enhancement in early diagnosis and noninvasive follow-up of ARVC patients. © 2017 American Heart Association, Inc.
Leptin decreases heart rate associated with increased ventricular repolarization via its receptor.
Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H; Hull, Robert; Davis, Mary; Yu, Han-Gang
2015-11-15
Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1-30 μg/kg) decreased resting heart rate; at high doses (150-300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03-0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. Copyright © 2015 the American Physiological Society.
Leptin decreases heart rate associated with increased ventricular repolarization via its receptor
Lin, Yen-Chang; Huang, Jianying; Hileman, Stan; Martin, Karen H.; Hull, Robert; Davis, Mary
2015-01-01
Leptin has been proposed to modulate cardiac electrical properties via β-adrenergic receptor activation. The presence of leptin receptors and adipocytes in myocardium raised a question as to whether leptin can directly modulate cardiac electrical properties such as heart rate and QT interval via its receptor. In this work, the role of local direct actions of leptin on heart rate and ventricular repolarization was investigated. We identified the protein expression of leptin receptors at cell surface of sinus node, atrial, and ventricular myocytes isolated from rat heart. Leptin at low doses (0.1–30 μg/kg) decreased resting heart rate; at high doses (150–300 μg/kg), leptin induced a biphasic effect (decrease and then increase) on heart rate. In the presence of high-dose propranolol (30 mg/kg), high-dose leptin only reduced heart rate and sometimes caused sinus pauses and ventricular tachycardia. The leptin-induced inhibition of resting heart rate was fully reversed by leptin antagonist. Leptin also increased heart rate-corrected QT interval (QTc), and leptin antagonist did not. In isolated ventricular myocytes, leptin (0.03–0.3 μg/ml) reversibly increased the action potential duration. These results supported our hypothesis that in addition to indirect pathway via sympathetic tone, leptin can directly decrease heart rate and increase QT interval via its receptor independent of β-adrenergic receptor stimulation. During inhibition of β-adrenergic receptor activity, high concentration of leptin in myocardium can cause deep bradycardia, prolonged QT interval, and ventricular arrhythmias. PMID:26408544
Patocskai, Bence; Barajas-Martinez, Hector; Hu, Dan; Gurabi, Zsolt; Koncz, István; Antzelevitch, Charles
2016-01-01
Background Early Repolarization Syndrome (ERS) is associated with polymorphic ventricular tachycardia (PVT) and fibrillation (VF), leading to sudden cardiac death. Objective The present study tests the hypothesis that the Ito-blocking effect of phosphodiesterase-3 (PDE-3) inhibitors plays a role in reversing repolarization heterogeneities responsible for arrhythmogenesis in experimental models of ERS. Methods Transmembrane action potentials (AP) were simultaneously recorded from epicardial and endocardial regions of coronary-perfused canine left-ventricular (LV) wedge preparations, together with a transmural pseudo-ECG. The Ito-agonist NS5806 (7–15 μM) and ICa-blocker verapamil (2–3 uM) were used to induce an ER pattern and PVT. Results Following stable induction of arrhythmogenesis, the PDE-3 inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All were effective in restoring the AP dome in the LV epicardium, thus abolishing the repolarization defects responsible for phase-2-reentry (P2R) and PVT. Arrhythmic activity was suppressed in 7/8 preparations by cilostazol (10 μM), 6/7 by milrinone (2.5 μM) and 7/8 by isoproterenol (0.1–1μM). Using voltage clamp techniques applied to LV epicardial myocytes, both cilostazol (10 μM) and milrinone (2.5 μM) were found to reduce Ito by 44.4% and 40.4%, respectively, in addition to their known effects to augment ICa. Conclusions Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting of ERS by producing an inward shift in the balance of current in the early phases of the epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing the repolarization defects underlying development of P2R and VT/VF. PMID:26820510
Fan, Ling; Chen, Li-Feng; Fan, Jing
2017-12-01
To investigate the electrophysiological changes of autonomic cells in left ventricular outflow tract in guinea pigs with iron deficiency anemia complicated with chronic heart failure. Guinea pigs model of iron deficiency anemia complicated with chronic heart failure in 10 guinea pigs of the experimental group was made by feeding a low iron diet, pure water and subcutaneous injection of isoproterenol. The control group consisting of 11 guinea pigs was given normal food, normal water and injected with normal saline. The left ventricular outflow tract model specimen was also prepared. The standard microelectrode technique was used to observe electrophysiological changes of autonomic cells in the outflow tract of left ventricular heart failure complicated with iron deficiency anemia in guinea pig model. The indicators of observation were maximal diastolic potential, action potential amplitude, 0 phase maximal depolarization velocity, 4 phase automatic depolarization velocity, repolarization 50% and 90%, and spontaneous discharge frequency. Compared with the control group, 4 phase automatic depolarization velocity, spontaneous discharge frequency and 0 phase maximal depolarization velocity decreased significantly (P < 0.01) and action potential amplitude reduced (P < 0.01) in model group. Moreover, repolarization 50% and 90% increased (P < 0.01). There are electrophysiological abnormalities of the left ventricular outflow tract in guinea pigs with iron deficiency anemia complicated with heart failure. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Tomek, Jakub; Rodriguez, Blanca; Bub, Gil; Heijman, Jordi
2017-08-01
The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca 2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca 2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca 2+ load] modulation of SR Ca 2+ release as critical determinants of Ca 2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca 2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca 2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/%CE%B2-ar-stimulation-and-alternans-in-border-zone-cardiomyocytes/. Copyright © 2017 the American Physiological Society.
Rivera-Torres, José; Calvo, Conrado J; Llach, Anna; Guzmán-Martínez, Gabriela; Caballero, Ricardo; González-Gómez, Cristina; Jiménez-Borreguero, Luis J; Guadix, Juan A; Osorio, Fernando G; López-Otín, Carlos; Herraiz-Martínez, Adela; Cabello, Nuria; Vallmitjana, Alex; Benítez, Raul; Gordon, Leslie B; Jalife, José; Pérez-Pomares, José M; Tamargo, Juan; Delpón, Eva; Hove-Madsen, Leif; Filgueiras-Rama, David; Andrés, Vicente
2016-11-15
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24 -/- mouse model of HGPS. Challenge of Zmpste24 -/- mice with the β-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24 -/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24 -/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.
Tao, Wen; Shi, Jianjian; Dorn, Gerald W.; Wei, Lei; Rubart, Michael
2012-01-01
Pathological left ventricular hypertrophy (LVH) is consistently associated with prolongation of the ventricular action potentials. A number of previous studies, employing various experimental models of hypertrophy, have revealed marked differences in the effects of hypertrophy on action potential duration (APD) between myocytes from endocardial and epicardial layers of the LV free wall. It is not known, however, whether pathological LVH is also accompanied by redistribution of APD among myocytes from the same layer in the LV free wall. In the experiments here, LV epicardial action potential remodeling was examined in a mouse model of decompensated LVH, produced by cardiac-restricted transgenic Gαq overexpression. Confocal linescanning-based optical recordings of propagated action potentials from individual in situ cardiomyocytes across the outer layer of the anterior LV epicardium demonstrated spatially non-uniform action potential prolongation in transgenic hearts, giving rise to alterations in spatial dispersion of epicardial repolarization. Local density and distribution of anti-Cx43 mmune reactivity in Gαq hearts were unchanged compared to wild-type hearts, suggesting preservation of intercellular coupling. Confocal microscopy also revealed heterogeneous disorganization of T-tubules in epicardial cardiomyocytes in situ. These data provide evidence of the existence of significant electrical and structural heterogeneity within the LV epicardial layer of hearts with transgenic Gαq overexpression-induced hypertrophy, and further support the notion that a small portion of electrically well connected LV tissue can maintain dispersion of action potential duration through heterogeneity in the activities of sarcolemmal ionic currents that control repolarization. It remains to be examined whether other experimental models of pathological LVH, including pressure overload LVH, similarly exhibit alterations in T-tubule organization and/or dispersion of repolarization within distinct layers of LV myocardium. PMID:22728217
Ghosh, Subham; Rhee, Edward K; Avari, Jennifer N; Woodard, Pamela K; Rudy, Yoram
2008-08-26
Cardiac memory refers to a change in ventricular repolarization induced by and persisting for minutes to months after cessation of a period of altered ventricular activation (eg, resulting from pacing or preexcitation in patients with Wolff-Parkinson-White syndrome). ECG imaging (ECGI) is a novel imaging modality for noninvasive electroanatomic mapping of epicardial activation and repolarization. Fourteen pediatric patients with Wolff-Parkinson-White syndrome and no other congenital disease, were imaged with ECGI a day before and 45 minutes, 1 week, and 1 month after successful catheter ablation. ECGI determined that preexcitation sites were consistent with sites of successful ablation in all cases to within a 1-hour arc of each atrioventricular annulus. In the preexcited rhythm, activation-recovery interval (ARI) was the longest (349+/-6 ms) in the area of preexcitation leading to high average base-to-apex ARI dispersion of 95+/-9 ms (normal is approximately 40 ms). The ARI dispersion remained the same 45 minutes after ablation, although the activation sequence was restored to normal. ARI dispersion was still high (79+/-9 ms) 1 week later and returned to normal (45+/-6 ms) 1 month after ablation. The study demonstrates that ECGI can noninvasively localize ventricular insertion sites of accessory pathways to guide ablation and evaluate its outcome in pediatric patients with Wolff-Parkinson-White syndrome. Wolff-Parkinson-White is associated with high ARI dispersion in the preexcited rhythm that persists after ablation and gradually returns to normal over a period of 1 month, demonstrating the presence of cardiac memory. The 1-month time course is consistent with transcriptional reprogramming and remodeling of ion channels.
Osadchii, O E
2012-08-01
Endocardial pacing instituted to treat symptomatic bradycardia may nevertheless promote tachyarrhythmia in some pacemaker-implanted patients. We sought to determine the contributing electrophysiological mechanisms. Left ventricular (LV) monophasic action potential duration (APD(90)) and effective refractory periods were determined in perfused guinea-pig hearts along with volume-conducted ECG recordings during epicardial and endocardial stimulations. Consistent with electrotonic modulation of repolarization, APD(90) at a given (either epicardial or endocardial) recording site tended to be longer while pacing from the ipsilateral LV site as compared to stimulations applied at the opposite side of ventricular wall. As a result, the intrinsic transmural repolarization gradient was amplified during endocardial pacing while being significantly reduced upon epicardial stimulations. The maximum slope of APD(90) restitution was greater upon endocardial than epicardial pacing. The excitability was found to recur at earlier repolarization time point at endocardium than epicardium, thereby contributing to increased endocardial critical intervals for re-excitation. Premature extrasystolic beats could have been elicited at shorter coupling stimulation intervals and propagated with greater transmural conduction delay upon endocardial than epicardial stimulations. Endocardial site exhibited lower ventricular fibrillation thresholds and greater inducibility of tachyarrhythmia upon extrasystolic stimulations as compared to epicardium. Arrhythmic susceptibility in guinea-pig heart is greater during endocardial than epicardial pacing because of greater transmural APD(90) dispersion, steeper electrical restitution slopes, greater critical intervals for LV re-excitation and slower transmural conduction of the earliest premature ectopic beats. Further studies are warranted to determine whether these effects may contribute to proarrhythmia in paced human patients. © 2012 The Author Acta Physiologica © 2012 Scandinavian Physiological Society.
Estrogen Contributes to Gender Differences in Mouse Ventricular Repolarization
Saito, Tomoaki; Ciobotaru, Andrea; Bopassa, Jean Chrisostome; Toro, Ligia; Stefani, Enrico; Eghbali, Mansoureh
2010-01-01
Rationale Fast-transient outward K+ (Ito,f) and ultra-rapid delayed rectifier K+ currents (IKur or IK,slow) contribute to mouse cardiac repolarization. Gender studies on these currents have reported conflicting results. Objective One key missing piece information in these studies is the animals’ estral stage. We decided to revisit gender-related differences in K+ currents, taking into consideration the females’ estral stage. Methods and Results We hypothesized that changes in estrogen levels during the estral cycle could play a role in determining the densities of K+ currents underlying ventricular repolarization. Peak total K+ current (IK,total) densities (pA/pF, at +40 mV) were much higher in males (48.6±3.0) than in females at estrus (27.2±2.3) but not at diestrus-2 (39.1±3.4). Underlying this change, Ito,f and IK,slow were lower in females at estrus vs males and diestrus-2 (IK,slow: male 21.9±1.8, estrus 14.6±0.6, diestrus-2 20.3±1.4; Ito,f: male 26.8±1.9, estrus 14.9±1.6, diestrus-2 22.1±2.1). The lower IK,slow in estrus was only due to IK,slow1 reduction without changes of IK,slow2. Estrogen treatment of ovariectomized mice decreased IK,total (46.4±3.0 to 28.4±1.6), Ito,f (26.6±1.6 to 12.8±1.0) and IK,slow (22.2±1.6 to 17.2±1.4). Transcript levels of Kv4.3 and Kv1.5 (underlying Ito,f and IK,slow, respectively) were lower in estrus vs. diestrus-2 and male. In ovariectomized mice, estrogen treatment resulted in downregulation of Kv4.3 and Kv1.5, but not Kv4.2, KChIP2 and Kv2.1 transcripts. K+ current reduction in high estrogenic conditions were associated with prolongation of the action potential duration and corrected QT interval. Conclusion Downregulation of Kv4.3 and Kv1.5 transcripts by estrogen are one mechanism defining gender-related differences in mouse ventricular repolarization. PMID:19608983
Prolonged Tp-e Interval in Down Syndrome Patients with Congenitally Normal Hearts.
Kucuk, Mehmet; Karadeniz, Cem; Ozdemir, Rahmi; Meşe, Timur
2018-03-25
Heterogeneity of ventricular repolarization has been assessed by using the QT dispersion in Down syndrome (DS) patients with congenitally normal hearts. However, novel repolarization indexes, the Tp-e interval and Tp-e/QT ratio, have not previously been evaluated in these patients. The aim of this study was to evaluate the Tp-e interval and Tp-e/QT ratio in DS patients without congenital heart defects. Twelve-lead surface electrocardiograms of 160 DS patients and 110 age- and sex-matched healthy controls were used to evaluate and compare the Tp-e interval, Tp-e dispersion, and Tp-e/QT ratio. Heart rate, Tp-e interval, Tp-e dispersion, Tp-e/QT and Tp-e/QTc ratios were significantly higher in DS group than in the controls. Myocardial repolarization indexes in DS patients with congenitally normal hearts were found to be prolonged compared to those in normal controls. Further evaluation is warranted to reveal a relationship between prolonged repolarization indexes and arrhythmic events in these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V.; Antzelevitch, Charles
2014-01-01
Background Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome (ERS) and examines the effectiveness of quinidine, cilostazol and milrinone to prevent hypothermia-induced arrhythmias. Method and Results Transmembrane action potentials (AP) were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left-ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3–10 µM) and verapamil (1µM) was used to pharmacologically model the genetic mutations responsible for ERS. Acetylcholine (3µM) was used to simulate increased parasympathetic tone, which is known to promote ER. In control, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J wave area on the ECG and accentuated epicardial AP notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial AP notch, leading to loss of the AP dome at some sites but not others, thus creating the substrate for development of phase-2-reentry and VT/VF. Addition of the Ito antagonist quinidine (5 µM) or the phosphodiesterase III inhibitors cilostazol (10 µM) or milrinone (5 µM), diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Conclusions Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase-2-reentry. Quinidine, cilostazol and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities. PMID:24429494
Derivation of Human Induced Pluripotent Stem (iPS) Cells to Heritable Cardiac Arrhythmias
2017-08-10
Inherited Cardiac Arrythmias; Long QT Syndrome (LQTS); Brugada Syndrome (BrS); Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); Early Repolarization Syndrome (ERS); Arrhythmogenic Cardiomyopathy (AC, ARVD/C); Hypertrophic Cardiomyopathy (HCM); Dilated Cardiomyopathy (DCM); Muscular Dystrophies (Duchenne, Becker, Myotonic Dystrophy); Normal Control Subjects
Nomura, Hiroaki; Nakamura, Yuji; Cao, Xin; Honda, Atsushi; Katagi, Jun; Ohara, Hiroshi; Izumi-Nakaseko, Hiroko; Satoh, Yoshioki; Ando, Kentaro; Sugiyama, Atsushi
2015-08-15
Cardiovascular effects of a highly selective prostaglandin E2 type 4 (EP4) receptor agonist ONO-AE1-329 were assessed with the halothane-anesthetized dogs (n=6). ONO-AE1-329 was intravenously infused in three escalating doses of 0.3, 1 and 3ng/kg/min for 10min with a pause of 20min between the doses. The low dose of 0.3ng/kg/min significantly increased maximum upstroke velocity of left ventricular pressure by 18% at 20min, indicating increase of ventricular contractility. The middle dose of 1ng/kg/min significantly decreased total peripheral resistance by 24% and left ventricular end-diastolic pressure by 32% at 10min, indicating dilation of arteriolar resistance vessels and venous capacitance ones, respectively; and increased cardiac output by 25% at 10min in addition to the change induced by the low dose. The high dose of 3ng/kg/min increased heart rate by 34% at 10min; decreased mean blood pressure by 14% at 10min and atrioventricular nodal conduction time by 13% at 5min; and shortened left ventricular systolic period by 8% at 10min and electromechanical coupling defined as an interval from completion of repolarization to the start of ventricular diastole by 39% at 10min in addition to the changes induced by the middle dose. No significant change was detected in a ventricular repolarization period. These results indicate that ONO-AE1-329 may possess a similar cardiovascular profile to typical phosphodiesterase 3 inhibitors as an inodilator, and suggest that EP4 receptor stimulation can become an alternative strategy for the treatment of congestive heart failure. Copyright © 2015 Elsevier B.V. All rights reserved.
Ciobanu, Ana; Tse, Gary; Liu, Tong; Deaconu, Maria V; Gheorghe, Gabriela S; Ilieşiu, Adriana M; Nanea, Ioan T
2017-01-01
Objective To examine the relationship between Tpeak- Tend interval (Tpe) and Tpe/QT ratio with occurrence of ventricular premature beats (VPBs) and left ventricular remodeling in hypertension. Methods A total of 52 patients with mild to moderate essential hypertension were included, undergoing echocardiography and 24-hours Holter monitoring. Ventricular remodeling was assessed by left ventricular mass index (LVMI) using the Devereux formula and diastolic function by transmitral E and A wave velocities and E/A ratio. Tpe was measured in the precordial leads. The end of the T wave was set by the method of the tangent to the steepest descending slope of the T wave. Results Tpe and Tpe/QT in leads V2 (r = 0.33, P = 0.01; r = 0.27, P = 0.04 respectively) and V3 (r = 0.40, P = 0.002; r = 0.40, P = 0.003, respectively) correlated significantly with LVMI. A significant inverse relationship was observed between E/A ratio and QT (r = −0.33, P = 0.01), Tpe in V3 (r = −0.39, P = 0.003) and Tpe/QT in V3 (r = −0.31, P = 0.02). Tpe in V3, V5, mean Tpe and maximum Tpe with cut-off values of 60 ms, 59 ms, 62 ms and 71 ms, respectively, associated with the occurrence of ventricular premature beats. Conclusions The repolarization parameters Tpe interval and Tpe/QT ratio correlate with LVMI and indices of left ventricular diastolic function and show better predictive values than traditional parameters such as QT interval and QT dispersion. Lead V3 is the best lead for measuring Tpe and Tpe/QT. These ECG indices can therefore be used in clinical practice to monitor LV remodeling and predict occurrence of VPBs. PMID:29581710
Kcne3 deletion initiates extracardiac arrhythmogenesis in mice
Hu, Zhaoyang; Crump, Shawn M.; Anand, Marie; Kant, Ritu; Levi, Roberto; Abbott, Geoffrey W.
2014-01-01
Mutations in the human KCNE3 potassium channel ancillary subunit gene are associated with life-threatening ventricular arrhythmias. Most genes underlying inherited cardiac arrhythmias, including KCNE3, are not exclusively expressed in the heart, suggesting potentially complex disease etiologies. Here we investigated mechanisms of KCNE3-linked arrhythmogenesis in Kcne3−/− mice using real-time qPCR, echo- and electrocardiography, ventricular myocyte patch-clamp, coronary artery ligation/reperfusion, blood analysis, cardiac synaptosome exocytosis, microarray and pathway analysis, and multitissue histology. Kcne3 transcript was undetectable in adult mouse atria, ventricles, and adrenal glands, but Kcne3−/− mice exhibited 2.3-fold elevated serum aldosterone (P=0.003) and differentially expressed gene networks consistent with an adrenal-targeted autoimmune response. Furthermore, 8/8 Kcne3−/− mice vs. 0/8 Kcne3+/+ mice exhibited an activated-lymphocyte adrenal infiltration (P=0.0002). Kcne3 deletion also caused aldosterone-dependent ventricular repolarization delay (19.6% mean QTc prolongation in females; P<0.05) and aldosterone-dependent predisposition to postischemia arrhythmogenesis. Thus, 5/11 Kcne3−/− mice vs. 0/10 Kcne3+/+ mice exhibited sustained ventricular tachycardia during reperfusion (P<0.05). Kcne3 deletion is therefore arrhythmogenic by a novel mechanism in which secondary hyperaldosteronism, associated with an adrenal-specific lymphocyte infiltration, impairs ventricular repolarization. The findings highlight the importance of considering extracardiac pathogenesis when investigating arrhythmogenic mechanisms, even in inherited, monogenic channelopathies.—Hu, Z., Crump, S. M., Anand, M., Kant, R., Levi, R., Abbott, G. W. Kcne3 deletion initiates extracardiac arrhythmogenesis in mice. PMID:24225147
Kirchhof, Paulus; Tal, Tzachy; Fabritz, Larissa; Klimas, Jan; Nesher, Nir; Schulte, Jan S; Ehling, Petra; Kanyshkova, Tatayana; Budde, Thomas; Nikol, Sigrid; Fortmueller, Lisa; Stallmeyer, Birgit; Müller, Frank U; Schulze-Bahr, Eric; Schmitz, Wilhelm; Zlotkin, Eliahu; Kirchhefer, Uwe
2015-01-01
New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. © 2014 American Heart Association, Inc.
Kalisnik, Jurij M; Avbelj, Viktor; Trobec, Roman; Ivaskovic, Daroslav; Vidmar, Gaj; Troise, Giovanni; Gersak, Borut
2006-01-01
Altered autonomic regulation precipitates cardiac arrhythmias and increases the risk of sudden cardiac death. This risk is further increased by changes in ventricular repolarization. Autonomic regulation is deranged in patients after myocardial on-pump revascularization. We aimed to clarify how off-pump coronary artery bypass grafting (CABG) affects postoperative cardiac autonomic regulation and ventricular repolarization within 4 weeks after CABG. Forty-two patients (mean age, 61.9 +/- 9.3 years; mean EURO score 2.6 +/- 1.9) were electively admitted for off-pump CABG. The electrocardiographic and respiratory waveform recordings were performed in the afternoon in the supine position for 10 minutes. Autonomic modulation was assessed using heart rate variability analysis. Power spectra were computed from 5-minute stable RR intervals using Fourier Transform analysis. Total power of spectra was defined in the range of 0.01 to 0.40 Hz, high-frequency power within 0.15 to 0.40 Hz, and low-frequency power within 0.04 to 0.15 Hz. Normalized power was defined as a ratio of power in each band/total power. The high- and low-frequency power as well as their normalized values indicated cardiac vagal and sympathetic modulation, respectively. Ventricular repolarization was assessed using QT interval, QT interval variability, and QT-RR interdependence analysis. QT intervals were determined from the beginning of the 5-minute segments. QT interval variability was evaluated by a T-wave template-matching algorithm. Pearson correlation between length of RR and QT interval was applied to study QT-RR characteristics. The results were tested for significance using the Fisher exact test, nonpaired t test, and analysis of variance; a P <.05 was considered significant. The frequency of arrhythmic events and heart rate increased from the fourth to the seventh postoperative day and returned to preoperative levels 4 weeks after CABG. Heart rate variability measures indicating autonomic modulation remained depressed even 4 weeks after the procedure. QT variability index increased from -1.2 +/- 0.5 to -0.8 +/- 0.4 on the fourth day after the operation (P <.05) and returned to -1.0 +/- 0.5 4 weeks after CABG (P = not significant). QT-RR correlation decreased from 0.41 to 0.23 (P <.05) and remained significantly impaired as long as 4 weeks after CABG. Observed faster heart rates until 1 week after off-pump CABG imply excessive adrenergic activation, which is comparable to on-pump CABG procedure rates. The results indicate profound autonomic derangement and loss of rate-dependent regulation after off-pump CABG even 4 weeks after operation. Restituted repolarization as assessed by QT variability index 4 weeks postoperatively corresponded with decreased frequency of rhythm disturbances 4 weeks after CABG. The loss of coupling between QT and RR intervals shows increased electrical instability postoperatively, which may serve as an additional promoter for postoperative arrhythmias, especially at higher heart rates.
FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION
Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...
Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes
NASA Astrophysics Data System (ADS)
Comtois, P.; Vinet, A.
1999-10-01
Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhythmias 12345. Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau, and a late repolarization phase. The plateau phase determines the action potential duration (APD) during which the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies much with prematurity and this change has been shown to be the main determinant of the dynamics in models of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical model describing the propagation of period-1 solutions around an annulus.
Carro, Jesús; Rodríguez, José Félix; Laguna, Pablo; Pueyo, Esther
2011-11-13
In this study, several modifications were introduced to a recently proposed human ventricular action potential (AP) model so as to render it suitable for the study of ventricular arrhythmias. These modifications were driven by new sets of experimental data available from the literature and the analysis of several well-established cellular arrhythmic risk biomarkers, namely AP duration at 90 per cent repolarization (APD(90)), AP triangulation, calcium dynamics, restitution properties, APD(90) adaptation to abrupt heart rate changes, and rate dependence of intracellular sodium and calcium concentrations. The proposed methodology represents a novel framework for the development of cardiac cell models. Five stimulation protocols were applied to the original model and the ventricular AP model developed here to compute the described arrhythmic risk biomarkers. In addition, those models were tested in a one-dimensional fibre in which hyperkalaemia was simulated by increasing the extracellular potassium concentration, [K(+)](o). The effective refractory period (ERP), conduction velocity (CV) and the occurrence of APD alternans were investigated. Results show that modifications improved model behaviour as verified by: (i) AP triangulation well within experimental limits (the difference between APD at 50 and 90 per cent repolarization being 78.1 ms); (ii) APD(90) rate adaptation dynamics characterized by fast and slow time constants within physiological ranges (10.1 and 105.9 s); and (iii) maximum S1S2 restitution slope in accordance with experimental data (S(S1S2)=1.0). In simulated tissues under hyperkalaemic conditions, APD(90) progressively shortened with the degree of hyperkalaemia, whereas ERP increased once a threshold in [K(+)](o) was reached ([K(+)](o)≈6 mM). CV decreased with [K(+)](o), and conduction was blocked for [K(+)](o)>10.4 mM. APD(90) alternans were observed for [K(+)](o)>9.8 mM. Those results adequately reproduce experimental observations. This study demonstrated the value of basing the development of AP models on the computation of arrhythmic risk biomarkers, as opposed to joining together independently derived ion channel descriptions to produce a whole-cell AP model, with the new framework providing a better picture of the model performance under a variety of stimulation conditions. On top of replicating experimental data at single-cell level, the model developed here was able to predict the occurrence of APD(90) alternans and areas of conduction block associated with high [K(+)](o) in tissue, which is of relevance for the investigation of the arrhythmogenic substrate in ischaemic hearts.
III SBC Guidelines on the Analysis and Issuance of Electrocardiographic Reports - Executive Summary
Pastore, Carlos Alberto; Samesima, Nelson; Pereira-Filho, Horacio Gomes
2016-01-01
The third version of the guidelines covers recently described topics, such as ion channel diseases, acute ischemic changes, the electrocardiogram in athletes, and analysis of ventricular repolarization. It sought to revise the criteria for overloads, conduction disorders, and analysis of data for internet transmission. PMID:27982266
Ali, Wail; Bubolz, Beth A; Nguyen, Linh; Castro, Danny; Coss-Bu, Jorge; Quach, Michael M; Kennedy, Curtis E; Anderson, Anne E; Lai, Yi-Chen
2017-12-01
Convulsive status epilepticus can exert profound cardiovascular effects in adults including ventricular depolarization-repolarization abnormalities. Whether status epilepticus adversely affects ventricular electrical properties in children is less understood. Therefore, we sought to characterize ventricular alterations and the associated clinical factors in children following convulsive status epilepticus. We conducted a 2-year retrospective, case-control study. Children between 1 month and 21 years of age were included if they were admitted to the pediatric intensive care unit with primary diagnosis of convulsive status epilepticus and had 12-lead electrocardiogram (ECG) within 24 hours of admission. Children with heart disease, ion channelopathy, or on vasoactive medications were excluded. Age-matched control subjects had no history of seizures or epilepsy. The primary outcome was ventricular abnormalities represented by ST segment changes, abnormal T wave, QRS axis deviation, and corrected QT (QTc) interval prolongation. The secondary outcomes included QT/RR relationship, beat-to-beat QTc interval variability, ECG interval measurement between groups, and clinical factors associated with ECG abnormalities. Of 317 eligible children, 59 met the inclusion criteria. History of epilepsy was present in 31 children (epileptic) and absent in 28 children (non-epileptic). Compared with the control subjects (n = 31), the status epilepticus groups were more likely to have an abnormal ECG with overall odds ratio of 3.8 and 7.0 for the non-epileptic and the epileptic groups respectively. Simple linear regression analysis demonstrated that children with epilepsy exhibited impaired dependence and adaptation of the QT interval on heart rate. Beat-to-beat QTc interval variability, a marker of ventricular repolarization instability, was increased in children with epilepsy. Convulsive status epilepticus can adversely affect ventricular electrical properties and stability in children, especially those with epilepsy. These findings suggest that children with epilepsy may be particularly vulnerable to seizure-induced arrhythmias. Therefore postictal cardiac surveillance may be warranted in this population.
Korstanje, Cees; Suzuki, Masanori; Yuno, Koichiro; Sato, Shuichi; Ukai, Masashi; Schneidkraut, Marlowe J; Yan, Gan X
2017-09-01
Translational assessment of cardiac safety parameters is a challenge in clinical development of beta-3 adrenoceptor agonists. The preclinical tools are presented that were used for assessing human safety for mirabegron. Studies were performed on electrical conductance at ion channels responsible for cardiac repolarization (I Kr , I Ks , I to , I Na , and I Ca,L ), on QT-interval, subendocardial APD 90 , T peak-end interval, and arrhythmia's in ventricular dog wedge tissue in vitro and on cardiovascular function (BP, HR, and QT c ) in conscious dogs. In conscious dogs, mirabegron (0.01-10mg/kg, p.o.) dose-dependently increased HR, reduced SBP but DBP was unchanged. Propranolol blocked the decrease in SBP and attenuated HR increase at 100mg/kg mirabegron. Mirabegron, at 30, 60, or 100mg/kg, p.o., had no significant effect on the QT c interval. In paced dog ventricular wedge, neither mirabegron nor metabolites M5, M11, M12, M14, and M16 prolonged QT, altered transmural dispersion of repolarization, induced premature ventricular contractions, or induced ventricular tachycardia. Mirabegron nor its metabolites inhibited I Kr , I Ks , I to I Na , or I Ca,L at clinically relevant concentrations. Up to exposure levels well exceeding human clinical exposure no discernible effects on ion channel conductance or on arrhythmogenic parameters in ventricular wedge resulted for mirabegron, or its main metabolites, confirming human cardiac safety findings. In vivo, dose-related increases in HR with effects markedly higher than seen clinically, was mediated in part by cross-activation of beta-1 adrenoceptors. This non-clinical cardiac safety test program therefore proved predictive for human cardiac safety for mirabegron. Copyright © 2017. Published by Elsevier Inc.
Taccardi, Bruno; Punske, Bonnie B; Sachse, Frank; Tricoche, Xavier; Colli-Franzone, Piero; Pavarino, Luca F; Zabawa, Christine
2005-10-01
There are no published data showing the three-dimensional sequence of repolarization and the associated potential fields in the ventricles. Knowledge of the sequence of repolarization has medical relevance because high spatial dispersion of recovery times and action potential durations favors cardiac arrhythmias. In this study we describe measured and simulated 3-D excitation and recovery sequences and activation-recovery intervals (ARIs) (measured) or action potential durations (APDs) (simulated) in the ventricular walls. We recorded from 600 to 1400 unipolar electrograms from canine ventricular walls during atrial and ventricular pacing at 350-450 ms cycle length. Measured excitation and recovery times and ARIs were displayed as 2-D maps in transmural planes or 3-D maps in the volume explored, using specially developed software. Excitation and recovery sequences and APD distributions were also simulated in parallelepipedal slabs using anisotropic monodomain or bidomain models based on the Lou-Rudy version 1 model with homogeneous membrane properties. Simulations showed that in the presence of homogeneous membrane properties, the sequence of repolarization was similar but not identical to the excitation sequence. In a transmural plane perpendicular to epicardial fiber direction, both activation and recovery pathways starting from an epicardial pacing site returned toward the epicardium at a few cm distance from the pacing site. However, APDs were not constant, but had a dispersion of approximately 14 ms in the simulated domain. The maximum APD value was near the pacing site and two minima appeared along a line perpendicular to fiber directions, passing through the pacing site. Electrical measurements in dog ventricles showed that, for short cycle lengths, both excitation and recovery pathways, starting from an epicardial pacing site, returned toward the epicardium. For slower pacing rates, pathways of recovery departed from the pathway of excitation. Highest ARI values were observed near the pacing site in part of the experiments. In addition, maps of activation-recovery intervals showed mid-myocardial clusters with activation-recovery intervals that were slightly longer than ARIs closer to the epi- or endocardium, suggesting the presence of M cells in those areas. Transmural dispersion of measured ARIs was on the order of 20-25 ms. Potential distributions during recovery were less affected by myocardial anisotropy than were excitation potentials.
New descriptors of homogeneity of the propagation of ventricular repolarization.
Batchvarov, V; Dilaveris, P; Färbom, P; Ghuran, A; Acar, B; Hnatkova, K; Camm, A J; Malik, M
2000-11-01
Available descriptors of irregularities of ventricular repolarization are of limited clinical value. We studied the effect of autonomic variations on several new descriptors of the three-dimensional T loop. Twelve-lead digital ECGs were recorded continuously in 40 healthy subjects at baseline in the supine position, during postural changes (supine-->sitting-->standing-->supine-->standing), and during Valsalva maneuver performed three times in the supine and three times in the standing positions. A minimum dimensional space was constructed from the 12-lead ECG, using singular value decomposition, on the basis of median ECG beats constructed from 10-second consecutive ECG recordings. Temporal variations (TLA and PL, which measure the T loop area, and LD, the interlead relationship during repolarization) and wavefront direction descriptors (TCRT, the deviation between the QRS and T vectors) were calculated and expressed as normalized values. Values of TLA, PL, and TCRT were significantly lower in the sitting than in the supine position (-38,139 +/- 9099 vs 47,133 +/- 7511, -0.017 +/- 0.005 vs 0.033 +/- 0.005 and -0.032 +/- 0.019 vs 0.071 +/- 0.015, respectively, P < 0.001 for all) and decreased further in the standing position (-88,288 +/- 14,468, -0.067 +/- 0.013, -0.198 +/- 0.025, respectively, P < 0.001 for all). LD increased from supine to sitting (98.7 +/- 29.4 vs -87.5 +/- 15.2, P < 0.001) and increased further, though nonsignificantly in the standing position (118.3 +/- 35.2). TLA, PL, and TCRT decreased from baseline during Valsalva in the supine (-34,118 +/- 11,424 vs 62,234 +/- 12,215, -0.038 +/- 0.014 vs 0.065 +/- 0.010, -0.08 +/- 0.03 vs 0.10 +/- 0.02, respectively, P < 0.001 for all) and standing positions (-108,263 +/- 21,051 vs -68,909 +/- 10,271, -0.109 +/- 0.014 vs -0.048 +/- 0.009, -0.30 +/- 0.035 vs -015 +/- 0.016, respectively, P < 0.05 for all). LD was significantly increased by Valsalva in the supine position (13 +/- 46 vs -153 +/- 30, P < 0.001) and nonsignificantly in the standing position (99 +/- 50 vs 86 +/- 30, P = NS). There were significant correlations among TLA, PL, and LD, and no significant correlation between TCRT and any of the temporal variation descriptors. These new temporal and wavefront direction descriptors are sensitive and rapid detectors of autonomic effects on ventricular repolarization.
NASA Astrophysics Data System (ADS)
Bolea, J.; Almeida, R.; Pueyo, E.; Laguna, P.; Caiani, E. G.
2013-02-01
Microgravity exposure for long periods of time leads to body deconditioning and it increases the risk of experiencing life-threatening arrhythmias. The study of ventricular repolarization dependence on heart rate has been used to stratify patients according to their arrhythmic risk. The QTp adaptation to HR changes is characterized by M90 (90% of the adaptation). The QTp=HR , after compensation for the adaptation lag, is modeled using a set of regression functions (a , kind of slope of relationship). Subjects with lower orthostatic tolerance time showed a non significant decrease in the adaptation lag (M90 from 148 to 108 beats), which may be due to an extra deconditioning in the sympathovagal response. Nevertheless an increase in the QTp=HR adaptation lag (M90 from 108 to 117 beats with a p = 0.06) and a significant reduction in the slope (a from 0.53 to 0.35 with a p < 0.005), which in previous studies have been correlated with an increased arrhytimic risk, were observed for subjects with higher orthostatic tolerance time.
New micro waveforms firstly recorded on electrocardiogram in human.
Liu, Renguang; Chang, Qinghua; Chen, Juan
2015-10-01
In our study, not only the P-QRS-T waves but also the micro-wavelets before QRS complex (in P wave and PR segment) and after QRS complex (ST segment and upstroke of T wave) were first to be identified on surface electrocardiogram in human by the "new electrocardiogram" machine (model PHS-A10) according to conventional 12-lead electrocardiogram connection methods. By comparison to the conventional electrocardiogram in 100 cases of healthy individuals and several patients with arrhythmias, we have found that the wavelets before P wave theoretically reflected electrical activity of sinus node and the micro-wavelets before QRS complex may be related to atrioventricular conduction system (atrioventricular node, His bundle and bundle branch) potentials. Noninvasive atrioventricular node and His bundle potential tracing will contribute to differentiation of the origin of wide QRS and the location of the atrioventricular block. We also have found that the wavelets after QRS complex may be associated with phase 2 and 3 repolarization of ventricular action potential, which will further reveal ventricular repolarization changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fossa, Anthony A
2017-09-01
Cardiac restitution is the ability of the heart to recover from one beat to the next. Ventricular arrhythmia vulnerability can occur when the heart does not properly adjust to sudden changes in rate or in hemodynamics leading to excessive temporal and/or spatial heterogeneity in conduction or repolarization. Restitution has historically been used to study, by invasive means, the dynamics of the relationship between action potential duration (APD) and diastolic interval (DI) in sedated subjects using various pacing protocols. Even though the analogous measures of APD and DI can be obtained using the surface ECG to acquire the respective QT and TQ intervals for ECG restitution, this methodology has not been widely adopted for a number of reasons. Recent development of more advanced software algorithms enables ECG intervals to be measured accurately, on a continuous beat-to-beat basis, in an automated manner, and under highly dynamic conditions (i.e., ambulatory or exercise) providing information beyond that available in the typical resting state. Current breakthroughs in ECG technology will allow ECG restitution measures to become a practical approach for providing quantitative measures of the risks for ventricular arrhythmias as well as cardiac stress in general. In addition to a review of the underlying principles and caveats of ECG restitution, a new approach toward an advancement of more integrated restitution biomarkers is proposed. © 2017 Wiley Periodicals, Inc.
Evaluation of Tp-e interval and Tp-e/QT ratio in patients with ankylosing spondylitis.
Acar, Gurkan; Yorgun, Hikmet; Inci, Mehmet Fatih; Akkoyun, Murat; Bakan, Betul; Nacar, Alper Bugra; Dirnak, Imran; Cetin, Gozde Yildirim; Bozoglan, Orhan
2014-03-01
Ankylosing spondylitis (AS) is a chronic multi-systemic inflammatory rheumatic disorder. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-e) may correspond to the transmural dispersion of repolarization and that increased Tp-e interval and Tp-e/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate ventricular repolarization by using Tp-e interval and Tp-e/QT ratio in patients with AS, and to assess the relation with inflammation. Sixty-two patients with AS and 50 controls were included. Tp-e interval and Tp-e/QT ratio were measured from a 12-lead electrocardiogram, and the Tp-e interval corrected for heart rate. The plasma level of high sensitive C-reactive protein (hsCRP) was measured. These parameters were compared between groups. In electrocardiographic parameters analysis, QT dispersion (QTd) and corrected QTd were significantly increased in AS patients compared to the controls (31.7 ± 9.6 vs 28.2 ± 7.4 and 35.8 ± 11.5 vs 30.6 ± 7.9 ms, P = 0.03 and P = 0.007, respectively). cTp-e interval and Tp-e/QT ratio were also significantly higher in AS patients (92.1 ± 10.2 vs 75.8 ± 8.4 and 0.22 ± 0.02 vs 0.19 ± 0.02 ms, all P values <0.001). cTp-e interval and Tp-e/QT ratio were significantly correlated with hsCRP (r = 0.63, P < 0.001 and r = 0.49, P < 0.001, respectively). Our study revealed that Tp-e interval and Tp-e/QT ratio were increased in AS patients. These electrocardiographic ventricular repolarization indexes were significantly correlated with the plasma level of hsCRP.
Evaluation of Tp-e interval and Tp-e/QT ratio in patients with ankylosing spondylitis.
Acar, Gurkan; Yorgun, Hikmet; Inci, Mehmet Fatih; Akkoyun, Murat; Bakan, Betul; Nacar, Alper Bugra; Dirnak, Imran; Cetin, Gozde Yildirim; Bozoglan, Orhan
2013-04-12
OBJECTIVES: Ankylosing spondylitis (AS) is a chronic multi-systemic inflammatory rheumatic disorder. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-e) may correspond to the transmural dispersion of repolarization and that increased Tp-e interval and Tp-e/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate ventricular repolarization by using Tp-e interval and Tp-e/QT ratio in patients with AS, and to assess the relation with inflammation. METHODS: Sixty-two patients with AS and 50 controls were included. Tp-e interval and Tp-e/QT ratio were measured from a 12-lead electrocardiogram, and the Tp-e interval corrected for heart rate. The plasma level of high sensitive C-reactive protein (hsCRP) was measured. These parameters were compared between groups. RESULTS: In electrocardiographic parameters analysis, QT dispersion (QTd) and corrected QTd were significantly increased in AS patients compared to the controls (31.7 ± 9.6 vs 28.2 ± 7.4 and 35.8 ± 11.5 vs 30.6 ± 7.9 ms, P = 0.03 and P = 0.007, respectively). cTp-e interval and Tp-e/QT ratio were also significantly higher in AS patients (92.1 ± 10.2 vs 75.8 ± 8.4 and 0.22 ± 0.02 vs 0.19 ± 0.02 ms, all P values <0.001). cTp-e interval and Tp-e/QT ratio were significantly correlated with hsCRP (r = 0.63, P < 0.001 and r = 0.49, P < 0.001, respectively). CONCLUSIONS: Our study revealed that Tp-e interval and Tp-e/QT ratio were increased in AS patients. These electrocardiographic ventricular repolarization indexes were significantly correlated with the plasma level of hsCRP.
Abisse, Saddam S.; Lampert, Rachel; Burg, Mattew; Soufer, Robert; Shusterman, Vladimir
2011-01-01
Introduction Changes in the autonomic nervous system activity (ANS) are a major trigger of life-threatening ventricular tachyarrhythmias (VTA). Mental arithmetic, a condition administered in a laboratory setting, can provide insight into the ANS effects on cardiac physiology. We examined the responses of cardiac repolarization to laboratory-induced psychological stressors in patients with implantable cardioverter defibrillators (ICDs) with the objective of identifying the indices that differentiate patients with and without subsequent VTA in follow-up. Methods Continuous ECG signals were recorded using 3 standard bipolar (Holter) leads in 56 patients (age: 63.6±11.9, female: 12%, LVEF: 32.3±11) with ICDs during mental arithmetic. The patients were separated into those with subsequent VTA during 3–4 years of follow-up (Group 1: N=9 pts) and those without VTA (Group 2: N=47 pts). Changes in repolarization (QT-interval, mean T-wave amplitude (Tamp), and T-wave area (Tarea) were analyzed during 5min of baseline, stress and recovery. The temporal instability of Tamp and Tarea was examined using the range (Δ) and variance (σ2) of beat-to-beat variations of the corresponding parameters. Results There were no significant differences in HR between the two groups at baseline (61 vs. 63 bpm, p=0.97), during stress (64 vs. 65 bpm, p=0.40), and recovery (62 vs. 61 bpm, p= 0.88). However, during mental stress and post-stress recovery ΔTamp was almost 2-fold greater in Group 1 compared with Group 2 (111 (57–203)) vs. 68 (44–94) μV p=0.04, respectively). Changes in QT-intervals were also greater in Group 1 compared with Group 2 (p=0.02). Conclusion Among patients with ICDs, changes of T-wave amplitude after psychological stress were greater in those with subsequent arrhythmic events. This might signal proarrhythmic repolarization response and help identify patients who would benefit the most from ICD implantation and proactive management. PMID:21920534
Zhao, Yuhui; Huang, Haixia; Du, Yunhui; Li, Xiao; Lv, Tingting; Zhang, Suli; Wei, Hua; Shang, Jianyu; Liu, Ping; Liu, Huirong
2015-01-01
β1-Adrenoceptor autoantibodies (β1-AAs) affect the action potential duration (APD) in cardiomyocytes and are related to ventricular arrhythmias. The delayed rectifier potassium current (I K) plays a crucial role in APD, but the effects of β1-AAs on I K have not been completely illuminated. This work aimed to observe the effects of β1-AAs on I K and APD and further explore the mechanisms of β1-AA-mediated ventricular arrhythmias. β1-AAs were obtained from sera of patients with coronary heart disease (CHD) and nonsustained ventricular tachycardia. With whole-cell patch clamp technique, action potentials and I K were recorded. The results illustrated 0.1 μmol/L β1-AAs shortened APD at 50 % (APD50) and 90 % (APD90) of the repolarization. However, at 0.01 μmol/L, β1-AAs had no effects on either APD90 or APD50 (P > 0.05). At 0.001 μmol/L, β1-AAs significantly prolonged APD90 and APD50. Moreover, β1-AAs (0.001, 0.01, 0.1 μmol/L) dose-dependently increased the rapidly activating delayed rectifier potassium current (I Kr), but similarly decreased the slowly activating delayed rectifier potassium current (I Ks) and increased L-type calcium currents at the different concentrations. Taken together, the IKr increase induced by high β1-AA concentrations is responsible for a significant APD reduction which would contribute to repolarization changes and trigger the malignant ventricular arrhythmias in CHD patients.
Development of heart failure is independent of K+ channel-interacting protein 2 expression
Speerschneider, Tobias; Grubb, Søren; Metoska, Artina; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B
2013-01-01
Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K+ channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K+ current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2−/− mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2−/− mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2−/− control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2−/− mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2−/− with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K+ current. PMID:24099801
Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca
2017-10-01
Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kriščiukaitis, Algimantas; Šimoliūnienė, Renata; Macas, Andrius; Petrolis, Robertas; Drėgūnas, Kęstutis; Bakšytė, Giedrė; Pieteris, Linas; Bertašienė, Zita; Žaliūnas, Remigijus
2014-01-01
Beat-to-beat alteration in ventricles repolarization reflected by alternans of amplitude and/or shape of ECG S-T,T segment (TWA) is known as phenomena related with risk of severe arrhythmias leading to sudden cardiac death. Technical difficulties have caused limited its usage in clinical diagnostics. Possibilities to register and analyze multimodal signals reflecting heart activity inspired search for new technical solutions. First objective of this study was to test whether thoracic impedance signal and beat-to-beat heart rate reflect repolarization alternans detected as TWA. The second objective was revelation of multimodal signal features more comprehensively representing the phenomena and increasing its prognostic usefulness. ECG, and thoracic impedance signal recordings made during 24h follow-up of the patients hospitalized in acute phase of myocardial infarction were used for investigation. Signal morphology variations reflecting estimates were obtained by the principal component analysis-based method. Clinical outcomes of patients (survival and/or rehospitalization in 6 and 12 months) were compared to repolarization alternans and heart rate variability estimates. Repolarization alternans detected as TWA was also reflected in estimates of thoracic impedance signal shape and variation in beat-to-beat heart rate. All these parameters showed correlation with clinical outcomes of patients. The strongest significant correlation showed magnitude of alternans in estimates of thoracic impedance signal shape. The features of ECG, thoracic impedance signal and beat-to-beat variability of heart rate, give comprehensive estimates of repolarization alternans, which correlate, with clinical outcomes of the patients and we recommend using them to improve diagnostic reliability. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Nolan, Emily R; Feng, Meihua Rose; Koup, Jeffrey R; Liu, Jing; Turluck, Daniel; Zhang, Yiqun; Paulissen, Jerome B; Olivier, N Bari; Miller, Teresa; Bailie, Marc B
2006-01-01
Terfenadine, cisapride, and E-4031, three drugs that prolong ventricular repolarization, were selected to evaluate the sensitivity of the conscious chronic atrioventricular node--ablated, His bundle-paced Dog for defining drug induced cardiac repolarization prolongation. A novel predictive pharmacokinetic/pharmacodynamic model of repolarization prolongation was generated from these data. Three male beagle dogs underwent radiofrequency AV nodal ablation, and placement of a His bundle-pacing lead and programmable pacemaker under anesthesia. Each dog was restrained in a sling for a series of increasing dose infusions of each drug while maintained at a constant heart rate of 80 beats/min. RT interval, a surrogate for QT interval in His bundle-paced dogs, was recorded throughout the experiment. E-4031 induced a statistically significant RT prolongation at the highest three doses. Cisapride resulted in a dose-dependent increase in RT interval, which was statistically significant at the two highest doses. Terfenadine induced a dose-dependent RT interval prolongation with a statistically significant change occurring only at the highest dose. The relationship between drug concentration and RT interval change was described by a sigmoid E(max) model with an effect site. Maximum RT change (E(max)), free drug concentration at half of the maximum effect (EC(50)), and free drug concentration associated with a 10 ms RT prolongation (EC(10 ms)) were estimated. A linear correlation between EC(10 ms) and HERG IC(50) values was identified. The conscious dog with His bundle-pacing detects delayed cardiac repolarization related to I(Kr) inhibition, and detects repolarization change induced by drugs with activity at multiple ion channels. A clinically relevant sensitivity and a linear correlation with in vitro HERG data make the conscious His bundle-paced dog a valuable tool for detecting repolarization effect of new chemical entities.
Reconstruction of electrocardiogram using ionic current models for heart muscles.
Yamanaka, A; Okazaki, K; Urushibara, S; Kawato, M; Suzuki, R
1986-11-01
A digital computer model is presented for the simulation of the electrocardiogram during ventricular activation and repolarization (QRS-T waves). The part of the ventricular septum and the left ventricular free wall of the heart are represented by a two dimensional array of 730 homogeneous functional units. Ionic currents models are used to determine the spatial distribution of the electrical activities of these units at each instant of time during simulated cardiac cycle. In order to reconstruct the electrocardiogram, the model is expanded three-dimensionally with equipotential assumption along the third axis and then the surface potentials are calculated using solid angle method. Our digital computer model can be used to improve the understanding of the relationship between body surface potentials and intracellular electrical events.
An, Meng-Yao; Sun, Kai; Li, Yan; Pan, Ying-Ying; Yin, Yong-Qiang; Kang, Yi; Sun, Tao; Wu, Hong; Gao, Wei-Zhen; Lou, Jian-Shi
2018-03-01
Short QT syndrome (SQTS) is a genetic arrhythmogenic disease that can cause malignant arrhythmia and sudden cardiac death. The current therapies for SQTS have application restrictions. We previously found that Mg· (NH 2 CH 2 CH 2 SO 3 )2· H 2 O, a taurine-magnesium coordination compound (TMCC) exerted anti-arrhythmic effects with low toxicity. In this study we established 3 different models to assess the potential anti-arrhythmic effects of TMCC on type 2 short QT syndrome (SQT2). In Langendorff guinea pig-perfused hearts, perfusion of pinacidil (20 μmol/L) significantly shortened the QT interval and QTpeak and increased rTp-Te (P<0.05 vs control). Subsequently, perfusion of TMCC (1-4 mmol/L) dose-dependently increased the QT interval and QTpeak (P<0.01 vs pinacidil). TMCC perfusion also reversed the rTp-Te value to the normal range. In guinea pig ventricular myocytes, perfusion of trapidil (1 mmol/L) significantly shortened the action potential duration at 50% (APD 50 ) and 90% repolarization (APD 90 ), which was significantly reversed by TMCC (0.01-1 mmol/L, P<0.05 vs trapidil). In HEK293 cells that stably expressed the outward delayed rectifier potassium channels (I Ks ), perfusion of TMCC (0.01-1 mmol/L) dose-dependently inhibited the IKs current with an IC 50 value of 201.1 μmol/L. The present study provides evidence that TMCC can extend the repolarization period and inhibit the repolarizing current, I Ks , thereby representing a therapeutic candidate for ventricular arrhythmia in SQT2.
Piccirillo, Gianfranco; Nocco, Marialuce; Lionetti, Marco; Moisè, Antonio; Naso, Camilla; Marigliano, Vincenzo; Cacciafesta, Mauro
2002-04-01
Cases of sudden death associated with sildenafil citrate use have been reported in men with coronary artery disease. The aim of this study was to investigate the drug's effect on cardiac repolarization and sinus autonomic and vascular control in men with mild chronic heart failure (CHF; New York Heart Association classification II). Changes in these variables could predispose patients to malignant ventricular arrhythmias. We measured QT dispersion, the QT-RR slope, and the index of QT variability (QTVI) and analyzed spectral power of RR and systolic blood pressure variability in 10 men with dilated cardiomyopathy and in 10 control subjects after administration of a single 50-mg oral dose of sildenafil citrate or placebo at rest (not followed with any attempt at intercourse). In both groups, oral sildenafil citrate decreased the systolic blood pressure (P <.05) and increased the heart rate (P <.05). In subjects with CHF, it also increased the QT-RR (P <.001) and QTVI (from -0.45 +/- 0.07 to -0.27 +/- 0.07; P <.001), but in controls, it increased the QTVI (from -1.20 +/- 0.08 to -0.78 +/-.014; P <.001). In these subjects and controls, oral sildenafil citrate induced a significant reduction in high frequency, expressed in absolute power (subjects with CHF: from 4.04 +/- 0.14 to 3.43 +/- 0.16 natural logarithm ms2; P <.001; controls: from 5.61 +/- 0.44 to 4.98 +/- 0.32 natural logarithm ms2; P <.05) and in normalized units (P <.05). In subjects with CHF but not in controls, it also significantly increased the low frequency to high frequency ratio (from 1.3 +/- 0.12 to 1.89 +/- 0.16; P <.001) and low frequency expressed in normalized units (P <.05). Sildenafil citrate caused no significant changes in the QT interval or dispersion. These findings indicate that, in men with heart failure, sildenafil citrate reduces vagal modulation and increases sympathetic modulation, probably through its reflex vasodilatory action. The autonomic system changes induced with sildenafil citrate could alter QT dynamics. Both changes could favor the onset of lethal ventricular arrhythmias. At the dose usually taken for erectile dysfunction, sildenafil citrate has no direct effect on cardiac repolarization (QT interval or dispersion).
Rocha, B. M.; Toledo, E. M.; Barra, L. P. S.; dos Santos, R. Weber
2015-01-01
Heart failure is a major and costly problem in public health, which, in certain cases, may lead to death. The failing heart undergo a series of electrical and structural changes that provide the underlying basis for disturbances like arrhythmias. Computer models of coupled electrical and mechanical activities of the heart can be used to advance our understanding of the complex feedback mechanisms involved. In this context, there is a lack of studies that consider heart failure remodeling using strongly coupled electromechanics. We present a strongly coupled electromechanical model to study the effects of deformation on a human left ventricle wedge considering normal and hypertrophic heart failure conditions. We demonstrate through a series of simulations that when a strongly coupled electromechanical model is used, deformation results in the thickening of the ventricular wall that in turn increases transmural dispersion of repolarization. These effects were analyzed in both normal and failing heart conditions. We also present transmural electrograms obtained from these simulations. Our results suggest that the waveform of electrograms, particularly the T-wave, is influenced by cardiac contraction on both normal and pathological conditions. PMID:26550570
Dose, Nynne; Michelsen, Marie Mide; Mygind, Naja Dam; Pena, Adam; Ellervik, Christina; Hansen, Peter R; Kanters, Jørgen K; Prescott, Eva; Kastrup, Jens; Gustafsson, Ida; Hansen, Henrik Steen
CMD could be the explanation of angina pectoris with no obstructive CAD and may cause ventricular repolarization changes. We compared T-wave morphology and QTc interval in women with angina pectoris with a control group as well as the associations with CMD. Women with angina pectoris and no obstructive coronary artery disease (n=138) and age-matched controls were compared in regard to QTc interval and morphology combination score (MCS) based on T-wave asymmetry, flatness and presence of T-wave notch. CMD was assessed as a coronary flow velocity reserve (CFVR) by transthoracic echocardiography. Women with angina pectoris had significantly longer QTc intervals (429±20ms) and increased MCS (IQR) (0.73 [0.64-0.80]) compared with the controls (419±20ms) and (0.63 [(0.53-0.73]), respectively (both p<0.001). CFVR was associated with longer QTc interval (p=0.02), but the association was attenuated after multivariable adjustment (p=0.08). This study suggests that women with angina pectoris have alterations in T-wave morphology as well as longer QTc interval compared with a reference population. CMD might be an explanation. Copyright © 2017 Elsevier Inc. All rights reserved.
High Resolution ECG for Evaluation of QT Interval Variability during Exposure to Acute Hypoxia
NASA Technical Reports Server (NTRS)
Zupet, P.; Finderle, Z.; Schlegel, Todd T.; Starc, V.
2010-01-01
Ventricular repolarization instability as quantified by the index of QT interval variability (QTVI) is one of the best predictors for risk of malignant ventricular arrhythmias and sudden cardiac death. Because it is difficult to appropriately monitor early signs of organ dysfunction at high altitude, we investigated whether high resolution advanced ECG (HR-ECG) analysis might be helpful as a non-invasive and easy-to-use tool for evaluating the risk of cardiac arrhythmias during exposure to acute hypoxia. 19 non-acclimatized healthy trained alpinists (age 37, 8 plus or minus 4,7 years) participated in the study. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position breathing room air and then after breathing 12.5% oxygen for 30 min. For beat-to-beat RR and QT variability, the program of Starc was utilized to derive standard time domain measures such as root mean square of the successive interval difference (rMSSD) of RRV and QTV, the corrected QT interval (QTc) and the QTVI in lead II. Changes were evaluated with paired-samples t-test with p-values less than 0.05 considered statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with p = 0.000 and p = 0.005, respectively. Significant increases were found in both the rMSSDQT and the QTVI in lead II, with p = 0.002 and p = 0.003, respectively. There was no change in QTc interval length (p = non significant). QT variability parameters may be useful for evaluating changes in ventricular repolarization caused by hypoxia. These changes might be driven by increases in sympathetic nervous system activity at ventricular level.
Channel sialic acids limit hERG channel activity during the ventricular action potential.
Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S
2013-02-01
Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.
Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P
2013-03-01
Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.
Gorodeski, Eiran Z.; Ishwaran, Hemant; Kogalur, Udaya B.; Blackstone, Eugene H.; Hsich, Eileen; Zhang, Zhu-ming; Vitolins, Mara Z.; Manson, JoAnn E.; Curb, J. David; Martin, Lisa W.; Prineas, Ronald J.; Lauer, Michael S.
