Silverton, Natalie A; Patel, Ravi; Zimmerman, Josh; Ma, Jianing; Stoddard, Greg; Selzman, Craig; Morrissey, Candice K
2018-02-15
To determine whether intraoperative measures of right ventricular (RV) function using transesophageal echocardiography are associated with subsequent RV failure after left ventricular assist device (LVAD) implantation. Retrospective, nonrandomized, observational study. Single tertiary-level, university-affiliated hospital. The study comprised 100 patients with systolic heart failure undergoing elective LVAD implantation. Transesophageal echocardiographic images before and after cardiopulmonary bypass were analyzed to quantify RV function using tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (S'), fractional area change (FAC), RV global longitudinal strain, and RV free wall strain. A chart review was performed to determine which patients subsequently developed RV failure (right ventricular assist device placement or prolonged inotrope requirement ≥14 days). Nineteen patients (19%) subsequently developed RV failure. Postbypass FAC was the only measure of RV function that distinguished between the RV failure and non-RV failure groups (21.2% v 26.5%; p = 0.04). The sensitivity, specificity, and area under the curve of an abnormal RV FAC (<35%) for RV failure after LVAD implantation were 84%, 20%, and 0.52, respectively. No other intraoperative measure of RV function was associated with subsequent RV failure. RV failure increased ventilator time, intensive care unit and hospital length of stay, and mortality. Intraoperative measures of RV function such as tricuspid annular plane systolic excursion, tricuspid annular systolic velocity, and RV strain were not associated with RV failure after LVAD implantation. Decreased postbypass FAC was significantly associated with RV failure but showed poor discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.
Joshi, Subodh B; Roswell, Robert O; Salah, Ali K; Zeman, Peter R; Corso, Paul J; Lindsay, Joseph; Fuisz, Anthon R
2010-01-01
A reduction in right ventricular function commonly occurs in the early postoperative period after coronary artery bypass graft surgery (CABG). We sought to determine the longer-term effect of CABG on right ventricular function. Cardiac magnetic resonance imaging was performed before and approximately 3 months after surgery in 28 patients undergoing elective CABG. Right ventricular (RV) ejection fraction was assessed by planimetry of electrocardiographically gated cine images. There was a statistically significant increase in left ventricular ejection fraction from 50% to 58% (P=.003) after CABG. RV ejection fraction also increased from 54% to 60% (P=.002). In patients with lower baseline RV ejection fraction (below the median, < 53%), this parameter improved from 47% to 57% (P<.001). Both on-pump (47% vs. 62%, P=.003) as well as off-pump CABG (47% vs. 55%, P=.009) lead to an improvement in RV function in patients in the initial low RV ejection fraction group. Long-term right ventricular function was not adversely affected by CABG. An improvement in RV function occurred after surgery in patients with low baseline RV ejection fraction and was similar in patients who underwent surgery with or without cardiopulmonary bypass.
Mouton, Stéphanie; Ridon, Héléne; Fertin, Marie; Pentiah, Anju Duva; Goémine, Céline; Petyt, Grégory; Lamblin, Nicolas; Coisne, Augustin; Foucher-Hossein, Claude; Montaigne, David; de Groote, Pascal
2017-10-15
Right ventricular (RV) systolic function is a powerful prognostic factor in patients with systolic heart failure. The accurate estimation of RV function remains difficult. The aim of the study was to determine the diagnostic accuracy of 2D-speckle tracking RV strain in patients with systolic heart failure, analyzing both free and posterolateral walls. Seventy-six patients with dilated cardiopathy (left ventricular end-diastolic volume≥75ml/m 2 ) and left ventricular ejection fraction≤45% had an analysis of the RV strain. Feasibility, reproducibility and diagnostic accuracy of RV strain were analyzed and compared to other echocardiographic parameters of RV function. RV dysfunction was defined as a RV ejection fraction≤40% measured by radionuclide angiography. RV strain feasibility was 93.9% for the free-wall and 79.8% for the posterolateral wall. RV strain reproducibility was good (intra-observer and inter-observer bias and limits of agreement of 0.16±1.2% [-2.2-2.5] and 0.84±2.4 [-5.5-3.8], respectively). Patients with left heart failure have a RV systolic dysfunction that can be unmasked by advanced echocardiographic imaging: mean RV strain was -21±5.7% in patients without RV dysfunction and -15.8±5.1% in patients with RV dysfunction (p=0.0001). Mean RV strain showed the highest diagnostic accuracy to predict depressed RVEF (area under the curve (AUC) 0.75) with moderate sensitivity (60.5%) but high specificity (87.5%) using a cutoff value of -16%. RV strain seems to be a promising and more efficient measure than previous RV echocardiographic parameters for the diagnosis of RV systolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Giovanardi, Paolo; Tincani, Enrico; Stefanelli, Guglielmo; Turrini, Fabrizio; Magnavacchi, Paolo; Sansoni, Stefania; Zennaro, Mauro; Pinelli, Giovanni; Tondi, Stefano
2017-04-01
Right ventricular (RV) function is difficult to be measured but plays a role in morbility and mortality of patients with cardiopulmonary diseases, so many echocardiographic parameters have been developed from M-mode, B-mode and Doppler tissue imaging (DTI) evaluation. Right ventricular presystolic peak velocity (RVPrP) measured with DTI of the tricuspidal annulus and its changes in RV dysfunction have never been assessed in a patient's cohort of stable patients with cardiovascular risk factors. RVPrP velocity could have a role in RV function evaluation; this study addresses such issue. Four hundred thirty-six consecutive patients were submitted to a complete echocardiographic examination with the contemporary evaluation of the following RV function indexes: Tricuspid Annulus Plane Systolic Excurtion (TAPSE), RV Systolic Peak (RVSyP) and RVPrP. Pulmonary artery systolic pressure (PASP), left ventricular and RV diastolic function were also evaluated. According to TAPSE and RVSyP taken alone or in combination, 113 patients had RV dysfunction, while 323 patients had normal RV function. RVPrP was reduced in patient's group with RV dysfunction with respect to patient's group with preserved RV function (16.48±7.3 cm/s vs. 23.98±8.4 cm/s, respectively, P<0.001). RVPrP was related with RVSyP (P<0.001) and with TAPSE (P=0.002). TAPSE and RVSyP revealed a poor concordance to define RV dysfunction. PASP was higher in patient's group with reduced RV function (P=0.033). The study showed RVPrP able to detect stable patients with RV dysfunction.
Motoji, Yoshiki; Tanaka, Hidekazu; Fukuda, Yuko; Sano, Hiroyuki; Ryo, Keiko; Imanishi, Junichi; Miyoshi, Tatsuya; Sawa, Takuma; Mochizuki, Yasuhide; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-ichi
2015-04-01
Although impaired right ventricular (RV) performance has been associated with adverse outcomes for pulmonary hypertension (PH) patients, the relationship between bi-ventricular interdependence and outcomes is not yet fully understood. We studied 96 PH patients. RV systolic function was assessed by means of RV free-wall longitudinal speckle-tracking strain (RV-free), and left ventricular (LV) filling as early diastolic transmitral flow velocity (TMF-E). RV-free ≤19 % and TMF-E <60 cm/s were adopted as pre-defined cut-offs for RV systolic dysfunction and LV under-filling, respectively, associated with worse outcomes. Long-term outcome was tracked over 2.2 years. RV-free correlated significantly with TMF-E (r = 0.57, p < 0.001).TMF-E and RV-free were significantly lower in patients with than in those without cardiac events. RV systolic dysfunction and LV under-filling was observed in 35 patients. These features were associated with worse long-term survival compared to other sub-groups (log-rank p = 0.012). A sequential Cox model based on clinical variables including world health organization functional class IV and brain natriuretic peptide >150 pg/dl (χ(2) = 1.2) was improved by the addition of RV-free (χ(2) = 5.5, p = 0.04) as well as of TMF-E (χ(2) = 11.5, p = 0.01). In conclusions, RV systolic function was shown to correlate significantly with LV filling in PH patients. In addition, not only assessment of RV systolic function, but also of a combined bi-ventricular parameter comprising RV systolic function and LV filling may well have clinical implications for more successful management of PH patients.
Lindsay, Alistair C; Harron, Katie; Jabbour, Richard J; Kanyal, Ritesh; Snow, Thomas M; Sawhney, Paramvir; Alpendurada, Francisco; Roughton, Michael; Pennell, Dudley J; Duncan, Alison; Di Mario, Carlo; Davies, Simon W; Mohiaddin, Raad H; Moat, Neil E
2016-07-01
Cardiovascular magnetic resonance (CMR) can provide important structural information in patients undergoing transcatheter aortic valve implantation. Although CMR is considered the standard of reference for measuring ventricular volumes and mass, the relationship between CMR findings of right ventricular (RV) function and outcomes after transcatheter aortic valve implantation has not previously been reported. A total of 190 patients underwent 1.5 Tesla CMR before transcatheter aortic valve implantation. Steady-state free precession sequences were used for aortic valve planimetry and to assess ventricular volumes and mass. Semiautomated image analysis was performed by 2 specialist reviewers blinded to patient treatment. Patient follow-up was obtained from the Office of National Statistics mortality database. The median age was 81.0 (interquartile range, 74.9-85.5) years; 50.0% were women. Impaired RV function (RV ejection fraction ≤50%) was present in 45 (23.7%) patients. Patients with RV dysfunction had poorer left ventricular ejection fractions (42% versus 69%), higher indexed left ventricular end-systolic volumes (96 versus 40 mL), and greater indexed left ventricular mass (101 versus 85 g/m(2); P<0.01 for all) than those with normal RV function. Median follow-up was 850 days; 21 of 45 (46.7%) patients with RV dysfunction died, compared with 43 of 145 (29.7%) patients with normal RV function (P=0.035). After adjustment for significant baseline variables, both RV ejection fraction ≤50% (hazard ratio, 2.12; P=0.017) and indexed aortic valve area (hazard ratio, 4.16; P=0.025) were independently associated with survival. RV function, measured on preprocedural CMR, is an independent predictor of mortality after transcatheter aortic valve implantation. CMR assessment of RV function may be important in the risk stratification of patients undergoing transcatheter aortic valve implantation. © 2016 American Heart Association, Inc.
Moreira, Henrique T; Volpe, Gustavo J; Marin-Neto, José A; Ambale-Venkatesh, Bharath; Nwabuo, Chike C; Trad, Henrique S; Romano, Minna M D; Pazin-Filho, Antonio; Maciel, Benedito C; Lima, João A C; Schmidt, André
2017-03-01
Right ventricular (RV) impairment is postulated to be responsible for prominent systemic congestion in Chagas disease. However, occurrence of primary RV dysfunction in Chagas disease remains controversial. We aimed to study RV systolic function in patients with Chagas disease using cardiac magnetic resonance. This cross-sectional study included 158 individuals with chronic Chagas disease who underwent cardiac magnetic resonance. RV systolic dysfunction was defined as reduced RV ejection fraction based on predefined cutoffs accounting for age and sex. Multivariable logistic regression was used to verify the relationship of RV systolic dysfunction with age, sex, functional class, use of medications for heart failure, atrial fibrillation, and left ventricular systolic dysfunction. Mean age was 54±13 years, 51.2% men. RV systolic dysfunction was identified in 58 (37%) individuals. Although usually associated with reduced left ventricular ejection fraction, isolated RV systolic dysfunction was found in 7 (4.4%) patients, 2 of them in early stages of Chagas disease. Presence of RV dysfunction was not significantly different in patients with indeterminate/digestive form of Chagas disease (35.7%) compared with those with Chagas cardiomyopathy (36.8%) ( P =1.000). In chronic Chagas disease, RV systolic dysfunction is more commonly associated with left ventricular systolic dysfunction, although isolated and early RV dysfunction can also be identified. © 2017 American Heart Association, Inc.
Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S; Weissmann, Norbert; Ghofrani, Hossein A; Schermuly, Ralph T
2018-01-01
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.
Sydykov, Akylbek; Mamazhakypov, Argen; Petrovic, Aleksandar; Kosanovic, Djuro; Sarybaev, Akpay S.; Weissmann, Norbert; Ghofrani, Hossein A.; Schermuly, Ralph T.
2018-01-01
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function. PMID:29875701
Liakopoulos, Oliver J; Ho, Jonathan K; Yezbick, Aaron B; Sanchez, Elizabeth; Singh, Vivek; Mahajan, Aman
2010-11-01
Augmentation of coronary perfusion may improve right ventricular (RV) failure following acute increases of RV afterload. We investigated whether intra-aortic balloon counterpulsation (IABP) can improve cardiac function by enhancing myocardial perfusion and reversing compromised biventricular interactions using a model of acute pressure overload. In 10 anesthetized pigs, RV failure was induced by pulmonary artery constriction and systemic hypertension strategies with IABP, phenylephrine (PE), or the combination of both were tested. Systemic and ventricular hemodynamics [cardiac index(CI), ventricular pressures, coronary driving pressures (CDP)] were measured and echocardiography was used to assess tricuspid valve regurgitation, septal positioning (eccentricity index (ECI)), and changes in ventricular and septal dimensions and function [myocardial performance index (MPI), peak longitudinal strain]. Pulmonary artery constriction resulted in doubling of RV systolic pressure (54 ± 4mm Hg), RV distension, severe TR (4+) with decreased RV function (strain: -33%; MPI: +56%), septal flattening (Wt%: -35%) and leftward septal shift (ECI:1.36), resulting in global hemodynamic deterioration (CI: -51%; SvO(2): -26%), and impaired CDP (-30%; P<0.05). IABP support alone failed to improve RV function despite higher CDP (+33%; P<0.05). Systemic hypertension by PE improved CDP (+70%), RV function (strain: +22%; MPI: -21%), septal positioning (ECI:1.12) and minimized TR, but LV dysfunction (strain: -25%; MPI: +31%) occurred after LV afterloading (P<0.05). With IABP, less PE (-41%) was needed to maintain hypertension and CDP was further augmented (+25%). IABP resulted in LV unloading and restored LV function, and increased CI (+46%) and SvO(2) (+29%; P<0.05). IABP with minimal vasopressors augments myocardial perfusion pressure and optimizes RV function after pressure-induced failure. Copyright © 2010 Elsevier Inc. All rights reserved.
Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod
2018-05-29
Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.
Maslow, Andrew; Schwartz, Carl; Mahmood, Feroze; Singh, Arun; Heerdt, Paul M
2009-07-01
In this report, a case of right ventricular (RV) failure, hemodynamic instability, and systemic organ failure is described to highlight how paradoxical ventricular systolic septal motion (PVSM), or a rightward systolic displacement of the interventricular septum, may contribute to RV ejection. Multiple inotropic medications and vasopressors were administered to treat right heart failure and systemic hypotension in a patient following combined aortic and mitral valve replacement. In the early postoperative period, echocardiographic evaluation revealed adequate left ventricular systolic function, akinesis of the RV myocardial tissues, and PVSM. In the presence of PVSM, RV fractional area of contraction was > or =35% despite akinesis of the primary RV myocardial walls. The PVSM appeared to contribute toward RV ejection. As a result, the need for multiple inotropes was re-evaluated, in considering that end-organ dysfunction was the result of systemic hypotension and prolonged vasopressor administration. After discontinuation of phosphodiesterase inhibitors, native vascular tone returned and the need for vasopressors declined. This was followed by recovery of systemic organ function. Echocardiographic re-evaluation two years later, revealed persistent akinesis of the RV myocardial tissues and PVSM, the latter appearing to contribute toward RV ejection. This case highlights the importance of left to RV interactions, and how PVSM may mediate these hemodynamic interactions.
Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M.; Kiely, David G.
2015-01-01
Abstract Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH. PMID:26401257
Swift, Andrew J; Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G
2015-09-01
Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH.
Smolarek, Dorota; Gruchała, Marcin; Sobiczewski, Wojciech
2017-01-01
Estimation of right ventricular (RV) performance still remains technically challenging due to its anatomical and functional distinctiveness. The current guidelines for the echocardiographic quantification of RV function recommend using multiple indices to describe the RV in a thorough and comprehensive manner, such as RV index of myocardial performance, tricuspid annular plane systolic excursion, fractional area change, Doppler tissue imaging-derived tricuspid lateral annular systolic velocity (S'-wave), three-dimensional RV ejection fraction (3D RVEF), RV longitudinal strain (RVLS)/strain rate by speckle- tracking echocardiography (STE). Among these, the last one mentioned here is an innovative and a particularly promising tool that yields more precise information about complex regional and global RV mechanics. STE was initially designed to evaluate left ventricular function, but recently it has been introduced to assess RV performance, which is difficult due to its unique structure and physiology. Many studies have shown that both free wall and 6-segment RVLS present a stronger correlation with the RVEF assessed by cardiac magnetic resonance than conventional parameters and seem to be more sensitive in detecting myocardial dysfunction at an earlier, subclinical stage.
Harjola, Veli-Pekka; Mebazaa, Alexandre; Čelutkienė, Jelena; Bettex, Dominique; Bueno, Hector; Chioncel, Ovidiu; Crespo-Leiro, Maria G; Falk, Volkmar; Filippatos, Gerasimos; Gibbs, Simon; Leite-Moreira, Adelino; Lassus, Johan; Masip, Josep; Mueller, Christian; Mullens, Wilfried; Naeije, Robert; Nordegraaf, Anton Vonk; Parissis, John; Riley, Jillian P; Ristic, Arsen; Rosano, Giuseppe; Rudiger, Alain; Ruschitzka, Frank; Seferovic, Petar; Sztrymf, Benjamin; Vieillard-Baron, Antoine; Yilmaz, Mehmet Birhan; Konstantinides, Stavros
2016-03-01
Acute right ventricular (RV) failure is a complex clinical syndrome that results from many causes. Research efforts have disproportionately focused on the failing left ventricle, but recently the need has been recognized to achieve a more comprehensive understanding of RV anatomy, physiology, and pathophysiology, and of management approaches. Right ventricular mechanics and function are altered in the setting of either pressure overload or volume overload. Failure may also result from a primary reduction of myocardial contractility owing to ischaemia, cardiomyopathy, or arrhythmia. Dysfunction leads to impaired RV filling and increased right atrial pressures. As dysfunction progresses to overt RV failure, the RV chamber becomes more spherical and tricuspid regurgitation is aggravated, a cascade leading to increasing venous congestion. Ventricular interdependence results in impaired left ventricular filling, a decrease in left ventricular stroke volume, and ultimately low cardiac output and cardiogenic shock. Identification and treatment of the underlying cause of RV failure, such as acute pulmonary embolism, acute respiratory distress syndrome, acute decompensation of chronic pulmonary hypertension, RV infarction, or arrhythmia, is the primary management strategy. Judicious fluid management, use of inotropes and vasopressors, assist devices, and a strategy focusing on RV protection for mechanical ventilation if required all play a role in the clinical care of these patients. Future research should aim to address the remaining areas of uncertainty which result from the complexity of RV haemodynamics and lack of conclusive evidence regarding RV-specific treatment approaches. © 2016 The Authors European Journal of Heart Failure © 2016 European Society of Cardiology.
Cameli, M; Bernazzali, S; Lisi, M; Tsioulpas, C; Croccia, M G; Lisi, G; Maccherini, M; Mondillo, S
2012-09-01
Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and the success of using left ventricular assist devices in patients with refractory heart failure. RV deformation analysis by speckle tracking echocardiography (STE) has recently allowed the analysis of RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed to explore the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) among patients referred for cardiac transplantation. Right heart catheterization and transthoracic echo-Doppler were simultaneously performed in 47 patients referred for cardiac transplant assessment due to refractory heart failure (ejection fraction 25.1 ± 4.5%). Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging RV free-wall segments (free-wall RVLS). We also calculated. Tricuspid S' and tricuspid annular plane systolic excursion (TAPSE). No significant correlation was observed for TAPSE on tricuspid S' with RV stroke volume (r = 0.14 and r = 0.06, respectively). A close negative correlation between free-wall RVLS and RVSWI was found (r = -0.82; P < .0001). Furthermore, free-wall RVLS showed the highest diagnostic accuracy (area under the curve of 0.90) with good sensitivity and specificity of 95% and 91%, respectively, to predict depressed RVSWI using a cutoff value less than -11.8%. Among patients referred for heart transplantation, TAPSE and tricuspid S' did not correlate with invasively obtained RVSWI. RV longitudinal deformation analysis by STE correlated with RVSWI, providing a better estimate of RV systolic performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Jellis, Christine L; Yingchoncharoen, Teerapat; Gai, Neville; Kusunose, Kenya; Popović, Zoran B; Flamm, Scott; Kwon, Deborah
2018-01-01
Right ventricular (RV) fibrosis is increasingly recognized as the underlying pathological substrate in a variety of clinical conditions. We sought to employ cardiac magnetic resonance (CMR) techniques of strain imaging and longitudinal relaxation time (T 1 ) mapping to better examine the relationship between RV function and structure. Our aim was to initially evaluate the feasibility of these techniques to evaluate the right ventricle. We then sought to explore the relationship between RV function and underlying fibrosis, along with examining the evolution of RV remodeling according to the amount of baseline fibrosis. Echocardiography was performed in 102 subjects with non-ischemic cardiomyopathy. Right ventricular parameters were assessed including: fractional area change (FAC) and longitudinal strain. The same cohort underwent CMR. Post-contrast T 1 mapping was performed as a marker of fibrosis with a Look-Locker technique using inversion recovery imaging. Mid-ventricular post-contrast T 1 values of the RV free wall, RV septum and lateral LV were calculated using prototype analysis software. Biventricular volumetric data including ejection fraction was measured by CMR using a cine short axis stack. CMR strain analysis was also performed to assess 2D RV longitudinal and radial strain. Simultaneous biochemical and anthropometric data were recorded. Subjects were followed over a median time of 29 months (IQR 20-37 months) with echocardiography to evaluate temporal change in RV FAC according to baseline post-contrast T 1 values. Longitudinal data analysis was performed to adjust for patient loss during follow-up. Subjects (62% men, 51 ± 15 years) had mild to moderately impaired global RV systolic function (RVEF = 39 ± 15%; RVEDV = 187 ± 69 ml; RVESV = 119 ± 68 ml) and moderate left ventricular dysfunction at baseline (LVEF 30 ± 17%). Good correlation was observed between mean LV and RV post-contrast T 1 values (r = 0.652, p < 0.001), with similar post-contrast T 1 values maintained in both the RV free wall and septum (r = 0.761, p < 0.001). CMR RVEF demonstrated a proportional correlation with echocardiographic measures of RV longitudinal function and CMR RV strain (longitudinal r = -0.449, p = 0.001; radial r = -0.549, p < 0.001). RVEF was related to RV post-contrast T 1 values, particularly in those with RV dysfunction (free wall T 1 r = 0.259 p = 0.027; septal T 1 r = 0.421 p < 0.001). RV strain was also related to RV post-contrast T 1 values (r = -0.417, p = 0.002). Linear regression analysis demonstrated strain and post-contrast T1 values to be independently associated with RVEF. Subjects with severe RV dysfunction (CMR RVEF <25%) demonstrated lower RV CMR strain (longitudinal p = 0.018; radial p < 0.001), RV T 1 values (free wall p = 0.013; septum <0.001) and RV longitudinal echocardiography parameters despite no difference in afterload. During follow-up, those with RV free wall post-contrast T 1 values ≥ 350 ms demonstrated ongoing improvement in FAC (Δ6%), whilst values <350 ms were associated with deterioration in RV function (ΔFAC = -5%) (p = 0.026). CMR provides a comprehensive method by which to evaluate right ventricular function. Post-contrast T 1 mapping and CMR strain imaging are technically feasible and provide incremental information regarding global RV function and structure. The proportional relationship between RV function and post-contrast T 1 values supports that myocardial fibrosis is a causative factor of RV dysfunction in NICM, irrespective of RV afterload. This same structural milieu also appears integral to the propensity for both positive and negative RV remodeling long-term, suggestive that this is also determined by the degree of underlying RV fibrosis.
Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension
NASA Astrophysics Data System (ADS)
Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce
2012-11-01
Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.
Huang, Yu-Sen; Hsu, Hsao-Hsun; Chen, Jo-Yu; Tai, Mei-Hwa; Jaw, Fu-Shan; Chang, Yeun-Chung
2014-01-01
This study strived to evaluate the relationship between degree of pulmonary emphysema and cardiac ventricular function in chronic obstructive pulmonary disease (COPD) patients with pulmonary hypertension (PH) using electrocardiographic-gated multidetector computed tomography (CT). Lung transplantation candidates with the diagnosis of COPD and PH were chosen for the study population, and a total of 15 patients were included. The extent of emphysema is defined as the percentage of voxels below -910 Hounsfield units in the lung windows in whole lung CT without intravenous contrast. Heart function parameters were measured by electrocardiographic-gated CT angiography. Linear regression analysis was conducted to examine the associations between percent emphysema and heart function indicators. Significant correlations were found between percent emphysema and right ventricular (RV) measurements, including RV end-diastolic volume (R(2) = 0.340, p = 0.023), RV stroke volume (R(2) = 0.406, p = 0.011), and RV cardiac output (R(2) = 0.382, p = 0.014); the correlations between percent emphysema and left ventricular function indicators were not observed. The study revealed that percent emphysema is correlated with RV dysfunction among COPD patients with PH. Based on our findings, percent emphysema can be considered for use as an indicator to predict the severity of right ventricular dysfunction among COPD patients.
Physiologic pacing: new modalities and pacing sites.
Padeletti, Luigi; Lieberman, Randy; Valsecchi, Sergio; Hettrick, Douglas A
2006-12-01
Right ventricular (RV) apical pacing impairs left ventricular function by inducing dys-synchronous contraction and relaxation. Chronic RV apical pacing is associated with an increased risk of atrial fibrillation, morbidity, and even mortality. These observations have raised questions regarding the appropriate pacing mode and site, leading to the introduction of algorithms and new pacing modes to reduce the ventricular pacing burden in dual chamber devices, and a shift of the pacing site away from the RV apex. However, further investigations are required to assess the long-term results of pacing from alternative sites in the right ventricle, because long-term results so far are equivocal. The potential benefit of prophylactic biventricular, mono-chamber left ventricular, and bifocal RV pacing should be explored in selected patients with a narrow QRS complex, especially those with impaired left ventricular function. His bundle pacing is a promising and evolving technique that requires improvements in lead technology.
Bontemps, L; Merabet, Y; Chevalier, P; Itti, R
2013-01-01
Gated radionuclide ventriculography (RNV) may be used for the evaluation of the right ventricular function. However, the accuracy of the method should be clinically validated in patients suffering from diseases with specific pathology of the right ventricle (RV) and with possible left ventricular (LV) interaction. Three groups of 15 patients each, diagnosed with arrhythmogenic right ventricular dysplasia (ARVD), pulmonary artery hypertension (PAH) or atrial septal defect (ASD) were compared to a group of normal subjects. The parameters for both ventricles were evaluated separately (ejection fractions: LVEF and RVEF, and intraventricular synchronism quantified as phase standard deviation: LVPSD and RVPSD) as well as the relation or interdependence of the right to left ventricle (RV/LV volume ratio, LV/RV ejection fraction and stroke volume ratios, and interventricular synchronism). All the variables as a whole were analyzed to identify groups of patients according to their functional behaviour. Significant differences were found between the patients and control group for the RV function while the LV function remained mostly within normal limits. When the RV function was considered, the control group and ASD patient group showed differences regarding the ARVD and PAH patients. On evaluating the RV/LV ratios, differences were found between the control group and the ASD group. In the PAH patients, LV function showed differences in relation to the rest of the groups. RNV is a reliable clinical tool to evaluate RV function in patients with RV abnormality. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.
Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina
2017-04-01
The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; p<0.0001). No correlation could be established between 2D estimates of RV size and actual 3D volumetric end-diastolic volumes (Spearman's rho 0.15; p = 0.25). The 2D assessment of right ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.
Atluri, Pavan; Fairman, Alexander S.; MacArthur, John W.; Goldstone, Andrew B.; Cohen, Jeffrey E.; Howard, Jessica L.; Zalewski, Christyna M.; Shudo, Yasuhiro; Woo, Y. Joseph
2014-01-01
Background Continuous flow left ventricular assist devices (CF LVAD) are being implanted with increasing frequency for end-stage heart failure. At the time of LVAD implant, a large proportion of patients have pulmonary hypertension, right ventricular (RV) dysfunction, and tricuspid regurgitation (TR). RV dysfunction and TR can exacerbate renal dysfunction, hepatic dysfunction, coagulopathy, edema, and even prohibit isolated LVAD implant. Repairing TR mandates increased cardiopulmonary bypass time and bicaval cannulation, which should be reserved for the time of orthotopic heart transplantation. We hypothesized that CF LVAD implant would improve pulmonary artery pressures, enhance RV function, and minimize TR, obviating need for surgical tricuspid repair. Methods One hundred fourteen continuous flow LVADs implanted from 2005 through 2011 at a single center, with medical management of functional TR, were retrospectively analyzed. Pulmonary artery pressures were measured immediately prior to and following LVAD implant. RV function and TR were graded according to standard echocardiographic criteria, prior to, immediately following, and long-term following LVAD. Results There was a significant improvement in post-VAD mean pulmonary arterial pressures (26.6 ± 4.9 vs. 30.2 ± 7.4 mmHg, p = 0.008) with equivalent loading pressures (CVP = 12.0 ± 4.0 vs. 12.1 ± 5.1 p = NS). RV function significantly improved, as noted by right ventricular stroke work index (7.04 ± 2.60 vs. 6.05 ± 2.54, p = 0.02). There was an immediate improvement in TR grade and RV function following LVAD implant, which was sustained long term. Conclusion Continuous flow LVAD implant improves pulmonary hypertension, RV function, and tricuspid regurgitation. TR may be managed nonoperatively during CF LVAD implant. PMID:24118109
Breatnach, Colm R; Franklin, Orla; James, Adam T; McCallion, Naomi; El-Khuffash, Afif
2017-09-01
Right ventricular (RV) functional assessment in premature infants includes basal longitudinal strain (RV BLS), RV systolic tissue Doppler velocity (RV s'), tricuspid annular plane systolic excursion (TAPSE) and RV fractional area change (FAC). A hyperdynamic left ventricle (LV) may influence RV measures of displacement (TAPSE) and velocity (RV s') but not measures of relative change of length (RV BLS) or area (FAC). We aimed to explore this hypothesis in preterm infants with a patent ductus arteriosus (PDA). We measured LV function (ejection fraction (LV EF); left ventricular output) and RV function (RV BLS; RV s'; TAPSE; FAC) on days 1, 2 and 5-7 in infants <29 weeks. The cohort was divided based on PDA presence by days 5-7. LV and RV function measurements were compared between the groups using two-way analysis of variance with repeated measures. 121 infants with a mean (SD) gestation and birth weight of 26.8 (1.4) weeks and 968 (250) g were enrolled. By days 5-7, the PDA remained open in 83 (69%), with evidence of hyperdynamic LV function. There was no difference in RV s' (5.3 (0.9) vs 5.1 (1.0) cm/s, p=0.3) or TAPSE (6.2 (1.3) vs 6.1 (1.2) mm, p=0.7) between infants with and without a PDA, but infants in the PDA group had lower RV FAC (41 (8) vs 47 (10) %, p<0.01) and lower RV BLS (-24.2 (5.0) vs -26.2 (4.1) %, p=0.03). LV influence on RV functional parameters must be taken into account when interpreting of RV function using those techniques. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Lakatos, Bálint; Tősér, Zoltán; Tokodi, Márton; Doronina, Alexandra; Kosztin, Annamária; Muraru, Denisa; Badano, Luigi P; Kovács, Attila; Merkely, Béla
2017-03-27
Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions.Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography.Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction's ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions.The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases.
Right ventricular systolic function in hypertensive heart failure.
Oketona, O A; Balogun, M O; Akintomide, A O; Ajayi, O E; Adebayo, R A; Mene-Afejuku, T O; Oketona, O T; Bamikole, O J
2017-01-01
Heart failure (HF) is a major cause of cardiovascular admissions and hypertensive heart failure (HHF) is the most common cause of HF admissions in sub-Saharan Africa, Nigeria inclusive. Right ventricular (RV) dysfunction is being increasingly recognized in HF and found to be an independent predictor of adverse outcomes in HF. This study aimed to determine the prevalence of RV systolic dysfunction in HHF by several echocardiographic parameters. One hundred subjects with HHF were recruited consecutively into the study along with 50 age and sex-matched controls. All study participants gave written informed consent, and had a full physical examination, blood investigations, 12-lead electrocardiogram, and transthoracic echocardiography. RV systolic function was assessed in all subjects using different methods based on the American Society of Echocardiography guidelines for echocardiographic assessment of the right heart in adults. This included tricuspid annular plane systolic excursion (TAPSE), RV myocardial performance index (MPI), and RV systolic excursion velocity by tissue Doppler (S'). RV systolic dysfunction was found in 53% of subjects with HHF by TAPSE, 56% by RV MPI, and 48% by tissue Doppler systolic excursion S'. RV systolic dysfunction increased with reducing left ventricular ejection fraction (LVEF) in subjects with HHF. A high proportion of subjects with HHF were found to have RV systolic functional abnormalities using TAPSE, RV MPI, and RV S'. Prevalence of RV systolic dysfunction increased with reducing LVEF.
Combining computer modelling and cardiac imaging to understand right ventricular pump function.
Walmsley, John; van Everdingen, Wouter; Cramer, Maarten J; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost
2017-10-01
Right ventricular (RV) dysfunction is a strong predictor of outcome in heart failure and is a key determinant of exercise capacity. Despite these crucial findings, the RV remains understudied in the clinical, experimental, and computer modelling literature. This review outlines how recent advances in using computer modelling and cardiac imaging synergistically help to understand RV function in health and disease. We begin by highlighting the complexity of interactions that make modelling the RV both challenging and necessary, and then summarize the multiscale modelling approaches used to date to simulate RV pump function in the context of these interactions. We go on to demonstrate how these modelling approaches in combination with cardiac imaging have improved understanding of RV pump function in pulmonary arterial hypertension, arrhythmogenic right ventricular cardiomyopathy, dyssynchronous heart failure and cardiac resynchronization therapy, hypoplastic left heart syndrome, and repaired tetralogy of Fallot. We conclude with a perspective on key issues to be addressed by computational models of the RV in the near future. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Lemarié, Jérémie; Huttin, Olivier; Girerd, Nicolas; Mandry, Damien; Juillière, Yves; Moulin, Frédéric; Lemoine, Simon; Beaumont, Marine; Marie, Pierre-Yves; Selton-Suty, Christine
2015-07-01
Right ventricular (RV) dysfunction after acute myocardial infarction (AMI) is frequent and associated with poor prognosis. The complex anatomy of the right ventricle makes its echocardiographic assessment challenging. Quantification of RV deformation by speckle-tracking echocardiography is a widely available and reproducible technique that readily provides an integrated analysis of all segments of the right ventricle. The aim of this study was to investigate the accuracy of conventional echocardiographic parameters and speckle-tracking echocardiographic strain parameters in assessing RV function after AMI, in comparison with cardiac magnetic resonance imaging (CMR). A total of 135 patients admitted for AMI (73 anterior, 62 inferior) were prospectively studied. Right ventricular function was assessed by echocardiography and CMR within 2 to 4 days of hospital admission. Right ventricular dysfunction was defined as CMR RV ejection fraction < 50%. Right ventricular global peak longitudinal systolic strain (GLPSS) was calculated by averaging the strain values of the septal, lateral, and inferior walls. Right ventricular dysfunction was documented in 20 patients. Right ventricular GLPSS was the best echographic correlate of CMR RV ejection fraction (r = -0.459, P < .0001) and possessed good diagnostic value for RV dysfunction (area under the receiver operating characteristic curve [AUROC], 0.724; 95% CI, 0.590-0.857), which was comparable with that of RV fractional area change (AUROC, 0.756; 95% CI, 0.647-0.866). In patients with inferior myocardial infarctions, the AUROCs for RV GLPSS (0.822) and inferolateral strain (0.877) were greater than that observed for RV fractional area change (0.760) Other conventional echocardiographic parameters performed poorly (all AUROCs < 0.700). After AMI, RV GLPSS is the best correlate of CMR RV ejection fraction. In patients with inferior AMIs, RV GLPSS displays even higher diagnostic value than conventional echocardiographic parameters. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Imai, Yousuke; Kariya, Taro; Iwakiri, Masaki; Yamada, Yoshitsugu; Takimoto, Eiki
2018-01-01
Right ventricular (RV) dysfunction following left ventricular (LV) failure is associated with poor prognosis. RV remodeling is thought initiated by the increase in the afterload of RV due to secondary pulmonary hypertension (PH) to impaired LV function; however, RV molecular changes might occur in earlier stages of the disease. cGMP (cyclic guanosine monophosphate)-phosphodiesterase 5 (PDE5) inhibitors, widely used to treat PH through their pulmonary vasorelaxation properties, have shown direct cardiac benefits, but their impacts on the RV in LV diseases are not fully determined. Here we show that RV molecular alterations occur early in the absence of RV hemodynamic changes during LV pressure-overload and are ameliorated by PDE5 inhibition. Two-day moderate LV pressure-overload (transverse aortic constriction) neither altered RV pressure/ function nor RV weight in mice, while it induced only mild LV hypertrophy. Importantly, pathological molecular features were already induced in the RV free wall myocardium, including up-regulation of gene markers for hypertrophy and inflammation, and activation of extracellular signal-regulated kinase (ERK) and calcineurin. Concomitant PDE5 inhibition (sildenafil) prevented induction of such pathological genes and activation of ERK and calcineurin in the RV as well as in the LV. Importantly, dexamethasone also prevented these RV molecular changes, similarly to sildenafil treatment. These results suggest the contributory role of inflammation to the early pathological interventricular interaction between RV and LV. The current study provides the first evidence for the novel early molecular cross-talk between RV and LV, preceding RV hemodynamic changes in LV disease, and supports the therapeutic strategy of enhancing cGMP signaling pathway to treat heart diseases.
Rahaghi, Farbod N; Vegas-Sanchez-Ferrero, Gonzalo; Minhas, Jasleen K; Come, Carolyn E; De La Bruere, Isaac; Wells, James M; González, Germán; Bhatt, Surya P; Fenster, Brett E; Diaz, Alejandro A; Kohli, Puja; Ross, James C; Lynch, David A; Dransfield, Mark T; Bowler, Russel P; Ledesma-Carbayo, Maria J; San José Estépar, Raúl; Washko, George R
2017-05-01
Imaging-based assessment of cardiovascular structure and function provides clinically relevant information in smokers. Non-cardiac-gated thoracic computed tomographic (CT) scanning is increasingly leveraged for clinical care and lung cancer screening. We sought to determine if more comprehensive measures of ventricular geometry could be obtained from CT using an atlas-based surface model of the heart. Subcohorts of 24 subjects with cardiac magnetic resonance imaging (MRI) and 262 subjects with echocardiography were identified from COPDGene, a longitudinal observational study of smokers. A surface model of the heart was manually initialized, and then automatically optimized to fit the epicardium for each CT. Estimates of right and left ventricular (RV and LV) volume and free-wall curvature were then calculated and compared to structural and functional metrics obtained from MRI and echocardiograms. CT measures of RV dimension and curvature correlated with similar measures obtained using MRI. RV and LV volume obtained from CT inversely correlated with echocardiogram-based estimates of RV systolic pressure using tricuspid regurgitation jet velocity and LV ejection fraction respectively. Patients with evidence of RV or LV dysfunction on echocardiogram had larger RV and LV dimensions on CT. Logistic regression models based on demographics and ventricular measures from CT had an area under the curve of >0.7 for the prediction of elevated right ventricular systolic pressure and ventricular failure. These data suggest that non-cardiac-gated, non-contrast-enhanced thoracic CT scanning may provide insight into cardiac structure and function in smokers. Copyright © 2017. Published by Elsevier Inc.
Yang, Tao; Wang, Lei; Xiong, Chang-Ming; He, Jian-Guo; Zhang, Yan; Gu, Qing; Zhao, Zhi-Hui; Ni, Xin-Hai; Fang, Wei; Liu, Zhi-Hong
2014-05-01
It is known that patients with pulmonary hypertension (PH) can have elevated F-FDG uptake in the right ventricle (RV) on PET imaging. This study was designed to assess possible relationship between FDG uptake of ventricles and the function/hemodynamics of the RV in patients with PH. Thirty-eight patients with PH underwent FDG PET imaging in both fasting and glucose-loading conditions. The standard uptake value (SUVs) corrected for partial volume effect in both RV and left ventricle (LV) were measured. The ratio of FDG uptake between RV to LV (SUVR/L) was calculated. Right heart catheterization and cardiac magnetic resonance (CMR) were performed in all patients within 1 week. The FDG uptake levels by the ventricles were compared with the result form the right heart catheterization and CMR. The SUV of RV (SUVR) and SUV of LV were significantly higher in glucose-loading condition than in fasting condition. In both fasting and glucose-loading conditions, SUVR and SUVR/L showed reverse correlation with right ventricular ejection fraction derived from CMR. In addition, in both fasting and glucose-loading conditions, SUVR and SUVR/L showed positive correlations with pulmonary vascular resistance. However, only SUVR/L in glucose-loading condition could independently predict right ventricular ejection fraction after adjusted for age, body mass index, sex, mean right atrial pressure, mean pulmonary arterial pressure, and pulmonary vascular resistance (P = 0.048). The FDG uptake of RV increases with decreased right ventricular function in patients with PH. Increased FDG uptake ratio between RV and LV might be useful to assess the right ventricular function.