2013-01-01
Background Simultaneous contribution of hundreds of electrocardiographic biomarkers to prediction of long-term mortality in post-menopausal women with clinically normal resting electrocardiograms (ECGs) is unknown. Methods and Results We analyzed ECGs and all-cause mortality in 33,144 women enrolled in Women’s Health Initiative trials, who were without baseline cardiovascular disease or cancer, and had normal ECGs by Minnesota and Novacode criteria. Four hundred and seventy seven ECG biomarkers, encompassing global and individual ECG findings, were measured using computer algorithms. During a median follow-up of 8.1 years (range for survivors 0.5–11.2 years), 1,229 women died. For analyses cohort was randomly split into derivation (n=22,096, deaths=819) and validation (n=11,048, deaths=410) subsets. ECG biomarkers, demographic, and clinical characteristics were simultaneously analyzed using both traditional Cox regression and Random Survival Forest (RSF), a novel algorithmic machine-learning approach. Regression modeling failed to converge. RSF variable selection yielded 20 variables that were independently predictive of long-term mortality, 14 of which were ECG biomarkers related to autonomic tone, atrial conduction, and ventricular depolarization and repolarization. Conclusions We identified 14 ECG biomarkers from amongst hundreds that were associated with long-term prognosis using a novel random forest variable selection methodology. These were related to autonomic tone, atrial conduction, ventricular depolarization, and ventricular repolarization. Quantitative ECG biomarkers have prognostic importance, and may be markers of subclinical disease in apparently healthy post-menopausal women. PMID:21862719
Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.
Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz
2017-03-04
Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.
TandemHeart as a Bridge to Recovery in Legionella Myocarditis.
Briceño, David F; Fernando, Rajeev R; Nathan, Sriram; Loyalka, Pranav; Kar, Biswajit; Gregoric, Igor D
2015-08-01
Legionnaires' disease is the designation for pneumonia caused by the Legionella species. Among the rare extrapulmonary manifestations, cardiac involvement is most prevalent, in the forms of myocarditis, pericarditis, postcardiotomy syndrome, and prosthetic valve endocarditis. Mechanical circulatory support has proved to be a safe and effective bridge to myocardial recovery in patients with acute fulminant myocarditis; however, to our knowledge, this support has not been used in infectious myocarditis specifically related to Legionellosis. We describe a case of Legionella myocarditis associated with acute left ventricular dysfunction and repolarization abnormalities in a 48-year-old man. The patient fully recovered after left ventricular unloading with use of a TandemHeart percutaneous ventricular assist device. In addition, we review the English-language medical literature on Legionella myocarditis and focus on cardiac outcomes.
Boukens, Bastiaan J; Meijborg, Veronique M F; Belterman, Charly N; Opthof, Tobias; Janse, Michiel J; Schuessler, Richard B; Coronel, Ruben; Efimov, Igor R
2017-05-01
The left ventricular (LV) coronary-perfused canine wedge preparation is a model commonly used for studying cardiac repolarization. In wedge studies, transmembrane potentials typically are recorded; whereas, extracellular electrical recordings are commonly used in intact hearts. We compared electrically measured activation recovery interval (ARI) patterns in the intact heart with those recorded at the same location in the LV wedge preparation. We also compared electrically recorded and optically obtained ARIs in the LV wedge preparation. Five Langendorff-perfused canine hearts were paced from the right atrium. Local activation and repolarization times were measured with eight transmural needle electrodes. Subsequently, left ventricular coronary-perfused wedge preparations were prepared from these hearts while the electrodes remained in place. Three electrodes remained at identical positions as in the intact heart. Both electrograms and optical action potentials were recorded (pacing cycle length 400-4000 msec) and activation and repolarization patterns were analyzed. ARIs found in the subepicardium were shorter than in the subendocardium in the LV wedge preparation but not in the intact heart. The transmural ARI gradient recorded at the cut surface of the wedge was not different from that recorded internally. ARIs recorded internally and at the cut surface in the LV wedge preparation, both correlated with optically recorded action potentials. ARI and RT gradients in the LV wedge preparation differed from those in the intact canine heart, implying that those observations in human LV wedge preparations also should be extrapolated to the intact human heart with caution. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Papp, H; Sarusi, A; Farkas, A S; Takacs, H; Kui, P; Vincze, D; Ivany, E; Varro, A; Papp, J G; Forster, T; Farkas, A
2016-10-01
Hyperventilation reduces partial pressure of CO 2 (PCO 2 ) in the blood, which results in hypokalaemia. Hypokalaemia helps the development of the life-threatening torsades de pointes type ventricular arrhythmia (TdP) evoked by repolarization delaying drugs. This implies that hyperventilation may assist the development of proarrhythmic events. Therefore, this study experimentally investigated the effect of hyperventilation on proarrhythmia development during delayed repolarization. Phenylephrine (an α 1 -adrenoceptor agonist) and clofilium (as a representative repolarization delaying agent inhibiting the rapid component of the delayed rectifier potassium current, I Kr ) were administered intravenously to pentobarbital-anaesthetized, mechanically ventilated, open chest rabbits. ECG was recorded, and the onset times and incidences of the arrhythmias were determined. Serum K + , pH and PCO 2 were measured in arterial blood samples. Clofilium prolonged the rate corrected QT interval. TdP occurred in 15 animals (TdP+ group), and did not occur in 14 animals (TdP- group). We found a strong, positive, linear correlation between serum K + and PCO 2 . There was no relationship between the occurrence of TdP and the baseline K + and PCO 2 values. However, a positive, linear correlation was found between the onset time of the first arrhythmias and the K + and PCO 2 values. The regression lines describing the relationship between PCO 2 and onset time of first arrhythmias were parallel in the TdP+ and TdP- groups, but the same PCO 2 resulted in earlier arrhythmia onset in the TdP+ group than in the TdP- group. We conclude that hyperventilation and hypocapnia with the resultant hypokalaemia assist the multifactorial process of proarrhythmia development during delayed repolarization. This implies that PCO 2 and serum K + should be controlled tightly during mechanical ventilation in experimental investigations and clinical settings when repolarization-delaying drugs are applied.
CT-1-CP-induced ventricular electrical remodeling in mice.
Chen, Shu-fen; Wei, Tao-zhi; Rao, Li-ya; Xu, Ming-guang; Dong, Zhan-ling
2015-02-01
The chronic effects of carboxyl-terminal polypeptide of Cardiotrophin-1 (CT-1-CP) on ventricular electrical remodeling were investigated. CT-1-CP, which contains 16 amino acids in sequence of the C-terminal of Cardiotrophin-1, was selected and synthesized, and then administered to Kunming mice (aged 5 weeks) by intraperitoneal injection (500 ng·g⁻¹·day⁻¹) (4 groups, n=10 and female: male=1:1 in each group) for 1, 2, 3 and 4 weeks, respectively. The control group (n=10, female: male=1:1) was injected by physiological saline for 4 weeks. The epicardial monophasic action potential (MAP) was recorded by using a contact-type MAP electrode placed vertically on the left ventricular (LV) epicardium surface, and the electrocardiogram (ECG) signal in lead II was monitored synchronously. ECG intervals (RR, PR, QRS and QT) and the amplitude of MAP (Am), the maximum upstroke velocity (Vmax), as well as action potential durations (APDs) at different repolarization levels (APD30, APD50, APD70, and APD90) of MAP were determined and analyzed in detail. There were no significant differences in RR and P intervals between CT-1-CP-treated groups and control group, but the PR segment and the QRS complex were greater in the former than in the latter (F=2.681 and 5.462 respectively, P<0.05). Though QT interval and the corrected QT interval (QTc) were shorter in CT-1-CP-treated groups than in control group, the QT dispersion (QTd) of them was greater in the latter than in the former (F=3.090, P<0.05) and increased with the time. The ECG monitoring synchronously with the MAP showed that the compression of MAP electrode on the left ventricular epicardium induced performance similar to myocardium ischemia. As compared with those before chest-opening, the PR segment and QT intervals remained basically unchanged in control group, but prolonged significantly in all CT-1-CP-treated groups and the prolongation of QT intervals increased gradually along with the time of exposure to CT-1-CP. The QRS complex had no significant change in control group, one-week and three-week CT-1-CP-treated groups, but prolonged significantly in two-week and four-week CT-1-CP-treated groups. Interestingly, the QTd after chest-opening was significantly greater than that before chest-opening in control group (t=5.242, P<0.01), but decreased along with the time in CT-1-CP-treated groups. The mean MAP amplitude, Vmax and APD were greater in CT-1-CP-treated groups than those in control group, and became more obvious along with the time. The APD in four CT-1-CP-treat groups was prolonged mainly in middle to final repolarization phase. The difference among these groups became significant in middle phase (APD50) (F=6.076, P<0.01) and increased furthermore in late and final phases (APD70: F=10.054; APD90: F=18.691, P<0.01) along with the time of injection of CT-1-CP. The chronic action of CT-1-CP might induce the adapting alteration in cardiac conductivity and ventricular repolarization. The amplitude and the Vmax of the anterior LV epicardial MAP increased obviously, and the APD prolonged mainly in late and final phase of repolarization.
DeMazumder, Deeptankar; Limpitikul, Worawan B; Dorante, Miguel; Dey, Swati; Mukhopadhyay, Bhasha; Zhang, Yiyi; Moorman, J Randall; Cheng, Alan; Berger, Ronald D; Guallar, Eliseo; Jones, Steven R; Tomaselli, Gordon F
2016-12-01
The need for a readily available, inexpensive, non-invasive method for improved risk stratification of heart failure (HF) patients is paramount. Prior studies have proposed that distinct fluctuation patterns underlying the variability of physiological signals have unique prognostic value. We tested this hypothesis in an extensively phenotyped cohort of HF patients using EntropyX QT , a novel non-linear measure of cardiac repolarization dynamics. In a prospective, multicentre, observational study of 852 patients in sinus rhythm undergoing clinically indicated primary prevention implantable cardioverter-defibrillator (ICD) implantation (2003-10), exposures included demographics, history, physical examination, medications, laboratory results, serum biomarkers, ejection fraction, conventional electrocardiographic (ECG) analyses of heart rate and QT variability, and EntropyX QT . The primary outcome was first 'appropriate' ICD shock for ventricular arrhythmias. The secondary outcome was composite events (appropriate ICD shock and all-cause mortality). After exclusions, the cohort (n = 816) had a mean age of 60 ± 13 years, 28% women, 36% African Americans, 56% ischaemic cardiomyopathy, and 29 ± 16% Seattle HF risk score (SHFS) 5-year predicted mortality. Over 45 ± 24 months, there were 134 appropriate shocks and 166 deaths. After adjusting for 30 exposures, the hazard ratios (comparing the 5th to 1st quintile of EntropyX QT ) for primary and secondary outcomes were 3.29 (95% CI 1.74-6.21) and 2.28 (1.53-3.41), respectively. Addition of EntropyX QT to a model comprised of the exposures or SHFS significantly increased net reclassification and the ROC curve area. EntropyX QT measured during ICD implantation strongly and independently predicts appropriate shock and all-cause mortality over follow-up. EntropyX QT complements conventional risk predictors and has the potential for broad clinical application. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Reconstruction of the action potential of ventricular myocardial fibres
Beeler, G. W.; Reuter, H.
1977-01-01
1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889
Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle
2017-06-01
Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K 2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K 2p channels. Copyright © 2017 the American Physiological Society.
Undrovinas, Albertas I.; Belardinelli, Luiz; Undrovinas, Nidas A.; Sabbah, Hani N.
2005-01-01
Background Ventricular repolarization and contractile function are frequently abnormal in ventricular myocytes from human failing hearts as well as canine hearts with experimentally induced heart failure (HF). These abnormalities have been attributed to dysfunction involving various steps of the excitation-contraction coupling process, leading to impaired intracellular sodium and calcium homeostasis. We previously reported that the slow inactivating component of the Na+ current (late INa) is augmented in myocytes from failing hearts, and this appears to play a significant role in abnormal ventricular myocytes repolarization and function. We tested the effect of ranolazine, a novel drug being developed to treat angina, on 1) action potential duration (APD), 2) peak transient and late INa (INaT and INaL respectively), 3) early afterdepolarizations (EADs), and 4) twitch contraction (TC) including aftercontractions and contracture. Methods: Myocytes were isolated from the left ventricle of normal dogs and of dogs with chronic HF caused by multiple sequential intracoronary microembolizations. INaT and INaL were recorded using conventional whole-cell patch-clamp techniques. APs were recorded using the β-escin perforated patch-clamp configuration at frequencies of 0.25 and 0.5 Hz. TCs were recorded using an edge movement detector at stimulation frequencies ranging from 0.5 to 2.0 Hz. Results Ranolazine significantly (p < 0.05) and reversibly shortened the APD of myocytes stimulated at either 0.5 or 0.25 Hz in a concentration-dependent manner. At a stimulation frequency of 0.5 Hz, 5, 10 and 20 μM ranolazine shortened the APD90 (APD measured at 90% repolarization) from 516 ± 51 to 304 ± 22, 212 ± 34 and 160 ± 11 ms, respectively, and markedly decreased beat-to-beat variability of APD90, EADs and dispersion of APDs. Ranolazine preferentially blocked INaL relative to INaT in a state-dependent manner; with a ~ 38-fold greater potency against INaL to produce tonic block (IC50 = 6.5 μ M) than INaT (IC50 =294 μM). When we evaluated inactivated state blockade of INaL from the steady-state inactivation mid-potential shift using a theoretical model, ranolazine was found to bind more tightly to the inactivated state than the resting state of the sodium channel underlying INaL, with apparent dissociation constants Kdr=7.47μ M and Kdi=1.71μ M, respectively. TCs of myocytes stimulated at 0.5 Hz were characterized by an initial spike followed by a dome-like aftercontraction, which was observed in75% of myocytes from failing hearts and coincided with the long AP plateau and EADs. Ranolazine at 5, and 10 μM reversibly shortened duration of TCs and abolished the aftercontraction. When the rate of myocyte stimulation was increased from 1.0 to 2.0 Hz, there was a progressive increase in diastolic “tension”, i.e., contracture. Ranolazine at 5, and 10 μM reversibly prevented this frequency-dependent contracture. PMID:16686675
Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model
Fauconnier, Jérémy; Cellier, Laura; Tamareille, Sophie; Gharib, Abdallah; Chevrollier, Arnaud; Loufrani, Laurent; Grenier, Céline; Kamel, Rima; Sarzi, Emmanuelle; Lacampagne, Alain; Ovize, Michel; Henrion, Daniel; Reynier, Pascal; Lenaers, Guy; Mirebeau-Prunier, Delphine
2016-01-01
Background Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. Objectives To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. Methods and Results We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice. Conclusion Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity. PMID:27723783
Bossu, Alexandre; Kostense, Amée; Beekman, Henriette D M; Houtman, Marien J C; van der Heyden, Marcel A G; Vos, Marc A
2018-05-16
Current inotropic agents in heart failure therapy associate with low benefit and significant adverse effects, including ventricular arrhythmias. Istaroxime, a novel Na + /K + -transporting ATPase inhibitor, also stimulates SERCA2a activity, which would confer improved inotropic and lusitropic properties with less proarrhythmic effects. We investigated hemodynamic, electrophysiological and potential proarrhythmic and antiarrhythmic effects of istaroxime in control and chronic atrioventricular block (CAVB) dogs sensitive to drug-induced Torsades de Pointes arrhythmias (TdP). In isolated normal canine ventricular cardiomyocytes, istaroxime (0.3-10 μM) evoked no afterdepolarizations and significantly shortened action potential duration (APD) at 3 and 10 μM. Istaroxime at 3 μg/kg/min significantly increased left ventricular (LV) contractility (dP/dt+) and relaxation (dP/dt-) respectively by 81 and 94% in anesthetized control dogs (n = 6) and by 61 and 49% in anesthetized CAVB dogs (n = 7) sensitive to dofetilide-induced TdP. While istaroxime induced no ventricular arrhythmias in control conditions, only single ectopic beats occurred in 2/7 CAVB dogs, which were preceded by increase of short-term variability of repolarization (STV) and T wave alternans in LV unipolar electrograms. Istaroxime pre-treatment (3 μg/kg/min for 60 min) did not alleviate dofetilide-induced increase in repolarization and STV, and mildly reduced incidence of TdP from 6/6 to 4/6 CAVB dogs. In six CAVB dogs with dofetilide-induced TdP, administration of istaroxime (90 μg/kg/5 min) suppressed arrhythmic episodes in two animals. Taken together, inotropic and lusitropic properties of istaroxime in CAVB dogs were devoid of significant proarrhythmic effects in sensitive CAVB dogs, and istaroxime provides a moderate antiarrhythmic efficacy in prevention and suppression of dofetilide-induced TdP. Copyright © 2018. Published by Elsevier Ltd.
Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet
2015-11-01
An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P < .001), increasing systolic central blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P < .001 and interval T-wave to peak pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P < .001). It is exactly at this time of LV pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jin-Bae; Kim, Changsoo; Choi, Eunmi
2012-02-15
Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 μg/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 μg/mlmore » for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 μmol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 μmol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 μmol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 μmol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 μg/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ► The ambient PM consistently prolonged repolarization. ► The ambient PM induced triggered activity and ventricular arrhythmia. ► These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ► The ambient PM can induce arrhythmia via oxidative stress and activation of CaMKII.« less
Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam
2017-04-01
Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.
Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam
2017-01-01
Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652
Piktel, Joseph S; Jeyaraj, Darwin; Said, Tamer H; Rosenbaum, David S; Wilson, Lance D
2011-02-01
Hypothermia is proarrhythmic, and, as the use of therapeutic hypothermia (TH) increases, it is critically important to understand the electrophysiological effects of hypothermia on cardiac myocytes and arrhythmia substrates. We tested the hypothesis that hypothermia-enhanced transmural dispersion of repolarization (DOR) is a mechanism of arrhythmogenesis in hypothermia. In addition, we investigated whether the degree of hypothermia, the rate of temperature change, and cooling versus rewarming would alter hypothermia-induced arrhythmia substrates. Optical action potentials were recorded from cells spanning the transmural wall of canine left ventricular wedge preparations at baseline (36°C), during cooling and during rewarming. Electrophysiological parameters were examined while varying the depth of hypothermia. On cooling to 26°C, DOR increased from 26±4 ms to 93±18 ms (P=0.021); conduction velocity decreased from 35±5 cm/s to 22±5 cm/s (P=0.010). On rewarming to 36°C, DOR remained prolonged, whereas conduction velocity returned to baseline. Conduction block and reentry was observed in all severe hypothermia preparations. Ventricular fibrillation/ventricular tachycardia was seen more during rewarming (4/5) versus cooling (2/6). In TH (n=7), cooling to 32°C mildly increased DOR (31±6 to 50±9, P=0.012), with return to baseline on rewarming and was associated with decreased arrhythmia susceptibility. Increased rate of cooling did not further enhance DOR or arrhythmogenesis. Hypothermia amplifies DOR and is a mechanism for arrhythmogenesis. DOR is directly dependent on the depth of cooling and rewarming. This provides insight into the clinical observation of a low incidence of arrhythmias in TH and has implications for protocols for the clinical application of TH.
Takahara, A; Nakamura, Y; Wagatsuma, H; Aritomi, S; Nakayama, A; Satoh, Y; Akie, Y; Sugiyama, A
2009-01-01
Background and purpose: The heart of the canine model of chronic atrioventricular block is known to have a ventricular electrical remodelling, which mimics the pathophysiology of long QT syndrome. Using this model, we explored a new pharmacological therapeutic strategy for the prevention of cardiac sudden death. Experimental approach: The L-type Ca2+ channel blocker amlodipine (2.5 mg·day−1), L/N-type Ca2+ channel blocker cilnidipine (5 mg·day−1), or the angiotensin II receptor blocker candesartan (12 mg·day−1) was administered orally to the dogs with chronic atrioventricular block for 4 weeks. Electropharmacological assessments with the monophasic action potential (MAP) recordings and blood sample analyses were performed before and 4 weeks after the start of drug administration. Key results: Amlodipine and cilnidipine decreased the blood pressure, while candesartan hardly affected it. The QT interval, MAP duration and beat-to-beat variability of the ventricular repolarization period were shortened only in the cilnidipine group, but such effects were not observed in the amlodipine or candesartan group. Plasma concentrations of adrenaline, angiotensin II and aldosterone decreased in the cilnidipine group. In contrast, plasma concentrations of angiotensin II and aldosterone were elevated in the amlodipine group, whereas in the candesartan group an increase in plasma levels of angiotensin II and a decrease in noradrenaline and adrenaline concentrations were observed. Conclusions and implications: Long-term blockade of L/N-type Ca2+ channels ameliorated the ventricular electrical remodelling in the hypertrophied heart which causes the prolongation of the QT interval. This could provide a novel therapeutic strategy for the treatment of cardiovascular diseases. PMID:19785655
Modulation of KCNQ1 alternative splicing regulates cardiac IKs and action potential repolarization.
Lee, Hsiang-Chun; Rudy, Yoram; Po-Yuan, Phd; Sheu, Sheng-Hsiung; Chang, Jan-Gowth; Cui, Jianmin
2013-08-01
Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. With 50 μmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Novel technique for ST-T interval characterization in patients with acute myocardial ischemia.
Correa, Raúl; Arini, Pedro David; Correa, Lorena Sabrina; Valentinuzzi, Max; Laciar, Eric
2014-07-01
The novel signal processing techniques have allowed and improved the use of vectorcardiography (VCG) to diagnose and characterize myocardial ischemia. Herein, we studied vectorcardiographic dynamic changes of ventricular repolarization in 80 patients before (control) and during Percutaneous Transluminal Coronary Angioplasty (PTCA). We propose four vectorcardiographic ST-T parameters, i.e., (a) ST Vector Magnitude Area (aSTVM); (b) T-wave Vector Magnitude Area (aTVM); (c) ST-T Vector Magnitude Difference (ST-TVD), and (d) T-wave Vector Magnitude Difference (TVD). For comparison, the conventional ST-Change Vector Magnitude (STCVM) and Spatial Ventricular Gradient (SVG) were also calculated. Our results indicate that several vectorcardiographic parameters show significant differences (p-value<0.05) before starting and during PTCA. Statistical minute-by-minute PTCA comparison against the control situation showed that ischemic monitoring reached a sensitivity=90.5% and a specificity=92.6% at the 5th minute of the PTCA, when aSTVM and ST-TVD were used as classifiers. We conclude that the sensitivity and specificity for acute ischemia monitoring could be increased with the use of only two vectorcardiographic parameters. Hence, the proposed technique based on vectorcardiography could be used in addition to the conventional ST-T analysis for better monitoring of ischemic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Savard, P; Cardinal, R; Nadeau, R A; Armour, J A
1991-06-01
Sixty-three ventricular epicardial electrograms were recorded simultaneously in 8 atropinized dogs during stimulation of acutely decentralized intrathoracic autonomic ganglia or cardiopulmonary nerves. Three variables were measured: (1) isochronal maps representing the epicardial activation sequence, (2) maps depicting changes in areas under the QRS complex and T wave (regional inhomogeneity of repolarization), and (3) local and total QT intervals. Neural stimulations did not alter the activation sequence but induced changes in the magnitude and polarity of the ST segments and T waves as well as in QRST areas. Stimulation of the same neural structure in different dogs induced electrical changes with different amplitudes and in different regions of the ventricles, except for the ventral lateral cardiopulmonary nerve which usually affected the dorsal wall of the left ventricle. Greatest changes occurred when the right recurrent, left intermediate medial, left caudal pole, left ventral lateral cardiopulmonary nerves and stellate ganglia were stimulated. Local QT durations either decreased or did not change, whereas total QT duration as measured using a root-mean-square signal did not change, indicating the regional nature of repolarization changes. Taken together, these data indicate that intrathoracic efferent sympathetic neurons can induce regional inhomogeneity of repolarization without prolonging the total QT interval.
Ogiso, Masataka; Suzuki, Atsushi; Shiga, Tsuyoshi; Nakai, Kenji; Shoda, Morio; Hagiwara, Nobuhisa
2015-02-01
The effect of intravenous amiodarone on spatial and transmural dispersion of ventricular repolarization in patients receiving cardiac resynchronization therapy (CRT) remains unclear. We studied 14 patients with nonischemic heart failure who received CRT with a defibrillator, experienced electrical storm and were treated with intravenous amiodarone. Each patient underwent 12-lead electrocardiography (ECG) and 187-channel repolarization interval-difference mapping electrocardiography (187-ch RIDM-ECG) before and during the intravenous administration of amiodarone infusion. A recurrence of ventricular tachyarrhythmia was observed in 2 patients during the early period of intravenous amiodarone therapy. Intravenous amiodarone increased the corrected QT interval (from 470±52 ms to 508±55 ms, P=0.003), but it significantly decreased the QT dispersion (from 107±35 ms to 49±27 ms, P=0.001), T peak-T end (Tp-e) dispersion (from 86±17 ms to 28±28 ms, P=0.001), and maximum inter-lead difference between corrected Tp-e intervals as measured by using the 187-ch RIDM-ECG (from 83±13 ms to 50±19 ms, P=0.001). Intravenous amiodarone suppressed the electrical storm and decreased the QT and Tp-e dispersions in patients treated by using CRT with a defibrillator.
Janusek, D; Kania, M; Zaczek, R; Zavala-Fernandez, H; Maniewski, R
2014-04-01
The presence of T wave alternans (TWA) in the surface ECG signals has been recognized as a marker of electrical instability, and is hypothesized to be related to patients at increased risk for ventricular arrhythmias. In this paper we present a TWA simulation study. The TWA phenomenon was simulated by changing the duration of the ventricular heart cells action potential. The magnitude was calculated in the surface ECG with the use of the time domain method. The spatially concordant TWA, where during one heart beat all ventricular cells display a short-duration action potential and during the next beat they exhibit a long-duration action potential, as well as the discordant TWA, where at least one region is out of phase, was simulated. The vectocardiographic representation was employed. The obtained results showed a high level of T-loop pattern and location disturbances connected to the discordant TWA simulation in contrast to the concordant one. This result may be explained by the spatial heterogeneity of the ventricular repolarization process, which could be higher for the discordant TWA than for the concordant TWA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Aizawa, Yoshifusa; Sato, Masahito; Kitazawa, Hitoshi; Aizawa, Yoshiyasu; Takatsuki, Seiji; Oda, Eiji; Okabe, Masaaki; Fukuda, Keiichi
2015-02-01
J waves can be observed in individuals of the general population, but electrocardiographic characteristics are poorly understood. The purpose of this study was to examine the J-wave dynamicity in a general patient population. The responses of J waves (>0.1 mV above the isoelectric line in 2 contiguous leads) to varying RR intervals were analyzed. Patients with aborted sudden cardiac death, documented ventricular fibrillation, or a family history of sudden cardiac death were excluded. The J-wave amplitude was measured at baseline, in beats with short RR intervals in conducted atrial premature beats (APBs) or atrial stimulation during the electrophysiology study, and in the beats next to APBs with prolonged RR intervals. Mainly notched J waves were identified in 94 of 701 (24.5%) general patients (13.4%), and APBs were present in 23 of 94 (24.5%) patients. The mean baseline amplitude of J waves was 0.20 ± 0.06 mV at the baseline RR interval of 853 ± 152 ms, 0.25 ± 0.11 mV at the RR interval in the conducted APB of 545 ± 133 ms (P = .0018), and 0.19 ± 0.08 mV at the RR interval of 1146 ± 314 ms (P = .3102). The clinical characteristics were not different between patients with and without tachycardia-dependent augmentation of J waves. Augmentation of J waves was confirmed by the electrophysiology study: 0.28 ± 0.12 mV vs 0.42 ± 0.11 mV at baseline and in the beats of atrial stimulation, respectively (P = .0001). However, no bradycardia-dependent augmentation (>0.05 mV) was observed. Such tachycardia-dependent augmentation can represent depolarization abnormality rather than repolarization abnormality. J waves in a general patient population were augmented at shorter RR intervals, but not at prolonged RR intervals. Mechanistically, conduction delay is most likely responsible for this. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Early repolarization, localization of J point elevation on ECG and arrhythmias.
Matoshvili, Z; Petriashvili, Sh; Archvadze, A; Azaladze, I
2015-04-01
Final aim of this observational study was to determine correlation between localization of J point elevation and number of premature ventricular beats. The 52 patients (19-68 years old; 31 men and 21 women) were divided in two groups based on localization of J point elevation. First Group - 9 patients (5 men and 4 women) with J-point elevation ≥1 mm in ≥2 contiguous inferior and/or lateral leads on a standard 12-lead ECG reading, Second Group - other 43 (26 men and 17 women) patients with another localization of J point elevation. Total summarized number of premature ventricular contractions for each group was compared and analyzed. The results of the study shows that the number of premature ventricular beats in first group was 61% higher. Thus, in our opinion J-point elevation ≥1 mm in ≥2 contiguous inferior and/or lateral leads, is more arrhythmogenic. Data shows that this difference is statistically significant.
Park, Eunjung; Gintant, Gary A; Bi, Daoqin; Kozeli, Devi; Pettit, Syril D; Skinner, Matthew; Willard, James; Wisialowski, Todd; Koerner, John; Valentin, Jean‐Pierre
2018-01-01
Background and Purpose Translation of non‐clinical markers of delayed ventricular repolarization to clinical prolongation of the QT interval corrected for heart rate (QTc) (a biomarker for torsades de pointes proarrhythmia) remains an issue in drug discovery and regulatory evaluations. We retrospectively analysed 150 drug applications in a US Food and Drug Administration database to determine the utility of established non‐clinical in vitro IKr current human ether‐à‐go‐go‐related gene (hERG), action potential duration (APD) and in vivo (QTc) repolarization assays to detect and predict clinical QTc prolongation. Experimental Approach The predictive performance of three non‐clinical assays was compared with clinical thorough QT study outcomes based on free clinical plasma drug concentrations using sensitivity and specificity, receiver operating characteristic (ROC) curves, positive (PPVs) and negative predictive values (NPVs) and likelihood ratios (LRs). Key Results Non‐clinical assays demonstrated robust specificity (high true negative rate) but poor sensitivity (low true positive rate) for clinical QTc prolongation at low‐intermediate (1×–30×) clinical exposure multiples. The QTc assay provided the most robust PPVs and NPVs (ability to predict clinical QTc prolongation). ROC curves (overall test accuracy) and LRs (ability to influence post‐test probabilities) demonstrated overall marginal performance for hERG and QTc assays (best at 30× exposures), while the APD assay demonstrated minimal value. Conclusions and Implications The predictive value of hERG, APD and QTc assays varies, with drug concentrations strongly affecting translational performance. While useful in guiding preclinical candidates without clinical QT prolongation, hERG and QTc repolarization assays provide greater value compared with the APD assay. PMID:29181850
Piccirillo, Gianfranco; Rossi, Pietro; Mitra, Marilena; Quaglione, Raffaele; Dell'Armi, Annalaura; Di Barba, Daniele; Maisto, Damiana; Lizio, Andrea; Barillà, Francesco; Magrì, Damiano
2013-03-01
The QT variability index, calculated between Q- and the T-wave end (QTend VI), is an index of temporal myocardial repolarization lability associated with sudden cardiac death (SCD) in chronic heart failure (CHF). Little is known about temporal variability in the other two temporal myocardial repolarization descriptors obtained from Q-Tpeak and Tpeak -Tend intervals. We therefore investigated differences between these indexes in patients with CHF who died suddenly and in those who survived with a left ventricular ejection fraction (LVEF) ≤35% or >35%. We selected 127 ECG and systolic blood pressure (SPB) recordings from outpatients with CHF all of whom had been followed up for 30 months. We calculated RR and SPB variability by power spectral analysis and QTend VI, QTpeak VI, Tpeak Tend VI. We then subdivided data patients into three groups SCD, LVEF ≤ 35%, and LVEF > 35%. The LVEF was higher in the SCD than in the LVEF ≤ 35% group, whereas no difference was found between the SCD and LVEF > 35% groups. QTend VI, QTpeak VI, and Tpeak Tend VI were higher in the SCD and LVEF ≤ 35% groups than in the LVEF > 35% group. Multivariate analysis detected a negative relationship between all repolarization variability indexes, low frequency obtained from RR intervals and LVEF. Our data show that variability in the first (QTpeak VI) and second halves of the QT interval (Tpeak -Tend VI) significantly contributes to the QTend VI in patients with CHF. Further studies should investigate whether these indexes might help stratify the risk of SCD in patients with a moderately depressed LVEF. ©2012, Wiley Periodicals, Inc.
Early repolarization in Wolff-Parkinson-White syndrome: prevalence and clinical significance.
Mizumaki, Koichi; Nishida, Kunihiro; Iwamoto, Jotaro; Nakatani, Yosuke; Yamaguchi, Yoshiaki; Sakamoto, Tamotsu; Tsuneda, Takayuki; Inoue, Hiroshi; Sakabe, Masao; Fujiki, Akira
2011-08-01
Idiopathic ventricular fibrillation (IVF) with early repolarization (ER) has recently been reported; however, ER is a common finding in healthy subjects and is also found sporadically in patients with Wolff-Parkinson-White (WPW) syndrome. The present study was designed to evaluate the prevalence and clinical significance of ER in patients with WPW syndrome. One hundred and eleven patients with WPW syndrome were studied retrospectively. Early repolarization was defined as QRS slurring or notching with J-point elevation ≥ 1 mm. The prevalence of ER was determined before and after successful catheter ablation. Before ablation, ER was found in 35 of 75 patients with a left free wall, 6 of 23 with a right free wall, and 7 of 13 with a septal accessory pathway (48 of 111, 43% as a whole). Early repolarization was always observed in leads with positive deflection of the initial part of the delta wave. After successful ablation of accessory pathways, ER was preserved in 28 (25%), disappeared in 20 (18%), and newly developed in 8 (7%) patients. In the remaining 55 (50%) patients, ER was not observed either before or after ablation. In patients with persistent ER, the amplitude and width of ER were significantly decreased 3-7 days after the ablation (1.7 ± 0.7 vs. 1.4 ± 0.6 mm, P < 0.005 and 42 ± 11 vs. 34 ± 9 ms, P < 0.001, respectively). In patients with WPW syndrome, ER could be partly related to early depolarization through the accessory pathway. However, persistent ER and new ER appearing after the ablation were frequently found. Therefore, in these patients, mechanisms other than early depolarization may be involved in the genesis of ER.
Rubi, Lena; Eckert, Daniel; Boehm, Stefan; Hilber, Karlheinz; Koenig, Xaver
2017-04-01
Ibogaine is a plant alkaloid used as anti-addiction drug in dozens of alternative medicine clinics worldwide. Recently, alarming reports of life-threatening cardiac arrhythmias and cases of sudden death associated with the ingestion of ibogaine have accumulated. Using whole-cell patch clamp recordings, we assessed the effects of ibogaine and its main metabolite noribogaine on action potentials in human ventricular-like cardiomyocytes derived from induced pluripotent stem cells. Therapeutic concentrations of ibogaine and its long-lived active metabolite noribogaine significantly retarded action potential repolarization in human cardiomyocytes. These findings represent the first experimental proof that ibogaine application entails a cardiac arrhythmia risk for humans. In addition, they explain the clinically observed delayed incidence of cardiac adverse events several days after ibogaine intake. We conclude that therapeutic concentrations of ibogaine retard action potential repolarization in the human heart. This may give rise to a prolongation of the QT interval in the electrocardiogram and cardiac arrhythmias.
Lees-Miller, James P; Guo, Jiqing; Wang, Yibo; Perissinotti, Laura L; Noskov, Sergei Y; Duff, Henry J
2015-08-01
In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Slow adaptation of ventricular repolarization as a cause of arrhythmia?
Bueno-Orovio, A; Hanson, B M; Gill, J S; Taggart, P; Rodriguez, B
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". Adaptation of the QT-interval to changes in heart rate reflects on the body-surface electrocardiogram the adaptation of action potential duration (APD) at the cellular level. The initial fast phase of APD adaptation has been shown to modulate the arrhythmia substrate. Whether the slow phase is potentially proarrhythmic remains unclear. To analyze in-vivo human data and use computer simulations to examine effects of the slow APD adaptation phase on dispersion of repolarization and reentry in the human ventricle. Electrograms were acquired from 10 left and 10 right ventricle (LV/RV) endocardial sites in 15 patients with normal ventricles during RV pacing. Activation-recovery intervals, as a surrogate for APD, were measured during a sustained increase in heart rate. Observed dynamics were studied using computer simulations of human tissue electrophysiology. Spatial heterogeneity of rate adaptation was observed in all patients. Inhomogeneity in slow APD adaptation time constants (Δτ(s)) was greater in LV than RV (Δτ(s)(LV) = 31.8 ± 13.2, Δτ(s)(RV) = 19.0 ± 12.8 s , P< 0.01). Simulations showed that altering local slow time constants of adaptation was sufficient to convert partial wavefront block to block with successful reentry. Using electrophysiological data acquired in-vivo in human and computer simulations, we identify heterogeneity in the slow phase of APD adaptation as an important component of arrhythmogenesis.
Late Na+ current and protracted electrical recovery are critical determinants of the aging myopathy
Signore, Sergio; Sorrentino, Andrea; Borghetti, Giulia; Cannata, Antonio; Meo, Marianna; Zhou, Yu; Kannappan, Ramaswamy; Pasqualini, Francesco; O'Malley, Heather; Sundman, Mark; Tsigkas, Nikolaos; Zhang, Eric; Arranto, Christian; Mangiaracina, Chiara; Isobe, Kazuya; Sena, Brena F.; Kim, Junghyun; Goichberg, Polina; Nahrendorf, Matthias; Isom, Lori L.; Leri, Annarosa; Anversa, Piero; Rota, Marcello
2015-01-01
The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. We raised the possibility that, in a mouse model of physiological aging, defects in electromechanical properties of cardiomyocytes are important determinants of the diastolic characteristics of the myocardium, independently from changes in structural composition of the muscle and collagen framework. Here we show that an increase in the late Na+ current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences temporal kinetics of Ca2+ cycling and contractility. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects dynamics of Ca2+ transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. Thus, INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the aetiology of the defective cardiac performance in the elderly. PMID:26541940
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778
Moss, Arthur J.; Zareba, Wojciech; Schwarz, Karl Q.; Rosero, Spencer; McNitt, Scott; Robinson, Jennifer L.
2008-01-01
Introduction One form of the hereditary long QT-syndrome, LQT3-ΔKPQ, is associated with sustained inward sodium current during membrane depolarization. Ranolazine reduces late sodium channel current, and we hypothesized that ranolazine would have beneficial effects on electrical and mechanical cardiac function in LQT3 patients with the SCN5A-ΔKPQ mutation. Methods We assessed the effects of 8-hour intravenous ranolazine infusions (45mg/hr for 3 hours followed by 90mg/hr for 5 hours) on ventricular repolarization and myocardial relaxation in five LQT3 patients with the SCN5A-ΔKPQ mutation. Changes in electrocardiographic QTc parameters from before to during ranolazine infusion were evaluated by time-matched, paired t-test analyses. Cardiac ultrasound recordings were obtained before ranolazine infusion and just before completion of the 8-hour ranolazine infusion. Results Ranolazine shortened QTc by 26±3ms (p<0.0001) in a concentration-dependent manner. At peak ranolazine infusion, there was a significant 13% shortening in left ventricular isovolumic relaxation time, a significant 25% increase in mitral E-wave velocity, and a meaningful 22% decrease in mitral E-wave deceleration time compared to baseline. No adverse effects of ranolazine were observed in the study patients. Conclusion Ranolazine at therapeutic concentrations shortened a prolonged QTc interval and improved diastolic relaxation in patients with the LQT3-ΔKPQ mutation, a genetic disorder that is known to cause an increase of late sodium current. PMID:18662191
Bueno-Orovio, Alfonso; Cherry, Elizabeth M.; Evans, Steven J.; Fenton, Flavio H.
2015-01-01
Aims. Human action potentials in the Brugada syndrome have been characterized by delayed or even complete loss of dome formation, especially in the right ventricular epicardial layers. Such a repolarization pattern is believed to trigger phase-2 reentry (P2R); however, little is known about the conditions necessary for its initiation. This study aims to determine the specific mechanisms that facilitate P2R induction in Brugada-affected cardiac tissue in humans. Methods. Ionic models for Brugada syndrome in human epicardial cells were developed and used to study the induction of P2R in cables, sheets, and a three-dimensional model of the right ventricular free wall. Results. In one-dimensional cables, P2R can be induced by adjoining lost-dome and delayed-dome regions, as mediated by tissue excitability and transmembrane voltage profiles, and reduced coupling facilitates its induction. In two and three dimensions, sustained reentry can arise when three regions (delayed-dome, lost-dome, and normal epicardium) are present. Conclusions. Not only does P2R induction by Brugada syndrome require regions of action potential with delayed-dome and lost-dome, but in order to generate a sustained reentry from a triggered waveback multiple factors are necessary, including heterogeneity in action potential distribution, tissue coupling, direction of stimulation, the shape of the late plateau, the duration of lost-dome action potentials, and recovery of tissue excitability, which is predominantly modulated by tissue coupling. PMID:26583094
Teutsch, Christine; Kondo, Richard P; Dederko, Dorothy A; Chrast, Jacqueline; Chien, Kenneth R; Giles, Wayne R
2007-03-01
Regional differences in repolarizing K(+) current densities and expression levels of their molecular components are important for coordinating the pattern of electrical excitation and repolarization of the heart. The small size of hearts from mice may obscure these interventricular and/or transmural expression differences of K(+) channels. We have examined this possibility in adult mouse ventricle using a technology that provides very high spatial resolution of tissue collection. Conventional manual dissection and laser capture microdissection (LCM) were utilized to dissect tissue from distinct ventricular regions. RNA was isolated from epicardial, mid-myocardial and endocardial layers of both the right and left ventricles. Real-time RT-PCR was used to quantify the transcript expression in these different regions. LCM revealed significant interventricular and transmural gradients for both Kv4.2 and the alpha-subunit of KChIP2. The expression profile of a second K(+) channel transcript, Kir2.1, which is responsible for the inwardly rectifying K(+) current I(k1), showed no interventricular or transmural gradients and therefore served as a negative control. Our findings are in contrast to previous reports of a relatively uniform left ventricular transmural pattern of expression of Kv4.2, Kv4.3 and KChIP2 in adult mouse heart, which appear to be different than that in larger mammals. Specifically, our results demonstrate significant epi- to endocardial differences in the patterns of expression of both Kv4.2 and KChIP2.
TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.
Hof, Thomas; Sallé, Laurent; Coulbault, Laurent; Richer, Romain; Alexandre, Joachim; Rouet, René; Manrique, Alain; Guinamard, Romain
2016-01-15
The transient receptor potential melastatin 4 (TRPM4) inhibitor 9-phenanthrol reduces action potential duration in rabbit Purkinje fibres but not in ventricle. TRPM4-like single channel activity is observed in isolated rabbit Purkinje cells but not in ventricular cells. The TRPM4-like current develops during the notch and early repolarization phases of the action potential in Purkinje cells. Transient receptor potential melastatin 4 (TRPM4) Ca(2+)-activated non-selective cation channel activity has been recorded in cardiomyocytes and sinus node cells from mammals. In addition, TRPM4 gene mutations are associated with human diseases of cardiac conduction, suggesting that TRPM4 plays a role in this aspect of cardiac function. Here we evaluate the TRPM4 contribution to cardiac electrophysiology of Purkinje fibres. Ventricular strips with Purkinje fibres were isolated from rabbit hearts. Intracellular microelectrodes recorded Purkinje fibre activity and the TRPM4 inhibitor 9-phenanthrol was applied to unmask potential TRPM4 contributions to the action potential. 9-Phenanthrol reduced action potential duration measured at the point of 50 and 90% repolarization with an EC50 of 32.8 and 36.1×10(-6) mol l(-1), respectively, but did not modulate ventricular action potentials. Inside-out patch-clamp recordings were used to monitor TRPM4 activity in isolated Purkinje cells. TRPM4-like single channel activity (conductance = 23.8 pS; equal permeability for Na(+) and K(+); sensitivity to voltage, Ca(2+) and 9-phenanthrol) was observed in 43% of patches from Purkinje cells but not from ventricular cells (0/16). Action potential clamp experiments performed in the whole-cell configuration revealed a transient inward 9-phenanthrol-sensitive current (peak density = -0.65 ± 0.15 pA pF(-1); n = 5) during the plateau phases of the Purkinje fibre action potential. These results show that TRPM4 influences action potential characteristics in rabbit Purkinje fibres and thus could modulate cardiac conduction and be involved in triggering arrhythmias. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio
2017-11-21
Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P <0.001 versus controls). The arrhythmogenicity index was increased ( P <0.001) and the corrected QT interval on ECG was prolonged ( P <0.001) in HFpEF rats. Optical mapping of HFpEF hearts demonstrated prolonged action potentials ( P <0.05) and multiple reentry circuits during induced VA. Single-cell recordings of cardiomyocytes isolated from HFpEF rats confirmed a delay of repolarization ( P =0.001) and revealed downregulation of transient outward potassium current ( I to ; P <0.05). The rapid components of the delayed rectifier potassium current ( I Kr ) and the inward rectifier potassium current ( I K1 ) were also downregulated ( P <0.05), but the current densities were much lower than for I to . In accordance with the reduction of I to , both Kcnd3 transcript and Kv4.3 protein levels were decreased in HFpEF rat hearts. Susceptibility to VA was markedly increased in rats with HFpEF. Underlying abnormalities include QT prolongation, delayed repolarization from downregulation of potassium currents, and multiple reentry circuits during VA. Our findings are consistent with the hypothesis that potassium current downregulation leads to abnormal repolarization in HFpEF, which in turn predisposes to VA and sudden cardiac death. © 2017 American Heart Association, Inc.
Ventricular arrhythmias in the absence of structural heart disease.
Prystowsky, Eric N; Padanilam, Benzy J; Joshi, Sandeep; Fogel, Richard I
2012-05-15
Ventricular arrhythmia (VA) in structurally normal hearts can be broadly considered under non-life-threatening monomorphic and life-threatening polymorphic rhythms. Monomorphic VA is classified on the basis of site of origin in the heart, and the most common areas are the ventricular outflow tracts and left ventricular fascicles. The morphology of the QRS complexes on electrocardiogram is an excellent tool to identify the site of origin of the rhythm. Although these arrhythmias are common and generally carry an excellent prognosis, rare sudden death events have been reported. Very frequent ventricular ectopy may also result in a cardiomyopathy in a minority of patients. Suppression of VA may be achieved using calcium-channel blockers, beta-adrenergic blockers, and class I or III antiarrhythmic drugs. Radiofrequency ablation has emerged as an excellent option to eliminate these arrhythmias, although certain foci including aortic cusps and epicardium may be technically challenging. Polymorphic ventricular tachycardia (VT) is rare and generally occurs in patients with genetic ion channel disorders including long QT syndrome, Brugada syndrome, catecholaminergic polymorphic VT, and short QT syndrome. Unlike monomorphic VT, these arrhythmic syndromes are associated with sudden death. While the cardiac gross morphology is normal, suggesting a structurally normal heart, abnormalities exist at the molecular level and predispose them to arrhythmias. Another fascinating area, idiopathic ventricular fibrillation and early repolarization syndrome, are undergoing research for a genetic basis. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.
Dey, Swati; DeMazumder, Deeptankar; Sidor, Agnieszka; Foster, D B; O'Rourke, Brian
2018-06-13
Rationale: Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored. Objective: We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD. Methods and Results: Using a unique guinea pig model of non-ischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD. Compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular (LV) myocytes in failing hearts. Importantly, mitochondrially-targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF; eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias; suppressed chronic HF-induced remodeling of the expression proteome; and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca2+ handling and action potential repolarization, suggesting new targets for therapeutic intervention. Conclusions: mROS drive both acute emergent events, such as electrical instability responsibly for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.
Restitution slope is principally determined by steady-state action potential duration.
Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James
2017-06-01
The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology
Restitution slope is principally determined by steady-state action potential duration
Shattock, Michael J.; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W. C.; Niederer, Steven; MacLeod, Kenneth T.
2017-01-01
Aims The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Methods and results Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Conclusion(s) Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death. PMID:28371805
Kaplan, Ozgur; Kurtoglu, Ertugrul; Nar, Gokay; Yasar, Erdogan; Gozubuyuk, Gokhan; Dogan, Cem; Boz, Ahmet Ugur; Hidayet, Sıho; Pekdemir, Hasan
2015-12-01
The association between periatrial adiposity and atrial arrhythmias has been shown in previous studies. However, there are not enough available data on the association between epicardial fat tissue (EFT) thickness and parameters of ventricular repolarization. Thus, we aimed to evaluate the association of EFT thickness with indices of ventricular repolarization by using T-peak to T-end (Tp-e) interval and Tp-e/QT ratio. The present study included 50 patients whose EFT thickness ≥ 9 mm (group 1) and 40 control subjects with EFT thickness < 9 mm (group 2). Transthoracic echocardiographic examination was performed in all participants. QT parameters, Tp-e intervals and Tp-e/QT ratio were measured from the 12-lead electrocardiogram. QTd (41.1 ± 2.5 vs 38.6 ± 3.2, p < 0.001) and corrected QTd (46.7 ± 4.7 vs 43.7 ± 4, p = 0.002) were significantly higher in group 1 when compared to group 2. The Tp-e interval (76.5 ± 6.3, 70.3 ± 6.8, p < 0.001), cTp-e interval (83.1 ± 4.3 vs. 76±4.9, p < 0.001), Tp-e/QT (0.20 ± 0.02 vs. 0.2 ± 0.02, p < 0.001) and Tp-e/QTc ratios (0.2 ± 0.01 vs. 0.18 ± 0.01, p < 0.001) were increased in group 1 in comparison to group 2. Significant positive correlations were found between EFT thickness and Tp-e interval (r = 0.548, p < 0.001), cTp-e interval (r = 0.259, p = 0.01), and Tp-e/QT (r = 0.662, p < 0.001) and Tp-e/QTc ratios (r = 0.560, p < 0.001). The present study shows that Tp-e and cTp-e interval, Tp-e/QT and Tp-e/QTc ratios were increased in subjects with increased EFT, which may suggest an increased risk of ventricular arrhythmia.
Näbauer, M; Morad, M
1992-01-01
1. The effect of direct alteration of intracellular Na+ concentration on contractile properties of whole-cell clamped shark ventricular myocytes was studied using an array of 256 photodiodes to monitor the length of the isolated myocytes. 2. In myocytes dialysed with Na(+)-free solution, the voltage dependence of Ca2+ current (ICa) and contraction were similar and bell shaped. Contractions activated at all voltages were completely suppressed by nifedipine (5 microM), and failed to show significant tonic components, suggesting dependence of the contraction on Ca2+ influx through the L-type Ca2+ channel. 3. In myocytes dialysed with 60 mM Na+, a ICa-dependent and a ICa-independent component of contraction could be identified. The Ca2+ current-dependent component was prominent in voltages between -30 to +10 mV. The ICa-independent contractions were maintained for the duration of depolarization, increased with increasing depolarization between +10 to +100 mV, and were insensitive to nifedipine. 4. In such myocytes, repolarization produced slowly decaying inward tail currents closely related to the time course of relaxation and the degree of shortening prior to repolarization. 5. With 60 mM Na+ in the pipette solution, positive clamp potentials activated decaying outward currents which correlated to the size of contraction. These outward currents appeared to be generated by the Na(+)-Ca(2+)-exchanger since they depended on the presence of intracellular Na+, and were neither suppressed by nifedipine nor by K+ channel blockers. 6. The results suggest that in shark (Squalus acanthias) ventricular myocytes, which lack functionally relevant Ca2+ release pools, both Ca2+ channel and the Na(+)-Ca2+ exchanger deliver sufficient Ca2+ to activate contraction, though the effectiveness of the latter mechanism was highly dependent on the [Na+]i. PMID:1338467
Geramipour, Amir; Kohajda, Zsófia; Corici, Claudia; Prorok, János; Szakonyi, Zsolt; Oravecz, Kinga; Márton, Zoltán; Nagy, Norbert; Tóth, András; Acsai, Károly; Virág, László; Varró, András; Jost, Norbert
2016-10-01
The sodium-calcium exchanger (NCX) is considered as the major transmembrane transport mechanism that controls Ca 2+ homeostasis. Its contribution to the cardiac repolarization has not yet been directly studied due to lack of specific inhibitors, so that an urgent need for more selective compounds. In this study, the electrophysiological effects of GYKB-6635, a novel NCX inhibitor, on the NCX, L-type calcium, and main repolarizing potassium currents as well as action potential (AP) parameters were investigated. Ion currents and AP recordings were investigated by applying the whole-cell patch clamp and standard microelectrode techniques in canine heart at 37 °C. Effects of GYKB-6635 were studied in ouabain-induced arrhythmias in isolated guinea-pig hearts. At a concentration of 1 μmol/L, GYKB significantly reduced both the inward and outward NCX currents (57% and 58%, respectively). Even at a high concentration (10 μmol/L), GYKB-6635 did not change the I CaL , the maximum rate of depolarization (dV/dt max ), the main repolarizing K + currents, and the main AP parameters. GYKB-6635 pre-treatment significantly delayed the time to the development of ventricular fibrillation (by about 18%). It is concluded that GYKB-6635 is a potent and highly selective inhibitor of the cardiac NCX and, in addition, it is suggested to also contribute to the prevention of DAD-based arrhythmias.
Suzuki, Yoko; Miyajima, Miho; Ohta, Katsuya; Yoshida, Noriko; Omoya, Rie; Fujiwara, Mayo; Watanabe, Takafumi; Okumura, Masaki; Yamazaki, Hiroaki; Shintaku, Masayuki; Murata, Issei; Ozaki, Shigeru; Sasaki, Takeshi; Nakamura, Mitsuru; Suwa, Hiroshi; Sasano, Tetsuo; Kawara, Tokuhiro; Matsuura, Masato; Matsushima, Eisuke
2017-11-01
Electrocardiogram abnormalities have been reported during electroconvulsive therapy (ECT). A corrected QT interval (QTc) prolongation indicates delayed ventricular repolarization, which can trigger ventricular arrhythmias such as torsade de pointes (TdP). We examined the QTc changes during generalized tonic-clonic seizures induced by ECT, and the effects of atropine sulfate on these QTc changes. We analyzed heart rate, QT interval, and QTc in 32 patients with depression who underwent ECT (25 women, 67.4 ± 8.7 years of age). The QTc from -30 to 0 seconds prestimulation was used as baseline, which was compared with QTc at 20-30 seconds and 140-150 seconds poststimulus onset. QTc was significantly prolonged at 20-30 seconds poststimulus, then significantly decreased at 140-150 seconds poststimulus, compared with baseline. QTc prolongation induced by ECT was significantly decreased by atropine sulfate. These data suggest that the risk of TdP may be enhanced by ECT. Further, the risk of cardiac ventricular arrhythmias, including TdP, may be reduced by administration of atropine sulfate. © 2017 Wiley Periodicals, Inc.
Choline-modulated arsenic trioxide-induced prolongation of cardiac repolarization in Guinea pig.
Sun, Hong-Li; Chu, Wen-Feng; Dong, De-Li; Liu, Yan; Bai, Yun-Long; Wang, Xiao-Hui; Zhou, Jin; Yang, Bao-Feng
2006-04-01
Arsenic trioxide (As(2)O(3)) has been found to be effective for relapsed or refractory acute promyelocytic leukaemia, but its clinical use is burdened by QT prolongation, Torsade de pointes tachycardias, and sudden cardiac death. The aim of the present study was to elucidate the ionic mechanisms of As(2)O(3)-induced abnormalities of cardiac electrophysiology and the therapeutic action of choline on As(2)O(3)-caused QT prolongation in guinea pig. Intravenous administration of As(2)O(3) prolonged the QT interval in a dose- and time-dependent manner in guinea pig hearts, and the QT prolongation could be modulated by choline. By using whole-cell patch clamp technique and confocal laser scanning microscopy, we found that As(2)O(3) significantly lengthened action potential duration measured at 50 and 90% of repolarization, enhanced L-type calcium currents (I(Ca-L)), inhibited delayed rectifier potassium currents (I(K)), and increased intracellular calcium concentration ([Ca(2+)](i)) in guinea pig ventricular myocytes. Choline corrected As(2)O(3)-mediated alterations of action potential duration, I(Ca-L) and [Ca(2+)](i), but had no effect on the I(K) inhibition. As(2)O(3) markedly disturbed the normal equilibrium of transmembrane currents (increasing I(Ca-L) and suppressing I(K)) in guinea pig cardiomyocyte, and induced prolongation of action potential duration, further degenerated into QT prolongation. Choline normalized QT interval abnormality and corrected lengthened action potential duration by inhibiting the elevated I(Ca-L) and [Ca(2+)](i) in ventricular myocytes during As(2)O(3) application.
In Vitro and In Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details.
Lee, William; Windley, Monique J; Vandenberg, Jamie I; Hill, Adam P
2017-01-01
Acquired long QT syndrome, mostly as a result of drug block of the Kv11. 1 potassium channel in the heart, is characterized by delayed cardiac myocyte repolarization, prolongation of the T interval on the ECG, syncope and sudden cardiac death due to the polymorphic ventricular arrhythmia Torsade de Pointes (TdP). In recent years, efforts are underway through the Comprehensive in vitro proarrhythmic assay (CiPA) initiative, to develop better tests for this drug induced arrhythmia based in part on in silico simulations of pharmacological disruption of repolarization. However, drug binding to Kv11.1 is more complex than a simple binary molecular reaction, meaning simple steady state measures of potency are poor surrogates for risk. As a result, there is a plethora of mechanistic detail describing the drug/Kv11.1 interaction-such as drug binding kinetics, state preference, temperature dependence and trapping-that needs to be considered when developing in silico models for risk prediction. In addition to this, other factors, such as multichannel pharmacological profile and the nature of the ventricular cell models used in simulations also need to be considered in the search for the optimum in silico approach. Here we consider how much of mechanistic detail needs to be included for in silico models to accurately predict risk and further, how much of this detail can be retrieved from protocols that are practical to implement in high throughout screens as part of next generation of preclinical in silico drug screening approaches?
Ionic channels underlying the ventricular action potential in zebrafish embryo.
Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar
2014-06-01
Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Connors, S. P.; Gill, E. W.; Terrar, D. A.
1992-01-01
1. The actions and mechanisms of action of novel analogues of sotalol which prolong cardiac action potentials were investigated in guinea-pig and rabbit isolated ventricular cells. 2. In guinea-pig and rabbit cells the compounds significantly prolonged action potential duration at 20% and 90% repolarization levels without affecting resting membrane potential. In guinea-pig but not rabbit cells there was an increase in action potential amplitude and in rabbit cells there was no change in the shape or position of the 'notch' in the action potential. 3. Possible mechanisms of action were studied in more detail in the case of compound II (1-(4-methanesulphonamidophenoxy)-3-(N-methyl 3,4 dichlorophenylethylamino)-2-propanol). Prolongation of action potential duration continued to occur in the presence of nisoldipine, and calcium currents recorded under voltage-clamp conditions were not reduced by compound II (1 microM). Action potential prolongation by compound II was also unaffected in the presence of 10 microM tetrodotoxin. 4. Compound II (1 microM) did not influence IK1 assessed from the current during ramp changes in membrane potential (20 mV s-1) over the range -90 to -10 mV. 5. Compound II (1 microM) blocked time-dependent delayed rectifier potassium current (IK) activated by step depolarizations and recorded as an outward tail following repolarization. When a submaximal concentration (50 nM) was applied there was no change in the apparent reversal potential of IK.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393293
Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng
2018-04-28
To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH). Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers. Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (P<0.05); while IKs densities were significantly reduced [+60 mV: (0.36±0.03) pA/pF vs (0.58±0.05) pA/pF, P<0.01]. However, LVH exerted no significant effect on IKr densities. IKr blocker markedly prolonged the QTc interval (P<0.01) and increased the incidence of ventricular arrhythmias in guinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals. Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation of IKs.
Seemann, Gunnar; Panfilov, Alexander V.; Vandersickel, Nele
2017-01-01
Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level. PMID:29216239
Novel ion channel targets in atrial fibrillation.
Hancox, Jules C; James, Andrew F; Marrion, Neil V; Zhang, Henggui; Thomas, Dierk
2016-08-01
Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel β subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.
[Carbamazepine cardiotoxicity in acute poisoning].
Todorović, V; Randelović, S; Joksović, D; Jović-Stosić, J; Vucinić, S; Glisović, L
1993-01-01
Manifestations of cardiotoxicity in 9 patients with acute carabamazepine poisoning treated at the Clinic of Toxicology and Clinical Pharmacology of the M.M.A. in 1989 are reported. In all patients together with symptoms and signs characteristic for acute carbamezapine poisoning, there have been also present disorders of the cardiovascular system. The most common clinical signs of cardiotoxicity have been tachycardia and hypotension, and electrocardiographic, ventricular extrasystoles and repolarization disorders. Cardiotoxic manifestations in two cases have been the vital threat for the patients. After application of nonspecific and symptomatic therapy, clinical and electrocardiographic signs of cardiotoxicity were withdrawn, that is, heart sequeles were not recorded.
Segmented Poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy.
Voss, A; Fischer, C; Schroeder, R; Figulla, H R; Goernig, M
2010-01-01
The prognostic value of heart rate variability in patients with dilated cardiomyopathy (DCM) is limited and does not contribute to risk stratification although the dynamics of ventricular repolarization differs considerably between DCM patients and healthy subjects. Neither linear nor nonlinear methods of heart rate variability analysis could discriminate between patients at high and low risk for sudden cardiac death. The aim of this study was to analyze the suitability of the new developed segmented Poincaré plot analysis (SPPA) to enhance risk stratification in DCM. In contrast to the usual applied Poincaré plot analysis the SPPA retains nonlinear features from investigated beat-to-beat interval time series. Main features of SPPA are the rotation of cloud of points and their succeeded variability depended segmentation. Significant row and column probabilities were calculated from the segments and led to discrimination (up to p<0.005) between low and high risk in DCM patients. For the first time an index from Poincaré plot analysis of heart rate variability was able to contribute to risk stratification in patients suffering from DCM.
Recent advances in understanding sex differences in cardiac repolarization.
James, Andrew F; Choisy, Stéphanie C M; Hancox, Jules C
2007-07-01
A number of gender differences exist in the human electrocardiogram (ECG): the P-wave and P-R intervals are slightly longer in men than in women, whilst women have higher resting heart rates than do men, but a longer rate-corrected QT (QT(C)) interval. Women with the LQT1 and LQT2 variants of congenital long-QT syndrome (LQTS) are at greater risk of adverse cardiac events. Similarly, many drugs associated with acquired LQTS have a greater risk of inducing torsades de pointes (TdP) arrhythmia in women than in men. There are also male:female differences in Brugada syndrome, early repolarisation syndrome and sudden cardiac death. The differences in the ECG between men and women, and in particular those relating to the QT interval, have been explored experimentally and provide evidence of differences in the processes underlying ventricular repolarization. The data available from rabbit, canine, rat, mouse and guinea pig models are reviewed and highlight involvement of male:female differences in Ca and K currents, although the possible involvement of rapid and persistent Na current and Na-Ca exchange currents cannot yet be excluded. The mechanisms underlying observed differences remain to be elucidated fully, but are likely to involve the influence of gonadal steroids. With respect to the QT interval and risk of TdP, a range of evidence implicates a protective role of testosterone in male hearts, possibly by both genomic and non-genomic pathways. Evidence regarding oestrogen and progesterone is less unequivocal, although the interplay between these two hormones may influence both repolarization and pro-arrhythmic risk.
Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang
2016-05-01
Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.
Tenekecioglu, Erhan; Karaagac, Kemal; Yontar, Osman Can; Agca, Fahriye Vatansever; Ozluk, Ozlem Arican; Tutuncu, Ahmet; Arslan, Burhan; Yilmaz, Mustafa
2015-06-01
Coronary slow flow (CSF) phenomenon is described by angiographically normal coronary arteries with delayed opacification of the distal vasculature. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-Te) may correspond to the transmural dispersion of the repolarization and that increased Tp-Te interval and Tp-Te/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate the ventricular repolarization by using Tp-Te interval and Tp-Te/QT ratio in patients with CSF. This study included 50 CSF patients (40 male, mean age 48.6±12.5 years) and 40 control individuals (23 male, mean age 47.8±12.5 years). Tp-Te interval and Tp-Te/QT ratio were measured from the 12-lead electrocardiogram. These parameters were compared in groups. Baseline characteristics of the study groups were comparable. In electrocardiographic parameters analysis, QT and corrected QT were similar in CSF patients compared to the controls (357±35.2 vs 362±38.0 milliseconds and 419±25.8 vs 430±44.2 milliseconds, all p value >0.05). Tp-Te interval, Tp-Te/QT and Tp-Te/QTc ratio were significantly higher in CSF patients (85±13.7 vs 74±9.9 milliseconds and 0.24±0.03 vs 0.20±0.02 and 0.20±0.03 vs 0.17±0.02 all p value <0.001). Our study revealed that QTd, Tp-Te interval and Tp-Te/QT ratio are prolonged in patients with CSF.
Cortez, Daniel; Svensson, Anneli; Carlson, Jonas; Graw, Sharon; Sharma, Nandita; Brun, Francesca; Spezzacatene, Anita; Mestroni, Luisa; Platonov, Pyotr G
2017-10-13
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) carries a risk of sudden death. We aimed to assess whether vectorcardiographic (VCG) parameters directed toward the right heart and a measured angle of the S-wave would help differentiate ARVD/C with otherwise normal electrocardiograms from controls. Task Force 2010 definite ARVD/C criteria were met for all patients. Those who did not fulfill Task Force depolarization or repolarization criteria (-ECG) were compared with age and gender-matched control subjects. Electrocardiogram measures of a 3-dimentional spatial QRS-T angle, a right-precordial-directed orthogonal QRS-T (RPD) angle, a root mean square of the right sided depolarizing forces (RtRMS-QRS), QRS duration (QRSd) and the corrected QT interval (QTc), and a measured angle including the upslope and downslope of the S-wave (S-wave angle) were assessed. Definite ARVD/C was present in 155 patients by 2010 Task Force criteria (41.7 ± 17.6 years, 65.2% male). -ECG ARVD/C patients (66 patients) were compared to 66 control patients (41.7 ± 17.6 years, 65.2% male). All parameters tested except the QRSd and QTc significantly differentiated -ECG ARVD/C from control patients (p < 0.004 to p < 0.001). The RPD angle and RtRMS-QRS best differentiated the groups. Combined, the 2 novel criteria gave 81.8% sensitivity, 90.9% specificity and odds ratio of 45.0 (95% confidence interval 15.8 to 128.2). ARVD/C disease process may lead to development of subtle ECG abnormalities that can be distinguishable using right-sided VCG or measured angle markers better than the spatial QRS-T angle, the QRSd or QTc, in the absence of Taskforce ECG criteria.
Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo
2017-01-01
Background Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. Methods The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. Results The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. Conclusion The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients. PMID:29020031
NASA Astrophysics Data System (ADS)
Bonomini, Maria Paula; Juan Ingallina, Fernando; Barone, Valeria; Antonucci, Ricardo; Valentinuzzi, Max; Arini, Pedro David
2016-04-01
The changes that left ventricular hypertrophy (LVH) induces in depolarization and repolarization vectors are well known. We analyzed the performance of the electrocardiographic and vectorcardiographic transverse planes (TP in the ECG and XZ in the VCG) and frontal planes (FP in the ECG and XY in the VCG) to discriminate LVH patients from control subjects. In an age-balanced set of 58 patients, the directions and amplitudes of QRS-complexes and T-wave vectors were studied. The repolarization vector significantly decreased in modulus from controls to LVH in the transverse plane (TP: 0.45±0.17mV vs. 0.24±0.13mV, p<0.0005 XZ: 0.43±0.16mV vs. 0.26±0.11mV, p<0.005) while the depolarization vector significantly changed in angle in the electrocardiographic frontal plane (Controls vs. LVH, FP: 48.24±33.66° vs. 46.84±35.44°, p<0.005, XY: 20.28±35.20° vs. 19.35±12.31°, NS). Several LVH indexes were proposed combining such information in both ECG and VCG spaces. A subset of all those indexes with AUC values greater than 0.7 was further studied. This subset comprised four indexes, with three of them belonging to the ECG space. Two out of the four indexes presented the best ROC curves (AUC values: 0.78 and 0.75, respectively). One index belonged to the ECG space and the other one to the VCG space. Both indexes showed a sensitivity of 86% and a specificity of 70%. In conclusion, the proposed indexes can favorably complement LVH diagnosis
Drigny, J; Gremeaux, V; Guiraud, T; Gayda, M; Juneau, M; Nigam, A
2013-07-01
QT dispersion (QTd) is a marker of myocardial electrical instability, and is increased in metabolic syndrome (MetS). Moderate intensity continuous exercise (MICE) training was shown to improve QTd in MetS patients. To describe long-term effects of MICE and high-intensity interval exercise training (HIIT) on QTd parameters in MetS. Sixty-five MetS patients (53 ± 9 years) were assigned to either a MICE (60% of peak power output [PPO]), or a HIIT program (alternating phases of 15-30 s at 80% of PPO interspersed by passive recovery phases of equal duration), twice weekly during 9 months. Ventricular repolarization indices (QT dispersion=QTd, standard deviation of QT = sdQT, relative dispersion of QT = rdQT, QT corrected dispersion = QTcd), metabolic, anthropometric and exercise parameters were measured before and after the intervention. No adverse events were noted during exercise. QTd decreased significantly in both groups (51 vs 56 ms in MICE, P < 0.05; 34 vs 38 ms in HIIT, P < 0.05). Changes in QTd were correlated with changes in maximal heart rate (r = -0.69, P < 0.0001) and in heart rate recovery (r = -0.49, P < 0.01) in the HIIT group only. When compared to MICE, HIIT training induced a greater decrease in weight, BMI and waist circumference. Exercise capacity significantly improved by 0.82 and 1.25 METs in MICE and HIIT groups respectively (P < 0.0001). Lipid parameters also improved to the same degree in both groups. In MetS, long-term HIIT and MICE training led to comparable effects on ventricular repolarization indices, and HIIT might be associated with greater improvements in certain cardiometabolic risk factors. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Frommeyer, Gerrit; Brücher, Benedict; von der Ahe, Henning; Kaese, Sven; Dechering, Dirk G; Kochhäuser, Simon; Bogossian, Harilaos; Milberg, Peter; Eckardt, Lars
2016-10-05
In several case reports proarrhythmic effects of citalopram and escitalopram have been reported. Systematic analyses on prorarrhythmic effects of these drugs are not yet available. The aim of the present study was to investigate if application of citalopram, escitalopram or haloperidol provokes polymorphic ventricular tachycardia in a sensitive model of proarrhythmia. In isolated rabbit hearts monophasic action potentials and ECG showed a significant QT-prolongation after application of citalopram (2µM: +47ms, 4µM: +56ms, P<0.05) accompanied by an increase of action potential duration (APD) but not dispersion of repolarization. Reduced potassium concentration in bradycardic AV-blocked hearts provoked early afterdepolarizations (EAD) in 2 of 12 hearts but no polymorphic ventricular tachycardia (pVT). Application of escitalopram also increased QT-interval (2µM: +3ms, 4µM: +30ms, P<0.05) and APD without effects on dispersion. 3 of 10 hearts showed EAD and pVT in 2 of 10 hearts (32 episodes). The results were compared to 12 rabbits treated with haloperidol which led to an increase in QT-interval (1µM:+62ms; 2µM:+96ms; P<0.01), APD and dispersion (1µM:+15ms, 2µM:+40ms; P<0.01) and induced EAD in all 12 and pVT in 10 of 12 hearts (152 episodes). Citalopram and escitalopram demonstrated a rather safe electrophysiologic profile despite significant QT prolongation. In contrast, haloperidol led to significant increase of dispersion of repolarization while this parameter remained stable under the influence of citalopram or escitalopram. These results imply that application of citalopram or escitalopram is not as proarrhythmic as some case reports might suggest while haloperidol is torsadogenic. Copyright © 2016 Elsevier B.V. All rights reserved.
Ramírez, Julia; Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo; Laguna, Pablo; Pueyo, Esther
2017-01-01
Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients.
Badr, A; El-Sayed, M F; Vornanen, M
2016-05-15
Temperature sensitivity of electrical excitability is a potential limiting factor for performance level and thermal tolerance of excitable tissues in ectothermic animals. To test whether the rate and rhythm of the heart acclimatize to seasonal temperature changes, thermal sensitivity of cardiac excitation in a eurythermal teleost, the roach (Rutilus rutilus), was examined. Excitability of the heart was determined from in vivo electrocardiograms and in vitro microelectrode recordings of action potentials (APs) from winter and summer roach acclimatized to 4 and 18°C, respectively. Under heat ramps (3°C h(-1)), starting from the acclimatization temperatures of the fish, heart rate increased to maximum values of 78±5 beats min(-1) (at 19.8±0.5°C) and 150±7 beats min(-1) (at 28.1±0.5°C) for winter and summer roach, respectively, and then declined in both groups. Below 20°C, heart rate was significantly higher in winter than in summer roach (P<0.05), indicating positive thermal compensation. Cardiac arrhythmias appeared with rising temperature as missing QRS complexes, increase in variability of heart rate, episodes of atrial tachycardia, ventricular bradycardia and complete cessation of the heartbeat (asystole) in both winter and summer roach. Unlike winter roach, atrial APs of summer roach had a distinct early repolarization phase, which appeared as shorter durations of atrial AP at 10% and 20% repolarization levels in comparison to winter roach (P<0.05). In contrast, seasonal acclimatization had only subtle effects on ventricular AP characteristics. Plasticity of cardiac excitation appears to be necessary for seasonal improvements in performance level and thermal resilience of the roach heart. © 2016. Published by The Company of Biologists Ltd.
Evaluation of Tp-E Interval and Tp-E/QT Ratio in Patients with Aortic Stenosis.
Yayla, Çağrı; Bilgin, Murat; Akboğa, Mehmet Kadri; Gayretli Yayla, Kadriye; Canpolat, Uğur; Dinç Asarcikli, Lale; Doğan, Mehmet; Turak, Osman; Çay, Serkan; Özeke, Özcan; Akyel, Ahmet; Yeter, Ekrem; Aydoğdu, Sinan
2016-05-01
The risk of syncope and sudden cardiac death due to ventricular arrhythmias increased in patients with aortic stenosis (AS). Recently, it was shown that Tp-e interval, Tp-e/QT, and Tp-e/QTc ratio can be novel indicators for prediction of ventricular arrhythmias and mortality. We aimed to investigate the association between AS and ventricular repolarization using Tp-e interval and Tp-e/QT ratio. Totally, 105 patients with AS and 60 control subjects were enrolled to this study. The severity of AS was defined by transthoracic echocardiographic examination. Tp-e interval, Tp-e/QT, and Tp-e/QTc ratios were measured from the 12-lead electrocardiogram. Tp-e interval, Tp-e/QT, and Tp-e/QTc ratios were significantly increased in parallel to the severity of AS (P < 0.001, P = 0.001, and P = 0.001, respectively). Also, it was shown that Tp-e/QTc ratio had significant positive correlation with mean aortic gradient (r = 0.192, P = 0.049). In multivariate logistic regression analysis, Tp-e/QTc ratio and left ventricular mass were found to be independent predictors of severe AS (P = 0.03 and P = 0.04, respectively). Our study showed that Tp-e interval, Tp-e/QT, and Tp-e/QTc ratios were increased in patients with severe AS. Tp-e/QTc ratio and left ventricular mass were found as independent predictors of severe AS. © 2015 Wiley Periodicals, Inc.
Emotional stress as a cause of syncope and torsade de pointes in patients with long QT syndrome.
Vukmirović, Mihailo; Vukmirović, Irena Tomašević; Angelkov, Lazar; Vukmirović, Filip
2015-02-01
Long QT syndrome (LQTS) is a disorder of myocardial repolarization characterized by the prolongation of QT interval and high risk propensity of torsade de pointes (TdP) that can lead to syncope, cardiac arrest and sudden death. Episodes may be provoked by various stimuli depending on the type of the condition. A 25-year-old famele patient was hospitalized due to syncope that occurred immediately after her solo concert, first time in her life. The patient studied solo singing and after intensive preparations the first solo concert was organized. Electrocardiography (ECG) on admission registered frequent ventricular premature beats (VES), followed by polymorphic ventricular tachycardia--TdP that degenerated into ventricular fibrilation (VF). After immediate cardioversion magnesium and beta-blockers were administered. TdP was registered again several times preceded by VES. The corrected QT interval (QTc) was 516 msec. For secondary prevention of sudden cardiac death, a cardioverter defibrillator was implanted, and beta-blockers continued. After a 1-year follow-up there were no recurrent episodes of TdP, and measured QTc was reduced to 484 msec. Patients with syncope following intensive emotional stress should be evaluated for malignant arrhythmias in the context of LQTS.
Electrocardiographic left ventricular strain pattern: everything old is new again.
Schocken, Douglas D
2014-01-01
Electrocardiographic left ventricular hypertrophy (LVH) has many faces with countless features. Beyond the classic measures of LVH, including QRS voltage and duration, the left ventricular (LV) strain pattern is an element whereby characteristic R-ST depression is followed by a concave ST segment that ends in an asymmetrically inverted T wave. The LV strain pattern generally appears in states of increased systemic blood pressure and must be differentiated from similar but not identical ST-T waves indicating ischemia. The LV strain pattern has been found in population studies to be associated with poor prognosis and increased risk of adverse cardiovascular outcomes. Regression of LV strain pattern parallels decline in systemic BP during clinical trials of anti-hypertensive therapies but does not indicate or serve as a surrogate for decrease in LV mass. Newer techniques in data collection and processing may allow the process of strain to be studied in more detail to determine the ways in which electrical remodeling of the left ventricle as characterized by LVH with 'repolarization abnormalities' indicates how CV risk might be managed by using LV strain pattern as an electrocardiographic biomarker. Copyright © 2014 Elsevier Inc. All rights reserved.
1991-01-01
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177
2014-01-01
Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes. Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer duration than the QRS wave in the same lead. The proposed interpretation is applied to bundle branch blocks, fascicular (hemi-) blocks and changes during heart muscle ischemia. PMID:24506945
High Frequency of Early Repolarization and Brugada-Type Electrocardiograms in Hypercalcemia.
Sonoda, Keiko; Watanabe, Hiroshi; Hisamatsu, Takashi; Ashihara, Takashi; Ohno, Seiko; Hayashi, Hideki; Horie, Minoru; Minamino, Tohru
2016-01-01
J wave, or early repolarization has recently been associated with an increased risk of lethal arrhythmia and sudden death, both in idiopathic ventricular fibrillation and in the general population. Hypercalcemia is one of the causes of J point and ST segment elevation, but the relationship has not been well studied. The aim of this study was to examine the effects of hypercalcemia on J point elevation. Electrocardiographic findings were compared in 89 patients with hypercalcemia and 267 age- and sex-matched healthy controls with normocalcemia. The association of J point elevation with arrhythmia events in patients with hypercalcemia was also studied. The PR interval and the QRS duration were longer in patients with hypercalcemia than in normocalcemic controls. Both the QT and the corrected QT intervals were shorter in patients with hypercalcemia compared with normocalcemic controls. Conduction disorders, ST-T abnormalities, and J point elevation were more common in patients with hypercalcemia than normocalcemic controls. Following the resolution of hypercalcemia, the frequency of J point elevation decreased to a level similar to that noted in controls. During hospitalization, no arrhythmia event occurred in patients with hypercalcemia. Hypercalcemia was associated with J point elevation. © 2015 Wiley Periodicals, Inc.
Wang, Hegui; Chen, Yanhong; Zhu, Hongjun; Wang, Sen; Zhang, Xiwen; Xu, Dongjie; Cao, Kejiang; Zou, Jiangang
2012-01-01
Background Increasing evidence indicates that the rapid component of delayed rectifier potassium current (IKr) is modulated by α- and β-adrenergic stimulation. However, the role and mechanism regulating IKr through β2-adrenoreceptor (β-AR) stimulation in heart failure (HF) are unclear. Methodology/Principal Findings In the present study, we investigated the effects of fenoterol, a highly selective β2-AR agonist, on IKr in left ventricular myocytes obtained from control and guinea pigs with HF induced by descending aortic banding. IKr was measured by using whole cell patch clamp technique. In control myocytes, superfusion of fenoterol (10 µM) caused a 17% decrease in IKr. In HF myocytes, the same concentration of fenoterol produced a significantly greater decrease (33%) in IKr. These effects were not modified by the incubation of myocytes with CGP-20712A, a β1-AR antagonist, but were abolished by pretreatment of myocytes with ICI-118551, a β2-AR antagonist. An inhibitory cAMP analog, Rp-cAMPS and PKA inhibitor significantly attenuated fenoterol-induced inhibition of IKr in HF myocytes. Moreover, fenoterol markedly prolonged action potential durations at 90% (APD90) repolarization in HF ventricular myocytes. Conclusions The results indicate that inhibition of IKr induced by β2-AR stimulation is increased in HF. The inhibitory effect is likely to be mediated through a cAMP/PKA pathway in HF ventricular myocytes. PMID:23029432
Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M
2017-04-01
[Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora
2017-01-01
Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618
Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin
Ni, Haibo; Whittaker, Dominic G.; Wang, Wei; Giles, Wayne R.; Narayan, Sanjiv M.; Zhang, Henggui
2017-01-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF. PMID:29218016
Noszczyk-Nowak, Agnieszka; Pasławska, Urszula; Gajek, Jacek; Janiszewski, Adrian; Pasławski, Robert; Zyśko, Dorota; Nicpoń, Józef
2016-01-01
Swine are recognized animal models of human cardiovascular diseases. However, little is known on the CHF-associated changes in the electrophysiological ventricular parameters of humans and animals. The aim of this study was to analyze changes in the durations of ventricular effective refraction period (VERP), QT and QTc intervals of pigs with chronic tachycardia-induced tachycardiomyopathy (TIC). The study was comprised of 28 adult pigs (8 females and 20 males) of the Polish Large White breed. A one-chamber pacemaker was implanted in each of the 28 pigs. Electrocardiographic, echocardiographic and electrophysiological studies were carried out prior to the pacemaker implantation and at subsequent 4-week intervals. All electrocardiographic, echocardiographic and short electrophysiological study measurements in all swine were done under general anesthesia (propofol) after premedication with midazolam, medetomidine, and ketamine. No significant changes in the duration of QT interval and corrected QT interval (QTc) were observed during consecutive weeks of the experiment. The duration of the QTc interval of female pigs was shown to be significantly longer than that of the males throughout the whole study period. Beginning from the 12th week of rapid ventricular pacing, a significant increase in duration of VERP was observed in both male and female pigs. Males and females did not differ significantly in terms of VERP duration determined throughout the whole study period. Ventricular pacing, stimulation with 2 and 3 premature impulses at progressively shorter coupling intervals and an imposed rhythm of 130 bpm or 150 bpm induced transient ventricular tachycardia in one female pig and four male pigs. One episode of permanent ventricular tachycardia was observed. The number of induced arrhythmias increased proportionally to the severity of heart failure and duration of the experiment. However, relatively aggressive protocols of stimulation were required in order to induce arrhythmia in the studied pigs.
Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S
2015-08-01
The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.
Hysteresis effect implicates calcium cycling as a mechanism of repolarization alternans.
Walker, Mariah L; Wan, Xiaoping; Kirsch, Glenn E; Rosenbaum, David S
2003-11-25
T-wave alternans is due to alternation of membrane repolarization at the cellular level and is a risk factor for sudden cardiac death. Recently, a hysteresis effect has been reported in patients whereby T-wave alternans, once induced by rapid heart rate, persists even when heart rate is subsequently slowed. We hypothesized that alternans hysteresis is an intrinsic property of cardiac myocytes, directly related to an underlying mechanism for repolarization alternans that involves intracellular calcium cycling. Stepwise pacing was used to induce alternans in Langendorff-perfused guinea pig hearts from which optical action potentials were recorded simultaneously at 256 ventricular sites with voltage-sensitive dyes and in whole-cell patch-clamped cardiac myocytes treated with or without BAPTA-AM (1,2-bis[2-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid tetrakis [acetoxymethyl ester]). Alternans hysteresis was observed in every isolated heart: threshold heart rate for alternans was 280+/-12 bpm, but during subsequent deceleration of pacing, alternans persisted to significantly slower heart rates (238+/-5 bpm, P<0.05). Optical mapping showed that this effect also applied to the threshold for spatially discordant alternans (313+/-2.2 bpm during acceleration versus 250+/-6.6 bpm during deceleration, P<0.05). Alternans hysteresis was also observed in isolated cardiac myocytes. Moreover, calcium chelation by BAPTA-AM raised the threshold for alternans and inhibited hysteresis in a dose-dependent manner with no effect on baseline action potential duration. Alternans hysteresis is an intrinsic property of cardiac myocytes that can lead to persistence of arrhythmogenic discordant alternans even after heart rate is slowed. These results also support an important underlying role of calcium cycling in the mechanism of alternans.
Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.
Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben
2016-01-01
J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang
2015-12-01
There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.
A Study of Early Afterdepolarizations in a Model for Human Ventricular Tissue
Vandersickel, Nele; Kazbanov, Ivan V.; Nuitermans, Anita; Weise, Louis D.; Pandit, Rahul; Panfilov, Alexander V.
2014-01-01
Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium. PMID:24427289
Gintant, Gary A
2008-08-01
The successful development of novel drugs requires the ability to detect (and avoid) compounds that may provoke Torsades-de-Pointes (TdeP) arrhythmia while endorsing those compounds with minimal torsadogenic risk. As TdeP is a rare arrhythmia not readily observed during clinical or post-marketing studies, numerous preclinical models are employed to assess delayed or altered ventricular repolarization (surrogate markers linked to enhanced proarrhythmic risk). This review evaluates the advantages and limitations of selected preclinical models (ranging from the simplest cellular hERG current assay to the more complex in vitro perfused ventricular wedge and Langendorff heart preparations and in vivo chronic atrio-ventricular (AV)-node block model). Specific attention is paid to the utility of concentration-response relationships and "risk signatures" derived from these studies, with the intention of moving beyond predicting clinical QT prolongation and towards prediction of TdeP risk. While the more complex proarrhythmia models may be suited to addressing questionable or conflicting proarrhythmic signals obtained with simpler preclinical assays, further benchmarking of proarrhythmia models is required for their use in the robust evaluation of safety margins. In the future, these models may be able to reduce unwarranted attrition of evolving compounds while becoming pivotal in the balanced integrated risk assessment of advancing compounds.
Zhao, Meimi; Zhao, Jinsheng; He, Guilin; Sun, Xuefei; Huang, Xueshi; Hao, Liying
2013-01-01
Astragaloside IV (AS-IV) is one of the main active constituents of Astragalus membranaceus, which has various actions on the cardiovascular system. However, its electrophysiological mechanisms are not clear. In the present study, we investigated the effects of AS-IV on action potentials and membrane currents using the whole-cell patch clamp technique in isolated guinea-pig ventricular myocytes. AS-IV prolonged the action potential duration (APD) at all three tested concentrations. The peak effect was achieved with 1×10(-6) M, at which concentration AS-IV significantly prolonged the APD at 95% repolarization from 313.1±38.9 to 785.3±83.7 ms. AS-IV at 1×10(-6) M also enhanced the inward rectifier K(+) currents (I(K1)) and inhibited the delayed rectifier K(+) currents (I(K)). AS-IV (1×10(-6) M) strongly depressed the peak of voltage-dependent Ca(2+) channel current (I(CaL)) from -607.3±37.5 to -321.1±38.3 pA. However, AS-IV was not found to affect the Na(+) currents. Taken together, AS-IV prolonged APD of guinea-pig ventricular myocytes, which might be explained by its inhibition of I(K). AS-IV also influences Ca(2+) signaling through suppressing ICaL.
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2013-10-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.
NASA Astrophysics Data System (ADS)
Inaba, T.; Nakazawa, Y.; Yoshida, K.; Kato, Y.; Hattori, A.; Kimura, T.; Hoshi, T.; Ishizu, T.; Seo, Y.; Sato, A.; Sekiguchi, Y.; Nogami, A.; Watanabe, S.; Horigome, H.; Kawakami, Y.; Aonuma, K.
2017-11-01
A 64-channel Nb-based DC-SQUID magnetocardiography (MCG) system was installed at the University of Tsukuba Hospital (UTH) in March 2007 after obtaining Japanese pharmaceutical approval and insurance reimbursement approval. In the period between 2008 and 2016, the total number of patients was 10 085. The heart diseases diagnosed in fetuses as well as adults are mainly atrial arrhythmia, abnormal repolarization, ventricular arrhythmia, and fetal arrhythmia. In most cases of insufficient diagnostic accuracy with electrocardiography, SQUID MCG precisely revealed these heart diseases as an abnormal electrical current distribution. Based on success in routine examinations, SQUID MCG is now an indispensable clinical instrument with diagnostic software tuned up during routine use at UTH.
Cheng, Hongwei; Cannell, Mark B; Hancox, Jules C
2017-03-01
Transient outward potassium current (I to ) in the heart underlies phase 1 repolarization of cardiac action potentials and thereby affects excitation-contraction coupling. Small molecule activators of I to may therefore offer novel treatments for cardiac dysfunction, including heart failure and atrial fibrillation. NS5806 has been identified as a prototypic activator of canine I to This study investigated, for the first time, actions of NS5806 on rabbit atrial and ventricular I to Whole cell patch-clamp recordings of I to and action potentials were made at physiological temperature from rabbit ventricular and atrial myocytes. 10 μ mol/L NS5806 increased ventricular I to with a leftward shift in I to activation and accelerated restitution. At higher concentrations, stimulation of I to was followed by inhibition. The EC 50 for stimulation was 1.6 μ mol/L and inhibition had an IC 50 of 40.7 μ mol/L. NS5806 only inhibited atrial I to (IC 50 of 18 μ mol/L) and produced a modest leftward shifts in I to activation and inactivation, without an effect on restitution. 10 μ mol/L NS5806 shortened ventricular action potential duration (APD) at APD 20 -APD 90 but prolonged atrial APD NS5806 also reduced atrial AP upstroke and amplitude, consistent with an additional atrio-selective effect on Na + channels. In contrast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x channels, produced similar levels of inhibition of ventricular and atrial I to NS5806 discriminates between rabbit ventricular and atrial I to, with mixed activator and inhibitor actions on the former and inhibitor actions against the later. NS5806 may be of significant value for pharmacological interrogation of regional differences in native cardiac I to . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Wang, Hegui; Chen, Yanhong; Zhu, Hongjun; Wang, Sen; Zhang, Xiwen; Xu, Dongjie; Cao, Kejiang; Zou, Jiangang
2012-01-01
Increasing evidence indicates that the rapid component of delayed rectifier potassium current (I(Kr)) is modulated by α- and β-adrenergic stimulation. However, the role and mechanism regulating I(Kr) through β(2)-adrenoreceptor (β-AR) stimulation in heart failure (HF) are unclear. In the present study, we investigated the effects of fenoterol, a highly selective β(2)-AR agonist, on I(Kr) in left ventricular myocytes obtained from control and guinea pigs with HF induced by descending aortic banding. I(Kr) was measured by using whole cell patch clamp technique. In control myocytes, superfusion of fenoterol (10 µM) caused a 17% decrease in I(Kr). In HF myocytes, the same concentration of fenoterol produced a significantly greater decrease (33%) in I(Kr). These effects were not modified by the incubation of myocytes with CGP-20712A, a β(1)-AR antagonist, but were abolished by pretreatment of myocytes with ICI-118551, a β(2)-AR antagonist. An inhibitory cAMP analog, Rp-cAMPS and PKA inhibitor significantly attenuated fenoterol-induced inhibition of I(Kr) in HF myocytes. Moreover, fenoterol markedly prolonged action potential durations at 90% (APD(90)) repolarization in HF ventricular myocytes. The results indicate that inhibition of I(Kr) induced by β(2)-AR stimulation is increased in HF. The inhibitory effect is likely to be mediated through a cAMP/PKA pathway in HF ventricular myocytes.
Barbhaiya, Chirag; Po, Jose Ricardo F; Hanon, Sam; Schweitzer, Paul
2013-01-01
Cardiac resynchronization therapy (CRT) increases transmural dispersion of repolarization (TDR) and can be pro-arrhythmic. However, overall arrhythmia risk was not increased in large-scale CRT clinical trials. Increased TDR as measured by T(peak ) -T(end) (TpTe) was associated with arrhythmia risk in CRT in a single-center study. This study investigates whether QT interval, TpTe, and TpTe/QT ratio are associated with ventricular arrhythmias in patients with CRT-defibrillator (CRT-D). Post-CRT-D implant electrocardiograms of 128 patients (age 71.3 years ± 10.3) with at least 2 months of follow-up at our institution's device clinic (mean follow-up of 28.5 months ± 17) were analyzed for QT interval, TpTe, and TpTe/QT ratio. Incidence of ventricular arrhythmias was determined based on routine and directed device interrogations. Appropriate implantable cardioverter-defibrillator therapy for sustained ventricular tachycardia or ventricular fibrillation was delivered in 18 patients (14%), and nonsustained ventricular tachycardia (NSVT) was detected but did not require therapy in 58 patients (45%). Patients who received appropriate defibrillator therapy had increased TpTe/QT ratio (0.24 ± 0.03 ms vs 0.20 ± 0.04, P = 0.0002) and increased TpTe (105.56 ± 20.36 vs 87.82 ± 22.32 ms, P = 0.002), and patients with NSVT had increased TpTe/QT ratio (0.22 ± 0.04 vs 0.20 ± 0.04, P = 0.016). Increased QT interval was not associated with risk of ventricular arrhythmia. The relative risk for appropriate defibrillator therapy of T(p) T(e) /QT ratio ≥ 0.25 was 3.24 (P = 0.016). Increased TpTe and increased TpTe/QT ratio are associated with increased incidence of ventricular arrhythmias in CRT-D. The utility of TpTe interval and TpTe/QT ratio as potentially modifiable risk factors for ventricular arrhythmias in CRT requires further study. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Memory-induced nonlinear dynamics of excitation in cardiac diseases.
Landaw, Julian; Qu, Zhilin
2018-04-01
Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.
Memory-induced nonlinear dynamics of excitation in cardiac diseases
NASA Astrophysics Data System (ADS)
Landaw, Julian; Qu, Zhilin
2018-04-01
Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.
Yin, Dechun; Chen, Mu; Yang, Na; Wu, Adonis Z; Xu, Dongzhu; Tsai, Wei-Chung; Yuan, Yuan; Tian, Zhipeng; Chan, Yi-Hsin; Shen, Changyu; Chen, Zhenhui; Lin, Shien-Fong; Weiss, James N; Chen, Peng-Sheng; Everett, Thomas H
2018-05-01
Apamin-sensitive small conductance calcium-activated K current (I KAS ) is up-regulated during ventricular pacing and masks short-term cardiac memory (CM). The purpose of this study was to determine the role of I KAS in long-term CM. CM was created with 3-5 weeks of ventricular pacing and defined by a flat or inverted T wave off pacing. Epicardial optical mapping was performed in both paced and normal ventricles. Action potential duration (APD 80 ) was determined during right atrial pacing. Ventricular stability was tested before and after I KAS blockade. Four paced hearts and 4 normal hearts were used for western blotting and histology. There were no significant differences in either echocardiographic parameters or fibrosis levels between groups. Apamin induced more APD 80 prolongation in CM than in normal ventricles (mean [95% confidence interval]: 9.6% [8.8%-10.5%] vs 3.1% [1.9%-4.3%]; P <.001). Apamin significantly lengthened APD 80 in the CM model at late activation sites, indicating significant I KAS up-regulation at those sites. The CM model also had altered Ca 2+ handling, with the 50% Ca 2+ transient duration and amplitude increased at distal sites compared to a proximal site (near the pacing site). After apamin, the CM model had increased ventricular fibrillation (VF) inducibility (paced vs control: 33/40 (82.5%) vs 7/20 (35%); P <.001) and longer VF durations (124 vs 26 seconds; P <.001). Chronic ventricular pacing increases Ca 2+ transients at late activation sites, which activates I KAS to maintain repolarization reserve. I KAS blockade increases VF vulnerability in chronically paced rabbit ventricles. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Evaluation of Tp-e interval and Tp-e/QT ratio in patients with non-dipper hypertension.
Demir, Mehmet; Uyan, Umut
2014-01-01
Non-dipper hypertension is associated with increased cardiovascular morbidity and mortality. Several studies have suggested that the interval from the peak to the end of the electrocardiographic T wave (Tp-e) may correspond to the transmural dispersion of repolarization and that increased Tp-e interval and Tp-e/QT ratio are associated with malignant ventricular arrhythmias. The aim of this study was to evaluate ventricular repolarization by using Tp-e interval and Tp-e/QT ratio in patients with non-dipper hypertension. This study included 80 hypertensive patients. Hypertensive patients were divided into two groups: 50 dipper patients (29 male, mean age 51.5 ± 8 years) and 30 non-dipper patients (17 male, mean age 50.6 ± 5.4 years). Tp-e interval and Tp-e/QT ratio were measured from the 12-lead electrocardiogram. These parameters were compared between groups. No statistically significant difference was found between two groups in terms of basic characteristics. In electrocardiographic parameters analysis, QT dispersion (QTd) and corrected QTd were significantly increased in non-dipper patients compared to the dippers (39.4 ± 11.5 versus 27.3 ± 7.5 ms and 37.5 ± 9.5 versus 29.2 ± 6.5 ms, p = 0.001 and p = 0.01, respectively). Tp-e interval and Tp-e/QT ratio were also significantly higher in non-dipper patients (97.5 ± 11.2 versus 84.2 ± 8.3 ms and 0.23 ± 0.02 versus 0.17 ± 0.02, all p value <0.001). Our study revealed that QTd, Tp-e interval and Tp-e/QT ratio are prolonged in patients with non-dipper hypertension.
Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B
2017-01-01
Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.
Evaluation of inhomogeneities of repolarization in patients with psoriasis vulgaris
İnci, Sinan; Aksan, Gökhan; Nar, Gökay; Yüksel, Esra Pancar; Ocal, Hande Serra; Çapraz, Mustafa; Yüksel, Serkan; Şahin, Mahmut
2016-01-01
Introduction The arrhythmia potential has not been investigated adequately in psoriatic patients. In this study, we assessed the ventricular repolarization dispersion, using the Tp-e interval and the Tp-e/QT ratio, and investigated the association with inflammation. Material and methods Seventy-one psoriasis vulgaris patients and 70 age- and gender-matched healthy individuals were enrolled in the study. The severity of the disease was calculated using Psoriasis Area and Severity Index scoring. The QTd was defined as the difference between the maximum and minimum QT intervals. The Tp-e interval was defined as the interval from the peak of the T wave to the end of the T wave. The Tp-e interval was corrected for heart rate. The Tp-e/QT ratio was calculated using these measurements. Results There were no significant differences between the groups with respect to basal clinical and laboratory characteristics (p > 0.05). The Tp-e interval, the corrected Tp-e interval (cTp-e) and the Tp-e/QT ratio were also significantly higher in psoriasis patients compared to the control group (78.5 ±8.0 ms vs. 71.4 ±7.6 ms, p < 0.001, 86.3 ±13.2 ms vs. 77.6 ±9.0 ms, p < 0.001 and 0.21 ±0.02 vs. 0.19 ±0.02, p < 0.001 respectively). A significant correlation was detected between the cTp-e time and the Tp-e/QT ratio and the PASI score in the group of psoriatic patients (r = 0.51, p < 0.001; r = 0.59, p < 0.001, respectively). Conclusions In our study, we detected a significant increase in the Tp-e interval and the Tp-e/QT ratio in patients with psoriasis vulgaris. The Tp-e interval and the Tp-e/QT ratio may be predictors for ventricular arrhythmias in patients with psoriasis vulgaris. PMID:27904512
Effects of premature stimulation on HERG K+ channels
Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I
2001-01-01
The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759
Abnormalities of the QT interval in primary disorders of autonomic failure.
Choy, A M; Lang, C C; Roden, D M; Robertson, D; Wood, A J; Robertson, R M; Biaggioni, I
1998-10-01
Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not solely caused by lesions of the sympathetic nervous system, and that the parasympathetic nervous system is likely to have a modulatory role in ventricular repolarization.
Lengyel, Csaba; Orosz, Andrea; Hegyi, Péter; Komka, Zsolt; Udvardy, Anna; Bosnyák, Edit; Trájer, Emese; Pavlik, Gábor; Tóth, Miklós; Wittmann, Tibor; Papp, Julius Gy.; Varró, András; Baczkó, István
2011-01-01
Background Sudden cardiac death in competitive athletes is rare but it is significantly more frequent than in the normal population. The exact cause is seldom established and is mostly attributed to ventricular fibrillation. Myocardial hypertrophy and slow heart rate, both characteristic changes in top athletes in response to physical conditioning, could be associated with increased propensity for ventricular arrhythmias. We investigated conventional ECG parameters and temporal short-term beat-to-beat variability of repolarization (STVQT), a presumptive novel parameter for arrhythmia prediction, in professional soccer players. Methods Five-minute 12-lead electrocardiograms were recorded from professional soccer players (n = 76, all males, age 22.0±0.61 years) and age-matched healthy volunteers who do not participate in competitive sports (n = 76, all males, age 22.0±0.54 years). The ECGs were digitized and evaluated off-line. The temporal instability of beat-to-beat heart rate and repolarization were characterized by the calculation of short-term variability of the RR and QT intervals. Results Heart rate was significantly lower in professional soccer players at rest (61±1.2 vs. 72±1.5/min in controls). The QT interval was prolonged in players at rest (419±3.1 vs. 390±3.6 in controls, p<0.001). QTc was significantly longer in players compared to controls calculated with Fridericia and Hodges correction formulas. Importantly, STVQT was significantly higher in players both at rest and immediately after the game compared to controls (4.8±0.14 and 4.3±0.14 vs. 3.5±0.10 ms, both p<0.001, respectively). Conclusions STVQT is significantly higher in professional soccer players compared to age-matched controls, however, further studies are needed to relate this finding to increased arrhythmia propensity in this population. PMID:21526208
MinK-dependent internalization of the IKs potassium channel.
Xu, Xianghua; Kanda, Vikram A; Choi, Eun; Panaghie, Gianina; Roepke, Torsten K; Gaeta, Stephen A; Christini, David J; Lerner, Daniel J; Abbott, Geoffrey W
2009-06-01
KCNQ1-MinK potassium channel complexes (4alpha:2beta stoichiometry) generate IKs, the slowly activating human cardiac ventricular repolarization current. The MinK ancillary subunit slows KCNQ1 activation, eliminates its inactivation, and increases its unitary conductance. However, KCNQ1 transcripts outnumber MinK transcripts five to one in human ventricles, suggesting KCNQ1 also forms other heteromeric or even homomeric channels there. Mechanisms governing which channel types prevail have not previously been reported, despite their significance: normal cardiac rhythm requires tight control of IKs density and kinetics, and inherited mutations in KCNQ1 and MinK can cause ventricular fibrillation and sudden death. Here, we describe a novel mechanism for this control. Whole-cell patch-clamping, confocal immunofluorescence microscopy, antibody feeding, biotin feeding, fluorescent transferrin feeding, and protein biochemistry techniques were applied to COS-7 cells heterologously expressing KCNQ1 with wild-type or mutant MinK and dynamin 2 and to native IKs channels in guinea-pig myocytes. KCNQ1-MinK complexes, but not homomeric KCNQ1 channels, were found to undergo clathrin- and dynamin 2-dependent internalization (DDI). Three sites on the MinK intracellular C-terminus were, in concert, necessary and sufficient for DDI. Gating kinetics and sensitivity to XE991 indicated that DDI decreased cell-surface KCNQ1-MinK channels relative to homomeric KCNQ1, decreasing whole-cell current but increasing net activation rate; inhibiting DDI did the reverse. The data redefine MinK as an endocytic chaperone for KCNQ1 and present a dynamic mechanism for controlling net surface Kv channel subunit composition-and thus current density and gating kinetics-that may also apply to other alpha-beta type Kv channel complexes.
Morisawa, T; Hasegawa, J; Hama, R; Kitano, M; Kishimoto, Y; Kawasaki, H
1999-01-01
The effects of itopride hydrochloride, a new drug used to regulate motility in the gastrointestinal tract, on the delayed rectifier K+ current (I(K)) and the L-type Ca2+ current (I(Ca)) were evaluated in guinea-pig ventricular myocytes at concentrations of 1, 10 and 100 microM to determine whether the drug has a proarrhythmic effect through blockade of I(K). Itopride did not affect I(K) at concentrations of 100 microM or less, and no significant effects of 1, 10 or 100 microM itopride were observed on the inward rectifier K+ current (I(K1)) responsible for the resting potential and final repolarization phase of the action potential. We next investigated the effects of itopride on L-type Ca2+ current (I(Ca)). Significant inhibition of I(Ca) was observed at itopride concentrations greater than 10 microM. These results suggested that itopride hydrochloride has an inhibitory effect on I(Ca) at concentrations much higher than those in clinical use.
Sex Hormones and the QT Interval: A Review
Sedlak, Tara; Shufelt, Chrisandra; Iribarren, Carlos
2012-01-01
Abstract A prolonged QT interval is a marker for an increased risk of ventricular tachyarrhythmias. Both endogenous and exogenous sex hormones have been shown to affect the QT interval. Endogenous testosterone and progesterone shorten the action potential, and estrogen lengthens the QT interval. During a single menstrual cycle, progesterone levels, but not estrogen levels, have the dominant effect on ventricular repolarization in women. Studies of menopausal hormone therapy (MHT) in the form of estrogen-alone therapy (ET) and estrogen plus progesterone therapy (EPT) have suggested a counterbalancing effect of exogenous estrogen and progesterone on the QT. Specifically, ET lengthens the QT, whereas EPT has no effect. To date, there are no studies on oral contraception (OC) and the QT interval, and future research is needed. This review outlines the current literature on sex hormones and QT interval, including the endogenous effects of estrogen, progesterone, and testosterone and the exogenous effects of estrogen and progesterone therapy in the forms of MHT and hormone contraception. Further, we review the potential mechanisms and pathophysiology of sex hormones on the QT interval. PMID:22663191
Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca
2017-01-01
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC 50 /Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca 2+ -transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca 2+ /late Na + currents and Na + /Ca 2+ -exchanger, reduced Na + /K + -pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na + and Ca 2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca 2+ -transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2014-01-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios. PMID:24729986
Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation.
Amino, Mari; Yoshioka, Koichiro; Fujibayashi, Daisuke; Hashida, Tadashi; Furusawa, Yoshiya; Zareba, Wojciech; Ikari, Yuji; Tanaka, Etsuro; Mori, Hidezo; Inokuchi, Sadaki; Kodama, Itsuo; Tanabe, Teruhisa
2010-03-01
A previous study from our laboratory has shown that a single targeted heavy ion irradiation (THIR; 15 Gy) to rabbit hearts increases connexin43 (Cx43) expression for 2 wk in association with an improvement of conduction, a decrease of the spatial inhomogeneity of repolarization, and a reduction of vulnerability to ventricular arrhythmias after myocardial infarction. This study investigated the time- and dose-dependent effects of THIR (5-15 Gy) on Cx43 expression in normal rabbit hearts (n = 45). Five rabbits without THIR were used as controls. A significant upregulation of Cx43 protein and mRNA in the ventricular myocardium was recognized by immunohistochemistry, Western blotting, and real-time PCR from 2 wk up to 1 yr after a single THIR at 15 Gy. THIR > or =10 Gy caused a significant dose-dependent increase of Cx43 protein and mRNA 2 wk after THIR. Anterior, lateral, and posterior free wall of the left ventricle, interventricular septum, and right ventricular free wall were affected similarly by THIR in terms of Cx43 upregulation. The radiation-induced increase of immunolabeled Cx43 was observed not only at the intercalated disk region but also at the lateral surface of ventricular myocytes. The increase of immunoreactive Cx43 protein was predominant in the membrane fraction insoluble in Triton X-100, that is the Cx43 in the sarcolemma. In vivo examinations of the rabbits 1 yr after THIR (15 Gy) revealed no significant changes in ECGs and echocardiograms (left ventricular dimensions, contractility, and diastolic function), indicating no apparent late radiation injury. A single application of THIR causes upregulation and altered cellular distribution of Cx43 in the ventricles lasting for at least 1 yr. This long-lasting remodeling effect on gap junctions may open the pathway to novel therapy against life threatening ventricular arrhythmias in structural heart disease.
McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.
2013-01-01
Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-01-01
Background and Purpose The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K+ channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. Experimental Approach The short-term variability of beat-to-beat QT interval (STVQT), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Key Results Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. Conclusions and Implications These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. PMID:25625756
Davey, P; Bryant, S; Hart, G
2001-01-01
Left ventricular hypertrophy predisposes to sudden cardiac death (SCD) and studies of human SCD suggest that the antecedent heart rate (HR) is usually < 100 beats min(-1). This is surprising in view of the known association between adrenergic receptor stimulation and SCD which by itself would suggest that it is more likely to occur from high rather than low HR. We therefore hypothesized that there may be electrical or mechanical abnormalities present in myocytes isolated from animals with left ventricular hypertrophy that predispose to SCD at low stimulation frequencies but which may not be present at high HR. Mild left ventricular hypertrophy was induced in guinea-pigs by infra-renal aortic banding. Electrical and mechanical properties of isolated myocytes were studied at different stimulation frequencies between 0.1 and 3 Hz. Action potential duration (APD) is prolonged in hypertrophy at stimulation frequencies < 1 Hz but not at faster rates. Contraction size, time-to-peak contraction (TTPC) and half-relaxation time are greatly enhanced in hypertrophy at all frequencies between 0.1 and 3 Hz. Electrical (50.3 +/- 5.2 ms in hypertrophy and 78.4 +/- 12.1 ms in control, P < 0.03) and mechanical (205 +/- 16 ms for hypertrophy and 266 +/- 24 ms for control cells, P < 0.03) restitution time constants are quicker in hypertrophy. The finding of APD prolongation at low but not at high frequencies is consistent with the finding that SCD arises from low and not high HR. This data supports the role of abnormal repolarization in SCD.
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-06-01
The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K(+) channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. The short-term variability of beat-to-beat QT interval (STVQT ), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. © 2015 The British Pharmacological Society.
Electronegative LDL-mediated cardiac electrical remodeling in a rat model of chronic kidney disease
Lee, An-Sheng; Chen, Wei-Yu; Chan, Hua-Chen; Chung, Ching-Hu; Peng, Hsien-Yu; Chang, Chia-Ming; Su, Ming-Jai; Chen, Chu-Huang; Chang, Kuan-Cheng
2017-01-01
The mechanisms underlying chronic kidney disease (CKD)–associated higher risks for life-threatening ventricular tachyarrhythmias remain poorly understood. In rats subjected to unilateral nephrectomy (UNx), we examined cardiac electrophysiological remodeling and relevant mechanisms predisposing to ventricular arrhythmias. Adult male Sprague-Dawley rats underwent UNx (n = 6) or sham (n = 6) operations. Eight weeks later, the UNx group had higher serum blood urea nitrogen and creatinine levels and a longer electrocardiographic QTc interval than did the sham group. Patch-clamp studies revealed epicardial (EPI)-predominant prolongation of the action potential duration (APD) at 50% and 90% repolarization in UNx EPI cardiomyocytes compared to sham EPI cardiomyocytes. A significant reduction of the transient outward potassium current (Ito) in EPI but not in endocardial (ENDO) cardiomyocytes of UNx rats led to a decreased transmural gradient of Ito. The reduction of Ito currents in UNx EPI cardiomyocytes was secondary to downregulation of KChIP2 but not Kv4.2, Kv4.3, and Kv1.4 protein expression. Incubation of plasma electronegative low-density lipoprotein (LDL) from UNx rats with normal EPI and ENDO cardiomyocytes recapitulated the electrophysiological phenotype of UNx rats. In conclusion, CKD disrupts the physiological transmural gradient of Ito via downregulation of KChIP2 proteins in the EPI region, which may promote susceptibility to ventricular tachyarrhythmias. Electronegative LDL may underlie downregulation of KChIP2 in CKD. PMID:28094801
Jans, Danny; Callewaert, Geert; Krylychkina, Olga; Hoffman, Luis; Gullo, Francesco; Prodanov, Dimiter; Braeken, Dries
2017-09-01
Drug-induced cardiotoxicity poses a negative impact on public health and drug development. Cardiac safety pharmacology issues urged for the preclinical assessment of drug-induced ventricular arrhythmia leading to the design of several in vitro electrophysiological screening assays. In general, patch clamp systems allow for intracellular recordings, while multi-electrode array (MEA) technology detect extracellular activity. Here, we demonstrate a complementary metal oxide semiconductor (CMOS)-based MEA system as a reliable platform for non-invasive, long-term intracellular recording of cardiac action potentials at high resolution. Quinidine (8 concentrations from 10 -7 to 2.10 -5 M) and verapamil (7 concentrations from 10 -11 to 10 -5 M) were tested for dose-dependent responses in a network of cardiomyocytes. Electrophysiological parameters, such as the action potential duration (APD), rates of depolarization and repolarization and beating frequency were assessed. In hiPSC, quinidine prolonged APD with EC 50 of 2.2·10 -6 M. Further analysis indicated a multifactorial action potential prolongation by quinidine: (1) decreasing fast repolarization with IC 50 of 1.1·10 -6 M; (2) reducing maximum upstroke velocity with IC 50 of 2.6·10 -6 M; and (3) suppressing spontaneous activity with EC 50 of 3.8·10 -6 M. In rat neonatal cardiomyocytes, verapamil blocked spontaneous activity with EC 50 of 5.3·10 -8 M and prolonged the APD with EC 50 of 2.5·10 -8 M. Verapamil reduced rates of fast depolarization and repolarization with IC 50 s of 1.8 and 2.2·10 -7 M, respectively. In conclusion, the proposed action potential-based MEA platform offers high quality and stable long-term recordings with high information content allowing to characterize multi-ion channel blocking drugs. We anticipate application of the system as a screening platform to efficiently and cost-effectively test drugs for cardiac safety. Copyright © 2017 Elsevier Inc. All rights reserved.
Floré, Vincent; Claus, Piet; Antoons, Gudrun; Oosterhoff, Peter; Holemans, Patricia; Vos, Marc A; Sipido, Karin R; Willems, Rik
2011-07-01
Repolarization variability is considered to predict sudden cardiac death. T-wave alternans (TWA) has been the subject of exhaustive research, whereas beat-to-beat variability of repolarization (BVR) is a new parameter that possibly predicts proarrhythmia. How these parameters interact has not been tested. The purpose of this study was to compare TWA and BVR as predictors of proarrhythmic substrate early after myocardial infarction (MI). In nine pigs, MI was induced by 1-hour occlusion of the left anterior descending coronary artery. Cardiac magnetic resonance imaging was performed at day 21. Six sham pigs served as control. Spectral TWA was tested during right atrial pacing before induction of MI and after 21 days. BVR was calculated from 60 consecutive QT intervals. Magnetic resonance imaging showed transmural MI. TWA was negative in all pigs at clinical threshold rate and equally present in MI versus sham pigs at higher rates (170 bpm: 55% vs 50% positive TWA). In MI pigs, BVR of QT intervals increased significantly during acute ischemia (2.44 ± 0.43 ms vs 3.55 ± 0.41 ms, P <.01) and even more on day 21 (5.80 ± 1.12 ms), but it differed significantly from sham (2.14 ± 0.54 ms, P <.01). A clinical ventricular tachycardia induction protocol was positive in 2 of 8 MI pigs and in none of 6 shams. In early remodeling after MI, BVR at intrinsic heart rate was a consistent phenomenon, whereas TWA during atrial pacing or baseline QT-interval changes were not. TWA and BVR could reflect different post-MI remodeling processes. BVR may be a new technique for predicting a potentially proarrhythmic substrate in the early postinfarction period. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Seegers, Joachim; Vos, Marc A.; Flevari, Panagiota; Willems, Rik; Sohns, Christian; Vollmann, Dirk; Lüthje, Lars; Kremastinos, Dimitrios T.; Floré, Vincent; Meine, Mathias; Tuinenburg, Anton; Myles, Rachel C.; Simon, Dirk; Brockmöller, Jürgen; Friede, Tim; Hasenfuß, Gerd; Lehnart, Stephan E.; Zabel, Markus
2012-01-01
Aims The EUTrigTreat clinical study has been designed as a prospective multicentre observational study and aims to (i) risk stratify patients with an implantable cardioverter defibrillator (ICD) for mortality and shock risk using multiple novel and established risk markers, (ii) explore a link between repolarization biomarkers and genetics of ion (Ca2+, Na+, K+) metabolism, (iii) compare the results of invasive and non-invasive electrophysiological (EP) testing, (iv) assess changes of non-invasive risk stratification tests over time, and (v) associate arrythmogenomic risk through 19 candidate genes. Methods and results Patients with clinical ICD indication are eligible for the trial. Upon inclusion, patients will undergo non-invasive risk stratification, including beat-to-beat variability of repolarization (BVR), T-wave alternans, T-wave morphology variables, ambient arrhythmias from Holter, heart rate variability, and heart rate turbulence. Non-invasive or invasive programmed electrical stimulation will assess inducibility of ventricular arrhythmias, with the latter including recordings of monophasic action potentials and assessment of restitution properties. Established candidate genes are screened for variants. The primary endpoint is all-cause mortality, while one of the secondary endpoints is ICD shock risk. A mean follow-up of 3.3 years is anticipated. Non-invasive testing will be repeated annually during follow-up. It has been calculated that 700 patients are required to identify risk predictors of the primary endpoint, with a possible increase to 1000 patients based on interim risk analysis. Conclusion The EUTrigTreat clinical study aims to overcome current shortcomings in sudden cardiac death risk stratification and to answer several related research questions. The initial patient recruitment is expected to be completed in July 2012, and follow-up is expected to end in September 2014. Clinicaltrials.gov identifier: NCT01209494. PMID:22117037
Inohara, Taku; Kohsaka, Shun; Okamura, Tomonori; Watanabe, Makoto; Nakamura, Yasuyuki; Higashiyama, Aya; Kadota, Aya; Okuda, Nagako; Murakami, Yoshitaka; Ohkubo, Takayoshi; Miura, Katsuyuki; Okayama, Akira; Ueshima, Hirotsugu
2014-12-01
Various cohort studies have shown a close association between long-term cardiovascular disease (CVD) outcomes and individual electrocardiographic (ECG) abnormalities such as axial, structural, and repolarization changes. The combined effect of these ECG abnormalities, each assumed to be benign, has not been thoroughly investigated. Community-dwelling Japanese residents from the National Integrated Project for Perspective Observation of Non-Communicable Disease and its Trends in the Aged, 1980-2004 and 1990-2005 (NIPPON DATA80 and 90), were included in this study. Baseline ECG findings were classified using the Minnesota Code and categorized into axial (left axis deviation, clockwise rotation), structural (left ventricular hypertrophy, atrial enlargement), and repolarization (minor and major ST-T changes) abnormalities. The hazard ratios of the cumulative impacts of ECG findings on long-term CVD death were estimated by stratified Cox proportional hazard models, including adjustments for cohort strata. In all, 16,816 participants were evaluated. The average age was 51.2 ± 13.5 years; 42.7% participants were male. The duration of follow up was 300,924 person-years (mean 17.9 ± 5.8 years); there were 1218 CVD deaths during that time. Overall, 4203 participants (25.0%) had one or more categorical ECG abnormalities: 3648 (21.7%) had a single abnormality, and 555 (3.3%) had two or more. The risk of CVD mortality increased as the number of abnormalities accumulated (single abnormality HR 1.29, 95% CI 1.13-1.48; ≥2 abnormalities HR 2.10, 95% CI 1.73-2.53). Individual ECG abnormalities had an additive effect in predicting CVD outcome risk in our large-scale cohort study. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals
2010-01-01
Background and Objective Exposure to fine airborne particles (PM2.5) has been shown to be responsible for cardiovascular and hematological effects, especially in older people with cardiovascular disease. Some epidemiological studies suggest that individuals with diabetes may be a particularly susceptible population. This study examined effects of short-term exposures to ambient PM2.5 on markers of systemic inflammation, coagulation, autonomic control of heart rate, and repolarization in 22 adults (mean age: 61 years) with type 2 diabetes. Methods Each individual was studied for four consecutive days with daily assessments of plasma levels of blood markers. Cardiac rhythm and electrocardiographic parameters were examined at rest and with 24-hour ambulatory ECG monitors. PM2.5 and meteorological data were measured daily on the rooftop of the patient exam site. Data were analyzed with models adjusting for season, weekday, meteorology, and a random intercept. To identify susceptible subgroups, effect modification was analyzed by clinical characteristics associated with insulin resistance as well as with oxidative stress and by medication intake. Results Interleukin (IL)-6 and tumor necrosis factor alpha showed a significant increase with a lag of two days (percent change of mean level: 20.2% with 95%-confidence interval [6.4; 34.1] and 13.1% [1.9; 24.4], respectively) in association with an increase of 10 μg/m3 in PM2.5. Obese participants as well as individuals with elevated glycosylated hemoglobin, lower adiponectin, higher ferritin or with glutathione S-transferase M1 null genotype showed higher IL-6 effects. Changes in repolarization were found immediately as well as up to four days after exposure in individuals without treatment with a beta-adrenergic receptor blocker. Conclusions Exposure to elevated levels of PM2.5 alters ventricular repolarization and thus may increase myocardial vulnerability to arrhythmias. Exposure to PM2.5 also increases systemic inflammation. Characteristics associated with insulin resistance or with oxidative stress were shown to enhance the association. PMID:20525188
Bai, Rong; Pu, Jun; Liu, Nian; Lu, Jia-Gao; Zhou, Qiang; Ruan, Yan-Fei; Niu, Hui-Yan; Wang, Lin
2003-12-25
In order to verify the hypothesis that left ventricular epicardial (LV-Epi) pacing and biventricular (BiV) pacing unavoidably influence the myocardial electrophysiological characters and may result in high risk of malignant ventricular arrhythmia, we calculated, in both normal mongrel dogs and dog models with rapid-right-ventricular-pacing induced dilated cardiomyopathy congestive heart failure (DCM-CHF), the monophasic action potential duration (MAPD) and the transmural dispersion of repolarization (TDR) in intracardiac electrogram together with the QT interval and T(peak)-T(end) (T(p(-T(e)) interval in surface electrocardiogram (ECG) during LV-Epi and BiV pacing, compared with those during right ventricular endocardial (RV-Endo) pacing. To prepare the DCM-CHF dog model, rapid right ventricular pacing (250 bpm) was performed for 23.6+/-2.57 days to the dog. All the normal and DCM-CHF dogs were given radio frequency catheter ablation (RFCA) to His bundle with the guide of X-ray fluoroscopy. After the RFCA procedures, the animals were under the situation of complete atrioventricular block so that the canine heart rates could be voluntarily controlled in the following experiments. After a thoracotomy, ECG and monophasic action potentials (MAP) of subendocardial, subepicardial and mid-layer myocardium were recorded synchronously in 8 normal and 5 DCM-CHF dogs during pacing from endocardium of RV apex (RV-Endo), epicardium of LV anterior wall (LV-Epi) and simultaneously both of the above (biventricular, BiV), the later was similar to the ventricular resynchronization therapy to congestive heart failure patients in clinic. The Tp-Te) meant the interval from the peak to the end of T wave, which was a representative index of TDR in surface ECG. The TDR was defined as the difference between the longest and the shortest MAPD of subendocardial, subepicardial and mid-layer myocardium. Our results showed that in normal dogs, pacing participating of LV (LV-Epi, BiV) prolonged MAPD of all the three layers of the myocardium (P<0.05) with the character that mid-layer MAPD was the longest and subepicardial MAPD was the shortest following subendocardial MAPD. At the same time, TDR prolonged from 26.75 ms at RV-Endo pacing to 37.54 ms at BiV pacing and to 47.16 ms at LV-Epi pacing (P<0.001). Meanwhile in surface ECG, BiV and LV-Epi pacing resulted in a longer Tp-Te) interval compared with RV-Endo pacing (P<0.01), without parallel QT interval prolongation. Furthermore, all the DCM-CHF model dogs showed manifestations of congestive heart failure and enlargement of left ventricles. Based on the lengthening of mid-layer MAPD from 257.35 ms to 276.30 ms (P<0.0001) and increase of TDR from 27.58 ms to 33.80 ms (P equals;0.002) in DCM-CHF model due to the structural disorders of myocardium compared with the normal dog, LV-Epi and BiV pacing also led to the effect of prolonging MAPD of three layers of the myocardium and enlarging TDR. From these results we make the conclusions that prolongation of MAPD of subendocardial, subepicardial and mid-layer myocardium and increase in TDR during pacing participating of LV (LV-Epi, BiV) may contribute to the formation of unidirectional block and reentry, which play roles or at least are the high risk factors in the development of malignant ventricular arrhythmia, especially in case of structural disorders of myocardium. These findings must be considered seriously when ventricular resynchronization therapy is performed to congestive heart failure patients.