Endo, Yuka; Maddukuri, Prasad V; Vieira, Marcelo L C; Pandian, Natesa G; Patel, Ayan R
2006-11-01
Measurement of right ventricular (RV) volumes and right ventricular ejection fraction (RVEF) by three-dimensional echocardiographic (3DE) short-axis disc summation method has been validated in multiple studies. However, in some patients, short-axis images are of insufficient quality for accurate tracing of the RV endocardial border. This study examined the accuracy of long-axis analysis in multiple planes (longitudinal axial plane method) for assessment of RV volumes and RVEF. 3DE images were analyzed in 40 subjects with a broad range of RV function. RV end-diastolic (RVEDV) and end-systolic volumes (RVESV) and RVEF were calculated by both short-axis disc summation method and longitudinal axial plane method. Excellent correlation was obtained between the two methods for RVEDV, RVESV, and RVEF (r = 0.99, 0.99, 0.94, respectively; P < 0.0001 for all comparisons). 3DE longitudinal-axis analysis is a promising technique for the evaluation of RV function, and may provide an alternative method of assessment in patients with suboptimal short-axis images.
Yuksel, Isa Oner; Akar Bayram, Nihal; Koklu, Erkan; Ureyen, Cagin Mustafa; Kucukseymen, Selcuk; Arslan, Sakir; Bozkurt, Engin
2016-06-01
In our study, we aimed to evaluate the effect of weight loss on left and right ventricular functions in obese patients. Thirty patients with a BMI greater than 30 kg/m(2) and without any exclusion criteria were included in the study. Left ventricular systolic and diastolic functions were assessed with conventional and tissue Doppler echocardiography (TDE). At the end of 3 months, echocardiographic examination was repeated in patients with weight loss for cardiac function evaluation and it was compared to the baseline echocardiographic parameters. At the end of 3 months of weight loss period, conventional Doppler echocardiography revealed an improvement in diastolic functions with an increase in mitral E-wave, a decrease in mitral A-wave and an increase in E/A ratio. Deceleration time and isovolumetric relaxation time were ascertained shortened and Tei index decreased. TDE showed an increase in left ventricular lateral wall systolic wave (Sm) and E-wave velocity (Em). Mitral septal annular isovolumetric acceleration time (IVA), Sm and Em, were found to be increased, whereas Tei index was ascertained reduced. Right ventricular tissue Doppler examination following weight loss revealed an increase in RV- IVA, RV-Sm, and RV-Em, and a decrease in Tei index. We disclosed that left ventricular structural changes and diastolic dysfunction occur in obese patients, and by weight loss, these abnormalities may be reversible which we demonstrated both by conventional and TDE. In addition, obesity might impair RV function as well, and we observed an enhancement in right ventricular functions by weight loss. © 2016, Wiley Periodicals, Inc.
Cameli, Matteo; Lisi, Matteo; Righini, Francesca Maria; Tsioulpas, Charilaos; Bernazzali, Sonia; Maccherini, Massimo; Sani, Guido; Ballo, Piercarlo; Galderisi, Maurizio; Mondillo, Sergio
2012-03-01
Right ventricular (RV) systolic function has a critical role in determining the clinical outcome and success of using left ventricular assist devices (LVADs) in patients with refractory heart failure. Tissue Doppler and M-mode measurements of tricuspid systolic motion (tricuspid S' and tricuspid annular plane systolic excursion [TAPSE]) are the most currently used methods for the quantification of RV longitudinal function; RV deformation analysis by speckle-tracking echocardiography (STE) has recently allowed the analysis of global RV longitudinal function. Using cardiac catheterization as the reference standard, this study aimed at exploring the correlation between RV longitudinal function by STE and RV stroke work index (RVSWI) in patients referred for cardiac transplantation. Right-side heart catheterization and transthoracic echo Doppler were simultaneously performed in 41 patients referred for cardiac transplantation evaluation for advanced systolic heart failure. Thermodilution RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. RV longitudinal strain (RVLS) by STE was assessed averaging all segments in apical 4-chamber view (global RVLS) and by averaging RV free-wall segments (free-wall RVLS). Tricuspid S' and TAPSE were also calculated. No significant correlations were found for TAPSE or tricuspid S' with RVSWI (r = 0.14; r = 0.06; respectively). Close negative correlations between global RVLS and free-wall RVLS with the RVSWI were found (r = -0.75; r = -0.82; respectively; both P < .0001). Furthermore, free-wall RVLS demonstrated the highest diagnostic accuracy (area under the receiver operating characteristic (ROC) curve 0.90) and good sensitivity and specificity of 92% and 86%, respectively, to predict depressed RVSWI using a cutoff value of less than -11.8%. In a group of patients referred for heart transplantation, TAPSE and tricuspid S' did not correlate with invasively obtained RVSWI. RV longitudinal deformation analysis by STE correlated well with RVSWI, providing a better estimation of RV systolic performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Joyce, Emer; Kamperidis, Vasileios; Ninaber, Maarten K; Katsanos, Spyridon; Debonnaire, Philippe; Schalij, Martin J; Taube, Christian; Bax, Jeroen J; Delgado, Victoria; Ajmone Marsan, Nina
2016-09-01
Right ventricular (RV) function has not been systematically assessed in sarcoidosis. The aim of this study was to assess the prevalence and associates of RV dysfunction in sarcoidosis using global longitudinal peak systolic strain (GLS). Furthermore, whether RV dysfunction was associated with clinical outcomes was investigated. A total of 88 patients with sarcoidosis (mean age, 54 ± 13 years; 51% men) without known sarcoid-related or other structural heart disease or alternative etiologies of pulmonary hypertension were retrospectively included. RV GLS was measured using two-dimensional speckle-tracking echocardiography, and patients were stratified (using a previously defined cutoff value) as having preserved (RV GLS < -19%) or impaired (RV GLS ≥ -19%) RV function. An age- and gender-matched control group (n = 50) was included. The main outcome was all-cause mortality or clinical heart failure (hospitalization or New York Heart Association functional class ≥ III and/or deterioration by one or more classes). RV GLS was significantly reduced (-20.1 ± 4.6 vs -24.6 ± 1.8%, P = .001) in patients compared with control subjects. Patients with impaired RV function (n = 41) were older and had worse pulmonary function, worse left ventricular diastolic function, and lower tricuspid annular plane systolic excursion compared with patients with preserved RV function (n = 47). Lower tricuspid annular plane systolic excursion and diabetes were independent correlates of RV GLS. Over a median follow-up period of 37 months, 19 clinical end points occurred. Patients with impaired RV function were more likely to experience the clinical end point (log-rank P = .003). RV contractile dysfunction, identified using RV GLS, is common in patients with sarcoidosis without manifest cardiac involvement or pulmonary hypertension and is associated with adverse outcome. RV GLS may therefore be useful to detect sarcoidosis-related RV dysfunction at an earlier and potentially modifiable stage. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Brand, Anna; Bathe, Marny; Oertelt-Prigione, Sabine; Seeland, Ute; Rücke, Mirjam; Regitz-Zagrosek, Vera; Stangl, Karl; Knebel, Fabian; Stangl, Verena; Dreger, Henryk
2018-01-01
The aim of our study was to describe right atrial (RA) and right ventricular (RV) function, assessed by Doppler tissue imaging and 2D speckle tracking echocardiography (2DSTE), in women with signs of early impaired left ventricular diastolic function (DD). In a cross-sectional trial, standard parameters of diastolic and right heart function were investigated in 438 women of the Berlin Female Risk Evaluation (BEFRI) study. In a subset of women, average peak systolic RA strain (RAS), as well as the average peak systolic RV strain of the free wall (RVS free wall) and of all RV segments (average RV strain; RVS Avg), was analyzed using 2DSTE. Compared to women with normal diastolic function (DD0), RAS, RVS free wall and RVS Avg were significantly reduced in DD (43.1% ± 11.9%, -26.7% ± 5.6%, and -23.3% ± 3.5% in DD0; vs 35.1% ± 10.4%, -23.9% ± 5.5%, and -20.6% ± 3.8% in DD; P < .01). Peak RV myocardial velocity (RV-IVV) and acceleration during isovolumetric contraction (RV-IVA) were markedly higher in DD (15.0 ± 3.9 cm/s and 3.1 ± 1.0 m/s² in DD vs 11.9 ± 3.2 cm/s and 2.8 ± 0.8 m/s² in DD0; P < .05). RAS and RV-IVV were significantly associated with DD after adjustment to age, BMI, and left atrial strain in multivariate regression analysis. Systolic right heart function is significantly altered in DD. DTI as well as 2DSTE constitute sensitive echocardiographic tools that enable the diagnosis of impaired right heart mechanics in early-staged DD. © 2017 Wiley Periodicals, Inc.
Ertugay, Serkan; Kemal, Hatice S; Kahraman, Umit; Engin, Catagay; Nalbantgil, Sanem; Yagdi, Tahir; Ozbaran, Mustafa
2017-07-01
Significant mitral regurgitation (MR) is thought to decrease after left ventricular assist device (LVAD) implantation, and therefore repair of mitral valve is not indicated in current practice. However, residual moderate and severe MR leads to pulmonary artery pressure increase, thereby resulting in right ventricular (RV) dysfunction during follow-up. We examined the impact of residual MR on systolic function of the right ventricle by echocardiography after LVAD implantation. This study included 90 patients (mean age: 51.7 ± 10.9 years, 14.4% female) who underwent LVAD implantation (HeartMate II = 21, HeartWare = 69) in a single center between December 2010 and June 2014. Echocardiograms obtained at 3-6 months and over after implantation were analyzed retrospectively. RV systolic function was graded as normal, mild, moderate, and severely depressed. MR (≥moderate) was observed in 43 and 44% of patients at early and late period, respectively. Systolic function of the RV was severely depressed in 16 and 9% of all patients. Initial analysis (mean duration of support 174.3 ± 42.5 days) showed a statistically significant correlation between less MR and improved systolic function of RV (P = 0.01). Secondary echocardiographic analysis (following a mean duration of support of 435.1 ± 203 days) was also statistically significant for MR degree and RV systolic dysfunction (P = 0.008). Residual MR after LVAD implantation may cause deterioration of RV systolic function and cause right-sided heart failure symptoms. Repair of severe MR, in selected patients such as those with severe pulmonary hypertension and depressed RV, may be considered to improve the patient's clinical course during pump support. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Apitz, Christian; Honjo, Osami; Humpl, Tilman; Li, Jing; Assad, Renato S; Cho, Mi Y; Hong, James; Friedberg, Mark K; Redington, Andrew N
2012-12-01
Chronic right ventricular (RV) pressure overload results in pathologic RV hypertrophy and diminished RV function. Although aortic constriction has been shown to improve systolic function in acute RV failure, its effect on RV responses to chronic pressure overload is unknown. Adjustable vascular banding devices were placed on the main pulmonary artery and descending aorta. In 5 animals (sham group), neither band was inflated. In 9 animals (PAB group), only the pulmonary arterial band was inflated, with adjustments on a weekly basis to generate systemic or suprasystemic RV pressure at 28 days. In 9 animals, both pulmonary arterial and aortic devices were inflated (PAB + AO group), the pulmonary arterial band as for the PAB group and the aortic band adjusted to increase proximal systolic blood pressure by approximately 20 mm Hg. Effects on the functional performance were assessed 5 weeks after surgery by conductance catheters, followed by histologic and molecular assessment. Contractile performance was significantly improved in the PAB + AO group versus the PAB group for both ventricles. Relative to sham-operated animals, both banding groups showed significant differences in myocardial histologic and molecular responses. Relative to the PAB group, the PAB + AO group showed significantly decreased RV cardiomyocyte diameter, decreased RV collagen content, and reduced RV expression of endothelin receptor type B, matrix metalloproteinase 9, and transforming growth factor β genes. Aortic constriction in an experimental model of chronic RV pressure overload not only resulted in improved biventricular systolic function but also improved myocardial remodeling. These data suggest that chronically increased left ventricular afterload leads to a more physiologically hypertrophic response in the pressure-overloaded RV. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Kim, Jiwon; Di Franco, Antonino; Seoane, Tania; Srinivasan, Aparna; Kampaktsis, Polydoros N; Geevarghese, Alexi; Goldburg, Samantha R; Khan, Saadat A; Szulc, Massimiliano; Ratcliffe, Mark B; Levine, Robert A; Morgan, Ashley E; Maddula, Pooja; Rozenstrauch, Meenakshi; Shah, Tara; Devereux, Richard B; Weinsaft, Jonathan W
2016-11-01
Right ventricular (RV) and left ventricular (LV) function are closely linked due to a variety of factors, including common coronary blood supply. Altered LV perfusion holds the potential to affect the RV, but links between LV ischemia and RV performance, and independent impact of RV dysfunction on effort tolerance, are unknown. The population comprised 2051 patients who underwent exercise stress myocardial perfusion imaging and echo (5.5±7.9 days), among whom 6% had echo-evidenced RV dysfunction. Global summed stress scores were ≈3-fold higher among patients with RV dysfunction, attributable to increments in inducible and fixed LV perfusion defects (all P≤0.001). Regional inferior and lateral wall ischemia was greater among patients with RV dysfunction (both P<0.01), without difference in corresponding anterior defects (P=0.13). In multivariable analysis, inducible inferior and lateral wall perfusion defects increased the likelihood of RV dysfunction (both P<0.05) independent of LV function, fixed perfusion defects, and pulmonary artery pressure. Patients with RV dysfunction demonstrated lesser effort tolerance whether measured by exercise duration (6.7±2.8 versus 7.9±2.9 minutes; P<0.001) or peak treadmill stage (2.6±0.9 versus 3.1±1.0; P<0.001), paralleling results among patients with LV dysfunction (7.0±2.9 versus 8.0±2.9; P<0.001|2.7±1.0 versus 3.1±1.0; P<0.001 respectively). Exercise time decreased stepwise in relation to both RV and LV dysfunction (P<0.001) and was associated with each parameter independent of age or medication regimen. Among patients with known or suspected coronary artery disease, regional LV ischemia involving the inferior and lateral walls confers increased likelihood of RV dysfunction. RV dysfunction impairs exercise tolerance independent of LV dysfunction. © 2016 American Heart Association, Inc.
Fogel, Mark A; Sundareswaran, Kartik S; de Zelicourt, Diane; Dasi, Lakshmi P; Pawlowski, Tom; Rome, Jack; Yoganathan, Ajit P
2012-06-01
To quantify right ventricular output power and efficiency and correlate these to ventricular function in patients with repaired tetralogy of Fallot. This might aid in determining the optimal timing for pulmonary valve replacement. We reviewed the cardiac catheterization and magnetic resonance imaging data of 13 patients with tetralogy of Fallot (age, 22 ± 17 years). Using pressure and flow measurements in the main pulmonary artery, cardiac output and regurgitation fraction, right ventricular (RV) power output, loss, and efficiency were calculated. The RV function was evaluated using cardiac magnetic resonance imaging. The RV systolic power was 1.08 ± 0.62 W, with 20.3% ± 8.6% power loss owing to 41% ± 14% pulmonary regurgitation (efficiency, 79.7% ± 8.6%; 0.84 ± 0.73 W), resulting in a net cardiac output of 4.24 ± 1.82 L/min. Power loss correlated significantly with the indexed RV end-diastolic and end-systolic volume (R = 0.78, P = .002 and R = 0.69, P = .009, respectively). The normalized RV power output had a significant negative correlation with RV end-diastolic and end-systolic volumes (both R = -0.87, P = .002 and R = -0.68, P = .023, respectively). A rapid decrease occurred in the RV power capacity with an increasing RV volume, with the curve flattening out at an indexed RV end-diastolic and end-systolic volume threshold of 139 mL/m(2) and 75 mL/m(2), respectively. Significant power loss is present in patients with repaired tetralogy of Fallot and pulmonary regurgitation. A rapid decrease in efficiency occurs with increasing RV volume, suggesting that pulmonary valve replacement should be done before the critical value of 139 mL/m(2) and 75 mL/m(2) for the RV end-diastolic and end-systolic volume, respectively, to preserve RV function. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Baron Toaldo, M; Poser, H; Menciotti, G; Battaia, S; Contiero, B; Cipone, M; Diana, A; Mazzotta, E; Guglielmini, C
2016-05-01
In human medicine, right ventricular (RV) functional parameters represent a tool for risk stratification in patients with congestive heart failure caused by left heart disease. Little is known about RV alterations in dogs with left-sided cardiac disorders. To assess RV and left ventricular (LV) function in dogs with myxomatous mitral valve disease (MMVD) with or without pulmonary hypertension (PH). One-hundred and fourteen dogs: 28 healthy controls and 86 dogs with MMVD at different stages. Prospective observational study. Animals were classified as healthy or having MMVD at different stages of severity and according to presence or absence of PH. Twenty-eight morphological, echo-Doppler, and tissue Doppler imaging (TDI) variables were measured and comparison among groups and correlations between LV and RV parameters were studied. No differences were found among groups regarding RV echo-Doppler and TDI variables. Sixteen significant correlations were found between RV TDI and left heart echocardiographic variables. Dogs with PH had significantly higher transmitral E wave peak velocity and higher E/e' ratio of septal (sMV) and lateral (pMV) mitral annulus. These 2 variables were found to predict presence of PH with a sensitivity of 84 and 72%, and a specificity of 71 and 80% at cut-off values of 10 and 9.33 for sMV E/e' and pMV E/e', respectively. No association between variables of RV function and different MMVD stage and severity of PH could be detected. Some relationships were found between echocardiographic variables of right and left ventricular function. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Defining the molecular signatures of human right heart failure.
Williams, Jordan L; Cavus, Omer; Loccoh, Emefah C; Adelman, Sara; Daugherty, John C; Smith, Sakima A; Canan, Benjamin; Janssen, Paul M L; Koenig, Sara; Kline, Crystal F; Mohler, Peter J; Bradley, Elisa A
2018-03-01
Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure. Copyright © 2018 Elsevier Inc. All rights reserved.
How Does Subclinical Hyperthyroidism Affect Right Heart Function and Mechanics?
Tadic, Marijana; Celic, Vera; Cuspidi, Cesare; Ilic, Sanja; Zivanovic, Vladimir; Marjanovic, Tamara
2016-02-01
Right heart function and mechanics have not been investigated in patients with subclinical hyperthyroidism. Our aim was to investigate right ventricular (RV) and right atrial (RA) function and deformation as evaluated by 3-dimensional echocardiography (3DE) and speckle-tracking 2-dimensional echocardiography (2DE) in these individuals. We included 39 untreated women with endogenous subclinical hyperthyroidism and 39 healthy women matched by age. All participants underwent laboratory analyses that included thyroid hormone levels and comprehensive 2DE and 3DE examinations. Three-dimensional echocardiographic RV volumes were significantly elevated in the patients with subclinical hyperthyroidism (P < .05), whereas the 3DE RV ejection fraction was reduced in this group, but with borderline significance. Two-dimensional echocardiographic longitudinal RV and RA strain were significantly reduced in the patients with subclinical hyperthyroidism. Two-dimensional echocardiographic RV systolic and early diastolic strain rates were reduced, whereas late diastolic strain rates were increased in the patients with subclinical hyperthyroidism. The same changes were detected in RA mechanics among the patients with subclinical hyperthyroidism. The thyrotropin (TSH) level correlated with the left ventricular mass index, transmitral early diastolic peak flow velocity (E)/late diastolic flow velocity (A) ratio, tricuspid E/A ratio, 2DE RV global strain, 2DE RA, strain, and 3DE RV end-diastolic volume. A multivariate regression analysis showed that the mitral E/A ratio, 2DE RV global strain, and 3DE RV end-diastolic volume were independently associated with the TSH level. Right ventricular and RA function as evaluated by 3DE and speckle-tracking 2DE is significantly impaired in patients with subclinical hyperthyroidism. The TSH level correlated with parameters for RV function and mechanics in the whole study population. © 2016 by the American Institute of Ultrasound in Medicine.
A rabbit model of progressive chronic right ventricular pressure overload.
Roldan Ramos, Sara; Pieles, Guido; Hui, Wei; Slorach, Cameron; Redington, Andrew N; Friedberg, Mark K
2018-04-01
Right ventricular (RV) failure from increased pressure loading is a frequent consequence of acquired and congenital heart diseases. However, the mechanisms involved in their pathophysiology are still unclear, and few data exist on RV pressure-loading models and early versus late effects on RV and left ventricular responses. We characterized a rabbit model of chronic RV pressure overload and early-late effects on biventricular function. Twenty-one New Zealand white rabbits were randomized into 3 groups: (i) sham, (ii) pulmonary artery (PA) banding (PAB) for 3 weeks (PAB3W) and (iii) PAB for 6 weeks (PAB6W). Progressive RV pressure overload was created by serial band inflation using an adjustable device. Molecular, echocardiographic and haemodynamic studies were performed. RV pressure overload was achieved with clinical manifestations of RV failure. Heart and liver weights were significantly higher after PAB. PAB-induced echocardiographic ventricular remodelling increased wall thickness and stress and ventricular dilation. Cardiac output (ml/min) (sham 172.4 ± 42.86 vs PAB3W 103.1 ± 23.14 vs PAB6W 144 ± 60.9, P = 0.0027) and systolic and diastolic functions decreased; with increased RV end-systolic and end-diastolic pressures (mmHg) (sham 1.6 ± 0.66 vs PAB3W 3.9 ± 1.8 vs PAB6W 5.2 ± 2.2, P = 0.0103), despite increased contractility [end-systolic pressure-volume relationship (mmHg/ml), sham 3.76 ± 1.76 vs PAB3W 12.21 ± 3.44 vs PAB6W 19.4 ± 6.88, P < 0.0001]. Functional parameters further worsened after PAB6W versus PAB3W. LV contractility increased in both the PAB groups, despite worsening of other invasive measures of systolic and diastolic functions. We describe a novel, unique model of chronic RV pressure overload leading to early biventricular dysfunction and fibrosis with further progression at 6 weeks. These findings can aid in guiding management.
da Costa Junior, Augusto Alberto; Ota-Arakaki, Jaquelina Sonoe; Ramos, Roberta Pulcheri; Uellendahl, Marly; Mancuso, Frederico José Neves; Gil, Manuel Adan; Fischer, Cláudio Henrique; Moises, Valdir Ambrosio; de Camargo Carvalho, Antonio Carlos; Campos, Orlando
2017-01-01
Right ventricular (RV) dysfunction harbingers adverse prognosis in pulmonary arterial hypertension (PAH). Although conventional two-dimensional echocardiography (2DE) is limited for RV systolic function quantitation, RV strain can be a useful tool. The diagnostic and prognostic impact of 2DE speckle-tracking RV longitudinal strain was evaluated, including other 2DE systolic indexes, in a group of PAH patients without severe impairment of functional capacity, chronic pulmonary thromboembolism or left ventricular dysfunction. Sixty-six group I PAH patients, 67 % NYHA functional class I or II (none in IV) were studied by 2DE to obtain: RV fractional area change, tricuspid annular plane systolic excursion, RV myocardial performance index, tissue Doppler tricuspid annulus systolic velocity. Global, free wall (RVFreeWSt) and septal RV longitudinal systolic strain were obtained. RV ejection fraction by cardiac magnetic resonance (CMR-RVEF) was also assessed. All patients were followed up to 3.9 years (mean 3.3 years). Combined endpoints were hospitalization for worsening PAH or cardiovascular death. Among all the 2DE indexes of RV systolic function, RVFreeWSt exhibited the best correlation with CMR-RVEF (r = 0.83; p < 0.005). Combined endpoints occurred in 15 (22.7 %) patients (6 hospitalizations and 9 deaths). Multivariate analysis identified RVFreeWSt ≤-14 % as the only 2DE independent variable associated with combined endpoints [HR 4.66 (1.25-17.37); p < 0.05]. We conclude that RVFreeWSt may be a suitable non-geometric 2DE surrogate of CMR-RVEF in PAH patients, constituting a powerful independent predictor of long-term outcome in this cohort with relatively preserved functional capacity.
Chowdhury, Shahryar M.; Hijazi, Ziyad M.; Rhodes, John F.; Kar, Saibal; Makkar, Raj; Mullen, Michael; Cao, Qi-Ling; Mandinov, Lazar; Buckley, Jason; Pietris, Nicholas P.; Shirali, Girish S.
2015-01-01
Background Patients with free pulmonary regurgitation or mixed pulmonary stenosis and regurgitation and severely dilated right ventricles (RV) show little improvement in ventricular function after pulmonary valve replacement when assessed by traditional echocardiographic markers. We evaluated changes in right and left ventricular (LV) function using speckle tracking echocardiography in patients after SAPIEN transcatheter pulmonary valve (TPV) placement. Methods Echocardiograms were evaluated at baseline, discharge, 1 and 6 months after TPV placement in 24 patients from 4 centers. Speckle tracking measures of function included peak longitudinal strain, strain rate, and early diastolic strain rate. RV fractional area change, tricuspid annular plane systolic excursion, and left ventricular LV ejection fraction were assessed. Routine Doppler and tissue Doppler velocities were measured. Results At baseline, all patients demonstrated moderate to severe pulmonary regurgitation; this improved following TPV placement. No significant changes were detected in conventional measures of RV or LV function at 6 months. RV longitudinal strain (−16.9% vs. −19.6%, P < 0.01), strain rate (−0.87 s−1 vs. −1.16 s−1, P = 0.01), and LV longitudinal strain (−16.2% vs. −18.2%, P = 0.01) improved between baseline and 6 month follow-up. RV early diastolic strain rate, LV longitudinal strain rate and early diastolic strain rate showed no change. Conclusion Improvements in RV longitudinal strain, strain rate, and LV longitudinal strain are seen at 6 months post-TPV. Diastolic function does not appear to change at 6 months. Speckle tracking echocardiography may be more sensitive than traditional measures in detecting changes in systolic function after TPV implantation. (Echocardiography 2015;32:461–469) PMID:25047063
Park, Jun I K; Heikhmakhtiar, Aulia Khamas; Kim, Chang Hyun; Kim, Yoo Seok; Choi, Seong Wook; Song, Kwang Soup; Lim, Ki Moo
2018-05-22
Although it is important to analyze the hemodynamic factors related to the right ventricle (RV) after left ventricular assist device (LVAD) implantation, previous studies have focused only on the alteration of the ventricular shape and lack quantitative analysis of the various hemodynamic parameters. Therefore, we quantitatively analyzed various hemodynamic parameters related to the RV under normal, heart failure (HF), and HF incorporated with continuous flow LVAD therapy by using a computational model. In this study, we combined a three-dimensional finite element electromechanical model of ventricles, which is based on human ventricular morphology captured by magnetic resonance imaging (MRI) with a lumped model of the circulatory system and continuous flow LVAD function in order to construct an integrated model of an LVAD implanted-cardiovascular system. To induce systolic dysfunction, the magnitude of the calcium transient function under HF condition was reduced to 70% of the normal value, and the time constant was reduced by 30% of the normal value. Under the HF condition, the left ventricular end systolic pressure decreased, the left ventricular end diastolic pressure increased, and the pressure in the right atrium (RA), RV, and pulmonary artery (PA) increased compared with the normal condition. The LVAD therapy decreased the end-systolic pressure of the LV by 41%, RA by 29%, RV by 53%, and PA by 71%, but increased the right ventricular ejection fraction by 52% and cardiac output by 40%, while the stroke work was reduced by 67% compared with the HF condition without LVAD. The end-systolic ventricular tension and strain decreased with the LVAD treatment. LVAD enhances CO and mechanical unloading of the LV as well as those of the RV and prevents pulmonary hypertension which can be induced by HF.
Janoušek, Jan; Kovanda, Jan; Ložek, Miroslav; Tomek, Viktor; Vojtovič, Pavel; Gebauer, Roman; Kubuš, Peter; Krejčíř, Miroslav; Lumens, Joost; Delhaas, Tammo; Prinzen, Frits
2017-09-01
Electromechanical discoordination may contribute to long-term pulmonary right ventricular (RV) dysfunction in patients after surgery for congenital heart disease. We sought to evaluate changes in RV function after temporary RV cardiac resynchronization therapy. Twenty-five patients aged median 12.0 years after repair of tetralogy of Fallot and similar lesions were studied echocardiographically (n=23) and by cardiac catheterization (n=5) after primary repair (n=4) or after surgical RV revalvulation for significant pulmonary regurgitation (n=21). Temporary RV cardiac resynchronization therapy was applied in the presence of complete right bundle branch block by atrial-synchronized RV free wall pacing in complete fusion with spontaneous ventricular depolarization using temporary electrodes. The q-RV interval at the RV free wall pacing site (mean 77.2% of baseline QRS duration) confirmed pacing from a late activated RV area. RV cardiac resynchronization therapy carried significant decrease in QRS duration ( P <0.001) along with elimination of the right bundle branch block QRS morphology, increase in RV filling time ( P =0.002), pulmonary artery velocity time integral ( P =0.006), and RV maximum +dP/dt ( P <0.001), and decrease in RV index of myocardial performance ( P =0.006). RV mechanical synchrony improved: septal-to-lateral RV mechanical delay decreased ( P <0.001) and signs of RV dyssynchrony pattern were significantly abolished. RV systolic stretch fraction reflecting the ratio of myocardial stretching and contraction during systole diminished ( P =0.001). In patients with congenital heart disease and right bundle branch block, RV cardiac resynchronization therapy carried multiple positive effects on RV mechanics, synchrony, and contraction efficiency. © 2017 American Heart Association, Inc.
Sanz-de la Garza, Maria; Rubies, Cira; Batlle, Montserrat; Bijnens, Bart H; Mont, Lluis; Sitges, Marta; Guasch, Eduard
2017-09-01
Arrhythmogenic right ventricular (RV) remodeling has been reported in response to regular training, but it remains unclear how exercise intensity affects the presence and extent of such remodeling. We aimed to assess the relationship between RV remodeling and exercise load in a long-term endurance training model. Wistar rats were conditioned to run at moderate (MOD; 45 min, 30 cm/s) or intense (INT; 60 min, 60 cm/s) workloads for 16 wk; sedentary rats served as controls. Cardiac remodeling was assessed with standard echocardiographic and tissue Doppler techniques, sensor-tip pressure catheters, and pressure-volume loop analyses. After MOD training, both ventricles similarly dilated (~16%); the RV apical segment deformation, but not the basal segment deformation, was increased [apical strain rate (SR): -2.9 ± 0.5 vs. -3.3 ± 0.6 s -1 , SED vs. MOD]. INT training prompted marked RV dilatation (~26%) but did not further dilate the left ventricle (LV). A reduction in both RV segments' deformation in INT rats (apical SR: -3.3 ± 0.6 vs. -3.0 ± 0.4 s -1 and basal SR: -3.3 ± 0.7 vs. -2.7 ± 0.6 s -1 , MOD vs. INT) led to decreased global contractile function (maximal rate of rise of LV pressure: 2.53 ± 0.15 vs. 2.17 ± 0.116 mmHg/ms, MOD vs. INT). Echocardiography and hemodynamics consistently pointed to impaired RV diastolic function in INT rats. LV systolic and diastolic functions remained unchanged in all groups. In conclusion, we showed a biphasic, unbalanced RV remodeling response with increasing doses of exercise: physiological adaptation after MOD training turns adverse with INT training, involving disproportionate RV dilatation, decreased contractility, and impaired diastolic function. Our findings support the existence of an exercise load threshold beyond which cardiac remodeling becomes maladaptive. NEW & NOTEWORTHY Exercise promotes left ventricular eccentric hypertrophy with no changes in systolic or diastolic function in healthy rats. Conversely, right ventricular adaptation to physical activity follows a biphasic, dose-dependent, and segmentary pattern. Moderate exercise promotes a mild systolic function enhancement at the right ventricular apex and more intense exercise impairs systolic and diastolic function. Copyright © 2017 the American Physiological Society.
Prins, Kurt W; Tian, Lian; Wu, Danchen; Thenappan, Thenappan; Metzger, Joseph M; Archer, Stephen L
2017-05-31
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by obstructive pulmonary vascular remodeling and right ventricular (RV) dysfunction. Although RV function predicts outcomes in PAH, mechanisms of RV dysfunction are poorly understood, and RV-targeted therapies are lacking. We hypothesized that in PAH, abnormal microtubular structure in RV cardiomyocytes impairs RV function by reducing junctophilin-2 (JPH2) expression, resulting in t-tubule derangements. Conversely, we assessed whether colchicine, a microtubule-depolymerizing agent, could increase JPH2 expression and enhance RV function in monocrotaline-induced PAH. Immunoblots, confocal microscopy, echocardiography, cardiac catheterization, and treadmill testing were used to examine colchicine's (0.5 mg/kg 3 times/week) effects on pulmonary hemodynamics, RV function, and functional capacity. Rats were treated with saline (n=28) or colchicine (n=24) for 3 weeks, beginning 1 week after monocrotaline (60 mg/kg, subcutaneous). In the monocrotaline RV, but not the left ventricle, microtubule density is increased, and JPH2 expression is reduced, with loss of t-tubule localization and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves t-tubule morphology in RV cardiomyocytes. Colchicine therapy diminishes RV hypertrophy, improves RV function, and enhances RV-pulmonary artery coupling. Colchicine reduces small pulmonary arteriolar thickness and improves pulmonary hemodynamics. Finally, colchicine increases exercise capacity. Monocrotaline-induced PAH causes RV-specific derangement of microtubules marked by reduction in JPH2 and t-tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves both t-tubule architecture and RV function. Colchicine also reduces adverse pulmonary vascular remodeling. These results provide biological plausibility for a clinical trial to repurpose colchicine as a RV-directed therapy for PAH. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
D'Andrea, Antonello; Stanziola, Anna; Di Palma, Enza; Martino, Maria; D'Alto, Michele; Dellegrottaglie, Santo; Cocchia, Rosangela; Riegler, Lucia; Betancourt Cordido, Meredyth Vanessa; Lanza, Maurizia; Maglione, Marco; Diana, Veronica; Calabrò, Raffaele; Russo, Maria Giovanna; Vannan, Mani; Bossone, Eduardo
2016-01-01
To elucidate right ventricular (RV) function in patients with idiopathic pulmonary fibrosis (IPF) with and without pulmonary hypertension (PH) and its relation to other features of the disease. Clinical evaluation, standard Doppler echo, Doppler myocardial imaging (DMI), and 2D strain echocardiography (STE) of RV septal and lateral walls were performed in 52 IPF patients (66.5 ± 8.5 years; 27 males) and in 45 age- and sex-comparable controls using a commercial US system (MyLab Alpha, Esaote). Pulmonary artery mean pressure (mPAP) was estimated by standard echo Doppler. RV global longitudinal strain (RV GLS) was calculated by averaging RV local strains. The IPF patients were divided into 2 groups by noninvasive assessment of PH: no PH (mPAP<25 mmHg; 36 pts) and PH (mPAP ≥25 mmHg; 16 pts). Left ventricular diameters and ejection fraction were comparable between controls and IPF, while GLS was impaired in IPF (P < 0.01). RV end-diastolic diameters, wall thickness andmPAP were increased in IPF patients with PH. In addition, pulsed DMI detected in PH IPF impaired myocardial RV early diastolic (Em) peak velocity. Also peak systolic RV strain was reduced in basal and middle RV lateral free walls in IPF, as well as RV GLS (P < 0.0001). The impairment in RV wall strain was more evident when comparing controls with the no PH group than comparing the no PH group with the PH group. By multivariate analysis, independent association of RV strain with both six-minute walking test distance (P < 0.001), mPAP (P < 0.0001), as well as with forced vital capacity (FVC) % (P < 0.005) in IPF patients were observed. Impaired RV diastolic and systolic myocardial function were present even in IPF patients without PH, which indicates an early impact on RV function and structure in patients with IPF. © 2015, Wiley Periodicals, Inc.
Ramjee, Vimal; Grossestreuer, Anne V; Yao, Yuan; Perman, Sarah M; Leary, Marion; Kirkpatrick, James N; Forfia, Paul R; Kolansky, Daniel M; Abella, Benjamin S; Gaieski, David F
2015-11-01
Determination of clinical outcomes following resuscitation from cardiac arrest remains elusive in the immediate post-arrest period. Echocardiographic assessment shortly after resuscitation has largely focused on left ventricular (LV) function. We aimed to determine whether post-arrest right ventricular (RV) dysfunction predicts worse survival and poor neurologic outcome in cardiac arrest patients, independent of LV dysfunction. A single-center, retrospective cohort study at a tertiary care university hospital participating in the Penn Alliance for Therapeutic Hypothermia (PATH) Registry between 2000 and 2012. 291 in- and out-of-hospital adult cardiac arrest patients at the University of Pennsylvania who had return of spontaneous circulation (ROSC) and post-arrest echocardiograms. Of the 291 patients, 57% were male, with a mean age of 59 ± 16 years. 179 (63%) patients had LV dysfunction, 173 (59%) had RV dysfunction, and 124 (44%) had biventricular dysfunction on the initial post-arrest echocardiogram. Independent of LV function, RV dysfunction was predictive of worse survival (mild or moderate: OR 0.51, CI 0.26-0.99, p<0.05; severe: OR 0.19, CI 0.06-0.65, p=0.008) and neurologic outcome (mild or moderate: OR 0.33, CI 0.17-0.65, p=0.001; severe: OR 0.11, CI 0.02-0.50, p=0.005) compared to patients with normal RV function after cardiac arrest. Echocardiographic findings of post-arrest RV dysfunction were equally prevalent as LV dysfunction. RV dysfunction was significantly predictive of worse outcomes in post-arrest patients after accounting for LV dysfunction. Post-arrest RV dysfunction may be useful for risk stratification and management in this high-mortality population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sharma, Abhishek; Bax, Jerome J; Vallakati, Ajay; Goel, Sunny; Lavie, Carl J; Kassotis, John; Mukherjee, Debabrata; Einstein, Andrew; Warrier, Nikhil; Lazar, Jason M
2016-04-15
Right ventricular (RV) dysfunction has been associated with adverse clinical outcomes in patients with heart failure (HF). Cardiac resynchronization therapy (CRT) improves left ventricular (LV) size and function in patients with markedly abnormal electrocardiogram QRS duration. However, relation of baseline RV function with response to CRT has not been well described. In this study, we aim to investigate the relation of baseline RV function with response to CRT as assessed by change in LV ejection fraction (EF). A systematic search of studies published from 1966 to May 31, 2015 was conducted using PubMed, CINAHL, Cochrane CENTRAL, and the Web of Science databases. Studies were included if they have reported (1) parameters of baseline RV function (tricuspid annular plane systolic excursion [TAPSE] or RVEF or RV basal strain or RV fractional area change [FAC]) and (2) LVEF before and after CRT. Random-effects metaregression was used to evaluate the effect of baseline RV function parameters and change in LVEF. Sixteen studies (n = 1,764) were selected for final analysis. Random-effects metaregression analysis showed no significant association between the magnitude of the difference in EF before and after CRT with baseline TAPSE (β = 0.005, p = 0.989); baseline RVEF (β = 0.270, p = 0.493); baseline RVFAC (β = -0.367, p = 0.06); baseline basal strain (β = -0.342, p = 0.462) after a mean follow-up period of 10.5 months. In conclusion, baseline RV function as assessed by TAPSE, FAC, basal strain, or RVEF does not determine response to CRT as assessed by change in LVEF. Copyright © 2016 Elsevier Inc. All rights reserved.
Chatterjee, Neal A; Shah, Ravi V; Murthy, Venkatesh L; Praestgaard, Amy; Shah, Sanjiv J; Ventetuolo, Corey E; Barr, R Graham; Kronmal, Richard; Lima, Joao A C; Bluemke, David A; Jerosch-Herold, Michael; Alonso, Alvaro; Kawut, Steven M
2017-01-01
Right ventricular (RV) morphology has been associated with drivers of atrial fibrillation (AF) risk, including left ventricular and pulmonary pathology, systemic inflammation, and neurohormonal activation. The aim of this study was to investigate the association between RV morphology and risk of incident AF. We interpreted cardiac magnetic resonance imaging in 4204 participants free of clinical cardiovascular disease in the MESA (Multi-Ethnic Study of Atherosclerosis). Incident AF was determined using hospital discharge records, study electrocardiograms, and Medicare claims data. The study sample (n=3819) was 61±10 years old and 47% male with 47.2% current/former smokers. After adjustment for demographics and clinical factors, including incident heart failure, higher RV ejection fraction (hazard ratio, 1.16 per SD; 95% confidence interval, 1.03-1.32; P=0.02) and greater RV mass (hazard ratio, 1.25 per SD; 95% confidence interval, 1.08-1.44; P=0.002) were significantly associated with incident AF. After additional adjustment for the respective left ventricular parameter, higher RV ejection fraction remained significantly associated with incident AF (hazard ratio, 1.15 per SD; 95% confidence interval, 1.01-1.32; P=0.04), whereas the association was attenuated for RV mass (hazard ratio, 1.16 per SD; 95% confidence interval, 0.99-1.35; P=0.07). In a subset of patients with available spirometry (n=2540), higher RV ejection fraction and mass remained significantly associated with incident AF after additional adjustment for lung function (P=0.02 for both). Higher RV ejection fraction and greater RV mass were associated with an increased risk of AF in a multiethnic population free of clinical cardiovascular disease at baseline. © 2017 American Heart Association, Inc.