Khush, Kiran K.; Menza, Rebecca; Nguyen, John; Goldstein, Benjamin A.; Zaroff, Jonathan G.; Drew, Barbara J.
2012-01-01
Background Current regulations require that all cardiac allograft offers for transplantation must include an interpreted 12-lead electrocardiogram (ECG). However, little is known about the expected ECG findings in potential organ donors, or the clinical significance of any identified abnormalities in terms of cardiac allograft function and suitability for transplantation. Methods and Results A single experienced reviewer interpreted the first ECG obtained after brainstem herniation in 980 potential organ donors managed by the California Transplant Donor Network from 2002-2007. ECG abnormalities were summarized, and associations between specific ECG findings and cardiac allograft utilization for transplantation were studied. ECG abnormalities were present in 51% of all cases reviewed. The most common abnormalities included voltage criteria for left ventricular hypertrophy (LVH), prolongation of the corrected QT interval (QTc), and repolarization changes (ST/T wave abnormalities). Fifty seven percent of potential cardiac allografts in this cohort were accepted for transplantation. LVH on ECG was a strong predictor of allograft non-utilization. No significant associations were seen between QTc prolongation, repolarization changes and allograft utilization for transplantation, after adjusting for donor clinical variables and echocardiographic findings. Conclusions We have performed the first comprehensive study of ECG findings in potential donors for cardiac transplantation. Many of the common ECG abnormalities seen in organ donors may result from the heightened state of sympathetic activation that occurs after brainstem herniation, and are not associated with allograft utilization for transplantation. PMID:22615333
Wang, Yao; Yuan, Jiamin; Qian, Zhiyong; Zhang, Xiwen; Chen, Yanhong; Hou, Xiaofeng; Zou, Jiangang
2015-01-08
β2-AR activation increases the risk of sudden cardiac death (SCD) in heart failure (HF) patients. Non-selective β-AR blockers have greater benefits on survival than selective β1-AR blockers in chronic HF patients, indicating that β2-AR activation contributes to SCD in HF. This study investigated the role of β2-AR activation on repolarization and ventricular arrhythmia (VA) in the experimental HF model. The guinea pig HF was induced by descending aortic banding. The effective refractoriness period (ERP), corrected QT (QTc) and the incidence of VA were examined using Langendorff and programmed electrical stimulation. Ikr and APD were recorded by the whole cell patch clamp. Selective β2-AR agonist salbutamol significantly increased the incidence of VA, prolonged QTc and shortened ERP. These effects could be prevented by the selective β2-AR antagonist, ICI118551. Salbutamol prolonged APD90 and reduced Ikr in guinea pig HF myocytes. The antagonists of cAMP (Rp-cAMP) and PKA (KT5720) attenuated Ikr inhibition and APD prolongation induced by salbutamol. However, the antagonists of Gi protein (PTX) and PDE III (amrinone) showed opposite effects. This study indicates that β2-AR activation increases the incidence of VA in the experimental HF model via activation of Gs/cAMP/PKA and/or inhibition of Gi/PDE pathways.
[Epidemiology of early repolarization pattern in Maghreb].
Amara, W; Bouallouche, S A; Rezoug, A; Hraiech, A El; Iusuf, A; Hammoudi, N
2017-11-01
An early repolarization variant (ERV) in inferolateral leads has recently been associated with vulnerability to ventricular fibrillation. These studies have been conducted in the occidental countries. The prevalence of ERV in the population of the Maghreb is unknown. The aim of this study was to evaluate the prevalence and risk factors of ERV in a young population from Algeria. We assessed the prevalence of ERV within a population of 441 healthy subjects (mean age 25 years) using 12-lead electrocardiography. ERV was stratified by three independent cardiologists according to the J-point elevation (≥0.1mV) in the inferior, apicolateral or both leads with QRS slurring or notching. The inferolateral ERV pattern was present in 55 subjects (12.4%). A malign ERV (>2mm) was present in 5 subjects (9% of ER) and ER in inferior and lateral leads in 40% of ER. An ERV pattern was more frequently associated with young age, male, bradycardia and T wave in V1 lead. An ERV is a common finding in a healthy Algerian young population. This prevalence seems to be more important than other studies due to young age and not to a racial difference. Our population were more at risk that other studies, and we found more T waves in V1 lead in this people, due to an ethnic particularities or a phenotypic association with the Brugada syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nagy, Norbert; Szél, Tamás; Jost, Norbert; Tóth, András; Gy Papp, Julius; Varró, András
2015-09-01
Data obtained from canine cardiac electrophysiology studies are often extrapolated to the human heart. However, it has been previously demonstrated that because of the lower density of its K(+) currents, the human ventricular action potential has a less extensive repolarization reserve. Since the relevance of canine data to the human heart has not yet been fully clarified, the aim of the present study was to determine for the first time the action potentials of undiseased human Purkinje fibres (PFs) and to compare them directly with those of dog PFs. All measurements were performed at 37 °C using the conventional microelectrode technique. At a stimulation rate of 1 Hz, the plateau potential of human PFs is more positive (8.0 ± 1.8 vs 8.6 ± 3.4 mV, n = 7), while the amplitude of the spike is less pronounced. The maximal rate of depolarization is significantly lower in human PKs than in canine PFs (406.7 ± 62 vs 643 ± 36 V/s, respectively, n = 7). We assume that the appreciable difference in the protein expression profiles of the 2 species may underlie these important disparities. Therefore, caution is advised when canine PF data are extrapolated to humans, and further experiments are required to investigate the characteristics of human PF repolarization and its possible role in arrhythmogenesis.
Tyl, Benoît; Kabbaj, Meriam; Azzam, Sara; Sologuren, Ander; Valiente, Román; Reinbolt, Elizabeth; Roupe, Kathryn; Blanco, Nathalie; Wheeler, William
2012-06-01
The effect of bilastine on cardiac repolarization was studied in 30 healthy participants during a multiple-dose, triple-dummy, crossover, thorough QT study that included 5 arms: placebo, active control (400 mg moxifloxacin), bilastine at therapeutic and supratherapeutic doses (20 mg and 100 mg once daily, respectively), and bilastine 20 mg administered with ketoconazole 400 mg. Time-matched, triplicate electrocardiograms (ECGs) were recorded with 13 time points extracted predose and 16 extracted over 72 hours post day 4 dosing. Four QT/RR corrections were implemented: QTcB; QTcF; a linear individual correction (QTcNi), the primary correction; and a nonlinear one (QTcNnl). Moxifloxacin was associated with a significant increase in QTcNi at all time points between 1 and 12 hours, inclusively. Bilastine administration at 20 mg and 100 mg had no clinically significant impact on QTc (maximum increase in QTcNi, 5.02 ms; upper confidence limit [UCL] of the 1-sided, 95% confidence interval, 7.87 ms). Concomitant administration of ketoconazole and bilastine 20 mg induced a clinically relevant increase in QTc (maximum increase in QTcNi, 9.3 ms; UCL, 12.16 ms). This result was most likely related to the cardiac effect of ketoconazole because for all time points, bilastine plasma concentrations were lower than those observed following the supratherapeutic dose.
Maesato, Akira; Higa, Satoshi; Lin, Yenn-Jiang; Chinen, Ichiro; Ishigaki, Sugako; Yajima, Machiko; Masuzaki, Hiroaki; Chen, Shih-Ann
2011-01-01
Predictors of T wave oversensing with implantable cardioverter-defibrillator (ICD) systems remains to be clarified. Thirteen consecutive patients who underwent ICD implantations were included. The depolarization (R) and repolarization (T) of bipolar electrograms during baseline, AAI and DDD modes, and an isoproterenol (ISO) infusion were evaluated. The R wave amplitude during DDD was significantly lower as compared to that during the other conditions in all high-pass filter settings. In contrast, there was no significant difference in the T wave amplitude during the DDD as compared to the other conditions. With the DDD, there was a significantly higher incidence of a T/R ratio of greater than 0.25 as compared to that with the other conditions. T wave amplitude in Brugada syndrome was significantly higher than that in non-Brugada syndrome. The existence of Brugada syndrome and T/R ratio during the AAI with a high-pass filter setting of 10/20 Hz was an excellent predictor of T wave oversensing in the follow-up period. DDD had a significant impact on the R wave amplitude reduction and the T/R ratio during AAI can be predictors of T wave oversensing. These findings have important implications for inappropriate shocks due to T wave oversensing.
Wang, Yao; Yuan, Jiamin; Qian, Zhiyong; Zhang, Xiwen; Chen, Yanhong; Hou, Xiaofeng; Zou, Jiangang
2015-01-01
β2-AR activation increases the risk of sudden cardiac death (SCD) in heart failure (HF) patients. Non-selective β-AR blockers have greater benefits on survival than selective β1-AR blockers in chronic HF patients, indicating that β2-AR activation contributes to SCD in HF. This study investigated the role of β2-AR activation on repolarization and ventricular arrhythmia (VA) in the experimental HF model. The guinea pig HF was induced by descending aortic banding. The effective refractoriness period (ERP), corrected QT (QTc) and the incidence of VA were examined using Langendorff and programmed electrical stimulation. Ikr and APD were recorded by the whole cell patch clamp. Selective β2-AR agonist salbutamol significantly increased the incidence of VA, prolonged QTc and shortened ERP. These effects could be prevented by the selective β2-AR antagonist, ICI118551. Salbutamol prolonged APD90 and reduced Ikr in guinea pig HF myocytes. The antagonists of cAMP (Rp-cAMP) and PKA (KT5720) attenuated Ikr inhibition and APD prolongation induced by salbutamol. However, the antagonists of Gi protein (PTX) and PDE III (amrinone) showed opposite effects. This study indicates that β2-AR activation increases the incidence of VA in the experimental HF model via activation of Gs/cAMP/PKA and/or inhibition of Gi/PDE pathways. PMID:25567365
Romero, Lucía; Carbonell, Beatriz; Trenor, Beatriz; Rodríguez, Blanca; Saiz, Javier; Ferrero, José M
2011-10-01
Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca²⁺ and Na⁺ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the Mahajan et al. (2008a,b) AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K⁺ current (I(K1)) whereas APD rate adaptation as well as [Na⁺](i) rate dependence is influenced by the Na⁺/K⁺ pump current (I(NaK)). In addition, steady-state [Ca²⁺](i) levels, APD restitution properties and [Ca²⁺](i) rate dependence are strongly dependent on I(NaK), the L-Type Ca²⁺ current (I(CaL)) and the Na⁺/Ca²⁺ exchanger current (I(NaCa)), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular electrophysiology and validation of cardiac AP models. Copyright © 2011 Elsevier Ltd. All rights reserved.
Components of action potential repolarization in cerebellar parallel fibres.
Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten
2014-11-15
Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.
Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias
Shi, Dan; Xie, Duanyang; Zhang, Hong; Zhao, Hong; Huang, Jian; Li, Changming; Liu, Yi; Lv, Fei; The, Erlinda; Liu, Yuan; Yuan, Tianyou; Wang, Shiyi; Chen, Jinjin; Pan, Lei; Yu, Zuoren; Liang, Dandan; Zhu, Weidong; Zhang, Yuzhen; Li, Li; Peng, Luying; Li, Jun; Chen, Yi-Han
2014-01-01
Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies. PMID:25092467
So little source, so much sink: requirements for afterdepolarizations to propagate in tissue.
Xie, Yuanfang; Sato, Daisuke; Garfinkel, Alan; Qu, Zhilin; Weiss, James N
2010-09-08
How early (EADs) and delayed afterdepolarizations (DADs) overcome electrotonic source-sink mismatches in tissue to trigger premature ventricular complexes remains incompletely understood. To study this question, we used a rabbit ventricular action potential model to simulate tissues in which a central area of contiguous myocytes susceptible to EADs or DADs was surrounded by unsusceptible tissue. In 1D tissue with normal longitudinal conduction velocity (0.55 m/s), the numbers of contiguous susceptible myocytes required for an EAD and a barely suprathreshold DAD to trigger a propagating action potential were 70 and 80, respectively. In 2D tissue, these numbers increased to 6940 and 7854, and in 3D tissue to 696,910 and 817,280. These numbers were significantly decreased by reduced gap junction conductance, simulated fibrosis, reduced repolarization reserve and heart failure electrical remodeling. In conclusion, the source-sink mismatch in well-coupled cardiac tissue powerfully protects the heart from arrhythmias due to sporadic afterdepolarizations. Structural and electrophysiological remodeling decrease these numbers significantly but still require synchronization mechanisms for EADs and DADs to overcome the robust protective effects of source-sink mismatch. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Brohet, C R; Richman, H G
1979-06-01
Automated processing of electrocardiograms by the Veterans Administration program was evaluated for both agreement with physician interpretation and interpretative accuracy as assessed with nonelectrocardiographic criteria. One thousand unselected electrocardiograms were analyzed by two reviewer groups, one familiar and the other unfamiliar with the computer program. A significant number of measurement errors involving repolarization changes and left axis deviation occurred; however, interpretative disagreements related to statistical decision were largely language-related. Use of a printout with a more traditional format resulted in agreement with physician interpretation by both reviewer groups in more than 80 percent of cases. Overall sensitivity based on agreement with nonelectrocardiographic criteria was significantly greater with use of the computer program than with use of the conventional criteria utilized by the reviewers. This difference was particularly evident in the subgroup analysis of myocardial infarction and left ventricular hypertrophy. The degree of overdiagnosis of left ventricular hypertrophy and posteroinferior infarction was initially unacceptable, but this difficulty was corrected by adjustment of probabilities. Clinical acceptability of the Veterans Administration program appears to require greater physician education than that needed for other computer programs of electrocardiographic analysis; the flexibility of interpretation by statistical decision offers the potential for better diagnostic accuracy.
Horváth, András; Lemoine, Marc D; Löser, Alexandra; Mannhardt, Ingra; Flenner, Frederik; Uzun, Ahmet Umur; Neuber, Christiane; Breckwoldt, Kaja; Hansen, Arne; Girdauskas, Evaldas; Reichenspurner, Hermann; Willems, Stephan; Jost, Norbert; Wettwer, Erich; Eschenhagen, Thomas; Christ, Torsten
2018-03-13
Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (I K1 ). Here, I K1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. I K1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. I K1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and I K,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that I K1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Maruyama, Mitsunori; Xiao, Jianmin; Zhou, Qiang; Vembaiyan, Kannan; Chua, Su-Kiat; Rubart-von der Lohe, Michael; Lin, Shien-Fong; Back, Thomas G; Chen, S R Wayne; Chen, Peng-Sheng
2013-01-01
Carvedilol and its analogues suppress delayed afterdepolarizations (DADs) and catecholaminergic polymorphic ventricular tachycardias by direct action on the cardiac ryanodine receptor type 2 (RyR2). To test a hypothesis that carvedilol analogue may also prevent triggered activities (TAs) through the suppression of early afterdepolarizations (EADs). Intracellular Ca(2+) and membrane voltage were simultaneously recorded by using optical mapping technique in Langendorff-perfused mouse and rabbit hearts to study the effect of carvedilol analogue VK-II-36, which does not have significant beta-blocking effects. Spontaneous intracellular Ca(2+) elevations (SCaEs) during diastole were induced by rapid ventricular pacing and isoproterenol infusion in intact rabbit ventricles. Systolic and diastolic SCaEs were simultaneously noted in Langendorff-perfused RyR2 R4496(+/-) mouse hearts after creating atrioventricular block. VK-II-36 effectively suppressed SCaEs and eliminated TAs observed in both mouse and rabbit ventricles. We tested the effect of VK-II-36 on EADs by using a rabbit model of acquired long QT syndrome, in which phase 2 and phase 3 EADs were observed in association with systolic SCaEs. VK-II-36 abolished the systolic SCaEs and phase 2 EADs, and greatly decreased the dispersion of repolarization and the amplitude of phase 3 EADs. VK-II-36 completely prevented EAD-mediated TAs in all ventricles studied. A carvedilol analogue, VK-II-36, inhibits ventricular tachyarrhythmias in intact mouse and rabbit ventricles by the suppression of SCaEs, independent of beta-blocking activity. The RyR2 may be a potential target for treating focal ventricular arrhythmias triggered by either EADs or DADs. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Aktas, I; Nazikoglu, C; Kepez, A; Ozkan, F U; Kaysin, M Y; Akpinar, P; Dogan, Z; Ileri, C; Saymaz, S; Erdogan, O
2016-12-01
We evaluated the effects of zoledronic acid (ZA) therapy on electrocardiographic (ECG) parameters for the first time in the literature. Measurements were performed on ECGs obtained before and after ZA infusion on the same day as well as 1 month after the infusion. ZA infusion did not have any short- or long-term effect on any parameter that might be associated with the tendency for atrial fibrillation or ventricular arrhythmias. The aim of the present study was to evaluate the early and late effects of ZA therapy on ECG parameters which might be associated with the tendency for atrial and ventricular arrhythmias. Consecutive patients with osteoporosis who were admitted to our clinic between December 2013 and December 2014 and who were scheduled to receive ZA infusion constituted our study population. Twelve-lead surface ECGs were obtained from all patients before and after ZA infusion on the same day as well as 1 month after the infusion. All ECG parameters were measured and compared with each other for each patient. Data of 100 patients were used in the analysis (9 male; 70.5 ± 11.6 years of age). There were no significant differences between repeated measurements regarding pmax, pmin, and p dispersion values. QT max and QT min values were significantly increased after infusion; however, there were no significant changes in QT dispersion, Tp-e interval, and Tp-e dispersion values. ZA infusion did not affect P wave dispersion both at the immediate post-infusion period and 1 month after infusion. QT values were significantly increased early after ZA infusion; however, there were no significant differences in parameters reflecting disparity of ventricular recovery times and transmural dispersion of ventricular repolarization. Based on these observations, it may be suggested that ZA infusion did not have any short- or long-term effect on any parameter that might be associated with the tendency for atrial fibrillation or ventricular arrhythmias.
Heart rate profile during exercise in patients with early repolarization.
Cay, Serkan; Cagirci, Goksel; Atak, Ramazan; Balbay, Yucel; Demir, Ahmet Duran; Aydogdu, Sinan
2010-09-01
Both early repolarization and altered heart rate profile are associated with sudden death. In this study, we aimed to demonstrate an association between early repolarization and heart rate profile during exercise. A total of 84 subjects were included in the study. Comparable 44 subjects with early repolarization and 40 subjects with normal electrocardiogram underwent exercise stress testing. Resting heart rate, maximum heart rate, heart rate increment and decrement were analyzed. Both groups were comparable for baseline characteristics including resting heart rate. Maximum heart rate, heart rate increment and heart rate decrement of the subjects in early repolarization group had significantly decreased maximum heart rate, heart rate increment and heart rate decrement compared to control group (all P < 0.05). The lower heart rate increment (< 106 beats/min) and heart rate decrement (< 95 beats/min) were significantly associated with the presence of early repolarization. After adjustment for age and sex, the multiple-adjusted OR of the risk of presence of early repolarization was 2.98 (95%CI 1.21-7.34) (P = 0.018) and 7.73 (95%CI 2.84-21.03) (P < 0.001) for the lower heart rate increment and heart rate decrement compared to higher levels, respectively. Subjects with early repolarization have altered heart rate profile during exercise compared to control subjects. This can be related to sudden death.
Parihar, Mansingh; Singh, Surjit; Vignesh, Pandiarajan; Gupta, Anju; Rohit, Manojkumar
2017-08-01
There is evidence for premature atherosclerosis and systemic arterial stiffening during follow-up of children with Kawasaki disease (KD) and coronary artery abnormalities (CAA). Moreover, patients with KD may also have subclinical myocardial involvement and inhomogeneous ventricular repolarization. The inhomogeneous ventricular repolarization manifests as increased QT dispersion on electrocardiography. There is a paucity of studies in endothelial dysfunction and QT dispersion in children with KD and transient CAA. Twenty children with KD and transient CAA were studied at least 1 year after resolution of CAA. Mean follow-up period between KD onset and enrolment in the study was 53.7 months. Twenty age and sex-matched controls were enrolled. High-resolution B-mode ultrasonography was used to analyze brachial artery dilatation in response to reactive hyperemia (cases and controls) and sublingual nitroglycerine (cases only). Carotid artery intima-media thickness (cIMT) and stiffness index were calculated. The difference between maximum and minimum QTc intervals on 12 lead electrocardiogram was calculated as QTc dispersion (QTcd). No statistically significant difference was noted in percent flow-mediated dilatation of brachial arteries in response to reactive hyperemia between cases (13.31 ± 10.41%) and controls (12.86 ± 7.09%). Sublingual nitroglycerine-mediated dilatation in children with KD was 14.88 ± 12.03%. Mean cIMT was similar in cases (0.036 ± 0.015 cm) and controls (0.035 ± 0.076 cm; p = 0.791). No statistically significant difference between groups was observed in mean QTcd values (0.057 ± 0.018 s vs. 0.059 ± 0.015 s in controls, p = 0.785). No evidence of significant endothelial dysfunction or increased QT dispersion in patients with KD and transient coronary artery abnormalities was found in our cohort when studied at a mean follow-up of 53.7 months. This is reassuring, and indicates that risk of subclinical atherosclerosis and myocarditis in a subset of children with KD and transient coronary artery abnormalities is not significant.
Abnormalities of the QT interval in primary disorders of autonomic failure
NASA Technical Reports Server (NTRS)
Choy, A. M.; Lang, C. C.; Roden, D. M.; Robertson, D.; Wood, A. J.; Robertson, R. M.; Biaggioni, I.
1998-01-01
BACKGROUND: Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. SUBJECTS AND METHODS: Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. RESULTS: Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. CONCLUSIONS: Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not solely caused by lesions of the sympathetic nervous system, and that the parasympathetic nervous system is likely to have a modulatory role in ventricular repolarization.
A reliability analysis of cardiac repolarization time markers.
Scacchi, S; Franzone, P Colli; Pavarino, L F; Taccardi, B
2009-06-01
Only a limited number of studies have addressed the reliability of extracellular markers of cardiac repolarization time, such as the classical marker RT(eg) defined as the time of maximum upslope of the electrogram T wave. This work presents an extensive three-dimensional simulation study of cardiac repolarization time, extending the previous one-dimensional simulation study of a myocardial strand by Steinhaus [B.M. Steinhaus, Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study, Circ. Res. 64 (3) (1989) 449]. The simulations are based on the bidomain - Luo-Rudy phase I system with rotational fiber anisotropy and homogeneous or heterogeneous transmural intrinsic membrane properties. The classical extracellular marker RT(eg) is compared with the gold standard of fastest repolarization time RT(tap), defined as the time of minimum derivative during the downstroke of the transmembrane action potential (TAP). Additionally, a new extracellular marker RT90(eg) is compared with the gold standard of late repolarization time RT90(tap), defined as the time when the TAP reaches 90% of its resting value. The results show a good global match between the extracellular and transmembrane repolarization markers, with small relative mean discrepancy (
Klein, Michael G; Shou, Matie; Stohlman, Jayna; Solhjoo, Soroosh; Haigney, Myles; Tidwell, Richard R; Goldstein, Robert E; Flagg, Thomas P; Haigney, Mark C
2017-08-01
The failing heart exhibits an increased arrhythmia susceptibility that is often attributed to action potential (AP) prolongation due to significant ion channel remodeling. The inwardly rectifying K + current (I K1 ) has been reported to be reduced, but its contribution to shaping the AP waveform and cell excitability in the failing heart remains unclear. The purpose of this study was to define the effect of I K1 suppression on the cardiac AP and excitability in the normal and failing hearts. We used electrophysiological and pharmacological approaches to investigate I K1 function in a swine tachy-pacing model of heart failure (HF). Terminal repolarization of the AP (TRAP; the time constant of the exponential fit to terminal repolarization) was markedly prolonged in both myocytes and arterially perfused wedges from animals with HF. TRAP was increased by 54.1% in HF myocytes (P < .001) and 26.2% in HF wedges (P = .014). The increase in TRAP was recapitulated by the potent and specific I K1 inhibitor, PA-6 (pentamidine analog 6), indicating that I K1 is the primary determinant of the final phase of repolarization. Moreover, we find that I K1 suppression reduced the ratio of effective refractory period to AP duration at 90% of repolarization, permitting re-excitation before full repolarization, reduction of AP upstroke velocity, and likely promotion of slow conduction. Using an objective measure of terminal repolarization, we conclude that I K1 is the major determinant of the terminal repolarization time course. Moreover, suppression of I K1 prolongs repolarization and reduces postrepolarization refractoriness without marked effects on the overall AP duration. Collectively, these findings demonstrate how I K1 suppression may contribute to arrhythmogenesis in the failing heart. Published by Elsevier Inc.
Stereoselective Inhibition of the hERG1 Potassium Channel
Grilo, Liliana Sintra; Carrupt, Pierre-Alain; Abriel, Hugues
2010-01-01
A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS. PMID:21833176
The QT Interval and Risk of Incident Atrial Fibrillation
Mandyam, Mala C.; Soliman, Elsayed Z.; Alonso, Alvaro; Dewland, Thomas A.; Heckbert, Susan R.; Vittinghoff, Eric; Cummings, Steven R.; Ellinor, Patrick T.; Chaitman, Bernard R.; Stocke, Karen; Applegate, William B.; Arking, Dan E.; Butler, Javed; Loehr, Laura R.; Magnani, Jared W.; Murphy, Rachel A.; Satterfield, Suzanne; Newman, Anne B.; Marcus, Gregory M.
2013-01-01
BACKGROUND Abnormal atrial repolarization is important in the development of atrial fibrillation (AF), but no direct measurement is available in clinical medicine. OBJECTIVE To determine whether the QT interval, a marker of ventricular repolarization, could be used to predict incident AF. METHODS We examined a prolonged QT corrected by the Framingham formula (QTFram) as a predictor of incident AF in the Atherosclerosis Risk in Communities (ARIC) study. The Cardiovascular Health Study (CHS) and Health, Aging, and Body Composition (Health ABC) study were used for validation. Secondary predictors included QT duration as a continuous variable, a short QT interval, and QT intervals corrected by other formulae. RESULTS Among 14,538 ARIC participants, a prolonged QTFram predicted a roughly two-fold increased risk of AF (hazard ratio [HR] 2.05, 95% confidence interval [CI] 1.42–2.96, p<0.001). No substantive attenuation was observed after adjustment for age, race, sex, study center, body mass index, hypertension, diabetes, coronary disease, and heart failure. The findings were validated in CHS and Health ABC and were similar across various QT correction methods. Also in ARIC, each 10-ms increase in QTFram was associated with an increased unadjusted (HR 1.14, 95%CI 1.10–1.17, p<0.001) and adjusted (HR 1.11, 95%CI 1.07–1.14, p<0.001) risk of AF. Findings regarding a short QT were inconsistent across cohorts. CONCLUSIONS A prolonged QT interval is associated with an increased risk of incident AF. PMID:23872693
Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang
2013-01-01
Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action. PMID:23610573
Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang
2013-03-01
To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (I to), the rapidly activated omponent of delayed rectifier potassium current (I Kr), the slowly activated component of delayed rectifier potassium current (I Ks), and the L-type calcium current (I CaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca(2+) current are likely the underlying mechanism of action.
[Atmospheric pollution and cardiovascular damage].
Román, Oscar; Prieto, María José; Mancilla, Pedro
2004-06-01
The damaging effect of atmospheric pollution with particulate matter and toxic gases on the respiratory system and its effect in the incidence and severity of respiratory diseases, is well known. A similar effect on the cardiovascular system is currently under investigation. Epidemiological studies have demonstrated that the inhalation of particulate matter can increase cardiovascular disease incidence and mortality, specially ischemic heart disease. The damage would be mediated by alterations in the autonomic nervous system, inflammation, infections and free radicals. In human studies, environmental pollution is associated with alterations in cardiac frequency variability and blood pressure and with changes in ventricular repolarization. Experimentally, an enhancement of ischemia, due to coronary obstruction, has been demonstrated. The study of the toxic effects of environmental pollution over the cardiovascular system, is an open field, specially in Chile, were the big cities have serious contamination problems.
Campbell, Katherine; Calvo, Conrado J; Mironov, Sergey; Herron, Todd; Berenfeld, Omer; Jalife, José
2012-12-15
Spatial dispersion of action potential duration (APD) is a substrate for the maintenance of cardiac fibrillation, but the mechanisms are poorly understood. We investigated the role played by spatial APD dispersion in fibrillatory dynamics. We used an in vitro model in which spatial gradients in the expression of ether-à-go-go-related (hERG) protein, and thus rapid delayed rectifying K(+) current (I(Kr)) density, served to generate APD dispersion, high-frequency rotor formation, wavebreak and fibrillatory conduction. A unique adenovirus-mediated magnetofection technique generated well-controlled gradients in hERG and green fluorescent protein (GFP) expression in neonatal rat ventricular myocyte monolayers. Computer simulations using a realistic neonatal rat ventricular myocyte monolayer model provided crucial insight into the underlying mechanisms. Regional hERG overexpression shortened APD and increased rotor incidence in the hERG overexpressing region. An APD profile at 75 percent repolarization with a 16.6 ± 0.72 ms gradient followed the spatial profile of hERG-GFP expression; conduction velocity was not altered. Rotors in the infected region whose maximal dominant frequency was 12.9 Hz resulted in wavebreak at the interface (border zone) between infected and non-infected regions; dominant frequency distribution was uniform when the maximal dominant frequency was <12.9 Hz or the rotors resided in the uninfected region. Regularity at the border zone was lowest when rotors resided in the infected region. In simulations, a fivefold regional increase in I(Kr) abbreviated the APD and hyperpolarized the resting potential. However, the steep APD gradient at the border zone proved to be the primary mechanism of wavebreak and fibrillatory conduction. This study provides insight at the molecular level into the mechanisms by which spatial APD dispersion contributes to wavebreak, rotor stabilization and fibrillatory conduction.
Campbell, Katherine; Calvo, Conrado J; Mironov, Sergey; Herron, Todd; Berenfeld, Omer; Jalife, José
2012-01-01
Spatial dispersion of action potential duration (APD) is a substrate for the maintenance of cardiac fibrillation, but the mechanisms are poorly understood. We investigated the role played by spatial APD dispersion in fibrillatory dynamics. We used an in vitro model in which spatial gradients in the expression of ether-à-go-go-related (hERG) protein, and thus rapid delayed rectifying K+ current (IKr) density, served to generate APD dispersion, high-frequency rotor formation, wavebreak and fibrillatory conduction. A unique adenovirus-mediated magnetofection technique generated well-controlled gradients in hERG and green fluorescent protein (GFP) expression in neonatal rat ventricular myocyte monolayers. Computer simulations using a realistic neonatal rat ventricular myocyte monolayer model provided crucial insight into the underlying mechanisms. Regional hERG overexpression shortened APD and increased rotor incidence in the hERG overexpressing region. An APD profile at 75 percent repolarization with a 16.6 ± 0.72 ms gradient followed the spatial profile of hERG-GFP expression; conduction velocity was not altered. Rotors in the infected region whose maximal dominant frequency was ≥12.9 Hz resulted in wavebreak at the interface (border zone) between infected and non-infected regions; dominant frequency distribution was uniform when the maximal dominant frequency was <12.9 Hz or the rotors resided in the uninfected region. Regularity at the border zone was lowest when rotors resided in the infected region. In simulations, a fivefold regional increase in IKr abbreviated the APD and hyperpolarized the resting potential. However, the steep APD gradient at the border zone proved to be the primary mechanism of wavebreak and fibrillatory conduction. This study provides insight at the molecular level into the mechanisms by which spatial APD dispersion contributes to wavebreak, rotor stabilization and fibrillatory conduction. PMID:23090949
Abramochkin, Denis V; Kuzmin, Vladislav S; Rosenshtraukh, Leonid V
2017-12-01
A new class III antiarrhythmic drug niferidil (RG-2) has been introduced as a highly effective therapy for cases of persistent atrial fibrillation, but ionic mechanisms of its action are poorly understood. In the present study, the effects of niferidil on action potential (AP) waveform and potassium currents responsible for AP repolarization were investigated in guinea pig atrial myocardium. APs were recorded with sharp glass microelectrodes in multicellular atrial preparations. Whole-cell patch-clamp technique was used to measure K + currents in isolated myocytes. In multicellular atrial preparations, 10 -8 M niferidil effectively prolonged APs by 15.2 ± 2.8% at 90% repolarization level. However, even the highest tested concentrations, 10 -6 M and 10 -5 M failed to prolong APs more than 32.5% of control duration. The estimated concentration of niferedil for half-maximal AP prolongation was 1.13 × 10 -8 M. Among the potassium currents responsible for AP repolarization phase, I K1 was found to be almost insensitive to niferidil. However, another inward rectifier, I KACh , was effectively suppressed by micromolar concentrations of niferidil with IC 50 = 9.2 × 10 -6 M. I KATP was much less sensitive to the drug with IC 50 = 2.26 × 10 -4 M. The slow component of delayed rectifier, I Ks , also demonstrated low sensitivity to niferidil-the highest used concentration, 10 -4 M, decreased peak I Ks density to 46.2 ± 5.5% of control. Unlike I Ks , the rapid component of delayed rectifier, I Kr , appeared to be extremely sensitive to niferidil. The IC 50 was 1.26 × 10 -9 M. I Kr measured in ventricular myocytes was found to be less sensitive to niferidil with IC 50 = 3.82 × 10 -8 M. Niferidil prolongs APs in guinea pig atrial myocardium via inhibition of I Kr .
Laflamme, Emilie; Philippon, François; O'Connor, Kim; Sarrazin, Jean-François; Auffret, Vincent; Chauvette, Vincent; Dubois, Michelle; Voisine, Pierre; Bergeron, Sébastien; Sénéchal, Mario
2018-01-01
Guidelines for cardiac resynchronization therapy (CRT) have been established, but there may be a subgroup of patients not identified in these guidelines who may benefit from this therapy. We report a patient with a dynamic left ventricular dyssynchrony and severe mitral regurgitation caused by exercise successfully treated with CRT. Exercise testing should be considered in patients with left ventricular ejection fraction <35% and QRS <130 ms with severe heart failure symptoms that are unexplained by rest echocardiography evaluation in order to rule out ischemia and/or dynamic left ventricular dyssynchrony. In the presence of exercise-induced left ventricular bundle branch block, the implantation of CRT should be contemplated.
Chou, Chung-Chuan; Zhou, Shengmei; Hayashi, Hideki; Nihei, Motoki; Liu, Yen-Bin; Wen, Ming-Shien; Yeh, San-Jou; Fishbein, Michael C; Weiss, James N; Lin, Shien-Fong; Wu, Delon; Chen, Peng-Sheng
2007-01-01
We hypothesize that remodelling of action potential and intracellular calcium (Cai) dynamics in the peri-infarct zone contributes to ventricular arrhythmogenesis in the postmyocardial infarction setting. To test this hypothesis, we performed simultaneous optical mapping of Cai and membrane potential (Vm) in the left ventricle in 15 rabbit hearts with myocardial infarction for 1 week. Ventricular premature beats frequently originated from the peri-infarct zone, and 37% showed elevation of Cai prior to Vm depolarization, suggesting reverse excitation–contraction coupling as their aetiology. During electrically induced ventricular fibrillation, the highest dominant frequency was in the peri-infarct zone in 61 of 70 episodes. The site of highest dominant frequency had steeper action potential duration restitution and was more susceptible to pacing-induced Cai alternans than sites remote from infarct. Wavebreaks during ventricular fibrillation tended to occur at sites of persistently elevated Cai. Infusion of propranolol flattened action potential duration restitution, reduced wavebreaks and converted ventricular fibrillation to ventricular tachycardia. We conclude that in the subacute phase of myocardial infarction, the peri-infarct zone exhibits regions with steep action potential duration restitution slope and unstable Cai dynamics. These changes may promote ventricular extrasystoles and increase the incidence of wavebreaks during ventricular fibrillation. Whereas increased tissue heterogeneity after subacute myocardial infarction creates a highly arrhythmogenic substrate, dynamic action potential and Cai cycling remodelling also contribute to the initiation and maintenance of ventricular fibrillation in this setting. PMID:17272354
Pro-arrhythmic effects of low plasma [K+] in human ventricle: An illustrated review.
Trenor, Beatriz; Cardona, Karen; Romero, Lucia; Gomez, Juan F; Saiz, Javier; Rajamani, Sridharan; Belardinelli, Luiz; Giles, Wayne
2018-05-01
Potassium levels in the plasma, [K + ] o , are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [K + ] o levels of approx. 3.0mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main K + -sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1mM) in [K + ] o result in significant alterations in two different K + currents, I K1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane K + currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Kenttä, Tuomas; Karsikas, Mari; Kiviniemi, Antti; Tulppo, Mikko; Seppänen, Tapio; Huikuri, Heikki V
2010-07-01
QRS/T angle and the cosine of the angle between QRS and T-wave vectors (TCRT), measured from standard 12-lead electrocardiogram (ECG), have been used in risk stratification of patients. This study assessed the possible rate dependence of these variables during exercise ECG in healthy subjects. Forty healthy volunteers, 20 men and 20 women, aged 34.6 +/- 3.4, underwent an exercise ECG testing. Twelve-lead ECG was recorded from each test subject and the spatial QRS/T angle and TCRT were automatically analyzed in a beat-to-beat manner with custom-made software. The individual TCRT/RR and QRST/RR patterns were fitted with seven different regression models, including a linear model and six nonlinear models. TCRT and QRS/T angle showed a significant rate dependence, with decreased values at higher heart rates (HR). In individual subjects, the second-degree polynomic model was the best regression model for TCRT/RR and QRST/RR slopes. It provided the best fit for both exercise and recovery. The overall TCRT/RR and QRST/RR slopes were similar between men and women during exercise and recovery. However, women had predominantly higher TCRT and QRS/T values. With respect to time, the dynamics of TCRT differed significantly between men and women; with a steeper exercise slope in women (women, -0.04/min vs -0.02/min in men, P < 0.0001). In addition, evident hysteresis was observed in the TCRT/RR slopes; with higher TCRT values during exercise. The individual patterns of TCRT and QRS/T angle are affected by HR and gender. Delayed rate adaptation creates hysteresis in the TCRT/RR slopes.
NASA Technical Reports Server (NTRS)
Steele, P.; Kirch, D.
1975-01-01
In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.
Kim, Sung-Hwan; Nam, Gi-Byoung; Yun, Sung-Cheol; Choi, Hyung Oh; Choi, Kee-Joon; Joung, Boyoung; Pak, Hui-Nam; Lee, Moon-Hyoung; Kim, Sung Soon; Park, Seung-Jung; On, Young Keun; Kim, June Soo; Oh, Il-Young; Choi, Eue-Keun; Oh, Seil; Choi, Yun-Shik; Choi, Jong Il; Park, Sang Weon; Kim, Young-Hoon; Oh, Yong-Seog; Lee, Man Young; Lim, Hong Euy; Lee, Young-Soo; Cho, Yongkeun; Kim, Jun; Rhee, Kyoung-Suk; Lee, Dong-Il; Cho, Dae Kyoung; Kim, You-Ho
2017-02-01
The role of J-waves in the pathogenesis of ventricular fibrillation (VF) occurring in structurally normal hearts is important. We evaluated 127 patients who received an implantable cardioverter-defibrillator (ICD) for Brugada syndrome (BS, n = 53), early repolarization syndrome (ERS, n = 24), and patients with unknown or deferred diagnosis (n = 50). Electrocardiography (ECG), clinical characteristics, and ICD data were analyzed. J-waves were found in 27/50 patients with VF of unknown/deferred diagnosis. The J-waves were reminiscent of those seen in BS or ERS, and this subgroup of patients was termed variants of ERS and BS (VEB). In 12 VEB patients, the J/ST/T-wave morphology was coved, although amplitudes were <0.2 mV. In 15 patients, noncoved-type J/ST/T-waves were present in the right precordial leads. In the remaining 23 patients, no J-waves were identified. VEB patients exhibited clinical characteristics similar to those of BS and ERS patients. Phenotypic transition and overlap were observed among patients with BS, ERS, and VEB. Twelve patients with BS had background inferolateral ER, while five ERS patients showed prominent right precordial J-waves. Patients with this transient phenotype overlap showed a significantly lower shock-free survival than the rest of the study patients. VEB patients demonstrate ECG phenotype similar to but distinct from those of BS and ERS. The spectral nature of J-wave morphology/distribution and phenotypic transition/overlap suggest a common pathophysiologic background in patients with VEB, BS, and ERS. Prognostic implication of these ECG variations requires further investigation. © 2016 Wiley Periodicals, Inc.
Reduction of atrial fibrillation by Tanshinone IIA in chronic heart failure.
He, Zhifeng; Sun, Changzheng; Xu, Yi; Cheng, Dezhi
2016-12-01
The aim of the present study was to confirm the effect of Tanshinone IIA (TAN) on the prevention of AF in chronic heart failure (CHF), and to elucidate the underlying electrophysiological mechanisms for the antiarrhythmic effects of TAN at the level of the atrium in an experimental model of CHF. In 10 female rabbits, CHF was induced by rapid ventricular pacing, leading to a significant decrease in ejection fraction in the presence of a dilated left ventricle and atrial enlargement. Twelve rabbits were sham-operated and served as controls. Isolated hearts were perfused using the Langendorff method. Burst pacing was used to induce AF. Monophasic action potential recordings showed an increase of atrial action potential duration (aAPD) and effective refractory period (aERP) in CHF hearts compared with sham hearts. Infusion of acetylcholine (1μm) and isoproterenol (1μm) led to AF in all failing hearts and in 11 sham hearts. Simultaneous infusion of TAN (10μm) remarkably reduced inducibility of AF in 50% of sham and 50% of failing hearts. TAN had no effect on aAPD but significantly increased aERP, leading to a marked increase in atrial post-repolarization refractoriness. Moreover, TAN application moderately increased interatrial conduction time. TAN has been shown to be effective in reducing the inducibility of AF in an experimental model of AF. The antiarrhythmic effect is mainly due to prolongations of atrial post-repolarization refractoriness and a moderate increase in interatrial conduction time. Copyright © 2016. Published by Elsevier Masson SAS.
Vitamin K modulates cardiac action potential by blocking sodium and potassium ion channels.
Drolet, B; Emond, A; Fortin, V; Daleau, P; Rousseau, G; Cardinal, R; Turgeon, J
2000-10-01
Cardiovascular collapses, syncopes, and sudden deaths have been observed following the rapid administration of intravenous vitamin K. Our objectives were to characterize the effects of vitamin K on cardiac action potentials and to evaluate effects of vitamin K on sodium and potassium currents, namely I(Na), I(Kr), and I(Ks). Guinea pig hearts (n = 21) were paced at a cycle length of 250 msec and exposed to vitamin K at 1.15-4.6 micromol/L (2.5-10 mg/L). Monophasic action potential duration measured at 90% repolarization (MAPD(90)) was not significantly reduced (-1.6 +/- 0.3 msec; P >.05; N.S.) at 1.15 micromol/L, but increased by 6.5 +/- 0.4 msec (P <.05) at 2.3 micromol/L. MAPD(90) was not measurable at 4.6 micromol/L, as a result of inexcitability. Patch-clamp experiments in ventricular myocytes demonstrated a approximately 50% reduction in I(Na) by 10 micromol/L vitamin K and a concentration-dependent reduction of the K(+) current elicited by short depolarizations (250 msec; I(K250)). Estimated IC(50) for I(K250), mostly representing I(Kr), was 2.3 micromol/L. Vitamin K was less potent to block the K(+) current elicited by long depolarizations (5,000 msec; I(K5000)), mostly representing I(Ks), with an estimated IC(50) over 100 micromol/L. Therapeutic concentrations ( approximately 1.5 micromol/L) of intravenous vitamin K modulate cardiac action potential by blocking ionic currents involved in cardiac depolarization and repolarization.
Ventricular-Fold Dynamics in Human Phonation
ERIC Educational Resources Information Center
Bailly, Lucie; Bernardoni, Nathalie Henrich; Müller, Frank; Rohlfs, Anna-Katharina; Hess, Markus
2014-01-01
Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricular-fold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample…
Piccirillo, Gianfranco; Magrì, Damiano; Matera, Sabrina; Magnanti, Marzia; Torrini, Alessia; Pasquazzi, Eleonora; Schifano, Erika; Velitti, Stefania; Marigliano, Vincenzo; Quaglione, Raffaele; Barillà, Francesco
2007-06-01
The most widely accepted marker for stratifying the risk of sudden cardiac death (SCD) in post myocardial infarction patients is a depressed left ventricular function. Left ventricular ejection fractions (EF) of 35% or less increase the risk of sudden death but values between 35 and 40% raise concern. The underlying pathophysiological mechanism is sustained ventricular tachycardia or fibrillation, both associated with increased cardiac repolarization variability. We assessed whether the indices of QT variability from a short-term electrocardiographic (ECG) recording predict sudden death. A total of 396 subjects with chronic heart failure (CHF) due to post-ischaemic cardiomyopathy, with an EF between 35 and 40% and in NYHA class I, underwent a 5 min ECG recording to calculate the following variables: QT variance (QT(v)), QT normalized for the square of the mean QT (QTVN), and QT variability index (QTVI). Corrected QT (QT(c)) was calculated from a 12-lead ECG recording. All participants were followed for 5 years. A multivariable survival model indicated that a QTVI greater than or equal to the 80th percentile indicated a high risk of SCD [hazards ratio (HR) 4.6, 95% confidence interval (CI) 1.5-13.4, P = 0.006] and, though to a lesser extent, a high risk of total mortality (HR 2.4, 95% CI 1.2-4.9, P = 0.017). The model including QTVI as a continuous variable confirmed a similar high risk for SCD (HR 2.9, 95% CI 1.3-6.5, P = 0.01) and for total mortality (HR 2.6, 95% CI 1.3-5.2, P = 0.008). Although asymptomatic patients with CHF who have a slightly depressed EF are at low risk of sudden death, the category is extraordinarily numerous. The QTVI could be helpful in stratifying the risk of sudden death in this otherwise undertreated population.
Kamakura, Tsukasa; Wada, Mitsuru; Ishibashi, Kohei; Inoue, Yuko Y; Miyamoto, Koji; Okamura, Hideo; Nagase, Satoshi; Noda, Takashi; Aiba, Takeshi; Yasuda, Satoshi; Shimizu, Wataru; Kamakura, Shiro; Kusano, Kengo
2017-04-01
The pathophysiological mechanism of J wave in anterior leads (A-leads) and inferolateral leads (L-leads) remains unclear. We investigated the onset mode and circadian distribution of ventricular tachyarrhythmia (VTA) episodes between patients with early repolarization syndrome (ERS) and Brugada syndrome (BrS). The study enrolled 35 patients with ERS and 52 patients with type 1 BrS with spontaneous ventricular fibrillation who were divided into 4 groups: ERS(A+L) (n = 15), patients with ERS who had a non-type 1 Brugada pattern electrocardiogram in any A-leads (second to fourth intercostal spaces) in control and/or after drug provocation tests; ERS(L) (n = 20), patients with ERS with J wave only in L-leads; BrS(A) (n = 24), patients with BrS without J wave in L-leads; and BrS(A+L) (n = 28), patients with BrS with J wave in L-leads. The onset mode of 206 VTAs obtained from electrocardiograms or implantable cardioverter-defibrillators and the circadian distribution of 352 VTAs were investigated in the 4 groups. Three groups with J wave in A-leads, ERS(A+L), BrS(A), and BrS(A+L), had higher incidences of nocturnal (63%, 43%, and 47%, respectively) and sudden onset VTAs (67%, 97%, and 86%, respectively) with longer coupling intervals of premature ventricular contractions (388.8, 397.3, and 385.6 ms, respectively) than the ERS(L) group with J wave only in L-leads (25%, P = .0019; 19%, P < .0001; and 330.6 ms, P = .0004, respectively), the last of which mainly displayed VTAs with a short-long-short sequence. The onset mode of VTAs was different between patients with J wave in A-leads and patients with J wave in only L-leads. The underlying mechanism of J wave may differ between A-leads and L-leads. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Abramochkin, Denis V; Vornanen, Matti
2015-12-01
Several freshwater fishes of north-temperate latitudes exhibit marked seasonal changes in cardiac action potential (AP) waveform as an outcome of temperature-dependent changes in the density of delayed rectifiers (IKr, IKs) and inward rectifier (IK1) potassium currents. Thus far, ionic mechanisms of cardiac excitability in arctic marine fishes have not been examined. To this end we examined ventricular AP and the role of two major potassium currents (IK1, IKr) in repolarization of cardiac AP in winter-acclimatized (WA, caught in March) and summer-acclimatized (SA, caught in September) navaga cod (Eleginus navaga) of the White Sea. The duration of ventricular AP of WA navaga at 3 °C (APD50 = 659.5 ± 32.8 ms) was similar to the AP duration of SA navaga at 12 °C (APD50 = 543.9 ± 14.6 ms) (p > 0.05) indicating complete thermal compensation of AP duration. This acclimation effect was associated with strong up-regulation of the cardiac potassium currents in winter. Densities of ventricular IK1 (at -120 mV) and IKr (at +50 mV) of the WA navaga at 3 °C were 2.9 times and 2.8 times, respectively, higher than those of the SA navaga at 12 °C, thus indicating marked thermal overcompensation. Qualitatively similar results were obtained from atrial myocytes. Seasonal changes in IK1 and IKr are more than sufficient to explain the complete thermal compensation of ventricular AP duration. The excellent acclimation capacity of cardiac excitability of the navaga cod is probably needed to maintain high cardiac performance at subzero temperatures in winter and to increase thermal resilience of cardiac function under seasonally variable arctic temperature conditions.
Bradycardia alters Ca2+ dynamics enhancing dispersion of repolarization and arrhythmia risk
Kim, Jong J.; Němec, Jan; Papp, Rita; Strongin, Robert; Abramson, Jonathan J.
2013-01-01
Bradycardia prolongs action potential (AP) durations (APD adaptation), enhances dispersion of repolarization (DOR), and promotes tachyarrhythmias. Yet, the mechanisms responsible for enhanced DOR and tachyarrhythmias remain largely unexplored. Ca2+ transients and APs were measured optically from Langendorff rabbit hearts at high (150 × 150 μm2) or low (1.5 × 1.5 cm2) magnification while pacing at a physiological (120 beats/min) or a slow heart rate (SHR = 50 beats/min). Western blots and pharmacological interventions were used to elucidate the regional effects of bradycardia. As a result, bradycardia (SHR 50 beats/min) increased APDs gradually (time constant τf→s = 48 ± 9.2 s) and caused a secondary Ca2+ release (SCR) from the sarcoplasmic reticulum during AP plateaus, occurring at the base on average of 184.4 ± 9.7 ms after the Ca2+ transient upstroke. In subcellular imaging, SCRs were temporally synchronous and spatially homogeneous within myocytes. In diastole, SHR elicited variable asynchronous sarcoplasmic reticulum Ca2+ release events leading to subcellular Ca2+ waves, detectable only at high magnification. SCR was regionally heterogeneous, correlated with APD prolongation (P < 0.01, n = 5), enhanced DOR (r = 0.9277 ± 0.03, n = 7), and was gradually reversed by pacing at 120 beats/min along with APD shortening (P < 0.05, n = 5). A stabilizer of leaky ryanodine receptors (RyR2), 3-(4-benzylcyclohexyl)-1-(7-methoxy-2,3-dihydrobenzo[f][1,4]thiazepin-4(5H)-yl)propan-1-one (K201; 1 μM), suppressed SCR and reduced APD at the base, thereby reducing DOR (P < 0.02, n = 5). Ventricular ectopy induced by bradycardia (n = 5/15) was suppressed by K201. Western blot analysis revealed spatial differences of voltage-gated L-type Ca2+ channel protein (Cav1.2α), Na+-Ca2+ exchange (NCX1), voltage-gated Na+ channel (Nav1.5), and rabbit ether-a-go-go-related (rERG) protein [but not RyR2 or sarcoplasmic reticulum Ca2+ ATPase 2a] that correlate with the SCR distribution and explain the molecular basis for SCR heterogeneities. In conclusion, acute bradycardia elicits synchronized subcellular SCRs of sufficient magnitude to overcome the source-sink mismatch and to promote afterdepolarizations. PMID:23316064
Characterization of Myocardial Repolarization Reserve in Adolescent Females With Anorexia Nervosa.
Padfield, Gareth J; Escudero, Carolina A; DeSouza, Astrid M; Steinberg, Christian; Gibbs, Karen; Puyat, Joseph H; Lam, Pei Yoong; Sanatani, Shubhayan; Sherwin, Elizabeth; Potts, James E; Sandor, George; Krahn, Andrew D
2016-02-09
Patients with anorexia nervosa exhibit abnormal myocardial repolarization and are susceptible to sudden cardiac death. Exercise testing is useful in unmasking QT prolongation in disorders associated with abnormal repolarization. We characterized QT adaptation during exercise in anorexia. Sixty-one adolescent female patients with anorexia nervosa and 45 age- and sex-matched healthy volunteers performed symptom-limited cycle ergometry during 12-lead ECG monitoring. Changes in the QT interval during exercise were measured, and QT/RR-interval slopes were determined by using mixed-effects regression modeling. Patients had significantly lower body mass index than controls; however, resting heart rates and QT/QTc intervals were similar at baseline. Patients had shorter exercise times (13.7±4.5 versus 20.6±4.5 minutes; P<0.001) and lower peak heart rates (159±20 versus 184±9 beats/min; P<0.001). The mean QTc intervals were longer at peak exercise in patients (442±29 versus 422±19 ms; P<0.001). During submaximal exertion at comparable heart rates (114±6 versus 115±11 beats/min; P=0.54), the QTc interval had prolonged significantly more in patients than controls (37±28 versus 24±25 ms; P<0.016). The RR/QT slope, best described by a curvilinear relationship, was more gradual in patients than in controls (13.4; 95% confidence interval, 12.8-13.9 versus 15.8; 95% confidence interval, 15.3-16.4 ms QT change per 10% change in RR interval; P<0.001) and steepest in patients within the highest body mass index tertile versus the lowest (13.9; 95% confidence interval, 12.9-14.9 versus 12.3; 95% confidence interval, 11.3-13.3; P=0.026). Despite the absence of manifest QT prolongation, adolescent anorexic females have impaired repolarization reserve in comparison with healthy controls. Further study may identify impaired QT dynamics as a risk factor for arrhythmias in anorexia nervosa. © 2016 American Heart Association, Inc.
Electrocardiographic findings in chronic hemodialysis patients.
Bignotto, Luís Henrique; Kallás, Marina Esteves; Djouki, Rafael Jorge Teixeira; Sassaki, Marcela Mayume; Voss, Guilherme Ota; Soto, Cristina Lopez; Frattini, Fernando; Medeiros, Flávia Silva Reis
2012-01-01
Cardiovascular disease is the leading cause of mortality among patients on dialysis. When considering all causes of death, about 30% are classified as cardiac arrest, death of unknown cause or cardiac arrhythmia. The increasing time of ventricular depolarization and repolarization, measured non-invasively by measuring the QT interval on the electrocardiogram at rest, has emerged as a predictor of complex ventricular arrhythmias, a major cause of sudden cardiac death. To determine the electrocardiographic alterations present in hemodialysis (HD) patients, measuring the QT interval and its relationship with clinical and laboratory variables. Patients above 18 years on dialysis were approached to participate in the study and, after consent, were submitted to the examination of 12-lead electrocardiogram. Clinical data were reviewed to assess the presence of comorbidities, as well as anthropometric and blood pressure measures. Blood samples were collected to determinate hemoglobin and serum levels of calcium, phosphorus and potassium. One hundred and seventy nine patients were included in the study. The majority of the patients were male (64.8%) and white (54.7%); the average age was 58.5 ± 14.7 years old. About 50% of all patients had, at least, one electrical conduction disturb. About 50% of all patients had QTc prolongation and experienced a significant increase in the frequency of Left Ventricular Hypertrophy (LVH), changes of the cardiac rhythm and bundle branch blocks, and a lower body mass index (BMI), when compared with normal QTc interval patients. Patients with chronic kidney disease (CKD) on hemodialysis had high frequency of abnormal electrocardiographic findings, including a high prevalence of patients with prolonged QTc interval. This study also found a significant association between prolonged QTc interval and the presence of Diabetes and lower values of BMI.
Yang, Li-Zhen; Zhu, Yi-Chun
2015-07-05
We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.
Pandit, Sandeep V; Giles, Wayne R; Demir, Semahat S
2003-02-01
Our mathematical model of the rat ventricular myocyte (Pandit et al., 2001) was utilized to explore the ionic mechanism(s) that underlie the altered electrophysiological characteristics associated with the short-term model of streptozotocin-induced, type-I diabetes. The simulations show that the observed reductions in the Ca(2+)-independent transient outward K(+) current (I(t)) and the steady-state outward K(+) current (I(ss)), along with slowed inactivation of the L-type Ca(2+) current (I(CaL)), can result in the prolongation of the action potential duration, a well-known experimental finding. In addition, the model demonstrates that the slowed reactivation kinetics of I(t) in diabetic myocytes can account for the more pronounced rate-dependent action potential duration prolongation in diabetes, and that a decrease in the electrogenic Na(+)-K(+) pump current (I(NaK)) results in a small depolarization in the resting membrane potential (V(rest)). This depolarization reduces the availability of the Na(+) channels (I(Na)), thereby resulting in a slower upstroke (dV/dt(max)) of the diabetic action potential. Additional simulations suggest that a reduction in the magnitude of I(CaL), in combination with impaired sarcoplasmic reticulum uptake can lead to a decreased sarcoplasmic reticulum Ca(2+) load. These factors contribute to characteristic abnormal [Ca(2+)](i) homeostasis (reduced peak systolic value and rate of decay) in myocytes from diabetic animals. In combination, these simulation results provide novel information and integrative insights concerning plausible ionic mechanisms for the observed changes in cardiac repolarization and excitation-contraction coupling in rat ventricular myocytes in the setting of streptozotocin-induced, type-I diabetes.
Tachycardia-Induced J-Wave Changes in Patients With and Without Idiopathic Ventricular Fibrillation.
Aizawa, Yoshiyasu; Takatsuki, Seiji; Nishiyama, Takahiko; Kimura, Takehiro; Kohsaka, Shun; Kaneko, Yoshiaki; Inden, Yasuya; Takahashi, Naohiko; Nagase, Satoshi; Aizawa, Yoshifusa; Fukuda, Keichi
2017-07-01
To know the underlying mechanisms of J waves, the response to atrial pacing was studied in patients with idiopathic ventricular fibrillation (IVF) and patients with non-IVF. In 8 patients with IVF, the J-wave amplitude was measured before, during, and after atrial pacing. All patients had episodes of ventricular fibrillation without structural heart disease. The responses of J waves were compared with those of the 17 non-IVF control subjects who revealed J waves but no history of cardiac arrest and underwent electrophysiological study. The IVF patients were younger than the non-IVF patients (28±10 versus 52±14 years, respectively; P =0.002) and had larger J waves with more extensive distribution. J waves decreased from 0.35±0.26 to 0.22±0.23 mV ( P =0.025) when the RR intervals were shortened from 782±88 to 573±162 ms ( P =0.001). A decrease (≥0.05 mV) in the J-wave amplitude was observed in 6 of the 8 patients. In addition, 1 patient showed a distinct reduction of J waves in the unipolar epicardial leads. In contrast, J waves were augmented in the 17 non-IVF subjects from 0.27±0.09 to 0.38±0.10 mV ( P <0.001): augmented in 9 and unchanged in the 8 subjects. The different response patterns of J waves to rapid pacing suggest different mechanisms: early repolarization in IVF patients and conduction delay in non-IVF patients. The response to atrial pacing was different between the IVF and non-IVF patients, which suggests the presence of different mechanisms for the genesis of J waves. © 2017 American Heart Association, Inc.
Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization.
Aizawa, Yoshifusa; Chinushi, Masaomi; Hasegawa, Kanae; Naiki, Nobu; Horie, Minoru; Kaneko, Yoshiaki; Kurabayashi, Masahiko; Ito, Shogo; Imaizumi, Tsutomu; Aizawa, Yoshiyasu; Takatsuki, Seiji; Joo, Kunitake; Sato, Masahito; Ebe, Katsuya; Hosaka, Yukio; Haissaguerre, Michel; Fukuda, Keiichi
2013-09-10
This study sought to characterize patients with idiopathic ventricular fibrillation (IVF) who develop electrical storms. Some IVF patients develop ventricular fibrillation (VF) storms, but the characteristics of these patients are poorly known. Ninety-one IVF patients (86% male) were selected after the exclusion of structural heart diseases, primary electrical diseases, and coronary spasm. Electrocardiogram features were compared between the patients with and without electrical storms. A VF storm was defined as VF occurring ≥3 times in 24 h and J waves >0.1 mV above the isoelectric line in contiguous leads. Fourteen (15.4%) patients had VF storms occurring out-of-hospital at night or in the early morning. J waves were more closely associated with VF storms compared to patients without VF storms: 92.9% versus 36.4% (p < 0.0001). VF storms were controlled by intravenous isoproterenol, which attenuated the J-wave amplitude. After the subsidence of VF storms, the J waves decreased to the nondiagnostic level during the entire follow-up period. Implantable cardioverter-defibrillator therapy was administered to all patients during follow-up. Quinidine therapy was limited, but the patients on disopyramide (n = 3), bepridil (n = 1), or isoprenaline (n = 1) were free from VF recurrence, while VF recurred in 5 of the 9 patients who were not given antiarrhythmic drugs. The VF storms in the IVF patients were highly associated with J waves that showed augmentation prior to the VF onset. Isoproterenol was effective in controlling VF and attenuated the J waves, which diminished to below the diagnostic level during follow-up. VF recurred in patients followed up without antiarrhythmic agents. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Broux, B; De Clercq, D; Decloedt, A; De Baere, S; Devreese, M; Van Der Vekens, N; Ven, S; Croubels, S; van Loon, G
2016-02-01
Arrhythmias are common in horses. Some, such as frequent atrial or ventricular premature beats, may require long-term anti-arrhythmic therapy. In humans and small animals, sotalol hydrochloride (STL) is often used for chronic oral anti-arrhythmic therapy. STL prolongs repolarization and the effective refractory period in all cardiac tissues. No information on STL pharmacokinetics or pharmacodynamics in horses is available and the aim of this study was to evaluate the pharmacokinetics of intravenously (IV) and orally (PO) administered STL and the effects on surface electrocardiogram and left ventricular systolic function. Six healthy horses were given 1 mg STL/kg bodyweight either IV or PO. Blood samples to determine plasma STL concentrations were taken before and at several time points after STL administration. Electrocardiography and echocardiography were performed at different time points before and after IV STL administration. Mean peak plasma concentrations after IV and PO administration of STL were 1624 ng/mL and 317 ng/mL, respectively. The oral bioavailability was intermediate (48%) with maximal absorption after 0.94 h, a moderate distribution and a mean elimination half-life of 15.24 h. After IV administration, there was a significant increase in QT interval, but no significant changes in other electrocardiographic and echocardiographic parameters. Transient transpiration was observed after IV administration, but no adverse effects were noted after a single oral dose of 1 mg/kg STL in any of the horses. It was concluded that STL has an intermediate oral bioavailability in the horse and might be useful in the treatment of equine arrhythmias. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tse, Gary; Gong, Mengqi; Wong, Cheuk Wai; Chan, Cynthia; Georgopoulos, Stamatis; Chan, Yat Sun; Yan, Bryan P; Li, Guangping; Whittaker, Paula; Ciobanu, Ana; Ali-Hasan-Al-Saegh, Sadeq; Wong, Sunny H; Wu, William K K; Bazoukis, George; Lampropoulos, Konstantinos; Wong, Wing Tak; Tse, Lap Ah; Baranchuk, Adrian M; Letsas, Konstantinos P; Liu, Tong
2018-03-01
The total cosine R-to-T (TCRT), a vectorcardiographic marker reflecting the spatial difference between the depolarization and repolarization wavefronts, has been used to predict ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD) in different clinical settings. However, its prognostic value has been controversial. This systematic review and meta-analysis evaluated the significance of TRCT in predicting arrhythmic and/or mortality endpoints. PubMed and Embase databases were searched through December 31, 2016. Of the 890 studies identified initially, 13 observational studies were included in our meta-analysis. A total of 11,528 patients, mean age 47 years old, 72% male, were followed for 43 ± 6 months. Data from five studies demonstrated lower TCRT values in myocardial infarction patients with adverse events (syncope, ventricular arrhythmias, or sudden cardiac death) compared to those without these events (mean difference = -0.36 ± 0.05, p < .001; I 2 = 48%). By contrast, only two studies analyzed outcomes in heart failure, and pooled meta-analysis did not demonstrate significant difference in TCRT between event-positive and event-negative patients (mean difference = -0.01 ± 0.10, p > .05; I 2 = 80%). TCRT is lower in MI patients at high risk of adverse events when compared to those free from such events. It can provide additional risk stratification beyond the use of clinical parameters and traditional electrocardiogram markers. Its value in other diseases such as heart failure requires further studies. © 2017 Wiley Periodicals, Inc.
Bridging the gap between computation and clinical biology: validation of cable theory in humans
Finlay, Malcolm C.; Xu, Lei; Taggart, Peter; Hanson, Ben; Lambiase, Pier D.
2013-01-01
Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models. PMID:24027527
Kinetics of atrial repolarization alternans in a free-behaving ovine model.
Jousset, Florian; Tenkorang, Joanna; Vesin, Jean-Marc; Pascale, Patrizio; Ruchat, Patrick; Rollin, Anne Garderes; Fromer, Martin; Narayan, Sanjiv M; Pruvot, Etienne
2012-09-01
Kinetics of Atrial Repolarization Alternans. Repolarization alternans (Re-ALT), a beat-to-beat alternation in action potential repolarization, promotes dispersion of repolarization, wavebreaks, and reentry. Recently, Re-ALT has been shown to play an important role in the transition from rapid pacing to atrial fibrillation (AF) in humans. The detailed kinetics of atrial Re-ALT, however, has not been reported so far. We developed a chronic free-behaving ovine pacing model to study the kinetics of atrial Re-ALT as a function of pacing rate. Thirteen sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms and delivery of rapid pacing protocols. Beat-to-beat differences in the atrial T-wave apex amplitude as a measure of Re-ALT and activation time were analyzed at incremental pacing rates until the effective refractory period (ERP) defined as stable 2:1 capture. Atrial Re-ALT appeared intermittently but without periodicity, and increased in amplitude as a function of pacing rate until ERP. Intermittent 2:1 atrial capture was observed at pacing cycle lengths 40 ms above ERP, and increased in duration as a function of pacing rate. Episodes of rapid pacing-induced AF were rare, and were preceded by Re-ALT or complex oscillations of atrial repolarization, but without intermittent capture. We show in vivo that atrial Re-ALT developed and increased in magnitude with rate until stable 2:1 capture. In rare instances where capture failure did not occur, Re-ALT and complex oscillations of repolarization surged and preceded AF initiation. (J Cardiovasc Electrophysiol, Vol. 23, pp. 1003-1012, September 2012). © 2012 Wiley Periodicals, Inc.
Pathak, Dhruba; Guan, Dongxu
2016-01-01
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451–465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826–836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014–2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes. PMID:26864770
Inward Rectifier Potassium Channels Control Rotor Frequency in Ventricular Fibrillation
Jalife, José
2009-01-01
Summary Ventricular fibrillation (VF) is the most important cause of sudden cardiac death. While traditionally thought to result from random activation of the ventricles by multiple independent wavelets, recent evidence suggests that VF may be determined by the sustained activation of a relatively small number of reentrant sources. In addition, recent experimental data in various species as well as computer simulations have provided important clues about its ionic and molecular mechanisms, particularly in regards to the role of potassium currents in such mechanisms. The results strongly argue that the inward rectifier current, Ik1, is an important current during functional reentry because it mediates the electrotonic interactions between the unexcited core and its immediate surroundings. In addition, IK1 is a stabilizer of reentry due to its ability to shorten action potential duration and reducing conduction velocity near the center of rotation. Increased I K1 prevents wavefront-wavetail interactions and thus averts rotor destabilization and breakup. Other studies have shown that while the slow component of the delayed rectifier potassium current, IKs, does not significantly modify rotor frequency or stability, it plays a major role in post-repolarization refractoriness and wavebreak formation. Therefore, the interplay between IK1 and the rapid sodium inward current (INa) is a major factor in the control of cardiac excitability and therefore the stability and frequency of reentry while IKs is an important determinant of fibrillatory conduction. PMID:19880073
Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy.
Sturm, Amy C; Kline, Crystal F; Glynn, Patric; Johnson, Benjamin L; Curran, Jerry; Kilic, Ahmet; Higgins, Robert S D; Binkley, Philip F; Janssen, Paul M L; Weiss, Raul; Raman, Subha V; Fowler, Steven J; Priori, Silvia G; Hund, Thomas J; Carnes, Cynthia A; Mohler, Peter J
2015-05-26
Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Yue-Chun, Li; Jia-Feng, Lin; Jia-Xuan, Lin
2015-10-01
Electrocardiographic characteristics can be useful in differentiating between right ventricular outflow tract (RVOT) and aortic sinus cusp (ASC) ventricular arrhythmias. Ventricular arrhythmias originating from ASC, however, show preferential conduction to RVOT that may render the algorithms of electrocardiographic characteristics less reliable. Even though there are few reports describing ventricular arrhythmias with ASC origins and endocardial breakout sites of RVOT, progressive dynamic changes in QRS morphology of the ventricular arrhythmias during ablation obtained were rare.This case report describes a patient with symptomatic premature ventricular contractions of left ASC origin presenting an electrocardiogram (ECG) characteristic of right ventricular outflow tract before ablation. Pacing at right ventricular outflow tract reproduced an excellent pace map. When radiofrequency catheter ablation was applied to the right ventricular outflow tract, the QRS morphology of premature ventricular contractions progressively changed from ECG characteristics of right ventricular outflow tract origin to ECG characteristics of left ASC origin.Successful radiofrequency catheter ablation was achieved at the site of the earliest ventricular activation in the left ASC. The distance between the successful ablation site of the left ASC and the site with an excellent pace map of the RVOT was 20 mm.The ndings could be strong evidence for a preferential conduction via the myocardial bers from the ASC origin to the breakout site in the right ventricular outflow tract. This case demonstrates that ventricular arrhythmias with a single origin and exit shift may exhibit QRS morphology changes.
Dynamical relations for left ventricular ejection - Flow rate, momentum, force and impulse
NASA Technical Reports Server (NTRS)
Back, L. H.; Selzer, R. H.; Gordon, D. G.; Ledbetter, D. C.; Crawford, D. W.
1984-01-01
An investigation was carried out to quantitatively evaluate left ventricular volume flow rate, momentum, force and impulse derived from application of conservation principles for mass and momentum of blood within the ventricle during the ejection phase. An automated digital image processing system was developed and applied to left ventricular angiograms which are computer processed and analyzed frame by frame to determine the dynamical relations by numerical methods. The initial experience with force and impulse has indicated that neither quantity seemed to be a sensitive indicator of coronary artery disease as evaluated by qualitative angiography for the particular patient group studied. Utilization of the dynamical relations in evaluating human left ventricular performance requires improved means of measurement and interpretation of clinical studies.
Erdogan, Ercan; Akkaya, Mehmet; Bacaksız, Ahmet; Tasal, Abdurrahman; Sönmez, Osman; Asoglu, Emin; Kul, Seref; Sahın, Musa; Turfan, Murat; Vatankulu, Mehmet Akif; Göktekin, Omer
2013-01-01
Background QT dispersion (QTd), which is a measure of inhomogeneity of myocardial repolarization, increases following impaired myocardial perfusion. Its prolongation may provide a suitable substrate for life-threatening ventricular arrhythmias. We investigated the changes in QTd and heart rate variability (HRV) parameters after successful coronary artery revascularization in a patient with chronic total occlusions (CTO). Material/Methods This study included 139 successfully revascularized CTO patients (118 men, 21 women, mean age 58.3±9.6 years). QTd was measured from a 12-lead electrocardiogram and was defined as the difference between maximum and minimum QT interval. HRV analyses of all subjects were obtained. Frequency domain (LF: HF) and time domain (SDNN, pNN50, and rMSSD) parameters were analyzed. QT intervals were also corrected for heart rate using Bazett’s formula, and the corrected QT interval dispersion (QTcd) was then calculated. All measurements were made before and after percutaneous coronary intervention (PCI). Results Both QTd and QTcd showed significant improvement following successful revascularization of CTO (55.83±14.79 to 38.87±11.69; p<0.001 and 61.02±16.28 to 42.92±13.41; p<0.001). The revascularization of LAD (n=38), Cx (n=28) and RCA (n=73) resulted in decrease in HRV indices, including SDDN, rMSSD, and pNN50, but none of the variables reached statistical significance. Conclusions Successful revascularization of CTO may result in improvement in regional heterogeneity of myocardial repolarization, evidenced as decreased QTcd after the PCI. The revascularization in CTO lesions does not seem to have a significant impact on HRV. PMID:23969577
Qiu, Xiaoliang S; Chauveau, Samuel; Anyukhovsky, Evgeny P; Rahim, Tania; Jiang, Ya-Ping; Harleton, Erin; Feinmark, Steven J; Lin, Richard Z; Coronel, Ruben; Janse, Michiel J; Opthof, Tobias; Rosen, Tove S; Cohen, Ira S; Rosen, Michael R
2016-04-01
Drugs are screened for delayed rectifier potassium current (IKr) blockade to predict long QT syndrome prolongation and arrhythmogenesis. However, single-cell studies have shown that chronic (hours) exposure to some IKr blockers (eg, dofetilide) prolongs repolarization additionally by increasing late sodium current (INa-L) via inhibition of phosphoinositide 3-kinase. We hypothesized that chronic dofetilide administration to intact dogs prolongs repolarization by blocking IKr and increasing INa-L. We continuously infused dofetilide (6-9 μg/kg bolus+6-9 μg/kg per hour IV infusion) into anesthetized dogs for 7 hours, maintaining plasma levels within the therapeutic range. In separate experiments, myocardial biopsies were taken before and during 6-hour intravenous dofetide infusion, and the level of phospho-Akt was determined. Acute and chronic dofetilide effects on action potential duration (APD) were studied in canine left ventricular subendocardial slabs using microelectrode techniques. Dofetilide monotonically increased QTc and APD throughout 6.5-hour exposure. Dofetilide infusion during ≥210 minutes inhibited Akt phosphorylation. INa-L block with lidocaine shortened QTc and APD more at 6.5 hours than at 50 minutes (QTc) or 30 minutes (APD) dofetilide administration. In comparison, moxifloxacin, an IKr blocker with no effects on phosphoinositide 3-kinase and INa-L prolonged APD acutely but no additional prolongation occurred on chronic superfusion. Lidocaine shortened APD equally during acute and chronic moxifloxacin superfusion. Increased INa-L contributes to chronic dofetilide effects in vivo. These data emphasize the need to include time and INa-L in evaluating the phosphoinositide 3-kinase inhibition-derived proarrhythmic potential of drugs and provide a mechanism for benefit from lidocaine administration in clinical acquired long QT syndrome. © 2016 American Heart Association, Inc.
Chen, Xian; Cass, Jessica D; Bradley, Jenifer A; Dahm, Corinn M; Sun, Zhuoqian; Kadyszewski, Edmund; Engwall, Michael J; Zhou, Jun
2005-01-01
Moxifloxacin, a fluoroquinolone antibiotic associated with QT prolongation, has been recommended as a positive control by regulatory authorities to evaluate the sensitivity of both clinical and preclinical studies to detect small but significant increases in QT interval measurements. In this study, we investigated effects of moxifloxacin on the hERG current in HEK-293 cells, electrocardiograms in conscious telemetered dogs, and repolarization parameters and arrhythmogenic potentials in the arterially perfused rabbit ventricular wedge model. Moxifloxacin inhibited the hERG current with an IC50 of 35.7 μM. In conscious telemetered dogs, moxifloxacin significantly prolonged QTc at 30 and 90 mg kg−1, with mean serum Cmax of 8.52 and 22.3 μg ml−1, respectively. In the wedge preparation, moxifloxacin produced a concentration-dependent prolongation of the action potential duration, QT interval, and the time between peak and end of the T wave, an indicator for transmural dispersion of repolarization. Phase 2 early after-depolarizations were observed in one of five experiments at 30 μM and five of five experiments at 100 μM. The arrhythmogenic potential was also concentration-dependent, and 100 μM (∼18-fold above the typical unbound Cmax exposure in clinical usage) appeared to have a high risk of inducing torsade de pointes (TdP). Our data indicated a good correlation among the concentration–response relationships in the three preclinical models and with the available clinical data. The lack of TdP report by moxifloxacin in patients without other risk factors might be attributable to its well-behaved pharmacokinetic profile and other dose-limiting effects. PMID:16158069
Lane, Conor M; Bos, J Martijn; Rohatgi, Ram K; Ackerman, Michael J
2018-04-30
Little is known about the spectrum and prevalence of ECG features beyond the length and morphology of repolarization in patients with congenital long QT syndrome (LQTS). To characterize the full ECG phenotype of LQTS patients and evaluate differences by age and LQTS genotype. Retrospective review of 943 patients with LQTS (57% female, median age 25 years; IQR 9 - 34 years) was performed. Comprehensive analysis of their initial evaluation ECG was performed using definitions outlined in Heart Rhythm Society guidelines. Bradycardia was common (n=320; 34%), regardless of beta-blocker use. Left axis deviation (n=33, 3.5%) and bundle branch block (n=5, 0.5%) were uncommon. T-wave inversion (TWI) involving leads V1 and V3 was more common in LQT2 compared to LQT1 or LQT3 [OR for V1: 2.67 (95% CI 1.8 - 3.9) and OR for V3: 1.76 (95% CI 1.2 - 2.6)], while TWI in lead III and aVF was most common in LQT3 [OR for III: 2.38 (95% CI 1.4 - 4.2) and OR for aVF: 3.14 (95% CI 1.6 - 6.4)]. Notched T-waves were most apparent at younger ages (48% in patients between ages 4-10 compared to 12% in over 40s, p <0.0001). Beyond the QT interval and bradycardia, ECG abnormalities are uncommon in LQTS patients and patients almost never have concomitant bundle branch block. Notably, 19% of LQTS patients overall and 27% of LQT2 patients exhibit anterior TWI that would satisfy a diagnostic criterion for arrhythmogenic right ventricular cardiomyopathy creating the potential for diagnostic miscues. Copyright © 2018. Published by Elsevier Inc.
Green, Darren; Green, Heather D; New, David I; Kalra, Philip A
2013-01-01
Hyperkalaemia is a common potentially fatal complication of chronic kidney disease (CKD). It may manifest as electrocardiogram (ECG) changes, the earliest of which is T-wave 'tenting'. However, this occurs in less than half of episodes of hyperkalaemia. The aim of this study was to determine what other clinical features relate to the probability of T-wave tenting; and if there is a longer-term survival difference between patients who develop tenting and those who do not. One hundred and forty-five patients with end-stage renal disease who had standard 12-lead ECG and concurrent serum potassium measurement were enrolled. The presence of tenting and the ratio of the amplitude of the tallest precordial T-wave and R-wave were determined (T:R). Tenting was as common in normal range serum potassium as hyperkalaemia (33 versus 31%) and less common than in left ventricular hypertrophy (44%). T:R was less sensitive (24 versus 33%) but more specific (85 versus 67%) than tenting at correctly identifying hyperkalaemia ≥ 6.0 mmol/L. Tenting became less common with increasing age. Dialysis patients were more likely to show increased T:R that pre-dialysis Stage 5 CKD. Elevated T:R was not associated with worse cardiovascular outcome but was associated with increased risk of sudden death over a mean follow-up of 3.8 years (hazard ratio = 8.3, P = 0.021). The reason for the variability in T-wave changes is not clear. The ratio of precordial T-wave to R-wave amplitude is a more specific measure than tenting but both are poorly sensitive at detecting hyperkalaemia. The greater risk for sudden death may represent a susceptibility to cardiac arrhythmia during repolarization.
Cubeddu, Luigi X.
2016-01-01
Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294
Electrical storm in patients with brugada syndrome is associated with early repolarization.
Kaneko, Yoshiaki; Horie, Minoru; Niwano, Shinichi; Kusano, Kengo F; Takatsuki, Seiji; Kurita, Takashi; Mitsuhashi, Takeshi; Nakajima, Tadashi; Irie, Tadanobu; Hasegawa, Kanae; Noda, Takashi; Kamakura, Shiro; Aizawa, Yoshiyasu; Yasuoka, Ryobun; Torigoe, Katsumi; Suzuki, Hiroshi; Ohe, Toru; Shimizu, Akihiko; Fukuda, Keiichi; Kurabayashi, Masahiko; Aizawa, Yoshifusa
2014-12-01
Electrical storms (ESs) in patients with Brugada syndrome (BrS) are rare though potentially lethal. We studied 22 men with BrS and ES, defined as ≥3 episodes/d of ventricular fibrillation (VF) and compared their characteristics with those of 110 age-matched, control men with BrS without ES. BrS was diagnosed by a spontaneous or drug-induced type 1 pattern on the ECG in the absence of structural heart disease. Early repolarization (ER) was diagnosed by J waves, ie, >0.1 mV notches or slurs of the terminal portion of the QRS complex. The BrS ECG pattern was provoked with pilsicainide. A spontaneous type I ECG pattern, J waves, and horizontal/descending ST elevation were found, respectively, in 77%, 36%, and 88% of patients with ES, versus 28% (P<0.0001), 9% (P=0.003), and 60% (P=0.06) of controls. The J-wave amplitude was significantly higher in patients with than without ES (P=0.03). VF occurred during undisturbed sinus rhythm in 14 of 19 patients (74%), and ES were controlled by isoproterenol administration. All patients with ES received an implantable cardioverter defibrillator and over a 6.0±5.4 years follow-up, the prognosis of patients with ES was significantly worse than that of patients without ES. Bepridil was effective in preventing VF in 6 patients. A high prevalence of ER was found in a subgroup of patients with BrS associated with ES. ES appeared to be suppressed by isoproterenol or quinidine, whereas bepridil and quinidine were effective in the long-term prevention of VF in the highest-risk patients. © 2014 American Heart Association, Inc.
Isoda, Wakana C; Segal, Jack L
2003-02-01
To determine the effects of 4-aminopyridine (4-AP) on heart rate and PR, QT, and QTc intervals in patients with longstanding spinal cord injury (SCI). Randomized, active-treatment-controlled, dose level-blinded study, with allocation concealed. University-affiliated, tertiary care medical center. Sixty otherwise healthy male and female outpatients with traumatic SCI of more than 1 year's duration. Intervention. Oral administration and dose titration to tolerance of an immediate-release formulation of 4-AP. The PR interval, heart rate, QT interval, and QTc interval obtained from standard 12-lead electrocardiograms (ECGs) at baseline (before administration of 4-AP) and after 1 month of treatment were compared. The QTc intervals were derived by using Bazett's formula (equation) incorporated into standard computerized analyses of 12-lead ECG printouts. The paired t test was performed to test for the significance of differences between means and variances. No statistically significant differences were noted in heart rate or between ECG time intervals measured at baseline and after 1 month of treatment with 4-AP among all patients with SCI or between subgroups stratified by injury level (tetraplegia, paraplegia) or sex. During the 1-month period that 4-AP was administered, the heart rate and PR, QT, and QTc intervals all remained unchanged and stayed well within normal range in comparison to literature-derived control values. 4-Aminopyridine does not appear to influence the length of cardiac time intervals or heart rate and, hence, is unlikely to cause potentially life-threatening ventricular dysrrhythmias when administered long-term and taken orally in dosages of up to 30 mg/day. Specifically, cardiac repolarization (QTc interval) is unaffected in patients with SCI who continuously receive 4-AP for up to 1 month.
Molecular determinants of Kv7.1/KCNE1 channel inhibition by amitriptyline.
Villatoro-Gómez, Kathya; Pacheco-Rojas, David O; Moreno-Galindo, Eloy G; Navarro-Polanco, Ricardo A; Tristani-Firouzi, Martin; Gazgalis, Dimitris; Cui, Meng; Sánchez-Chapula, José A; Ferrer, Tania
2018-06-01
Amitriptyline (AMIT) is a compound widely prescribed for psychiatric and non-psychiatric conditions including depression, migraine, chronic pain, and anorexia. However, AMIT has been associated with risks of cardiac arrhythmia and sudden death since it can induce prolongation of the QT interval on the surface electrocardiogram and torsade de pointes ventricular arrhythmia. These complications have been attributed to the inhibition of the rapid delayed rectifier potassium current (I Kr ). The slow delayed rectifier potassium current (I Ks ) is the main repolarizing cardiac current when I Kr is compromised and it has an important role in cardiac repolarization at fast heart rates induced by an elevated sympathetic tone. Therefore, we sought to characterize the effects of AMIT on Kv7.1/KCNE1 and homomeric Kv7.1 channels expressed in HEK-293H cells. Homomeric Kv7.1 and Kv7.1/KCNE1 channels were inhibited by AMIT in a concentration-dependent manner with IC50 values of 8.8 ± 2.1 μM and 2.5 ± 0.8 μM, respectively. This effect was voltage-independent for both homomeric Kv7.1 and Kv7.1/KCNE1 channels. Moreover, mutation of residues located on the P-loop and S6 domain along with molecular docking, suggest that T312, I337 and F340 are the most important molecular determinants for AMIT-Kv7.1 channel interaction. Our experimental findings and modeling suggest that AMIT preferentially blocks the open state of Kv7.1/KCNE1 channels by interacting with specific residues that were previously reported to be important for binding of other compounds, such as chromanol 293B and the benzodiazepine L7. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamic right ventricular outflow tract (infundibular) stenosis and pectus excavatum in a dog
Fournier, Tanya E.
2008-01-01
This is the first published report of a dog with dynamic right ventricular outflow tract (infundibular) stenosis, right ventricular hypertrophy, and pectus excavatum. A juvenile dog presented with a grade V/VI left base systolic heart murmur, tachycardia, and pectus excavatum. Diagnosis of the aforementioned conditions was based on radiography, electrocardiography, and echocardiography. At 9 1/2 wk of age the heart murmur was no longer audible and the right ventricular stenosis and hypertrophy had dissipated and regressed, respectively. Resolution may be associated with growth of the dog. A good prognosis is foreseen. PMID:18512460
Re-polarization of nuclear spins using selective SABRE-INEPT.
Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L
2018-02-01
A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH 2 , the H 2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε. For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε≈260 for 15 N nuclei, whereas SABRE-INEPT with re-polarization yields ε>2000. We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Re-polarization of nuclear spins using selective SABRE-INEPT
NASA Astrophysics Data System (ADS)
Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.
2018-02-01
A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH2, the H2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε . For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε ≈ 260 for 15N nuclei, whereas SABRE-INEPT with re-polarization yields ε > 2000 . We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques.
Moisik, Scott R; Esling, John H
2014-04-01
PURPOSE Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling. METHOD The dynamical response of a low-dimensional, lumped-element model of the vocal folds under the influence of vocal-ventricular fold coupling was evaluated. The model was assessed for F0 and cover-mass phase difference. Case studies of simulations of different constricted phonation types and of glottal stop illustrate various additional aspects of model performance. RESULTS Simulated vocal-ventricular fold coupling lowers F0 and perturbs the mucosal wave. It also appears to reinforce irregular patterns of oscillation, and it can enhance laryngeal closure in glottal stop production. CONCLUSION The effects of simulated vocal-ventricular fold coupling are consistent with sounds, such as creaky voice, harsh voice, and glottal stop, that have been observed to involve epilaryngeal stricture and apparent contact between the vocal folds and ventricular folds. This supports the view that vocal-ventricular fold coupling is important in the vibratory dynamics of such sounds and, furthermore, suggests that these sounds may intrinsically require epilaryngeal stricture.
Cation interdependency in acute stressor states.
Khan, M Usman; Komolafe, Babatunde O; Weber, Karl T
2013-05-01
Acute stressor states are inextricably linked to neurohormonal activation which includes the adrenergic nervous system. Consequent elevations in circulating epinephrine and norepinephrine unmask an interdependency that exists between K+, Mg2+ and Ca2+. Catecholamines, for example, regulate the large number of Mg2+-dependent Na/K ATPase pumps present in skeletal muscle. A hyperadrenergic state accounts for a sudden translocation of K+ into muscle and rapid appearance of hypokalemia. In the myocardium, catecholamines promote Mg2+ efflux from cardiomyocytes, whereas intracellular Ca2+ influx and overloading account for the induction of oxidative stress and necrosis of these cells with leakage of their contents, including troponins. Accordingly, acute stressor states can be accompanied by nonischemic elevations in serum troponins, together with the concordant appearance of hypokalemia, hypomagnesemia and ionized hypocalcemia, causing a delay in myocardial repolarization and electrocardiographic QTc prolongation raising the propensity for arrhythmias, including atrial fibrillation and polymorphic ventricular tachycardia. In this review, we focus on the interdependency between K+, Mg2+ and Ca2+ which are clinically relevant to acute stressor states.
Cardio-oncology/onco-cardiology.
Hong, Robert A; Iimura, Takeshi; Sumida, Kenneth N; Eager, Robert M
2010-12-01
An understanding of onco-cardiology or cardio-oncology is critical for the effective care of cancer patients. Virtually all antineoplastic agents are associated with cardiotoxicity, which can be divided into 5 categories: direct cytotoxic effects of chemotherapy and associated cardiac systolic dysfunction, cardiac ischemia, arrhythmias, pericarditis, and chemotherapy-induced repolarization abnormalities. Radiation therapy can also lead to coronary artery disease and fibrotic changes to the valves, pericardium, and myocardium. All patients being considered for chemotherapy, especially those who have prior cardiac history, should undergo detailed cardiovascular evaluation to optimize the treatment. Serial assessment of left ventricular systolic function and cardiac biomarkers might also be considered in selected patient populations. Cardiotoxic effects of chemotherapy might be decreased by the concurrent use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, or beta-blockers. Antiplatelet or anticoagulation therapy might be considered in patients with a potential hypercoagulable state associated with chemotherapy or cancer. Open dialogue between both cardiologists and oncologists will be required for optimal patient care. Copyright © 2010 Wiley Periodicals, Inc.
Brugada syndrome: diagnosis, risk stratification, and management.
Adler, Arnon
2016-01-01
Asymptomatic patients with Brugada syndrome (BrS) have a small, but not trivial, risk of cardiac events. Their risk stratification and its impact on their management are controversial. The review focuses on the clinical aspects of BrS with special emphasis on the asymptomatic patient. Emerging data suggest that drug and fever-induced type I Brugada patterns are more common than previously appreciated. Although preliminary, these data may imply that asymptomatic patients with induced Brugada pattern are at an even lower risk than currently estimated.The latest data regarding induced ventricular arrhythmias during electrophysiological studies support its use as an indication for an implantable cardioverter defibrillator; however, this issue remains highly controversial.Several new risk markers, such as presence of the Brugada pattern in infero-lateral leads or the concomitant finding of an early repolarization pattern, have recently been proposed. Most asymptomatic BrS patients are at low risk of cardiac events. The presence of new risk markers in this population may prompt consideration of primary prevention measures; however, data supporting this approach are still limited.
Utility of the exercise electrocardiogram testing in sudden cardiac death risk stratification.
Refaat, Marwan M; Hotait, Mostafa; Tseng, Zian H
2014-07-01
Sudden cardiac death (SCD) remains a major public health problem. Current established criteria identifying those at risk of sudden arrhythmic death, and likely to benefit from implantable cardioverter defibrillators (ICDs), are neither sensitive nor specific. Exercise electrocardiogram (ECG) testing was traditionally used for information concerning patients' symptoms, exercise capacity, cardiovascular function, myocardial ischemia detection, and hemodynamic responses during activity in patients with hypertrophic cardiomyopathy. We conducted a systematic review of MEDLINE on the utility of exercise ECG testing in SCD risk stratification. Exercise testing can unmask suspected primary electrical diseases in certain patients (catecholaminergic polymorphic ventricular tachycardia or concealed long QT syndrome) and can be effectively utilized to risk stratify patients at an increased (such as early repolarization syndrome and Brugada syndrome) or decreased risk of SCD, such as the loss of preexcitation on exercise testing in asymptomatic Wolff-Parkinson-White syndrome. Exercise ECG testing helps in SCD risk stratification in patients with and without arrhythmogenic hereditary syndromes. © 2014 Wiley Periodicals, Inc.
Cardiovascular drugs inducing QT prolongation: facts and evidence.
Taira, Carlos A; Opezzo, Javier A W; Mayer, Marcos A; Höcht, Christian
2010-01-01
Acquired QT syndrome is mainly caused by the administration of drugs that prolong ventricular repolarization. On the other hand, the risk of drug-induced torsades de pointes is increased by numerous predisposing factors, such as genetic predisposition, female sex, hypokalemia and cardiac dysfunction. This adverse reaction is induced by different chemical compounds used for the treatment of a variety of pathologies, including arrhythmias. As it is known, antiarrhythmic agents and other cardiovascular drugs can prolong the QT interval, causing this adverse reaction. Of the 20 most commonly reported drugs, 10 were cardiovascular agents and these appeared in 348 of the reports (46%). Class Ia antiarrhythmic agents have frequently been linked to inducing arrhythmia, including torsades de pointes. Sotalol and amiodarone, class III antiarrhythmics, are known to prolong the QT interval by blocking I(Kr). Due to the severity of events caused by the therapeutic use of these drugs, in this work of revision the cardiovascular drugs that present this property and the factors and evidence will be mentioned.
NASA Technical Reports Server (NTRS)
Makikallio, T. H.; Seppanen, T.; Airaksinen, K. E.; Koistinen, J.; Tulppo, M. P.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.
1997-01-01
Dynamics analysis of RR interval behavior and traditional measures of heart rate variability were compared between postinfarction patients with and without vulnerability to ventricular tachyarrhythmias in a case-control study. Short-term fractal correlation of heart rate dynamics was better than traditional measures of heart rate variability in differentiating patients with and without life-threatening arrhythmias.
Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min
2014-07-24
Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.
Graiani, Gallia; Rossi, Stefano; Agnetti, Aldo; Stillitano, Francesca; Lagrasta, Costanza; Baruffi, Silvana; Berni, Roberta; Frati, Caterina; Vassalle, Mario; Squarcia, Umberto; Cerbai, Elisabetta; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio
2011-01-01
Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs) appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI), lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60) or vehicle (V, n = 55), or sham operated (n = 18). In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP) without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration of mechanical function. In conclusion, local injection of GFs ameliorates electromechanical competence in chronic MI. Reduced arrhythmogenesis is attributable to prolongation of ERP resulting from improved intercellular coupling via increased expression of connexin43, and attenuation of unfavorable remodeling. PMID:21445273
Ruta, J; Strumiłło, P
2001-01-01
T-wave alternans (TWA) at microvolt level is considered as an important non-invasive risk factor for sudden death. Several methods are used to measure such repolarization variations, but each of them has some limitations. The purpose of our study is to assess the usefulness of Poincaré maps, a method based on nonlinear dynamics theory, in detection of repolarization abnormalities. In 30 postinfarction patients presence of TWA in precordial ECG leads was assessed by the spectral method (SM) and by the Poincaré maps (PM). Quantitative measures of both methods: alternans voltage (AV) and alternans distance (AD) were compared using linear regression. Significant correlation between both measures (r = 0.92, p < 0.01) was found. The value of AD > or = 10 microV was accepted as significant for the presence of T-wave alternans. Poincaré mapping seems to be a useful and simple method for detection of TWA. The alternans distance equal or greater than 10 microV can be considered as a level determinative for the presence of TWA.
Matsumoto, M; Hanrath, P; Kremer, P; Tams, C; Langenstein, B A; Schlüter, M; Weiter, R; Bleifeld, W
1982-01-01
In order to evaluate left ventricular function during dynamic exercise transoesophageal M-mode recordings of the left ventricle were carried out with a newly developed transducer gastroscope system. Twelve healthy subjects performed a graded supine bicycle exercise test. Stable and good quality images of the left ventricle at rest and during exercise at different steps up to a maximum workload of 100 watts were obtained in all patients. Isotonic maximum exercise resulted in a significant increase in fractional shortening of the left ventricle, peak shortening rate, and peak lengthening rate of the left ventricular minor axis. Left ventricular end-diastolic dimension decreased significantly. With increasing workload the pressure rate product increased significantly. It is concluded that transoesophageal M-mode echocardiography is a useful method of evaluating left ventricular performance during dynamic exercise. Images PMID:7082515
The prognostic value of early repolarization with ST-segment elevation in African Americans.
Perez, Marco V; Uberoi, Abhimanyu; Jain, Nikhil A; Ashley, Euan; Turakhia, Mintu P; Froelicher, Victor
2012-04-01
Increased prevalence of classic early repolarization, defined as ST-segment elevation (STE) in the absence of acute myocardial injury, in African Americans is well established. The prognostic value of this pattern in different ethnicities remains controversial. Measure association between early repolarization and cardiovascular mortality in African Americans. The resting electrocardiograms of 45,829 patients were evaluated at the Palo Alto Veterans Affairs Hospital. Subjects with inpatient status or electrocardiographic evidence of acute myocardial infarction were excluded, leaving 29,281 subjects. ST-segment elevation, defined as an elevation of >0.1 mV at the end of the QRS, was electronically flagged and visually adjudicated by 3 observers blinded to outcomes. An association between ethnicity and early repolarization was measured by using multivariate logistic regression. We analyzed associations between early repolarization and cardiovascular mortality by using the Cox proportional hazards regression analysis. Subjects were 13% women and 13.3% African Americans, with an average age of 55 years and followed for an average of 7.6 years, resulting in 1995 cardiovascular deaths. There were 479 subjects with lateral STE and 185 with inferior STE. After adjustment for age, sex, heart rate, and coronary artery disease, African American ethnicity was associated with lateral or inferior STE (odds ratio 3.1; P = .0001). While lateral or inferior STE in non-African Americans was independently associated with cardiovascular death (hazard ratio 1.6; P = .02), it was not associated with cardiovascular death in African Americans (hazard ratio 0.75; P = .50). Although early repolarization is more prevalent in African Americans, it is not predictive of cardiovascular death in this population and may represent a distinct electrophysiologic phenomenon. Copyright © 2012 Heart Rhythm Society. All rights reserved.
Predicting the risk of sudden cardiac death.
Lerma, Claudia; Glass, Leon
2016-05-01
Sudden cardiac death (SCD) is the result of a change of cardiac activity from normal (typically sinus) rhythm to a rhythm that does not pump adequate blood to the brain. The most common rhythms leading to SCD are ventricular tachycardia (VT) or ventricular fibrillation (VF). These result from an accelerated ventricular pacemaker or ventricular reentrant waves. Despite significant efforts to develop accurate predictors for the risk of SCD, current methods for risk stratification still need to be improved. In this article we briefly review current approaches to risk stratification. Then we discuss the mathematical basis for dynamical transitions (called bifurcations) that may lead to VT and VF. One mechanism for transition to VT or VF involves a perturbation by a premature ventricular complex (PVC) during sinus rhythm. We describe the main mechanisms of PVCs (reentry, independent pacemakers and abnormal depolarizations). An emerging approach to risk stratification for SCD involves the development of individualized dynamical models of a patient based on measured anatomy and physiology. Careful analysis and modelling of dynamics of ventricular arrhythmia on an individual basis will be essential in order to improve risk stratification for SCD and to lay a foundation for personalized (precision) medicine in cardiology. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.
Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N
2008-01-15
Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.
Hyltén-Cavallius, Louise; Iepsen, Eva W; Christiansen, Michael; Graff, Claus; Linneberg, Allan; Pedersen, Oluf; Holst, Jens J; Hansen, Torben; Torekov, Signe S; Kanters, Jørgen K
2017-08-01
Both hypoglycemia and severe hyperglycemia constitute known risk factors for cardiac repolarization changes potentially leading to malignant arrhythmias. Patients with loss of function mutations in KCNQ1 are characterized by long QT syndrome (LQTS) and may be at increased risk for glucose-induced repolarization disturbances. The purpose of this study was to test the hypothesis that KCNQ1 LQTS patients are at particular risk for cardiac repolarization changes during the relative hyperglycemia that occurs after an oral glucose load. Fourteen KCNQ1 LQTS patients and 28 control participants matched for gender, body mass index, and age underwent a 3-hour oral 75-g glucose tolerance test with ECGs obtained at 7 time points. Fridericia corrected QT interval (QTcF), Bazett corrected QT interval (QTcB), and the Morphology Combination Score (MCS) were calculated. QTc and MCS increased in both groups. MCS remained elevated until 150 minutes after glucose ingestion, and the maximal change from baseline was larger among KCNQ1 LQTS patients compared with control subjects (0.28 ± 0.27 vs 0.15 ± 0.13; P <.05). Relative hyperglycemia induced by ingestion of 75-g glucose caused cardiac repolarization disturbances that were more severe in KCNQ1 LQTS patients compared with control subjects. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
[A research on real-time ventricular QRS classification methods for single-chip-microcomputers].
Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J
1997-05-01
Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.
Zeng, Shao-ying; Shi, Ji-jun; Li, Hong; Zhang, Zhi-wei; Li, Yu-fen
2010-08-01
To simplify the methods of transcatheter mapping and ablation in the pediatric patients with left posterior fascicular tachycardia. While in sinus rhythm, the fascicular potential can be mapped at the posterior septal region (1 - 2 cm below inferior margin of orifice of coronary sinus vein), which display a biphasic wave before ventricular wave, and exist equipotential lines between them. When the fascicular potential occurs 20 ms later than the bundle of His' potential, radiofrequency was applied. Before applying radiofrequency, catheter position must be observed using double angle viewing (LAO 45°RAO 30°), and it should be made sure that the catheter is not at His' bundle. If the electrocardiogram displays left posterior fascicular block, the correct region is identified and ablation can continue for 60 s. Electrocardiogram monitoring should continue for 24 - 48 hours after operation, and notice abnormal repolarization after termination of ventricular tachycardia. Aspirin [2 - 3 mg/(kg·d)] was used for 3 months, and antiarrhythmic drug was discontinued. Surface electrocardiogram, chest X-ray and ultrasound cardiography were rechecked 1 d after operation. Follow-up was made at 1 month and 3 months post-discharge. Recheck was made half-yearly or follow-up was done by phone from then on. Fifteen pediatric patients were ablated successfully, and their electrocardiograms all displayed left posterior fascicular block after ablation. None of the patients had recurrences during the 3 to 12 months follow-up period. In one case, the electrocardiogram did not change after applying radiofrequency ablation and the ventricular tachycardia remained; however, on second attempt after remapping, the electrocardiogram did change. The radiofrequency lasted for 90 seconds and ablation was successful. This case had no recurrences at 6 months follow-up. Transcatheter ablation of the fascicular potential in pediatric patients with left posterior fascicular tachycardia can simplify mapping, reduce operative difficulty and produce a distinct endpoint for ablation.
Choi, Bum-Rak; Li, Weiyan; Terentyev, Dmitry; Kabakov, Anatoli Y; Zhong, Mingwang; Rees, Colin M; Terentyeva, Radmila; Kim, Tae Yun; Qu, Zhilin; Peng, Xuwen; Karma, Alain; Koren, Gideon
2018-06-01
Sudden death in long-QT syndrome type 1 (LQT1), an inherited disease caused by loss-of-function mutations in KCNQ1, is triggered by early afterdepolarizations (EADs) that initiate polymorphic ventricular tachycardia (pVT). We investigated ionic mechanisms that underlie pVT in LQT1 using a transgenic rabbit model of LQT1. Optical mapping, cellular patch clamping, and computer modeling were used to elucidate the mechanisms of EADs in transgenic LQT1 rabbits. The results showed that shorter action potential duration in the right ventricle (RV) was associated with focal activity during pVT initiation. RV cardiomyocytes demonstrated higher incidence of EADs under 50 nmol/L isoproterenol. Voltage-clamp studies revealed that the transient outward potassium current (I to ) magnitude was 28% greater in RV associated with KChiP2 but with no differences in terms of calcium-cycling kinetics and other sarcolemmal currents. Perfusing with the I to blocker 4-aminopyridine changed the initial focal sites of pVT from the RV to the left ventricle, corroborating the role of I to in pVT initiation. Computer modeling showed that EADs occur preferentially in the RV because of the larger conductance of the slow-inactivating component of I to , which repolarizes the membrane potential sufficiently rapidly to allow reactivation of I Ca,L before I Kr has had sufficient time to activate. I to heterogeneity creates both triggers and an arrhythmogenic substrate in LQT1. In the absence of I Ks , I to interactions with I Ca,L and I Kr promote EADs in the RV while prolonging action potential duration in the left ventricle. This heterogeneity of action potential enhances dispersion of refractoriness and facilitates conduction blocks that initiate pVTs. © 2018 American Heart Association, Inc.
Fowler, Ewan D; Drinkhill, Mark J; Norman, Ruth; Pervolaraki, Eleftheria; Stones, Rachel; Steer, Emma; Benoist, David; Steele, Derek S; Calaghan, Sarah C; White, Ed
2018-07-01
Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β 1 -adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling. PAH with RV failure was induced in rats by monocrotaline injection. When PAH was established, animals were given 10 mg/kg/day metoprolol (MCT + BB) or vehicle (MCT). The median time to the onset of heart failure signs was delayed from 23 days (MCT), to 31 days (MCT + BB). At 23 ± 1 days post-injection, MCT + BB showed improved in vivo cardiac function, measured by echocardiography. RV hypertrophy was reduced despite persistent elevated afterload. RV myocyte contractility during field stimulation was improved at higher pacing frequencies in MCT + BB. Preserved t-tubule structure, more uniform evoked Ca 2+ release, increased SERCA2a expression and faster ventricular repolarization (measured in vivo by telemetry) may account for the improved contractile function. Sarcoplasmic reticulum Ca 2+ overload was prevented in MCT + BB myocytes resulting in fewer spontaneous Ca 2+ waves, with a lower pro-arrhythmic potential. Our novel finding of attenuation of defects in excitation contraction coupling by β 1 -adrenoceptor blockade with delays in the onset of HF, identifies the RV as a promising therapeutic target in PAH. Moreover, our data suggest existing therapies for left ventricular failure may also be beneficial in PAH induced RV failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
McBride, Christie M.; Smith, Ashley M.; Smith, Jennifer L.; Reloj, Allison R.; Velasco, Ellyn J.; Powell, Jonathan; Elayi, Claude S.; Bartos, Daniel C.; Burgess, Don E.
2013-01-01
KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (IKr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing IKr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (IKv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in IKv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing IKr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease IKr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient. PMID:23546015
McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P
2013-05-01
KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
Echocardiographic left ventricular masses in distance runners and weight lifters
NASA Technical Reports Server (NTRS)
Longhurst, J. C.; Gonyea, W. J.; Mitchell, J. H.; Kelly, A. R.
1980-01-01
The relationships of different forms of exercise training to left ventricular mass and body mass are investigated by echocardiographic studies of weight lifters, long-distance runners, and comparatively sized untrained control subjects. Left ventricular mass determinations by the Penn convention reveal increased absolute left ventricular masses in long-distance runners and competitive weight lifters with respect to controls matched for age, body weight, and body surface area, and a significant correlation between ventricular mass and lean body mass. When normalized to lean body mass, the ventricular masses of distance runners are found to be significantly higher than those of the other groups, suggesting that dynamic training elevates left ventricular mass compared to static training and no training, while static training increases ventricular mass only to the extent that lean body mass is increased.
Akylbekova, Ermeg L; Payne, John P; Newton-Cheh, Christopher; May, Warren L; Fox, Ervin R; Wilson, James G; Sarpong, Daniel F; Taylor, Herman A; Maher, Joseph F
2014-01-01
African-American ancestry, hypokalemia, and QT interval prolongation on the electrocardiogram are all risk factors for sudden cardiac death (SCD), but their interactions remain to be characterized. SCN5A-1103Y is a common missense variant, of African ancestry, of the cardiac sodium channel gene. SCN5A-1103Y is known to interact with QT-prolonging factors to promote ventricular arrhythmias in persons at high risk for SCD, but its clinical impact in the general African-American population has not been established. We genotyped SCN5A-S1103Y in 4,476 participants of the Jackson Heart Study, a population-based cohort of African Americans. We investigated the effect of SCN5A-1103Y, including interaction with hypokalemia, on QT interval prolongation, a widely-used indicator of prolonged myocardial repolarization and predisposition to SCD. We then evaluated the two sub-components of the QT interval: QRS duration and JT interval. The carrier frequency for SCN5A-1103Y was 15.4%. SCN5A-1103Y was associated with QT interval prolongation (2.7 milliseconds; P < .001) and potentiated the effect of hypokalemia on QT interval prolongation (14.6 milliseconds; P = .02). SCN5A-1103Y had opposing effects on the two sub-components of the QT interval, with shortening of QRS duration (-1.5 milliseconds; P = .001) and prolongation of the JT interval (3.4 milliseconds; P < .001). Hypokalemia was associated with diuretic use (78%; P < .001). SCN5A-1103Y potentiates the effect of hypokalemia on prolonging myocardial repolarization in the general African-American population. These findings have clinical implications for modification of QT prolonging factors, such as hypokalemia, in the 15% of African Americans who are carriers of SCN5A-1103Y. © 2014.
Paci, M; Hyttinen, J; Rodriguez, B
2015-01-01
Background and Purpose Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) and in silico human adult ventricular cardiomyocyte (hAdultV‐CM) models. Their combination was recently proposed as a potential replacement for the present hERG‐based QT study for pharmacological safety assessments. Here, we systematically compared in silico the effects of selective ionic current block on hiPSC‐CM and hAdultV‐CM action potentials (APs), to identify similarities/differences and to illustrate the potential of computational models as supportive tools for evaluating new in vitro technologies. Experimental Approach In silico AP models of ventricular‐like and atrial‐like hiPSC‐CMs and hAdultV‐CM were used to simulate the main effects of four degrees of block of the main cardiac transmembrane currents. Key Results Qualitatively, hiPSC‐CM and hAdultV‐CM APs showed similar responses to current block, consistent with results from experiments. However, quantitatively, hiPSC‐CMs were more sensitive to block of (i) L‐type Ca2+ currents due to the overexpression of the Na+/Ca2+ exchanger (leading to shorter APs) and (ii) the inward rectifier K+ current due to reduced repolarization reserve (inducing diastolic potential depolarization and repolarization failure). Conclusions and Implications In silico hiPSC‐CMs and hAdultV‐CMs exhibit a similar response to selective current blocks. However, overall hiPSC‐CMs show greater sensitivity to block, which may facilitate in vitro identification of drug‐induced effects. Extrapolation of drug effects from hiPSC‐CM to hAdultV‐CM and pro‐arrhythmic risk assessment can be facilitated by in silico predictions using biophysically‐based computational models. PMID:26276951
Cordeiro, Jonathan M.; Nesterenko, Vladislav V.; Sicouri, Serge; Goodrow, Robert J.; Treat, Jacqueline A.; Desai, Mayurika; Wu, Yuesheng; Doss, Michael Xavier; Antzelevitch, Charles; Di Diego, José M.
2013-01-01
Background The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). Method Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4, KChIP2 and Kv4.3 were quantified from BCs. Results BCs exhibited spontaneous beating (60.5 ± 2.6 bpm) and maximum-diastolic-potential (MDP) of 67.8 ± 0.8 mV (n = 155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7 ± 1.9 pA/pF at +40 mV; n = 14). Recovery of Ito from inactivation (at −80 mV) showed slow kinetics (τ1 = 200 ± 110 ms (12%) and τ2 = 2380 ± 240 ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. Conclusion The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype. PMID:23542310
Electrocardiographic changes in hospitalized patients with leptospirosis over a 10-year period.
Škerk, Vedrana; Markotić, Alemka; Puljiz, Ivan; Kuzman, Ilija; Čeljuska Tošev, Elvira; Habuš, Josipa; Turk, Nenad; Begovac, Josip
2011-07-01
The aim of this study was to investigate the incidence and type of ECG changes in patients with leptospirosis regardless of clinical evidence of cardiac involvement. A total of 97 patients with serologically confirmed leptospirosis treated at the University Hospital for Infectious Diseases "Dr. Fran Mihaljević" in Zagreb, Croatia, were included in this retrospective study. A 12-lead resting ECG was routinely performed in the first 2 days after hospital admission. Thorough past and current medical history was obtained, and careful physical examination and laboratory tests were performed. Abnormal ECG findings were found in 56 of 97 (58%) patients. Patients with abnormal ECG had significantly elevated values of bilirubin and alanine aminotransferase, lower values of potassium and lower number of platelets, as well as more frequently recorded abnormal chest x-ray. Non-specific ventricular repolarization disturbances were the most common abnormal ECG finding. Other recorded ECG abnormalities were sinus tachycardia, right branch conduction disturbances, low voltage of the QRS complex in standard limb leads, supraventricular and ventricular extrasystoles, intraventricular conduction disturbances, atrioventricular block first-degree and atrial fibrillation. Myopericarditis was identified in 4 patients. Regardless of ECG changes, the most commonly detected infection was with Leptospira interrogans serovar Australis, Leptospira interrogans serovar Saxkoebing and Leptospira kirschneri serovar Grippotyphosa. The ECG abnormalities are common at the beginning of disease and are possibly caused by the direct effect of leptospires or are the non-specific result of a febrile infection and metabolic and electrolyte abnormalities. New studies are required for better understanding of the mechanism of ECG alterations in leptospirosis.
Lederman, Yitzchok S.; Balucani, Clotilde; Lazar, Jason; Steinberg, Leah; Gugger, James; Levine, Steven R.
2014-01-01
Background QT dispersion (QTd) has been proposed as an indirect ECG measure of heterogeneity of ventricular repolarization. The predictive value of QTd in acute stroke remains controversial. We aimed to clarify the relationship between QTd and acute stroke and stroke prognosis. Methods A systematic review of the literature was performed using pre-specified medical subjects heading (MeSH) terms, Boolean logic and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Eligible studies (a) included ischemic or hemorrhagic stroke and (b) provided QTd measurements. Results Two independent reviewers identified 553 publications. Sixteen articles were included in the final analysis. There were a total of 888 stroke patients: 59% ischemic and 41% hemorrhagic. There was considerable heterogeneity in study design, stroke subtypes, ECG assessment-time, control groups and comparison groups. Nine studies reported a significant association between acute stroke and baseline QTd. Two studies reported that QTd increases are specifically related to hemorrhagic strokes, involvement of the insular cortex, right-side lesions, larger strokes, and increases in 3, 4-dihydroxyphenylethylene glycol in hemorrhagic stroke. Three studies reported QTd to be an independent predictor of stroke mortality. One study each reported increases in QTd in stroke patients who developed ventricular arrhythmias and cardiorespiratory compromise. Conclusions There are few well-designed studies and considerable variability in study design in addressing the significance of QTd in acute stroke. Available data suggest that stroke is likely to be associated with increased QTd. While some evidence suggests a possible prognostic role of QTd in stroke, larger and well-designed studies need to confirm these findings. PMID:25282188
Brisinda, Donatella; Caristo, Maria Emiliana; Fenici, Riccardo
2006-07-01
Magnetocardiography (MCG) is the recording of the magnetic field (MF) generated by cardiac electrophysiological activity. Because it is a contactless method, MCG is ideal for noninvasive cardiac mapping of small experimental animals. The aim of this study was to assess age-related changes of cardiac intervals and ventricular repolarization (VR) maps in intact rats by means of MCG mapping. Twenty-four adult Wistar rats (12 male and 12 female) were studied, under anesthesia, with the same unshielded 36-channel MCG instrumentation used for clinical recordings. Two sets of measurements were obtained from each animal: 1) at 5 mo of age (297.5 +/- 21 g body wt) and 2) at 14 mo of age (516.8 +/- 180 g body wt). RR and PR intervals, QRS segment, and QTpeak, QTend, JTpeak, JTend, and Tpeak-end were measured from MCG waveforms. MCG imaging was automatically obtained as MF maps and as inverse localization of cardiac sources with equivalent current dipole and effective magnetic dipole models. After 300 s of continuous recording were averaged, the signal-to-noise ratio was adequate for study of atrial and ventricular MF maps and for three-dimensional localization of the underlying cardiac sources. Clear-cut age-related differences in VR duration were demonstrated by significantly longer QTend, JTend, and Tpeak-end in older Wistar rats. Reproducible multisite noninvasive cardiac mapping of anesthetized rats is simpler with MCG methodology than with ECG recording. In addition, MCG mapping provides new information based on quantitative analysis of MF and equivalent sources. In this study, statistically significant age-dependent variations in VR intervals were found.