Evaluation of right heart function in a rat model using modified echocardiographic views.
Bernardo, Ivan; Wong, James; Wlodek, Mary E; Vlahos, Ross; Soeding, Paul
2017-01-01
Echocardiography plays a major role in assessing cardiac function in animal models. We investigated use of a modified parasternal mid right-ventricular (MRV) and right ventricle (RV) outflow (RVOT) view, in assessing RV size and function, and the suitability of advanced 2D-strain analysis. 15 WKY rats were examined using transthoracic echocardiography. The left heart was assessed using standard short and long axis views. For the right ventricle a MRV and RVOT view were used to measure RV chamber and free wall area. 2D-strain analysis was applied to both ventricles using off-line analysis. RV chamber volume was determined by injection of 2% agarose gel, and RV free wall dissected and weighed. Echocardiography measurement was correlated with necropsy findings. The RV mid-ventricular dimension (R1) was 0.42±0.07cm and the right ventricular outflow tract dimension (R2) was 0.34±0.06cm, chamber end-diastolic area measurements were 0.38±0.09cm2 and 0.29±0.08cm2 for MRV and RVOT views respectively. RVOT and MRV chamber area correlated with gel mass. Doppler RV stroke volume was 0.32±0.08ml, cardiac output (CO) 110±27 ml.min-1 and RV free wall contractility assessed using 2D-strain analysis was demonstrated. We have shown that modified MRV and RVOT views can provide detailed assessment of the RV in rodents, with 2D-strain analysis of the RV free wall potentially feasible.
Automatic right ventricle (RV) segmentation by propagating a basal spatio-temporal characterization
NASA Astrophysics Data System (ADS)
Atehortúa, Angélica; Zuluaga, María. A.; Martínez, Fabio; Romero, Eduardo
2015-12-01
An accurate right ventricular (RV) function quantification is important to support the evaluation, diagnosis and prognosis of several cardiac pathologies and to complement the left ventricular function assessment. However, expert RV delineation is a time consuming task with high inter-and-intra observer variability. In this paper we present an automatic segmentation method of the RV in MR-cardiac sequences. Unlike atlas or multi-atlas methods, this approach estimates the RV using exclusively information from the sequence itself. For so doing, a spatio-temporal analysis segments the heart at the basal slice, segmentation that is then propagated to the apex by using a non-rigid-registration strategy. The proposed approach achieves an average Dice Score of 0:79 evaluated with a set of 48 patients.
Magalang, Ulysses J.; Richards, Kathryn; McCarthy, Beth; Fathala, Ahmed; Khan, Meena; Parinandi, Narasimham; Raman, Subha V.
2009-01-01
Study Objectives. There are few data on the effects of continuous positive airway pressure (CPAP) therapy on the structural and functional characteristics of the right heart in patients with obstructive sleep apnea (OSA). We sought to leverage the advantages of cardiac magnetic resonance imaging (CMR) and hypothesized that CPAP treatment would improve right ventricular (RV) function in a group of patients with OSA who were free of other comorbid conditions. Methods. Patients with severe (apnea-hypopnea index ≥ 30/h) untreated OSA were prospectively enrolled. CMR included 3-dimensional measurement of biventricular size and function, and rest/stress myocardial perfusion and was performed at baseline and after 3 months of CPAP therapy. Results. Fifteen patients with mild to moderate desaturation were enrolled; 2 could not undergo CMR due to claustrophobia and obesity. There were significant decreases in the Epworth Sleepiness Scale score (p < 0.0001) and RV end-systolic and RV end-diastolic volumes (p < 0.05) with CPAP. There was a trend toward improvement in RV ejection fraction, but the improvement did not reach statistical significance. Other measures such as left ventricular volumes, left ventricular ejection fraction, myocardial perfusion reserve index, and thickness of the interventricular septum and ventricular free wall did not change significantly. Conclusions: This preliminary study found that CPAP treatment decreases RV volumes in patients with severe OSA who are otherwise healthy. CMR offers a novel technique to determine the effects of CPAP on ventricular structure and function in patients with OSA. A randomized controlled study is needed to confirm the results of our study. Citation: Magalang UJ; Richards K; McCarthy B; Fathala A; Khan M; Parinandi N; Raman SV. Continuous positive airway pressure therapy reduces right ventricular volume in patients with obstructive sleep apnea: a cardiovascular magnetic resonance study. J Clin Sleep Med 2009;5(2):110-114. PMID:19968042
Cremer, Paul C; Zhang, Yiran; Alu, Maria; Rodriguez, L Leonardo; Lindman, Brian R; Zajarias, Alan; Hahn, Rebecca T; Lerakis, Stamatios; Malaisrie, S Chris; Douglas, Pamela S; Pibarot, Philippe; Svensson, Lars G; Leon, Martin B; Jaber, Wael A
2018-05-08
In patients randomized to transcatheter or surgical aortic valve replacement (TAVR, SAVR), we sought to determine whether SAVR is associated with worsening right ventricular (RV) function and whether RV deterioration is associated with mortality. In 1376 patients from PARTNERIIA with paired baseline and 30-day core lab echocardiograms, worsening RV function was defined as decline by at least one grade from baseline to 30 days. Our primary outcome was all-cause mortality from 30 days to 2 years. Among 744 patients with TAVR, 62 (8.3%) had worsening RV function, compared with 156 of 632 patients with SAVR (24.7%) (P < 0.0001). In a multivariable model, SAVR [odds ratio (OR) 4.05, 95% confidence interval (CI) 2.55-6.44], a dilated RV (OR 2.38, 95% CI 1.37-4.14), and more than mild tricuspid regurgitation (TR) (OR 2.58, 95% CI 1.25-5.33) were associated with worsening RV function. There were 169 deaths, and patients with worsening RV function had higher all-cause mortality [hazard ratio (HR) 1.98, 95% CI 1.40-2.79]. This association remained robust after adjusting for clinical and echocardiographic variables. Among patients with worsening RV function, there was no mortality difference between TAVR and SAVR (HR 1.16, 95% CI 0.61-2.18). The development of moderate or severe RV dysfunction from baseline normal RV function conferred the worst prognosis (HR 2.87, 95% CI 1.40-5.89). After aortic valve replacement, worsening RV function is more common in patients with baseline RV dilation, more than mild TR, and in patients treated with SAVR. Worsening RV function and the magnitude of deterioration have important prognostic implications.
Li, Wendy F; Pollard, Heidi; Karimi, Mohsen; Asnes, Jeremy D; Hellenbrand, William E; Shabanova, Veronika; Weismann, Constance G
2018-01-01
Trans-catheter (TC) pulmonary valve replacement (PVR) has become common practice for patients with right ventricular outflow tract obstruction (RVOTO) and/or pulmonic insufficiency (PI). Our aim was to compare PVR and right ventricular (RV) function of patients who received TC vs surgical PVR. Retrospective review of echocardiograms obtained at three time points: before, immediately after PVR, and most recent. Sixty-two patients (median age 19 years, median follow-up 25 months) following TC (N = 32) or surgical (N = 30) PVR at Yale-New Haven Hospital were included. Pulmonary valve and right ventricular function before, immediately after, and most recently after PVR. At baseline, the TC group had predominant RVOTO (74% vs 10%, P < .001), and moderate-severe PI was less common (61% vs 100%, P < .001). Immediate post-procedural PVR function was good throughout. At last follow-up, the TC group had preserved valve function, but the surgical group did not (moderate RVOTO: 6% vs 41%, P < .001; >mild PI: 0% vs 24%, P = .003). Patients younger than 17 years at surgical PVR had the highest risk of developing PVR dysfunction, while PVR function in follow-up was similar in adults. Looking at RV size and function, both groups had a decline in RV size following PVR. However, while RV function remained stable in the TC group, there was a transient postoperative decline in the surgical group. TC PVR in patients age <17 years is associated with better PVR function in follow-up compared to surgical valves. There was a transient decline in RV function following surgical but not TC PVR. TC PVR should therefore be the first choice in children who are considered for PVR, whenever possible. © 2017 Wiley Periodicals, Inc.
Stembridge, Mike; Ainslie, Philip N; Hughes, Michael G; Stöhr, Eric J; Cotter, James D; Nio, Amanda Q X; Shave, Rob
2014-08-01
Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P < 0.05). Sherpa had smaller right-ventricular (RV) and LV stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function. Copyright © 2014 the American Physiological Society.
Ainslie, Philip N.; Hughes, Michael G.; Stöhr, Eric J.; Cotter, James D.; Nio, Amanda Q. X.; Shave, Rob
2014-01-01
Short-term, high-altitude (HA) exposure raises pulmonary artery systolic pressure (PASP) and decreases left-ventricular (LV) volumes. However, relatively little is known of the long-term cardiac consequences of prolonged exposure in Sherpa, a highly adapted HA population. To investigate short-term adaptation and potential long-term cardiac remodeling, we studied ventricular structure and function in Sherpa at 5,050 m (n = 11; 31 ± 13 yr; mass 68 ± 10 kg; height 169 ± 6 cm) and lowlanders at sea level (SL) and following 10 ± 3 days at 5,050 m (n = 9; 34 ± 7 yr; mass 82 ± 10 kg; height 177 ± 6 cm) using conventional and speckle-tracking echocardiography. At HA, PASP was higher in Sherpa and lowlanders compared with lowlanders at SL (both P < 0.05). Sherpa had smaller right-ventricular (RV) and LV stroke volumes than lowlanders at SL with lower RV systolic strain (P < 0.05) but similar LV systolic mechanics. In contrast to LV systolic mechanics, LV diastolic, untwisting velocity was significantly lower in Sherpa compared with lowlanders at both SL and HA. After partial acclimatization, lowlanders demonstrated no change in the RV end-diastolic area; however, both RV strain and LV end-diastolic volume were reduced. In conclusion, short-term hypoxia induced a reduction in RV systolic function that was also evident in Sherpa following chronic exposure. We propose that this was consequent to a persistently higher PASP. In contrast to the RV, remodeling of LV volumes and normalization of systolic mechanics indicate structural and functional adaptation to HA. However, altered LV diastolic relaxation after chronic hypoxic exposure may reflect differential remodeling of systolic and diastolic LV function. PMID:24876358
Kemal, Hatice S; Kayikcioglu, Meral; Kultursay, Hakan; Vuran, Ozcan; Nalbantgil, Sanem; Mogulkoc, Nesrin; Can, Levent
2017-04-01
Right ventricular (RV) dysfunction is a major determinant of outcomes in patients with pulmonary arterial hypertension (PAH), although the optimal measure of RV function is poorly defined. We evaluated the utility of RV free-wall speckle tracking strain as an assessment tool for RV function in patients with PAH who are already under specific treatment compared with conventional echocardiographic parameters and investigated the relationship of RV free-wall strain with clinical hemodynamic parameters of RV performance. Right ventricular free-wall strain was evaluated in 92 patients (Group-1 and Group-4 pulmonary hypertension) who were on PAH-specific treatment for at least 3 months. Right atrial (RA) area, RV FAC, TAPSE, tricuspid S, functional class, 6-minute walking distance, and NT-proBNP were studied. The mean duration of follow-up was 222±133 days. All patients were under PAH-specific treatment, and mean RV free-wall strain was -13.16±6.3%. RV free-wall strain correlated well with functional class (r=.312, P=.01), NT-proBNP (r=.423, P=.0001), RA area (r=.427, P=.0001), FAC (r=-.637, P=.0001), TAPSE (r=-.524, P=.0001), tricuspid S (r=-.450, P=.0001), 6-minute walking distance (r=-.333, P=.002). RV free-wall strain significantly correlated with all follow-up adverse events, death, and clinical right heart failure (RHF) (P=.04, P=.03, P=.02, respectively). According to the receiver operator characteristic analysis, the cutoff value for RV free-wall strain for the development of clinical RHF was -12.5% (sensitivity: 71%, specificity: 67%) and for all cardiovascular adverse events (death included) was -12.5% (sensitivity: 54%, specificity: 64%). Assessment of RV free-wall strain is a feasible, easy-to-perform method and may be used as a predictor of RHF, clinical deterioration, and mortality in patients already under PAH-specific treatment. © 2017, Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Chronic hypobaric hypoxia (CHH) increases load on the right ventricle (RV) resulting in RV hypertrophy. We hypothesized that CHH elicits distinct responses, i.e., the hypertrophied RV, unlike the left ventricle (LV), displaying enhanced mitochondrial respiratory and contractile function. Wistar rats...
Pacing from the right ventricular septum: is there a danger to the coronary arteries?
Teh, Andrew W; Medi, Caroline; Rosso, Raphael; Lee, Geoffrey; Gurvitch, Ronen; Mond, Harry G
2009-07-01
Pacing from right ventricular (RV) septal sites has been suggested as an alternative to RV apical pacing in an attempt to avoid long-term adverse consequences on left ventricular function. Concern has been raised as to the relationship of the left anterior descending coronary artery (LAD) to pacing leads in these positions. We retrospectively analyzed three cases in which patients with RV active-fixation leads in situ also had coronary angiography. Multiple fluoroscopic views were used to determine the relationship of the lead tip at various pacing sites to the coronary arteries. A lead placed on the anterior wall was in close proximity to the LAD, whereas septal and free wall positioning was not. Placement of RV active-fixation leads on the septum avoids potential coronary artery compromise.
Kashiyama, Noriyuki; Toda, Koichi; Nakamura, Teruya; Miyagawa, Shigeru; Nishi, Hiroyuki; Yoshikawa, Yasushi; Fukushima, Satsuki; Saito, Shunsuke; Yoshioka, Daisuke; Sawa, Yoshiki
2017-04-01
Although right ventricular failure (RVF) is a major concern after left ventricular assist device (LVAD) implantation, methodologies to evaluate RV function remain limited. Liver stiffness (LS), which is closely related to right-sided filling pressure and may indicate RVF severity, could be non-invasively and repeatedly assessed using transient elastography. Here we investigated the suitability of LS as a parameter of RV function in pre- and post-LVAD periods. The study included 55 patients with LVAD implantation as a bridge to transplantation between 2011 and 2015 whose LS was assessed using transient elastography. Seventeen patients presented with RVF, defined as requiring inotropic support for ≥30 days, nitric oxygen inhalation for ≥5 days, and/or mechanical RV support following LVAD implantation. Survival of patients with RVF was significantly worse compared with that of patients without RVF. Multivariate logistic regression analysis identified preoperative LS, LV diastolic dimension, RV stroke work index, and dilated phase of hypertrophic cardiomyopathy aetiology as significant risk factors; the combination of these parameters could improve predictive power of post-LVAD RVF with areas under the curve of 0.89. Furthermore, LS was significantly decreased by LV unloading and significantly correlated with right-sided filling pressure. In addition to dilated hypertrophic cardiomyopathy aetiology, reduced RV stroke work index and small LV dimension, we demonstrated that non-invasively measured LS was a predictor of post-LVAD RVF and can be used as a parameter for the evaluation and optimization of RV function in the perioperative period. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.
Morita, Tomoya; Nakamura, Kensuke; Osuga, Tatsuyuki; Yokoyama, Nozomu; Morishita, Keitaro; Sasaki, Noboru; Ohta, Hiroshi; Takiguchi, Mitsuyoshi
2017-07-01
The assessment of hemodynamic change by echocardiography is clinically useful in patients with pulmonary hypertension. Recently, mild elevation of the mean pulmonary arterial pressure (PAP) has been shown to be associated with increased mortality. However, changes in the echocardiographic indices of right ventricular (RV) function are still unknown. The objective of this study was to validate the relationship between echocardiographic indices of RV function and right heart catheterization variables under a mild RV pressure overload condition. Echocardiography and right heart catheterization were performed in dog models of mild RV pressure overload induced by thromboxane A 2 analog (U46619) (n=7). The mean PAP was mildly increased (19.3±1.1 mm Hg), and the cardiac index was decreased. Most echocardiographic indices of RV function were significantly impaired even under a mild RV pressure overload condition. Multivariate analysis revealed that the RV free wall longitudinal strain (RVLS), standard deviation of the time-to-peak longitudinal strain of RV six segments (RV-SD) by speckle-tracking echocardiography, and Tei index were independent echocardiographic predictors of the mean PAP (free wall RVLS, β=-0.60, P<.001; RV-SD, β=0.40, P=.011), pulmonary vascular resistance (free wall RVLS, β=-0.39, P=.020; RV-SD, β=0.47, P=.0086; Tei index, β=0.34, P=.047), and cardiac index (Tei index, β=-0.65, P<.001). Free wall RVLS, RV-SD, and Tei index are useful for assessing the hemodynamic change under a mild RV pressure overload condition. © 2017, Wiley Periodicals, Inc.
Zhu, Wei-hong; Zhang, Jin; Tong, Kai; Zhi, Guang; He, Kun-lun
2012-08-01
To determine the normal value of right ventricle using one beat full-volume real-time three-dimensional echocardiography (RT-3DE) and assess the feasibility of this technique. One beat full volume images were acquired at the apical 4 chamber view in 129 healthy volunteers. The right and left ventricular volumes were examined with the eSie LVA and RVA. The subjects were divided into 2 gender groups (male and female) and 3 age groups (20 - 39 years old, 40 - 59 years old, 60 years old and above). Adequate data were obtained in 129 subjects. The RV-EDV was (92.4 ± 21.3) ml, RV-ESV (34.6 ± 9.2) ml, RV-SV (57.8 ± 13.9) ml, RV-EF (62.5 ± 5.0) ml. EDV, ESV, and EF were significant different while SV was similar between RV and LV (all P < 0.05). RV-EDV (r = 0.517, P = 0.001), RV-ESV (r = 0.588, P = 0.001) and RV-SV(r = 0.409, P = 0.001) were correlated well with BSA. RV-EDV, RV-ESV and RV-SV were significantly higher in males than in females (all P < 0.001). RV-EDV, RV-SV and RV-EF decreased with aging (P < 0.05). Right ventricle function can be measured noninvasively by RT-3DE with high feasibility. This novel method contributes to the detailed study of right heart function in various cardiovascular diseases.
Hassel, Erlend; Berre, Anne Marie; Skjulsvik, Anne Jarstein; Steinshamn, Sigurd
2014-09-28
Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD. 42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry. Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure. RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.
Huang, Stephen J; Nalos, Marek; Smith, Louise; Rajamani, Arvind; McLean, Anthony S
2018-05-22
Many echocardiographic indices (or methods) for assessing right ventricular (RV) function are available, but each has its strengths and limitations. In some cases, there might be discordance between the indices. We conducted a systematic review to audit the echocardiographic RV assessments in critical care research to see if a consistent pattern existed. We specifically looked into the kind and number of RV indices used, and how RV dysfunction was defined in each study. Studies conducted in critical care settings and reported echocardiographic RV function indices from 1997 to 2017 were searched systematically from three databases. Non-adult studies, case reports, reviews and secondary studies were excluded. These studies' characteristics and RV indices reported were summarized. Out of 495 non-duplicated publications found, 81 studies were included in our systematic review. There has been an increasing trend of studying RV function by echocardiography since 2001, and most were conducted in ICU. Thirty-one studies use a single index, mostly TAPSE, to define RV dysfunction; 33 used composite indices and the combinations varied between studies. Seventeen studies did not define RV dysfunction. For those using composite indices, many did not explain their choices. TAPSE seemed to be the most popular index in the last 2-3 years. Many studies used combinations of indices but, apart from cor pulmonale, we could not find a consistent pattern of RV assessment and definition of RV dysfunction amongst these studies.
Paech, C; Dähnert, I; Riede, F T; Wagner, R; Kister, T; Nieschke, K; Wagner, F; Gebauer, R A
2017-08-01
Recent data showed a right ventricular dyssynchrony in patients with tetralogy of Fallot (TOF). Percutaneous pulmonary valve implantation (PPVI) has become an important procedure to treat a pulmonary stenosis and/or regurgitation of the right ventricular outflow tract in these patients. Despite providing good results, there is still a considerable number of nonresponders to PPVI. The authors speculated that electrical dysfunction of the right ventricle plays an underestimated role in the outcome of patients after PPVI. This study aimed to investigate the influence of right ventricular electrical dysfunction, i.e., right bundle branch block (RBBB) on the RV remodeling after PPVI. The study included consecutive patients after correction of TOF with or without RBBB, who had received a PPVI previously at the Heart Center of the University of Leipzig, Germany during the period from 2012 to 2015. 24 patients were included. Patients without RBBB, i.e., with narrow QRS complexes pre-intervention, had significantly better RV function and had smaller right ventricular volumes. Patients with pre-interventionally QRS width below 150 ms showed a post-interventional remodeling of the right ventricle with the decreasing RV volumes (p = 0.001). The parameters of LV function and volume as well as RV ejection fraction remained unaffected by RBBB. The presented data indicate that the QRS width seems to be a valuable parameter in the prediction of right ventricular remodeling after PPVI, as it represents both electrical and mechanical functions of the right ventricle and may serve as an additional parameter for optimal timing of a PPVI.
Voeller, Rochus K.; Aziz, Abdulhameed; Maniar, Hersh S.; Ufere, Nneka N.; Taggar, Ajay K.; Bernabe, Noel J.; Cupps, Brian P.
2011-01-01
Increased right atrial (RA) and ventricular (RV) chamber volumes are a late maladaptive response to chronic pulmonary hypertension. The purpose of the current investigation was to characterize the early compensatory changes that occur in the right heart during chronic RV pressure overload before the development of chamber dilation. Magnetic resonance imaging with radiofrequency tissue tagging was performed on dogs at baseline and after 10 wk of pulmonary artery banding to yield either mild RV pressure overload (36% rise in RV pressure; n = 5) or severe overload (250% rise in RV pressure; n = 4). The RV free wall was divided into three segments within a midventricular plane, and circumferential myocardial strain was calculated for each segment, the septum, and the left ventricle. Chamber volumes were calculated from stacked MRI images, and RA mechanics were characterized by calculating the RA reservoir, conduit, and pump contribution to RV filling. With mild RV overload, there were no changes in RV strain or RA function. With severe RV overload, RV circumferential strain diminished by 62% anterior (P = 0.04), 42% inferior (P = 0.03), and 50% in the septum (P = 0.02), with no change in the left ventricle (P = 0.12). RV filling became more dependent on RA conduit function, which increased from 30 ± 9 to 43 ± 13% (P = 0.01), than on RA reservoir function, which decreased from 47 ± 6 to 33 ± 4% (P = 0.04), with no change in RA pump function (P = 0.94). RA and RV volumes and RV ejection fraction were unchanged from baseline during either mild (P > 0.10) or severe RV pressure overload (P > 0.53). In response to severe RV pressure overload, RV myocardial strain is segmentally diminished and RV filling becomes more dependent on RA conduit rather than reservoir function. These compensatory mechanisms of the right heart occur early in chronic RV pressure overload before chamber dilation develops. PMID:21926343
Margossian, Renee; Schwartz, Marcy L; Prakash, Ashwin; Wruck, Lisa; Colan, Steven D; Atz, Andrew M; Bradley, Timothy J; Fogel, Mark A; Hurwitz, Lynne M; Marcus, Edward; Powell, Andrew J; Printz, Beth F; Puchalski, Michael D; Rychik, Jack; Shirali, Girish; Williams, Richard; Yoo, Shi-Joon; Geva, Tal
2009-08-01
Assessment of the size and function of a functional single ventricle (FSV) is a key element in the management of patients after the Fontan procedure. Measurement variability of ventricular mass, volume, and ejection fraction (EF) among observers by echocardiography and cardiac magnetic resonance imaging (CMR) and their reproducibility among readers in these patients have not been described. From the 546 patients enrolled in the Pediatric Heart Network Fontan Cross-Sectional Study (mean age 11.9 +/- 3.4 years), 100 echocardiograms and 50 CMR studies were assessed for measurement reproducibility; 124 subjects with paired studies were selected for comparison between modalities. Interobserver agreement for qualitative grading of ventricular function by echocardiography was modest for left ventricular (LV) morphology (kappa = 0.42) and weak for right ventricular (RV) morphology (kappa = 0.12). For quantitative assessment, high intraclass correlation coefficients were found for echocardiographic interobserver agreement (LV 0.87 to 0.92, RV 0.82 to 0.85) of systolic and diastolic volumes, respectively. In contrast, intraclass correlation coefficients for LV and RV mass were moderate (LV 0.78, RV 0.72). The corresponding intraclass correlation coefficients by CMR were high (LV 0.96, RV 0.85). Volumes by echocardiography averaged 70% of CMR values. Interobserver reproducibility for the EF was similar for the 2 modalities. Although the absolute mean difference between modalities for the EF was small (<2%), 95% limits of agreement were wide. In conclusion, agreement between observers of qualitative FSV function by echocardiography is modest. Measurements of FSV volume by 2-dimensional echocardiography underestimate CMR measurements, but their reproducibility is high. Echocardiographic and CMR measurements of FSV EF demonstrate similar interobserver reproducibility, whereas measurements of FSV mass and LV diastolic volume are more reproducible by CMR.
The Dark Side of the Moon: The Right Ventricle
Foschi, Massimiliano; Di Mauro, Michele; Tancredi, Fabrizio; Capparuccia, Carlo; Petroni, Renata; Leonzio, Luigi; Romano, Silvio; Gallina, Sabina; Penco, Maria; Cibelli, Mario; Calafiore, Antonio
2017-01-01
The aim of this review article is to summarize current knowledge of the pathophysiology underlying right ventricular failure (RVF), focusing, in particular, on right ventricular assessment and prognosis. The right ventricle (RV) can tolerate volume overload well, but is not able to sustain pressure overload. Right ventricular hypertrophy (RVH), as a response to increased afterload, can be adaptive or maladaptive. The easiest and most common way to assess the RV is by two-dimensional (2D) trans-thoracic echocardiography measuring surrogate indexes, such as tricuspid annular plane systolic excursion (TAPSE), fractional area change (FAC), and tissue Doppler velocity of the lateral aspect of the tricuspid valvular plane. However, both volumes and function are better estimated by 3D echocardiography and cardiac magnetic resonance (CMR). The prognostic role of the RV in heart failure (HF), pulmonary hypertension (PH), acute myocardial infarction (AMI), and cardiac surgery has been overlooked for many years. However, several recent studies have placed much greater importance on the RV in prognostic assessments. In conclusion, RV dimensions and function should be routinely assessed in cardiovascular disease, as RVF has a significant impact on disease prognosis. In the presence of RVF, different therapeutic approaches, either pharmacological or surgical, may be beneficial. PMID:29367547
Gebhard, Caroline Eva; Desjardins, Georges; Gebhard, Cathérine; Gavra, Paul; Denault, André Y
2017-04-01
To evaluate intratracheal milrinone (tMil) administration for rapid treatment of right ventricular (RV) dysfunction as a novel route after cardiopulmonary bypass. Retrospective analysis. Single-center study. The study comprised 7 patients undergoing cardiac surgery who exhibited acute RV dysfunction after cardiopulmonary bypass. After difficult weaning caused by cardiopulmonary bypass-induced acute RV dysfunction, milrinone was administered as a 5-mg bolus inside the endotracheal tube. RV function improvement, as indicated by decreasing pulmonary artery pressure and changes of RV waveforms, was observed in all 7 patients. Adverse effects of tMil included dynamic RV outflow tract obstruction (2 patients) and a decrease in systemic mean arterial pressure (1 patient). tMil may be an effective, rapid, and easily applicable therapeutic alternative to inhaled milrinone for the treatment of acute RV failure during cardiac surgery. However, sufficiently powered clinical trials are needed to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.
Badagliacca, Roberto; Poscia, Roberto; Pezzuto, Beatrice; Papa, Silvia; Gambardella, Cristina; Francone, Marco; Mezzapesa, Mario; Nocioni, Martina; Nona, Alfred; Rosati, Riccardo; Sciomer, Susanna; Fedele, Francesco; Dario Vizza, Carmine
2015-03-01
Right ventricular (RV) dyssynchrony has been described in pulmonary arterial hypertension (PAH), but no evidence is available on its morphologic determinants and its effect on systolic function. The aim of this study was to evaluate the morphologic determinants of RV dyssynchrony by echocardiographic and cardiac magnetic resonance imaging and its effect on systolic function. In 60 consecutive idiopathic PAH (IPAH) patients with narrow QRS, RV dyssynchrony was evaluated by 2D speckle-tracking echocardiography, calculating the standard deviation of the times to peak systolic strain for the four mid-basal RV segments (RV-SD4). Patients were grouped by the median value of RV-SD4 (19 milliseconds) and compared for RV remodeling and systolic function parameters, WHO class, pulmonary hemodynamics and 6-minute walk test (6MWT). Despite similar pulmonary vascular resistance and mean pulmonary arterial pressure, patients with RV-SD4 at >19 milliseconds had advanced WHO class and worse 6MWT, RV hemodynamics, RV remodeling and systolic function parameters compared with patients at ≤19 milliseconds. The morphologic determinants of RV dyssynchrony resulted RV end-diastolic area, LV diastolic eccentricity index and RV mass volume ratio (r = 0.69, r(2) = 0.47, p < 0.0001). Finally, we found a significant inverse correlation between RV mid-basal segments post-systolic shortening time and cardiac index (r = -0.64, r(2) = 0.41, p = 0.001), accounting for the significant correlation between RV-SD4 and cardiac index (r = 0.57, r(2) = 0.32, p = 0.003). In IPAH with narrow QRS, RV dyssynchrony is associated with RV dilation and eccentric hypertrophy pattern, suggesting a role of segmental wall stress heterogeneity as the major determinant of mechanical delay. Post-systolic shortening, as inefficient contraction, contributes to pump dysfunction. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Wu, L; de Roest, G J; Hendriks, M L; van Rossum, A C; de Cock, C C; Allaart, C P
2016-01-01
The contribution of right ventricular (RV) stimulation to cardiac resynchronisation therapy (CRT) remains controversial. RV stimulation might be associated with adverse haemodynamic effects, dependent on intrinsic right bundle branch conduction, presence of scar, RV function and other factors which may partly explain non-response to CRT. This study investigates to what degree RV stimulation modulates response to biventricular (BiV) stimulation in CRT candidates and which baseline factors, assessed by cardiac magnetic resonance imaging, determine this modulation. Forty-one patients (24 (59 %) males, 67 ± 10 years, QRS 153 ± 22 ms, 21 (51 %) ischaemic cardiomyopathy, left ventricular (LV) ejection fraction 25 ± 7 %), who successfully underwent temporary stimulation with pacing leads in the RV apex (RVapex) and left ventricular posterolateral (PL) wall were included. Stroke work, assessed by a conductance catheter, was used to assess acute haemodynamic response during baseline conditions and RVapex, PL (LV) and PL+RVapex (BiV) stimulation. Compared with baseline, stroke work improved similarly during LV and BiV stimulation (∆+ 51 ± 42 % and ∆+ 48 ± 47 %, both p < 0.001), but individual response showed substantial differences between LV and BiV stimulation. Multivariate analysis revealed that RV ejection fraction (β = 1.01, p = 0.02) was an independent predictor for stroke work response during LV stimulation, but not for BiV stimulation. Other parameters, including atrioventricular delay and scar presence and localisation, did not predict stroke work response in CRT. The haemodynamic effect of addition of RVapex stimulation to LV stimulation differs widely among patients receiving CRT. Poor RV function is associated with poor response to LV but not BiV stimulation.
Ooka, Junichi; Tanaka, Hidekazu; Hatani, Yutaka; Hatazawa, Keiko; Matsuzoe, Hiroki; Shimoura, Hiroyuki; Sano, Hiroyuki; Sawa, Takuma; Motoji, Yoshiki; Mochizuki, Yasuhide; Ryo-Koriyama, Keiko; Matsumoto, Kensuke; Fukuzawa, Koji; Hirata, Ken-Ichi
2017-10-21
Although right ventricular (RV) pacing is the only effective treatment for patients with symptomatic bradycardia, it creates left ventricular (LV) dyssynchrony, which can induce LV dysfunction and heart failure. The current criterion for consideration of cardiac resynchronization therapy (CRT) is LV ejection fraction (LVEF) ≤ 35%, but indication for CRT in patients required for RV pacing with LVEF > 35% remains unclear.We studied 40 patients, all LVEF ≥ 35%, who had undergone implantable cardioverter-defibrillator implantation with RV pacing < 5%. Echocardiography was performed at baseline and during RV pacing. LV dyssynchrony was defined as anteroseptal-to-posterior wall delay from the mid-LV short-axis view using two-dimensional speckle-tracking radial strain (significant: ≥ 130 ms). Patients were divided into two groups based on baseline LVEF: normal LVEF ( ≥ 50%; n = 20) and mildly reduced LVEF (35-50%; n = 20).LVEF and LV dyssynchrony in patients with mildly reduced LVEF deteriorated significantly during RV pacing compared to those in patients with normal LVEF. Moreover, changes in LV dyssynchrony during RV pacing significantly correlated with changes in LVEF (r = -0.44, P < 0.01). Multivariate logistic regression analysis showed that baseline LVEF was the only independent predictor and baseline LVEF < 48% predictive of significant LV dyssynchrony during RV pacing.The extent of RV pacing-induced LV dysfunction may be associated with baseline LV function. These adverse effects on patients with mildly reduced LVEF of 35-50% and indications for RV pacing due to bradycardia can thus be prevented by CRT.
Frea, Simone; Bovolo, Virginia; Bergerone, Serena; D'Ascenzo, Fabrizio; Antolini, Marina; Capriolo, Michele; Canavosio, Federico Giovanni; Morello, Mara; Gaita, Fiorenzo
2012-12-01
Right ventricular (RV) function plays a pivotal role in advanced heart failure patients, especially for screening those who may benefit from left ventricular assist device (LVAD) implantation. We introduce RV contraction pressure index (RVCPI) as a new echo-Doppler parameter of RV function. The accuracy of RVCPI in detecting RV failure was compared with the criterion standard, the RV stroke work index (RVSWI) obtained through right heart catheterization in advanced heart failure patients referred for heart transplantation or LVAD implantation. Right heart catheterization and echo-Doppler were simultaneously performed in 94 consecutive patients referred to our center for advanced heart failure (ejection fraction (EF) 24 ± 8.8%, 40% NYHA functional class IV). RV stroke volume and invasive pulmonary pressures were used to obtain RVSWI. Simplified RVCPI (sRVCPI) was derived as TAPSE × (RV - right atrial pressure gradient). Close positive correlation between sRVCPI and RVSWI was found (r = 0.68; P < .001). With logistic regression, we found that increased sRVCPI showed an independent reduced risk (odds ratio 0.98, 95% confidence interval [CI] 0.97-0.99; P = .016) for patients to present a depressed RVSWI (<0.25 mm Hg/L·m(2)). Simplified RVCPI showed high diagnostic accuracy (area under the receiver operating characteristic curve 0.94, 95% CI 0.89-0.99) and good sensitivity and specificity (92% and 85%, respectively) to predict depressed RVSWI with the use of a cutoff value of <400 mm·mm Hg. In patients with advanced heart failure, the new simple bedside sRVCPI closely correlated with RVSWI, providing an independent, noninvasive, and easy tool for the evaluation of RV function. Copyright © 2012 Elsevier Inc. All rights reserved.
Abouelnour, Amr Ei; Doyle, Mark; Thompson, Diane V; Yamrozik, June; Williams, Ronald B; Shah, Moneal B; Soma, Siva Kr; Murali, Srinivas; Benza, Raymond L; Biederman, Robert Ww
2017-01-01
Investigate the impact of Right Ventricular (RV) Internal Work (IW), ratio of arterial to ventricular end-systolic elastance (E a /E max ), and RV Insertion Point (IP) Late Gadolinium Enhancement (LGE) on outcome in Pulmonary Hypertension (PH) patients. LGE is well known to be present within the RVIPs and Inter Ventricular Septum (IVS) in PH patients, but its prognostic role remains complex and potentially overestimated via 2D qualitative relative to the 3D quantitative measures now available. However, E a /E max , a measure of ventricular-arterial coupling and IW, when added to external cardiac work i.e. the P-V loop area as correlates to the heart's energy demands, might fundamentally improve measures of prognosis as they interrogate physiology beyond just the RV. Cardiac Magnetic Resonance Imaging (CMR) of 124 PH patients (age = 60±13, 85F) referred to a large tertiary PH center, was retrospectively examined for RV volumetric and functional indices and RVIP LGE%. Right Heart Catheterizations (RHC) performed within 1±2 months of the CMR were reviewed. E a /E max was derived as RV End-Systolic Volume (ESV/RVSV). IW was estimated as RVESV ×(RV end-systolic pressure-RV diastolic pressure). Patients were followed from date of CMR for up to 5 years for MACE (death, hospitalized RV failure, initiation of parenteral prostacyclin, sustained ventricular arrhythmia or referral for lung transplantation). MACE was high; 48/124 (39%) patients had MACE by 1.6±1.3 years. Neither RVIP nor IVS LGE using visual assessment or even 3D quantization predicted MACE. The strongest predictor of MACE was RVIW (OR=1.00013, p<0.002), vs. mPAP, RV mass, RV EF and IP LGE. Surprisingly, neither a single time-point RVIP nor whole IVS LGE% can predict outcome in the largest cohort of PH patients studied to date when compared with conventional or contemporary metrics of disease progression. CMR-LGE appears to lose its' prognostic value in PH patients in stark contradistinction to all other left and right-sided human myocardial pathologies.
Kutyifa, Valentina; Bloch Thomsen, Poul Erik; Huang, David T; Rosero, Spencer; Tompkins, Christine; Jons, Christian; McNitt, Scott; Polonsky, Bronislava; Shah, Amil; Merkely, Bela; Solomon, Scott D; Moss, Arthur J; Zareba, Wojciech; Klein, Helmut U
2013-12-01
Data on the impact of right ventricular (RV) lead location on clinical outcome and ventricular tachyarrhythmias in cardiac resynchronization therapy with defibrillator (CRT-D) patients are limited. To evaluate the impact of different RV lead locations on clinical outcome in CRT-D patients enrolled in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy trial. We investigated 742 of 1089 CRT-D patients (68%) with adjudicated RV lead location enrolled in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy trial to evaluate the impact of RV lead location on cardiac events. The primary end point was heart failure or death; secondary end points included ventricular tachycardia (VT), ventricular fibrillation (VF), or death and VT or VF alone. Eighty-six patients had the RV lead positioned at the RV septal or right ventricular outflow tract region, combined as nonapical RV group, and 656 patients had apical RV lead location. There was no difference in the primary end point in patients with nonapical RV lead location versus those with apical RV lead location (hazard ratio [HR] 0.98; 95% confidence interval [CI] 0.54-1.80; P = .983). Echocardiographic response to CRT-D was comparable across RV lead location groups (P > .05 for left ventricular end-diastolic volume, left ventricular end-systolic volume, and left atrial volume percent change). However, nonapical RV lead location was associated with significantly higher risk of VT/VF/death (HR 2.45; 95% CI 1.36-4.41; P = .003) and VT/VF alone (HR 2.52; 95% CI 1.36-4.65; P = .002), predominantly in the first year after device implantation. Results were consistent in patients with left bundle branch block. In CRT-D patients, there is no benefit of nonapical RV lead location in clinical outcome or echocardiographic response. Moreover, nonapical RV lead location is associated with an increased risk of ventricular tachyarrhythmias, particularly in the first year after device implantation. Published by Elsevier Inc.
Percent Emphysema and Right Ventricular Structure and Function
Grau, Maria; Lima, Joao A.; Hoffman, Eric A.; Bluemke, David A.; Carr, J. Jeffrey; Chahal, Harjit; Enright, Paul L; Jain, Aditya; Prince, Martin R.; Kawut, Steven M.