Efficacy and safety of dextrose-insulin in unmasking non-diagnostic Brugada ECG patterns.
Velázquez-Rodríguez, Enrique; Rodríguez-Piña, Horacio; Pacheco-Bouthillier, Alex; Jiménez-Cruz, Marcelo Paz
Typical diagnostic, coved-type 1, Brugada ECG patterns fluctuate spontaneously over time with a high proportion of non-diagnostic ECG patterns. Insulin modulates ion transport mechanisms and causes hyperpolarization of the resting potential. We report our experience with unmasking J-ST changes in response to a dextrose-insulin test. Nine patients, mean age 40.5±19.4years (range: 15-65years), presented initially with a non-diagnostic ECG pattern, which was suggestive of Brugada syndrome (group I). They were compared with 10 patients with normal ECG patterns (group II). Participants received an infusion of 50g of 50% dextrose, followed by 10IU of intravenous regular insulin. Positive changes were defined by conversion to a diagnostic ECG pattern. The dextrose-insulin test was positive in six of seven (85.7%) patients (kappa 0.79, p=0.02) that was confirmed with a pharmacologic test (kappa 1, p=0.003). One had an inconclusive test, and two with a negative test had an early repolarization ECG pattern. All subjects in group II had a negative test (p<0.01). The maximum changes of the J-ST segment were observed 41.3±31.4minutes (range 3-90minutes) after dextrose-insulin infusion. One patient had monomorphic ventricular bigeminy without spontaneous or induced ventricular fibrillation. Changes in J-ST segment in the Brugada syndrome are influenced by glucose-insulin, and this report reproduces and supports the efficacy and safety of this metabolic test in the differential diagnosis of patients with non-diagnostic ECG patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
Electromechanical heterogeneity in the heart : A key to long QT syndrome?
Dressler, F F; Brado, J; Odening, K E
2018-03-01
In the healthy heart, physiological heterogeneities in structure and in electrical and mechanical activity are crucial for normal, efficient excitation and pumping. Alterations of heterogeneity have been linked to arrhythmogenesis in various cardiac disorders such as long QT syndrome (LQTS). This inherited arrhythmia disorder is caused by mutations in different ion channel genes and is characterized by (heterogeneously) prolonged cardiac repolarization and increased risk for ventricular tachycardia, syncope and sudden cardiac death. Cardiac electrical and mechanical function are not independent of each other but interact in a bidirectional manner by electromechanical and mechano-electrical coupling. Therefore, changes in either process will affect the other. Recent experimental and clinical evidence suggests that LQTS, which is primarily considered an "electrical" disorder, also exhibits features of disturbed mechanical function and heterogeneity, which in turn appears to correlate with the risk of arrhythmia in the individual patient. In this review, we give a short overview of the current knowledge about physiological and pathological, long QT-related electrical and mechanical heterogeneity in the heart. Also, their respective roles for future risk prediction approaches in LQTS are discussed.
Neog, Manoj Kumar; Sultana, Farhath; Rasool, Mahaboobkhan
2018-05-25
In the present study, we intend to gain an insight into the mechanism of Withaferin-A (WA), a steroidal lactone with reference to repolarization of RAW 264.7 macrophages (M1 to M2 type). We found that successful internalization of WA via mannosylated liposomal delivery system (ML-WA) reduced the RAW 264.7 macrophage (M1) mediated pro-inflammatory cytokines (IL-1β, IL-6, IL-23, and TNF-α) through the attenuation of transcription factor NF-κB-p65 expression. Whereas, ML-WA treatment induced a controlled upregulation of p-STAT3, and ablated the key oxidative stress markers (NO, iNOS, and ROS) in M1 → M2 RAW 264.7 macrophage repolarization, which suggested the recalibration of M1 macrophage metabolic function. Further, the elevated expression of M2 macrophage associated CD163 over the M1 macrophage related CD86 concluded that ML-WA induces an anti-inflammatory response by repolarizing the M1 → M2 RAW 264.7 macrophage. Copyright © 2018 Elsevier B.V. All rights reserved.
Modeling and quantification of repolarization feature dependency on heart rate.
Minchole, A; Zacur, E; Pueyo, E; Laguna, P
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". This work aims at providing an efficient method to estimate the parameters of a non linear model including memory, previously proposed to characterize rate adaptation of repolarization indices. The physiological restrictions on the model parameters have been included in the cost function in such a way that unconstrained optimization techniques such as descent optimization methods can be used for parameter estimation. The proposed method has been evaluated on electrocardiogram (ECG) recordings of healthy subjects performing a tilt test, where rate adaptation of QT and Tpeak-to-Tend (Tpe) intervals has been characterized. The proposed strategy results in an efficient methodology to characterize rate adaptation of repolarization features, improving the convergence time with respect to previous strategies. Moreover, Tpe interval adapts faster to changes in heart rate than the QT interval. In this work an efficient estimation of the parameters of a model aimed at characterizing rate adaptation of repolarization features has been proposed. The Tpe interval has been shown to be rate related and with a shorter memory lag than the QT interval.
Hypertrophic Cardiomyopathy: Clinical Update.
Geske, Jeffrey B; Ommen, Steve R; Gersh, Bernard J
2018-05-01
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy, manifesting as left ventricular hypertrophy in the absence of a secondary cause. The genetic underpinnings of HCM arise largely from mutations of sarcomeric proteins; however, the specific underlying mutation often remains undetermined. Patient presentation is phenotypically diverse, ranging from asymptomatic to heart failure or sudden cardiac death. Left ventricular hypertrophy and abnormal ventricular configuration result in dynamic left ventricular outflow obstruction in most patients. The goal of therapeutic interventions is largely to reduce dynamic obstruction, with treatment modalities spanning lifestyle modifications, pharmacotherapies, and septal reduction therapies. A small subset of patients with HCM will experience sudden cardiac death, and risk stratification remains a clinical challenge. This paper presents a clinical update for diagnosis, family screening, clinical imaging, risk stratification, and management of symptoms in patients with HCM. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
New Methods for the Analysis of Heartbeat Behavior in Risk Stratification
Glass, Leon; Lerma, Claudia; Shrier, Alvin
2011-01-01
Developing better methods for risk stratification for tachyarrhythmic sudden cardiac remains a major challenge for physicians and scientists. Since the transition from sinus rhythm to ventricular tachycardia/fibrillation happens by different mechanisms in different people, it is unrealistic to think that a single measure will be adequate to provide a good index for risk stratification. We analyze the dynamical properties of ventricular premature complexes over 24 h in an effort to understand the underlying mechanisms of ventricular arrhythmias and to better understand the arrhythmias that occur in individual patients. Two dimensional density plots, called heartprints, correlate characteristic features of the dynamics of premature ventricular complexes and the sinus rate. Heartprints show distinctive characteristics in individual patients. Based on a better understanding of the natures of transitions from sinus rhythm to sudden cardiac and the mechanisms of arrhythmia prior to cardiac arrest, it should be possible to develop better methods for risk stratification. PMID:22144963
Chemotactic cell trapping in controlled alternating gradient fields
Meier, Börn; Zielinski, Alejandro; Weber, Christoph; Arcizet, Delphine; Youssef, Simon; Franosch, Thomas; Rädler, Joachim O.; Heinrich, Doris
2011-01-01
Directed cell migration toward spatio-temporally varying chemotactic stimuli requires rapid cytoskeletal reorganization. Numerous studies provide evidence that actin reorganization is controlled by intracellular redistribution of signaling molecules, such as the PI4,5P2/PI3,4,5P3 gradient. However, exploring underlying mechanisms is difficult and requires careful spatio-temporal control of external chemotactic stimuli. We designed a microfluidic setup to generate alternating chemotactic gradient fields for simultaneous multicell exposure, greatly facilitating statistical analysis. For a quantitative description of intracellular response dynamics, we apply alternating time sequences of spatially homogeneous concentration gradients across 300 μm, reorienting on timescales down to a few seconds. Dictyostelium discoideum amoebae respond to gradient switching rates below 0.02 Hz by readapting their migration direction. For faster switching, cellular repolarization ceases and is completely stalled at 0.1 Hz. In this “chemotactically trapped” cell state, external stimuli alternate faster than intracellular feedback is capable to respond by onset of directed migration. To investigate intracellular actin cortex rearrangement during gradient switching, we correlate migratory cell response with actin repolymerization dynamics, quantified by a fluorescence distribution moment of the GFP fusion protein LimEΔcc. We find two fundamentally different cell polarization types and we could reveal the role of PI3-Kinase for cellular repolarization. In the early aggregation phase, PI3-Kinase enhances the capability of D. discoideum cells to readjust their polarity in response to spatially alternating gradient fields, whereas in aggregation competent cells the effect of PI3-Kinase perturbation becomes less relevant. PMID:21709255
[The influence of occupational lead exposure on transmural repolarization dispersion].
Zyśko, Dorota; Gajek, Jacek; Chlebda, Ewa; Mazurek, Walentyna
2005-02-01
The parts of QT interval: time from Q wave to the peak of T wave (QTp) representing the de- and repolarization of subepicardial layer and the time from the peak of T wave to its end (QTp-e) building the transmural dispersion of repolarization enable more exact assessment of repolarization period of the heart muscle. Occupational exposure to lead influences the electrophysiologic properties of the heart. The aim of our study was to assess the QTp and QTp-e interval in workers occupationally exposed to lead. The study was carried out in 22 copper smelters aged 41.8 +/- 8.7 years, occupationally exposed to lead. The control group consisted of 14 healthy men. In all studied subjects blood lead concentration (Pb) and the concentration of free protoporphyrins in erytrocytes were assessed. 24-hour ECG holter monitoring was done to study rhythm disturbances and the duration in lead CM5 of QT interval, QTp interval, RR interval preceding the assessed QT interval (pRR) during sleep, rest during the awake state and moderate daily activity. The QTp-e interval is the difference between the duration of QT and QTp interval. The duration of QTp and QTp-e in occupationally exposed workers and healthy persons did not differ significantly. These parameters were significantly lower in both groups during moderately physical activity comparing to the values during sleep. The QTp-e/ QTp ratio in occupationally exposed workers during night hours was significantly lower than during daily activity what was not the case in control persons. Occupational exposure to lead do not change significantly the transmural dispersion of repolarization. Occupational exposure to lead diminishes the QTp-e/QTp ratio during the night.
Dynamics of hERG closure allow novel insights into hERG blocking by small molecules.
Schmidtke, Peter; Ciantar, Marine; Theret, Isabelle; Ducrot, Pierre
2014-08-25
Today, drug discovery routinely uses experimental assays to determine very early if a lead compound can yield certain types of off-target activity. Among such off targets is hERG. The ion channel plays a primordial role in membrane repolarization and altering its activity can cause severe heart arrhythmia and sudden death. Despite routine tests for hERG activity, rather little information is available for helping medicinal chemists and molecular modelers to rationally circumvent hERG activity. In this article novel insights into the dynamics of hERG channel closure are described. Notably, helical pairwise closure movements have been observed. Implications and relations to hERG inactivation are presented. Based on these dynamics novel insights on hERG blocker placement are presented, compared to literature, and discussed. Last, new evidence for horizontal ligand positioning is shown in light of former studies on hERG blockers.
Heart rate variability alters cardiac repolarization and electromechanical dynamics.
Phadumdeo, Vrishti M; Weinberg, Seth H
2018-04-07
Heart rate continuously varies due to autonomic regulation, stochasticity in pacemaking, and circadian rhythm, collectively termed heart rate variability (HRV), during normal physiological conditions. Low HRV is clinically associated with an elevated risk of cardiac arrhythmias. Alternans, a beat-to-beat alternation in action potential duration (APD) and/or intracellular calcium (Ca) transient, is a well-known risk factor associated with cardiac arrhythmias that is typically studied under conditions of a constant pacing rate, i.e., the absence of HRV. In this study, we investigate the effects of HRV on the interplay between APD, Ca, and electromechanical properties, employing a nonlinear discrete-time map model that governs APD and intracellular Ca cycling with a stochastic pacing period. We find that HRV can decrease variation in APD and peak Ca at fast pacing rates for which alternans is present. Further, increased HRV typically disrupts the alternating pattern for both APD and peak Ca and weakens the correlation between APD and peak Ca, thus decoupling Ca-mediated instabilities from repolarization alternation. We find that the efficacy of these effects is regulated by the sarcoplasmic reticulum Ca uptake rate. Overall, these results demonstrate that HRV disrupts arrhythmogenic alternans and suggests that HRV may be a significant factor in preventing life-threatening arrhythmias. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nguyen, Yen Ngoc; Ismail, Munirah; Kabinejadian, Foad; Tay, Edgar Lik Wui; Leo, Hwa Liang
2018-04-01
Intra-ventricular flow dynamics has recently emerged as an important evaluation and diagnosis tool in different cardiovascular conditions. The formation of vortex pattern during the cardiac cycle has been suggested to play important epigenetic and energy-modulation roles in cardiac remodelling, adaptations and mal-adaptations. In this new perspective, flow alterations due to different cardiovascular procedures can affect the long-term outcome of those procedures. Especially, repairs and replacements performed on atrioventricular valves are likely to exert direct impact on intra-ventricular flow pattern. In this review, current consensus around the roles of vortex dynamics in cardiac function is discussed. An overview of physiological vortex patterns found in healthy left and right ventricles as well as post-operative ventricular flow phenomenon owing to different atrioventricular valvular procedures are reviewed, followed by the summary of different vortex identification schemes used to characterise intraventricular flow. This paper also emphasises on future research directions towards a comprehensive understanding of intra-cardiac flow and its clinical relevance. The knowledge could encourage more effective pre-operative planning and better outcomes for current clinical practices. Copyright © 2018. Published by Elsevier Ltd.
Heart Electrical Actions as Biometric Indicia
NASA Technical Reports Server (NTRS)
Schipper, John F. (Inventor); Dusan, Sorin V. (Inventor); Jorgensen, Charles C. (Inventor); Belousof, Eugene (Inventor)
2013-01-01
A method and associated system for use of statistical parameters based on peak amplitudes and/or time interval lengths and/or depolarization-repolarization vector angles and/or depolarization-repolarization vector lengths for PQRST electrical signals associated with heart waves, to identify a person. The statistical parameters, estimated to be at least 192, serve as biometric indicia, to authenticate, or to decline to authenticate, an asserted identity of a candidate person.
Nonlinear dynamics, fractals, cardiac physiology and sudden death
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
Wang, Yuhong; Zankov, Dimitar P.; Jiang, Min; Zhang, Mei; Henderson, Scott C.; Tseng, Gea-Ny
2013-01-01
Our goals are to simultaneously determine the three-dimensional distribution patterns of KCNQ1 and KCNE1 in cardiac myocytes and to study the mechanism and functional implications for variations in KCNQ1/KCNE1 colocalization in myocytes. We monitored the distribution patterns of KCNQ1, KCNE1, and markers for subcellular compartments/organelles using immunofluorescence/confocal microscopy and confirmed the findings in ventricular myocytes by directly observing fluorescently tagged KCNQ1-GFP and KCNE1-dsRed expressed in these cells. We also monitored the effects of stress on KCNQ1-GFP and endoplasmic reticulum (ER) remodeling during live cell imaging. The data showed that 1) KCNE1 maintained a stable cell surface localization, whereas KCNQ1 exhibited variations in the cytosolic compartment (striations versus vesicles) and the degree of presence on the cell surface; 2) the degree of cell surface KCNQ1/KCNE1 colocalization was positively correlated with slow delayed rectifier (IKs) current density; 3) KCNQ1 and calnexin (an ER marker) shared a cytosolic compartment; and 4) in response to stress ([Ca2+]i elevation, oxidative overload, or AT1R stimulation), KCNQ1 exited the cytosolic compartment and trafficked to the cell periphery in vesicles. This was accompanied by partial ER fragmentation. We conclude that the cellular milieu regulates KCNQ1 distribution in cardiac myocytes and that stressful conditions can increase IKs by inducing KCNQ1 movement to the cell surface. This represents a hitherto unrecognized mechanism by which IKs fulfills its function as a repolarization reserve in ventricular myocytes. PMID:24142691
Electrocardiographic changes in hospitalized patients with leptospirosis over a 10-year period
Škerk, Vedrana; Markotić, Alemka; Puljiz, Ivan; Kuzman, Ilija; Tošev, Elvira Čeljuska; Habuš, Josipa; Turk, Nenad; Begovac, Josip
2011-01-01
Summary Background The aim of this study was to investigate the incidence and type of ECG changes in patients with leptospirosis regardless of clinical evidence of cardiac involvement. Material/Methods A total of 97 patients with serologically confirmed leptospirosis treated at the University Hospital for Infectious Diseases „Dr. Fran Mihaljević‟ in Zagreb, Croatia, were included in this retrospective study. A 12-lead resting ECG was routinely performed in the first 2 days after hospital admission. Thorough past and current medical history was obtained, and careful physical examination and laboratory tests were performed. Results Abnormal ECG findings were found in 56 of 97 (58%) patients. Patients with abnormal ECG had significantly elevated values of bilirubin and alanine aminotransferase, lower values of potassium and lower number of platelets, as well as more frequently recorded abnormal chest x-ray. Non-specific ventricular repolarization disturbances were the most common abnormal ECG finding. Other recorded ECG abnormalities were sinus tachycardia, right branch conduction disturbances, low voltage of the QRS complex in standard limb leads, supraventricular and ventricular extrasystoles, intraventricular conduction disturbances, atrioventricular block first-degree and atrial fibrillation. Myopericarditis was identified in 4 patients. Regardless of ECG changes, the most commonly detected infection was with Leptospira interrogans serovar Australis, Leptospira interrogans serovar Saxkoebing and Leptospira kirschneri serovar Grippotyphosa. Conclusions The ECG abnormalities are common at the beginning of disease and are possibly caused by the direct effect of leptospires or are the non-specific result of a febrile infection and metabolic and electrolyte abnormalities. New studies are required for better understanding of the mechanism of ECG alterations in leptospirosis. PMID:21709630
Ng, Fu Siong; Holzem, Katherine M; Koppel, Aaron C; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L; Peters, Nicholas S; Efimov, Igor R
2014-10-01
Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute ischemia-reperfusion in heart failure and its potential causes, including the remodeling of metabolic gene expression. We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to ischemia-reperfusion, with greater action potential duration shortening (P<0.001 at 8-minute ischemia; P=0.001 at 12-minute ischemia) and greater conduction slowing during ischemia, delayed recovery of electric excitability after reperfusion (F, 4.8±1.8 versus D, 1.0±0 minutes; P<0.05), and incomplete restoration of action potential duration and conduction velocity early after reperfusion. Expression of 46 metabolic genes was probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. We demonstrate, for the first time in human hearts, that the electrophysiological response to ischemia-reperfusion in heart failure is accelerated during ischemia with slower recovery after reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. © 2014 American Heart Association, Inc.
Electrocardiographic findings in patients with polycythemia vera.
Kayrak, Mehmet; Acar, Kadir; Gul, Enes Elvin; Abdulhalikov, Turyan; Bağlıcaklıoğlu, Murat; Sonmez, Osman; Kaya, Zeynettin; Arı, Hatem
2012-01-01
The 12-lead surface electrocardiogram (ECG) is a useful tool to predict both atrial and ventricular arrhythmias via P-wave and QT measurements and its derivatives. Polycythemia vera (PV) is a chronic myeloproliferative disorder associated with cardiovascular events. The aim of this study was to assess ECG findings of patients with PV. Sixty patients with PV (34 male, mean age 58±11 years) and 60 age and gender-matched healthy volunteers were enrolled into the study. From the 12-lead surface ECG, P-wave and both conventional QT measurements and transmyocardial repolarization parameters (T(peak)-T(end) interval (T(p)-T(e)) and derivatives) were evaluated digitally by two experienced cardiologists. In addition, a novel parameter, Pi was calculated digitally as the standard deviation of the P-wave duration across the 12 ECG leads. QT duration and corrected QT interval were significantly longer in the PV group compared to healthy controls (p<0.01 and p<0.01, respectively). The T(p)-T(e) was longer and the T(p)-T(e)/QT ratio was significantly higher in the PV group compared to the controls. P-wave analyses showed that all P-wave parameters including Pmax, Pmin, P dispersion, and Pi were significantly prolonged in PV patients compared to the controls. The increase of both T(p)-T(e )and P max in the PV group was independent of age, BMI, diabetes and hypertension, gender, systolic blood pressure, hemoglobin, hematocrit, left atrial dimension, left ventricular end-diastolic diameter and early deceleration time in a univariate analysis of co-variance model (F=11.097, p=0.001 and F=31.537, p=0.0001, respectively). The present study demonstrated that PV may be associated with electrocardiographic abnormalities of both atrium and ventricle.
Left Ventricular Isovolumetric Relaxation Time Is Prolonged in Fetal Long-QT Syndrome.
Clur, Sally-Ann B; Vink, Arja S; Etheridge, Susan P; Robles de Medina, Pascale G; Rydberg, Annika; Ackerman, Michael J; Wilde, Arthur A; Blom, Nico A; Benson, D Woodrow; Herberg, Ulrike; Donofrio, Mary T; Cuneo, Bettina F
2018-04-01
Long-QT syndrome (LQTS), an inherited cardiac repolarization disorder, is an important cause of fetal and neonatal mortality. Detecting LQTS prenatally is challenging. A fetal heart rate (FHR) less than third percentile for gestational age is specific for LQTS, but the sensitivity is only ≈50%. Left ventricular isovolumetric relaxation time (LVIRT) was evaluated as a potential diagnostic marker for fetal LQTS. LV isovolumetric contraction time, LV ejection time, LVIRT, cycle length, and FHR were measured using pulsed Doppler waveforms in fetuses. Time intervals were expressed as percentages of cycle length, and the LV myocardial performance index was calculated. Single measurements were stratified by gestational age and compared between LQTS fetuses and controls. Receiver-operator curves were performed for FHR and normalized LVIRT (N-LVIRT). A linear mixed-effect model including multiple measurements was used to analyze trends in FHR, N-LVIRT, and LV myocardial performance index. There were 33 LQTS fetuses and 469 controls included. In LQTS fetuses, the LVIRT was prolonged in all gestational age groups ( P <0.001), as was the N-LVIRT. The best cutoff to diagnose LQTS was N-LVIRT ≥11.3 at ≤20 weeks (92% sensitivity, 70% specificity). Simultaneous analysis of N-LVIRT and FHR improved the sensitivity and specificity for LQTS (area under the curve=0.96; 95% confidence interval, 0.82-1.00 at 21-30 weeks). N-LVIRT, LV myocardial performance index, and FHR trends differed significantly between LQTS fetuses and controls through gestation. The LVIRT is prolonged in LQTS fetuses. Findings of a prolonged N-LVIRT and sinus bradycardia can improve the prenatal detection of fetal LQTS. © 2018 American Heart Association, Inc.
Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P
2013-06-15
Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.
Mann, Stefan A; Imtiaz, Mohammad; Winbo, Annika; Rydberg, Annika; Perry, Matthew D; Couderc, Jean-Philippe; Polonsky, Bronislava; McNitt, Scott; Zareba, Wojciech; Hill, Adam P; Vandenberg, Jamie I
2016-11-01
In-silico models of human cardiac electrophysiology are now being considered for prediction of cardiotoxicity as part of the preclinical assessment phase of all new drugs. We ask the question whether any of the available models are actually fit for this purpose. We tested three models of the human ventricular action potential, the O'hara-Rudy (ORD11), the Grandi-Bers (GB10) and the Ten Tusscher (TT06) models. We extracted clinical QT data for LQTS1 and LQTS2 patients with nonsense mutations that would be predicted to cause 50% loss of function in I Ks and I Kr respectively. We also obtained clinical QT data for LQTS3 patients. We then used a global optimization approach to improve the existing in silico models so that they reproduced all three clinical data sets more closely. We also examined the effects of adrenergic stimulation in the different LQTS subsets. All models, in their original form, produce markedly different and unrealistic predictions of QT prolongation for LQTS1, 2 and 3. After global optimization of the maximum conductances for membrane channels, all models have similar current densities during the action potential, despite differences in kinetic properties of the channels in the different models, and more closely reproduce the prolongation of repolarization seen in all LQTS subtypes. In-silico models of cardiac electrophysiology have the potential to be tremendously useful in complementing traditional preclinical drug testing studies. However, our results demonstrate they should be carefully validated and optimized to clinical data before they can be used for this purpose. Copyright © 2016 Elsevier Ltd. All rights reserved.
A KCNQ1 Mutation Causes a High Penetrance for Familial Atrial Fibrillation
Bartos, Daniel C.; Anderson, Jeffrey B.; Bastiaenen, Rachel; Johnson, Jonathan N.; Gollob, Michael H; Tester, David J.; Burgess, Don E.; Homfray, Tessa; Behr, Elijah R.; Ackerman, Michael J.; Guicheney, Pascale; Delisle, Brian P.
2012-01-01
Background Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its incidence is expected to grow. A genetic predisposition for AF has long been recognized, but its manifestation in these patients likely involves a combination of rare and common genetic variants. Identifying genetic variants that associate with a high penetrance for AF would represent a significant breakthrough for understanding the mechanisms that associate with disease. Method and Results Candidate gene sequencing in five unrelated families with familial AF identified the KCNQ1 missense mutation p.Arg231His (R231H). In addition to AF, several of the family members have abnormal QTc intervals, syncope, or experienced sudden cardiac arrest or death. KCNQ1 encodes the voltage-gated K+ channel that conducts the slowly activating delayed rectifier K+ current in the heart. Functional and computational analyses suggested that R231H increases KCNQ1 current (IKCNQ1) to shorten the atrial action potential (AP) duration. R231H is predicted to minimally affect ventricular excitability, but it prevented the increase in IKCNQ1 following PKA activation. The unique properties of R231H appeared to be caused by a loss in voltage-dependent gating. Conclusions The R231H variant causes a high penetrance for interfamilial early-onset AF. Our study indicates R231H likely shortens atrial refractoriness to promote a substrate for reentry. Additionally, R231H might cause abnormal ventricular repolarization by disrupting PKA activation of IKCNQ1. We conclude genetic variants, which increase IKs during the atrial AP, decrease the atrial AP duration, and/or shorten atrial refractoriness, present a high risk for interfamilial AF. PMID:23350853
Antiarrhythmic effect of IKr activation in a cellular model of LQT3.
Diness, Jonas Goldin; Hansen, Rie Schultz; Nissen, Jakob Dahl; Jespersen, Thomas; Grunnet, Morten
2009-01-01
Long QT syndrome type 3 (LQT3) is an inherited cardiac disorder caused by gain-of-function mutations in the cardiac voltage-gated sodium channel, Na(v)1.5. LQT3 is associated with the polymorphic ventricular tachycardia torsades de pointes (TdP), which can lead to syncope and sudden cardiac death. The sea anemone toxin ATX-II has been shown to inhibit the inactivation of Na(v)1.5, thereby closely mimicking the underlying cause of LQT3 in patients. The hypothesis for this study was that activation of the I(Kr) current could counteract the proarrhythmic effects of ATX-II. Two different activators of I(Kr), NS3623 and mallotoxin (MTX), were used in patch clamp studies of ventricular cardiac myocytes acutely isolated from guinea pig to test the effects of selective I(Kr) activation alone and in the presence of ATX-II. Action potentials were elicited at 1 Hz by current injection and the cells were kept at 32 degrees C to 35 degrees C. NS3623 significantly shortened action potential duration at 90% repolarization (APD(90)) compared with controls in a dose-dependent manner. Furthermore, it reduced triangulation, which is potentially antiarrhythmic. Application of ATX-II (10 nM) was proarrhythmic, causing a profound increase of APD(90) as well as early afterdepolarizations and increased beat-to-beat variability. Two independent I(Kr) activators attenuated the proarrhythmic effects of ATX-II. NS3623 did not affect the late sodium current (I(NaL)) in the presence of ATX-II. Thus, the antiarrhythmic effect of NS3623 is likely to be caused by selective I(Kr) activation. The present data show the antiarrhythmic potential of selective I(Kr) activation in a cellular model of the LQT3 syndrome.
Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes
Bridge, John H B; Ershler, Philip R; Cannell, Mark B
1999-01-01
Calcium sparks were examined in enzymatically dissociated mouse cardiac ventricular cells using the calcium indicator fluo-3 and confocal microscopy. The properties of the mouse cardiac calcium spark are generally similar to those reported for other species.Examination of the temporal relationship between the action potential and the time course of calcium spark production showed that calcium sparks are more likely to occur during the initial repolarization phase of the action potential. The latency of their occurrence varied by less than 1·4 ms (s.d.) and this low variability may be explained by the interaction of the gating of L-type calcium channels with the changes in driving force for calcium entry during the action potential.When fixed sites within the cell are examined, calcium sparks have relatively constant amplitude but the amplitude of the sparks was variable among sites. The low variability of the amplitude of the calcium sparks suggests that more than one sarcoplasmic reticulum (SR) release channel must be involved in their genesis. Noise analysis (with the assumption of independent gating) suggests that > 18 SR calcium release channels may be involved in the generation of the calcium spark. At a fixed site, the response is close to ‘all-or-none’ behaviour which suggests that calcium sparks are indeed elementary events underlying cardiac excitation-contraction coupling.A method for selecting spark sites for signal averaging is presented which allows the time course of the spark to be examined with high temporal and spatial resolution. Using this method we show the development of the calcium spark at high signal-to-noise levels. PMID:10381593
Wan, Xiaoping; Dennis, Adrienne T.; Obejero-Paz, Carlos; Overholt, Jeffrey L.; Heredia-Moya, Jorge; Kirk, Kenneth L.; Ficker, Eckhard
2011-01-01
The most common cause of cardiac side effects of pharmaco-therapy is acquired long QT syndrome, which is characterized by abnormal cardiac repolarization and most often caused by direct blockade of the cardiac potassium channel human ether a-go-go-related gene (hERG). However, little is known about therapeutic compounds that target ion channels other than hERG. We have discovered that arsenic trioxide (As2O3), a very potent antineoplastic compound for the treatment of acute promyelocytic leukemia, is proarrhythmic via two separate mechanisms: a well characterized inhibition of hERG/IKr trafficking and a poorly understood increase of cardiac calcium currents. We have analyzed the latter mechanism in the present study using biochemical and electrophysiological methods. We find that oxidative inactivation of the lipid phosphatase PTEN by As2O3 enhances cardiac calcium currents in the therapeutic concentration range via a PI3Kα-dependent increase in phosphatidylinositol 3,4,5-triphosphate (PIP3) production. In guinea pig ventricular myocytes, even a modest reduction in PTEN activity is sufficient to increase cellular PIP3 levels. Under control conditions, PIP3 levels are kept low by PTEN and do not affect calcium current amplitudes. Based on pharmacological experiments and intracellular infusion of PIP3, we propose that in guinea pig ventricular myocytes, PIP3 regulates calcium currents independently of the protein kinase Akt along a pathway that includes a secondary oxidation-sensitive target. Overall, our report describes a novel form of acquired long QT syndrome where the target modified by As2O3 is an intracellular signaling cascade. PMID:21097842
Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.
Hiraoka, M; Kawano, S
1989-01-01
1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and slow heart rates, respectively. PMID:2552080
Bueno-Orovio, Alfonso; Kay, David; Grau, Vicente; Rodriguez, Blanca; Burrage, Kevin
2014-01-01
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media. PMID:24920109
A computational fluid dynamics simulation framework for ventricular catheter design optimization.
Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A
2017-11-10
OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.
Automated Patch-Clamp Methods for the hERG Cardiac Potassium Channel.
Houtmann, Sylvie; Schombert, Brigitte; Sanson, Camille; Partiseti, Michel; Bohme, G Andrees
2017-01-01
The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.
Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart
2014-03-01
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.
Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart
2014-01-01
In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687
QT correction formulas and laboratory analysis on patients with metabolic syndrome and diabetes
NASA Astrophysics Data System (ADS)
Wong, Sara; Rivera, Pedro; Rodríguez, María. G.; Severeyn, Érika; Altuve, Miguel
2013-11-01
This article presents a study of ventricular repolarization in diabetic and metabolic syndrome subjects. The corrected QT interval (QTc) was estimated using four correction formulas commonly employed in the literature: Bazett, Fridericia, Framingham and Hodges. After extracting the Q, R and T waves from the electrocardiogram of 52 subjects (19 diabetic, 15 with metabolic syndrome and 18 control), using a wavelet-based approach, the RR interval and QT interval were determined. Then, QTc interval was computed using the formulas previously mentioned. Additionally, laboratory test (fasting glucose, cholesterol, triglycerides) were also evaluated. Results show that metabolic syndrome subjects have normal QTc. However, a longer QTc in this population may be a sign of future complication. The corrected QT interval by Fridericia's formula seems to be the most appropriated for metabolic syndrome subjects (low correlation coefficient between RR and QTc). Significant differences were obtained in the blood glucose and triglyceride levels, principally due to the abnormal sugar metabolization of metabolic syndrome and diabetic subjects. Further studies are focused on the acquisition of a larger database of metabolic syndrome and diabetics subjects and the repetition of this study using other populations, like high performance athletes.
Aoki, Takuma; Sunahara, Hiroshi; Sugimoto, Keisuke; Ito, Tetsuro; Kanai, Eiichi; Neo, Sakurako; Fujii, Yoko; Wakao, Yoshito
2015-09-01
Dynamic left ventricular outflow tract obstruction (DLVOTO) is a common condition in cats and humans. In this case report, a dog is described with DLVOTO secondary to severe intra-abdominal hemorrhage caused by a hemangiosarcoma. The dog was a 9-year-old, 35.7-kg, spayed female German Shepard dog that presented with a history of tachypnea and collapse. A Levine II/VI systolic murmur was present at the heart base. Abdominal ultrasonography revealed a splenic mass and a large amount of ascites. Echocardiography showed a reduced left ventricular diameter and an increased aortic velocity caused by systolic anterior motion (SAM) of the mitral valve apparatus. The heart murmur and the SAM were resolved after treatment including a splenectomy and a blood transfusion.
Chow, Elaine; Bernjak, Alan; Walkinshaw, Emma; Lubina-Solomon, Alexandra; Freeman, Jenny; Macdonald, Ian A.; Sheridan, Paul J.
2017-01-01
Hypoglycemia is associated with increased cardiovascular mortality in trials of intensive therapy in type 2 diabetes mellitus (T2DM). We previously observed an increase in arrhythmias during spontaneous prolonged hypoglycemia in patients with T2DM. We examined changes in cardiac autonomic function and repolarization during sustained experimental hypoglycemia. Twelve adults with T2DM and 11 age- and BMI-matched control participants without diabetes underwent paired hyperinsulinemic clamps separated by 4 weeks. Glucose was maintained at euglycemia (6.0 mmol/L) or hypoglycemia (2.5 mmol/L) for 1 h. Heart rate, blood pressure, and heart rate variability were assessed every 30 min and corrected QT intervals and T-wave morphology every 60 min. Heart rate initially increased in participants with T2DM but then fell toward baseline despite maintained hypoglycemia at 1 h accompanied by reactivation of vagal tone. In control participants, vagal tone remained depressed during sustained hypoglycemia. Participants with T2DM exhibited greater heterogeneity of repolarization during hypoglycemia as demonstrated by T-wave symmetry and principal component analysis ratio compared with control participants. Epinephrine levels during hypoglycemia were similar between groups. Cardiac autonomic regulation during hypoglycemia appears to be time dependent. Individuals with T2DM demonstrate greater repolarization abnormalities for a given hypoglycemic stimulus despite comparable sympathoadrenal responses. These mechanisms could contribute to arrhythmias during clinical hypoglycemic episodes. PMID:28137792
Cabo, Candido
2015-10-01
Myocardial infarction causes remodeling of the tissue structure and the density and kinetics of several ion channels in the cell membrane. Heterogeneities in refractory period (ERP) have been shown to occur in the infarct border zone and have been proposed to lead to initiation of arrhythmias. The purpose of this study is to quantify the window of vulnerability (WV) to block and initiation of reentrant impulses in myocardium with ERP heterogeneities using computer simulations. We found that ERP transitions at the border between normal ventricular cells (NZ) with different ERPs are smooth, whereas ERP transitions between NZ and infarct border zone cells (IZ) are abrupt. The profile of the ERP transitions is a combination of electrotonic interaction between NZ and IZ cells and the characteristic post-repolarization refractoriness (PRR) of IZ cells. ERP heterogeneities between NZ and IZ cells are more vulnerable to block and initiation of reentrant impulses than ERP heterogeneities between NZ cells. The relationship between coupling intervals of premature impulses (V1V2) and coupling intervals between premature and first reentrant impulses (V2T1) at NZ/NZ and NZ/IZ borders is inverse (i.e. the longer the coupling intervals of premature impulses the shorter the coupling interval between the premature and first reentrant impulses); this is in contrast with the reported V1V2/V2T1 relationship measured during initiation of reentrant impulses in canine infarcted hearts which is direct. (1) ERP transitions at the NZ-IZ border are abrupt as a consequence of PRR; (2) PRR increases the vulnerability to block and initiation of reentrant impulses in heterogeneous myocardium; (3) V1V2/V2T1 relationships measured at ERP heterogeneities in the computer model and in experimental canine infarcts are not consistent. Therefore, it is likely that other mechanisms like micro and/or macro structural heterogeneities also contribute to initiation of reentrant impulses in infarcted hearts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Janusek, D; Svehlikova, J; Zelinka, J; Weigl, W; Zaczek, R; Opolski, G; Tysler, M; Maniewski, R
2018-05-08
The occurrence of T-wave alternans in electrocardiographic signals was recently linked to susceptibility to ventricular arrhythmias and sudden cardiac death. Thus, by detecting and comprehending the origins of T-wave alternans, it might be possible to prevent such events. Here, we simulated T-wave alternans in a computer-generated human heart model by modulating the action potential duration and amplitude during the first part of the repolarization phase. We hypothesized that changes in the intracardiac alternans patterns of action potential properties would differentially influence T-wave alternans measurements at the body surface. Specifically, changes were simulated globally in the whole left and right ventricles to simulate concordant T-wave alternans, and locally in selected regions to simulate discordant and regional discordant, hereinafter referred to as "regional", T-wave alternans. Body surface potential maps and 12-lead electrocardiographic signals were then computed. In depth discrimination, the influence of epicardial layers on T-wave alternans development was significantly higher than that of mid-myocardial cells. Meanwhile, spatial discrimination revealed that discordant and regional action potential property changes had a higher influence on T-wave alternans amplitude than concordant changes. Notably, varying T-wave alternans sources yielded distinct body surface potential map patterns for T-wave alternans amplitude, which can be used for location of regions within hearts exhibiting impaired repolarization. The highest ability for T-wave alternans detection was achieved in lead V1. Ultimately, we proposed new parameters Vector Magnitude Alternans and Vector Angle Alternans, with higher ability for T-wave alternans detection when using multi-lead electrocardiographic signals processing than for single leads. Finally, QT alternans was found to be associated with the process of T-wave alternans generation. The distributions of the body surface T-wave alternans amplitude have been shown to have unique patterns depending on the type of alternans (concordant, discordant or regional) and the location of the disturbance in the heart. The influence of epicardial cells on T-wave alternans development is significantly higher than that of mid-myocardial cells, among which the sub-endocardial layer exerted the highest influence. QT interval alternans is identified as a phenomenon that correlate with T-wave alternans.
Tans, J T; Poortvliet, D C
1988-01-01
Reduction of ventricular size was determined by repeated computed tomography in 30 adult patients shunted for normal pressure hydrocephalus (NPH) and related to the pressure-volume index (PVI) and resistance to outflow of cerebrospinal fluid (Rcsf) measured before shunting. Rapid and marked reduction of ventricular size (n = 10) was associated with a significantly lower PVI than slow and moderate to marked (n = 13) or minimal to mild reduction (n = 7). Otherwise no relationship could be found between the reduction of ventricular size and PVI or Rcsf. It is concluded that both rate and magnitude of reduction of ventricular size after shunting for NPH are extremely variable. High brain elasticity seems to be the best predictor of rapid and marked reduction. PMID:3379425
Fluid dynamics model of mitral valve flow: description with in vitro validation.
Thomas, J D; Weyman, A E
1989-01-01
A lumped variable fluid dynamics model of mitral valve blood flow is described that is applicable to both Doppler echocardiography and invasive hemodynamic measurement. Given left atrial and ventricular compliance, initial pressures and mitral valve impedance, the model predicts the time course of mitral flow and atrial and ventricular pressure. The predictions of this mathematic formulation have been tested in an in vitro analog of the left heart in which mitral valve area and atrial and ventricular compliance can be accurately controlled. For the situation of constant chamber compliance, transmitral gradient is predicted to decay as a parabolic curve, and this has been confirmed in the in vitro model with r greater than 0.99 in all cases for a range of orifice area from 0.3 to 3.0 cm2, initial pressure gradient from 2.4 to 14.2 mm Hg and net chamber compliance from 16 to 29 cc/mm Hg. This mathematic formulation of transmitral flow should help to unify the Doppler echocardiographic and catheterization assessment of mitral stenosis and left ventricular diastolic dysfunction.
NASA Astrophysics Data System (ADS)
Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun
2012-03-01
The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.
Hoppe, U C; Marbán, E; Johns, D C
2001-04-24
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48-72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, I(Kr), of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed I(Kr) without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, I(Ks), without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed I(Ks) and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.
Griffee, Matthew J.; Singleton, Andrew; Zimmerman, Joshua M.; Morgan, David E.; Nirula, Raminder
2018-01-01
To evaluate the effect of rescue transesophageal echocardiography (TEE) on the management of trauma patients, we reviewed imaging and charts of unstable trauma patients at a level I trauma center. Critical rescue TEE findings included acute right ventricular failure, stress cardiomyopathy, type B aortic dissection, mediastinal air, and dynamic left ventricular outflow tract obstruction. Left ventricular filling was classified as low (underfilled) in 57% of all cases. Rescue TEE revealed a variety of new diagnoses and led to a change in resuscitation strategy about half of the time. PMID:27301053
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
Minimal T-wave representation and its use in the assessment of drug arrhythmogenicity.
Shakibfar, Saeed; Graff, Claus; Kanters, Jørgen K; Nielsen, Jimmi; Schmidt, Samuel; Struijk, Johannes J
2017-05-01
Recently, numerous models and techniques have been developed for analyzing and extracting features from the T wave which could be used as biomarkers for drug-induced abnormalities. The majority of these techniques and algorithms use features that determine readily apparent characteristics of the T wave, such as duration, area, amplitude, and slopes. In the present work the T wave was down-sampled to a minimal rate, such that a good reconstruction was still possible. The entire T wave was then used as a feature vector to assess drug-induced repolarization effects. The ability of the samples or combinations of samples obtained from the minimal T-wave representation to correctly classify a group of subjects before and after receiving d,l-sotalol 160 mg and 320 mg was evaluated using a linear discriminant analysis (LDA). The results showed that a combination of eight samples from the minimal T-wave representation can be used to identify normal from abnormal repolarization significantly better compared to the heart rate-corrected QT interval (QTc). It was further indicated that the interval from the peak of the T wave to the end of the T wave (Tpe) becomes relatively shorter after I K r inhibition by d,l-sotalol and that the most pronounced repolarization changes were present in the ascending segment of the minimal T-wave representation. The minimal T-wave representation can potentially be used as a new tool to identify normal from abnormal repolarization in drug safety studies. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Moisik, Scott R.; Esling, John H.
2014-01-01
Purpose: Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling.…
Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.
George, Uduak Z; Wang, Jun; Yu, Zeyun
2014-01-01
Intracellular calcium (Ca2+) signaling in cardiac myocytes is vital for proper functioning of the heart. Understanding the intracellular Ca2+ dynamics would give an insight into the functions of normal and diseased hearts. In the current study, spatiotemporal Ca2+ dynamics is investigated in ventricular myocytes by considering Ca2+ release and re-uptake via sarcolemma and transverse tubules (T-tubules), Ca2+ diffusion and buffering in the cytosol, and the blockade of Ca2+ activities associated with the sarcoplasmic reticulum. This study is carried out using a three dimensional (3D) geometric model of a branch of T-tubule extracted from the electron microscopy (EM) images of a partial ventricular myocyte. Mathematical modeling is done by using a system of partial differential equations involving Ca2+, buffers, and membrane channels. Numerical simulation results suggest that a lack of T-tubule structure at the vicinity of the cell surface could increase the peak time of Ca2+ concentration in myocytes. The results also show that T-tubules and mobile buffers play an important role in the regulation of Ca2+ transient in ventricular myocytes.
Arteyeva, Natalia V; Azarov, Jan E
The aim of the study was to differentiate the effect of dispersion of repolarization (DOR) and action potential duration (APD) on T-wave parameters being considered as indices of DOR, namely, Tpeak-Tend interval, T-wave amplitude and T-wave area. T-wave was simulated in a wide physiological range of DOR and APD using a realistic rabbit model based on experimental data. A simplified mathematical formulation of T-wave formation was conducted. Both the simulations and the mathematical formulation showed that Tpeak-Tend interval and T-wave area are linearly proportional to DOR irrespectively of APD range, while T-wave amplitude is non-linearly proportional to DOR and inversely proportional to the minimal repolarization time, or minimal APD value. Tpeak-Tend interval and T-wave area are the most accurate DOR indices independent of APD. T-wave amplitude can be considered as an index of DOR when the level of APD is taken into account. Copyright © 2017 Elsevier Inc. All rights reserved.
In vivo effects of the IKr agonist NS3623 on cardiac electrophysiology of the guinea pig.
Hansen, Rie Schultz; Olesen, Søren-Peter; Rønn, Lars Christian B; Grunnet, Morten
2008-07-01
The long QT syndrome is characterized by a prolongation of the QT interval measured on the surface electrocardiogram. Prolonging the QT interval increases the risk of dangerous ventricular fibrillations, eventually leading to sudden cardiac death. Pharmacologically induced QT interval prolongations are most often caused by antagonizing effects on the repolarizing cardiac current called IKr. In humans IKr is mediated by the human ether-a-go-go related gene (hERG) potassium channel. We recently presented NS3623, a compound that selectively activates this channel. The present study was dedicated to examining the in vivo effects of NS3623. Injection of 30 mg/kg NS3623 shortened the corrected QT interval by 25 +/- 4% in anaesthetized guinea pigs. Accordingly, 50 mg/kg of NS3623 shortened the QT interval by 30 +/- 6% in conscious guinea pigs. Finally, pharmacologically induced QT prolongation by a hERG channel antagonist (0.15 mg/kg E-4031) could be reverted by injection of NS3623 (50 mg/kg) in conscious guinea pigs. In conclusion, the present in vivo study demonstrates that injection of the hERG channel agonist NS3623 results in shortening of the QTc interval as well as reversal of a pharmacologically induced QT prolongation in both anaesthetized and conscious guinea pigs.
Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.
Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels
2011-09-01
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.
Acoltzin-Vidal, Cuauhtémoc; Rabling-Arellanos, Elizabeth
2018-01-01
Prolongation of the descending branch of the T-wave in the electrocardiogram (ECG) has been identified to be able to determine the risk for sudden death of cardiac origin, but its importance in the general population is not known. To provide a tool for easy acquisition and effective application to identify the risk of sudden death in the general population. We measured the dbT/jT index (descending branch of the T wave/space between the j point and the end of T), and it was found to be completely normal in 400 ECGs, 656 had alterations that don't affect ventricular repolarization, and 82 had branch block. We carried out the Z transformation of the nonparametric distribution curves and calculated the Z ratio to data far from the mean value. The distribution was asymmetric, with no difference in the three groups. The Z transformation showed a mean value of 30 ± 7, which suggests that 95% of the population has a dbT/jT index < 0.45. dbT/jT index results > 0.44 are beyond two standard deviations and are therefore abnormal, which should prompt specialized assessment in order to determine if there is risk for death in the carrier. Copyright: © 2018 SecretarÍa de Salud.
Mahdavi, Naser
2014-01-01
In light of the popularity and also the various nutritional and medicinal properties of Berberis integerrima, this study was conducted to assess the influence of its aqueous extract on hemodynamic and electrocardiogram (ECG) indices of rat. Animals were divided to control (CTL), B50, B100, and B200 groups that orally received tap water, aqueous extracts of B. integerrima fruit 50, 100, and 200 mg/kg/day, respectively, for two weeks and on day 15, data were recorded. Different doses of barberry fruit extract had no significant effect on blood pressure, heart rate, RR interval, P duration, and Q wave amplitude of electrocardiogram. Extract administration was associated with an incremental trend in PR interval that was not statistically significant. Higher doses (100 and 200 mg/kg) of extract significantly increased the QRS interval (P < 0.01 versus CTL and B50 groups) but decreased the QTc interval (P < 0.01 versus CTL group and P < 0.001 versus B50 group), the JT interval, and TpTe interval (P < 0.001 versus CTL and B50 groups). The results suggest that high doses of barberry extract definitely prolong the depolarization phase and shorten the repolarization phase of ventricular muscle and hence induce alteration in heart electrical conductivity. PMID:27351000
Wang, Sen; Xu, Di; Wu, Ting-Ting; Guo, Yan; Chen, Yan-Hong; Zou, Jian-Gang
2014-05-01
Human ether-à-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current (IKr), which is crucial for repolarization of cardiac action potential. Patients with hERG‑associated long QT syndrome usually develop tachyarrhythmias during physical and/or emotional stress, both known to stimulate adrenergic receptors. The present study aimed to investigate a putative functional link between β1-adrenergic stimulation and IKr in guinea-pig left ventricular myocytes and to analyze how IKr is regulated following activation of the β1-adrenergic signaling pathway. The IKr current was measured using a whole-cell patch-clamp technique. A selective β1-adrenergic receptor agonist, xamoterol, at concentrations of 0.01-100 µM decreased IKr in a concentration-dependent manner. The 10 µM xamoterol-induced inhibition of IKr was attenuated by the protein kinase A (PKA) inhibitor KT5720, the protein kinase C (PKC) inhibitor chelerythrine, and the phospholipase (PLC) inhibitor U73122, indicating involvement of PKA, PKC and PLC in β1-adrenergic inhibition of IKr. The results of the present study indicate an association between IKr and the β1-adrenergic receptor in arrhythmogenesis, involving the activation of PKA, PKC and PLC.
Yokoyama, Yoshimasa; Kawaguchi, Osamu; Kitao, Takashi; Kimura, Taro; Steinseifer, Ulrich; Takatani, Setsuo
2010-09-01
The ventricular performance is dependent on the drainage effect of rotary blood pumps (RBPs) and the performance of RBPs is affected by the ventricular pulsation. In this study, the interaction between the ventricle and RBPs was examined using the pressure-volume (P-V) diagram of the ventricle and dynamic head pressure-bypass flow (H-Q) curves (H, head pressure: arterial pressure minus ventricular pressure vs. Q, bypass flow) of the RBPs. We first investigated the relationships in a mock loop with a passive fill ventricle, followed by validation in ex vivo animal experiments. An apical drainage cannula with a micro-pressure sensor was especially fabricated to obtain ventricular pressure, while three pairs of ultrasonic crystals placed on the heart wall were used to derive ventricular volume. The mock loop-configured ventricular apical-descending aorta bypass revealed that the external work of the ventricle expressed by the area inside the P-V diagrams (EW(Heart) ) correlated strongly with the area inside dynamic H-Q curves (EW(VAD)), with the coefficients of correlation being R² = 0.869 ∼ 0.961. The results in the mock loop were verified in the ex vivo studies using three Shiba goats (10-25 kg in body weight), showing the correlation coefficients of R² = 0.802 ∼ 0.817. The linear regression analysis indicated that the increase in the bypass flow reduced pulsatility in the ventricle expressed in EW(Heart) as well as in EW(VAD) . Experimental results, both mock loop and animal studies, showed that the interaction between cardiac external work and H-Q performance of RBPs can be expressed by the relationships "EW(Heart) versus EW(VAD) ." The pulsatile nature of the native heart can be expressed in the area underneath the H-Q curves of RBPs EW(VAD) during left heart bypass indicating the status of the level of assistance by RBPs and the native heart function. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Clinical utility of T-wave alternans
NASA Technical Reports Server (NTRS)
Armoundas, A. A.; Cohen, R. J.
1997-01-01
Electrical alternans represents a variation in the morphology of electrocardiographic complexes on an every-other-beat basis in an ABABAB... pattern. Apparent electrical alternans associated with pericardial effusion results from rotation of the heart in the pericardial sac, and not true alternation in electrical conduction patterns. In contrast, true electrical alternans results from an alternation in electrical conduction patterns in the heart itself. Repolarization alternans is true electrical alternans associated with the ST segment and T wave of the electrocardiogram (ECG). Here we will focus on T-wave alternans (TWA) and its association with susceptibility to ventricular tachyarrhythmias. Electrical alternans was reported in the literature as early as 1909. Historically, electrical alternans has been regarded as a fairly rare electrocardiographic abnormality. Case reports of electrical alternans have been associated with a variety of disease states, including acute ischemia, Prinzmetal's angina, a variety of electrolyte abnormalities, and the long QT syndrome. Interestingly, patients born with the prolonged QT syndrome have a very high incidence of sudden cardiac death at an early age. Schwartz and Malliani showed that patients with the prolonged QT syndrome who do not demonstrate alternans at rest, may evidence alternans during stress such as emotional excitement. Thus, over the years electrical alternans has been associated anecdotally with conditions associated with an increased risk of ventricular arrhythmias. In 1948, Kalter reviewed the world literature on electrical alternans and found a total of 41 reported cases. In addition, he reviewed clinical ectrocardiograms from 6059 patients and found five new cases (incidence of less than 1 in 1000 patients). Interestingly, he found a very high mortality, 62%, associated with this condition. Despite the clinical associations reported in the literature, the consensus view of electrical alternans until recent years has been that alternans is an electrocardiographic curiosity rarely encountered in clinical practice which, when identified, does not have specific clinical significance.
Alexandre, Joachim; Schiariti, Michele; Rouet, René; Puddu, Paolo Emilio
2013-01-01
An ischemia/reperfusion-simulating model in rabbit tissue should be right oriented and clinically relevant to provide a non expensive approach for manipulations of currents involved in the repolarization process. Standard right ventricular guinea-pig (N=18) and newly investigated rabbit (N=12) myocardial strips were placed in a special perfusion chamber allowing partition into two segments independently superfused with oxygenated Tyrode's solution or a modified Tyrode's solution mimicking ischemia by: 1) increased extracellular potassium concentration (12 mmol/L), 2) decreased HCO3 (-) concentration (9 mmol/L), leading to a decrease in pH (6.90 ± 0.05), 3) decreased pO2 by replacement of 95% O2 and 5% CO2 by 95% N2 and 5% CO2 gas mixture, and 4) complete withdrawal of glucose. There were significant differences in rabbit as compared to guinea-pig preparations in baseline (p<0.02) and post-ischemic-like (p<0.01) APA and RMP with lower values in the formers, and lower post-ischemic Vmax in rabbit preparations (25±15 versus 97±83 V/s, p<0.01) but neither baseline nor post-ischemic-like or absolute changes in APD50, APD90 were different. In ischemia- and reperfusion-like phases, there were high proportions of single spontaneous repetitive responses, both in guinea-pig (respectively 50 and 89%) and rabbit preparations (respectively 67 and 92%). Guinea-pig preparations showed higher incidence of severe spontaneous repetitive responses (61 versus 17%, p<0.02). This rabbit model is proposed to investigate both anti- and pro-arrhythmic effects of drugs acting at various levels electrophysiologically, which may be obtained with great power and relatively few (around 10 per group) preparations. This model should now be tested pharmacologically.
Singleton, C B; Valenzuela, S M; Walker, B D; Tie, H; Wyse, K R; Bursill, J A; Qiu, M R; Breit, S N; Campbell, T J
1999-01-01
The Kv4.3 gene is believed to encode a large proportion of the transient outward current (Ito), responsible for the early phase of repolarization of the human cardiac action potential. There is evidence that this current is involved in the dispersion of refractoriness which develops during myocardial ischaemia and which predisposes to the development of potentially fatal ventricular tachyarrhythmias. Epidemiological, clinical, animal, and cellular studies indicate that these arrhythmias may be ameliorated in myocardial ischaemia by n-3 polyunsaturated fatty acids (n-3 PUFA) present in fish oils. We describe stable transfection of the Kv4.3 gene into a mammalian cell line (Chinese hamster ovary cells), and using patch clamp techniques have shown that the resulting current closely resembles human Ito. The current is rapidly activating and inactivating, with both processes being well fit by double exponential functions (time constants of 3.8±0.2 and 5.3±0.4 ms for activation and 20.0±1.2 and 96.6±6.7 ms for inactivation at +45 mV at 23°C). Activation and steady state inactivation both show voltage dependence (V1/2 of activation=−6.7±2.5 mV, V1/2 of steady state inactivation=−51.3±0.2 mV at 23°C). Current inactivation and recovery from inactivation are faster at physiologic temperature (37°C) compared to room temperature (23°C). The n-3 PUFA docosahexaenoic acid blocks the Kv4.3 current with an IC50 of 3.6 μmol L−1. Blockade of the transient outward current may be an important mechanism by which n-3 PUFA provide protection against the development of ventricular fibrillation during myocardial ischaemia. PMID:10433502
Xing, Na; Ji, Lizhen; Song, Jie; Ma, Jingchun; Li, Shangge; Ren, Zongming; Xu, Fei; Zhu, Jianping
2017-10-01
The electrocardiogram (ECG) of zebra fish (Danio rerio) expresses cardiac features that are similar to humans. Here we use sharp microelectrode measurements to obtain ECG characteristics in adult zebra fish and analyze the effects of cadmium chloride (CdCl 2 ) on the heart. We observe the overall changes of ECG parameters in different treatments (0.1 TU, 0.5 TU and 1.0 TU CdCl 2 ), including P wave, Q wave, R wave, S wave, T wave, PR interval (atrial contraction), QRS complex (ventricular depolarization), ST segment, and QT interval (ventricular repolarization). The trends of the ECG parameters showed some responses to the concentration and exposure time of CdCl 2 , but it was difficult to obtain more information about the useful indicators in water quality assessment depending on tendency analysis alone. A self-organizing map (SOM) showed that P values, R values, and T values were similar; R wave and T wave amplitude were similar; and most important, QRS value was similar to the CdCl 2 stress according to the classified data patterns including CdCl 2 stress (E) and ECG components based on the Ward linkage. It suggested that the duration of QRS complex was related to environmental stress E directly. The specification and evaluation of ECG parameters in Cd 2+ pollution suggested that there is a markedly significant correlation between QRS complex and CdCl 2 stress with the highest r (0.729) and the smallest p (0.002) among all ECG characteristics. In this case, it is concluded that QRS complex can be used as an indicator in the CdCl 2 stress assessment due to the lowest AIC data abased on the linear regression model between the CdCl 2 stress and ECG parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Pharmacokinetics and repolarization effects of intravenous and transdermal granisetron.
Mason, Jay W; Selness, Daniel S; Moon, Thomas E; O'Mahony, Bridget; Donachie, Peter; Howell, Julian
2012-05-15
The need for greater clarity about the effects of 5-HT(3) receptor antagonists on cardiac repolarization is apparent in the changing product labeling across this therapeutic class. This study assessed the repolarization effects of granisetron, a 5-HT(3) receptor antagonist antiemetic, administered intravenously and by a granisetron transdermal system (GTDS). In a parallel four-arm study, healthy subjects were randomized to receive intravenous granisetron, GTDS, placebo, or oral moxifloxacin (active control). The primary endpoint was difference in change from baseline in mean Fridericia-corrected QT interval (QTcF) between GTDS and placebo (ddQTcF) on days 3 and 5. A total of 240 subjects were enrolled, 60 in each group. Adequate sensitivity for detection of QTc change was shown by a 5.75 ms lower bound of the 90% confidence interval (CI) for moxifloxacin versus placebo at 2 hours postdose on day 3. Day 3 ddQTcF values varied between 0.2 and 1.9 ms for GTDS (maximum upper bound of 90% CI, 6.88 ms), between -1.2 and 1.6 ms for i.v. granisetron (maximum upper bound of 90% CI, 5.86 ms), and between -3.4 and 4.7 ms for moxifloxacin (maximum upper bound of 90% CI, 13.45 ms). Day 5 findings were similar. Pharmacokinetic-ddQTcF modeling showed a minimally positive slope of 0.157 ms/(ng/mL), but a very low correlation (r = 0.090). GTDS was not associated with statistically or clinically significant effects on QTcF or other electrocardiographic variables. This study provides useful clarification on the effect of granisetron delivered by GTDS on cardiac repolarization. ©2012 AACR.
Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V
2015-05-01
Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
EVALUATION OF RIGHT AND LEFT VENTRICULAR DIASTOLIC FILLING
Pasipoularides, Ares
2013-01-01
A conceptual fluid-dynamics framework for diastolic filling is developed. The convective deceleration load (CDL) is identified as an important determinant of ventricular inflow during the E-wave (A-wave) upstroke. Convective deceleration occurs as blood moves from the inflow anulus through larger-area cross-sections toward the expanding walls. Chamber dilatation underlies previously unrecognized alterations in intraventricular flow dynamics. The larger the chamber, the larger become the endocardial surface and the CDL. CDL magnitude affects strongly the attainable E-wave (A-wave) peak. This underlies the concept of diastolic ventriculoannular disproportion. Large vortices, whose strength decreases with chamber dilatation, ensue after the E-wave peak and impound inflow kinetic energy, averting an inflow-impeding, convective Bernoulli pressure-rise. This reduces the CDL by a variable extent depending on vortical intensity. Accordingly, the filling vortex facilitates filling to varying degrees, depending on chamber volume. The new framework provides stimulus for functional genomics research, aimed at new insights into ventricular remodeling. PMID:23585308
Tight coupling between nucleus and cell migration through the perinuclear actin cap
Kim, Dong-Hwee; Cho, Sangkyun; Wirtz, Denis
2014-01-01
ABSTRACT Although eukaryotic cells are known to alternate between ‘advancing’ episodes of fast and persistent movement and ‘hesitation’ episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes – rotation and translocation – that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic formation and dissolution, respectively, of the contractile perinuclear actin cap, which is dynamically coupled to the nuclear lamina and the nuclear envelope through LINC complexes. A persistent cell movement and nuclear translocation driven by the actin cap are halted following the disruption of the actin cap, which in turn allows the cell to repolarize for its next persistent move owing to nuclear rotation mediated by cytoplasmic dynein light intermediate chain 2. PMID:24639463
Bifurcation theory and cardiac arrhythmias
Karagueuzian, Hrayr S; Stepanyan, Hayk; Mandel, William J
2013-01-01
In this paper we review two types of dynamic behaviors defined by the bifurcation theory that are found to be particularly useful in describing two forms of cardiac electrical instabilities that are of considerable importance in cardiac arrhythmogenesis. The first is action potential duration (APD) alternans with an underlying dynamics consistent with the period doubling bifurcation theory. This form of electrical instability could lead to spatially discordant APD alternans leading to wavebreak and reentrant form of tachyarrhythmias. Factors that modulate the APD alternans are discussed. The second form of bifurcation of importance to cardiac arrhythmogenesis is the Hopf-homoclinic bifurcation that adequately describes the dynamics of the onset of early afterdepolarization (EAD)-mediated triggered activity (Hopf) that may cause ventricular tachycardia and ventricular fibrillation (VT/VF respectively). The self-termination of the triggered activity is compatible with the homoclinic bifurcation. Ionic and intracellular calcium dynamics underlying these dynamics are discussed using available experimental and simulation data. The dynamic analysis provides novel insights into the mechanisms of VT/VF, a major cause of sudden cardiac death in the US. PMID:23459417
Cardioprotective Properties of Aerobic and Resistance Training Against Myocardial Infarction.
Barboza, C A; Souza, G I H; Oliveira, J C M F; Silva, L M; Mostarda, C T; Dourado, P M M; Oyama, L M; Lira, F S; Irigoyen, M C; Rodrigues, B
2016-06-01
We evaluated the effects of aerobic and resistance exercise training on ventricular morphometry and function, physical capacity, autonomic function, as well as on ventricular inflammatory status in trained rats prior to myocardial infarction. Male Wistar rats were divided into the following groups: sedentary+Sham, sedentary+myocardial infarction, aerobic trained+myocardial infarction, and resistance trained+myocardial infarction. Sham and myocardial infarction were performed after training periods. In the days following the surgeries, evaluations were performed. Aerobic training prevents aerobic (to a greater extent) and resistance capacity impairments, ventricular dysfunction, baroreflex sensitivity and autonomic disorders (vagal tonus decrease and sympathetic tonus increase) triggered by myocardial infarction. Resistance training was able to prevent negative changes to aerobic and resistance capacity (to a greater extent) but not to ventricular dysfunction, and it prevented cardiovascular sympathetic increments. Additionally, both types of training reduced left ventricle inflammatory cytokine concentration. Our results suggest that aerobic and, for the first time, dynamic resistance training were able to reduce sympathetic tonus to the heart and vessels, as well as preventing the increase in pro-inflammatory cytokine concentrations in the left ventricle of trained groups. These data emphasizes the positive effects of aerobic and dynamic resistance training on the prevention of the negative changes triggered by myocardial infarction. © Georg Thieme Verlag KG Stuttgart · New York.
van der Linde, H; Van de Water, A; Loots, W; Van Deuren, B; Lu, H R; Van Ammel, K; Peeters, M; Gallacher, D J
2005-01-01
Instability of QT duration is a marker to predict Torsade de Pointes (TdP) associated with both congenital and drug-induced long QT syndrome. We describe a new method for the quantification of instability of repolarization. Female, adult beagle dogs anesthetized with a potent morphinomimetic were treated with either solvent (n=7) or dofetilide (n=7). Poincaré plots with QT(n) versus QT(n+1) were constructed to visualize the beat-to-beat variation in QT intervals from the lead II ECG. Short-term instability (STI), long-term instability (LTI) and total instability (TI) were quantified by calculating the distances of 30 consecutive data-points from the x and y-coordinate to the "centre of gravity" of the data cluster. Dofetilide at 0.0025 to 0.04 mg/kg i.v. (plasma concentrations of 4+/-0.6 to 41+/-2.7 ng/ml), dose-dependently prolonged QT and QTcV (at 0.04 mg/kg i.v.: QT: 280+/-ms versus 236+/-5 ms with solvent; p<0.05 and QTcV: 290+/-9 ms versus 252+/-4 ms with solvent; p<0.05). Concomitantly, the compound induced an increase in the instability parameters in a similar dose-dependent manner (at 0.04 mg/kg i.v.: TI: 6.8+/-0.9 ms versus 1.7+/-0.3 ms; p<0.05, LTI: 3.6+/-0.5 ms versus 1.0+/-0.2 ms; p<0.05 and STI: 4.2+/-0.6 ms versus 1.0+/-0.2 ms; p<0.05). The increases induced by dofetilide were associated with a high incidence of early afterdepolarizations (EADs) in the endocardial monophasic action potential (in 6 out of the 7 compound-treated animals versus 0 out of the 7 solvent animals; p<0.05). Quantification of beat-to-beat QT instability by our method clearly detects changes in short-term, long-term and total instability induced by dofetilide, already at pre-arrhythmic doses. Dofetilide administration to anesthetized dogs prolongs ventricular repolarization, concomitantly increases beat-to-beat QT instability and induces early after depolarizations (EADs). As such, the use of these parameters in this in vivo model shows clear potential for risk identification in cardiovascular safety assessment.
Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A
2016-09-01
Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The tricuspid annulus had a complex 3D saddle-shaped geometry that was unaffected during experimental conditions. In healthy sheep hearts, left ventricular unloading increased septal-free wall RV diameter and reduced the length of the septal annulus, without altering the motion or geometry of the tricuspid annulus. Acute left ventricular unloading alone in healthy sheep was not sufficient to significantly perturb tricuspid annular dynamics and result in tricuspid insufficiency. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids.
Oliver, Dominik; Lien, Cheng-Chang; Soom, Malle; Baukrowitz, Thomas; Jonas, Peter; Fakler, Bernd
2004-04-09
Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.
Cardiac Delayed Rectifier Potassium Channels in Health and Disease.
Chen, Lei; Sampson, Kevin J; Kass, Robert S
2016-06-01
Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.
Cardiac Delayed Rectifier Potassium Channels in Health and Disease
Chen, Lei; Sampson, Kevin J.; Kass, Robert S.
2016-01-01
Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823
Cardiac Repolarization Changes in the Children with Breath-Holding Spells
Amoozgar, Hamid; Saleh, Fazl; Farhani, Nahal; Rafiei, Mohammad; Inaloo, Soroor; Asadipooya, Ali-Akbar
2013-01-01
Objective Breath-holding spells are known as benign attacks, frequencies of which decrease by the development of the autonomic nervous system. The present study aims to compare the electrocardiographic repolarization in children with breath-holding spells. Methods In this study, QT dispersion, QTc dispersion, T peak to T end dispersion, and P wave dispersion of the twelve-lead surface electrocardiography of fifty children who had breath-holding spells were measured and compared with normal children from April 2011 to August 2012. Findings Forty-four (88%) patients had cyanotic spells, while 6 (12%) had pallid spells. QTc dispersion was increased in the patients with breath-holding spells (148.2±33.1) compared to the healthy children (132±27.3) and the difference was statically significant (P = 0.01). Meanwhile, no statistically significant differences were observed between the patients and the control subjects regarding the other parameters (P > 0.05). Conclusion QTc dispersion was significantly increased in the patients with breath-holding spells compared to normal children and this is a sign of cardiac repolarization abnormality as well as the increased risk of cardiac arrhythmia in patients with breath-holding spells. PMID:24910749
Monigatti-Tenkorang, Joanna; Jousset, Florian; Pascale, Patrizio; Vesin, Jean-Marc; Ruchat, Patrick; Fromer, Martin; Narayan, Sanjiv M; Pruvot, Etienne
2014-04-01
Paroxysmal atrial fibrillation (AF) may be triggered by intermittent atrial tachycardia, and ultimately lead to persistent AF. However, the mechanisms by which intermittent atrial tachycardia promotes sustained AF are not well understood. Eight sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms, and for the delivery of electrophysiological stimulation protocols and intermittent right atrial tachycardia. Right atrial kinetics of activation recovery interval (ARI) as a surrogate for action potential duration, of conduction time and velocity, and of repolarization alternans were analyzed at incremental pacing rates during the remodeling process induced by weeks of intermittent atrial tachycardia until the development of sustained AF. Intermittent atrial tachycardia decreased ARI and blunted its rate adaptation, facilitated atrial capture, and slowed conduction at high rates, and increased susceptibility to pacing-induced AF. In spite of blunted ARI rate adaptation, right atrial repolarization alternans was maintained during remodeling, and further increased in magnitude just before rapid pacing-induced AF. This study suggests that weeks of intermittent right atrial tachycardia result in a gradual electrical remodeling favorable for wavebreaks and reentry that may facilitate fibrillation. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.
2016-04-01
Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity.
[Idiopathic ventricular arrhythmia in children. Apropos of 24 cases].
Coeurderoy, A; Almange, C; Laurent, M; Biron, Y; Leborgne, P
1985-12-01
The severity and prognosis of idiopathic ventricular arrhythmias in childhood were studied in 24 patients (12 boys, 12 girls) with an average age of 8 years at the time of diagnosis of the arrhythmia. Investigations included clinical assessment and analysis of basal ECG (morphology of the arrhythmias) and dynamic recordings (Holter and exercise stress testing). The clinical course was followed for an average of 3.8 years. The patients were classified in two groups: monomorphic arrhythmias (Group I) and polymorphic arrhythmias (Group II). Group I was divided into 4 subgroups: isolated ventricular extrasystoles (IA), 11 patients; ventricular extrasystoles with bursts of ventricular tachycardia (IB), 6 patients; sustained ventricular tachycardia without intercritical extrasystoles (IC), 1 patient; accelerated idioventricular rhythm (ID), 2 patients. Subgroups IA, IB and ID were characterised by the absence of symptoms, the disappearance of the arrhythmia on exercise, the decreased efficacy of antiarrhythmic drugs and an excellent prognosis. Therapeutic abstention was the rule in these patients. Patients in Group IC were characterised by the variability of their symptoms, the absence of exercise induced arrhythmias, the need for treatment in most cases and a good long-term prognosis. Group II was divided into 2 subgroups: adrenergic polymorphic ventricular tachycardia (IIA), 2 patients, and non-adrenergic polymorphic ventricular tachycardia (IIB), 2 patients. Patients in Subgroup IIA were characterised by syncope on exercise or emotion, the need for betablocker therapy which considerably improved the patients symptoms but which did not usually prevent sudden death.(ABSTRACT TRUNCATED AT 250 WORDS)
Ventricular dilation as an instability of intracranial dynamics
NASA Astrophysics Data System (ADS)
Bouzerar, R.; Ambarki, K.; Balédent, O.; Kongolo, G.; Picot, J. C.; Meyer, M. E.
2005-11-01
We address the question of the ventricles’ dilation as a possible instability of the intracranial dynamics. The ventricular system is shown to be governed by a dynamical equation derived from first principles. This general nonlinear scheme is linearized around a well-defined steady state which is mapped onto a pressure-volume model with an algebraic effective compliance depending on the ventricles’ geometry, the ependyma’s elasticity, and the cerebrospinal fluid (CSF) surface tension. Instabilities of different natures are then evidenced. A first type of structural instability results from the compelling effects of the CSF surface tension and the elastic properties of the ependyma. A second type of dynamical instability occurs for low enough values of the aqueduct’s conductance. This last case is then shown to be accompanied by a spontaneous ventricle’s dilation. A strong correlation with some active hydrocephalus is evidenced and discussed. The transfer function of the ventricles, compared to a low-pass filter, are calculated in both the stable and unstable regimes and appear to be very different.
Diastolic viscous properties of the intact canine left ventricle.
Nikolic, S D; Tamura, K; Tamura, T; Dahm, M; Frater, R W; Yellin, E L
1990-08-01
The viscoelastic model of the ventricle predicts that the rate of change of volume (strain rate) is a determinant of the instantaneous pressure in the ventricle during diastole. Because relaxation is not complete before the onset of filling, one cannot distinguish the individual effects of relaxation and viscosity unless the passive and active components that determine the ventricular pressure are separated. To overcome this problem, we used the method of ventricular volume clamping to compare the pressures in the fully relaxed ventricle at a given volume at zero strain rate (static pressure) and high strain rate (dynamic pressure). Six open-chest, fentanyl-anesthetized dogs were instrumented with micromanometers and an electronically controlled mitral valve occluder in series with the electromagnetic flow probe. We reasoned as follows: If there were significant viscosity, then the dynamic pressure would be higher than the static pressure. The static pressure was measured when the ventricle was completely relaxed following a mitral valve occlusion after an arbitrary filling volume had been achieved. The dynamic pressure was determined by delaying the onset of filling until relaxation was complete and then measuring the pressure at the same volume that was achieved when the static pressure was measured. In 19 different hemodynamic situations, the dynamic and static pressures were identical (mean difference, 0.1 +/- 0.8 mm Hg), indicating that in the passive ventricle viscoelastic effects are insignificant and do not contribute to the left ventricular diastolic pressure under normal filling rates.
Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L
2016-08-01
Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.
The importance of the cortical subarachnoid space in understanding hydrocephalus.
Rekate, Harold L; Nadkarni, Trimurti D; Wallace, Donna
2008-07-01
In this paper the authors define the role of the cortical subarachnoid space (CSAS) in poorly understood forms of hydrocephalus to cerebrospinal fluid (CSF) dynamics to improve understanding of the importance of the CSAS and its role in selecting patients for endoscopic third ventriculostomy (ETV). The secondary purpose of this work was to define testable hypotheses to explain enigmatic disorders of CSF dynamics and to suggest how these concepts could be tested. The magnitude of the contribution of the CSAS is explored using the solid geometry of concentric spheres. With this starting point, clinical conditions in which CSF dynamics are not easily understood are explored regarding the potential role of the CSAS. Overall, problems of CSF dynamics are easily understood. Insights may be gained when the results of a pathological process or its treatment vary from what has been expected. Acute changes in ventricular volume at the time that hydrocephalus develops, the failure of shunts, and the changes in ventricular volume with shunt repair may occur very rapidly. Changes in the volume of water in the brain, especially in the brain substance itself, are unlikely to occur at this rapid rate and may be interpreted as a simple redistribution of the CSF between the ventricle and CSAS with no initial change in the actual volume of brain parenchyma. Problems such as pseudotumor cerebri, shunt failure with nonresponsive ventricles, and negative-pressure hydrocephalus can be explained by assessing the ability of ventricular CSF to flow to the CSAS and the ability of this fluid to exit this compartment. Ventricular enlargement at the time of shunt failure implies a failure of flow between the ventricles and CSAS, implying that all patients who show this phenomenon are potential candidates for ETV. The important role of the CSAS in the pathophysiology of various forms of hydrocephalus has been largely ignored. Attention to the dynamics of the CSF in this compartment will improve understanding of enigmatic conditions of hydrocephalus and improve selection criteria for treatment paradigms such as ETV. These concepts lead to clearly defined problems that may be solved by the creation of a central database to address these issues.
Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole
2014-09-11
The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.
Kushiyama, Yasunori; Honjo, Haruo; Niwa, Ryoko; Takanari, Hiroki; Yamazaki, Masatoshi; Takemoto, Yoshio; Sakuma, Ichiro; Kodama, Itsuo; Kamiya, Kaichiro
2016-09-01
It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias. Copyright © 2016 the American Physiological Society.
Kingma, J G; Linderoth, B; Ardell, J L; Armour, J A; DeJongste, M J; Foreman, R D
2001-08-13
Electrical stimulation of the dorsal aspect of the upper thoracic spinal cord is used increasingly to treat patients with angina pectoris refractory to conventional therapeutic strategies. The purpose of this study was to determine whether spinal cord stimulation (SCS) in dogs affects regional myocardial blood flow and left-ventricular (LV) function before and during transient obstruction of the left anterior descending coronary artery (LAD). In anesthetized dogs, regional myocardial blood flow distribution was determined using radiolabeled microspheres and left-ventricular function was measured by impedance-derived pressure-volume loops. SCS was accomplished by stimulating the dorsal T1-T2 segments of the spinal cord using epidural bipolar electrodes at 90% of motor threshold (MT) (50 Hz, 0.2-ms duration). Effects of 5-min SCS were assessed under basal conditions and during 4-min occlusion of the LAD. SCS alone evoked no change in regional myocardial blood flow or cardiovascular indices. Transient LAD occlusion significantly diminished blood flow within ischemic, but not in non-ischemic myocardial tissue. Left ventricular pressure-volume loops were shifted rightward during LAD occlusion. Cardiac indices were altered similarly during LAD occlusion and concurrent SCS. SCS does not influence the distribution of blood flow within the non-ischemic or ischemic myocardium. Nor does it modify LV pressure-volume dynamics in the anesthetized experimental preparation.
Lo, Yuan Hung; Peachey, Tom; Abramson, David; McCulloch, Andrew
2013-01-01
Little is known about how small variations in ionic currents and Ca2+ and Na+ diffusion coefficients impact action potential and Ca2+ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004) to 5%–10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca2+ peaks are highly sensitive to 10% increase in L-type Ca2+ current; moderately influenced by 10% increase in Na+-Ca2+ exchanger, Na+-K+ pump, rapid delayed and slow transient outward K+ currents, and Cl− background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca2+ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca2+ channels and Na+-Ca2+ exchanger in between junctional and submembrane spaces while Ca2+-activated Cl−-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca2+, but not in Na+ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca2+ signaling. PMID:24222910
Chillik, Iván; Gil Ramírez, Andreina; Ordóñez, Santiago; Tomás, Leandro; Parodi, Josefina; Costabel, Juan Pablo
2018-01-01
Apocal hypertrophic cardiomyopathy (AHCM) is a phenotypic variant within hypertrophic cardiomyopathies, in which ventricular repolarization alterations are present. These electrocardiographic disturbances can mimic an anterior infarction which triggers a series of studies and treatments that may be unnecessary. The aim of this study was to describe and compare electrocardiographic differences in a series of patients with AHCM and apical non-ST segment elevation myocardial infarction in patients (NSTEMI) with T-wave changes. We conducted an observational and retrospective study, including patients with diagnosed AHCM (N = 19) and apical NSTEMI (N = 19) with negative T waves in V1 and V6 lead of the EKG. Those with AHCM presented higher T-wave voltage (7 mV vs. 5 mV, p = 0.001) and peak voltage (29 mV vs. 17 mV, p = 0.003), higher R-waves (25 mV vs. 10 mV, p = 0.0001), and a maximum voltage of R and T sum (R + T) significantly higher (33 vs. 14, p = 0.00001). They also showed a greater T-wave asymmetry, with a TiTp / TpTf ratio > 1. At a cut-off value of 26.5 mV for the R + T variable, 68% sensitivity and 100% specificity were obtained to diagnose AHCM. This study shows the existence of major differences in electrocardiographic presentation of AHCM and apical NSTEMI.
Takahara, Akira; Sugiyama, Atsushi; Ishida, Yuko; Satoh, Yoshioki; Wang, Kai; Nakamura, Yuji; Hashimoto, Keitaro
2006-03-01
Although a second-generation histamine H(1) blocker terfenadine induced torsades de pointes (TdP) arrhythmias in patients via the blockade of a rapid component of delayed rectifier K(+) current (I(Kr)), such action of terfenadine has not been detected in previous animal models. We analysed the potential of the canine persistent atrioventricular block heart, a new in vivo proarrhythmia model, to detect a torsadogenic effect of terfenadine of an oral dose of 3 or 30 mg kg(-1). The doses can provide therapeutic to supra-therapeutic plasma concentrations as an anti-histamine. In 2 weeks of bradycardiac heart model, there were no significant changes in any of the electrocardiogram parameters after the administration of both doses of terfenadine. In 4-6 weeks of bradycardiac heart model, the low dose of terfenadine hardly affected any of the electrocardiogram parameters except that it induced TdP in one out of six animals. The high dose significantly decreased the atrial rate and ventricular rate, prolonged the QT interval, and induced TdP in five out of six animals. Moreover, temporal variability of repolarization increased after the high-dose administration. These results suggest that long-term bradycardia caused by atrioventricular block can remodel the canine heart to detect terfenadine-induced TdP.
Maron, B J; Link, M S; Wang, P J; Estes, N A
1999-01-01
Not particularly well recognized are athletic field catastrophes in which virtually instantaneous cardiac arrest is produced by nonpenetrating chest blows in the absence of heart disease or identifiable morphologic injury to the chest wall or heart (commotio cordis). To better characterize the clinical profile of this syndrome, we have assembled 70 cases, including 34 occurring during organized competitive athletics and 36 others that occurred during informal recreational sports at home, school or the playground, or during nonsporting activities. Ages were 2 to 38 (mean age: 12) with 70% < 16 years old. Most common sports involved were youth baseball (n = 40), softball (n = 7), and ice hockey (n = 7). Seven (10%) of the 70 commotio cordis victims, including six with documented ventricular fibrillation, have survived the consequences of their chest blow. Eleven of the events (16%) occurred despite the presence of chest padding believed to be potentially protective. Four victims experienced modest chest blows while in circumstances completely unrelated to sports activities; three of the four individuals who delivered these blows were ultimately convicted of criminal acts within the justice system. An experimental model of low-energy chest wall impact demonstrates that commotio cordis events are due largely to the exquisite timing of blows during a narrow window within the repolarization phase of the cardiac cycle, 15 to 30 msec prior to the peak of the T wave.
Yagihara, Nobue; Sato, Akinori; Iijima, Kenichi; Izumi, Daisuke; Furushima, Hiroshi; Watanabe, Hiroshi; Irie, Tadanobu; Kaneko, Yoshiaki; Kurabayashi, Masahiko; Chinushi, Masaomi; Satou, Masahito; Aizawa, Yoshifusa
2012-01-01
We determined the prevalence of J waves in the electrocardiograms (ECG) of 120 patients with Wolff-Parkinson-White syndrome in comparison with J-wave prevalence in a control group of 1936 men and women with comparable demographic and ECG characteristics and with normal atrioventricular conduction. J waves were present only during manifest preexcitation in 22 of 120 patients (18.3%), disappearing after catheter ablation and suggesting that J waves were associated with the presence of preexcitation. J waves were present in 19 (15.8%) of 120 patients only after ablation, apparently having been masked by early depolarization of the preexcited myocardial region, and in 22 patients (18.3%), J waves were not altered significantly by preexcitation. Thus, the overall J-wave prevalence was 52.5% (63/120) and, excluding those apparently due to preexcitation, 34.8% (41/120), both substantially higher than the prevalence (11.5%) in the control group (P < .001 for both). The patients with J waves appearing only during preexcitation were younger, predominantly females. The presence of J waves after ablation was associated with a history of atrial fibrillation and shorter ventricular effective refractory period. It is concluded that the prevalence of J waves is high in patients with Wolff-Parkinson-White syndrome and is influenced by manifest preexcitation. Copyright © 2012 Elsevier Inc. All rights reserved.
Sharen, Gao-Wa; Zhang, Jun; Qin, Chuan; Lv, Qing
2017-02-01
The dynamic characteristics of the area of the atrial septal defect (ASD) were evaluated using the technique of real-time three-dimensional echocardiography (RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane (LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group (n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method (4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume (P<0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated (P<0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group (P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group (P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group (P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant (P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group (P=0.031). The aRVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group (P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.
Real-time adjustment of ventricular restraint therapy in heart failure.
Ghanta, Ravi K; Lee, Lawrence S; Umakanthan, Ramanan; Laurence, Rita G; Fox, John A; Bolman, Ralph Morton; Cohn, Lawrence H; Chen, Frederick Y
2008-12-01
Current ventricular restraint devices do not allow for either the measurement or adjustment of ventricular restraint level. Periodic adjustment of restraint level post-device implantation may improve therapeutic efficacy. We evaluated the feasibility of an adjustable quantitative ventricular restraint (QVR) technique utilizing a fluid-filled polyurethane epicardial balloon to measure and adjust restraint level post-implantation guided by physiologic parameters. QVR balloons were implanted in nine ovine with post-infarction dilated heart failure. Restraint level was defined by the maximum restraint pressure applied by the balloon to the epicardium at end-diastole. An access line connected the balloon lumen to a subcutaneous portacath to allow percutaneous access. Restraint level was adjusted while left ventricular (LV) end-diastolic volume (EDV) and cardiac output was assessed with simultaneous transthoracic echocardiography. All nine ovine successfully underwent QVR balloon implantation. Post-implantation, restraint level could be measured percutaneously in real-time and dynamically adjusted by instillation and withdrawal of fluid from the balloon lumen. Using simultaneous echocardiography, restraint level could be adjusted based on LV EDV and cardiac output. After QVR therapy for 21 days, LV EDV decreased from 133+/-15 ml to 113+/-17 ml (p<0.05). QVR permits real-time measurement and physiologic adjustment of ventricular restraint therapy after device implantation.
Cerebrospinal Fluid Clearance in Alzheimer Disease Measured with Dynamic PET.
de Leon, Mony J; Li, Yi; Okamura, Nobuyuki; Tsui, Wai H; Saint-Louis, Les A; Glodzik, Lidia; Osorio, Ricardo S; Fortea, Juan; Butler, Tracy; Pirraglia, Elizabeth; Fossati, Silvia; Kim, Hee-Jin; Carare, Roxana O; Nedergaard, Maiken; Benveniste, Helene; Rusinek, Henry
2017-09-01
Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer disease (AD) comes primarily from rodent models. However, unlike rodents, in which predominant extracranial CSF egress is via olfactory nerves traversing the cribriform plate, human CSF clearance pathways are not well characterized. Dynamic PET with 18 F-THK5117, a tracer for tau pathology, was used to estimate the ventricular CSF time-activity as a biomarker for CSF clearance. We tested 3 hypotheses: extracranial CSF is detected at the superior turbinates; CSF clearance is reduced in AD; and CSF clearance is inversely associated with amyloid deposition. Methods: Fifteen subjects, 8 with AD and 7 normal control volunteers, were examined with 18 F-THK5117. Ten subjects additionally underwent 11 C-Pittsburgh compound B ( 11 C-PiB) PET scanning, and 8 were 11 C-PiB-positive. Ventricular time-activity curves of 18 F-THK5117 were used to identify highly correlated time-activity curves from extracranial voxels. Results: For all subjects, the greatest density of CSF-positive extracranial voxels was in the nasal turbinates. Tracer concentration analyses validated the superior nasal turbinate CSF signal intensity. AD patients showed ventricular tracer clearance reduced by 23% and 66% fewer superior turbinate CSF egress sites. Ventricular CSF clearance was inversely associated with amyloid deposition. Conclusion: The human nasal turbinate is part of the CSF clearance system. Lateral ventricle and superior nasal turbinate CSF clearance abnormalities are found in AD. Ventricular CSF clearance reductions are associated with increased brain amyloid depositions. These data suggest that PET-measured CSF clearance is a biomarker of potential interest in AD and other neurodegenerative diseases. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Graff, Claus; Struijk, Johannes J; Kanters, Jørgen K; Andersen, Mads P; Toft, Egon; Tyl, Benoît
2012-05-01
The International Conference of Harmonisation (ICH) E14 guideline for thorough QT studies requires assessing the propensity of new non-antiarrhythmic drugs to affect cardiac repolarization. The present study investigates whether a composite ECG measure of T-wave morphology (Morphology Combination Score [MCS]) can be used together with the heart rate corrected QT interval (QTc) in a fully ICH E14-compliant thorough QT study to exclude clinically relevant repolarization effects of bilastine, a novel antihistamine. Thirty participants in this crossover study were randomly assigned to receive placebo, moxifloxacin 400 mg, bilastine at therapeutic and supratherapeutic doses (20 and 100 mg) and bilastine 20 mg co-administered with ketoconazole 400 mg. Resting ECGs recorded at 12 nominal time points before and after treatments were used to determine Fridericia corrected QTc (QTcF) and MCS from the T-wave characteristics: asymmetry, flatness and notching. There were no effects of bilastine monotherapy (20 and 100 mg) on MCS or QTcF at those study times where the bilastine plasma concentrations were highest. MCS changes for bilastine monotherapy did not exceed the normal intrasubject variance of T-wave shapes for triplicate ECG recordings. Maximum QTcF prolongation for bilastine monotherapy was 5 ms or less: 3.8 ms (90% CI 0.3, 7.3 ms) for bilastine 20 mg and 5.0 ms (90% CI 2.0, 8.0 ms) for bilastine 100 mg. There were no indications of bilastine inducing larger repolarization effects on T-wave morphology as compared with the QTcF interval, as evidenced by the similarity of z-score equivalents for placebo-corrected changes in MCS and QTcF values. This study shows that bilastine, at therapeutic and supratherapeutic dosages, does not induce any effects on T-wave morphology or QTcF. These results confirm the absence of an effect for bilastine on cardiac repolarization.
Laiho, Aapo; Laitinen, Tiina M; Hartikainen, Päivi; Hartikainen, Juha E K; Laitinen, Tomi P; Simula, Sakari
2018-02-01
Fingolimod is a sphingosine-1-phosphate receptor modulator for the treatment of relapsing-remitting multiple sclerosis (RRMS). Despite an established effect on heart rate, the effect of fingolimod on cardiac repolarization is not completely known. Twenty-seven patients with RRMS underwent 24-hr ambulatory ECG before fingolimod (baseline), at the day of fingolimod initiation (1D) and after three-month treatment (3M). The mean values of RR-interval as well as QT-interval corrected by Bazzet's (QTcBaz) and Fridericia's (QTcFri) formula were compared between baseline, 1D, and 3M over 24-hr period as well as at daytime and nighttime. QTcBaz over 24-hr was shorter at 1D (414 ± 20 ms, p < .001) and at 3M (414 ± 20 ms, p < .001) than at baseline (418 ± 20 ms). In contrast, QTcFri over 24-hr was longer at 1D (410 ± 19 ms, p < .001) but similar at 3M (406 ± 19 ms, p = .355) compared to baseline (407 ± 19 ms). Daytime QTcBaz was shorter at 1D ( p < .001) and at 3M ( p = .007), whereas daytime QTcFri was longer at 1D ( p < .05) but similar at 3M ( p = ns) compared to baseline. During the night, changes were observed neither in QTcBaz nor in QTcFri between baseline, 1D, and 3M. Changes in cardiac repolarization after fingolimod initiation were mild and occurred at daytime. Ambiguously, QTcBaz demonstrated shortening, whereas QTcFri showed prolongation in cardiac repolarization after fingolimod initiation. The formula applied for QT-interval correction needs to be taken carefully into account as evaluating pharmacovigilance issues related to fingolimod.
Antiarrhythmic and proarrhythmic properties of QT-prolonging antianginal drugs.
Singh, Bramah N; Wadhani, Nitin
2004-09-01
In recent years there has been a major reorientation of drug therapy for cardiac arrhythmias, its changing role, and above all, a radical change in the class of arrhythmia drugs because of their impact on mortality. The decline in the use of sodium-channel blockers has led to an ex panding use of beta-blockers and simple or complex class III agents for controlling cardiac arrhythmias. Success with these agents in the context of their side effects has spurred the development of compounds with simpler ion-channel blocking properties that have less complex adverse reactions. The resulting so-called pure class III agents, such as dofetilide or ibutilide, were found to have antifibrillatory effects in atrial fibrillation and flutter and in ventricular tachyarrhythmias. Such agents are effective and have diversity, but they have come into therapeutics with a price: the sometimes-fatal torsades de pointes. The drug amiodarone, a complex compound that was synthesized as an antianginal agent, has been an exception in this regard. Its therapeutic use is associated with a negligibly low incidence of torsades de pointes, even though the drug produces significant bradycardia and QT lengthening to 500 to 700 msec. Recent electrophysiologic studies suggest that this paradox is likely due to the differential block of ion channels in endocardium, epicardium, midmyocardial (M) cells, and Purkinje fibers in the ventricular myocardium. There is also clinical evidence suggesting that amiodarone reduces the "torsadogenic" effects of pure class III agents. Ranolazine was also synthesized for the development of antianginal properties that stem from a partial inhibition of fatty acid oxidation; it too has been found to have electrophysioloigic properties. These are somewhat similar to those of amiodarone on ion channels in endocardium, epicardium, M cells, and Purkinje fibers in the ventricular myocardium, but the drug does not prolong the QT interval to the same extent as amiodarone does. Thus, the drug produces modest increases in repolarization as judged by its effects on the action potential duration (APD) without the potential for the development of torsades de pointes. By virtue of its suppressant action on early afterdepolarizations and triggered activity in Purkinje fibers and M cells, the drug appears to have a powerful potential for reducing the torsadogenic proclivity of conventional class III antiarrhythmic compounds. The rationale for the therapeutic niche for amiodarone, and especially in the case of ranolazine, in the prevention of drug-induced torsades de pointes is discussed.
Zhu, Yujie; Hanafy, Mohamed A; Killingsworth, Cheryl R; Walcott, Gregory P; Young, Martin E; Pogwizd, Steven M
2014-01-01
Patients with chronic heart failure (CHF) exhibit a morning surge in ventricular arrhythmias, but the underlying cause remains unknown. The aim of this study was to determine if heart rate dynamics, autonomic input (assessed by heart rate variability (HRV)) and nonlinear dynamics as well as their abnormal time-of-day-dependent oscillations in a newly developed arrhythmogenic canine heart failure model are associated with a morning surge in ventricular arrhythmias. CHF was induced in dogs by aortic insufficiency & aortic constriction, and assessed by echocardiography. Holter monitoring was performed to study time-of-day-dependent variation in ventricular arrhythmias (PVCs, VT), traditional HRV measures, and nonlinear dynamics (including detrended fluctuations analysis α1 and α2 (DFAα1 & DFAα2), correlation dimension (CD), and Shannon entropy (SE)) at baseline, as well as 240 days (240 d) and 720 days (720 d) following CHF induction. LV fractional shortening was decreased at both 240 d and 720 d. Both PVCs and VT increased with CHF duration and showed a morning rise (2.5-fold & 1.8-fold increase at 6 AM-noon vs midnight-6 AM) during CHF. The morning rise in HR at baseline was significantly attenuated by 52% with development of CHF (at both 240 d & 720 d). Morning rise in the ratio of low frequency to high frequency (LF/HF) HRV at baseline was markedly attenuated with CHF. DFAα1, DFAα2, CD and SE all decreased with CHF by 31, 17, 34 and 7%, respectively. Time-of-day-dependent variations in LF/HF, CD, DFA α1 and SE, observed at baseline, were lost during CHF. Thus in this new arrhythmogenic canine CHF model, attenuated morning HR rise, blunted autonomic oscillation, decreased cardiac chaos and complexity of heart rate, as well as aberrant time-of-day-dependent variations in many of these parameters were associated with a morning surge of ventricular arrhythmias.
Zhu, Yujie; Hanafy, Mohamed A.; Killingsworth, Cheryl R.; Walcott, Gregory P.; Young, Martin E.; Pogwizd, Steven M.
2014-01-01
Patients with chronic heart failure (CHF) exhibit a morning surge in ventricular arrhythmias, but the underlying cause remains unknown. The aim of this study was to determine if heart rate dynamics, autonomic input (assessed by heart rate variability (HRV)) and nonlinear dynamics as well as their abnormal time-of-day-dependent oscillations in a newly developed arrhythmogenic canine heart failure model are associated with a morning surge in ventricular arrhythmias. CHF was induced in dogs by aortic insufficiency & aortic constriction, and assessed by echocardiography. Holter monitoring was performed to study time-of-day-dependent variation in ventricular arrhythmias (PVCs, VT), traditional HRV measures, and nonlinear dynamics (including detrended fluctuations analysis α1 and α2 (DFAα1 & DFAα2), correlation dimension (CD), and Shannon entropy (SE)) at baseline, as well as 240 days (240d) and 720 days (720d) following CHF induction. LV fractional shortening was decreased at both 240d and 720d. Both PVCs and VT increased with CHF duration and showed a morning rise (2.5-fold & 1.8-fold increase at 6 AM-noon vs midnight-6 AM) during CHF. The morning rise in HR at baseline was significantly attenuated by 52% with development of CHF (at both 240d & 720d). Morning rise in the ratio of low frequency to high frequency (LF/HF) HRV at baseline was markedly attenuated with CHF. DFAα1, DFAα2, CD and SE all decreased with CHF by 31, 17, 34 and 7%, respectively. Time-of-day-dependent variations in LF/HF, CD, DFA α1 and SE, observed at baseline, were lost during CHF. Thus in this new arrhythmogenic canine CHF model, attenuated morning HR rise, blunted autonomic oscillation, decreased cardiac chaos and complexity of heart rate, as well as aberrant time-of-day-dependent variations in many of these parameters were associated with a morning surge of ventricular arrhythmias. PMID:25140699
T wave inversions in athletes: a variety of scenarios.
Stein, Ricardo; Malhotra, Aneil
2015-01-01
Athletic intensive exercise is associated with repolarization changes affecting the ST-segment and T-wave morphology. The prevalence and distribution of these alterations are influenced by several demographic factors. One of the most challenging conundrums for both the cardiologist and the sports medicine physician is the correct interpretation of these repolarization changes to prevent an erroneous diagnosis with potentially serious consequences. A 12-lead electrocardiogram (ECG) demonstrating inverted T-waves may represent the first and only sign of such inherited heart muscle diseases, and may precede the detection of any structural changes in the heart, however, T-wave inversion in leads V1-V4 in black athletes may represent ethnic variation which is exaggerated by exercise. Copyright © 2015 Elsevier Inc. All rights reserved.
Non-Dimensional Formulation of Ventricular Work-Load Severity Under Concomitant Heart Valve Disease
NASA Astrophysics Data System (ADS)
Dong, Melody; Simon-Walker, Rachael; Dasi, Lakshmi
2012-11-01
Current guidelines on assessing the severity of heart valve disease rely on dimensional disease specific measures and are thus unable to capture severity under a concomitant heart valve disease scenario. Experiments were conducted to measure ventricular work-load in an in-house in-vitro left heart simulator. In-house tri-leaflet heart valves were built and parameterized to model concomitant heart valve disease. Measured ventricular power varied non-linearly with cardiac output and mean aortic pressure. Significant data collapse could be achieved by the non-dimensionalization of ventricular power with cardiac output, fluid density, and a length scale. The dimensionless power, Circulation Energy Dissipation Index (CEDI), indicates that concomitant conditions require a significant increase in the amount of work needed to sustain cardiac function. It predicts severity without the need to quantify individual disease severities. This indicates the need for new fluid-dynamics similitude based clinical guidelines to assist patients with multiple heart valve diseases. Funded by the American Heart Association.
NASA Technical Reports Server (NTRS)
Reiber, J. H. C.
1976-01-01
To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.
Functional requirements of a mathematical model of the heart.
Palladino, Joseph L; Noordergraaf, Abraham
2009-01-01
Functional descriptions of the heart, especially the left ventricle, are often based on the measured variables pressure and ventricular outflow, embodied as a time-varying elastance. The fundamental difficulty of describing the mechanical properties of the heart with a time-varying elastance function that is set a priori is described. As an alternative, a new functional model of the heart is presented, which characterizes the ventricle's contractile state with parameters, rather than variables. Each chamber is treated as a pressure generator that is time and volume dependent. The heart's complex dynamics develop from a single equation based on the formation and relaxation of crossbridge bonds. This equation permits the calculation of ventricular elastance via E(v) = partial differentialp(v)/ partial differentialV(v). This heart model is defined independently from load properties, and ventricular elastance is dynamic and reflects changing numbers of crossbridge bonds. In this paper, the functionality of this new heart model is presented via computed work loops that demonstrate the Frank-Starling mechanism and the effects of preload, the effects of afterload, inotropic changes, and varied heart rate, as well as the interdependence of these effects. Results suggest the origin of the equivalent of Hill's force-velocity relation in the ventricle.
TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor
Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio
2015-01-01
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259
Gating of the late Na+ channel in normal and failing human myocardium.
Undrovinas, Albertas I; Maltsev, Victor A; Kyle, John W; Silverman, Norman; Sabbah, Hani N
2002-11-01
We previously reported an ultraslow inactivating late Na+ current (INaL) in left ventricular cardiomyocytes (VC) isolated from normal (NVC) and failing (FVC) human hearts. This current could play a role in heart failure-induced repolarization abnormalities. To identify properties of NaCh contributing to INaL, we examined early and late openings in cell-attached patches of HEK293 cells expressing human cardiac NaCh alpha-subunit (alpha-HEK) and in VC of one normal and three failing human hearts. Two types of the late NaCh openings underlay INaL in all three preparations: scattered late (SLO) and bursts (BO). Amplitude analysis revealed that slope conductance for both SLO and BO was the same compared to the main level of early openings (EO) in both VC (21 vs 22.7pS, NVC; 22.7 vs 22.6pS, FVC) and alpha-HEK (23.2 vs 23pS), respectively. Analysis of SLO latencies revealed voltage-independent ultraslow inactivation in all preparations with tendency to be slower in FVC compared to NCV. EO and SLO render one open voltage-independent state (tau approximately 0.4ms) for NVC and FVC. One open (voltage-dependent) and two closed states (one voltage-dependent and another voltage-independent) were found in BO of both specimens. Burst duration tend to be longer in FVC ( approximately 50ms) than in NVC ( approximately 30ms). In FVC we found both modes SLO and BO at membrane potential of -10mV that is attribute for take-off voltages (from -18 to -2mV) for early afterdepolarizations (EAD's) in FVC. In conclusions, we found a novel gating mode SLO that manifest slow (hundreds of ms), voltage-independent inactivation in both NVC and FVC. We were unable to reliably demonstrate any differences in the properties of the late NaCh in failing vs a normal human heart. Accordingly, the late current appears to be generated by a single population of channels in normal and failing human ventricular myocardium. Both SLO and BO could be implicated in EADs in HF.
Arola, Olli J; Laitio, Ruut M; Roine, Risto O; Grönlund, Juha; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Perttilä, Juha; Scheinin, Harry; Olkkola, Klaus T; Maze, Mervyn; Laitio, Timo T
2013-09-01
Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). A multipurpose ICU in university hospital. Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia (p=0.04). Postarrival incremental change in troponin-T at 72 hours was significantly less in the Xenon+mild therapeutic hypothermia group (p=0.04). Xenon treatment in combination with hypothermia is feasible and has favorable cardiac features in survivors of out-of-hospital cardiac arrest.
Vanoverschelde, J L; Wijns, W; Michel, X; Cosyns, J; Detry, J M
1991-11-01
Asynchronous segmental early relaxation, defined as a localized early segmental outward motion of the left ventricular endocardium during isovolumetric relaxation, has been associated with an altered left ventricular relaxation rate. To determine whether asynchronous segmental early relaxation also results in impaired left ventricular filling, early diastolic ventricular wall motion and Doppler-derived left ventricular filling indexes were examined in 25 patients with documented coronary artery disease and normal systolic function. Patients were further classified into two groups according to the presence (n = 15, group 1) or absence (n = 10, group 2) of asynchronous early relaxation at left ventriculography. A third group of 10 age-matched normal subjects served as a control group. No differences were observed between the two patient groups with coronary artery disease with respect to age, gender distribution, heart rate, left ventricular systolic and diastolic pressures or extent and severity of coronary artery disease. No differences in transmitral filling dynamics were observed between group 2 patients and age-matched control subjects. Conversely, group 1 patients had significantly lower peak early filling velocities (44 +/- 11 vs. 58 +/- 11 cm/s, p less than 0.01), larger atrial filling fraction (45 +/- 4% vs. 38 +/- 4%, p less than 0.001), lower ratio of early to late transmitral filling velocities (0.6 +/- 0.08 vs. 0.99 +/- 0.18, p less than 0.001) and a longer isovolumetric relaxation period (114 +/- 12 vs. 90 +/- 6 ms, p less than 0.001) compared with group 2 patients and control subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
[Heart functions in monkeys during a 2-week antiorthostatic hypokinesia
NASA Technical Reports Server (NTRS)
Krotov, V. P.; Convertino, V.; Korol'kov, V. I.; Latham, R.; Trambovetskii, E. V.; Fanton, J.; Crisman, R.; Truzhennikov, A. N.; Evert, D.; Nosovskii, A. M.;
1996-01-01
Dynamics of the left heart ventricular muscle contractility and compliance was studied in 4 monkeys in the head down position (antiorthostatic hypokinesia) with the body angle 10 during 2 weeks. Functional tests on a tilt table and under two conditions of centrifuge rotation were performed prior to and after the antiorthostatic hypokinesia. No changes in the left heart ventricular muscle contractility was found. However, the sensitivity level of the baroreflex control decreased. Compliance of the left heart myocardial fibre increased in the first hours and days of the antiorthostatic hypokinesia.
Sack, Kevin L; Dabiri, Yaghoub; Franz, Thomas; Solomon, Scott D; Burkhoff, Daniel; Guccione, Julius M
2018-01-01
Predictive computation models offer the potential to uncover the mechanisms of treatments whose actions cannot be easily determined by experimental or imaging techniques. This is particularly relevant for investigating left ventricular mechanical assistance, a therapy for end-stage heart failure, which is increasingly used as more than just a bridge-to-transplant therapy. The high incidence of right ventricular failure following left ventricular assistance reflects an undesired consequence of treatment, which has been hypothesized to be related to the mechanical interdependence between the two ventricles. To investigate the implication of this interdependence specifically in the setting of left ventricular assistance device (LVAD) support, we introduce a patient-specific finite-element model of dilated chronic heart failure. The model geometry and material parameters were calibrated using patient-specific clinical data, producing a mechanical surrogate of the failing in vivo heart that models its dynamic strain and stress throughout the cardiac cycle. The model of the heart was coupled to lumped-parameter circulatory systems to simulate realistic ventricular loading conditions. Finally, the impact of ventricular assistance was investigated by incorporating a pump with pressure-flow characteristics of an LVAD (HeartMate II™ operating between 8 and 12 k RPM) in parallel to the left ventricle. This allowed us to investigate the mechanical impact of acute left ventricular assistance at multiple operating-speeds on right ventricular mechanics and septal wall motion. Our findings show that left ventricular assistance reduces myofiber stress in the left ventricle and, to a lesser extent, right ventricle free wall, while increasing leftward septal-shift with increased operating-speeds. These effects were achieved with secondary, potentially negative effects on the interventricular septum which showed that support from LVADs, introduces unnatural bending of the septum and with it, increased localized stress regions. Left ventricular assistance unloads the left ventricle significantly and shifts the right ventricular pressure-volume-loop toward larger volumes and higher pressures; a consequence of left-to-right ventricular interactions and a leftward septal shift. The methods and results described in the present study are a meaningful advancement of computational efforts to investigate heart-failure therapies in silico and illustrate the potential of computational models to aid understanding of complex mechanical and hemodynamic effects of new therapies.
Isometric exercise: cardiovascular responses in normal and cardiac populations.
Hanson, P; Nagle, F
1987-05-01
Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training regimens currently utilized by international class and professional athletes should stimulate longitudinal studies of physiologic and pathophysiologic outcomes of intense isometric exercise training programs.
Hyltén-Cavallius, Louise; Iepsen, Eva W.; Wewer Albrechtsen, Nicolai J.; Svendstrup, Mathilde; Lubberding, Anniek F.; Hartmann, Bolette; Jespersen, Thomas; Linneberg, Allan; Christiansen, Michael; Vestergaard, Henrik; Pedersen, Oluf; Holst, Jens J.; Kanters, Jørgen K.
2017-01-01
Background: Loss-of-function mutations in hERG (encoding the Kv11.1 voltage-gated potassium channel) cause long-QT syndrome type 2 (LQT2) because of prolonged cardiac repolarization. However, Kv11.1 is also present in pancreatic α and β cells and intestinal L and K cells, secreting glucagon, insulin, and the incretins glucagon-like peptide-1 (GLP-1) and GIP (glucose-dependent insulinotropic polypeptide), respectively. These hormones are crucial for glucose regulation, and long-QT syndrome may cause disturbed glucose regulation. We measured secretion of these hormones and cardiac repolarization in response to glucose ingestion in LQT2 patients with functional mutations in hERG and matched healthy participants, testing the hypothesis that LQT2 patients have increased incretin and β-cell function and decreased α-cell function, and thus lower glucose levels. Methods: Eleven patients with LQT2 and 22 sex-, age-, and body mass index–matched control participants underwent a 6-hour 75-g oral glucose tolerance test with ECG recording and blood sampling for measurements of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP. Results: In comparison with matched control participants, LQT2 patients had 56% to 78% increased serum insulin, serum C-peptide, plasma GLP-1, and plasma GIP responses (P=0.03–0.001) and decreased plasma glucose levels after glucose ingestion (P=0.02) with more symptoms of hypoglycemia (P=0.04). Sixty-three percent of LQT2 patients developed hypoglycemic plasma glucose levels (<70 mg/dL) versus 36% control participants (P=0.16), and 18% patients developed serious hypoglycemia (<50 mg/dL) versus none of the controls. LQT2 patients had defective glucagon responses to low glucose, P=0.008. β-Cell function (Insulin Secretion Sensitivity Index-2) was 2-fold higher in LQT2 patients than in controls (4398 [95% confidence interval, 2259–8562] versus 2156 [1961–3201], P=0.03). Pharmacological Kv11.1 blockade (dofetilide) in rats had similar effect, and small interfering RNA inhibition of hERG in β and L cells increased insulin and GLP-1 secretion up to 50%. Glucose ingestion caused cardiac repolarization disturbances with increased QTc intervals in both patients and controls, but with a 122% greater increase in QTcF interval in LQT2 patients (P=0.004). Conclusions: Besides a prolonged cardiac repolarization phase, LQT2 patients display increased GLP-1, GIP, and insulin secretion and defective glucagon secretion, causing decreased plasma glucose and thus increased risk of hypoglycemia. Furthermore, glucose ingestion increased QT interval and aggravated the cardiac repolarization disturbances in LQT2 patients. Clinical Trial Registration: URL: http://clinicaltrials.gov. Unique identifier: NCT02775513. PMID:28235848
Ishihara, K; Hiraoka, M; Ochi, R
1996-01-01
1. The activation kinetics of the IRK1 channel stably expressed in L cells (a murine fibroblast cell line) were studied under the whole-cell voltage clamp. Without polyamines or Mg2+ in the pipettes, inward currents showed an exponential activation on hyperpolarization. The steep inward rectification of the currents around the reversal potential (Erev) could be described by the open-close transition of the channel with first-order kinetics. 2. When the tetravalent organic cation spermine (Spm) was added in the pipettes, the activation kinetics changed; this was explicable by the increase in the closing rate constant. The activation of the currents observed without Spm or Mg2+ in the pipettes was ascribed to the unblocking of the 'endogenous-Spm block'. 3. In the presence of the divalent cation putrescine (Put) or of Mg2+ in the pipettes, a different non-conductive state suppressed the outward currents on depolarization; the channels instantaneously changed to the open state on repolarization. As the depolarization was prolonged, this non-conductive state was replaced by the non-conductive state that shows an exponential activation on repolarization. This phenomenon was attributed to the redistribution of the channels from the Put- or Mg(2+)-blocked state to the 'endogenous Spm-blocked state' during depolarization. 4. In the presence of the trivalent cation spermidine (Spd) in the pipettes, two different non-conductive states occurred, showing a faster and a slower activation on repolarization. The rectification around Erev was mainly due to the non-conductive state showing a faster activation, which appeared to be the Spd-blocked state. During depolarization, redistribution of the channels to the 'endogenous Spm-blocked state' also occurred. 5. In the presence of Spd, Put or Mg2+ in the pipettes, the voltage dependence of the activation time constant reflecting the unblocking of the 'endogenous Spm' was shifted in the hyperpolarizing direction. 6. Our results suggest that the 'intrinsic gating' that shows the time-dependent activation on repolarization, and that is responsible for the inward rectification around Erev, reflects the blocking kinetics of the tetravalent Spm. PMID:8866861
Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.
Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk
2016-05-01
The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized. © 2016 Authors; published by Portland Press Limited.
Atsma, Femke; van der Schouw, Yvonne T; Grobbee, Diederick E; Kors, Jan A; Bartelink, Marie-Louise E L
2009-08-20
The protective effect of endogenous estrogens in cardiovascular disease may in part originate from effects of circulating estrogens on the electrophysiological properties of the myocardium. The aim of this study was to investigate the relation between reproductive factors and the electrocardiographic frontal T axis in postmenopausal women. Cohort study. The study was conducted at the University Medical Center Utrecht. In total, 998 postmenopausal women were included. Information of women's reproductive life was obtained by a questionnaire. Electrocardiographic frontal T axes were categorized as normal (25-65 degrees) or abnormal (-180 degrees to 24 degrees and 66-180 degrees). Logistic regression analysis was used to assess the relationship between reproductive factors and the frontal T axis. Moreover, the effect of the lifetime cumulative number of menstrual cycles, a composite measure of all reproductive factors, on the frontal T axis was investigated. The mean age was 66.0 (+/-5.6) years and 15.3% had T-axes abnormalities. Later menopausal age decreased the risk on frontal T-axis abnormalities; the multivariable adjusted odds ratio was 0.97 (95% CI: 0.94-0.99) per year increasing menopause. For the lifetime cumulative number of menstrual cycles the age-adjusted odds ratio was 0.84 (95% CI: 0.75-0.99) per 100 menstrual cycles increase. Later age at menopause and increasing lifetime cumulative number of menstrual cycles decreased the risk on frontal T-axis changes. This supports the view that estrogens may protect against ventricular repolarization disturbances.
Batey, Andrew J; Coker, Susan J
2002-01-01
This study was designed to compare the proarrhythmic activity of the antimalarial drug, halofantrine and the antihistamine, terfenadine, with that of clofilium a K+ channel blocking drug that can induce torsade de pointes. Experiments were performed in pentobarbitone-anaesthetized, open-chest rabbits. Each rabbit received intermittent, rising dose i.v. infusions of the α-adrenoceptor agonist phenylephrine. During these infusions rabbits also received increasing i.v. doses of clofilium (20, 60 and 200 nmol kg−1 min−1), terfenadine (75, 250 and 750 nmol kg−1 min−1), halofantrine (6, 20 and 60 μmol kg−1) or vehicle. Clofilium and halofantrine caused dose-dependent increases in the rate-corrected QT interval (QTc), whereas terfenadine prolonged PR and QRS intervals rather than prolonging cardiac repolarization. Progressive bradycardia occurred in all groups. After administration of the highest dose of each drug halofantrine caused a modest decrease in blood pressure, but terfenadine had profound hypotensive effects resulting in death of most rabbits. The total number of ventricular premature beats was highest in the clofilium group. Torsade de pointes occurred in 6 out of 8 clofilium-treated rabbits and 4 out of 6 of those which received halofantrine, but was not seen in any of the seven terfenadine-treated rabbits. These results show that, like clofilium, halofantrine can cause torsade de pointes in a modified anaesthetized rabbit model whereas the primary adverse effect of terfenadine was cardiac contractile failure. PMID:11861329
Cardiovascular complications of anorexia nervosa: A systematic review.
Sachs, Katherine V; Harnke, Ben; Mehler, Philip S; Krantz, Mori J
2016-03-01
Anorexia nervosa portends the highest mortality among psychiatric diseases, despite primarily being a disease of adolescents and younger adults. Although some of this mortality risk is attributable to suicide, many deaths are likely cardiovascular in etiology. Recent studies suggest that adverse myocardial structural changes occur in this condition, which could underlie the increased mortality. Given limited prevalence of severe anorexia there is a paucity of clinical and autopsy data to discern an exact cause of death. Given this background we conducted a systematic review of the medical literature to provide a contemporary summary of the pathobiologic sequelae of severe anorexia nervosa on the cardiovascular system. We sought to elucidate the impact of anorexia nervosa in four cardiovascular domains: structural, repolarization/conduction, hemodynamic, and peripheral vascular. A number of cardiac abnormalities associated with anorexia nervosa have been described in the literature, including pericardial and valvular pathology, changes in left ventricular mass and function, conduction abnormalities, bradycardia, hypotension, and dysregulation in peripheral vascular contractility. Despite the prevalent theory that malignant arrhythmias are implicated as a cause of sudden death in this disorder, data to support this causal relationship are lacking. It is reasonable to obtain routine electrocardiography and measurements of orthostatic vital signs in patients presenting with anorexia nervosa. Echocardiography is generally not indicated unless prompted by clinical signs of disease. Admission to an inpatient unit with telemetry monitoring is recommended for patients with severe sinus bradycardia or junction rhythm, marked prolongation of the corrected QT interval, or syncope. © 2015 Wiley Periodicals, Inc.
Ahrens-Nicklas, Rebecca C; Clancy, Colleen E; Christini, David J
2009-06-01
Long QT syndrome (LQTS) is a heterogeneous collection of inherited cardiac ion channelopathies characterized by a prolonged electrocardiogram QT interval and increased risk of sudden cardiac death. Beta-adrenergic blockers are the mainstay of treatment for LQTS. While their efficacy has been demonstrated in LQTS patients harbouring potassium channel mutations, studies of beta-blockers in subtype 3 (LQT3), which is caused by sodium channel mutations, have produced ambiguous results. In this modelling study, we explore the effects of beta-adrenergic drugs on the LQT3 phenotype. In order to investigate the effects of beta-adrenergic activity and to identify sources of ambiguity in earlier studies, we developed a computational model incorporating the effects of beta-agonists and beta-blockers into an LQT3 mutant guinea pig ventricular myocyte model. Beta-activation suppressed two arrhythmogenic phenomena, transmural dispersion of repolarization and early after depolarizations, in a dose-dependent manner. However, the ability of beta-activation to prevent cardiac conduction block was pacing-rate-dependent. Low-dose beta-blockade by propranolol reversed the beneficial effects of beta-activation, while high dose (which has off-target sodium channel effects) decreased arrhythmia susceptibility. These results demonstrate that beta-activation may be protective in LQT3 and help to reconcile seemingly conflicting results from different experimental models. They also highlight the need for well-controlled clinical investigations re-evaluating the use of beta-blockers in LQT3 patients.