2013-01-01
Background: Severe COPD can lead to cor pulmonale and emphysema and is associated with impaired left ventricular (LV) filling. We evaluated whether emphysema and airflow obstruction would be associated with changes in right ventricular (RV) structure and function and whether these associations would differ by smoking status. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) performed cardiac MRI on 5,098 participants without clinical cardiovascular disease aged 45 to 84 years. RV and emphysema measures were available for 4,188 participants. Percent emphysema was defined as the percentage of voxels below −910 Hounsfield units in the lung windows on cardiac CT scans. Generalized additive models were used to control for confounders and adjust for respective LV parameters. Results: Participants consisted of 13% current smokers, 36% former smokers, and 52% never smokers. Percent emphysema was inversely associated with RV end-diastolic volume, stroke volume, cardiac output, and mass prior to adjustment for LV measures. After adjustment for LV end-diastolic volume, greater percent emphysema was associated with greater RV end-diastolic volume (+1.5 mL, P = .03) among current smokers, smaller RV end-diastolic volume (−0.8 mL, P = .02) among former smokers, and similar changes among never smokers. Conclusions: Percent emphysema was associated with smaller RV volumes and lower mass. The relationship of emphysema to cardiac function is complex but likely involves increased pulmonary vascular resistance, predominantly with reduced cardiac output, pulmonary hyperinflation, and accelerated cardiopulmonary aging. PMID:23450302
Bernard, Yvette; Morel, Mathilde; Descotes-Genon, Vincent; Jehl, Jerome; Meneveau, Nicolas; Schiele, Francois
2014-04-01
Right ventricular (RV) function is a major prognostic factor in patients (pts) with operated tetralogy of Fallot (TOF). We compared the results of RV speckle tracking (two-dimensional [2D] strain) with those of magnetic resonance imaging (MRI) in this setting. At transthoracic echocardiogram (echo), RV fractional area change (RVFAC), tricuspid annular plane systolic excursion (TAPSE), velocity of S-wave at tricuspid annulus with tissue Doppler, and 2D strain (longitudinal maximal systolic strain) were recorded. Their results were compared to RV indexed end-diastolic volume (EDV), indexed end-systolic volume (ESV), and RV ejection fraction (EF) at MRI. Twenty-two pts (16 M) aged 11-62 years (mean 23.2 ± 10.8) were included. Parameters of RV systolic function were as follows: RVFAC = 40 ± 10%, TAPSE = 18 ± 4 mm, S-wave = 10 ± 0.2 cm/sec, and RV EF at MRI = 43 ± 11%. Global RV systolic strain was -15.5 ± 4.2%, free wall strain was -15.1 ± 6.3%, and septal strain was -15.8 ± 3.8% on average for the whole group. Echo indexed RV end-diastolic area correlated with EDV at MRI (r = 0.73), as well as echo indexed RV end-systolic area and ESV at MRI (r = 0.71). Global RV 2D strain correlated well with RV EF at MRI: r = 0.68; P < 0.05, and with ESV at MRI: r = 0.63. Feasibility, intra- and inter-observer reproducibility of 2D strain were adequate. Speckle tracking is a promising method to estimate RV systolic function in pts operated on for TOF. © 2013, Wiley Periodicals, Inc.
Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi
2015-01-01
Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.
Lorenz, C H; Walker, E S; Graham, T P; Powers, T A
1995-11-01
The long-term adaptation of the right ventricle after atrial repair of transposition of the great arteries (TGA) remains a subject of major concern. Cine magnetic resonance imaging (MRI), with its tomographic capabilities, allows unique quantitative evaluation of both right and left ventricular function and mass. Our purpose was to use MRI and an age-matched normal population to examine the typical late adaptation of the right and left ventricles after atrial repair of TGA. Cine MRI was used to study ventricular function and mass in 22 patients after atrial repair of TGA. Images were obtained in short-axis sections from base to apex to derive normalized right and left ventricular mass (RVM and LVM, g/m2), interventricular septal mass (IVSM, g/m2), RV and LV end-diastolic volumes (EDV, mL/m2), and ejection fractions (EF). Results 8 to 23 years after repair were compared with analysis of 24 age- and sex-matched normal volunteers and revealed markedly elevated RVM, decreased LVM and IVSM, normal RV size, and only mildly depressed RVEF. Only 1 of 22 patients had clinical RV dysfunction, and this patient had increased RVM. Cine MRI allows quantitative evaluation of both RV and LV mass and function late after atrial repair of TGA. Longitudinal studies that include these measurements should prove useful in determining the mechanism of late RV failure in these patients. On the basis of these early data, inadequate hypertrophy does not appear to be the cause of late dysfunction in this patient group.
Zlatanovic, Maja; Tadic, Marijana; Celic, Vera; Ivanovic, Branislava; Stevanovic, Ana; Damjanov, Nemanja
2017-01-01
We aimed to determine left ventricular (LV) and right ventricular (RV) structure, function and mechanics, as well as heart rate variability (HRV), and their relationship, in patients with systemic sclerosis (SSc). The study included 41 SSc patients and 30 age-matched healthy volunteers. All the patients underwent clinical examination, serological tests, pulmonary function testing, 24-h Holter monitoring and complete two-dimensional echocardiography including strain analysis. The parameters of LV structure (interventricular septum thickness and LV mass index) and RV structure (RV wall thickness) were significantly higher in SSc patients. LV and RV diastolic function (estimated by mitral and tricuspid E/e' ratio) was significantly impaired in SSc group comparing with the healthy controls. LV and RV longitudinal function was significantly deteriorated in SSc patients. LV circumferential strain was also significantly lower in SSc group, whereas LV radial strain was similar between the observed groups. All parameters of time and frequency domain of HRV were decreased in SSc patients. LV and RV cardiac remodeling parameters, particularly diastolic function and longitudinal strain, were associated with HRV indices without regard to the main demographic or the clinical and echocardiographic characteristics. Rodnan Skin Score was also independently associated with biventricular cardiac remodeling in SSc patients. LV and RV structure, function and mechanics, as well as autonomic nervous function, were significantly impaired in SSc patients. There is the significant association between biventricular cardiac remodeling and autonomic function in these patients, which could be useful for their everyday clinical assessment.
Effects of an Isolated Complete Right Bundle Branch Block on Mechanical Ventricular Function.
Zhang, Qin; Xue, Minghua; Li, Zhan; Wang, Haiyan; Zhu, Lei; Liu, Xinling; Meng, Haiyan; Hou, Yinglong
2015-12-01
The purpose of this study was to investigate the effects of an isolated complete right bundle branch block on mechanical ventricular function. Two groups of participants were enrolled in this study: a block group, consisting of 98 patients with isolated complete right bundle branch blocks without structural heart disease, and a control group, consisting of 92 healthy adults. The diameter, end-diastolic area, end-systolic area, and right ventricular (RV) fractional area change were obtained to evaluate morphologic and systolic function by 2-dimensional sonographic technology. Systolic and diastolic velocities and time interval parameters were measured to assess mechanical ventricular performance using pulsed wave tissue Doppler imaging. Although there was no significant difference in the RV fractional area change between the patients with blocks and controls, the diameter, end-diastolic area, and end-systolic area of the RV were significantly larger in the patients with blocks (P < .05). In the patients with blocks, the peak velocities during systole and early diastole and the ratio of the peak velocities during early and late diastole decreased. The block group had a prolonged pre-ejection period, electromechanical delay time, and isovolumic relaxation time, a decreased ejection time, and an increased pre-ejection period/ejection time ratio, and the myocardial performance index (Tei index) at the basal RV lateral wall was significantly increased. There were no significant differences in any echocardiographic parameters at different sites of the left ventricle. In patients with isolated complete right bundle branch blocks, systolic and diastolic functions are impaired in the RV, and follow-up is needed. © 2015 by the American Institute of Ultrasound in Medicine.
Yamashita, H; Onodera, S; Imamoto, T; Obara, A; Tanazawa, S; Takashio, T; Morimoto, H; Inoue, H
1989-10-01
To clarify the effects of right ventricular (RV) pressure overload on functional and geometrical interference and interdependency between the right and left ventricle, both ventricular internal diameters were measured by the microcrystal technique during lycopodium induced pulmonary embolization in the dog. By repeated embolization, RV systolic pressure was increased progressively until it reached a peak value of about 60-70 mmHg, then it began to fall. At the same time, the hemodynamics deteriorated progressively resulting in death. During the experiment, gradual leftward displacement of the interventricular septum (IVS) without any change in left ventricular (LV) free wall geometry was observed. In pulmonary embolic shock, which showed a fall in LV pressure to about 60 mmHg and cardiac output to about 40% of control, the leftward displacement of IVS became marked, and the cooperative movement of IVS to LV contraction disappeared. The IVS position during acute RV pressure overload was able to account for the transseptal pressure gradient. The importance of IVS position and motion in cardiac function during acute RV pressure overload was stressed. Furthermore, to establish the theoretical treatment in acute cardiopulmonary resuscitation, ligation of the descending aorta (AoL) or norepinephrine ("N") or isoproterenol ("I") administration were examined in a canine pulmonary embolic shock model. AoL or "N" improved the deteriorated hemodynamics with restoration of biventricular geometry. However, "I" did not restore the biventricular geometry despite the transiently improved hemodynamics, and the experimental animals were unable to survive. These results suggest the importance of the maintainance of systemic pressure for the restoration of failed RV function. Further integrated studies are required to understand biventricular interference and interdependency.
de Amorim Corrêa, Ricardo; de Oliveira, Fernanda Brito; Barbosa, Marcia M; Barbosa, Jose Augusto A; Carvalho, Taís Soares; Barreto, Michele Campos; Campos, Frederico Thadeu A F; Nunes, Maria Carmo Pereira
2016-09-01
Pulmonary arterial hypertension (PAH) is characterized by elevated mean pulmonary arterial pressure with abnormal right ventricular (RV) pressure overload that may alter left ventricular (LV) function. The aim of this study was to assess the impact of RV pressure overload on LV function in PAH patients using two-dimensional (2D) speckle tracking strain. The study enrolled 37 group 1 PAH patients and 38 age- and gender-matched healthy controls. LV longitudinal and radial 2D strains were measured with and without including the ventricular septum. Six-minute walk test (6MWT) and brain natriuretic peptide (BNP) levels were also obtained in patients with PAH. The mean age of patients was 46.4 ± 14.8 years, 76% women, and 16 patients (43%) had schistosomiasis. Sixteen patients (43%) were in WHO class III or IV under specific treatment for PAH. The overall 6MWT distance was 441 meters, and the BNP levels were 80 pg/mL. Patients with PAH more commonly presented with LV diastolic dysfunction and impairment of RV function when compared to controls. LV global longitudinal and radial strains were lower in patients than in controls (-17.9 ± 2.8 vs. -20.5 ± 1.9; P < 0.001 and 30.8 ± 10.5 vs. 49.8 ± 15.4; P < 0.001, respectively). After excluding septal values, LV longitudinal and radial strains remained lower in patients than in controls. The independent factors associated with global LV longitudinal strain were LV ejection fraction, RV fractional area change, and tricuspid annular systolic motion. This study showed impaired LV contractility in patients with PAH assessed by speckle tracking strain, irrespective of ventricular septal involvement. Global LV longitudinal strain was associated independently with RV fractional area change and tricuspid annular systolic motion, after adjustment for LV ejection fraction. © 2016, Wiley Periodicals, Inc.
Teshima, Kenji; Asano, Kazushi; Iwanaga, Koji; Koie, Hiroshi; Uechi, Masami; Kato, Yuka; Kutara, Kenji; Edamura, Kazuya; Hasegawa, Atsuhiko; Tanaka, Shigeo
2006-12-01
Right ventricular (RV) Tei index (index of myocardial performance) has been demonstrated to be clinically useful in estimating RV function in various human cardiac diseases. The purposes of this study were to validate the correlation between RV Tei index and RV function obtained by cardiac catheterization in healthy dogs, and to evaluate the RV Tei index in dogs with tricuspid regurgitation (TR). In healthy dogs, the RV Tei index significantly correlated with the RV peak +dP/dt (r=-0.80, p<0.0001) and -dP/dt (r=0.69, p=0.0001). In normal dogs, the RV Tei index was not significantly correlated with heart rate, body weight, and age. The RV Tei index significantly increased in dogs with moderate to severe TR (0.39 +/- 0.35, p=0.0015), filariasis (0.46 +/- 0.16, p=0.0131), and trivial to mild TR and severe mitral regurgitation (MR; 0.61 +/- 0.14, p=0.0017) when compared with the normal dogs (0.17 +/- 0.10). In addition, the RV Tei index in dogs with TR significantly increased in association with pulmonary hypertension [PH(-), 0.19 +/- 0.09; PH(+), 0.65 +/- 0.14; respectively p<0.0001]. Our study has demonstrated that RV Tei index is a feasible approach to estimate RV function in dogs and is not influenced by heart rate, body weight, and aging. Further investigations are required to clarify the clinical significance of RV Tei index in dogs with right-sided cardiac diseases.
Karsenty, Clement; Hadeed, Khaled; Dulac, Yves; Semet, Florent; Alacoque, Xavier; Breinig, Sophie; Leobon, Bertrand; Acar, Philippe; Hascoet, Sebastien
2017-03-01
Right ventricular (RV) function is a prognostic marker of cardiac disease in children. Speckle tracking has been developed to assess RV longitudinal shortening, the dominant deformation during systole; little is known about its feasibility in children with congenital heart disease (CHD). To evaluate the feasibility and reproducibility of RV two-dimensional (2D) strain assessed by speckle tracking in infants undergoing CHD surgery compared with conventional markers. In this prospective single-centre study, RV peak systolic strain (RV-PSS) was measured using 2D speckle tracking in 37 consecutive children undergoing CHD surgery. Examinations were performed the day before surgery, a few hours after surgery and before discharge. Relationships with the z score of tricuspid annular plane systolic excursion (TAPSE) and tricuspid annular systolic velocity (TA Sa) were assessed. Median (interquartile range) age was 19 months (5-63); median weight was 9.2 kg (5.3-18.0). RV-PSS analysis was feasible in 92.9% (95% confidence interval [CI]: 86.0-97.1) of examinations. The coefficient of variation was 9.7% (95% CI: 7.4-11.9) for intraobserver variability and 15.1% (95% CI: 12.7-17.6) for interobserver variability. Correlations between RV-PSS and z score of TAPSE and TA Sa were strong (r=0.71, P<0.0001 and r=0.70, P<0.0001, respectively). RV-PSS was significantly reduced after surgery compared with baseline (-10.5±2.9% vs. -19.5±4.8%; P<0.0001) and at discharge (-13.5±4.0% vs. -19.5±4.8%; P<0.0001). Similar evolutions were observed with TAPSE and TA Sa (both P<0.0001). RV longitudinal strain by speckle tracking is a feasible and reproducible method of assessing perioperative evolution of RV function in children with CHD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Lee, Namheon; Das, Ashish; Banerjee, Rupak K; Gottliebson, William M
2013-01-01
Adult patients who underwent tetralogy of Fallot repair surgery (rTOF) confront life-threatening ailments due to right ventricular (RV) myocardial dysfunction. Pulmonary valve replacement (PVR) needs to be performed to restore the deteriorating RV function. Determination of correct timing to perform PVR in an rTOF patient remains subjective, due to the unavailability of quantifiable clinical diagnostic parameters. The objective of this study is to evaluate the possibility of using RV body surface area (BSA)-indexed stroke work (SW(I)) to quantify RV inefficiency in TOF patients. We hypothesized that RV SW(I) required to push blood to the lungs in rTOF patients is significantly higher than that of normal subjects. Seven patients with rTOF pathophysiology and eight controls with normal RV physiology were registered for this study. Right ventricular volume and pressure were measured using cardiac magnetic resonance imaging and catheterization, respectively. Statistical analysis was performed to quantify the difference in SW(I) between the RV of the rTOF and control groups. Right ventricular SW(I) in rTOF patients (0.176 ± 0.055 J/m(2)) was significantly higher by 93.4% (P = 0.0026) than that of controls (0.091 ± 0.030 J/m(2)). Further, rTOF patients were found to have significantly higher (P < 0.05) BSA normalized RV end-systolic volume, end-systolic pressure, and regurgitation fraction than control subjects. Ejection fraction and peak ejection rate of rTOF patients were significantly lower (P < 0.05) than those of controls. Patients with rTOF pathophysiology had significantly higher RV SW(I) compared with subjects with normal RV physiology. Therefore, RV SW(I) may be useful to quantify RV inefficiency in rTOF patients along with currently used clinical end points such as RV volume, pressure, regurgitation fraction, and ejection fraction.
Kühn, Andreas; Meierhofer, Christian; Rutz, Tobias; Rondak, Ina-Christine; Röhlig, Christoph; Schreiber, Christian; Fratz, Sohrab; Ewert, Peter; Vogt, Manfred
2016-08-01
Ebstein's anomaly (EA) is often associated with right ventricular (RV) dysfunction. Data on echocardiographic quantification of RV function are, however, rare. The aim of this study was to determine how non-volumetric echocardiographic indices and qualitative assessment of global systolic RV function correlate with cardiovascular magnetic resonance (CMR)-derived RV ejection fraction (EF). We compared six echocardiographic indices and qualitative assessment of RV function with the gold standard CMR. A total of 49 unoperated patients with EA and a mean age of 32 ± 18 years were examined. Tricuspid annular plane systolic excursion, tissue Doppler myocardial velocities (peak S and IVA) and 2D strain and strain rate measures for the RV were compared with CMR-derived EF. Only 2D global longitudinal strain (2D-GLS), out of the six parameters investigated, showed a weak, although statistically significant correlation with CMR-derived RVEF (R = -0.4, P = 0.01). Using a cut-off value of -20.15, 2D-GLS sensitivity (77%) and specificity (46%) in detecting patients with a CMR-derived EF of <50% were comparable with qualitative assessment (sensitivity 77%, specificity 45%). Overall echocardiographic parameters of RV function correlate poorly with CMR-derived EF in patients with EA. Only 2D global longitudinal RV strain correlated weakly with CMR-derived RVEF. However, the sensitivity and specificity for detecting RV dysfunction using 2D strain imaging were comparable with qualitative RV functional assessment. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Right ventricular septal pacing: the success of stylet-driven active-fixation leads.
Rosso, Raphael; Teh, Andrew W; Medi, Caroline; Hung, Thuy To; Balasubramaniam, Richard; Mond, Harry G
2010-01-01
The detrimental effects of right ventricular (RV) apical pacing on left ventricular function has driven interest in alternative pacing sites and in particular the mid RV septum and RV outflow tract (RVOT). RV septal lead positioning can be successfully achieved with a specifically shaped stylet and confirmed by the left anterior oblique (LAO) fluoroscopic projection. Such a projection is neither always used nor available during pacemaker implantation. The aim of this study was to evaluate how effective is the stylet-driven technique in septal lead placement guided only by posterior-anterior (PA) fluoroscopic view. One hundred consecutive patients with an indication for single- or dual-chamber pacing were enrolled. RV septal lead positioning was attempted in the PA projection only and confirmed by the LAO projection at the end of the procedure. The RV lead position was septal in 90% of the patients. This included mid RV in 56 and RVOT in 34 patients. There were no significant differences in the mean stimulation threshold, R-wave sensing, and lead impedance between the two sites.In the RVOT, 97% (34/35) of leads were placed on the septum, whereas in the mid RV the value was 89% (56/63). The study confirms that conventional active-fixation pacing leads can be successfully and safely deployed onto the RV septum using a purposely-shaped stylet guided only by the PA fluoroscopic projection.
Zhao, Lin-Bo; Jia, Zhen-Yu; Lu, Guang-Dong; Zhu, Yin-Su; Jing, Lei; Shi, Hai-Bin
2015-04-01
To establish a canine model of acute pulmonary embolism (PE) with right ventricular (RV) dysfunction using autologous blood clots and evaluate by echocardiography and contrast-enhanced Computed Tomography (CT). Autologous blood clots formed in vitro were introduced sequentially into the pulmonary arteries of eight healthy mixed-breed dogs while monitoring pulmonary and systemic hemodynamic function. Blood clots were injected until the mean pulmonary artery pressure (MPAP) reached two-three times the baseline pressure, which was maintained up to 1 hour. The RV function was assessed by echocardiography and ECG-gated dual-source contrast CT. All animals survived the imaging procedure. The post-injection pulmonary angiograms showed extensive PE, and MPAP increased from 16.50±2.45 mmHg to 43.13±4.91 mmHg (P<0.001). On echocardiography, the RV fractional area change decreased from 42.06±3.36 to 27.96±3.54 (P<0.001), and the RV myocardial performance increased from 0.20±0.05 to 0.63±0.16 (P<0.001). On CT, the RV end-systolic volume increased from 11.11±1.81 ml to 24.71±4.60 ml (P<0.001), RV end-diastolic volume from 20.73±2.83 ml to 34.63±5.76 ml (P<0.001), and the four-chamber RV/left ventricular diameter ratio from 0.38±0.07 to 0.81±0.14 (P<0.001). Acute PE with RV dysfunction was established in a large animal model through controlled injection of autologous blood clots, which may be useful for developing and evaluating new therapeutic approaches for acute PE with RV dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Armstrong, Hilary F; Schulze, P Christian; Kato, Tomoko S; Bacchetta, Matthew; Thirapatarapong, Wilawan; Bartels, Matthew N
2013-06-01
Studies have shown that patients with poor pre-lung transplant (LTx) right ventricular (RV) function have prolonged post-operative ventilation time and intensive care stay as well as a higher risk of in-hospital death. RV stroke work index (RVSWI) calculates RV workload and contractility. We hypothesized that patients with higher RV workload capacity, indicated by higher RVSWI, would have better outcomes after LTx. A retrospective record review was performed on all LTx patients between 2005 and 2011 who had right heart catheterizations (RHC) 1-year before LTx. In addition, results for echocardiograms and cardiopulmonary exercise testing within 1-year of RHCs were gathered. Mean RVSWI was 9.36 ± 3.59 for 115 patients. There was a significant relation between mean pulmonary artery pressure (mPAP), RVSWI, RV end-diastolic diameter (RVEDd), left atrial dimension (LAD), peak and resting pressure of end-tidal carbon dioxide, minute ventilation /volume of carbon dioxide production, and 1-year mortality after LTx. Contrary to our hypothesis, those who survived had lower RVSWI than those who died within 1 year (8.99 ± 3.38 vs 11.6 ± 4.1, p = 0.026). Hospital length of stay significantly correlated with mPAP, RVSWI, left ventricular ejection fraction, percentage of fractional shortening, RVEDd, RV fractional area change, LAD, and RV wall thickness in diastole. Intensive care length of stay also significantly correlated with these variables and with body mass index. RVSWI was significantly different between groups of different RV function, indicating that increased RVSWI is associated with impairment of RV structure and function in patients undergoing LTx evaluation. This study demonstrates an association between 1-year mortality, initial hospital and intensive care length of stay, and pre-LTx RVSWI. Increased mPAP is a known risk for outcomes in LTx patients. Our findings support this fact and also show increased mortality with elevation of RVSWI, demonstrating the value of RV function in the assessment of risk for pre-LTx patients. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Late deterioration of left ventricular function after right ventricular pacemaker implantation.
Bellmann, Barbara; Muntean, Bogdan G; Lin, Tina; Gemein, Christopher; Schmitz, Kathrin; Schauerte, Patrick
2016-09-01
Right ventricular (RV) pacing induces a left bundle branch block pattern on ECG and may promote heart failure. Patients with dual chamber pacemakers (DCPs) who present with progressive reduction in left ventricular ejection fraction (LVEF) secondary to RV pacing are candidates for cardiac resynchronization therapy (CRT). This study analyzes whether upgrading DCP to CRT with the additional implantation of a left ventricular (LV) lead improves LV function in patients with reduced LVEF following DCP implantation. Twenty-two patients (13 males) implanted with DCPs and a high RV pacing percentage (>90%) were evaluated in term of new-onset heart failure symptoms. The patients were enrolled in this retrospective single-center study after obvious causes for a reduced LVEF were excluded with echocardiography and coronary angiography. In all patients, DCPs were then upgraded to biventricular devices. LVEF was analyzed with a two-sided t-test. QRS duration and brain natriuretic peptide (BNP) levels were analyzed with the unpaired t-test. LVEF declined after DCP implantation from 54±10% to 31±7%, and the mean QRS duration was 161±20 ms during RV pacing. NT-pro BNP levels were elevated (3365±11436 pmol/L). After upgrading to a biventricular device, a biventricular pacing percentage of 98.1±2% was achieved. QRS duration decreased to 108±16 ms and 106±20 ms after 1 and 6 months, respectively. There was a significant increase in LVEF to 38±8% and 41±11% and a decrease in NT-pro BNP levels to 3088±2326 pmol/L and 1860±1838 pmol/L at 1 and 6 months, respectively. Upgrading to CRT may be beneficial in patients with DCPs and heart failure induced by a high RV pacing percentage.
Changes in parameters of right ventricular function with cardiac resynchronization therapy.
Sharma, Abhishek; Lavie, Carl J; Vallakati, Ajay; Garg, Akash; Goel, Sunny; Lazar, Jason; Fonarow, Gregg C
2017-11-01
Studies have shown that cardiac resynchronization therapy (CRT) significantly improves right ventricle (RV) size and function in patients with heart failure (HF). CRT does not lead to improvement in RV function independent of baseline clinical variables. A systematic search of studies published between 1966 to August 31, 2015 was conducted using Pub Med, CINAHL, Cochrane CENTRAL and the Web of Science databases. Studies reporting tricuspid annular plane systolic excursion (TAPSE) or RV basal strain or RV long axis diameter or RV short axis diameter or RV fractional area change (FAC), before and after CRT, were identified. A meta-analysis was performed using random effects with inverse variance method to determine the pooled mean difference in various parameters of RV function after CRT. Meta-regression analysis was performed to test the relationship between change in various parameters of RV functions after CRT and covariates- age, QRS duration, and left ventricular ejection fraction (LVEF). Thirteen studies (N=1541) were selected for final analysis. CRT therapy led to statistically significant increases in TAPSE [1.21 (95% CI 0.55-1.86; p<0.001)], RV FAC [2.26 (95% CI 0.50-4.01; p<0.001)] and basal strain [2.82 (95% CI 0.59-5.05; p<0.001)] and statistically significant decreases in mean RV long axis diameter [-2.94 (95% CI -5.07- -0.82; p=0.005)] and short axis diameter [-1.39 (95% CI -2.10- -0.67; p=0.876)] after a mean follow up period of 9 months. However, after meta-regression analysis for age, QRS duration, and baseline LVEF as covariates, there was no significant improvement in any of the parameters of RV function after CRT. There was a statistically significant improvement in TAPSE, RV basal strain, RV fractional area, RV long axis and short axis with CRT. However, improvement in these echocardiographic parameters of RV function after CRT was not independent of baseline clinical variables but statistically dependent on age, QRS duration and baseline LVEF. © 2017 Wiley Periodicals, Inc.
Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E
2016-01-19
Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Pijuan-Domenech, Antonia; Pineda, Victor; Castro, Miguel Angel; Sureda-Barbosa, Carlos; Ribera, Aida; Cruz, Luz M; Ferreira-Gonzalez, Ignacio; Dos-Subirà, Laura; Subirana-Domènech, Teresa; Garcia-Dorado, David; Casaldàliga-Ferrer, Jaume
2014-11-15
Pulmonary valve replacement (PVR) reduces right ventricular (RV) volumes in the setting of long-term pulmonary regurgitation after Tetralogy of Fallot (ToF) repair; however, little is known of its effect on RV diastolic function. Right atrial volumes may reflect the burden of RV diastolic dysfunction. The objective of this paper is to evaluate the clinical, echocardiographic, biochemical and cardiac magnetic resonance (CMR) variables, focusing particularly on right atrial response and right ventricular diastolic function prior to and after elective PVR in adult patients with ToF. This prospective study was conducted from January 2009 to April 2013 in consecutive patients > 18 years of age who had undergone ToF repair in childhood and were accepted for elective PVR. Twenty patients (mean age: 35 years; 70% men) agreed to enter the study. PVR was performed with a bioporcine prosthesis. Concomitant RV reduction was performed in all cases when technically possible. Pulmonary end-diastolic forward flow (EDFF) decreased significantly from 5.4 ml/m(2) to 0.3 ml/m(2) (p < 0.00001), and right atrial four-chamber echocardiographic measurements and volumes by 25% (p = 0.0024): mean indexed diastolic/systolic atrial volumes prior to surgery were 43 ml/m(2) (SD+/-4.6)/63 ml/m(2) (SD+/-5.5), and dropped to 33 ml/m(2) (SD+/-3)/46 ml/m(2) (SD+/-2.55) post-surgery. All patients presented right ventricular diastolic and systolic volume reductions, with a mean volume reduction of 35% (p < 0.00001). Right ventricular diastolic dysfunction was common in a population of severely dilated RV patients long term after ToF repair. Right ventricular diastolic parameters improved as did right atrial volumes in keeping with the known reduction in RV volumes, after PVR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Achilles' heel of left ventricular assist device therapy: right ventricle.
Ranganath, Neel K; Smith, Deane E; Moazami, Nader
2018-06-01
Many patients suffer from either persistent right ventricular failure (RVF) at the time of left ventricular assist device (LVAD) or have ongoing symptoms consistent with RVF during chronic mechanical circulatory support. The lack of long-term right ventricular assist devices (RVADs) has limited the impact that mechanical circulatory support can provide to patients with biventricular failure. We aim to review the entire spectrum of RVF in patients receiving LVADs and reflect on why this entity remains the Achilles' heel of LVAD therapy. In the early postoperative period, LVAD implantation reduces right ventricle (RV) afterload, but RV dysfunction may be exacerbated secondary to increased venous return. With prolonged therapy, the decreased RV afterload leads to improved RV contractile function. Bayesian statistical models outperform previously published preoperative risk scores by considering inter-relationships and conditional probabilities amongst independent variables. Various echocardiographic parameters and the pulmonary artery pulsatility index have shown promise in predicting post-LVAD RVF. Recent publications have delineated the emergence of 'delayed' RVF. Several devices are currently being investigated for use as RVADs. Post-LVAD RVF depends on the RV's ability to adapt to acute hemodynamic changes imposed by the LVAD. Management options are limited due to the lack of an easily implantable, chronic-use RVAD.
Potus, François; Ruffenach, Grégoire; Dahou, Abdellaziz; Thebault, Christophe; Breuils-Bonnet, Sandra; Tremblay, Ève; Nadeau, Valérie; Paradis, Renée; Graydon, Colin; Wong, Ryan; Johnson, Ian; Paulin, Roxane; Lajoie, Annie C; Perron, Jean; Charbonneau, Eric; Joubert, Philippe; Pibarot, Philippe; Michelakis, Evangelos D; Provencher, Steeve; Bonnet, Sébastien
2015-09-08
Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription-polymerase chain reaction; P<0.01) and capillary density (CD31(+) immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH. © 2015 American Heart Association, Inc.
Bellofiore, Alessandro; Chesler, Naomi C
2013-07-01
The right ventricle (RV) is a pulsatile pump, the efficiency of which depends on proper hemodynamic coupling with the compliant pulmonary circulation. The RV and pulmonary circulation exhibit structural and functional differences with the more extensively investigated left ventricle (LV) and systemic circulation. In light of these differences, metrics of LV function and efficiency of coupling to the systemic circulation cannot be used without modification to characterize RV function and efficiency of coupling to the pulmonary circulation. In this article, we review RV physiology and mechanics, established and novel methods for measuring RV function and hemodynamic coupling, and findings from application of these methods to RV function and coupling changes with pulmonary hypertension. We especially focus on non-invasive measurements, as these may represent the future for clinical monitoring of disease progression and the effect of drug therapies.
Kameny, Rebecca Johnson; He, Youping; Zhu, Terry; Gong, Wenhui; Raff, Gary W; Chapin, Cheryl J; Datar, Sanjeev A; Boehme, Jason; Hata, Akiko; Fineman, Jeffrey R
2018-06-15
The right ventricular (RV) response to pulmonary arterial hypertension (PAH) is heterogeneous. Most patients have maladaptive changes with RV dilation and failure while some-especially patients with PAH secondary to congenital heart disease (CHD)-have an adaptive response with hypertrophy and preserved systolic function. Mechanisms for RV adaptation to PAH are unknown despite RV function being a primary determinant of mortality. In our CHD ovine model with fetally-implanted aortopulmonary shunt (shunt lambs), we previously demonstrated an adaptive physiologic RV response to increased afterload with hypertrophy. In this study, we examined small noncoding microRNA (miRNA) expression in shunt RV and characterized downstream effects of a key miRNA. RV tissue was harvested from 4-week-old shunt and control lambs (n=5) and miRNA, mRNA, and proteins were quantitated. We found differential expression of 40 cardiovascular-specific miRNA in shunt RV. Interestingly, this miRNA signature is distinct from models of RV failure, suggesting that miRNAs might contribute to adaptive RV hypertrophy. Among RV miRNAs, miR-199b is decreased in RV with eventual downregulation of nuclear factor of activated T-cells (NFAT)/calcineurin signaling. Furthermore, anti-fibrotic miR-29a is increased in shunt RV with reduction of miR-29 targets Collagen A1 and 3A1 and decreased fibrosis. Thus, we conclude that the miRNA signature specific to shunt lambs is distinct from RV failure and drives gene expression required for adaptive RV hypertrophy. We propose that the adaptive RV miRNA signature may serve as a prognostic and therapeutic tool in patients with PAH to attenuate or prevent progression of RV failure and premature death.
A new "twist" on right heart failure with left ventricular assist systems.
Houston, Brian A; Shah, Keyur B; Mehra, Mandeep R; Tedford, Ryan J
2017-07-01
Despite significant efforts to predict and prevent right heart failure, it remains a leading cause of morbidity and mortality after implantation of left ventricular assist systems (LVAS). In this Perspective, we review the underappreciated anatomic and physiologic principles that govern the relationship between left and right heart function and contribute to this phenomenon. This includes the importance of considering the right ventricle (RV) and pulmonary arterial circuit as a coupled system; the contribution of the left ventricle (LV) to RV contractile function and the potential negative impact of acutely unloading the LV; the influence of the pericardium and ventricular twist on septal function; the role of RV deformation in reduced mechanical efficiency after device placement; and the potential of ongoing stressors of an elevated right-sided preload. We believe an appreciation of these complex issues is required to fully understand the expression of the unique phenotypes of right heart failure after LVAS implantation and for developing better prognostic and therapeutic strategies. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Functional Capacity of Patients with Pacemaker Due to Isolated Congenital Atrioventricular Block
de Oliveira Júnior, Roberto Márcio; da Silva, Kátia Regina; Kawauchi, Tatiana Satie; Alves, Lucas Bassolli de Oliveira; Crevelari, Elizabeth Sartori; Martinelli, Martino; Costa, Roberto
2015-01-01
Background Isolated congenital atrioventricular block (CAVB) is a rare condition with multiple clinical outcomes. Ventricular remodeling can occur in approximately 10% of the patients after pacemaker (PM) implantation. Objectives To assess the functional capacity of children and young adults with isolated CAVB and chronic pacing of the right ventricle (RV) and evaluate its correlation with predictors of ventricular remodeling. Methods This cross-sectional study used a cohort of patients with isolated CAVB and RV pacing for over a year. The subjects underwent clinical and echocardiographic evaluation. Functional capacity was assessed using the six-minute walk test. Chi-square test, Fisher's exact test, and Pearson correlation coefficient were used, considering a significance level of 5%. Results A total of 61 individuals were evaluated between March 2010 and December 2013, of which 67.2% were women, aged between 7 and 41 years, who were using PMs for 13.5 ± 6.3 years. The percentage of ventricular pacing was 97.9 ± 4.1%, and the duration of the paced QRS complex was 153.7 ± 19.1 ms. Majority of the subjects (95.1%) were asymptomatic and did not use any medication. The mean distance walked was 546.9 ± 76.2 meters and was strongly correlated with the predicted distance (r = 0.907, p = 0.001) but not with risk factors for ventricular remodeling. Conclusions The functional capacity of isolated CAVB patients with chronic RV pacing was satisfactory but did not correlate with risk factors for ventricular remodeling. PMID:25387405
Rösner, Assami; Avenarius, Derk; Malm, Siri; Iqbal, Amjid; Schirmer, Henrik; Bijnens, Bart; Myrmel, Truls
2015-12-01
This study was designed to assess whether altered RV geometry and deformation parameters persisted well into the recovery period after presumably uncomplicated coronary artery bypass grafting (CABG). It was our hypothesis that the altered geometry of and load in the RV following pericardial opening would change both regional and global deformation indices for an extensive period postoperatively. Fifty-seven patients scheduled for CABG underwent preoperative and 8-10 months postoperative magnetic resonance imaging (MRI) for RV volume measurements, and resting echocardiography with assessment of geometry and RV mechanical function determined by tissue Doppler imaging (TDI) based longitudinal strain. Both MRI and echocardiography revealed postoperative dilatation of the RV apex, shortened longitudinal RV length but unchanged RV ejection fraction. Echocardiography parameters associated with filling of the right atrium showed signs of constraint with a reduced systolic filling fraction and increased right atrial size. Right ventricular segmental strain (-20 ± 13% vs. -29 ± 20% preoperatively; mean ±SD, P < 0.0001) was reduced postoperatively in parallel with TAPSE (1.3 ± 0.3 cm vs. 2.2 ± 0.4 cm; P < 0.0001). Post-CABG longitudinal motion of the RV lateral wall is reduced after uneventful CABG despite preserved RV ejection fraction and stroke volume. The discrepancy in various RV systolic performance indicators results from increased sphericity of the RV following opening the pericardium during surgery. Therefore, longitudinal functional parameters may underestimate RV systolic function for at least 8-10 months post-CABG. Changes in deformation parameters should thus always be interpreted in relation to changes in geometry. © 2015, Wiley Periodicals, Inc.
Foppa, Murilo; Arora, Garima; Gona, Philimon; Ashrafi, Arman; Salton, Carol J; Yeon, Susan B; Blease, Susan J; Levy, Daniel; O'Donnell, Christopher J; Manning, Warren J; Chuang, Michael L
2016-03-01
Cardiac magnetic resonance is uniquely well suited for noninvasive imaging of the right ventricle. We sought to define normal cardiac magnetic resonance reference values and to identify the main determinants of right ventricular (RV) volumes and systolic function using a modern imaging sequence in a community-dwelling, longitudinally followed cohort free of clinical cardiovascular and pulmonary disease. The Framingham Heart Study Offspring cohort has been followed since 1971. We scanned 1794 Offspring cohort members using steady-state free precession cardiac magnetic resonance and identified a reference group of 1336 adults (64±9 years, 576 men) free of prevalent cardiovascular and pulmonary disease. RV trabeculations and papillary muscles were considered cavity volume. Men had greater RV volumes and cardiac output before and after indexation to body size (all P<0.001). Women had higher RV ejection fraction than men (68±6% versus 64±7%; P<0.0001). RV volumes and cardiac output decreased with advancing age. There was an increase in raw and height-indexed RV measurements with increasing body mass index, but this trend was weakly inverted after indexation of RV volumes to body surface area. Sex, age, height, body mass index, and heart rate account for most of the variability in RV volumes and function in this community-dwelling population. We report sex-specific normative values for RV measurements among principally middle-aged and older adults. RV ejection fraction is greater in women. RV volumes increase with body size, are greater in men, and are smaller in older people. Body surface area seems to be appropriate for indexation of cardiac magnetic resonance-derived RV volumes. © 2016 American Heart Association, Inc.
Direct volume estimation without segmentation
NASA Astrophysics Data System (ADS)
Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.
2015-03-01
Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.
Driessen, Mieke M P; Hui, Wei; Bijnens, Bart H; Dragulescu, Andreea; Mertens, Luc; Meijboom, Folkert J; Friedberg, Mark K
2016-06-01
Right ventricular (RV) pressure overload has a vastly different clinical course in children with idiopathic pulmonary arterial hypertension (iPAH) than in children with pulmonary stenosis (PS). While RV function is well recognized as a key prognostic factor in iPAH, adverse ventricular-ventricular interactions and LV dysfunction are less well characterized and the pathophysiology is incompletely understood. We compared ventricular-ventricular interactions as hypothesized drivers of biventricular dysfunction in pediatric iPAH versus PS Eighteen iPAH, 16 PS patients and 18 age- and size-matched controls were retrospectively studied. Cardiac cycle events were measured by M-mode and Doppler echocardiography. Measurements were compared between groups using ANOVA with post hoc Dunnet's or ANCOVA including RV systolic pressure (RVSP; iPAH 96.8 ± 25.4 mmHg vs. PS 75.4 ± 18.9 mmHg; P = 0.011) as a covariate. RV-free wall thickening was prolonged in iPAH versus PS, extending beyond pulmonary valve closure (638 ± 76 msec vs. 562 ± 76 msec vs. 473 ± 59 msec controls). LV and RV isovolumetric relaxation were prolonged in iPAH (P < 0.001; LV 102.8 ± 24.1 msec vs. 63.1 ± 13.7 msec; RV 95 [61-165] vs. 28 [0-43]), associated with adverse septal kinetics; characterized by rightward displacement in early systole and leftward displacement in late RV systole (i.e., early LV diastole). Early LV diastolic filling was decreased in iPAH (73 ± 15.9 vs. PS 87.4 ± 14.4 vs. controls 95.8 ± 12.5 cm/sec; P = 0.004). Prolonged RVFW thickening, prolonged RVFW isovolumetric times, and profound septal dyskinesia are associated with interventricular mechanical discoordination and decreased early LV filling in pediatric iPAH much more than PS These adverse mechanics affect systolic and diastolic biventricular efficiency in iPAH and may form the basis for worse clinical outcomes. We used clinically derived data to study the pathophysiology of ventricular-ventricular interactions in right ventricular pressure overload, demonstrating distinct differences between pediatric pulmonary arterial hypertension (iPAH) and pulmonary stenosis (PS). Altered timing of right ventricular free wall contraction and profound septal dyskinesia are associated with interventricular mechanical discoordination and decreased early LV filling in iPAH much more than PS These adverse mechanics affect systolic and diastolic biventricular efficiency, independent of right ventricular systolic pressure. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Pirat, Bahar; McCulloch, Marti L; Zoghbi, William A
2006-09-01
This study sought to demonstrate that a novel speckle-tracking method can be used to assess right ventricular (RV) global and regional systolic function. Fifty-eight patients with pulmonary arterial hypertension (11 men; mean age 53 +/- 14 years) and 19 age-matched controls were studied. Echocardiographic images in apical planes were analyzed by conventional manual tracing for volumes and ejection fractions and by novel software (Axius Velocity Vector Imaging). Myocardial velocity, strain rate, and strain were determined at the basal, mid, and apical segments of the RV free wall and ventricular septum by Velocity Vector Imaging. RV volumes and ejection fractions obtained with manual tracing correlated strongly with the same indexes obtained by the Velocity Vector Imaging method in all subjects (r = 0.95 to 0.98, p < 0.001 for all). Peak systolic myocardial velocities, strain rate, and strain were significantly impaired in patients with pulmonary arterial hypertension compared with controls and were most altered in patients with the most severe pulmonary arterial hypertension (p < 0.05 for all). Pulmonary artery systolic pressure and a Doppler index of pulmonary vascular resistance were independent predictors of RV strain (r = -0.61 and r = -0.65, respectively, p < 0.05 for both). In conclusion, the new automated Velocity Vector Imaging method provides simultaneous quantitation of global and regional RV function that is angle independent and can be applied retrospectively to already stored digital images.
Cheng, Huaibing; Lu, Minjie; Hou, Cuihong; Chen, Xuhua; Wang, Jing; Yin, Gang; Chu, Jianmin; Zhang, Shu; Prasad, Sanjay K; Pu, Jielin; Zhao, Shihua
2015-02-01
Although N-terminal pro-brain natriuretic peptide (NT-proBNP) is a useful screening test of impaired right ventricular (RV) function in conditions affecting the right-sided cardiac muscle, the role of NT-proBNP remains unclear in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). This study was designed to clarify the relation between the plasma NT-proBNP level and the RV function evaluated by cardiovascular magnetic resonance (CMR) imaging. We selected 56 patients with confirmed ARVC only when their blood specimens for NT-proBNP measurements were collected within 48 hours of a CMR scan. The NT-proBNP level was significantly higher in patients with RV dysfunction than in patients without RV dysfunction (median of 655.3 [interquartile range 556.4 to 870.0] vs 347.0 [interquartile range 308.0 to 456.2] pmol/L, p <0.001). The NT-proBNP levels were positively correlated with RV end-diastolic and end-systolic volume indices (r = 0.49 and 0.70, respectively) and negatively correlated with RV ejection fraction (r = -0.76, all p <0.001), which remained significant after adjustment for age, gender, and body mass index. The area under the receiver-operating characteristic curve for NT-proBNP was 0.91 (95% confidence interval 0.80 to 0.97, p <0.001). The cut-off value of NT-proBNP (458 pmol/L) was associated with sensitivity, specificity, and positive and negative predictive values of 91%, 89%, 67%, and 98%, respectively. In conclusion, NT-proBNP is a useful marker for the detection of RV dysfunction and associated with extent of RV dilatation and dysfunction determined by CMR in patients with ARVC. Copyright © 2015 Elsevier Inc. All rights reserved.
Fowler, Ewan D; Drinkhill, Mark J; Norman, Ruth; Pervolaraki, Eleftheria; Stones, Rachel; Steer, Emma; Benoist, David; Steele, Derek S; Calaghan, Sarah C; White, Ed
2018-07-01
Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β 1 -adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling. PAH with RV failure was induced in rats by monocrotaline injection. When PAH was established, animals were given 10 mg/kg/day metoprolol (MCT + BB) or vehicle (MCT). The median time to the onset of heart failure signs was delayed from 23 days (MCT), to 31 days (MCT + BB). At 23 ± 1 days post-injection, MCT + BB showed improved in vivo cardiac function, measured by echocardiography. RV hypertrophy was reduced despite persistent elevated afterload. RV myocyte contractility during field stimulation was improved at higher pacing frequencies in MCT + BB. Preserved t-tubule structure, more uniform evoked Ca 2+ release, increased SERCA2a expression and faster ventricular repolarization (measured in vivo by telemetry) may account for the improved contractile function. Sarcoplasmic reticulum Ca 2+ overload was prevented in MCT + BB myocytes resulting in fewer spontaneous Ca 2+ waves, with a lower pro-arrhythmic potential. Our novel finding of attenuation of defects in excitation contraction coupling by β 1 -adrenoceptor blockade with delays in the onset of HF, identifies the RV as a promising therapeutic target in PAH. Moreover, our data suggest existing therapies for left ventricular failure may also be beneficial in PAH induced RV failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Weekes, Anthony J; Oh, Laura; Thacker, Gregory; Johnson, Angela K; Runyon, Michael; Rose, Geoffrey; Johnson, Thomas; Templin, Megan; Norton, H James
2016-10-01
To evaluate observer agreement using qualitative goal-directed echocardiographic criteria for right ventricular (RV) dysfunction prognostication in submassive pulmonary embolism (PE). Two emergency physicians and 2 cardiologists independently reviewed 31 packets of goal-directed echocardiographic video clips consisting of at least 3 windows obtained by emergency physicians from normotensive patients with PE. Nine packets were repeated to assess for intraobserver agreement. Right ventricular dysfunction criteria on goal-directed echocardiography were as follows: RV enlargement was present, with a right-to-left ventricular basal diameter ratio of 1.0 or higher and blunting of the apex of the RV in 2 or more different windows; RV systolic dysfunction was present if the tricuspid annulus moved toward the apex 10 mm or less and there was RV free wall hypokinesis; and septal deviation was present with any flattening or deviation of the ventricular septum toward the left ventricle. Among the 4 participants, there was 83.9% agreement on the presence or absence of RV enlargement (κ = 0.84), 74.2% agreement on the presence or absence of RV systolic dysfunction (κ = 0.69), and 71.0% agreement on the presence or absence of septal deviation (κ = 0.59). Intraobserver agreement was 100% for each RV dysfunction variable for each observer (κ = 1.0). Agreement was substantial for both severe RV enlargement and RV systolic dysfunction and moderate for septal deviation. Right ventricular dysfunction assessment with qualitative goal-directed echocardiographic criteria is reproducible for PE risk stratification.
Prati, Giulio; Vitrella, Giancarlo; Allocca, Giuseppe; Muser, Daniele; Buttignoni, Sonja Cukon; Piccoli, Gianluca; Morocutti, Giorgio; Delise, Pietro; Pinamonti, Bruno; Proclemer, Alessandro; Sinagra, Gianfranco; Nucifora, Gaetano
2015-11-01
Analysis of right ventricular (RV) regional dysfunction by cardiac magnetic resonance (CMR) imaging in arrhythmogenic RV cardiomyopathy (ARVC) may be inadequate because of the complex contraction pattern of the RV. Aim of this study was to determine the use of RV strain and dyssynchrony assessment in ARVC using feature-tracking CMR analysis. Thirty-two consecutive patients with ARVC referred to CMR imaging were included. Thirty-two patients with idiopathic RV outflow tract arrhythmias and 32 control subjects, matched for age and sex to the ARVC group, were included for comparison purpose. CMR imaging was performed to assess biventricular function; feature-tracking analysis was applied to the cine CMR images to assess regional and global longitudinal, circumferential, and radial RV strains and RV dyssynchrony (defined as the SD of the time-to-peak strain of the RV segments). RV global longitudinal strain (-17±5% versus -26±6% versus -29±6%; P<0.001), global circumferential strain (-9±4% versus -12±4% versus -13±5%; P=0.001), and global radial strain (18 [12-26]% versus 22 [15-32]% versus 27 [20-39]%; P=0.015) were significantly lower and SD of the time-to-peak RV strain in all 3 directions were significantly higher among patients with ARVC compared with patients with RV outflow tract arrhythmias and controls. RV global longitudinal strain >-23.2%, SD of the time-to-peak RV longitudinal strain >113.1 ms, and SD of the time-to-peak RV circumferential strain >177.1 ms allowed correct identification of 88%, 75%, and 63% of ARVC patients with no or only minor CMR criteria for ARVC diagnosis. Strain analysis by feature-tracking CMR helps to objectively quantify global and regional RV dysfunction and RV dyssynchrony in patients with ARVC and provides incremental value over conventional cine CMR imaging. © 2015 American Heart Association, Inc.
Swift, Andrew J; Capener, Dave; Hammerton, Charlotte; Thomas, Steven M; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G
2015-01-01
Sex differences exist in both the prevalence and survival of patients with idiopathic pulmonary arterial hypertension (IPAH). Men are less frequently affected by the condition but have worse outcome as compared to females. We sought to characterise the sex related differences in right ventricular remodelling in age matched male and female patients with IPAH using cardiac magnetic resonance imaging (MRI). A case controlled pair-matched study was conducted with patients matched by age and sex. Steady state free precession (SSFP) MRI of the heart was performed at 1.5T. Cardiac volume, function and mass measurements were corrected for age, sex and BSA according to reference data. 40 age and sex matched patients with IPAH were identified. The mean age was 57 (SD 17) in both male and female cohorts. Men had proportionally lower right ventricular (RV) ejection fraction, RV stroke volume and LV stroke volume than females, p=0.028, p=0.007 and p=0.013, respectively. However, there was no significant difference in RV mass or haemodynamic indices of mPAP and PVR between males and females. Male patients with IPAH have proportionally worse RV function despite similar afterload. We hypothesise that adaptive remodelling of the RV in response to increased afterload in IPAH is more effective in females.
Swift, Andrew J.; Capener, Dave; Hammerton, Charlotte; Thomas, Steven M.; Elliot, Charlie; Condliffe, Robin; Wild, Jim M.; Kiely, David G.
2015-01-01
Purpose Sex differences exist in both the prevalence and survival of patients with idiopathic pulmonary arterial hypertension (IPAH). Men are less frequently affected by the condition but have worse outcome as compared to females. We sought to characterise the sex related differences in right ventricular remodelling in age matched male and female patients with IPAH using cardiac magnetic resonance imaging (MRI). Methods A case controlled pair-matched study was conducted with patients matched by age and sex. Steady state free precession (SSFP) MRI of the heart was performed at 1.5T. Cardiac volume, function and mass measurements were corrected for age, sex and BSA according to reference data. Results 40 age and sex matched patients with IPAH were identified. The mean age was 57 (SD 17) in both male and female cohorts. Men had proportionally lower right ventricular (RV) ejection fraction, RV stroke volume and LV stroke volume than females, p=0.028, p=0.007 and p=0.013, respectively. However, there was no significant difference in RV mass or haemodynamic indices of mPAP and PVR between males and females. Conclusion Male patients with IPAH have proportionally worse RV function despite similar afterload. We hypothesise that adaptive remodelling of the RV in response to increased afterload in IPAH is more effective in females. PMID:25996939
Guihaire, Julien; Noly, Pierre Emmanuel; Schrepfer, Sonja; Mercier, Olaf
2015-10-01
The right ventricle (RV) has to face major changes in loading conditions due to cardiovascular diseases and pulmonary vascular disorders. Clinical experience supports evidence that the RV better compensates for volume than for pressure overload, and for chronic than for acute changes. For a long time, right ventricular (RV) pathophysiology has been restricted to patterns extrapolated from left heart studies. However, the two ventricles are anatomically, haemodynamically and functionally distinct. RV metabolic properties may also result in a different behaviour in response to pathological conditions compared with the left ventricle. In this review, current knowledge of RV pathophysiology is reported in the setting of chronic pressure overload, including recent experimental findings and emerging concepts. After a time-varying compensated period with preserved cardiac output despite overload conditions, RV failure finally occurs, leading to death. The underlying mechanisms involved in the transition from compensatory hypertrophy to maladaptive remodelling are not completely understood. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Werther Evaldsson, Anna; Ingvarsson, Annika; Waktare, Johan; Smith, Gustav J; Thilén, Ulf; Stagmo, Martin; Roijer, Anders; Rådegran, Goran; Meurling, Carl
2017-10-26
Right ventricular (RV) dysfunction may be caused by either pressure or volume overload. RV function is conventionally assessed with echocardiography using tricuspid annular plane systolic excursion (TAPSE), RV fractional area change (RVFAC), tricuspid lateral annular systolic velocity (S') and RV index of myocardial performance (RIMP). The purpose of this study was to evaluate whether RV global longitudinal strain (RVGLS) and RV-free wall strain (RV-free) could add additional information to differentiate these two causes of RV overload. The study enrolled 89 patients with an echocardiographic trans-tricuspid gradient >30 mmHg. Forty-five patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension (pressure overload) were compared with 44 patients with an atrial septum defect (volume overload). RV size was larger in the volume group (P<0·05). TAPSE and S' were lower in the pressure group (P<0·05, P<0·01). RVFAC was lower in the pressure group (P<0·001) as well as RVGLS (-12·1 ± 3·3% versus -20·2 ± 3·4%, P<0·001) and RV-free (-12·9 ± 3·3% versus -19·4 ± 3·4%, P<0·001). In this study, RVGLS and RV-free could more accurately discriminate RV pressure from volume overload than conventional measures. The reason could be that TAPSE and S' are unable to differentiate active deformation from passive entrainment caused by the left ventricle. The pressure group had evidence of marked RV hypertrophy despite standard functional parameters (TAPSE and S) within normal range. This would enhance the value of strain to more sensitively detect abnormal function. A cut-off value of below -16% for RVGLS and RV-free predicts RV pressure overload with high accuracy. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Lakatos, Bálint Károly; Tokodi, Márton; Assabiny, Alexandra; Tősér, Zoltán; Kosztin, Annamária; Doronina, Alexandra; Rácz, Kristóf; Koritsánszky, Kinga Bianka; Berzsenyi, Viktor; Németh, Endre; Sax, Balázs; Kovács, Attila; Merkely, Béla
2018-03-01
Assessment of right ventricular (RV) function using conventional echocardiography might be inadequate as the radial motion of the RV free wall is often neglected. Our aim was to quantify the longitudinal and the radial components of RV function using three-dimensional (3D) echocardiography in heart transplant (HTX) recipients. Fifty-one HTX patients in stable cardiovascular condition without history of relevant rejection episode or chronic allograft vasculopathy and 30 healthy volunteers were enrolled. RV end-diastolic (EDV) volume and total ejection fraction (TEF) were measured by 3D echocardiography. Furthermore, we quantified longitudinal (LEF) and radial ejection fraction (REF) by decomposing the motion of the RV using the ReVISION method. RV EDV did not differ between groups (HTX vs control; 96 ± 27 vs 97 ± 2 mL). In HTX patients, TEF was lower, however, tricuspid annular plane systolic excursion (TAPSE) decreased to a greater extent (TEF: 47 ± 7 vs 54 ± 4% [-13%], TAPSE: 11 ± 5 vs 21 ± 4 mm [-48%], P < .0001). In HTX patients, REF/TEF ratio was significantly higher compared to LEF/TEF (REF/TEF vs LEF/TEF: 0.58 ± 0.10 vs 0.27 ± 0.08, P < .0001), while in controls the REF/TEF and LEF/TEF ratio was similar (0.45 ± 0.07 vs 0.47 ± 0.07). Current results confirm the superiority of radial motion in determining RV function in HTX patients. Parameters incorporating the radial motion are recommended to assess RV function in HTX recipients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bartko, Philipp E; Wiedemann, Dominik; Schrutka, Lore; Binder, Christina; Santos-Gallego, Carlos G; Zuckermann, Andreas; Steinlechner, Barbara; Koinig, Herbert; Heinz, Gottfried; Niessner, Alexander; Zimpfer, Daniel; Laufer, Günther; Lang, Irene M; Distelmaier, Klaus; Goliasch, Georg
2017-07-28
Extracorporeal membrane oxygenation following cardiac surgery safeguards end-organ oxygenation but unfavorably alters cardiac hemodynamics. Along with the detrimental effects of cardiac surgery to the right heart, this might impact outcome, particularly in patients with preexisting right ventricular (RV) dysfunction. We sought to determine the prognostic impact of RV function and to improve established risk-prediction models in this vulnerable patient cohort. Of 240 patients undergoing extracorporeal membrane oxygenation support following cardiac surgery, 111 had echocardiographic examinations at our institution before implantation of extracorporeal membrane oxygenation and were thus included. Median age was 67 years (interquartile range 60-74), and 74 patients were male. During a median follow-up of 27 months (interquartile range 16-63), 75 patients died. Fifty-one patients died within 30 days, 75 during long-term follow-up (median follow-up 27 months, minimum 5 months, maximum 125 months). Metrics of RV function were the strongest predictors of outcome, even stronger than left ventricular function ( P <0.001 for receiver operating characteristics comparisons). Specifically, RV free-wall strain was a powerful predictor univariately and after adjustment for clinical variables, Simplified Acute Physiology Score-3, tricuspid regurgitation, surgery type and duration with adjusted hazard ratios of 0.41 (95%CI 0.24-0.68; P =0.001) for 30-day mortality and 0.48 (95%CI 0.33-0.71; P <0.001) for long-term mortality for a 1-SD (SD=-6%) change in RV free-wall strain. Combined assessment of the additive EuroSCORE and RV free-wall strain improved risk classification by a net reclassification improvement of 57% for 30-day mortality ( P =0.01) and 56% for long-term mortality ( P =0.02) compared with the additive EuroSCORE alone. RV function is strongly linked to mortality, even after adjustment for baseline variables and clinical risk scores. RV performance improves established risk prediction models for short- and long-term mortality. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Baicu, Catalin F; Li, Jiayu; Zhang, Yuhua; Kasiganesan, Harinath; Cooper, George; Zile, Michael R; Bradshaw, Amy D
2012-11-01
Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function.
Baicu, Catalin F.; Li, Jiayu; Zhang, Yuhua; Kasiganesan, Harinath; Cooper, George; Zile, Michael R.
2012-01-01
Myocardial fibrillar collagen is considered an important determinant of increased ventricular stiffness in pressure-overload (PO)-induced cardiac hypertrophy. Chronic PO was created in feline right ventricles (RV) by pulmonary artery banding (PAB) to define the time course of changes in fibrillar collagen content after PO using a nonrodent model and to determine whether this time course was dependent on changes in fibroblast function. Total, soluble, and insoluble collagen (hydroxyproline), collagen volume fraction (CVF), and RV end-diastolic pressure were assessed 2 days and 1, 2, 4, and 10 wk following PAB. Fibroblast function was assessed by quantitating the product of postsynthetic processing, insoluble collagen, and levels of SPARC (secreted protein acidic and rich in cysteine), a protein that affects procollagen processing. RV hypertrophic growth was complete 2 wk after PAB. Changes in RV collagen content did not follow the same time course. Two weeks after PAB, there were elevations in total collagen (control RV: 8.84 ± 1.03 mg/g vs. 2-wk PAB: 11.50 ± 0.78 mg/g); however, increased insoluble fibrillar collagen, as measured by CVF, was not detected until 4 wk after PAB (control RV CVF: 1.39 ± 0.25% vs. 4-wk PAB: 4.18 ± 0.87%). RV end-diastolic pressure was unchanged at 2 wk, but increased until 4 wk after PAB. RV fibroblasts isolated after 2-wk PAB had no changes in either insoluble collagen or SPARC expression; however, increases in insoluble collagen and in levels of SPARC were detected in RV fibroblasts from 4-wk PAB. Therefore, the time course of PO-induced RV hypertrophy differs significantly from myocardial fibrosis and diastolic dysfunction. These temporal differences appear dependent on changes in fibroblast function. PMID:22942178
Topilsky, Yan; Oh, Jae K; Atchison, Fawn W; Shah, Dipesh K; Bichara, Valentina M; Schirger, John A; Kushwaha, Sudhir S; Pereira, Naveen L; Park, Soon J
2011-02-01
Continuous-flow left ventricular assist devices (LVADs) have become part of the standard of care for the treatment of advanced heart failure. However, knowledge of normal values for transthoracic echocardiographic examination and measurements in these patients are lacking. All transthoracic echocardiographic examinations in 63 consecutive patients, performed 90 and 180 days after surgery with the implantation of a HeartMate II continuous-flow LVAD between February 2007 and January 2010, were retrospectively analyzed. All patients had to be outpatients at 3 and 6 months after surgery and considered stable on LVAD therapy (New York Heart Association class I or II and no need for inotropes, intravenous furosemide, or hospitalization). End-diastolic and end-systolic diameters and left ventricular mass decreased considerably compared with baseline measurements before LVAD implantation. Mitral inflow deceleration time increased (188 ± 70 vs 132.5 ± 27 msec, P = .009) and left atrial volume (84.1 ± 33 vs 141.7 ± 62 mL, P = .003) and E/e' ratio decreased (20.3 ± 9 vs 26 ± 11, P = .01), all consistent with decreased left ventricular filling pressure. Estimated right ventricular (RV) and right atrial pressure decreased significantly (34.1 ± 10 vs 51.7 ± 14 mm Hg and 9.5 ± 5 vs 14.4 ± 5 mm Hg, respectively, P < .0001 for both). Quantitatively estimated RV function (P = .02), RV fractional area change (27.9 ± 10% vs 37.4 ± 10.9%, P < .0001), and the RV index of myocardial performance (0.32 ± 0.1 vs 0.65 ± 0.2 vs 0.32 ± .01, P < .0001) improved, suggesting improved RV efficiency. LVAD therapy resulted in significant decreases in the severity of mitral regurgitation. Tricuspid regurgitation improved in patients who had concurrent tricuspid surgical correction and was unchanged otherwise. Aortic regurgitation severity increased 3 months after LVAD implantation. There were no significant differences in any of the echocardiographic parameters in the 6-month evaluation compared with the 3-month evaluation. This is the first report of selected typical echocardiographic values in a group of stable patients with normally functioning HeartMate II continuous-flow LVADs. A stable functioning continuous LVAD is associated with evidence of efficient unloading of the left ventricle, improved RV function, significant improvement in mitral regurgitation, improvement in tricuspid regurgitation only in patients undergoing repair, and increased aortic regurgitation. These normal data provide a basis for future echocardiographic studies after LVAD implantation. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Price, Laura C; Wort, Stephen J; Finney, Simon J; Marino, Philip S; Brett, Stephen J
2010-01-01
Pulmonary vascular dysfunction, pulmonary hypertension (PH), and resulting right ventricular (RV) failure occur in many critical illnesses and may be associated with a worse prognosis. PH and RV failure may be difficult to manage: principles include maintenance of appropriate RV preload, augmentation of RV function, and reduction of RV afterload by lowering pulmonary vascular resistance (PVR). We therefore provide a detailed update on the management of PH and RV failure in adult critical care. A systematic review was performed, based on a search of the literature from 1980 to 2010, by using prespecified search terms. Relevant studies were subjected to analysis based on the GRADE method. Clinical studies of intensive care management of pulmonary vascular dysfunction were identified, describing volume therapy, vasopressors, sympathetic inotropes, inodilators, levosimendan, pulmonary vasodilators, and mechanical devices. The following GRADE recommendations (evidence level) are made in patients with pulmonary vascular dysfunction: 1) A weak recommendation (very-low-quality evidence) is made that close monitoring of the RV is advised as volume loading may worsen RV performance; 2) A weak recommendation (low-quality evidence) is made that low-dose norepinephrine is an effective pressor in these patients; and that 3) low-dose vasopressin may be useful to manage patients with resistant vasodilatory shock. 4) A weak recommendation (low-moderate quality evidence) is made that low-dose dobutamine improves RV function in pulmonary vascular dysfunction. 5) A strong recommendation (moderate-quality evidence) is made that phosphodiesterase type III inhibitors reduce PVR and improve RV function, although hypotension is frequent. 6) A weak recommendation (low-quality evidence) is made that levosimendan may be useful for short-term improvements in RV performance. 7) A strong recommendation (moderate-quality evidence) is made that pulmonary vasodilators reduce PVR and improve RV function, notably in pulmonary vascular dysfunction after cardiac surgery, and that the side-effect profile is reduced by using inhaled rather than systemic agents. 8) A weak recommendation (very-low-quality evidence) is made that mechanical therapies may be useful rescue therapies in some settings of pulmonary vascular dysfunction awaiting definitive therapy. This systematic review highlights that although some recommendations can be made to guide the critical care management of pulmonary vascular and right ventricular dysfunction, within the limitations of this review and the GRADE methodology, the quality of the evidence base is generally low, and further high-quality research is needed.
Molecular Mechanisms of Right Ventricular Failure
Reddy, Sushma; Bernstein, Daniel
2015-01-01
An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, as the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV vs. LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure vs. the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics. PMID:26527692
Patel, Amee; Weismann, Constance; Weiss, Pnina; Russell, Kerry; Bazzy-Asaad, Alia; Kadan-Lottick, Nina S
2014-11-01
Restrictive lung disease is a complication in childhood cancer survivors who received lung-toxic chemotherapy and/or thoracic radiation. Left ventricular dysfunction is documented in these survivors, but less is known about right ventricular (RV) function. Quantitative echocardiography may help detect subclinical RV dysfunction. The aim of this study was to assess RV function quantitatively in childhood cancer survivors after lung-toxic therapy. We identified records of 33 childhood cancer survivors who (1) were treated with lung-toxic therapy and/or radiation, (2) were cancer-free for ≥ one year after therapy, and (3) had pulmonary function tests and echocardiograms from their most recent follow-up visit. Participants' mean age was 11.6 ± 4.5 years at cancer diagnosis and 23 ± 8.6 years at evaluation. The most common diagnosis was lymphoma/leukemia (n = 27). Twenty-nine subjects had anthracycline exposure. Eleven of the 33 subjects demonstrated restrictive pulmonary impairment (total lung capacity 3.69 ± 1.5 L [69.3 ± 22.4% predicted]). Among quantitative measures of RV function, isovolumetric acceleration (IVA), a measure of contractility, was significantly lower in the group with restrictive lung disease (2.42 ± 0.56 vs. 1.83 ± 0.78 m/sec(2); P < 0.05). There was a trend towards lower tissue Doppler derived S' and tricuspid annular plane systolic excursion in the group with restrictive lung disease. Subjects with restrictive lung disease were found to have ≥ 2 abnormal parameters (P < 0.01). IVA may detect early RV dysfunction in childhood cancer survivors with restrictive lung disease. Our findings require confirmation in a larger study population and validation by cardiac MRI. © 2014 Wiley Periodicals, Inc.
Resting right ventricular function is associated with exercise performance in PAH, but not in CTEPH.
Rehman, Michaela Beatrice; Howard, Luke S; Christiaens, Luc P; Gill, Dipender; Gibbs, J Simon R; Nihoyannopoulos, Petros
2018-02-01
To assess whether resting right ventricular (RV) function assessed by Global RV longitudinal strain (RVLS) and RV fractional area change (FAC) is associated with exercise performance in pulmonary arterial hypertension (PAH) and in chronic thromboembolic pulmonary hypertension (CTEPH). We prospectively recruited 46 consecutive patients with PAH and 42 patients with CTEPH who were referred for cardio-pulmonary exercise testing (CPET) and transthoracic echocardiography. Resting RV systolic function was assessed with RVLS and FAC. CPET parameters analyzed were percentage of predicted maximal oxygen consumption (VO2max) and the slope of ventilation against carbon dioxide production (VE/VCO2). Spearman correlation was performed between echocardiographic measurements and CPET measurements. In PAH, spearman correlation found an association between RVLS and VE/VCO2 (coefficient = 0.556, P < 0.001) and percentage predicted VO2max (coefficient = -0.393, P = 0.007), while FAC was associated with VE/VCO2 (coefficient = -0.481, P = 0.001) and percentage of predicted VO2max (coefficient = 0.356, P = 0.015). Conversely, in CTEPH, resting RV function was neither associated with percentage of predicted VO2max nor with VE/VCO2, whether assessed by RVLS or FAC. In PAH, resting RV function as assessed by FAC or RVLS is associated with exercise performance and could therefore make a significant contribution to non-invasive assessment in PAH patients. This association is not found in CTEPH, suggesting a disconnection between resting RV function and exercise performance, with implications for the use of exercise measurements as a prognostic marker and clinical/research endpoint in CTEPH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Obese subjects show sex-specific differences in right ventricular hypertrophy.
Rider, Oliver J; Lewis, Andrew J M; Lewandowski, Adam J; Ntusi, Ntobeko; Nethononda, Richard; Petersen, Steffen E; Francis, Jane M; Pitcher, Alex; Banerjee, Rajarshi; Leeson, Paul; Neubauer, Stefan
2015-01-01
As right ventricular (RV) remodeling in obesity remains underinvestigated, and the impact of left ventricular (LV) diastolic dysfunction on RV hypertrophy is unknown, we aimed to investigate whether (1) sex-specific patterns of RV remodeling exist in obesity and (2) LV diastolic dysfunction in obesity is related to RV hypertrophy. Seven hundred thirty-nine subjects (women, n=345; men, n=394) without identifiable cardiovascular risk factors (body mass index [BMI], 15.3-59.2 kg/m2) underwent cardiovascular magnetic resonance (1.5 T) to measure RV mass (g), RV end-diastolic volume (mL), RV mass/volume ratio, and LV diastolic peak filling rate (mL/s). All subjects were normotensive (average, 119±11/73±8 mm Hg), normoglycaemic (4.8±0.5 mmol/L), and normocholesterolaemic (4.8±0.9 mmol/L) at the time of scanning. Across both sexes, there was a moderately strong positive correlation between BMI and RV mass (men, +0.8 g per BMI point increase; women, +1.0 g per BMI point increase; both P<0.001). Whereas women exhibited RV cavity dilatation (RV end-diastolic volume, +1.0 mL per BMI point increase; P<0.001), BMI was not correlated with RV end-diastolic volume in men (R=0.04; P=0.51). Concentric RV remodeling was present in both sexes, with RV mass/volume ratio being positively correlated to BMI (men, R=0.41; women, R=0.51; both P<0.001). Irrespective of sex, the LV peak filling rate was negatively correlated with both RV mass (men, R=-0.43; women, R=-0.44; both P<0.001) and RV mass/volume ratio (men, R=-0.37; women, R=-0.35; both P<0.001). A sex difference in RV remodeling exists in obesity. Whereas men exhibit concentric RV remodeling, women exhibit a mixed pattern of eccentric and concentric remodeling. Regardless of sex, reduced LV diastolic function is associated with concentric RV remodeling. © 2014 American Heart Association, Inc.
Zhang, Quan Bin; Sun, Jing Ping; Gao, Rui Feng; Lee, Alex Pui-Wai; Feng, Yan Lin; Liu, Xiao Rong; Sheng, Wei; Liu, Feng; Yang, Xing Sheng; Fang, Fang; Yu, Cheuk-Man
2013-10-09
The lack of an accurate noninvasive method for assessing right ventricular (RV) volume and function has been a major deficiency of two-dimensional (2D) echocardiography. The aim of our study was to test the feasibility of single-beat full-volume capture with real-time three-dimensional echo (3DE) imaging system for the evaluation of RV volumes and function validated by cardiac magnetic resonance imaging (CMRI). Sixty-one subjects (16 normal subjects, 20 patients with hypertension, 16 patients with pulmonary heart disease and 9 patients with coronary heart disease) were studied. RV volume and function assessments using 3DE were compared with manual tracing with CMRI as the reference method. Fifty-nine of 61 patients (96.7%; 36 male, mean age, 62 ± 15 years) had adequate three-dimensional echocardiographic data sets for analysis. The mean RV end diastolic volume (EDV) was 105 ± 38 ml, end-systolic volume (ESV) was 60 ± 30 and RV ejection fraction (EF) was 44 ± 11% by CMRI; and EDV 103 ± 38 ml, ESV 60 ± 28 ml and RV EF 41 ± 13% by 3DE. The correlations and agreements between measurements estimated by two methods were acceptable. RV volumes and function can be analyzed with 3DE software in most of subjects with or without heart diseases, which is able to be estimated with single-beat full-volume capture with real-time 3DE compared with CMRI. © 2013.
NASA Astrophysics Data System (ADS)
Teo, S.-K.; Wong, S. T.; Tan, M. L.; Su, Y.; Zhong, L.; Tan, Ru-San
2015-03-01
After surgical repair for Tetralogy of Fallot (TOF), most patients experience long-term complications as the right ventricle (RV) undergoes progressive remodeling that eventually affect heart functions. Thus, post-repair surgery is required to prevent further deterioration of RV functions that may result in malignant ventricular arrhythmias and mortality. The timing of such post-repair surgery therefore depends crucially on the quantitative assessment of the RV functions. Current clinical indices for such functional assessment measure global properties such as RV volumes and ejection fraction. However, these indices are less than ideal as regional variations and anomalies are obscured. Therefore, we sought to (i) develop a quantitative method to assess RV regional function using regional ejection fraction (REF) based on a 13-segment model, and (ii) evaluate the effectiveness of REF in discriminating 6 repaired TOF patients and 6 normal control based on cardiac magnetic resonance (CMR) imaging. We observed that the REF for the individual segments in the patient group is significantly lower compared to the control group (P < 0.05 using a 2-tail student t-test). In addition, we also observed that the aggregated REF at the basal, mid-cavity and apical regions for the patient group is significantly lower compared to the control group (P < 0.001 using a 2-tail student t-test). The results suggest that REF could potentially be used as a quantitative index for assessing RV regional functions. The computational time per data set is approximately 60 seconds, which demonstrates our method's clinical potential as a real-time cardiac assessment tool.
Andersen, Mads J; Hwang, Seok-Jae; Kane, Garvan C; Melenovsky, Vojtech; Olson, Thomas P; Fetterly, Kenneth; Borlaug, Barry A
2015-05-01
Pulmonary hypertension and right ventricular (RV) dysfunction are common in patients with advanced heart failure with preserved ejection fraction (HFpEF), yet their underlying mechanisms remain poorly understood. We sought to examine RV-pulmonary artery (PA) functional reserve responses and RV-PA coupling at rest and during β-adrenergic stimulation in subjects with earlier stage HFpEF. In a prospective trial, subjects with HFpEF (n=39) and controls (n=18) underwent comprehensive invasive and noninvasive hemodynamic assessment using high fidelity micromanometer catheters, echocardiography, and expired gas analysis at rest and during dobutamine infusion. HFpEF subjects displayed similar RV structure but significantly impaired RV systolic (lower RV dP/dtmax/IP and s') and diastolic function (higher RV τ) coupled with more severe pulmonary vascular disease, manifest by higher PA pressures, higher PA resistance, and lower PA compliance compared with controls. Dobutamine infusion caused greater pulmonary vasodilation in HFpEF compared with controls, with enhanced reductions in PA resistance, greater increase in PA compliance, and a more negative slope in the PA pressure-flow relationship when compared with controls (all P<0.001). RV-PA coupling analysis revealed that dobutamine improved RV ejection in HFpEF subjects through afterload reduction alone, rather than through enhanced contractility, indicating RV systolic reserve dysfunction. Pulmonary hypertension in early stage HFpEF is related to partially reversible pulmonary vasoconstriction coupled with RV systolic and diastolic dysfunction, even in the absence of RV structural remodeling. Pulmonary vascular tone is more favorably responsive to β-adrenergic stimulation in HFpEF than controls, suggesting a potential role for β-agonists in the treatment of patients with HFpEF and pulmonary hypertension. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01418248. © 2015 American Heart Association, Inc.
Tanase, Daniel; Ewert, Peter; Georgiev, Stanimir; Meierhofer, Christian; Pabst von Ohain, Jelena; McElhinney, Doff B; Hager, Alfred; Kühn, Andreas; Eicken, Andreas
2017-04-10
This study sought to investigate the impact of tricuspid regurgitation (TR) on right ventricular function after percutaneous pulmonary valve implantation (PPVI). PPVI provides a less invasive alternative to surgery in patients with right ventricular-to-pulmonary artery (RV-PA) conduit dysfunction. Recovery of the right ventricle has been described after PPVI for patients with pulmonary stenosis and for those with pulmonary regurgitation. Additional TR enforces RV dysfunction by supplemental volume overload. Limited data are available on the potential of the right ventricle to recover in such a specific hemodynamic situation. In a matched cohort study, we compared patients who underwent PPVI with additional TR with those without TR. The degree of TR improved in 83% of the patients. In our patients (n = 36) exercise capacity and right ventricular volume index improved similarly 6 months after PPVI in patients with and without important TR. None of them had significant TR in the long-term follow-up of median 78 months. PPVI improves not only RV-PA-conduit dysfunction, but also concomitant TR. In patients with a dysfunctional RV-PA conduit and TR, the decision whether to fix TR should be postponed after PPVI. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Pulmonary arterial stiffening in COPD and its implications for right ventricular remodelling.
Weir-McCall, Jonathan R; Liu-Shiu-Cheong, Patrick Sk; Struthers, Allan D; Lipworth, Brian J; Houston, J Graeme
2018-02-27
Pulmonary pulse wave velocity (PWV) allows the non-invasive measurement of pulmonary arterial stiffening, but has not previously been assessed in COPD. The aim of the current study was to assess PWV in COPD and its association with right ventricular (RV) remodelling. Fifty-eight participants with COPD underwent pulmonary function tests, 6-min walk test and cardiac MRI, while 21 healthy controls (HCs) underwent cardiac MRI. Thirty-two COPD patients underwent a follow-up MRI to assess for longitudinal changes in RV metrics. Cardiac MRI was used to quantify RV mass, volumes and PWV. Differences in continuous variables between the COPD and HC groups was tested using an independent t-test, and associations between PWV and right ventricular parameters was examined using Pearson's correlation coefficient. Those with COPD had reduced pulsatility (COPD (mean±SD):24.88±8.84% vs. HC:30.55±11.28%, p=0.021), pulmonary acceleration time (COPD:104.0±22.9ms vs. HC: 128.1±32.2ms, p<0.001), higher PWV (COPD:2.62±1.29ms -1 vs. HC:1.78±0.72ms -1 , p=0.001), lower RV end diastolic volume (COPD:53.6±11.1ml vs. HC:59.9±13.0ml, p=0.037) and RV stroke volume (COPD:31.9±6.9ml/m 2 vs. HC:37.1±6.2ml/m 2 , p=0.003) with no difference in mass (p=0.53). PWV was not associated with right ventricular parameters. While pulmonary vascular remodelling is present in COPD, cardiac remodelling favours reduced filling rather than increased afterload. Treatment of obstructive lung disease may have greater effect on cardiac function than treatment of pulmonary vascular disease in most COPD patients KEY POINTS: • Pulmonary pulse wave velocity (PWV) is elevated in COPD. • Pulmonary PWV is not associated with right ventricular remodelling. • Right ventricular remodelling is more in keeping with that of reduced filling.
Barthur, Ashita; Brezden-Masley, Christine; Connelly, Kim A; Dhir, Vinita; Chan, Kelvin K W; Haq, Rashida; Kirpalani, Anish; Barfett, Joseph J; Jimenez-Juan, Laura; Karur, Gauri R; Deva, Djeven P; Yan, Andrew T
2017-04-10
There are limited data on the effects of trastuzumab on the right ventricle (RV). Therefore, we sought to evaluate the temporal changes in right ventricular (RV) structure and function as measured by cardiovascular magnetic resonance (CMR), and their relationship with left ventricular (LV) structure and function in breast cancer patients treated with trastuzumab. Prospective, longitudinal, observational study involving 41 women with HER2+ breast cancer who underwent serial CMR at baseline, 6, 12, and 18 months after initiation of trastuzumab. A single blinded observer measured RV parameters on de-identified CMRs in a random order. Linear mixed models were used to investigate temporal changes in RV parameters. Of the 41 women (age 52 ± 11 years), only one patient experienced trastuzumab-induced cardiotoxicity. Compared to baseline, there were small but significant increases in the RV end-diastolic volume at 6 months (p = 0.002) and RV end-systolic volume at 6 and 12 months (p < 0.001 for both), but not at 18 months (p = 0.82 and 0.13 respectively). RV ejection fraction (RVEF), when compared to baseline (58.3%, 95% CI 57.1-59.5%), showed corresponding decreases at 6 months (53.9%, 95% CI 52.5-55.4%, p < 0.001) and 12 months (55%, 95% CI 53.8-56.2%, p < 0.001) that recovered at 18 months (56.6%, 95% CI 55.1-58.0%, p = 0.08). Although the temporal pattern of changes in LVEF and RVEF were similar, there was no significant correlation between RVEF and LVEF at baseline (r = 0.29, p = 0.07) or between their changes at 6 months (r = 0.24, p = 0.17). In patients receiving trastuzumab without overt cardiotoxicity, there is a subtle but significant deleterious effect on RV structure and function that recover at 18 months, which can be detected by CMR. Furthermore, monitoring of LVEF alone may not be sufficient in detecting early RV injury. These novel findings provide further support for CMR in monitoring early cardiotoxicity. ClinicalTrials.gov Identifier: NCT01022086 . Date of registration: November 27, 2009.