A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes.
Pandit, S V; Clark, R B; Giles, W R; Demir, S S
2001-01-01
Mathematical models were developed to reconstruct the action potentials (AP) recorded in epicardial and endocardial myocytes isolated from the adult rat left ventricle. The main goal was to obtain additional insight into the ionic mechanisms responsible for the transmural AP heterogeneity. The simulation results support the hypothesis that the smaller density and the slower reactivation kinetics of the Ca(2+)-independent transient outward K(+) current (I(t)) in the endocardial myocytes can account for the longer action potential duration (APD), and more prominent rate dependence in that cell type. The larger density of the Na(+) current (I(Na)) in the endocardial myocytes results in a faster upstroke (dV/dt(max)). This, in addition to the smaller magnitude of I(t), is responsible for the larger peak overshoot of the simulated endocardial AP. The prolonged APD in the endocardial cell also leads to an enhanced amplitude of the sustained K(+) current (I(ss)), and a larger influx of Ca(2+) ions via the L-type Ca(2+) current (I(CaL)). The latter results in an increased sarcoplasmic reticulum (SR) load, which is mainly responsible for the higher peak systolic value of the Ca(2+) transient [Ca(2+)](i), and the resultant increase in the Na(+)-Ca(2+) exchanger (I(NaCa)) activity, associated with the simulated endocardial AP. In combination, these calculations provide novel, quantitative insights into the repolarization process and its naturally occurring transmural variations in the rat left ventricle. PMID:11720973
Islam, Mohammed A
2010-01-01
Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.
De Bondt, Pieter; Nichols, Kenneth; Vandenberghe, Stijn; Segers, Patrick; De Winter, Olivier; Van de Wiele, Christophe; Verdonck, Pascal; Shazad, Arsalan; Shoyeb, Abu H; De Sutter, Johan
2003-06-01
We have developed a biventricular dynamic physical cardiac phantom to test gated blood-pool (GBP) SPECT image-processing algorithms. Such phantoms provide absolute values against which to assess accuracy of both right and left computed ventricular volume and ejection fraction (EF) measurements. Two silicon-rubber chambers driven by 2 piston pumps simulated crescent-shaped right ventricles wrapped partway around ellopsoid left ventricles. Twenty experiments were performed at Ghent University, for which right and left ventricular true volume and EF ranges were 65-275 mL and 55-165 mL and 7%-49% and 12%-69%, respectively. Resulting 64 x 64 simulated GBP SPECT images acquired at 16 frames per R-R interval were sent to Columbia University, where 2 observers analyzed images independently of each other, without knowledge of true values. Algorithms automatically segmented right ventricular activity volumetrically from left ventricular activity. Automated valve planes, midventricular planes, and segmentation regions were presented to observers, who accepted these choices or modified them as necessary. One observer repeated measurements >1 mo later without reference to previous determinations. Linear correlation coefficients (r) of the mean of the 3 GBP SPECT observations versus true values for right and left ventricles were 0.80 and 0.94 for EF and 0.94 and 0.95 for volumes, respectively. Correlations for right and left ventricles were 0.97 and 0.97 for EF and 0.96 and 0.89 for volumes, respectively, for interobserver agreement and 0.97 and 0.98 for EF and 0.96 and 0.90 for volumes, respectively, for intraobserver agreement. No trends were detected, though volumes and right ventricular EFs were significantly higher than true values. Overall, GBP SPECT measurements correlated strongly with true values. The phantom evaluated shows considerable promise for helping to guide algorithm developments for improved GBP SPECT accuracy.
A Dynamical Threshold for Cardiac Delayed Afterdepolarization-Mediated Triggered Activity.
Liu, Michael B; Ko, Christopher Y; Song, Zhen; Garfinkel, Alan; Weiss, James N; Qu, Zhilin
2016-12-06
Ventricular myocytes are excitable cells whose voltage threshold for action potential (AP) excitation is ∼-60 mV at which I Na is activated to give rise to a fast upstroke. Therefore, for a short stimulus pulse to elicit an AP, a stronger stimulus is needed if the resting potential lies further away from the I Na threshold, such as in hypokalemia. However, for an AP elicited by a long duration stimulus or a diastolic spontaneous calcium release, we observed that the stimulus needed was lower in hypokalemia than in normokalemia in both computer simulations and experiments of rabbit ventricular myocytes. This observation provides insight into why hypokalemia promotes calcium-mediated triggered activity, despite the resting potential lying further away from the I Na threshold. To understand the underlying mechanisms, we performed bifurcation analyses and demonstrated that there is a dynamical threshold, resulting from a saddle-node bifurcation mainly determined by I K1 and I NCX . This threshold is close to the voltage at which I K1 is maximum, and lower than the I Na threshold. After exceeding this dynamical threshold, the membrane voltage will automatically depolarize above the I Na threshold due to the large negative slope of the I K1 -V curve. This dynamical threshold becomes much lower in hypokalemia, especially with respect to calcium, as predicted by our theory. Because of the saddle-node bifurcation, the system can automatically depolarize even in the absence of I Na to voltages higher than the I Ca,L threshold, allowing for triggered APs in single myocytes with complete I Na block. However, because I Na is important for AP propagation in tissue, blocking I Na can still suppress premature ventricular excitations in cardiac tissue caused by calcium-mediated triggered activity. This suppression is more effective in normokalemia than in hypokalemia due to the difference in dynamical thresholds. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Vorticity is a marker of diastolic ventricular interdependency in pulmonary hypertension
Browning, James; Schroeder, Joyce D.; Shandas, Robin; Kheyfets, Vitaly O.; Buckner, J. Kern; Hunter, Kendall S.; Hertzberg, Jean R.; Fenster, Brett E.
2016-01-01
Abstract Our objective was to determine whether left ventricular (LV) vorticity (ω), the local spinning motion of a fluid element, correlated with markers of ventricular interdependency in pulmonary hypertension (PH). Maladaptive ventricular interdependency is associated with interventricular septal shift, impaired LV performance, and poor outcomes in PH patients, yet the pathophysiologic mechanisms underlying fluid-structure interactions in ventricular interdependency are incompletely understood. Because conformational changes in chamber geometry affect blood flow formations and dynamics, LV ω may be a marker of LV-RV (right ventricular) interactions in PH. Echocardiography was performed for 13 PH patients and 10 controls for assessment of interdependency markers, including eccentricity index (EI), and biventricular diastolic dysfunction, including mitral valve (MV) and tricuspid valve (TV) early and late velocities (E and A, respectively) as well as MV septal and lateral early tissue Doppler velocities (e′). Same-day 4-dimensional cardiac magnetic resonance was performed for LV E (early)-wave ω measurement. LV E-wave ω was significantly decreased in PH patients (P = 0.008) and correlated with diastolic EI (Rho = −0.53, P = 0.009) as well as with markers of LV diastolic dysfunction, including MV E(Rho = 0.53, P = 0.011), E/A (Rho = 0.56, P = 0.007), septal e′ (Rho = 0.63, P = 0.001), and lateral e′ (Rho = 0.57, P = 0.007). Furthermore, LV E-wave ω was associated with indices of RV diastolic dysfunction, including TV e′ (Rho = 0.52, P = 0.012) and TV E/A (Rho = 0.53, P = 0.009). LV E-wave ω is decreased in PH and correlated with multiple echocardiographic markers of ventricular interdependency. LV ω may be a novel marker for fluid-tissue biomechanical interactions in LV-RV interdependency. PMID:27162613
Jain, Shardool; Tran, Thanh-Huyen; Amiji, Mansoor
2015-01-01
In this study, we have shown for the first time the effectiveness of a non-viral gene transfection strategy to re-polarize macrophages from M1 to M2 functional sub-type for the treatment of rheumatoid arthritis (RA). An anti-inflammatory (IL-10) cytokine encoding plasmid DNA was successfully encapsulated into non-condensing alginate based nanoparticles and the surface of the nano-carriers was modified with tuftsin peptide to achieve active macrophage targeting. Enhanced localization of tuftsin-modified alginate nanoparticles was observed in the inflamed paws of arthritic rats upon intraperitoneal administration. Importantly, targeted nanoparticle treatment was successful in reprogramming macrophage phenotype balance as ~66% of total synovial macrophages from arthritic rats treated with the IL-10 plasmid DNA loaded tuftsin/alginate nanoparticles were in the M2 state compared to ~9% of macrophages in the M2 state from untreated arthritic rats. Treatment significantly reduced systemic and joint tissue pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression and prevented the progression of inflammation and joint damage as revealed by magnetic resonance imaging and histology. Treatment enabled animals to retain their mobility throughout the course of study, whereas untreated animals suffered from impaired mobility. Overall, this study demonstrates that targeted alginate nanoparticles loaded with IL-10 plasmid DNA can efficiently re-polarize macrophages from an M1 to an M2 state, offering a novel treatment paradigm for treatment of chronic inflammatory diseases. PMID:26004232
Effect of clebopride, antidopaminergic gastrointestinal prokinetics, on cardiac repolarization.
Kim, Ki-Suk; Shin, Won-Ho; Park, Sang-joon; Kim, Eun-Joo
2007-01-01
The inhibition of the potassium current I(Kr) and QT prolongation has been known to be associated with drug-induced torsades de pointes arrhythmias (TdP) and sudden cardiac death. In this study, the authors investigated the cardiac electrophysiological effects of clebopride, a class of antidopaminergic gastrointestinal prokinetic, that has been reported to prolong the QT interval by using the conventional microelectrode recording techniques in isolated rabbit Purkinje fiber and whole-cell patch clamp techniques in human ether-à-go-go-related gene (hERG)-stably transfected Chinese hamster ovarian (CHO) cells. Clebopride at 10 microM significantly decreased the Vmax of phase 0 depolarization (p < .05) and significantly prolonged the action potential duration at 90% repolarization (APD90) (p < .01), whereas the action potential duration at 50% repolarization (APD50) was not prolonged. For hERG potassium channel currents, the IC50 value was 0.62 +/- 0.30 microM. Clebopride was found to have no effect on sodium channel currents. When these results were compared with Cmax (1.02 nM) of clinical dosage (1 mg, [p.o.]), it can be suggested that clebopride is safe at the clinical dosage of 1 mg from the electrophysiological aspect. These findings indicate that clebopride, an antidopaminergic gastrointestinal prokinetic drug, may provide a sufficient "safety factor" in terms of the electrophysiological threshold concentration. But, in a supratherapeutic concentration that might possibly be encountered during overdose or impaired metabolism, clebopride may have torsadogenic potency.
Langenickel, Thomas H; Jordaan, Pierre; Petruck, Jesika; Kode, Kiran; Pal, Parasar; Vaidya, Soniya; Chandra, Priya; Rajman, Iris
2016-08-01
Sacubitril/valsartan (LCZ696) is a first-in-class angiotensin receptor neprilysin inhibitor (ARNI) indicated to reduce the risk of cardiovascular death and hospitalization for heart failure in patients with chronic heart failure (NYHA class II-IV) and reduced ejection fraction. This study was aimed to evaluate the effect of single oral therapeutic (400 mg) and supratherapeutic (1200 mg) doses of LCZ696 on cardiac repolarization. This randomized double-blind crossover study in healthy male subjects compared the effect of therapeutic and supratherapeutic doses of LCZ696 with placebo and moxifloxacin 400 mg (open-label treatment) as positive control. The primary assessment was mean baseline- and placebo-corrected QTcF (∆∆QTcF; Fridericia correction). Additional assessments included the ∆∆QTcB (Bazett's correction), PR interval, QRS duration, heart rate (HR), LCZ696 pharmacokinetics, pharmacokinetic/pharmacodynamic relationships, and safety. Of the 84 subjects enrolled, 81 completed the study. The maximum upper bound of the two-sided 90 % confidence interval for ∆∆QTcF for LCZ696 400 mg and 1200 mg were <10 ms, and assay sensitivity was confirmed with moxifloxacin. No relevant treatment-emergent changes were observed in any of the ECG-derived parameters with LCZ696 or placebo, and the incidence of adverse events was comparable among the treatment groups. Single therapeutic and supratherapeutic doses of LCZ696 did not affect cardiac repolarization as defined by the E14 ICH guidelines.
Progenitor cell dynamics in the Newt Telencephalon during homeostasis and neuronal regeneration.
Kirkham, Matthew; Hameed, L Shahul; Berg, Daniel A; Wang, Heng; Simon, András
2014-04-08
The adult newt brain has a marked neurogenic potential and is highly regenerative. Ventricular, radial glia-like ependymoglia cells give rise to neurons both during normal homeostasis and after injury, but subpopulations among ependymoglia cells have not been defined. We show here that a substantial portion of GFAP(+) ependymoglia cells in the proliferative hot spots of the telencephalon has transit-amplifying characteristics. In contrast, proliferating ependymoglia cells, which are scattered along the ventricular wall, have stem cell features in terms of label retention and insensitivity to AraC treatment. Ablation of neurons remodels the proliferation dynamics and leads to de novo formation of regions displaying features of neurogenic niches, such as the appearance of cells with transit-amplifying features and proliferating neuroblasts. The results have implication both for our understanding of the evolutionary diversification of radial glia cells as well as the processes regulating neurogenesis and regeneration in the adult vertebrate brain.
Fraser, Katharine H; Zhang, Tao; Taskin, M Ertan; Griffith, Bartley P; Wu, Zhongjun J
2010-01-01
Cannulation is necessary when blood is removed from the body, for example in hemodialysis, cardiopulmonary bypass, blood oxygenators, and ventricular assist devices. Artificial blood contacting surfaces are prone to thrombosis, especially in the presence of stagnant or recirculating flow. In this work, computational fluid dynamics was used to investigate the blood flow fields in three clinically available cannulae (Medtronic DLP 12, 16 and 24 F), used as drainage for pediatric circulatory support, and to calculate parameters which may be indicative of thrombosis potential. The results show that using the 24 F cannula below flow rates of about 0.75 l/min produces hemodynamic conditions which may increase the risk of blood clotting within the cannula. No reasons are indicated for not using the 12 or 16 F cannulae with flow rates between 0.25 and 3.0 l/min. PMID:20400890
Modeling and control of a brushless DC axial flow ventricular assist device.
Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M
2002-01-01
This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise.
Endurance sport and "cardiac injury": a prospective study of recreational ironman athletes.
Leischik, Roman; Spelsberg, Norman
2014-09-03
Participation in triathlon competitions has increased in recent years. Many studies have described left or right ventricular injury in endurance athletes. The goal of this study was to examine the right and left ventricular cardiac structures and function and dynamic cardio-pulmonary performance in a large cohort of middle- and long-distance triathletes. 87 triathletes (54 male and 33 female) were examined using spiroergometry and echocardiography. The inclusion criterion was participation in at least one middle- or long distance triathlon. Male triathletes showed a maximum oxygen absorption of 58.1 ± 8.6 mL/min/kg (female triathletes 52.8 ± 5.7 mL/min/kg), maximum ergometer performance of 347.8 ± 49.9 W (female triathletes 264.5 ± 26.1 W). Left ventricular ejection fraction (EF) was normal (male triathletes EF: 61.9% ± 3%, female triathletes EF: 63.0% ± 2.7%) and systolic right ventricular area change fraction (RV AFC%) showed normal values (males RV AFC%: 33.5% ± 2.2%, females 32.2% ± 2.8%). Doppler indices of diastolic function were normal in both groups. With respect to the echocardiographic readings the left ventricular mass for males and females were 217.7 ± 41.6 g and 145.9 ± 31.3 g, respectively. The relative wall thickness for males was 0.50 ± 0.07, whereas it was 0.47 ± 0.09 for females. The probability of left ventricular mass >220 g increased with higher blood pressure during exercise (OR: 1.027, CI 1.002-1.052, p = 0.034) or with higher training volume (OR: 1.23, CI 1.04-1.47, p = 0.019). Right or left ventricular dysfunction could not be found, although the maximal participation in triathlon competitions was 29 years. A left ventricular mass >220 g is more likely to occur with higher arterial pressure during exercise and with a higher training volume.
Endurance Sport and “Cardiac Injury”: A Prospective Study of Recreational Ironman Athletes
Leischik, Roman; Spelsberg, Norman
2014-01-01
Background: Participation in triathlon competitions has increased in recent years. Many studies have described left or right ventricular injury in endurance athletes. The goal of this study was to examine the right and left ventricular cardiac structures and function and dynamic cardio-pulmonary performance in a large cohort of middle- and long-distance triathletes. Methods: 87 triathletes (54 male and 33 female) were examined using spiroergometry and echocardiography. The inclusion criterion was participation in at least one middle- or long distance triathlon. Results: Male triathletes showed a maximum oxygen absorption of 58.1 ± 8.6 mL/min/kg (female triathletes 52.8 ± 5.7 mL/min/kg), maximum ergometer performance of 347.8 ± 49.9 W (female triathletes 264.5 ± 26.1 W). Left ventricular ejection fraction (EF) was normal (male triathletes EF: 61.9% ± 3%, female triathletes EF: 63.0% ± 2.7%) and systolic right ventricular area change fraction (RV AFC%) showed normal values (males RV AFC%: 33.5% ± 2.2%, females 32.2% ± 2.8%). Doppler indices of diastolic function were normal in both groups. With respect to the echocardiographic readings the left ventricular mass for males and females were 217.7 ± 41.6 g and 145.9 ± 31.3 g, respectively. The relative wall thickness for males was 0.50 ± 0.07, whereas it was 0.47 ± 0.09 for females. The probability of left ventricular mass >220 g increased with higher blood pressure during exercise (OR: 1.027, CI 1.002–1.052, p = 0.034) or with higher training volume (OR: 1.23, CI 1.04–1.47, p = 0.019). Conclusions: Right or left ventricular dysfunction could not be found, although the maximal participation in triathlon competitions was 29 years. A left ventricular mass >220 g is more likely to occur with higher arterial pressure during exercise and with a higher training volume. PMID:25192145
Regional myocardial shape and dimensions of the working isolated canine left ventricle
NASA Technical Reports Server (NTRS)
Ritman, E.; Tsuiki, K.; Donald, D.; Wood, E. H.
1975-01-01
Angiographic experiments were performed on isolated canine left ventricle preparations using donor dog to supply blood to the coronary circulation via a rotary pump to control coronary flow. The angiographic record was transferred from video tape to video disk for detailed uninterrupted sequential analysis at a frequency of 60 fields/sec. It is shown that the use of a biplane X-ray technique and a metabolically supported isolated canine left ventricle preparation provides an angiographically ideal means of measuring the mechanical dynamics of the myocardium while the intact left ventricular myocardial structure and electrical activation pattern retain most of the in situ ventricular characteristics. In particular, biplane X-ray angiography of the left ventricle can provide estimates of total ventricular function such as ejection fraction, stroke volume, and myocardial mass correct to within 15% under the angiographically ideal conditions of the preparation.
Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P
1982-01-01
Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).
Gizzi, Alessio; Cherry, Elizabeth M.; Gilmour, Robert F.; Luther, Stefan; Filippi, Simonetta; Fenton, Flavio H.
2013-01-01
Alternans of action potential duration has been associated with T wave alternans and the development of arrhythmias because it produces large gradients of repolarization. However, little is known about alternans dynamics in large mammalian hearts. Using optical mapping to record electrical activations simultaneously from the epicardium and endocardium of 9 canine right ventricles, we demonstrate novel arrhythmogenic complex spatiotemporal dynamics. (i) Alternans predominantly develops first on the endocardium. (ii) The postulated simple progression from normal rhythm to concordant to discordant alternans is not always observed; concordant alternans can develop from discordant alternans as the pacing period is decreased. (iii) In contrast to smaller tissue preparations, multiple stationary nodal lines may exist and need not be perpendicular to the pacing site or to each other. (iv) Alternans has fully three-dimensional dynamics and the epicardium and endocardium can show significantly different dynamics: multiple nodal surfaces can be transmural or intramural and can form concave/convex surfaces resulting in islands of discordant alternans. (v) The complex spatiotemporal patterns observed during alternans are very sensitive to both the site of stimulation and the stimulation history. Alternans in canine ventricles not only exhibit larger amplitudes and persist for longer cycle length regimes compared to those found in smaller mammalian hearts, but also show novel dynamics not previously described that enhance dispersion and show high sensitivity to initial conditions. This indicates some underlying predisposition to chaos and can help to guide the design of new drugs and devices controlling and preventing arrhythmic events. PMID:23637684
The role of rotors in atrial fibrillation
Swarup, Vijay; Narayan, Sanjiv M.
2015-01-01
Despite significant advances in our understanding of atrial fibrillation (AF) mechanisms in the last 15 years, ablation outcomes remain suboptimal. A potential reason is that many ablation techniques focus on anatomic, rather than patient-specific functional targets for ablation. Panoramic contact mapping, incorporating phase analysis, repolarization and conduction dynamics, and oscillations in AF rate, overcomes many prior difficulties with mapping AF. This approach provides evidence that the mechanisms sustaining human AF are deterministic, largely due to stable electrical rotors and focal sources in either atrium. Ablation of such sources (Focal Impulse and Rotor Modulation: FIRM ablation) has been shown to improve ablation outcome compared with conventional ablation alone; independent laboratories directly targeting stable rotors have shown similar results. Clinical trials examining the role of stand-alone FIRM ablation are in progress. Looking forward, translating insights from patient-specific mapping to evidence-based guidelines and clinical practice is the next challenge in improving patient outcomes in AF management. PMID:25713729
Kaku, T; Sakurai, S; Furuno, Y; Yashiro, A; Nakashima, Y; Kuroiwa, A
1995-08-01
We evaluated the effects of systolic anterior motion systolic anterior motion of the mitral valve on cardiac haemodynamics. Seven adult mongrel dogs in which systolic anterior motion-septal contact was observed after dobutamine administration were used. To exclude the effects of left ventricular function and morphology, a stone removal basket catheter was placed in the left ventricular outflow tract, and haemodynamics were compared with the basket closed and opened. The basket was opened five times in three dogs not showing systolic anterior motion-septal contact, but the basket itself did not effect the haemodynamics. In the seven dogs that showed systolic anterior motion-septal contact without left ventricular hypertrophy, the basket was opened a total of 33 times in the presence of various degrees of systolic anterior motion-septal contact. After opening the basket, systolic anterior motion was reduced echocardiographically, and significant (P<0.01) changes were observed in the left ventricle-aorta pressure gradient (from 68 +/- 22 to 25 +/- 15 mm Hg), the systolic ejection period (from 146 +/- 19 to 135 +/- 16 ms), and the stroke volume (SV; from 9.4 +/- 2.9 to 10.1 +/- 3.3 ml). After basket inflation, aortic pressure and aortic flow waveforms changed but the peak pressure and flow velocity did not. The temporal distribution of left ventricular ejection also definitely changed after the basket was opened. No changes were observed in the peak dp/dt, peak negative dp/dt, time constant, left ventricular end-diastolic pressure, or left atrial pressure. These observations in this animal model of systolic anterior motion without left ventricular hypertrophy suggest that: (1) there is no potential for generation of an intra-cavity gradient in the absence of systolic anterior motion of the mitral valve, so that (2) systolic anterior motion narrowed the left ventricular outflow tract and, consequently, produced the systolic ejection period, and affected the left ventricular ejection dynamics, and that (3) the basket catheter is useful because it allows these assessments in the same heart with a nearly fixed left ventricular contractility, at least in our animal model.
2015-01-01
ventricular fibrillation and cardiopulmonary resuscitation . The second presentation will be summarized below. doi:10.1016/j.jcrc.2010.05.013 Neural dynamics...hemorrhagic shock, resuscitation , trauma, inhalation injury, apnea, and other critical states. This research serves as a test bed for discovery
Bradycardia as a Marker of Chronic Cocaine Use: A Novel Cardiovascular Finding.
Sharma, Jyoti; Rathnayaka, Nuvan; Green, Charles; Moeller, F Gerard; Schmitz, Joy M; Shoham, Daniel; Dougherty, Anne Hamilton
2016-01-01
Few studies have examined the effects of chronic cocaine use on the resting surface electrocardiogram (ECG) between exposures to cocaine. Researchers compared 12-lead ECGs from 97 treatment-seeking cocaine-dependent patients, with ECG parameters from 8,513 non-cocaine-using control patients from the Atherosclerosis Risk in Communities study. After matching and adjusting for relevant covariates, cocaine use demonstrated large and statistically reliable effects on early repolarization, bradycardia, severe bradycardia, and heart rate. Current cocaine dependence corresponds to an increased odds of demonstrating early repolarization by a factor of 4.92 and increased odds of bradycardia and severe bradycardia by factors 3.02 and 5.11, respectively. This study demonstrates the novel finding that long-lasting effects of cocaine use on both the cardiac conduction and the autonomic nervous system pose a risk of adverse cardiovascular events between episodes of cocaine use, and that bradycardia is a marker of chronic cocaine use.
Repolarization of hepatocytes in culture.
Talamini, M A; Kappus, B; Hubbard, A
1997-01-01
We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.
Yambe, T; Hashimoto, H; Kobayashi, S; Sonobe, T; Naganuma, S; Nanka, S S; Matsuki, H; Yoshizawa, M; Tabayashi, K; Takayasu, H; Takeda, H; Nitta, S
1997-01-01
We have developed a vibrating flow pump (VFP) that can generate oscillated blood flow with a relatively high frequency (10-50 Hz) for a totally implantable ventricular assist system (VAS). To evaluate the newly developed VAS, left heart bypasses, using the VFP, were performed in chronic animal experiments. Hemodynamic parameters were recorded in a data recorder in healthy adult goats during an awake condition and analyzed in a personal computer system through an alternating-direct current converter. Basic performance of the total system with a transcutaneous energy transmission system were satisfactory. During left ventricular assistance with the VFP, Mayer wave fluctuations of hemodynamics were decreased in the power spectrum, the fractal dimensions of the hemodynamics were significantly decreased, and peripheral vascular resistance was significantly decreased. These results suggest that cardiovascular regulatory nonlinear dynamics, which mediate the hemodynamics, may be affected by left ventricular bypass with oscillated flow. The decreased power of the Mayer wave in the spectrum caused the limit cycle attractor of the hemodynamics and decreased peripheral resistance. These results suggest that this newly developed VAS is useful for the totally implantable system with unique characteristics that can control hemodynamic properties.
Zhang, Hui; Zheng, Rongqin; Qian, Xiaoxian; Zhang, Chengxi; Hao, Baoshun; Huang, Zeping; Wu, Tao
2014-03-01
Wave intensity analysis (WIA) of the carotid artery was conducted to determine the changes that occur in left ventricular systolic function after administration of doxorubicin in rabbits. Each randomly selected rabbit was subject to routine ultrasound, WIA of the carotid artery, cardiac catheterization and pathologic examination every week and was followed for 16 wk. The first positive peak (WI1) of the carotid artery revealed that left ventricular systolic dysfunction occurred earlier than conventional indexes of heart function. WI1 was highly, positively correlated with the maximum rate of rise in left ventricular pressure in cardiac catheterization (r = 0.94, p < 0.01) and moderately negatively correlated with the apoptosis index of myocardial cells, an indicator of myocardial damage (r = -0.69, p < 0.01). Ultrasound WIA of the carotid artery sensitively reflects early myocardial damage and cardiac function, and the result is highly consistent with cardiac catheterization findings and the apoptosis index of myocardial cells. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Campbell, K B; Shroff, S G; Kirkpatrick, R D
1991-06-01
Based on the premise that short-time-scale, small-amplitude pressure/volume/outflow behavior of the left ventricular chamber was dominated by dynamic processes originating in cardiac myofilaments, a prototype model was built to predict pressure responses to volume perturbations. In the model, chamber pressure was taken to be the product of the number of generators in a pressure-bearing state and their average volumetric distortion, as in the muscle theory of A.F. Huxley, in which force was equal to the number of attached crossbridges and their average lineal distortion. Further, as in the muscle theory, pressure generators were assumed to cycle between two states, the pressure-bearing state and the non-pressure-bearing state. Experiments were performed in the isolated ferret heart, where variable volume decrements (0.01-0.12 ml) were removed at two commanded flow rates (flow clamps, -7 and -14 ml/sec). Pressure responses to volume removals were analyzed. Although the prototype model accounted for most features of the pressure responses, subtle but systematic discrepancies were observed. The presence or absence of flow and the magnitude of flow affected estimates of model parameters. However, estimates of parameters did not differ when the model was fitted to flow clamps with similar magnitudes of flows but different volume changes. Thus, prototype model inadequacies were attributed to misrepresentations of flow-related effects but not of volume-related effects. Based on these discrepancies, an improved model was built that added to the simple two-state cycling scheme, a pathway to a third state. This path was followed only in response to volume change. The improved model eliminated the deficiencies of the prototype model and was adequate in accounting for all observations. Since the template for the improved model was taken from the cycling crossbridge theory of muscle contraction, it was concluded that, in spite of the complexities of geometry, architecture, and regional heterogeneity of function and structure, crossbridge mechanisms dominated the short-time-scale dynamics of left ventricular chamber behavior.
Koskela, J; Laiho, J; KäHönen, M; Rontu, R; Lehtinen, R; Viik, J; Niemi, M; Niemelä, K; Kööbi, T; Turjanmaa, V; Pörsti, I; Lehtimäki, T; Nieminen, T
2008-01-01
Cardiac repolarization is regulated, in part, by the KCNH2 gene, which encodes a rapidly activating component of the delayed rectifier potassium channel. The gene expresses a functional single nucleotide polymorphism, K897T, which changes the biophysical properties of the channel. The objective of this study was to evaluate whether this polymorphism influences two indices of repolarization--the QT interval and T-wave alternans (TWA)--during different phases of a physical exercise test. The cohort consisted of 1,975 patients undergoing an exercise test during which on-line electrocardiographic data were registered. Information on coronary risk factors and medication was recorded. The 2690A>C nucleotide variation in the KCNH2 gene corresponding to the K897T amino acid change was analysed after polymerase chain reaction with allele-specific TaqMan probes. Among all subjects, the QTc intervals did not differ between the three genotype groups (p> or =0.31, RANOVA). Women with the CC genotype tended to have longer QT intervals during the exercise test, but the difference was statistically significant only at rest (p = 0.011, ANOVA). This difference was also detected when the analysis was adjusted for several factors influencing the QT interval. No statistically significant effects of the K897T polymorphism on TWA were observed among all subjects (p = 0.16, RANOVA), nor in men and women separately. The K897T polymorphism of the KCNH2 gene may not be a major genetic determinant for the TWA, but the influence of the CC genotype on QT interval deserves further research among women.
The analysis of QT interval and repolarization morphology of the heart in chronic exposure to lead.
Kiełtucki, J; Dobrakowski, M; Pawlas, N; Średniawa, B; Boroń, M; Kasperczyk, S
2017-10-01
There are no common recommendations regarding electrocardiographic monitoring in occupationally exposed workers. Therefore, the present study was designed to investigate whether exposure to lead results in an increase of selected electrocardiography (ECG) pathologies, such as QT interval prolongation and repolarization disorders, in occupationally exposed workers. The study group included 180 workers occupationally exposed to lead compounds. The exposed group was divided according to the median of the mean blood lead level (PbB mean ) calculated based on a series of measurements performed during 5-year observation period (35 µg/dl) into two subgroups: low exposure (LE, PbB mean = 20.0-35.0 µg/dl) and high exposure (HE, PbB mean = 35.1-46.4 µg/dl). The control group consisted of 69 healthy workers without occupational exposure to lead. ECG evaluation included the analysis of heart rate (HR), QT interval and repolarization abnormalities. Mean QT interval was significantly greater in the exposed population than in the control group by 2%. In the HE group, mean QT interval was significantly greater than in the control group by 4% and significantly different from those noted in the LE group. Positive correlations between QT interval and lead exposure indices were also reported. Besides, there was a negative correlation between HR and blood lead level. Increased concentration of lead in the blood above 35 μg/dl is associated with the QT interval prolongation, which may trigger arrhythmias when combined with other abnormalities, such as long QT syndrome. Therefore, electrocardiographic evaluation should be a part of a routine monitoring of occupationally exposed populations.
Dynamic mechanical oscillations during metamorphosis of the monarch butterfly
Pelling, Andrew E; Wilkinson, Paul R; Stringer, Richard; Gimzewski, James K
2008-01-01
The mechanical oscillation of the heart is fundamental during insect metamorphosis, but it is unclear how morphological changes affect its mechanical dynamics. Here, the micromechanical heartbeat with the monarch chrysalis (Danaus plexippus) during metamorphosis is compared with the structural changes observed through in vivo magnetic resonance imaging (MRI). We employ a novel ultra-sensitive detection approach, optical beam deflection, in order to measure the microscale motions of the pupae during the course of metamorphosis. We observed very distinct mechanical contractions occurring at regular intervals, which we ascribe to the mechanical function of the heart organ. Motion was observed to occur in approximately 15 min bursts of activity with frequencies in the 0.4–1.0 Hz range separated by periods of quiescence during the first 83 per cent of development. In the final stages, the beating was found to be uninterrupted until the adult monarch butterfly emerged. Distinct stages of development were characterized by changes in frequency, amplitude, mechanical quality factor and de/repolarization times of the mechanical pulsing. The MRI revealed that the heart organ remains functionally intact throughout metamorphosis but undergoes morphological changes that are reflected in the mechanical oscillation. PMID:18682363
Liu, Pin W.; Blair, Nathaniel T.
2017-01-01
Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike broadening at frequencies as low as 1 Hz and that spike broadening resulted predominantly from frequency-dependent inactivation of Kv3 channels. Spike width helps to control transmitter release, conduction velocity, and firing patterns and understanding the role of particular potassium channels can help to guide new pharmacological strategies for targeting pain-sensing neurons selectively. PMID:28877968
Liu, Pin W; Blair, Nathaniel T; Bean, Bruce P
2017-10-04
Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC 50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike broadening at frequencies as low as 1 Hz and that spike broadening resulted predominantly from frequency-dependent inactivation of Kv3 channels. Spike width helps to control transmitter release, conduction velocity, and firing patterns and understanding the role of particular potassium channels can help to guide new pharmacological strategies for targeting pain-sensing neurons selectively. Copyright © 2017 the authors 0270-6474/17/379705-10$15.00/0.
Change of short-term memory effect in acute ischemic ventricular myocardium: a computational study.
Mei, Xi; Wang, Jing; Zhang, Hong; Liu, Zhi-cheng; Zhang, Zhen-xi
2014-02-01
The ionic mechanism of change in short-term memory (STM) during acute myocardial ischemia has not been well understood. In this paper, an advanced guinea pig ventricular model developed by Luo and Rudy was used to investigate STM property of ischemic ventricular myocardium. STM response was calculated by testing the time to reach steady-state action potential duration (APD) after an abrupt shortening of basic cycling length (BCL) in the pacing protocol. Electrical restitution curves (RCs), which can simultaneously visualize multiple aspects of APD restitution and STM, were obtained from dynamic and local S1S2 restitution portrait (RP), which consist of a longer interval stimulus (S1) and a shorter interval stimulus (S2). The angle between dynamic RC and local S1S2 RC reflects the amount of STM. Our results indicated that compared with control (normal) condition, time constant of STM response in the ischemic condition decreased significantly. Meanwhile the angle which reflects STM amount is less in ischemic model than that in control model. By tracking the effect of ischemia on intracellular ion concentration and membrane currents, we declared that changes in membrane currents caused by ischemia exert subtle influences on STM; it is only the decline of intracellular calcium concentration that give rise to the most decrement of STM. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Analysis of cardiomyocyte movement in the developing murine heart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Hisayuki; Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp; Tabata, Hidenori
The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cellmore » cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitanov, A.O.
1962-01-01
The nerve mechanisms involved in the control of the cardiac activity of rabbits, treated daily with small doses of Fe/sup 59/Cl/sub 3/ were examined during periods in which the electrocardiogram did not yet indicate signs of injury. Changes in the neutral control were detected by means of functional tests with NH/sub 3/ and adrenalin. The animals were treated with 1 and 10 mu C/ kg of body weight of Fe/sup 59/Cl/sub 3/ or with corresponding amounts of the stable Fe compound for periods of 18 to 20 months. It was found that internal exposure to radioactive Fe causes changes inmore » the response to breathing in of NH/ sub 3/ and to the intravenous injection of adrenalin, in particular in the intensity and the duration of the cardiac reflex of the circulating nerve. During the first 6 to 12 months the reaction is accompanied by a definite bradycardia, followed later by a decrease of the bradycardia. Upon treatment with adrenalin the irritability of many test animals was disturbed, as manifested by the appearance of auricular and nodal electrosystoles and of ventricular paroxysmal tachycardia. There was also a tendency toward changing the repolarization of the myocardium, indicating changes in the cardiac muscle. The effects were more marked in animals treated with the higher doses of Fe/sup 59/Cl/ sub 3/, but they are considered as being specific for Fe/sup 59/. (TTT)« less
Alcohol, cardiac arrhythmias and sudden death.
Kupari, M; Koskinen, P
1998-01-01
Studies in experimental animals have shown varying and apparently opposite effects of alcohol on cardiac rhythm and conduction. Given acutely to non-alcoholic animals, ethanol may even have anti-arrhythmic properties whereas chronic administration clearly increases the animals' susceptibility to cardiac arrhythmias. Chronic heavy alcohol use has been incriminated in the genesis of cardiac arrhythmias in humans. The evidence has come from clinical observations, retrospective case-control studies, controlled studies of consecutive admissions for arrhythmias, and prospective epidemiological investigations. Furthermore, electrophysiological studies have shown that acute alcohol administration facilitates the induction of tachyarrhythmias in selected heavy drinkers. The role of alcohol appears particularly conspicuous in idiopathic atrial fibrillation. Occasionally, ventricular tachyarrhythmias have also been provoked by alcohol intake. Several lines of evidence suggest that heavy drinking increases the risk of sudden cardiac death with fatal arrhythmia as the most likely mechanism. According to epidemiological studies this effect appears most prominent in middle-aged men and is only partly explained by confounding traits such as smoking and social class. The basic arrhythmogenic effects of alcohol are still insufficiently delineated. Subclinical heart muscle injury from chronic heavy use may be instrumental in producing patchy delays in conduction. The hyperadrenergic state of drinking and withdrawal may also contribute, as may electrolyte abnormalities, impaired vagal heart rate control, repolarization abnormalities with prolonged QT intervals and worsening of myocardial ischaemia or sleep apnoea. Most of what we know about alcohol and arrhythmias relates to heavy drinking. The effect of social drinking on clinical arrhythmias in non-alcoholic cardiac patients needs to be addressed further.
Guo, Jun; Wang, Tingzhong; Li, Xian; Shallow, Heidi; Yang, Tonghua; Li, Wentao; Xu, Jianmin; Fridman, Michael D.; Yang, Xiaolong; Zhang, Shetuan
2012-01-01
The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology. PMID:22879586
van Dijkman, Paul R M; Kuijpers, Dirkjan A; Blom, Bernadette M; van Herpen, Gerard
2002-01-01
We assessed the clinical applicability of dobutamine stress magnetic resonance imaging (DS-MRI) for the detection of myocardial ischemia and myocardial viability. One hundred patients with suspected coronary artery disease and inconclusive exercise electrocardiography or significant repolarization abnormalities on the resting ECG underwent breath hold DS-MRI (1 Tesla), 4 days after cessation of anti-ischemic medication. Three left ventricular short axis planes were imaged at increasing doses of dobutamine. Recovery of wall thickening in a previously diminished or non contracting segment at low dose dobutamine was considered proof of viability. Development of hypo-, a- or dyskinesia at higher doses of dobutamine was taken to indicate ischemia. If the DS-MRI test was positive for ischemia, coronary angiography was performed. If indicated, this was followed by revascularization. If DS-MRI did not demonstrate ischemia, neither angiography nor revascularization were carried out. Ninety five DS-MRI investigations were available for diagnosis. Forty two patients had DS-MRI scans positive for ischemia and subsequently coronary angiography assessment of the clinical applicability of DS-MRI for the detection of myocardial ischemia was performed. One patient was false-positive. All 53 patients with non-ischemic DS-MRI scans had follow-up for 11-23 months (mean 17 months). One patient died suddenly 2 weeks after the MRI-test. The other 52 patients did not experience any coronary event nor sudden cardiac death. The predictive value of a positive (for ischemia) DS-MRI test is 98% and the predictive value of a negative DS-MRI test is also 98%.
Yan, Dong; Cheng, Lu-feng; Song, Hong-Yan; Turdi, Subat; Kerram, Parhat
2007-08-01
Overdoses of haloperidol are associated with major ventricular arrhythmias, cardiac conduction block, and sudden death. The aim of this experiment was to study the effect of haloperidol on the action potentials in cardiac Purkinje fibers and papillary muscles under normal and simulated ischemia conditions in rabbits and guinea pigs. Using the standard intracellular microelectrode technique, we examined the effects of haloperidol on the action potential parameters [action potential amplitude (APA), phase 0 maximum upstroke velocity (V(max)), action potential amplitude at 90% of repolarization (APD(90)), and effective refractory period (ERP)] in rabbit cardiac Purkinje fibers and guinea pig cardiac papillary cells, in which both tissues were under simulated ischemic conditions. Under ischemic conditions, different concentrations of haloperidol depressed APA and prolonged APD(90) in a concentration-dependent manner in rabbit Purkinje fibers. Haloperidol (3 micromol/L) significantly depressed APA and prolonged APD(90), and from 1 micromol/L, haloperidol showed significant depression on V(max); ERP was not significantly affected. In guinea pig cardiac papillary muscles, the thresholds of significant reduction in APA, V(max), EPR, and APD(90) were 10, 0.3, 1, and 1 mumol/L, respectively, for haloperidol. Compared with cardiac conductive tissues, papillary muscles were more sensitive to ischemic conditions. Under ischemia, haloperidol prolonged ERP and APD(90) in a concentration-dependent manner and precipitated the decrease in V(max) induced by ischemia. The shortening of ERP and APD(90) in papillary muscle action potentials may be inhibited by haloperidol.
Hacihamdioglu, Duygu Ovunc; Fidanci, Kursat; Kilic, Ayhan; Gok, Faysal; Topaloglu, Rezan
2013-10-01
QT dispersion and JT dispersion are simple noninvasive arrhythmogenic markers that can be used to assess the homogeneity of cardiac repolarization. The aim of this study was to assess QT and JT dispersion and their relation with left ventricular systolic and diastolic functions in children with Bartter syndrome (BS). Nine neonatal patients with BS (median age 9.7 years) and 20 controls (median age 8 years) were investigated at rest. Both study and control subjects underwent electrocardiography (ECG) in which the interval between two R waves and QT intervals, corrected QT, QT dispersion, corrected QT dispersion, JT, corrected JT, JT dispersion and corrected JT dispersion were measured with 12-lead ECG. Two-dimensional, Doppler echocardiographic examinations were performed. Patients and controls did not differ for gender and for serum levels of potassium, magnesium, and calcium (p > 0.05). Both study and control subjects had normal echocardiographic examination and baseline myocardial performance indexes. The QT dispersion and JT dispersion were significantly prolonged in patients with BS compared to those of the controls {37.5 ms [interquartile range (IQR) 32.5-40] vs. 25.5 ms (IQR 20-30), respectively, p = 0.014 and 37.5 ms (IQR 27.5-40) vs. 22.5 ms (IQR 20-30), respectively, p = 0.003}. Elevated QT and JT dispersion during asymptomatic and normokalemic periods may be risk factors for the development of cardiac complications and arrhythmias in children with BS. In these patients the need for systematic cardiac screening and management protocol is extremely important for effective prevention.
Preparticipation evaluation of novice, middle-age, long-distance runners.
Aagaard, Philip; Sahlén, Anders; Bergfeldt, Lennart; Braunschweig, Frieder
2013-01-01
The purpose of this study was to assess the cardiovascular health and risk profile in middle-age men making an entry to participate for their first time in a long-distance race. Male first-time participants, 45 yr and older, in the world's largest cross-country running race, the Lidingöloppet, were evaluated with a medical history and physical examination, European systematic coronary risk evaluation (SCORE), 12-lead ECG, echocardiography, and blood tests. Further diagnostic workup was performed when clinically indicated. Of 265 eligible runners, 153 (58%, age 51 ± 5 yr) completed the study. Although the 10-yr fatal cardiovascular event risk was low (SCORE, 1%; interquartile range, 0%-1%), mild abnormalities were common, for example, elevated blood pressure (19%), left ventricular hypertrophy (6%), and elevated LDL cholesterol (5%). ECG changes compatible with the "athlete's heart" were present in 82%, for example, sinus bradycardia (61%) and/or early repolarization (32%). ECG changes considered training unrelated were found in 24%, for example, prolonged QTc-interval (13%), left axis deviation (5.3%), and left atrial enlargement (4%). In 14 runners (9%), additional diagnostic workup was clinically motivated, and 4 runners (2%) were ultimately discouraged from vigorous exercise because of QTc intervals >500 ms (n = 2), symptomatic atrioventricular block (n = 1), and cardiac tumor (n = 1). The physician examination and the ECG identified 12 of the 14 participants requiring further evaluation. Cardiovascular evaluation of middle-age men, including a physician examination and a 12-lead ECG, appears useful to identify individuals requiring further testing before vigorous exercise. The additional yield of routine echocardiography was small.
Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current.
Dallas, Mark L; Yang, Zhaokang; Boyle, John P; Boycott, Hannah E; Scragg, Jason L; Milligan, Carol J; Elies, Jacobo; Duke, Adrian; Thireau, Jérôme; Reboul, Cyril; Richard, Sylvain; Bernus, Olivier; Steele, Derek S; Peers, Chris
2012-10-01
Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.
Quaternion-based study of angular velocity of the cardiac vector during myocardial ischaemia.
Cruces, Pablo Daniel; Arini, Pedro David
2017-12-01
Early detection of acute ischaemia through non-invasive methods remains a challenge in health research. Ischaemic condition caused by a decrease in the blood supply in a cardiac region induces hypoxia and metabolic abnormalities that contribute to the electrical instability of the heart and to the development of slow conduction in damaged tissue. Herein, a percutaneous transluminal coronary angiography (PTCA) is considered as a model of supply ischaemia. We use the concept of quaternion to develop a robust method for assessing the angular velocity of cardiac vector in the orthogonal XYZ leads obtained from 92 patients undergoing the PTCA procedure. The maxima of angular velocity in both ventricular depolarization and repolarization are combined with traditional linear velocity indexes in order to obtain a detector of ischaemic episodes (Ischaemia Detector, ID). ID achieves 98%/100% of sensitivity/specificity when differentiating healthy subjects from patients with early ischaemia. Furthermore, it also shows high accuracy when the comparison is made between ischaemic subjects and patients with different non-ischaemic pathologic ST-deviations which are known to cause false positives, reaching 95%/98% of sensitivity/specificity. Moreover, the study of significant reductions (p<0.001) of angular velocity components allows extraction of distinct ischaemic common features which are useful for analyzing the dependence of vectorcardiogram signal on each site of occlusion. The sensitivity of injury location reaches values of 88% (RCA), 87% (LAD) and 80% (LCx). The high performance of the proposed method establishes a promising outcome for application in computerized assistance in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Cardinal, René; Ardell, Jeffrey L; Linderoth, Bengt; Vermeulen, Michel; Foreman, Robert D; Armour, J Andrew
2004-03-31
Spinal cord stimulation (SCS) represents an acceptable treatment modality for patients with chronic angina pectoris refractory to standard therapy, but its mechanism of action remains unclear. To develop an experimental paradigm to study this issue, ameroid (AM) constrictors were implanted around the left circumflex coronary artery (LCx) in canines. Six weeks later, unipolar electrograms were recorded from 191 sites in the LCx territory in the open-chest, anesthetized state under basal pacing at 150 beats/min. We investigated the effect of SCS on ST segment displacements induced in the collateral-dependent myocardium in response to two stressors: (i) transient bouts of rapid ventricular pacing (TRP: 240/min for 1 min) and (ii) angiotensin II administered to right atrial neurons via their coronary artery blood supply. ST segment responses to TRP consisted of ST segment elevation in central areas of the LCx territory and ST depression at more peripheral areas. Such responses were unchanged when TRP was applied under SCS. Shortening of repolarization intervals in the metabolically compromised myocardium in response to TRP was also unaffected by SCS. In contrast, ST segment responses to intracoronary angiotensin II, which consisted of increased ST elevation, were attenuated by SCS in 6/8 preparations. The modulator effects of SCS were greatest at sites at which the greatest responses to angiotensin II occurred in the absence of SCS. These data indicate that spinal cord stimulation may attenuate the deleterious effects that stressors exert on the myocardium with reduced coronary reserve, particularly stressors associated with chemical activation of the intrinsic cardiac nervous system. Copyright 2004 Elsevier B.V.
VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES
Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...
Left ventricular function in Friedreich's ataxia. An echocardiographic study.
Sutton, M G; Olukotun, A Y; Tajik, A J; Lovett, J L; Giuliani, E R
1980-01-01
Left ventricular function was assessed in seven patients with Friedreich's ataxia using computer-assisted analysis of the left ventricular echocardiograms and compared with those of 45 normal children matched for age and sex. The left ventricle in Friedreich's ataxia was symmetrically hypertrophied, cavity dimension was normal or small, and septal motion and peak velocity of circumferential shortening were normal in all patients. In diastole the duration of rapid filling was normal, peak rate of increase in left ventricular dimension was reduced in two patients, mitral valve opening was delayed with respect to minimum cavity dimension in seven, and there were significantly greater than normal increases in left ventricular dimension during the isovolumic period to mitral valve opening in seven, indicating abnormal and incoordinate relaxation. Peak rates of posterior wall systolic thickening and diastolic thinning were reduced in four and six patients, respectively, whereas peak rates of septal systolic thickening and diastolic thinning were reduced in one and four, respectively, suggesting a disproportionately greater impairment of the posterior wall than of septal function. The absence of asymmetric septal hypertrophy and mid-systolic closure of the aortic valve, the presence of normal septal motion, and the greater reduction in posterior wall than in septal dynamics are inconsistent with previous ideas that the heart disease of Friedreich's ataxia is identical to hypertrophic cardiomyopathy. Computer-assisted analysis of echocardiograms permits recognition of heart disease in Friedreich's ataxia before the onset of cardiac symptoms or development of clinical signs of heart disease. Images PMID:7426188
Is everything clear about Tako-tsubo syndrome?
Petrov, Ivo S; Tokmakova, Mariya P; Marchov, Daniel N; Kichukov, Kostadin N
2011-01-01
Tako-tsubo syndrome is a novel cardio-vascular disease affecting predominantly postmenopausal women exposed to unexpected strong emotional or physical stress, in the absence of significant coronary heart disease. It is characterized by acute onset of severe chest pain and/or acute left ventricular failure, ECG-changes, typical left ventricular angiographic findings, good prognosis and positive resolution of the morphological and clinical manifestations. First described in 1990 in Japan by Sato, Tako-tsubo cardiomyopathy is characterized by transient contractile abnormalities of the left ventricle, causing typical left ventricular apical ballooning at end-systole with concomitant compensatory basal hyperkinesia. There are also atypical forms, presenting with left ventricular systolic dysfunction which affects the mid-portions of the left ventricle. The etiology of the disease still remains unclear. Many theories have been put forward about the potential underlying pathophysiological mechanisms that may trigger this syndrome among which are the theory of catecholamine excess, the theory of multivessel coronary vasospasm, the ischemic theory, and the theory of microvascular dysfunction and dynamic left ventricular gradient induced by elevated circulating catecholamine levels. Adequate management of Tako-tsubo syndrome demands immediate preparation for coronary angiography. Once the diagnosis is made, treatment is primarily symptomatic and includes monitoring for complications. Patients with Tako-tsubo syndrome most frequently develop acute LV failure, pulmonary edema, rhythm and conductive disturbances and apical thrombosis. Treatment is symptomatic and includes administration of diuretics, vasodilators and mechanical support of circulation with intra-aortic balloon counterpulsation.
Dynamics of device innovation: implications for assessing value.
Gelijns, Annetine C; Russo, Mark J; Hong, Kimberly N; Brown, Lawrence D; Ascheim, Deborah D; Moskowitz, Alan J
2013-10-01
In recent years, there has been growing interest in evaluating the health and economic impact of medical devices. Payers increasingly rely on cost-effectiveness analyses in making their coverage decisions, and are adopting value-based purchasing initiatives. These analytic approaches, however, have been shaped heavily by their use in the pharmaceutical realm, and are ill-adapted to the medical device context. This study focuses on the development and evaluation of left ventricular assist devices (LVADs) to highlight the unique challenges involved in the design and conduct of device trials compared with pharmaceuticals. Devices are moving targets characterized by a much higher degree of post-introduction innovation and "learning by using" than pharmaceuticals. The cost effectiveness ratio of left ventricular assist devices for destination therapy, for example, decreased from around $600,000 per life year saved based on results from the pivotal trial to around $100,000 within a relatively short time period. These dynamics pose fundamental challenges to the evaluation enterprise as well as the policy-making world, which this paper addresses.
Vortex Formation Time is Not an Index of Ventricular Function
Vlachos, Pavlos P.; Little, William C.
2015-01-01
The diastolic intraventricular ring vortex formation and pinch-off process may provide clinically useful insights into diastolic function in health and disease. The vortex ring formation time (FT) concept, based on hydrodynamic experiments dealing with unconfined (large tank) flow, has attracted considerable attention and popularity. Dynamic conditions evolving within the very confined space of a filling, expansible ventricular chamber with relaxing and rebounding viscoelastic muscular boundaries, diverge from unconfined (large tank) flow and encompass rebounding walls’ suction and myocardial relaxation. Indeed, clinical/physiological findings seeking validation in vivo failed to support the notion that FT is an index of normal/abnormal diastolic ventricular function. Therefore, FT as originally proposed cannot and should not be utilized as such an index. Evidently, physiologically accurate models accounting for coupled hydrodynamic and (patho)physiological myocardial wall interactions with the intraventricular flow are still needed to enhance our understanding and yield diastolic function indices useful and reliable in the clinical setting. PMID:25609509
Aortic Wave Dynamics and Its Influence on Left Ventricular Workload
Pahlevan, Niema M.; Gharib, Morteza
2011-01-01
The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload. PMID:21853075
Fu, Lu; Cao, Jun-xian; Xie, Rong-sheng; Li, Jia; Han, Ying; Zhu, Li-qun; Dai, Ying-nan
2007-08-01
To explore whether the stretch of ischaemic myocardium could modulate the electrophysiological characteristics, especially repolarization via mechanoelectric feedback (MEF), as well as the effect of streptomycin (SM) on these changes. Methods Thirty-six wistar rats were randomly divided into four groups: control group (n = 9), SM group (n = 9), myocardial infarction (MI) group (n = 9), and MI + SM group (n = 9). After perfused on Langendorff, the isolated hearts were stretched for 5s by a ballon inflation of 0.2mL. After being stretched, the effect of the stretch was observed for 30s, including the 20, 20-70, 70, and 90% monophasic action potential duration (MAPD), i.e. MAPD(20), MAPD(20-70), MAPD(70), and MAPD(90), respectively, premature ventricular beats (PVB), and ventricular tachycardia (VT). Results The stretch caused a decrease in MAPD(20-70) (both P <0.01) and an increase in MAPD(90) (both P <0.01) in both control and MI groups. Moreover, the MAPD(90) in the MI group had increased more significantly than that in the control group (P <0.05). A concentration of 200 micromol/L of SM had no influence on both MAPD(20-70) and MAPD(90) of basic state (P > 0.05, except MAPD(20-70) between the control and SM groups, P < 0.01), whereas it had reduced the length of MAPD(90) (P < 0.05) and inhibited the decrease in MAPD(20-70) induced by the inflation. There was a decrease in the tendency of MAPD(70) after the stretch (P = NS) and SM had reversed the tendency, whereas MAPD(20) had no obvious changes after inflation. The incidence rate of PVB and VT in the MI group was higher than that in the control group after inflation (P < 0.01). The 200 micromol/L SM reduced the incidence rate of PVB, and obviously inhibited the occurrence of VT (P < 0.01). Stretch could alter the electrophysiological activities of myocardium via MEF, which could enhance in acute myocardial infarction and facilitate the generation and maintenance of malignant arrhythmias. SM could significantly inhibit the occurrence of arrhythmias, which may correlate with the effect on blocking stretch-activated ion channels.
Maleckar, Mary M; Lines, Glenn T; Koivumäki, Jussi T; Cordeiro, Jonathan M; Calloe, Kirstine
2014-11-01
The study investigates how increased Ito, as mediated by the activator NS5806, affects excitation-contraction coupling in chronic heart failure (HF). We hypothesized that restoring spike-and-dome morphology of the action potential (AP) to a healthy phenotype would be insufficient to restore the intracellular Ca(2) (+) transient (CaT), due to HF-induced remodelling of Ca(2+) handling. An existing mathematical model of the canine ventricular myocyte was modified to incorporate recent experimental data from healthy and failing myocytes, resulting in models of both healthy and HF epicardial, midmyocardial, and endocardial cell variants. Affects of NS5806 were also included in HF models through its direct interaction with Kv4.3 and Kv1.4. Single-cell simulations performed in all models (control, HF, and HF + drug) and variants (epi, mid, and endo) assessed AP morphology and underlying ionic processes with a focus on calcium transients (CaT), how these were altered in HF across the ventricular wall, and the subsequent effects of varying compound concentration in HF. Heart failure model variants recapitulated a characteristic increase in AP duration (APD) in the disease. The qualitative effects of application of half-maximal effective concentration (EC50) of NS5806 on APs and CaT are heterogeneous and non-linear. Deepening in the AP notch with drug is a direct effect of the activation of Ito; both Ito and consequent alteration of IK1 kinetics cause decrease in AP plateau potential. Decreased APD50 and APD90 are both due to altered IK1. Analysis revealed that drug effects depend on transmurality. Ca(2+) transient morphology changes-increased amplitude and shorter time to peak-are due to direct increase in ICa,L and indirect larger SR Ca(2+) release subsequent to Ito activation. Downstream effects of a compound acting exclusively on sarcolemmal ion channels are difficult to predict. Remediation of APD to pre-failing state does not ameliorate dysfunction in CaT; however, restoration of notch depth appears to impart modest benefit and a likelihood of therapeutic value in modulating early repolarization. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
A single-centre report on the characteristics of Tako-tsubo syndrome.
Teh, Andrew W; New, Gishel; Cooke, Jennifer
2010-02-01
Tako-tsubo cardiomyopathy is an increasingly recognised phenomenon characterised by chest pain, ECG abnormalities, cardiac biomarker elevation and transient left ventricular dysfunction without significant coronary artery obstruction. To report the clinical and echocardiographic characteristics from a large single-centre Australian series of patients with Tako-tsubo syndrome. We prospectively collected data on 23 consecutive patients presenting between November 2005 and November 2007. Baseline demographics, ECG, echocardiography and coronary angiography were performed on nearly all patients. All patients presented with chest pain; 87% were female. Various stressors were noted and cardiac Troponin-T was elevated in 91% of patients. All patients had non-obstructive coronary disease at angiography. 19/23 patients had initial and subsequent echocardiography. Mean ejection fraction was 50% at baseline and 64% at follow-up (p<0.0001). Right ventricular dysfunction was present in eight, dynamic left ventricular outflow tract obstruction in two, diastolic dysfunction in seven and two patients had the mid-cavity variant. This large prospective single-centre Australian series of Tako-tsubo syndrome is in concert with previous published series. Complete recovery of left ventricular function on echocardiographic follow-up was typical. Although its pathogenesis remains unclear, early distinction from acute coronary syndromes is important and the prognosis is reassuringly good. Crown Copyright (c) 2009. Published by Elsevier B.V. All rights reserved.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-06-11
Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.