Effect of Right Ventricular versus Biventricular Pacing on Electrical Remodeling in the Normal Heart
Saba, Samir; Mehdi, Haider; Mathier, Michael A.; Islam, M. Zahadul; Salama, Guy; London, Barry
2010-01-01
Background Biventricular (BIV) pacing can improve cardiac function in heart failure by altering the mechanical and electrical substrates. We investigated the effect of BIV versus right ventricular (RV) pacing on the normal heart. Methods and Results Male New Zealand White rabbits (n=33) were divided into 3 groups: sham-operated (control), RV pacing, and BIV pacing groups. Four weeks after surgery, the native QT (p=0.004) interval was significantly shorter in the BIV group compared to the RV or sham-operated groups. Also, compared to rabbits in the RV group, rabbits in the BIV group had shorter RV ventricular effective refractory period (VERP) at all cycle lengths, and shorter LV paced QT interval during the drive train of stimuli and close to refractoriness (p<0.001 for all comparisons). Protein expression of the KVLQT1 was significantly increased in the BIV group compared to the RV and control groups, while protein expression of SCN5A and connexin43 was significantly decreased in the RV compared to the other study groups. Erg protein expression was significantly increased in both pacing groups compared to the controls. Conclusions In this rabbit model, we demonstrate a direct effect of BIV but not RV pacing on shortening the native QT interval as well as the paced QT interval during burst pacing and close to the VERP. These findings underscore the fact that the effect of BIV pacing is partially mediated through direct electrical remodeling and may have implications as to the effect of BIV pacing on arrhythmia incidence and burden. PMID:20042767
Dunning, Jamie; Truong, Uyen; Ivy, D. Dunbar; Hunter, Kendall A.; Shandas, Robin
2015-01-01
Abstract Pulmonary arterial hypertension (PAH) is a progressive disease that puts excessive mechanical loads on the ventricle due to a gradual increase in pulmonary vascular impedance. We hypothesize that the increase in right ventricular (RV) afterload is reflected in the concentration of circulating biochemical markers of ventricular strain and stress (B-type natriuretic peptide [BNP] and N-terminal prohormone BNP [NT-proBNP]). We retrospectively analyzed right heart catheterization (RHC) and serum biochemical analysis data () for a pediatric PAH cohort with no sign of left ventricular dysfunction. Using RHC data, we computed an estimate of pulmonary vascular resistance (PVR), compliance, and ventricular-vascular coupling. We also compared how the early onset of interventricular decoupling (characterized as septal flattening) impacts serum NT-proBNP concentrations. Our data revealed correlated NT-proBNP expression with both the resistive and reactive components of RV afterload, an estimate of ventricular-vascular coupling, and a significant increase in biomarker expression in patients with a flattened interventricular septum. Furthermore, the strong correlation between PVR and NT-proBNP appears to break down under flat septum morphology. Over 80% of resistive RV afterload variance is reflected in serum NT-proBNP concentration in pediatric patients with PAH with no sign of left ventricular dysfunction. Reactive afterload appears to contribute to myocardial NT-proBNP release at advanced stages of PAH. Therefore, in mild-to-moderate PAH, resistive afterload is likely the greatest contributor to RV wall stress. These findings could also be used to estimate invasive RHC measurements from serum biochemical analysis, but more work is needed to improve correlations and overcome the issue of interventricular decoupling. PMID:26697173
Characterization of the Left-Sided Substrate in Arrhythmogenic Right Ventricular Cardiomyopathy.
Berte, Benjamin; Denis, Arnaud; Amraoui, Sana; Yamashita, Seigo; Komatsu, Yuki; Pillois, Xavier; Sacher, Frédéric; Mahida, Saagar; Wielandts, Jean-Yves; Sellal, Jean-Marc; Frontera, Antonio; Al Jefairi, Nora; Derval, Nicolas; Montaudon, Michel; Laurent, François; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre; Cochet, Hubert
2015-12-01
The correlates of left ventricular (LV) substrate in arrhythmogenic right ventricular (RV) cardiomyopathy are largely unknown. Thirty-two patients with arrhythmogenic RV cardiomyopathy (47±14 years; 6 women) were included. RV and LV dysplasia were defined from multidetector computed tomography and cardiac magnetic resonance imaging. Arrhythmias were characterized as right-sided or left-sided on 12-lead ECG recordings at baseline and during isoproterenol testing. In 14 patients, the imaging substrate was compared with voltage mapping and local abnormal ventricular activity. Imaging abnormalities were found in 32 (100%) and 21 (66%) patients on the RV and LV, respectively, intramyocardial fat on multidetector computed tomography being the most sensitive feature. LV involvement related to none of the Task Force criteria. Right-sided arrhythmias were more frequent than left-sided arrhythmias (P=0.003) although the latter were more frequent in case of LV involvement (P=0.02). The agreement between low voltage and fat on multidetector computed tomography was high on the RV when using either endocardial unipolar or epicardial bipolar data (κ=0.82 and κ=0.78, respectively) but lower on the LV (κ=0.54 for epicardial bipolar). LV local abnormal ventricular activity was found in all patients with LV involvement, and none of the others. The density of local abnormal ventricular activity within fat areas was similar between the RV and LV (P=0.57). LV substrate is frequent in arrhythmogenic RV cardiomyopathy, but poorly identified by current diagnostic strategies. Left-sided arrhythmias are more frequent in case of LV involvement. LV fat hosts the same density of local abnormal ventricular activity as RV fat, but is less efficiently detected by voltage mapping. These results support the need for alternative diagnostic strategies to identify LV dysplasia. © 2015 American Heart Association, Inc.
Suever, Jonathan D; Wehner, Gregory J; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Dimitri; Andres, Kristin N; Haggerty, Christopher M; Fornwalt, Brandon K
2017-01-01
Mechanics of the left ventricle (LV) are important indicators of cardiac function. The role of right ventricular (RV) mechanics is largely unknown due to the technical limitations of imaging its thin wall and complex geometry and motion. By combining 3D Displacement Encoding with Stimulated Echoes (DENSE) with a post-processing pipeline that includes a local coordinate system, it is possible to quantify RV strain, torsion, and synchrony. In this study, we sought to characterize RV mechanics in 50 healthy individuals and compare these values to their LV counterparts. For each cardiac frame, 3D displacements were fit to continuous and differentiable radial basis functions, allowing for the computation of the 3D Cartesian Lagrangian strain tensor at any myocardial point. The geometry of the RV was extracted via a surface fit to manually delineated endocardial contours. Throughout the RV, a local coordinate system was used to transform from a Cartesian strain tensor to a polar strain tensor. It was then possible to compute peak RV torsion as well as peak longitudinal and circumferential strain. A comparable analysis was performed for the LV. Dyssynchrony was computed from the standard deviation of regional activation times. Global circumferential strain was comparable between the RV and LV (−18.0% for both) while longitudinal strain was greater in the RV (−18.1% vs. −15.7%). RV torsion was comparable to LV torsion (6.2 vs. 7.1 degrees, respectively). Regional activation times indicated that the RV contracted later but more synchronously than the LV. 3D spiral cine DENSE combined with a post–processing pipeline that includes a local coordinate system can resolve both the complex geometry and 3D motion of the RV. PMID:28055859
Regular endurance training in adolescents impacts atrial and ventricular size and function.
Rundqvist, Louise; Engvall, Jan; Faresjö, Maria; Carlsson, Emma; Blomstrand, Peter
2017-06-01
The aims of the study were to explore the effects of long-term endurance exercise on atrial and ventricular size and function in adolescents and to examine whether these changes are related to maximal oxygen uptake (VO2max). Twenty-seven long-term endurance-trained adolescents aged 13-19 years were individually matched by age and gender with 27 controls. All participants, 22 girls and 32 boys, underwent an echocardiographic examination at rest, including standard and colour tissue Doppler investigation. VO2max was assessed during treadmill exercise. All heart dimensions indexed for body size were larger in the physically active group compared with controls: left ventricular end-diastolic volume 60 vs. 50 mL/m2 (P <0.001), left atrial volume 27 vs. 19 mL/m2 (P < 0.001), and right ventricular (RV) and right atrial area 15 vs. 13 and 9 vs. 7 cm2/m2, respectively (P <0.001 for both). There were strong associations between the size of the cardiac chambers and VO2max. Further, we found improved systolic function in the active group compared with controls: left ventricular ejection fraction 61 vs. 59% (P= 0.036), tricuspid annular plane systolic excursion 12 vs. 10 mm/m2 (P= 0.008), and RV early peak systolic velocity s' 11 vs. 10 cm/s (P = 0.031). Cardiac remodelling to long-term endurance exercise in adolescents is manifested by an increase in atrial as well as ventricular dimensions. The physically active group also demonstrated functional remodelling with an increase in TAPSE and systolic RV wall velocity. These findings have practical implications when assessing cardiac enlargement and function in physically active youngsters. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Motoji, Yoshiki; Tanaka, Hidekazu; Fukuda, Yuko; Sano, Hiroyuki; Ryo, Keiko; Sawa, Takuma; Miyoshi, Tatsuya; Imanishi, Junichi; Mochizuki, Yasuhide; Tatsumi, Kazuhiro; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-ichi
2016-02-01
Current guidelines recommend the routine use of tricuspid annular plane systolic excursion (TAPSE) as a simple method for estimating right ventricular (RV) function. However, when ventricular apical longitudinal rotation (apical-LR) occurs in pulmonary hypertension (PH) patients, it may result in overestimated TAPSE. We studied 105 patients with PH defined as mean pulmonary artery pressure >25 mmHg at rest measured by right heart cardiac catheterization. TAPSE was defined as the maximum displacement during systole in the RV-focused apical four-chamber view. RV free-wall longitudinal speckle tracking strain (RV-free) was calculated by averaging 3 regional peak systolic strains. The apical-LR was measured at the peak rotation in the apical region including both left and right ventricle. The eccentricity index (EI) was defined as the ratio of the length of 2 perpendicular minor-axis diameters, one of which bisected and was perpendicular to the interventricular septum, and was obtained at end-systole (EI-sys) and end-diastole (EI-dia). Twenty age-, gender-, and left ventricular ejection fraction-matched normal controls were studied for comparison. The apical-LR in PH patients was significantly lower than that in normal controls (-3.4 ± 2.7° vs. -1.3 ± 1.9°, P = 0.001). Simple linear regression analysis showed that gender, TAPSE, EI-sys, and EI-dia/EI-sys were associated with apical-LR, but RV-free was not. Multiple regression analysis demonstrated that gender, EI-dia/EI-sys, and TAPSE were independent determinants of apical-LR. TAPSE may be overestimated in PH patients with clockwise rotation resulting from left ventricular compression. TAPSE should thus be evaluated carefully in PH patients with marked apical rotation. © 2015, Wiley Periodicals, Inc.
Tsiouris, Athanasios; Paone, Gaetano; Brewer, Robert J; Nemeh, Hassan W; Borgi, Jamil; Morgan, Jeffrey A
2015-01-01
Previous studies have grouped together both patients requiring right ventricular assist devices (RVADs) with patients requiring prolonged milrinone therapy after left ventricular assist device (LVAD) implantation. We retrospectively identified 149 patients receiving LVADs and 18 (12.1%) of which developed right ventricular (RV) failure. We then separated these patients into those requiring RVADs versus prolonged milrinone therapy. This included 10 patients who were treated with prolonged milrinone and eight patients who underwent RVAD placement. Overall, the RV failure group had worse survival compared with the non-RV failure cohort (p = 0.038). However, this was only for the subgroup of patients who required RVADs, who had a 1, 6, 12, and 24 month survival of 62.5%, 37.5%, 37.5%, and 37.5%, respectively, versus 96.8%, 92.1%, 86.7%, and 84.4% for patients without RV failure (p < 0.001). Patients treated with prolonged milrinone therapy for RV failure had similar survivals compared with patients without RV failure. In the RV failure group, age, preoperative renal failure, and previous cardiac surgery were predictors of the need for prolonged postoperative milrinone. As LVADs become a more widely used therapy for patients with refractory, end-stage heart failure, it will be important to reduce the incidence of RV failure, as it yields significant morbidity and increases cost.
Freedman, Roger A; Petrakian, Alex; Boyce, Ker; Haffajee, Charles; Val-Mejias, Jesus E; Oza, Ashish L
2009-02-01
Right ventricular (RV) anodal stimulation may occur in cardiac resynchronization therapy defibrillators (CRT-D) when left ventricular (LV) pacing is configured between the LV lead and an electrode on the RV defibrillator lead. RV defibrillator leads can have a dedicated proximal pacing ring electrode (dedicated bipolar) or utilize the distal shocking coil as the proximal pacing electrode (integrated bipolar). This study compares the performance of integrated versus dedicated leads with respect to anodal stimulation incidence, sensing, and inappropriate ventricular tachyarrhythmia detection in patients implanted with CRT-D. Two hundred ninety-two patients were randomly assigned to receive dedicated or integrated bipolar RV leads at the time of CRT-D implantation. Patients were followed for 6 months. Patients with dedicated bipolar RV leads exhibited markedly higher rates of anodal stimulation than did patients with integrated leads. The incidence of anodal stimulation was 64% at implant for dedicated bipolar RV leads compared to 1% for integrated bipolar RV leads. The likelihood of anodal stimulation in patients with dedicated leads fell progressively during the 6-month follow-up (51.5%), but always exceeded the incidence of anodal stimulation in patients with integrated leads (5%). Clinically detectable undersensing and oversensing were very unusual and did not differ significantly between lead designs. There were no inappropriate ventricular tachyarrhythmia detections for either lead type. Integrated bipolar RV defibrillator leads had a significantly lower incidence of RV anodal stimulation when compared to dedicated bipolar RV defibrillation leads, with no clinically detectable oversensing or undersensing, and with no inappropriate ventricular tachyarrhythmia detections for either lead type.
MicroRNAs in right ventricular remodelling.
Batkai, Sandor; Bär, Christian; Thum, Thomas
2017-10-01
Right ventricular (RV) remodelling is a lesser understood process of the chronic, progressive transformation of the RV structure leading to reduced functional capacity and subsequent failure. Besides conditions concerning whole hearts, some pathology selectively affects the RV, leading to a distinct RV-specific clinical phenotype. MicroRNAs have been identified as key regulators of biological processes that drive the progression of chronic diseases. The role of microRNAs in diseases affecting the left ventricle has been studied for many years, however there is still limited information on microRNAs specific to diseases in the right ventricle. Here, we review recently described details on the expression, regulation, and function of microRNAs in the pathological remodelling of the right heart. Recently identified strategies using microRNAs as pharmacological targets or biomarkers will be highlighted. Increasing knowledge of pathogenic microRNAs will finally help improve our understanding of underlying distinct mechanisms and help utilize novel targets or biomarkers to develop treatments for patients suffering from right heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.
Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe
2014-11-01
Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.
Gregori, Mario; Tocci, Giuliano; Giammarioli, Benedetta; Befani, Alberto; Ciavarella, Giuseppino Massimo; Ferrucci, Andrea; Paneni, Francesco
2014-02-01
Right ventricular dysfunction (RVD) is a major predictor of cardiovascular mortality. Inadequate suppression of the renin-angiotensin-aldosterone system (RAAS) after postural manoeuvres favours alterations of left ventricular (LV) function. The effects of RAAS dysregulation on RV performance remain elusive. The present study investigated RV function in hypertensive patients with or without altered RAAS activation. Plasma renin activity (PRA) and plasma aldosterone concentration (PAC) were measured in 104 newly diagnosed hypertensive patients after both supine and upright positioning to assess dynamic changes of RAAS induced by antigravitational stress. Twenty-four-hour ambulatory blood pressure monitoring and echocardiographic evaluation of the right ventricle including tissue Doppler imaging (TDI) were performed. Patients were divided as follows: (1) normal PRA and PAC (N group [n = 58]), (2) suppressible RAAS after supine positioning (SR group [n = 24]), and (3), nonsuppressible RAAS (NSR group [n = 22]). RVD was identified by the TDI-derived myocardial performance index (MPI) calculated with a multisegmental approach. Patients in the NSR group had reduced indices of RV function compared with patients in the N and SR groups. MPI of the right ventricle as well as prevalence of RVD were also significantly higher in the NSR group. Regression models showed that inadequate RAAS suppression was independently associated with RVD, regardless of blood pressure values and LV dysfunction (LVD). Patients without supine normalization of RAAS display a significant impairment of RV function. Our findings suggest that a dynamic RAAS evaluation may help to identify hypertensive patients at higher risk of RVD. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
α1A-Subtype adrenergic agonist therapy for the failing right ventricle.
Cowley, Patrick M; Wang, Guanying; Joshi, Sunil; Swigart, Philip M; Lovett, David H; Simpson, Paul C; Baker, Anthony J
2017-12-01
Failure of the right ventricle (RV) is a serious disease with a poor prognosis and limited treatment options. Signaling by α 1 -adrenergic receptors (α 1 -ARs), in particular the α 1A -subtype, mediate cardioprotective effects in multiple heart failure models. Recent studies have shown that chronic treatment with the α 1A -subtype agonist A61603 improves function and survival in a model of left ventricular failure. The goal of the present study was to determine if chronic A61603 treatment is beneficial in a RV failure model. We used tracheal instillation of the fibrogenic antibiotic bleomycin in mice to induce pulmonary fibrosis, pulmonary hypertension, and RV failure within 2 wk. Some mice were chronically treated with a low dose of A61603 (10 ng·kg -1 ·day -1 ). In the bleomycin model of RV failure, chronic A61603 treatment was associated with improved RV fractional shortening and greater in vitro force development by RV muscle preparations. Cell injury markers were reduced with A61603 treatment (serum cardiac troponin I, RV fibrosis, and expression of matrix metalloproteinase-2). RV oxidative stress was reduced (using the probes dihydroethidium and 4-hydroxynonenal). Consistent with lowered RV oxidative stress, A61603 was associated with an increased level of the cellular antioxidant superoxide dismutase 1 and a lower level of the prooxidant NAD(P)H oxidase isoform NOX4. In summary, in the bleomycin model of RV failure, chronic A61603 treatment reduced RV oxidative stress, RV myocyte necrosis, and RV fibrosis and increased both RV function and in vitro force development. These findings suggest that in the context of pulmonary fibrosis, the α 1A -subtype is a potential therapeutic target to treat the failing RV. NEW & NOTEWORTHY Right ventricular (RV) failure is a serious disease with a poor prognosis and no effective treatments. In the mouse bleomycin model of RV failure, we tested the efficacy of a treatment using the α 1A -adrenergic receptor subtype agonist A61603. Chronic A61603 treatment improved RV contraction and reduced multiple indexes of RV injury, suggesting that the α 1A -subtype is a therapeutic target to treat RV failure.
Javed, Sumbul; Rajani, Ali Raza; Govindaswamy, Pushparani; Radaideh, Ghazi Ahmed; Abubaraka, Harb Ahmed; Qureshi, Tariq Ilyas; Arshad, Hassaan Bin
2017-03-01
To determine the right ventricular involvement in patients with inferior myocardial infarction by echocardiography in relation to electrocardiographic findings. This observational, prospective study was conducted at Rashid Hospital, Dubai, the United Arab Emirates, from January to September 2013, and comprised patients with inferior myocardial infarction. All patients aged above 18 years were included. Right ventricular myocardial infarction was defined by the electrocardiographic criteria of > 1mV ST elevation in V4R-V5R leads. RV infarction was assessed on echocardiography by fractional area change, tricuspid annular plane systolic excursion and tricuspid annular systolic velocity by tissue Doppler imaging. SPSS 21 was used for data analysis. Of the 73 patients, there were 68(93%) men and 5(7%) women. The three modalities used to assess the right ventricular infarction showed right ventricular involvement in 36(49.3%) cases by fractional area change, 28(38.4%) cases by tricuspid annular plane systolic excursion and 31(42.5%) cases by tissue Doppler imaging in patients with inferior myocardial infarction. Tissue Doppler imaging and right ventricular function showed low degree of negative correlation (p=0.16) while the correlation between tricuspid annular plane systolic excursion and right ventricular function showed significant positive correlation (p<0.0001). Assessment of right ventricular infarction by echocardiography helped to diagnose right ventricular infarction in greater number of cases compared to surface electrocardiogram.
Buonincontri, Guido; Wood, Nigel I; Puttick, Simon G; Ward, Alex O; Carpenter, T Adrian; Sawiak, Stephen J; Morton, A Jennifer
2014-01-01
Increasingly, evidence from studies in both animal models and patients suggests that cardiovascular dysfunction is important in HD. Previous studies measuring function of the left ventricle (LV) in the R6/2 model have found a clear cardiac abnormality, albeit with preserved LV systolic function. It was hypothesized that an impairment of RV function might play a role in this condition via mechanisms of ventricular interdependence. To investigate RV function in the R6/2 mouse model of Huntington's disease (HD). Cardiac cine-magnetic resonance imaging (MRI) was used to determine functional parameters in R6/2 mice. In a first experiment, these parameters were derived longitudinally to determine deterioration of cardiac function with disease progression. A second experiment compared the response to a stress test (using dobutamine) of wildtype and early-symptomatic R6/2 mice. There was progressive deterioration of RV systolic function with age in R6/2 mice. Furthermore, beta-adrenergic stimulation with dobutamine revealed RV dysfunction in R6/2 mice before any overt symptoms of the disease were apparent. This work adds to accumulating evidence of cardiovascular dysfunction in R6/2 mice, describing for the first time the involvement of the right ventricle. Cardiovascular dysfunction should be considered, both when treatment strategies are being designed, and when searching for biomarkers for HD.
Doughan, Abdul Rahman K; McConnell, Michael E; Book, Wendy M
2007-03-01
This study evaluated the effects of beta blockers (carvedilol and metoprolol XL) on New York Heart Association functional class and systemic right ventricular (RV) function in patients with complete transposition of the great arteries who had systemic RV dysfunction late after atrial inflow correction. A significant improvement in New York Heart Association functional class was found after 4 months of therapy with beta blockers. Functional recovery was significant mostly in those patients with pacemakers who received higher maintenance doses of carvedilol. RV end-diastolic area was significantly greater in untreated patients at the end of the follow-up period, whereas it was unchanged in treated patients. In conclusion, beta blockers prevent RV remodeling, with a concomitant improvement in exercise tolerance in patients with complete transposition of the great arteries and systemic RV dysfunction.
Schulz, Rainer; Sliwa, Karen; Schermuly, Ralph Theo; Lecour, Sandrine
2017-01-01
Pulmonary hypertension (PH) is defined by elevated mean pulmonary artery pressure following the pathological remodelling of small pulmonary arteries. An increase in right ventricular (RV) afterload results in RV hypertrophy and RV failure. The pathophysiology of PH, and RV remodelling in particular, is not well understood, thus explaining, at least in part, why current PH therapies have a limited effect. Existing therapies mostly target the pulmonary circulation. Because the remodelled RV fails to support normal cardiac function, patients eventually succumb from RV failure. Developing novel therapies that directly target the function of the RV may therefore benefit patients with PH. In the past decade, several promising studies have investigated novel cardioprotective strategies in experimental models of PH. This review aims to comprehensively discuss and highlight these novel experimental approaches to confer, in the long‐term, greater health benefit in patients with PH. PMID:28099680
Load Adaptability in Patients With Pulmonary Arterial Hypertension.
Amsallem, Myriam; Boulate, David; Aymami, Marie; Guihaire, Julien; Selej, Mona; Huo, Jennie; Denault, Andre Y; McConnell, Michael V; Schnittger, Ingela; Fadel, Elie; Mercier, Olaf; Zamanian, Roham T; Haddad, Francois
2017-09-01
Right ventricular (RV) adaptation to pressure overload is a major prognostic factor in patients with pulmonary arterial hypertension (PAH). The objectives were first to define the relation between RV adaptation and load using allometric modeling, then to compare the prognostic value of different indices of load adaptability in PAH. Both a derivation (n = 85) and a validation cohort (n = 200) were included. Load adaptability was assessed using 3 approaches: (1) surrogates of ventriculo-arterial coupling (e.g., RV area change/end-systolic area), (2) simple ratio of function and load (e.g., tricuspid annular plane systolic excursion/right ventricular systolic pressure), and (3) indices assessing the proportionality of adaptation using allometric pressure-function or size modeling. Proportional hazard modeling was used to compare the hazard ratio for the outcome of death or lung transplantation. The mean age of the derivation cohort was 44 ± 11 years, with 80% female and 74% in New York Heart Association class III or IV. Mean pulmonary vascular resistance index (PVRI) was 24 ± 11 with a wide distribution (1.6 to 57.5 WU/m 2 ). Allometric relations were observed between PVRI and RV fractional area change (R 2 = 0.53, p < 0.001) and RV end-systolic area indexed to body surface area right ventricular end-systolic area index (RVESAI) (R 2 = 0.29, p < 0.001), allowing the derivation of simple ratiometric load-specific indices of RV adaptation. In right heart parameters, RVESAI was the strongest predictor of outcomes (hazard ratio per SD = 1.93, 95% confidence interval 1.37 to 2.75, p < 0.001). Although RVESAI/PVRI 0.35 provided small incremental discrimination on multivariate modeling, none of the load-adaptability indices provided stronger discrimination of outcome than simple RV adaptation metrics in either the derivation or the validation cohort. In conclusion, allometric modeling enables quantification of the proportionality of RV load adaptation but offers small incremental prognostic value to RV end-systolic dimension in PAH. Copyright © 2017 Elsevier Inc. All rights reserved.
Morita, T; Nakamura, K; Osuga, T; Yokoyama, N; Khoirun, N; Morishita, K; Sasaki, N; Ohta, H; Takiguchi, M
2017-08-01
To assess the repeatability and characteristics of echocardiographic indices of the right ventricular (RV) function derived from speckle-tracking echocardiography. Fourteen laboratory Beagles and 103 privately owned dogs without cardiac disease were involved in this study. Right ventricular longitudinal strain, strain rate, and a strain-related index for assessing RV dyssynchrony derived from speckle-tracking echocardiography were obtained by two different observers using five Beagles. Within-day, between-day, and interobserver coefficients of variation and the intraclass correlation coefficient of speckle-tracking echocardiography indices were determined. Both speckle-tracking echocardiography and conventional indices of RV function, including the peak velocity of systolic tricuspid annular motion, tricuspid annulus plane systolic excursion, fractional area change, and the Tei index, were obtained from 14 Beagles and 103 privately owned dogs. Relationships between echocardiographic indices and the body weight, heart rate, age, and sex were estimated by regression analysis. Speckle-tracking echocardiographic indices showed good within-day repeatability, between-day and interobserver repeatability were moderate to good. In large dogs, RV longitudinal strain, strain rate, and fractional area change were significantly decreased, while the index of RV dyssynchrony, systolic tricuspid annular motion, tricuspid annulus plane systolic excursion, and the Tei index were increased. All speckle-tracking and conventional echocardiographic indices were correlated with the body weight. The speckle-tracking echocardiography indices were highly repeatable and body weight affected speckle-tracking echocardiography indices in dogs. Further studies are needed to apply speckle-tracking echocardiography indices in dogs with cardiac disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Sharma, Bhavneesh; Neilan, Tomas G; Kwong, Raymond Y; Mandry, Damien; Owens, Robert L; McSharry, David; Bakker, Jessie P; Malhotra, Atul
2013-02-01
Untreated chronic obstructive pulmonary disease (COPD) co-existing with obstructive sleep apnea (OSA), also known as overlap syndrome, has higher cardiovascular mortality than COPD alone but its underlying mechanism remains unclear. We hypothesize that the presence of overlap syndrome is associated with more extensive right ventricular (RV) remodeling compared to patients with COPD alone. Adult COPD patients (GOLD stage 2 or higher) with at least 10 pack-years of smoking history were included. Overnight laboratory-based polysomnography was performed to test for OSA. Subjects with an apnea-hypopnea index (AHI) >10/h were classified as having overlap syndrome (n = 7), else classified as having COPD-only (n = 11). A cardiac MRI was performed to assess right and left cardiac chambers sizes, ventricular masses, and cine function. RV mass index (RVMI) was markedly higher in the overlap group than the COPD-only group (19 ± 6 versus 11 ± 6; p = 0.02). Overlap syndrome subjects had a reduced RV remodeling index (defined as the ratio between RVMI and RV end-diastolic volume index) compared to the COPD-only group (0.27 ± 0.06 versus 0.18 ± 0.08; p = 0.02). In the overlap syndrome subjects, the extent of RV remodeling was associated with severity of oxygen desaturation (R(2) = 0.65, p = 0.03). Our pilot results suggest that untreated overlap syndrome may cause more extensive RV remodeling than COPD alone.
Han, June-Chiew; Guild, Sarah-Jane; Pham, Toan; Nisbet, Linley; Tran, Kenneth; Taberner, Andrew J.; Loiselle, Denis S.
2018-01-01
Pulmonary arterial hypertension (PAH) alters the geometries of both ventricles of the heart. While the right ventricle (RV) hypertrophies, the left ventricle (LV) atrophies. Multiple lines of clinical and experimental evidence lead us to hypothesize that the impaired stroke volume and systolic pressure of the LV are a direct consequence of the effect of pressure overload in the RV, and that atrophy in the LV plays only a minor role. In this study, we tested this hypothesis by examining the mechanoenergetic response of the atrophied LV to RV hypertrophy in rats treated with monocrotaline. Experiments were performed across multiple-scales: the whole-heart in vivo and ex vivo, and its trabeculae in vitro. Under the in vivo state where the RV was pressure-overloaded, we measured reduced systemic blood pressure and LV ventricular pressure. In contrast, under both ex vivo and in vitro conditions, where the effect of RV pressure overload was circumvented, we found that LV was capable of developing normal systolic pressure and stress. Nevertheless, LV atrophy played a minor role in that LV stroke volume remained lower, thereby contributing to lower LV mechanical work output. Concomitantly lower oxygen consumption and change of enthalpy were observed, and hence LV energy efficiency was unchanged. Our internally consistent findings between working-heart and trabecula experiments explain the rapid improvement of LV systolic function observed in patients with chronic pulmonary hypertension following surgical relief of RV pressure overload. PMID:29375394
Right Ventricular Longitudinal Strain Is Depressed in a Bovine Model of Pulmonary Hypertension.
Bartels, Karsten; Brown, R Dale; Fox, Daniel L; Bull, Todd M; Neary, Joseph M; Dorosz, Jennifer L; Fonseca, Brian M; Stenmark, Kurt R
2016-05-01
Pulmonary hypertension and resulting right ventricular (RV) dysfunction are associated with significant perioperative morbidity and mortality. Although echocardiography permits real-time, noninvasive assessment of RV function, objective and comparative measures are underdeveloped, and appropriate animal models to study their utility are lacking. Longitudinal strain analysis is a novel echocardiographic method to quantify RV performance. Herein, we hypothesized that peak RV longitudinal strain would worsen in a bovine model of pulmonary hypertension compared with control animals. Newborn Holstein calves were randomly chosen for induction of pulmonary hypertension versus control conditions. Pulmonary hypertension was induced by exposing animals to 14 days of hypoxia (equivalent to 4570 m above sea level or 430 mm Hg barometric pressure). Control animals were kept at ambient pressure/normoxia. At the end of the intervention, transthoracic echocardiography was performed in awake calves. Longitudinal wall strain was analyzed from modified apical 4-chamber views focused on the RV. Comparisons between measurements in hypoxic versus nonhypoxic conditions were performed using Student t test for independent samples and unequal variances. After 14 days at normoxic versus hypoxic conditions, 15 calves were examined with echocardiography. Pulmonary hypertension was confirmed by right heart catheterization and associated with reduced RV systolic function. Mean systolic strain measurements were compared in normoxia-exposed animals (n = 8) and hypoxia-exposed animals (n = 7). Peak global systolic longitudinal RV strain after hypoxia worsened compared to normoxia (-10.5% vs -16.1%, P = 0.0031). Peak RV free wall strain also worsened after hypoxia compared to normoxia (-9.6% vs -17.3%, P = 0.0031). Findings from strain analysis were confirmed by measurement of tricuspid annular peak systolic excursion. Peak longitudinal RV strain detected worsened RV function in animals with hypoxia-induced pulmonary hypertension compared with control animals. This relationship was demonstrated in the transthoracic echocardiographic 4-chamber view independently for the RV free wall and for the combination of the free and septal walls. This innovative model of bovine pulmonary hypertension may prove useful to compare different monitoring technologies for the assessment of early events of RV dysfunction. Further studies linking novel RV imaging applications with mechanistic and therapeutic approaches are needed.
Jing, Linyuan; Pulenthiran, Arichanah; Nevius, Christopher D; Mejia-Spiegeler, Abba; Suever, Jonathan D; Wehner, Gregory J; Kirchner, H Lester; Haggerty, Christopher M; Fornwalt, Brandon K
2017-06-28
Pediatric obesity is a growing public health problem, which is associated with increased risk of cardiovascular disease and premature death. Left ventricular (LV) remodeling (increased myocardial mass and thickness) and contractile dysfunction (impaired longitudinal strain) have been documented in obese children, but little attention has been paid to the right ventricle (RV). We hypothesized that obese/overweight children would have evidence of RV remodeling and contractile dysfunction. One hundred and three children, ages 8-18 years, were prospectively recruited and underwent cardiovascular magnetic resonance (CMR), including both standard cine imaging and displacement encoding with stimulated echoes (DENSE) imaging, which allowed for quantification of RV geometry and function/mechanics. RV free wall longitudinal strain was quantified from the end-systolic four-chamber DENSE image. Linear regression was used to quantify correlations of RV strain with LV strain and measurements of body composition (adjusted for sex and height). Analysis of variance was used to study the relationship between RV strain and LV remodeling types (concentric remodeling, eccentric/concentric hypertrophy). The RV was sufficiently visualized with DENSE in 70 (68%) subjects, comprising 36 healthy weight (13.6 ± 2.7 years) and 34 (12.1 ± 2.9 years) obese/overweight children. Obese/overweight children had a 22% larger RV mass index (8.2 ± 0.9 vs 6.7 ± 1.1 g/m 2.7 , p < 0.001) compared to healthy controls. RV free wall longitudinal strain was impaired in obese/overweight children (-16 ± 4% vs -19 ± 5%, p = 0.02). Ten (14%) out of 70 children had LV concentric hypertrophy, and these children had the most impaired RV longitudinal strain compared to those with normal LV geometry (-13 ± 4% vs -19 ± 5%, p = 0.002). RV longitudinal strain was correlated with LV longitudinal strain (r = 0.34, p = 0.004), systolic blood pressure (r = 0.33, p = 0.006), as well as BMI z-score (r = 0.28, p = 0.02), waist (r = 0.31, p = 0.01), hip (r = 0.40, p = 0.004) and abdominal (r = 0.38, p = 0.002) circumference, height and sex adjusted. Obese/overweight children have evidence of RV remodeling (increased RV mass) and RV contractile dysfunction (impaired free wall longitudinal strain). Moreover, RV longitudinal strain correlates with LV longitudinal strain, and children with LV concentric hypertrophy show the most impaired RV function. These results suggest there may be a common mechanism underlying both remodeling and dysfunction of the left and right ventricles in obese/overweight children.
Thibault, Bernard; Roy, Denis; Guerra, Peter G; Macle, Laurent; Dubuc, Marc; Gagné, Pierre; Greiss, Isabelle; Novak, Paul; Furlani, Aldo; Talajic, Mario
2005-07-01
Cardiac resynchronization therapy (CRT) has been shown to improve symptoms of patients with moderate to severe heart failure. Optimal CRT involves biventricular or left ventricular (LV) stimulation alone, atrio-ventricular (AV) delay optimization, and possibly interventricular timing adjustment. Recently, anodal capture of the right ventricle (RV) has been described for patients with CRT-pacemakers. It is unknown whether the same phenomenon exists in CRT systems associated with defibrillators (CRT-ICD). The RV leads used in these systems are different from pacemaker leads: they have a larger diameter and shocking coils, which may affect the occurrence of anodal capture. We looked for anodal RV capture during LV stimulation in 11 consecutive patients who received a CRT-ICD system with RV leads with a true bipolar design. Fifteen patients who had RV leads with an integrated design were used as controls. Anodal RV and LV thresholds were determined at pulse width (pw) durations of 0.2, 0.5, and 1.0 ms. RV anodal capture during LV pacing was found in 11/11 patients at some output with true bipolar RV leads versus 0/15 patients with RV leads with an integrated bipolar design. Anodal RV capture threshold was more affected by changes in pw duration than LV capture threshold. In CRT-ICD systems, RV leads with a true bipolar design with the proximal ring also used as the anode for LV pacing are associated with a high incidence of anodal RV capture during LV pacing. This may affect the clinical response to alternative resynchronization methods using single LV stimulation or interventricular delay programming.
Holmboe, Sarah; Andersen, Asger; Vildbrad, Mads D; Nielsen, Jan M; Ringgaard, Steffen; Nielsen-Kudsk, Jens E
2013-12-01
Right heart function is an important predictor of morbidity and mortality in patients suffering from pulmonary arterial hypertension and congenital heart diseases. We investigated whether the prostacyclin analog iloprost has a direct inotropic effect in the pressure-overloaded hypertrophic and dysfunctional right ventricle (RV). Rats were randomized to monocrotaline injection (60 mg/kg; [Formula: see text]), pulmonary trunk banding (PTB; [Formula: see text]), or a sham operation ([Formula: see text]). RV function was evaluated with magnetic resonance imaging, echocardiography, and invasive pressure measurements at baseline, after intravenous administration of placebo, iloprost 10 ng/kg/min, or iloprost 100 ng/kg/min (Ilo100). Infusion of Ilo100 induced a [Formula: see text] ([Formula: see text]) increase in stroke volume in the sham group and a [Formula: see text] ([Formula: see text]) increase in the PTB group. RV [Formula: see text] was elevated by [Formula: see text] ([Formula: see text]) in the sham group and by [Formula: see text] ([Formula: see text]) in the PTB group. An elevation in cardiac output of [Formula: see text] ([Formula: see text]) and an [Formula: see text] ([Formula: see text]) increase in RV systolic pressure were found in the PTB group. Iloprost caused a decrease in mean arterial blood pressure (MAP) in all groups of animals. An equal reduction in MAP induced by the arterial vasodilator nitroprusside did not improve any of the measured parameters of RV function. We conclude that iloprost has inotropic properties directly improving ventricular function in the hypertrophic and dysfunctional right heart of the rat.
Pasha, Sharif M; Klok, Frederikus A; van der Bijl, Noortje; de Roos, Albert; Kroft, Lucia J M; Huisman, Menno V
2012-08-01
N-terminal pro-Brain Natriuretic Peptide (NT-pro-BNP) is primarily secreted by left ventricular (LV) stretch and wall tension. Notably, NT-pro-BNP is a prognostic marker in acute pulmonary embolism (PE), which primarily stresses the right ventricle (RV). We sought to evaluate the relative contribution of the RV to NT-pro-BNP levels during PE. A post-hoc analysis of an observational prospective outcome study in 113 consecutive patients with computed tomography (CT)-proven PE and 226 patients in whom PE was clinically suspected but ruled out by CT. In all patients RV and LV function was established by assessing ECG-triggered-CT measured ventricular end-diastolic-volumes and ejection fraction (EF). NT-pro-BNP was assessed in all patients. The correlation between RV and LV end-diastolic-volumes and systolic function was evaluated by multiple linear regression corrected for known confounders. In the PE cohort increased RVEF (β-coefficient (95% confidence interval [CI]) -0.044 (± -0.011); p<0.001) and higher RV end-diastolic-volume (β-coefficient 0.005 (± 0.001); p<0.001) were significantly correlated to NT-pro-BNP, while no correlation was found with LVEF (β-coefficient 0.005 (± 0.010); p=0.587) and LV end-diastolic-volume (β-coefficient -0.003 (± 0.002); p=0.074). In control patients without PE we found a strong correlation between NT-pro-BNP levels and LVEF (β-coefficient -0.027 (± -0.006); p<0.001) although not LV end-diastolic-volume (β-coefficient 0.001 (± 0.001); p=0.418). RVEF (β-coefficient -0.002 (± -0.006); p=0.802) and RV end-diastolic-volume (β-coefficient <0.001 (± 0.001); p=0.730) were not correlated in patients without PE. In PE patients, lower RVEF and higher RV end-diastolic-volume were significantly correlated to NT-pro-BNP levels as compared to control patients without PE. These observations provide pathophysiological ground for the well-known prognostic value of NT-pro-BNP in acute PE.
Jone, Pei-Ni; Patel, Sonali S; Cassidy, Courtney; Ivy, David Dunbar
2016-12-01
Right ventricular function and biomarkers of B-type natriuretic peptide (BNP) and N-Terminal pro-BNP (NT pro-BNP) are used to determine the severity of right ventricular failure and outcomes from pulmonary hypertension. Real-time three-dimensional echocardiography (3DE) is a novel quantitative measure of the right ventricle and decreases the geometric assumptions from conventional two-dimensional echocardiography (2DE). We correlated right ventricular functional measures using 2DE and single-beat 3DE with biomarkers and hemodynamics to determine the severity of pediatric pulmonary hypertension. We retrospectively evaluated 35 patients (mean age 12.67 ± 5.78 years) with established pulmonary hypertension who had echocardiograms and biomarkers on the same day. Ten out of 35 patients had hemodynamic evaluation within 3 days. 2DE evaluation included tricuspid annular plane systolic excursion (TAPSE), right ventricular myocardial performance index from tissue Doppler imaging (RV TDI MPI), and right ventricular fractional area change (FAC). Three-dimensional echocardiography evaluation included right ventricular ejection fraction (EF), end-systolic volume, and end-diastolic volume. The quality of the 3DE was graded as good, fair, or poor. Pearson correlation coefficients were utilized to evaluate between biomarkers and echocardiographic parameters and between hemodynamics and echocardiography. Three-dimensional echocardiography and FAC correlated significantly with BNP and NT pro-BNP. TAPSE and RV TDI MPI did not correlate significantly with biomarkers. 3D right ventricular EF correlated significantly with hemodynamics. Two-dimensional echocardiography did not correlate with hemodynamics. Single-beat 3DE is a noninvasive, feasible tool in the quantification of right ventricular function and maybe more accurate than conventional 2DE in evaluating severity of pulmonary hypertension. © 2016 Wiley Periodicals, Inc.
Sista, Akhilesh K; Miller, Larry E; Kahn, Susan R; Kline, Jeffrey A
2017-02-01
Long-term right ventricular (RV) function, functional capacity, exercise capacity, and quality of life following pulmonary embolism (PE), and the impact of thrombolysis, are unclear. A systematic review of studies that evaluated these outcomes with ⩾ 3-month mean follow-up after PE diagnosis was performed. For each outcome, random effects meta-analyses were performed. Twenty-six studies (3671 patients) with 18-month median follow-up were included. The pooled prevalence of RV dysfunction was 18.1%. Patients treated with thrombolysis had a lower, but not statistically significant, risk of RV dysfunction versus those treated with anticoagulation (odds ratio: 0.51, 95% CI: 0.24 to 1.13, p=0.10). Pooled prevalence of at least mild functional impairment (NYHA II-IV) was 33.2%, and at least moderate functional impairment (NYHA III-IV) was 11.3%. Patients treated with thrombolysis had a lower, but not statistically significant, risk of at least moderate functional impairment versus those treated with anticoagulation (odds ratio: 0.48, 95% CI: 0.15 to 1.49, p=0.20). Pooled 6-minute walk distance was 415 m (95% CI: 372 to 458 m), SF-36 Physical Component Score was 44.8 (95% CI: 43 to 46), and Pulmonary Embolism Quality of Life (QoL) Questionnaire total score was 9.1. Main limitations included heterogeneity among studies for many outcomes, variation in the completeness of data reported, and inclusion of data from non-randomized, non-controlled, and retrospective studies. Persistent RV dysfunction, impaired functional status, diminished exercise capacity, and reduced QoL are common in PE survivors. The effect of thrombolysis on RV function and functional status remains unclear.
Barczuk-Falęcka, M; Małek, Ł A; Roik, D; Werys, K; Werner, B; Brzewski, M
2018-06-01
To assess the accuracy of simple cardiovascular magnetic resonance imaging (CMR) parameters for first-line analysis of right ventricle (RV) dysfunction in children to identify those who require in-depth analysis and those in whom simple assessment is sufficient. Sixty paediatric CMR studies were analysed. The following CMR parameters were measured: RV end-diastolic and end-systolic area (4CH EDA and 4CH ESA), fractional area change (FAC), RV diameter in end-diastole (RVD1), tricuspid annular plane systolic excursion (TAPSE), and RV outflow tract diameter in end-diastole (RVOT prox). They were correlated with RV end-diastolic volume (RVEDVI) and RV ejection fraction (RVEF). RVEDVI correlated best with 4CH ESA (r=0.85, <0.001) and EDA (r=0.82, <0.001). For RVEF only a moderate reverse correlation was found for 4CH ESA (-0.56, <0.001), 4CH EDA (-0.49, 0.001) and positive correlation for FAC (0.49, <0.001). There was no correlation between TAPSE and RVEF and only weak between RVD1 and RVEDVI. A 4CH ESA cut-off value of 8.5 cm 2 /m 2 had a very high diagnostic accuracy for predicting an enlarged RV (AUC=0.912, p<0.001, sensitivity 92.3%, specificity 79%) and a cut-off value of 10.5 cm 2 /m 2 was also a good predictor of depressed RV systolic function (AUC=0.873, p<0.001, sensitivity 83%, specificity 89%). For routine screening in clinical practice, 4CH ESA seems a reliable and easy method to identify patients with RV dysfunction. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Passino, Claudio; Maria Sironi, Anna; Favilli, Brunella; Poletti, Roberta; Prontera, Concetta; Ripoli, Andrea; Lombardi, Massimo; Emdin, Michele
2005-09-15
Atrial and brain natriuretic peptides (ANP and BNP) plasma concentration increases and holds a prognostic significance in patients with left ventricular dysfunction. We assessed the hypothesis that right ventricular (RV) overload might significantly contribute to plasma elevation of cardiac natriuretic hormones in patients with heart failure. Forty-one patients with cardiomyopathy and depressed left ventricular (LV) function (ejection fraction, EF, <40%), underwent cardiac magnetic resonance imaging (MRI) and resting plasma determination of ANP and BNP. Nineteen healthy subjects were also studied as control group. Ventricular volumes and function were assessed by MRI. In the group of patients, LVEF was 22.6+/-1.2% (controls: 61.2+/-1.3%, P<0.001, mean+/-S.E.M.), while RVEF was 48.2+/-2.5% (controls: 66.7+/-1.6%, P<0.001); LV and RV end diastolic/systolic volumes, corrected by body surface area, were 143+/-7/114+/-7 ml/m2 (controls 70+/-3/27+/-2 ml/m2, both P<0.001) and 66+/-3/37+/-4 ml/m2 (controls: 63+/-4/21+/-2 ml/m2, P<0.01 only for end-systolic volume). BNP plasma value was on average 324+/-39 pg/ml (range: 23-1280, controls 10+/-2 pg/ml), ANP value was 144+/-17 pg/ml (range: 26-534, controls 15+/-1 pg/ml). BNP positively correlated with either end-diastolic or end-systolic RV volume in patients, less with LV systolic, and not with LV diastolic volume. Moreover, a significant negative correlation was observed between BNP and either LVEF or RVEF. Conversely, ANP showed a significant correlation only with end-systolic RV volume and with both RVEF and LVEF. When multivariate stepwise linear regression analysis was applied LVEF resulted the only independent predictor for ANP plasma values (R=0.591, P<0.001), while LVEF and RV end-diastolic volume for BNP (R=0.881, P<0.001, and R=0.881, P=0.035, respectively). Right heart overload contributes independently to plasma elevation of natriuretic peptides. RV involvement, which is known to independently worsen prognosis in patients with cardiomyopathy, might contribute to their established prognostic power, inducing compensatory secretion of plasma cardiac natriuretic hormones.
Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology.
Vonk-Noordegraaf, Anton; Haddad, François; Chin, Kelly M; Forfia, Paul R; Kawut, Steven M; Lumens, Joost; Naeije, Robert; Newman, John; Oudiz, Ronald J; Provencher, Steve; Torbicki, Adam; Voelkel, Norbert F; Hassoun, Paul M
2013-12-24
Survival in patients with pulmonary arterial hypertension (PAH) is closely related to right ventricular (RV) function. Although pulmonary load is an important determinant of RV systolic function in PAH, there remains a significant variability in RV adaptation to pulmonary hypertension. In this report, the authors discuss the emerging concepts of right heart pathobiology in PAH. More specifically, the discussion focuses on the following questions. 1) How is right heart failure syndrome best defined? 2) What are the underlying molecular mechanisms of the failing right ventricle in PAH? 3) How are RV contractility and function and their prognostic implications best assessed? 4) What is the role of targeted RV therapy? Throughout the report, the authors highlight differences between right and left heart failure and outline key areas of future investigation. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Cardiac Structure and Function in Cushing's Syndrome: A Cardiac Magnetic Resonance Imaging Study
Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe
2014-01-01
Background: Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. Objectives: The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Methods: Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2–12 mo) after the treatment of hypercortisolism. Results: Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Conclusion: Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism. PMID:25093618
Jessica, Sabourin; Angèle, Boet; Catherine, Rucker-Martin; Mélanie, Lambert; Ana-Maria, Gomez; Jean-Pierre, Benitah; Frédéric, Perros; Marc, Humbert; Fabrice, Antigny
2018-05-01
Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca 2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca 2+ remodeling. After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca 2+ ] i transients and increased sarcoplasmic reticulum (SR) Ca 2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser 16 -phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca 2+ -ATPase) pump abundance. Moreover, after PH induction, Ca 2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca 2+ -release-activated Ca 2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca 2+ ] i transients amplitude, the SR Ca 2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. These new findings demonstrate RV-specific cellular Ca 2+ cycling remodeling in PH rats with maladaptive RVH and that the STIM1L/Orai1/TRPC1/C4-dependent Ca 2+ current participates in this Ca 2+ remodeling in RVH secondary to PH. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-invasive imaging of global and regional cardiac function in pulmonary hypertension
Crowe, Tim; Jayasekera, Geeshath
2017-01-01
Pulmonary hypertension (PH) is a progressive illness characterized by elevated pulmonary artery pressure; however, the main cause of mortality in PH patients is right ventricular (RV) failure. Historically, improving the hemodynamics of pulmonary circulation was the focus of treatment; however, it is now evident that cardiac response to a given level of pulmonary hemodynamic overload is variable but plays an important role in the subsequent prognosis. Non-invasive tests of RV function to determine prognosis and response to treatment in patients with PH is essential. Although the right ventricle is the focus of attention, it is clear that cardiac interaction can cause left ventricular dysfunction, thus biventricular assessment is paramount. There is also focus on the atrial chambers in their contribution to cardiac function in PH. Furthermore, there is evidence of regional dysfunction of the two ventricles in PH, so it would be useful to understand both global and regional components of dysfunction. In order to understand global and regional cardiac function in PH, the most obvious non-invasive imaging techniques are echocardiography and cardiac magnetic resonance imaging (CMRI). Both techniques have their advantages and disadvantages. Echocardiography is widely available, relatively inexpensive, provides information regarding RV function, and can be used to estimate RV pressures. CMRI, although expensive and less accessible, is the gold standard of biventricular functional measurements. The advent of 3D echocardiography and techniques including strain analysis and stress echocardiography have improved the usefulness of echocardiography while new CMRI technology allows the measurement of strain and measuring cardiac function during stress including exercise. In this review, we have analyzed the advantages and disadvantages of the two techniques and discuss pre-existing and novel forms of analysis where echocardiography and CMRI can be used to examine atrial, ventricular, and interventricular function in patients with PH at rest and under stress. PMID:29064323
The Prognostic Impact of the Evolution of RV Function in Idiopathic DCM.
Merlo, Marco; Gobbo, Marco; Stolfo, Davide; Losurdo, Pasquale; Ramani, Federica; Barbati, Giulia; Pivetta, Alberto; Di Lenarda, Andrea; Anzini, Marco; Gigli, Marta; Pinamonti, Bruno; Sinagra, Gianfranco
2016-09-01
In this study, the authors analyzed the prognostic role of right ventricular systolic function (RVF) longitudinal trends in a large cohort of patients affected by dilated cardiomyopathy (DCM). RVF is a known prognostic predictor in DCM; however, whether RVF changes over time to better predict the long-term disease progression has not been investigated. From 1993 to 2008, we analyzed 512 patients with DCM (46 years of age [36 to 55 years of age], left ventricular ejection fraction 32% [25% to 41%]) with a potential follow-up of ≥72 months and available data at baseline and at least 1 pre-specified follow-up evaluation (i.e., 6, 24, 48, or 72 months). RV dysfunction was defined as RV fractional area change <35% at 2-dimensional echocardiography. The primary outcome measure was a composite of death or heart transplantation. At enrollment, 103 (20%) patients had RV dysfunction. During follow-up, 89 of them (86%, 17% of the overall cohort) normalized RVF at a median time of 6 months, whereas 38 of the remaining 409 patients with normal baseline RVF (9%; 7% of the overall population) exhibited a new-onset RV dysfunction (median time: 36 months). RVF normalization was significantly associated with subsequent left ventricular reverse remodeling that was observed at a median time of 24 months (odds ratio: 2.49; 95% confidence interval [CI]: 1.17 to 5.3; p = 0.018). At baseline multivariate analysis, RV dysfunction was independently associated with the primary outcome measure (hazard ratio: 1.71; 95% CI: 1.02 to 2.85; p = 0.0413). At time-dependent model, RVF revaluation over time maintained an independent predictive value (hazard ratio: 2.83; 95% CI: 1.57 to 5.11; p = 0.0006). Patients with DCM frequently present RV dysfunction at first evaluation. However, a complete RVF recovery is largely observed early after optimization of medical therapy and predates subsequent left ventricular reverse remodeling. Systematic revaluation of patients including RVF throughout regular follow-up conferred additive long-term prognostic value to the baseline evaluation. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Al Shehri, Abdullah M; El-Tahan, Mohamed R; Al Metwally, Roshdi; Qutub, Hatem; El Ghoneimy, Yasser F; Regal, Mohamed A; Zien, Haytham
2014-08-01
To test the effects of pressure-controlled (PCV) and volume-controlled (VCV) ventilation during one-lung ventilation (OLV) for thoracic surgery on right ventricular (RV) function. A prospective, randomized, double-blind, controlled, crossover study. A single university hospital. Fourteen pairs of consecutive patients scheduled for elective thoracotomy. Patients were assigned randomly to ventilate the dependent lung with PCV or VCV mode, each in a randomized crossover order using tidal volume of 6 mL/kg, I: E ratio 1: 2.5, positive end-expiratory pressure (PEEP) of 5 cm H2O and respiratory rate adjusted to maintain normocapnia. Intraoperative changes in RV function (systolic and early diastolic tricuspid annular velocity (TAV), end-systolic volume (ESV), end-diastolic volume (EDV) and fractional area changes (FAC)), airway pressures, compliance and oxygenation index were recorded. The use of PCV during OLV resulted in faster systolic (10.1±2.39 vs. 5.8±1.67 cm/s, respectively), diastolic TAV (9.2±1.99 vs. 4.6±1.42 cm/s, respectively) (p<0.001) and compliance and lower ESV, EDV and airway pressures (p<0.05) than during the use of VCV. Oxygenation indices were similar during the use of VCV and PCV. The use of PCV offers more improved RV function than the use of VCV during OLV for open thoracotomy. These results apply specifically to younger patients with good ventricular and pulmonary functions. © 2014 Elsevier Inc. All rights reserved.
Imada, Tatsuyuki; Kamibayashi, Takahiko; Ota, Chiho; Carl Shibata, Sho; Iritakenishi, Takeshi; Sawa, Yoshiki; Fujino, Yuji
2015-08-01
Intraoperative two-dimensional echocardiography is technically challenging, given the unique geometry of the right ventricle (RV). It was hypothesized that the RV fractional area change (RVFAC) could be used as a simple method to evaluate RV function during surgery. Therefore, the correlation between the intraoperative RVFAC and the true right ventricular ejection fraction (RVEF), as measured using newly developed three-dimensional (3D) analysis software, was evaluated. Retrospective study. University hospital. Patients who underwent cardiac surgery with transesophageal echocardiography monitoring between March 2014 and June 2014. None. Sixty-two patients were included in this study. After the exclusion of poor imaging data and patients with arrhythmias, 54 data sets were analyzed. RVFAC was measured by one anesthesiologist during surgery, and full-volume 3D echocardiographic data were recorded simultaneously. The 3D data were analyzed postoperatively using off-line 3D analysis software by a second anesthesiologist, who was blinded to the RVFAC results. The mean RVFAC was 38.8% ± 8.7%, the mean RVEF was 41.4% ± 8.3%, and there was a good correlation between the RVFAC and the RVEF (r(2) = 0.638; p<0.0001). The RVFAC was well-correlated with the RVEF calculated using 3D echocardiography; therefore, RVFAC provides a simple and useful method for anesthesiologists to evaluate intraoperative RV function. Copyright © 2015 Elsevier Inc. All rights reserved.
Hyldebrandt, Janus Adler; Sivén, Eleonora; Agger, Peter; Frederiksen, Christian Alcaraz; Heiberg, Johan; Wemmelund, Kristian Borup; Ravn, Hanne Berg
2015-07-01
Right ventricular (RV) failure due to chronic pressure overload is a main determinant of outcome in congenital heart disease. Medical management is challenging because not only contractility but also the interventricular relationship is important for increasing cardiac output. This study evaluated the effect of milrinone alone and in combination with epinephrine or dopamine on hemodynamics, ventricular performance, and the interventricular relationship. RV failure was induced in 21 Danish landrace pigs by pulmonary artery banding. After 10 wk, animals were reexamined using biventricular pressure-volume conductance catheters. The maximum pressure in the RV increased by 113% (P < 0.0001) and end-diastolic volume by 43% (P < 0.002), while left ventricular (LV) pressure simultaneously decreased (P = 0.006). Concomitantly, mean arterial pressure (MAP; -16%, P = 0.01), cardiac index (CI; -23%, P < 0.0001), and mixed venous oxygen saturation (SvO2 ; -40%, P < 0.0001) decreased. Milrinone increased CI (11%, P = 0.008) and heart rate (HR; 21%, P < 0.0001). Stroke volume index (SVI) decreased (7%, P = 0.03), although RV contractility was improved. The addition of either epinephrine or dopamine further increased CI and HR in a dose-dependent manner but without any significant differences between the two interventions. A more pronounced increase in biventricular contractility was observed in the dopamine-treated animals. LV volume was reduced in both the dopamine and epinephrine groups with increasing doses In the failing pressure overloaded RV, milrinone improved CI and increased contractility. Albeit additional dose-dependent effects of both epinephrine and dopamine on CI and contractility, neither of the interventions improved SVI due to reduced filling of the LV. Copyright © 2015 the American Physiological Society.
Three-Dimensional Echocardiography-Derived Non-Invasive Right Ventricular Pressure-Volume Analysis.
Huang, Kuan-Chih; Lin, Lian-Yu; Hwang, Juey-Jen; Lin, Lung-Chun
2017-09-01
In patients with pulmonary hypertension, repeated evaluations of right ventricular (RV) function are still required for clinical decision making, but the invasive nature of current pressure-volume analysis makes conducting regular follow-ups in a clinical setting infeasible. We enrolled 12 patients with pulmonary arterial hypertension (PAH) and 10 with pulmonary venous hypertension (PVH) May 2016-October 2016. All patients underwent a clinically indicated right heart catheterization (RHC), from which the yielded right ventricular pressure recordings were conjugated with RV volume by 3-D echocardiography to generate a pressure-volume loop. A continuous-wave Doppler envelope of tricuspid regurgitation was transformed into a pressure gradient recording by the simplified Bernoulli equation, and then a systolic pressure gradient-volume (PG-V) diagram was generated from similar methods. The area enclosed by the pressure-volume loop was calculated to represent semi-invasive right ventricular stroke work (RVSW RHC ). The area between the PG-V diagram and x-axis was calculated to estimate non-invasive RVSW (RVSW echo ). Patients with PAH have higher RV pressure, lower pulmonary arterial wedge pressure and larger RV volume that was contributed by the dilation of RV mid-cavity minor dimension. We found no significant difference of traditional parameters between these two groups, but RVSW values were significantly higher in PAH patients. The RVSW values of these two methods were significantly correlated by the equation RVSW echo = 0.8447 RVSW RHC + 129.38 (R 2 = 0.9151, p < 0.001). The linearity remained satisfactory in both groups. We conclude that a PG-V diagram is a reliable method to estimate RVSW and to depict pathophysiological status. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Moreira, Henrique T; Volpe, Gustavo J; Marin-Neto, José A; Nwabuo, Chike C; Ambale-Venkatesh, Bharath; Gali, Luis G; Almeida-Filho, Oswaldo C; Romano, Minna M D; Pazin-Filho, Antonio; Maciel, Benedito C; Lima, João A C; Schmidt, André
2017-05-01
Chagas disease leads to biventricular heart failure, usually with prominent systemic congestion. Although echocardiography is widely used in clinical routine, the utility of echocardiographic parameters to detect right ventricular (RV) systolic dysfunction in patients with Chagas disease is unknown. We sought to study the diagnostic value of echocardiography, including speckle-tracking parameters, to distinguish individuals with RV systolic dysfunction from those with normal RV systolic function in Chagas disease using cardiac magnetic resonance (CMR) as the reference method. In this cross-sectional study, 63 individuals with Chagas disease underwent echocardiography and CMR evaluations. Conventional echocardiographic parameters for RV functional evaluation were tricuspid annular plane systolic excursion, RV systolic excursion velocity, fractional area change, and RV index of myocardial performance. Strain and strain rate were obtained by two-dimensional speckle-tracking echocardiography and defined as "RV free wall," when based only in segments from RV free wall, or "RV free wall and septum," when segments from both free RV wall and interventricular septum were included. RV systolic dysfunction was defined as RV ejection fraction (RVEF) < 50% by CMR. Mean age was 56 ± 14 years, and 58.7% of the patients were men. RV systolic dysfunction was detected by CMR in 18 (28.6%) individuals. RV free wall strain showed the highest correlation with RVEF by CMR (r = -0.62, P < .001), followed by fractional area change (r = 0.56, P < .001), RV free wall and septum strain (r = -0.54, P < .001), RV free wall and septum strain rate (r = -0.47, P < .001), RV free wall strain rate (r = -0.45, P < .001), and RV systolic excursion velocity (r = 0.30, P = .016). The RV index of myocardial performance and tricuspid annular plane systolic excursion showed a small and not significant correlation with RVEF (r = -0.20, P = .320; r = 0.14; P = .289, respectively). Using predefined cutoffs for RV systolic dysfunction, RV free wall strain (>-22.5% for men and >-23.3% for women) exhibited the highest area under the receiver operating characteristic curve (area under the curve = 0.829) to differentiate the presence from the absence of RV systolic dysfunction in Chagas disease, with a sensitivity and specificity of 67% and 83%, respectively. RV free wall strain is an appropriate and superior echocardiographic variable for evaluating RV systolic function in Chagas disease, and it should be the method of choice for this purpose. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Forsha, Daniel; Risum, Niels; Smith, P Brian; Kanter, Ronald J; Samad, Zainab; Barker, Piers; Kisslo, Joseph
2016-11-01
Patients with systemic right ventricles frequently experience progressive heart failure and conduction abnormalities leading to abnormal ventricular activation. Activation delay-induced mechanical dyssynchrony can contribute to ventricular failure and is identified by a classic strain pattern of paradoxical opposing wall motion that is an excellent predictor of response to cardiac resynchronization therapy in adults with left bundle branch block. The specific aims of this study were to compare right ventricular (RV) mechanics in an adult systemic right ventricle population versus control subjects, evaluate the feasibility of this RV strain pattern analysis, and determine the frequency of the classic pattern. Young adults (n = 25) with d-transposition of the great arteries, status post Mustard or Senning palliation (TGA-MS), were ambispectively enrolled and compared with healthy young adults (n = 30) who were prospectively enrolled. All subjects were imaged using novel three-apical view (18-segment) RV longitudinal speckle-tracking strain analysis (EchoPAC) and electrocardiographic data. Patients with TGA-MS had diminished RV global peak systolic strain compared with control subjects (-12.0 ± 4.0% vs -23.3 ± 2.3%, P < .001). Most patients with TGA-MS had intrinsic or left ventricular paced right bundle branch block. A classic pattern was present in 11 of 25 subjects (44%), but this pattern would have been missed in four of 11 based only on the RV four-chamber (six-segment) model. Only three subjects underwent cardiac resynchronization therapy. Both subjects who had the classic pattern responded to cardiac resynchronization therapy, whereas the one nonresponder did not have the classic pattern. Systemic right ventricles demonstrated decreased function and increased mechanical dyssynchrony. The classic pattern of activation delay-induced mechanical dyssynchrony was frequently seen in this TGA-MS population and associated with activation delays. This comprehensive RV approach demonstrated incremental value. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Leclercq, Christophe; Sadoul, Nicolas; Mont, Lluis; Defaye, Pascal; Osca, Joaquim; Mouton, Elisabeth; Isnard, Richard; Habib, Gilbert; Zamorano, Jose; Derumeaux, Genevieve; Fernandez-Lozano, Ignacio; Dupuis, Jean-Marc; Rouleau, Frédéric; Tassin, Aude; Bordachar, Pierre; Clémenty, Jacques; Lafitte, Stephane; Ploux, Sylvan; Reant, Patricia; Ritter, Philippe; Defaye, Pascal; Jacon, Peggy; Mondesert, Blandine; Saunier, Carole; Vautrin, Estelle; Kacet, Salem; Guedon-Moreau, Laurence; Klug, Didier; Kouakam, Claude; Marechaux, Sylvestre; Marquie, Christelle; Polge, Anne Sophie; Richardson, Marjorie; Chevallier, Philippe; De Breyne, Brigitte; Lotek, Marcin M.; Nonin, Emilie; Pineau, Julien; Deharo, Jean-Claude; Bastard, Emilie; Franceschi, Frédéric; Habib, Gilbert; Jego, Christophe; Peyrouse, Eric; Prevot, Sebastien; Saint-Joseph, Hôpital; Bremondy, Michel; Faure, Jacques; Ferracci, Ange; Lefevre, Jean; Pisapia, Andre; Davy, Jean-Marc; Cransac, Frederic; Cung, Tien Tri; Georger, Frederic; Pasquie, Jean-Luc; Raczka, Franck; Sportouch-Dukhan, Catherine; Sadoul, Nicolas; Blangy, Hugues; Bruntz, Jean-François; Freysz, Luc; Groben, Laurent; Huttin, Olivier; Bammert, Antoine; Burban, Marc; Cebron, Jean-Pierre; Gras, Daniel; Frank, Robert; Duthoit, Guillaume; Hidden-Lucet, Françoise; Himbert, Caroline; Isnard, Richard; Lacotte, Jérôme; Pousset, Françoise; Zerah, Thierry; Leclercq, Christophe; Bellouin, Annaïk; Crocq, Christophe; Deplace, Christian; Donal, Erwan; Hamon, Cécile; Mabo, Philippe; Romain, Olivier; Solnon, Aude; Frederic, Anselme; Bauer, Fabrice; Bernard, Mathieu; Godin, Benedicte; Kurtz, Baptiste; Savoure, Arnaud; Copie, Xavier; Lascault, Gilles; Paziaud, Olivier; Piot, Olivier; Touche, Thierry; Delay, Toulouse Marc; Chilon, Talia; Detis, Nicolas; Duparc, Alexandre; Hebrard, Aurélien; Massabuau, Pierre; Maury, Philippe; Mondoly, Pierre; Rumeau, Philippe; Pasteur, Clinique; Boveda, Serge; Adrover, Laurence; Combes, Nicolas; Deplagne, Antoine; Marco-Baertich, Isabelle; Fondard, Olivier; Martínez, Juan Gabriel; Ibañez Criado, José Luis; Ortuño, Diego; Mont, Lluis; Berruezo, Antonio; Eduard, Belu; Martín, Ana; Merschon, Franco M.; Sitges, Marta; Tolosana, José María; Vidal, Bárbara; Hebron, H. Valle; i Mitjans, Angel Moya; Rodriguez, Oscar Alcalde; Rodriguez Palomares, José Fernando; Rivas, Nuria; Teixidó, Gisela; de Hierro, H. Puerta; Lozano, Ignacio Fernández; Ruiz Bautista, Maria Lorena; Castro, Victor; Cavero, Miguel Angel; Gutierrez, Carlos; Ros, Natalia; de la Victoria, H. Virgen; Alzueta Rodriguez, Francisco Javier; Cabrera, Fernando; Cordero, Alberto Barrera; Peña, José Luis; de Valme Sevilla, H.; Gonzáles, Juan Lealdel Ojo; Garcia Medina, Mª Dolores; Jiménez, Ricardo Pavón; Villagomez, David; de la Salud Toledo, H. Virgen; Castellanos Martinez, Eduardo; Alcalá, Juan; Maicas, Carolina; Arias Palomares, Miguel Angel; Puchol, Alberto; Valencia, H. La Fé; OscaAsensi, Joaquim; Carmona, Anastasio Quesada; De Carranza, Mª José Sancho-Tello; De Ros, José Olagüe; Pareja, Enrique Castro; Pérez, Oscar Cano; Saez, Ana Osa; Hortega, H. Rio; Guilarte, Benito Herreros; Muñoz San Jose, Juan Francisco; Pérez Sanz, Teresa Myriam; Logeart, Damien; Gil, Maria Lopez; Leclercq, Christophe; Lozano, Ignacio Fernandez; de Hierro, H. Puerta; Derumeaux, Genevieve
2016-01-01
Abstract Aims Cardiac resynchronization therapy (CRT) is a recommended treatment of heart failure (HF) patients with depressed left ventricular ejection fraction and wide QRS. The optimal right ventricular (RV) lead position being a matter of debate, we sought to examine whether RV septal (RVS) pacing was not inferior to RV apical (RVA) pacing on left ventricular reverse remodelling in patients receiving a CRT-defibrillator. Methods and results Patients (n = 263, age = 63.4 ± 9.5 years) were randomly assigned in a 1:1 ratio to RVS (n = 131) vs. RVA (n = 132) pacing. Left ventricular end-systolic volume (LVESV) reduction between baseline and 6 months was not different between the two groups (−25.3 ± 39.4 mL in RVS group vs. −29.3 ± 44.5 mL in RVA group, P = 0.79). Right ventricular septal pacing was not non-inferior (primary endpoint) to RVA pacing with regard to LVESV reduction (average difference = −4.06 mL; P = 0.006 with a −20 mL non-inferiority margin). The percentage of ‘echo-responders’ defined by LVESV reduction >15% between baseline and 6 months was similar in both groups (50%) with no difference in the time to first HF hospitalization or death (P = 0.532). Procedural or device-related serious adverse events occurred in 68 patients (RVS = 37) with no difference between the two groups (P = 0.401). Conclusion This study demonstrates that septal RV pacing in CRT is non-inferior to apical RV pacing for LV reverse remodelling at 6 months with no difference in the clinical outcome. No recommendation for optimal RV lead position can hence be drawn from this study. ClinicalTrials. gov number NCT 00833352. PMID:26374852
Leclercq, Christophe; Sadoul, Nicolas; Mont, Lluis; Defaye, Pascal; Osca, Joaquim; Mouton, Elisabeth; Isnard, Richard; Habib, Gilbert; Zamorano, Jose; Derumeaux, Genevieve; Fernandez-Lozano, Ignacio
2016-02-01
Cardiac resynchronization therapy (CRT) is a recommended treatment of heart failure (HF) patients with depressed left ventricular ejection fraction and wide QRS. The optimal right ventricular (RV) lead position being a matter of debate, we sought to examine whether RV septal (RVS) pacing was not inferior to RV apical (RVA) pacing on left ventricular reverse remodelling in patients receiving a CRT-defibrillator. Patients (n = 263, age = 63.4 ± 9.5 years) were randomly assigned in a 1:1 ratio to RVS (n = 131) vs. RVA (n = 132) pacing. Left ventricular end-systolic volume (LVESV) reduction between baseline and 6 months was not different between the two groups (-25.3 ± 39.4 mL in RVS group vs. -29.3 ± 44.5 mL in RVA group, P = 0.79). Right ventricular septal pacing was not non-inferior (primary endpoint) to RVA pacing with regard to LVESV reduction (average difference = -4.06 mL; P = 0.006 with a -20 mL non-inferiority margin). The percentage of 'echo-responders' defined by LVESV reduction >15% between baseline and 6 months was similar in both groups (50%) with no difference in the time to first HF hospitalization or death (P = 0.532). Procedural or device-related serious adverse events occurred in 68 patients (RVS = 37) with no difference between the two groups (P = 0.401). This study demonstrates that septal RV pacing in CRT is non-inferior to apical RV pacing for LV reverse remodelling at 6 months with no difference in the clinical outcome. No recommendation for optimal RV lead position can hence be drawn from this study. NCT 00833352. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Kuznetsov, V A; Yaroslavskaya, E I; Pushkarev, G S; Krinochkin, D V; Bessonov, I S; Gorbatenko, E A
2015-01-01
To identify factors associated with right ventricular (RV) dilatation in patients with coronary heart disease (CHD) without prior myocardial infarction (Ml). Out of 16 839 patents from the Coronary Angiography Surgery Registry, the investigators selected patients with >75% stenosis in at least one coronary artery without acute or prior MI: 75 patients with echocardiographically detected RV dilatation and 1134 without RV dilatation. Among the patients with RV dilatation, there were more men (92% versus 80.2%; p=0.01 2). In this group, the mean body mass index (BMI) was higher (31.7±5.2 kg/m2 versus 30.1±4.7 kg/m2; p=0.01 9); there was more commonly higher NYHA functional class (FC) (III) chronic heart failure (CHF) (22.2% versus 12.5%; p=0.002), clinically relevant mitral regurgitation (29.4% versus 4.0%; all ps<0.001), and cardiac rhythm and conduction disturbances (45.5% versus 17.8%; p<0.001) in rarer severe FC (III-IV) exertional angina (30.3% versus 52.8%; p=0.007). The groups were different as evidenced by coronarography and major blood biochemical indicators. Decreased myocardial contractility (odds ratio (OR), 4.22; p=0.002), male sex (OR, 4.03;p=0.007), cardiac rhythm and conduction disturbances (OR, 2.98; p<0.001), clinically relevant mitral regurgitation (OR, 2.34; p=0.001); higher FC CHF (OR, 1.87; p=0.034), BMI (OR, 1.08; p=0.01 0), and lower FC exertional angina (OR, 0.42; p=0.001) demonstrated an independent relationship to RV dilatation, as evidenced by a multivariateanalysis. In the patients with CHD without MI, RV dilatation is independently related to male sex, left ventricular functional characteristics, and higher BMI.
Wijesekera, Vishva A; Raju, Rekha; Precious, Bruce; Berger, Adam J; Kiess, Marla C; Leipsic, Jonathon A; Grewal, Jasmine
2016-12-01
The natural history of right ventricular (RV) and left ventricular (LV) size and function among adults with tetralogy of Fallot (TOF) repair and hemodynamically significant pulmonary regurgitation (PR) is not known. The main aim of this study was to determine changes in RV and LV size and function over time in an adult population with TOF repair and hemodynamically significant pulmonary regurgitation. Forty patients with repaired TOF and hemodynamically significant PR were included. These patients were identified on the basis of having more than one CMR between January 2008 and 2015. Patients with a prosthetic pulmonary valve or any cardiac intervention between CMR studies were excluded. Rate of progression (ROP) of RV dilation was determined for both indexed right ventricular end-systolic volume (RVESVi) and indexed right ventricular end-diastolic volume (RVEDVi), and calculated as the difference between the last and first volumes divided by the number of years between CMR#1 and CMR#2. Subjects were also divided into two groups based on the distribution of the ROP of RV dilation: Group I-rapid ROP (>50th percentile) and Group II-slower ROP (≤50th percentile). The interval between CMR#1 and CMR#2 was 3.9 ± 1.7 years (range 1-8 years). We did find a significant change in RVEDVi and RVESVi over this time period, although the magnitude of change was small. Nine patients (23%) had a reduction in right ventricular ejection fraction (RVEF) by greater than 5%, 13 patients (33%) had an increase in RVEDVi by greater than 10 mL/m 2 and seven patients (18%) had an increase in RVESVi by greater than 10 mL/m 2 . Median ROP for RVEDVi was 1.8 (range -10.4 to 21.8) mL/(m 2 year); RVESVi 1.1 (range -5.8 to 24.5) mL/(m 2 year) and RVEF -0.5 (range -8 to 4)%/year. Patients with a rapid ROP had significantly larger RV volumes at the time of CMR#1 and lower RVEF as compared to the slow ROP group. There was no overall significant change in LVEDVi, LVESVi, or LVEF over this time period. We have demonstrated, in a small population of patients with hemodynamically significant PR, that there is a small increase in RV volumes and decrease in RVEF over a mean 4-year period. We believe it to be reasonable practice to perform CMR at least every 4 years in asymptomatic patients with repaired TOF and hemodynamically significant PR. We found that LV volumes and function remained stable during the study period, suggesting that significant progressive LV changes are less likely to occur over a shorter time period. Our results inform a safe standardized approach to monitoring adults with hemodynamically significant PR post TOF repair and assist in planning allocation of this expensive and limited resource. © 2016 Wiley Periodicals, Inc.
Noly, Pierre-Emmanuel; Haddad, François; Arthur-Ataam, Jennifer; Langer, Nathaniel; Dorfmüller, Peter; Loisel, Fanny; Guihaire, Julien; Decante, Benoit; Lamrani, Lilia; Fadel, Elie; Mercier, Olaf
2017-12-01
Mechanisms of right ventricular (RV) adaptation to chronic pressure overload are not well understood. We hypothesized that a lower capillary density (CD) to stroke work ratio would be associated with more fibrosis and RV maladaptive remodeling. We induced RV chronic pressure overload over a 20-week period in 2 piglet models of pulmonary hypertension; that is, a shunt model (n = 5) and a chronic thromboembolic pulmonary hypertension model (n = 5). We assessed hemodynamic parameters and RV remodeling as well as RV CD, fibrosis, and angiogenic factors expression. Although RV was similarly hypertrophied in both models, maladapted RV remodeling with impaired systolic function was only seen in chronic thromboembolic pulmonary hypertension group members who had lower CD (484 ± 99 vs 1213 ± 74 cap/mm 2 ; P < .01), lower CD to stroke work ratio (0.29 ± 0.07 vs 0.82 ± 0.16; P = .02), higher myocardial fibrosis (15.4% ± 3.8% vs 8.0% ± 2.5%; P < .01), as well as a higher angiogenic and fibrosis factors expression. The RV adaptive response to chronic pressure overload differs between 2 different piglet models of PH. Mismatch between angiogenesis and workload (CD to stroke work ratio) was associated with greater degree of myocardial fibrosis and RV dysfunction and could be a promising index of RV maladaptation. Further studies are needed to understand the underlying mechanisms. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Large animal model of acute right ventricular failure with functional tricuspid regurgitation.
Malinowski, Marcin; Proudfoot, Alistair G; Eberhart, Lenora; Schubert, Hans; Wodarek, Jeremy; Langholz, David; Rausch, Manuel K; Timek, Tomasz A
2018-08-01
Functional tricuspid regurgitation (FTR) commonly arises secondary to conditions affecting the left heart and is associated with right ventricular dysfunction and tricuspid annular dilatation. We set out to establish an animal model of acute RV failure (RVF) with FTR resembling the clinical features. Ten adult sheep had pressure sensors placed in the LV, RV, and right atrium while sonomicrometry crystals were implanted around tricuspid annulus and on the RV. Animals were studied open-chest to assess for RV function and FTR after: (1) volume infusion, (2) pulmonary artery constriction, (3) 5 min posterior descending artery occlusion, and (4) combination of all interventions. Hemodynamic, echocardiographic, and sonomicrometry data were collected at baseline and after every intervention. RV dimensions, RV strain, and annular area, perimeter, and size were calculated from crystal coordinates. The model was validated in six additional sheep studied only before and after combined interventions. Neither volume infusion, pulmonary hypertension, nor ischemia were associated with RVF or clinically significant TR when applied separately but combined resulted in RVF and greater than moderate FTR. In the validation group, maximal RV volume increased (62 ± 14 vs 70 ± 16 ml, p = 0.006), contractility decreased (20 ± 6 vs 12 ± 2%, p = 0.02), and strain increased. FTR increased from 0.4 ± 0.5 to 2.5 ± 0.8 (p < 0.001) and annular area from 652 ± 87 mm 2 to 739 ± 87 mm 2 (p = 0.005). The developed ovine model of acute RVF was associated with significant annular and RV enlargement and FTR. This novel and clinically pertinent research platform offers insight into the acute RVF pathophysiology and can be utilized to evaluate treatment interventions. Copyright © 2018 Elsevier B.V. All rights reserved.
Ussavarungsi, Kamonpun; Lee, Augustine S; Burger, Charles D
2016-09-01
Pulmonary hypertension (PH) is commonly observed in patients with diffuse parenchymal lung disease (DPLD). The purpose of this study was to explore the influence of the 6-minute walk test (6MWT) as a simple, non-invasive tool to assess right ventricular (RV) function in patients with DPLD and to identify the need for an echocardiogram (ECHO) to screen for PH. We retrospectively reviewed 48 patients with PH secondary to DPLD, who were evaluated in the PH clinic at the Mayo Clinic in Jacksonville, Florida, from January 1999 to December 2014. Fifty-two percent of patients had RV dysfunction. They had a significantly greater right heart pressure by ECHO and mean pulmonary arterial pressure (MPAP) from right heart catheterization (RHC) than those with normal RV function. A reduced 6-minute walk distance (6MWD) did not predict RV dysfunction (OR 0.995; 95% CI 0.980-1.001, p = 0.138). In addition, worsening restrictive physiology, heart rate at one-minute recovery and desaturation were not different between patients with and without RV dysfunction. However, there were inverse correlations between 6MWD and MPAP from RHC (r = -0.41, p = 0.010), 6MWD and RV systolic pressure (r = -0.51, p < 0.001), and 6MWD and MPAP measured by ECHO (r = -0.46, p =0.013). We also found no significant correlation between 6MWD and pulmonary function test parameters. Our single-center cohort of patients with PH secondary to DPLD, PH was found to have an impact on 6MWD. In contrast to our expectations, 6MWD was not useful to predict RV dysfunction. Interestingly, a severe reduction in the 6MWD was related to PH and not to pulmonary function; therefore, it may be used to justify an ECHO to identify patients with a worse prognosis.
Srinivasan, Aparna; Kim, Jiwon; Khalique, Omar; Geevarghese, Alexi; Rusli, Melissa; Shah, Tara; Di Franco, Antonino; Alakbarli, Javid; Goldburg, Samantha; Rozenstrauch, Meenakshi; Devereux, Richard B.; Weinsaft, Jonathan W.
2017-01-01
Background Echocardiography (Echo)-based linear fractional shortening (FS) is widely used to assess left ventricular dysfunction (LVdys), but has not been systematically tested for right ventricular dysfunction (RVdys). Methods The population comprised LVdys patients with and without RVdys (EF<50%) on cardiac MRI (CMR): Echo included standard RV indices (fractional area change [FAC], TAPSE, S’ and FS in parasternal long axis (RV outflow tract [RVOT]) and apical 4-chamber views (width [RVWD], length [RVLG]). Results 168 patients underwent echo and CMR (3±3 days); FAC (46±9 vs. 28±11), TAPSE (1.9±0.4 vs. 1.5±0.3) and S’ (11.4±2.3 vs. 10.0±2.6, all p≤ 0.001) were lower among RVdys patients, as were FS indices (RVOT 32±8 vs 17±10 | RVWD 40±11 vs 22±12 | RVLG 16±5 vs 9±4%; all p<0.001). FS indices yielded similar magnitude of correlation with CMR RVEF (r=0.73–0.56) as did FAC (r=0.70), which was slightly higher than TAPSE (r=0.47) and S’ (r=0.31; all p<0.001). FS indices decreased stepwise vs. CMR RVEF tertiles, as did FAC (all p<0.001). In multivariate analysis, FS in RVOT (regression coefficient 0.51 [CI 0.37–0.65]), RVWD (0.30 [0.19–0.41]), and RVLG (0.45 [0.20–0.71]; all p≤ 0.001) were independently associated with CMR RVEF. FS indices yielded good overall diagnostic performance (AUC: RVOT 0.89 [CI 0.82–0.97] | RVWD 0.87 [0.78–0.96] | RVLG 0.80 [0.70–0.90]; all p<0.001) for CMR-defined RVdy (RVEF<50%). Conclusions RV linear FS provides RV functional indices that parallel CMR RVEF. Parasternal long-axis RVOT width, 4-chamber RV width and length are independently associated with RVEF, supporting use of multiple FS indices for RV functional assessment. PMID:28247463
Sieslack, Anne K; Dziallas, Peter; Nolte, Ingo; Wefstaedt, Patrick; Hungerbühler, Stephan O
2014-10-12
Right ventricular (RV) volume and function are important diagnostic and prognostic factors in dogs with primary or secondary right-sided heart failure. The complex shape of the right ventricle and its retrosternal position make the quantification of its volume difficult. For that reason, only few studies exist, which deal with the determination of RV volume parameters. In human medicine cardiac magnetic resonance imaging (CMRI) is considered to be the reference technique for RV volumetric measurement (Nat Rev Cardiol 7(10):551-563, 2010), but cardiac computed tomography (CCT) and three-dimensional echocardiography (3DE) are other non-invasive methods feasible for RV volume quantification. The purpose of this study was the comparison of 3DE and CCT with CMRI, the gold standard for RV volumetric quantification. 3DE showed significant lower and CCT significant higher right ventricular volumes than CMRI. Both techniques showed very good correlations (R > 0.8) with CMRI for the volumetric parameters end-diastolic volume (EDV) and end-systolic volume (ESV). Ejection fraction (EF) and stroke volume (SV) were not different when considering CCT and CMRI, whereas 3DE showed a significant higher EF and lower SV than CMRI. The 3DE values showed excellent intra-observer variability (<3%) and still acceptable inter-observer variability (<13%). CCT provides an accurate image quality of the right ventricle with comparable results to the reference method CMRI. CCT overestimates the RV volumes; therefore, it is not an interchangeable method, having the disadvantage as well of needing general anaesthesia. 3DE underestimated the RV-Volumes, which could be explained by the worse image resolution. The excellent correlation between the methods indicates a close relationship between 3DE and CMRI although not directly comparable. 3DE is a promising technique for RV volumetric quantification, but further studies in awake dogs and dogs with heart disease are necessary to evaluate its usefulness in veterinary cardiology.
Mikami, Yoko; Jolly, Umjeet; Heydari, Bobak; Peng, Mingkai; Almehmadi, Fahad; Zahrani, Mohammed; Bokhari, Mahmoud; Stirrat, John; Lydell, Carmen P; Howarth, Andrew G; Yee, Raymond; White, James A
2017-01-01
Left ventricular ejection fraction remains the primary risk stratification tool used in the selection of patients for implantable cardioverter defibrillator therapy. However, this solitary marker fails to identify a substantial portion of patients experiencing sudden cardiac arrest. In this study, we examined the incremental value of considering right ventricular ejection fraction for the prediction of future arrhythmic events in patients with systolic dysfunction using the gold standard of cardiovascular magnetic resonance. Three hundred fourteen consecutive patients with ischemic cardiomyopathy or nonischemic dilated cardiomyopathy undergoing cardiovascular magnetic resonance were followed for the primary outcome of sudden cardiac arrest or appropriate implantable cardioverter defibrillator therapy. Blinded quantification of left ventricular and right ventricular (RV) volumes was performed from standard cine imaging. Quantification of fibrosis from late gadolinium enhancement imaging was incrementally performed. RV dysfunction was defined as right ventricular ejection fraction ≤45%. Among all patients (164 ischemic cardiomyopathy, 150 nonischemic dilated cardiomyopathy), the mean left ventricular ejection fraction was 32±12% (range, 6-54%) with mean right ventricular ejection fraction of 48±15% (range, 7-78%). At a median of 773 days, 49 patients (15.6%) experienced the primary outcome (9 sudden cardiac arrest, 40 appropriate implantable cardioverter defibrillator therapies). RV dysfunction was independently predictive of the primary outcome (hazard ratio=2.98; P=0.002). Among those with a left ventricular ejection fraction >35% (N=121; mean left ventricular ejection fraction, 45±6%), RV dysfunction provided an adjusted hazard ratio of 4.2 (P=0.02). RV dysfunction is a strong, independent predictor of arrhythmic events. Among patients with mild to moderate LV dysfunction, a cohort greatly contributing to global sudden cardiac arrest burden, this marker provides robust discrimination of high- versus low-risk subjects. © 2017 American Heart Association, Inc.
Seo, Hye-Sun; Ha, Jong-Won; Moon, Jae Youn; Choi, Eui-Young; Rim, Se-Joong; Jang, Yangsoo; Chung, Namsik; Shim, Won-Heum; Cho, Seung-Yun; Kim, Sung Soon
2008-10-01
Secondary tricuspid regurgitation (TR) as a result of pulmonary hypertension and/or left-sided heart disease is caused by tricuspid valve (TV) annular dilatation and tethering of the tricuspid leaflet after right ventricular (RV) dilatation. However, the mechanism of isolated TR without significant pulmonary hypertension remains unknown. The present study investigated the RV function and TV deformations in patients with isolated TR to find out the mechanism and etiology of the disease. Twelve patients with isolated, severe TR were included. RV area, volume, ejection fraction (EF), tenting distance and tenting area were measured. These parameters were compared with 12 age-and gender-matched controls and 12 patients with secondary TR. The cause of isolated TR was incomplete coaptation associated with annular dilatation without other problems. Compared with the controls, RV end-diastolic volumes and annular diameters were significantly larger and RVEF was significantly lower in patients with isolated TR. Tenting area and tenting distance were also significantly higher. However, there were no significant differences in these parameters between patients with isolated and secondary TR. Isolated TR was associated with RV remodeling, systolic dysfunction and resultant annular dilatation and tethering of tricuspid leaflets.
Bello, Natalie A.; Cheng, Susan; Claggett, Brian; Shah, Amil; Ndumele, Chiadi E.; Roca, Gabriela Querejeta; Santos, Angela B.S.; Gupta, Deepak; Vardeny, Orly; Aguilar, David; Folsom, Aaron R.; Butler, Kenneth R.; Kitzman, Dalane W.; Coresh, Josef; Solomon, Scott D.
2016-01-01
Background Obesity increases cardiovascular risk. However, the extent to which various measures of body composition are associated with abnormalities in cardiac structure and function, independent of comorbidities commonly affecting obese individuals, is not clear. This study sought to examine the relationship of body mass index (BMI), waist circumference (WC), and percent body fat (BF) with conventional and advanced measures of cardiac structure and function. Methods and Results We studied 4343 participants of the Atherosclerosis Risk in Communities Study who were aged 69-82 years, free of coronary heart disease and heart failure, and underwent comprehensive echocardiography. Increasing BMI, WC, and BF were associated with greater left ventricular (LV) mass and left atrial volume indexed to height2.7 in both men and women (P<0.001). In women, all three measures were associated with abnormal LV geometry, and increasing WC and BF were associated with worse global longitudinal strain, a measure of left ventricular systolic function. In both sexes, increasing BMI was associated with greater right ventricular (RV) end-diastolic area and worse RV fractional area change (P≤0.001). We observed similar associations for both waist circumference and percent body fat. Conclusions In a large, biracial cohort of older adults free of clinically overt coronary heart disease or heart failure, obesity was associated with subclinical abnormalities in cardiac structure in both men and women and with adverse left ventricular remodeling and impaired left ventricular systolic function in women. These data highlight the association of obesity and subclinical abnormalities of cardiac structure and function, particularly in women. PMID:27512104
Kuo, Anderson H; Li, Cun; Huber, Hillary F; Schwab, Matthias; Nathanielsz, Peter W; Clarke, Geoffrey D
2017-07-01
Maternal nutrient restriction induces intrauterine growth restriction (IUGR) and leads to heightened cardiovascular risks later in life. We report right ventricular (RV) filling and ejection abnormalities in IUGR young adult baboons using cardiac magnetic resonance imaging. Both functional and morphological indicators of poor RV function were seen, many of which were similar to effects of ageing, but also with a few key differences. We observed more pronounced RV changes compared to our previous report of the left ventricle, suggesting there is likely to be a component of isolated RV abnormality in addition to expected haemodynamic sequelae from left ventricular dysfunction. In particular, our findings raise the suspicion of pulmonary hypertension after IUGR. This study establishes that IUGR also leads to impairment of the right ventricle in addition to the left ventricle classically studied. Maternal nutrient restriction induces intrauterine growth restriction (IUGR), increasing later life chronic disease including cardiovascular dysfunction. Our left ventricular (LV) CMRI studies in IUGR baboons (8 M, 8 F, 5.7 years - human equivalent approximately 25 years), control offspring (8 M, 8 F, 5.6 years), and normal elderly (OLD) baboons (6 M, 6 F, mean 15.9 years) revealed long-term LV abnormalities in IUGR offspring. Although it is known that right ventricular (RV) function is dependent on LV health, the IUGR right ventricle remains poorly studied. We examined the right ventricle with cardiac magnetic resonance imaging in the same cohorts. We observed decreased ejection fraction (49 ± 2 vs. 33 ± 3%, P < 0.001), cardiac index (2.73 ± 0.27 vs. 1.89 ± 0.20 l min -1 m -2 , P < 0.05), early filling rate/body surface area (BSA) (109.2 ± 7.8 vs. 44.6 ± 7.3 ml s -1 m -2 , P < 0.001), wall thickening (61 ± 3 vs. 44 ± 5%, P < 0.05), and longitudinal shortening (26 ± 3 vs. 15 ± 2%, P < 0.01) in IUGR animals with increased chamber volumes. Many, but not all, of these changes share similarities to normal older animals. Our findings suggest IUGR-induced pulmonary hypertension should be further investigated and that atrial volume, pulmonic outflow and interventricular septal motion may provide valuable insights into IUGR cardiovascular physiology. Overall, our findings reaffirm that gestational and neonatal challenges can result in long-term programming of poor offspring cardiovascular health. To our knowledge, this is the first study reporting IUGR-induced programmed adult RV dysfunction in an experimental primate model. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Electrophysiological determinants of hypokalaemia-induced arrhythmogenicity in the guinea-pig heart.
Osadchii, O E; Olesen, S P
2009-12-01
Hypokalaemia is an independent risk factor contributing to arrhythmic death in cardiac patients. In the present study, we explored the mechanisms of hypokalaemia-induced tachyarrhythmias by measuring ventricular refractoriness, spatial repolarization gradients, and ventricular conduction time in isolated, perfused guinea-pig heart preparations. Epicardial and endocardial monophasic action potentials from distinct left ventricular (LV) and right ventricular (RV) recording sites were monitored simultaneously with volume-conducted electrocardiogram (ECG) during steady-state pacing and following a premature extrastimulus application at progressively reducing coupling stimulation intervals in normokalaemic and hypokalaemic conditions. Hypokalaemic perfusion (2.5 mm K(+) for 30 min) markedly increased the inducibility of tachyarrhythmias by programmed ventricular stimulation and rapid pacing, prolonged ventricular repolarization and shortened LV epicardial and endocardial effective refractory periods, thereby increasing the critical interval for LV re-excitation. Hypokalaemia increased the RV-to-LV transepicardial repolarization gradients but had no effect on transmural dispersion of APD(90) and refractoriness across the LV wall. As determined by local activation time recordings, the LV-to-RV transepicardial conduction and the LV transmural (epicardial-to-endocardial) conduction were slowed in hypokalaemic heart preparations. This change was attributed to depressed diastolic excitability as evidenced by increased ventricular pacing thresholds. These findings suggest that hypokalaemia-induced arrhythmogenicity is attributed to shortened LV refractoriness, increased critical intervals for LV re-excitation, amplified RV-to-LV transepicardial repolarization gradients and slowed ventricular conduction in the guinea-pig heart.
Lee, Jong Hwa; Oh, Young Jun; Shim, Yon Hee; Hong, Yong Woo; Yi, Gijong
2006-01-01
This investigation evaluated the effect of continuous milrinone infusion on right ventriclular (RV) function during off-pump coronary artery bypass graft (OPCAB) surgery in patients with reduced RV function. Fifty patients scheduled for OPCAB, with thermodilution RV ejection fraction (RVEF) <35% after anesthesia induction, were randomly allocated to either milrinone (0.5 µg/kg/min) or control (saline) group. Hemodynamic variables and RV volumetric data measured by thermodilution method were collected as follows: after anesthesia induction (T1); 10 min after heart displacement for obtuse marginal artery anastomosis (T2); after pericardial closure (T3). Cardiac index and heart rate increased and systemic vascular resistance significantly decreased in milrinone group at T2. Initially lower RVEF of milrinone group was eventually comparable to control group after milrinone infusion. RVEF did not significantly change at T2 and T3 in both groups. RV end-diastolic volume in milrinone group consistently decreased from the baseline at T2 and T3. Continuous infusion of milrinone without a bolus demonstrated potentially beneficial effect on cardiac output and RV afterload in patients with reduced RV function during OPCAB. However, aggressive augmentation of intravascular volume seems to be necessary to maximize the effect of the milrinone in these patients. PMID:17043419
Mechanical Circulatory Support Devices for Acute Right Ventricular Failure.
Kapur, Navin K; Esposito, Michele L; Bader, Yousef; Morine, Kevin J; Kiernan, Michael S; Pham, Duc Thinh; Burkhoff, Daniel
2017-07-18
Right ventricular (RV) failure remains a major cause of global morbidity and mortality for patients with advanced heart failure, pulmonary hypertension, or acute myocardial infarction and after major cardiac surgery. Over the past 2 decades, percutaneously delivered acute mechanical circulatory support pumps specifically designed to support RV failure have been introduced into clinical practice. RV acute mechanical circulatory support now represents an important step in the management of RV failure and provides an opportunity to rapidly stabilize patients with cardiogenic shock involving the RV. As experience with RV devices grows, their role as mechanical therapies for RV failure will depend less on the technical ability to place the device and more on improved algorithms for identifying RV failure, patient monitoring, and weaning protocols for both isolated RV failure and biventricular failure. In this review, we discuss the pathophysiology of acute RV failure and both the mechanism of action and clinical data exploring the utility of existing RV acute mechanical circulatory support devices. © 2017 American Heart Association, Inc.
Aktoz, Meryem; Yilmaztepe, Mustafa; Tatli, Ersan; Turan, Fatma Nesrin; Umit, Elif G; Altun, Armagan
2011-01-01
The aim of this study was to investigate ventricular functions and left atrial (LA) mechanical functions, atrial electromechanical coupling, and P wave dispersion in scleroderma patients. Twenty-six patients with scleroderma and twenty-four controls were included. Left and right ventricular (LV and RV) functions were evaluated using conventional echocardiography and tissue Doppler imaging (TDI). LA volumes were measured using the biplane area- -length method and LA mechanical function parameters were calculated. Inter-intraatrial electromechanical delays were measured by TDI. P wave dispersion was calculated by 12-lead electrocardiograms. LV myocardial performance indices (MPI) and RV MPI were higher in patients with scleroderma (p = 0.000, p = 0.000, respectively) while LA passive emptying fraction was decreased and LA active emptying fraction was increased (p = 0.051, p = 0.000, respectively). P wave dispersion and inter-intraatrial electromechanical delay were significantly higher in patients with scleroderma (25 [10-60] vs 20 [0-30], p = 0.000, 16.50 [7.28-26.38] vs 9.44 [3.79-15.78] and 11.33 [4.88-16.06] vs 4.00 [0-12.90], p < 0.05, respectively). Interatrial electromechanical delay was negatively correlated with LV E wave, (p = 0.018). LV E wave was demonstrated to be a factor independent of the interatrial electromechanical delay (R² = = 0.270, b = -0.52, p = 0.013). This study showed that in scleroderma patients, global functions of LV, RV and mechanical functions of LA were impaired, intra-interatrial electromechanical delays were prolonged and P wave dispersion was higher. LV E wave was demonstrated to be a factor that is independent of the interatrial electromechanical delay. Reduced LV E wave may also give additional information on the process of risk stratification of atrial fibrillation.
Baggish, Aaron L; Wang, Francis; Weiner, Rory B; Elinoff, Jason M; Tournoux, Francois; Boland, Arthur; Picard, Michael H; Hutter, Adolph M; Wood, Malissa J
2008-04-01
This prospective, longitudinal study examined the effects of participation in team-based exercise training on cardiac structure and function. Competitive endurance athletes (EA, n = 40) and strength athletes (SA, n = 24) were studied with echocardiography at baseline and after 90 days of team training. Left ventricular (LV) mass increased by 11% in EA (116 +/- 18 vs. 130 +/- 19 g/m(2); P < 0.001) and by 12% in SA (115 +/- 14 vs. 132 +/- 11 g/m(2); P < 0.001; P value for the compared Delta = NS). EA experienced LV dilation (end-diastolic volume: 66.6 +/- 10.0 vs. 74.7 +/- 9.8 ml/m(2), Delta = 8.0 +/- 4.2 ml/m(2); P < 0.001), enhanced diastolic function (lateral E': 10.9 +/- 0.8 vs. 12.4 +/- 0.9 cm/s, P < 0.001), and biatrial enlargement, while SA experience LV hypertrophy (posterior wall: 4.5 +/- 0.5 vs. 5.2 +/- 0.5 mm/m(2), P < 0.001) and diminished diastolic function (E' basal lateral LV: 11.6 +/- 1.3 vs. 10.2 +/- 1.4 cm/s, P < 0.001). Further, EA experienced right ventricular (RV) dilation (end-diastolic area: 1,460 +/- 220 vs. 1,650 +/- 200 mm/m(2), P < 0.001) coupled with enhanced systolic and diastolic function (E' basal RV: 10.3 +/- 1.5 vs. 11.4 +/- 1.7 cm/s, P < 0.001), while SA had no change in RV parameters. We conclude that participation in 90 days of competitive athletics produces significant training-specific changes in cardiac structure and function. EA develop biventricular dilation with enhanced diastolic function, while SA develop isolated, concentric left ventricular hypertrophy with diminished diastolic relaxation.
Hussain, Imad; Mohammed, Selma F; Forfia, Paul R; Lewis, Gregory D; Borlaug, Barry A; Gallup, Dianne S; Redfield, Margaret M
2016-04-01
Right ventricular (RV) dysfunction (RVD) is a poor prognostic factor in heart failure with preserved ejection fraction (HFpEF). The physiological perturbations associated with RVD or RV function indexed to load (RV-pulmonary arterial [PA] coupling) in HFpEF have not been defined. HFpEF patients with marked impairment in RV-PA coupling may be uniquely sensitive to sildenafil. In a subset of HFpEF patients enrolled in the Phosphodiesteas-5 Inhibition to Improve Clinical Status And Exercise Capacity in Diastolic Heart Failure (RELAX) trial, physiological variables and therapeutic effect of sildenafil were examined relative to the severity of RVD (tricuspid annular plane systolic excursion [TAPSE]) and according to impairment in RV-PA coupling (TAPSE/pulmonary artery systolic pressure) ratio. The prevalence of atrial fibrillation and diuretic use, n-terminal probrain natriuretic peptide levels, renal dysfunction, neurohumoral activation, myocardial necrosis and fibrosis biomarkers, and the severity of diastolic dysfunction all increased with severity of RVD. Peak oxygen consumption decreased and ventilatory inefficiency (VE/VCO2 slope) increased with increasing severity of RVD. Many but not all physiological derangements were more closely associated with the TAPSE/pulmonary artery systolic pressure ratio. Compared with placebo, at 24 weeks, TAPSE decreased, and peak oxygen consumption and VE/CO2 slope were unchanged with sildenafil. There was no interaction between RV-PA coupling and treatment effect, and sildenafil did not improve TAPSE, peak oxygen consumption, or VE/VCO2 in patients with pulmonary hypertension and RVD. HFpEF patients with RVD and impaired RV-PA coupling have more advanced heart failure. In RELAX patients with RVD and impaired RV-PA coupling, sildenafil did not improve RV function, exercise capacity, or ventilatory efficiency. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00763867. © 2016 American Heart Association, Inc.
Vitarelli, Antonio; Barillà, Francesco; Capotosto, Lidia; D'Angeli, Ilaria; Truscelli, Giovanni; De Maio, Melissa; Ashurov, Rasul
2014-03-01
The aim of this study was to assess changes in right ventricular (RV) parameters determined by three-dimensional (3D) echocardiography and speckle-tracking echocardiography in patients with acute pulmonary embolism and RV dysfunction without systemic hypotension (submassive pulmonary embolism). Sixty-six patients were prospectively studied at the onset of the acute episode and after median follow-up periods of 30 days and 6 months. Sixty-six controls were selected. RV fractional area change, tricuspid annular plane systolic excursion, and myocardial performance index were determined. RV systolic pressure was assessed using continuous-wave Doppler echocardiography. Three-dimensional RV ejection fraction (RVEF) was calculated. Two-dimensional peak systolic RV longitudinal strain (RVLS) was measured in the basal free wall, mid free wall (MFW), and apical free wall and the septum. Tricuspid annular plane systolic excursion and fractional area change were smaller and myocardial performance index was larger compared with controls (P < .05). Global RVLS (P < .05), MFW RVLS (P < .001), and 3D RVEF (P < .001) were lower in patients with pulmonary embolism than in controls. There was earlier reversal of MFW RVLS values on 30-day follow-up and longer reversal of 3D RVEF and RV systolic pressure values at 6-month follow-up. Receiver operating characteristic curve analysis showed that changes in 3D RVEF and MFW RVLS were the most sensitive predictors of adverse events. By multivariate analysis, RV systolic pressure (P = .007), MFW RVLS (P = .002), and 3D RVEF (P = .001) were independently associated with adverse outcomes. Acute submassive pulmonary embolism has a significant impact on RV function as assessed by 3D echocardiography and speckle-tracking echocardiography. Decreases in MFW RVLS and 3D RVEF may persist during short-term and long-term follow-up and correlate with unfavorable outcomes. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Hugues, T; Yaici, K; Latcu, D-G; Rinaldi, J-P; Zarqane, N; Saoudi, N; Gibelin, P
2011-02-01
Echocardiographic criteria of right ventricular dysfunction (RVD) in acute pulmonary embolism (PE) differ among published studies. Assessment of RV systolic function remains difficult because of the RV's complex shape. We aimed to evaluate RV systolic function with TAD in patients (pts) with acute PE. TAD (QLAB, Philips Medical Imaging) was based on a tissue-tracking algorithm that is ultrasound beam angle independent for automated detection of tricuspid annular displacement. Prospective and observational study. All adults' pts who were diagnosed with PE from December 2008 to December 2009 at Princess Grace Hospital, Monaco were eligible for this study after exclusion of history of heart failure. We evaluated 36 consecutive pts with PE (18 male, mean age 62.7 years), which underwent echocardiography, plasma BNP titration during the first day after admission, and a second echocardiography obtained within 48 hours before discharge. TAD value were significantly lower in pts with abnormal RV function by echocardiogram (15.9 ± 0.3 vs. 12.7 ± 0.2 ; P = 0.026). Pts with a normal BNP (<80 pg/ml) had an elevated TAD (16.4 ± 0.2 vs. 11.2 ± 0.3 mm ; P < 0.0001). At discharge, echocardiographic data were obtained from 33 pts (mean: 8.3 ± 3.5 days). RV end diastolic diameter, RV to LV diameter, pulmonary arterial systolic pressure, mean pulmonic valve acceleration time, RV FAC, Sa and TAD were significantly improved. There was no difference between TAD among pts with echocardiographic RVD at baseline vs. pts without RVD (14.9 ± 3.7 vs. 16.1 ± 2.9 mm ; P = 0.3). Four pts who deteriorated during short-term observation had substantially lower TAD values than those with uncomplicated courses (7.7 ± 0.4mm vs. 14.6 ± 0.2 mm ; P = 0.001). In conclusion, impaired TAD was associated with decreased RV systolic function in pts with acute PE. To identify the clinical meaning of decreased TAD, larger trials with longer follow-up periods are needed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Sano, Hiroyuki; Tanaka, Hidekazu; Motoji, Yoshiki; Fukuda, Yuko; Mochizuki, Yasuhide; Hatani, Yutaka; Matsuzoe, Hiroki; Hatazawa, Keiko; Shimoura, Hiroyuki; Ooka, Junichi; Ryo-Koriyama, Keiko; Nakayama, Kazuhiko; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-Ichi
2017-03-01
Mid-term right ventricular (RV) reverse remodeling after treatment in patients with pulmonary hypertension (PH) is associated with long-term outcome as well as baseline RV remodeling. However, baseline factors influencing mid-term RV reverse remodeling after treatment and its prognostic capability remain unclear. We studied 54 PH patients. Mid-term RV remodeling was assessed in terms of the RV area, which was traced planimetrically at the end-systole (RVESA). RV reverse remodeling was defined as a relative decrease in the RVESA of at least 15% at 10.2 ± 9.4 months after treatment. Long-term follow-up was 5 years. Adverse events occurred in ten patients (19%) and mid-term RV reverse remodeling after treatment was observed in 37 (69%). Patients with mid-term RV reverse remodeling had more favorable long-term outcomes than those without (log-rank: p = 0.01). Multivariate logistic regression analysis showed that RV relative wall thickness (RV-RWT), as calculated as RV free-wall thickness/RV basal linear dimension at end-diastole, was an independent predictor of mid-term RV reverse remodeling (OR 1.334; 95% CI, 1.039-1.713; p = 0.03). Moreover, patients with RV-RWT ≥0.21 showed better long-term outcomes than did those without (log-rank p = 0.03), while those with RV-RWT ≥0.21 and mid-term RV reverse remodeling had the best long-term outcomes. Patients with RV-RWT <0.21 and without mid-term RV reverse remodeling, on the other hand, had worse long-term outcomes than other sub-groups. In conclusions, RV-RWT could predict mid-term RV reverse remodeling after treatment in PH patients, and was associated with long-term outcomes. Our finding may have clinical implications for better management of PH patients.
Reddy, Yogesh N V; Obokata, Masaru; Dean, Patrick G; Melenovsky, Vojtech; Nath, Karl A; Borlaug, Barry A
2017-06-21
Short-term studies have reported left ventricular (LV) dilatation following surgical creation of arteriovenous fistulas (AVF) or arteriovenous grafts (AVGs), but chronic cardiac structural and functional changes have not been examined or related to clinical outcomes following AVF/AVG. We sought to characterize the long-term changes in cardiac structure and function in patients undergoing shunt creation for haemodialysis. A retrospective analysis was performed of patients undergoing echocardiography before and after surgical AVF/AVG creation for the initiation of haemodialysis. 137 patients underwent echocardiographic examinations prior to AVF and 2.6 years (median) after AVF creation. Following AVF and dialysis initiation, there were reductions in blood pressure, body weight and estimated plasma volume coupled with modest reverse LV remodelling. In contrast, AVF/AVG creation was associated with significant right ventricular (RV) dilatation and deterioration in RV function. Incident heart failure (HF) developed in 43% of patients in tandem with greater RV remodeling. The development of RV dilation following surgical AVF/AVG was independently associated with increased risk of death [HR 3.9, 95% CI (1.7-9.2), P = 0.001]. In long-term follow-up, RV remodelling and dysfunction develop following AVF/AVG creation and dialysis initiation, despite improved control of LV pressure load through dialysis. Deleterious effects on right heart structure and function are coupled with development of incident HF and increased risk of death. Further study is required to identify patients at greatest risk for detrimental AVF/AVG changes who may benefit from alternate forms of dialysis or potentially ligation of existing AVF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Secchi, Francesco; Resta, Elda C; Cannaò, Paola M; Pluchinotta, Francesca; Piazza, Luciane; Butera, Gianfranco; Carminati, Mario; Sardanelli, Francesco
2017-11-01
The aim of this study was to evaluate the impact of percutaneous pulmonary valve implantation (PPVI) and surgical pulmonary valve replacement (SPVR) on biventricular and pulmonary valve function using cardiac magnetic resonance. Thirty-five patients aged 20±8 years (mean±SD) underwent PPVI, whereas 16 patients aged 30±11 years underwent SPVR. Cardiac magnetic resonance examinations were performed before and after the procedures with an average follow-up interval of 10 months. Cine steady-state free precession sequences for cardiac function and phase-contrast sequences for pulmonary flow were performed. The right ventricle (RV) and left ventricle (LV) functions were evaluated using a dedicated software. The RV end-diastolic volume index (mL/m) decreased significantly after PPVI and SPVR, from 74 to 64 (P=0.030) and from 137 to 83 (P=0.001), respectively. The RV ejection fraction increased significantly after SPVR, from 47% to 53% (P=0.038). The LV end-diastolic volume index increased significantly after PPVI, from 66 to 76 mL/m (P<0.001). The LV stroke volume index increased significantly after PPVI, from 34 to 43 mL/m (P=0.004). The analysis of bivariate correlations showed that in patients undergoing SPVR the RV changes after the procedure were positively correlated to LV changes in terms of end-systolic volume index (r=0587; P=0.017) and ejection fraction (r=0.681; P=0.004). A RV volumetric reduction and a positive effect on ventricular-ventricular interaction were observed after both PPVI and SPVR. After PPVI, a positive volumetric LV remodeling was found. No LV remodeling was found after SPVR. After both procedures, the replaced pulmonary valve functioned well.
Utilization of Veno-Arterial Extracorporeal Membrane Oxygenation for Massive Pulmonary Embolism.
Pasrija, Chetan; Kronfli, Anthony; George, Praveen; Raithel, Maxwell; Boulos, Francesca; Herr, Daniel L; Gammie, James S; Pham, Si M; Griffith, Bartley P; Kon, Zachary N
2018-02-01
The management of massive pulmonary embolism remains challenging, with a considerable mortality rate. Although veno-arterial extracorporeal membrane oxygenation (VA-ECMO) for massive pulmonary embolism has been reported, its use as salvage therapy has been associated with poor outcomes. We reviewed our experience utilizing an aggressive, protocolized approach of VA-ECMO to triage, optimize, and treat these patients. All patients with a massive pulmonary embolism who were placed on VA-ECMO, as an initial intervention determined by protocol, were retrospectively reviewed. ECMO support was continued until organ optimization was achieved or neurologic status was determined. At that time, if the thrombus burden resolved, decannulation was performed. If substantial clot burden was still present with evidence of right ventricular (RV) strain, operative therapy was undertaken. Twenty patients were identified. Before cannulation, all patients had an RV-to-left ventricular ratio greater than 1.0 and severe RV dysfunction. The median duration of ECMO support was 5.1 days, with significant improvement in end-organ function. Ultimately, 40% received anticoagulation alone, 5% underwent catheter-directed therapy, and 55% underwent surgical pulmonary embolectomy. Care was withdrawn in 1 patient with a prolonged pre-cannulation cardiac arrest after confirmation of neurologic death. In-hospital and 90-day survival was 95%. At discharge, 18 of 19 patients had normal RV function, and 1 patient, who received catheter-directed therapy, had mild dysfunction. VA-ECMO appears to be an effective tool to optimize end-organ function as a bridge to recovery or intervention, with excellent outcomes. This approach may allow clinicians to better triage patients with massive pulmonary embolism to the appropriate therapy on the basis of recovery of RV function, residual thrombus burden, operative risk, and neurologic status. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Effects of Percutaneous LVAD Support on Right Ventricular Load and Adaptation.
Yourshaw, Jeffrey P; Mishra, Prabodh; Armstrong, M Christopher; Ramu, Bhavadharini; Craig, Michael L; Van Bakel, Adrian B; Steinberg, Daniel H; DiSalvo, Thomas G; Tedford, Ryan J; Houston, Brian A
2018-04-30
Both operative and hemodynamic mechanisms have been implicated in right heart failure (RHF) following surgical left ventricular assist device (LVAD) implantation. We investigated the effects of percutaneous LVAD (pLVAD; Impella®, Abiomed) support on right ventricular (RV) load and adaptation. We reviewed all patients receiving a pLVAD for cardiogenic shock at our institution between July 2014 and April 2017, including only those with pre- and post-pLVAD invasive hemodynamic measurements. Hemodynamic data was recorded immediately prior to pLVAD implantation and up to 96 h post-implantation. Twenty-five patients were included. Cardiac output increased progressively during pLVAD support. PAWP improved early post-pLVAD but did not further improve during continued support. Markers of RV adaptation (right ventricular stroke work index, right atrial pressure (RAP), and RAP to pulmonary artery wedge pressure ratio (RAP:PAWP)) were unchanged acutely implant but progressively improved during continued pLVAD support. Total RV load (pulmonary effective arterial elastance; E A ) and resistive RV load (pulmonary vascular resistance; PVR) both declined progressively. The relationship between RV load and RV adaptation (E A /RAP and E A /RAP:PAWP) was constant throughout. Median vasoactive-inotrope score declined after pLVAD placement and continued to decline throughout support. Percutaneous LVAD support in patients with cardiogenic shock did not acutely worsen RV adaptation, in contrast to previously described hemodynamic effects of surgically implanted durable LVADs. Further, RV load progressively declined during support, and the noted RV adaptation improvement was load-dependent as depicted by constant E A /RA and E A /RAP:PAWP relationships. These findings further implicate the operative changes associated with surgical LVAD implantation in early RHF following durable LVAD.
Abraham, Sharon; Weismann, Constance G
2016-06-01
Pulmonary hypertension (PH) is a common problem in the neonatal intensive care unit and is associated with significant morbidity and mortality. The aim of this study was to identify a quantitative echocardiographic marker of septal curvature that can be used to accurately identify PH in NICU infants with concern for PH. Echocardiograms of infants who were prematurely born and infants with persistent pulmonary hypertension of the newborn were performed using a defined protocol for evaluation of PH. Qualitative assessment by a single pediatric cardiologist was used as a reference standard. Qualitative and quantitative parameters of right ventricular (RV) size, pressure, and function were documented. Left ventricular end-systolic eccentricity index (EI) was defined as the ratio of the anterior-inferior and septal-posterolateral cavity dimensions at the mid-ventricular level. A total of 216 infants at risk for PH were included in this study. One hundred forty-three (66%) had an interpretable tricuspid regurgitation jet velocity. While systolic septal flattening was recognized at EIs ≥ 1.15, more than half-systemic RV pressure became apparent at EIs ≥ 1.3. Unlike qualitative assessment of septal flattening, there was high inter-observer agreement for EIs. Quantitative parameters of RV systolic function were impaired only at EIs ≥ 1.3. We suggest that EIs should be incorporated into routine protocols when there is a concern for PH in neonates. This may lead to a more reliable assessment of PH and may reduce inter-observer variability. Correlation of EIs with invasive hemodynamic data is needed to validate our results. © 2016, Wiley Periodicals, Inc.
Durães, André Rodrigues; Borges, Sirlene Mendes; Aras, Roque
2015-01-01
Background Studies have demonstrated that phosphodiesterase 5 (PDE5) inhibition is associated with right ventricle (RV) functional improvement in patients with primary pulmonary hypertension. This study aims to demonstrate the immediate impact of Sildenafil, a PDE5 inhibitor, on RV function, measured by cardiovascular magnetic resonance (CMR), in patients with heart failure (HF). Methods We conducted a randomized double-blind controlled trial. Inclusion criteria: diagnosis of HF functional class I-III; left ventricle ejection fraction < 35%. Patients underwent CMR evaluation and were then equally randomly assigned to either 50 mg of Sildenafil or Placebo groups. One hour following drug administration, they were submitted to a second scan examination. Results 26 patients were recruited from a tertiary reference center in Brazil and 13 were allocated to each study group. The median age was 61.5 years (50–66.5 years). Except for the increase in RV fractional area change following the administration of sildenafil (Sildenafil [before vs. after]: 34.3 [25.2–43.6]% vs. 42.9 [28.5–46.7]%, p = 0.04; Placebo [before vs. after]: 28.1 [9.2–34.8]% vs. 29.2 [22.5–38.8]%, p = 0.86), there was no statistically significant change in parameters. There was no improvement in left ventricular parameters or in the fractional area change of the pulmonary artery. Conclusion This study demonstrated that a single dose of Sildenafil did not significantly improve RV function as measured by the CMR. Trial Registration ClinicalTrials.gov NCT01936350 PMID:25793988
Direct His bundle pacing post AVN ablation.
Lakshmanadoss, Umashankar; Aggarwal, Ashim; Huang, David T; Daubert, James P; Shah, Abrar
2009-08-01
Atrioventricular nodal (AVN) ablation with concomitant pacemaker implantation is one of the strategies that reduce symptoms in patients with atrial fibrillation (AF). However, the long-term adverse effects of right ventricular (RV) apical pacing have led to the search for alternating sites of pacing. Biventricular pacing produces a significant improvement in functional capacity over RV pacing in patients undergoing AVN ablation. Another alternative site for pacing is direct His bundle to reduce the adverse outcome of RV pacing. Here, we present a case of direct His bundle pacing using steerable lead delivery system in a patient with symptomatic paroxysmal AF with concurrent AVN ablation.
Fukuda, Yuko; Tanaka, Hidekazu; Ryo-Koriyama, Keiko; Motoji, Yoshiki; Sano, Hiroyuki; Shimoura, Hiroyuki; Ooka, Junichi; Toki, Hiromi; Sawa, Takuma; Mochizuki, Yasuhide; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-Ichi
2016-07-01
Right ventricular (RV) systolic function is one of the most important determinants of outcome for pulmonary hypertension (PH) patients, but the factors influencing prognosis vary widely. Elevated right atrial (RA) pressure is reported to be one of these prognostic factors, but its functional importance has scarcely been assessed. Eighty-two PH patients, all of whom underwent echocardiography and right heart catheterization, were recruited. RV function was assessed by two-dimensional speckle tracking longitudinal strain from RV-focused apical four-chamber view and calculated by averaging the three regional peak strains from the RV free wall (RV-free). RA function was determined as the sum of three peak strain values comprising reservoir, conduit, and contractile function (sum of RA strain). Sum of RA strain correlated significantly with hemodynamic parameters such as mean right atrial pressure (r = -0.35, P = 0.002) and end-diastolic RV pressure (r = -0.29, P = 0.008). Patients with sum of RA strain ≥30.2% experienced more favorable outcomes than those with sum of RA strain <30.2% (log-rank P = 0.001). Furthermore, patients with impaired RV systolic function (RV-free <20%) and RA function (sum of RA strain <30.2%) showed the worst outcome (P = 0.001). A sequential Cox model based on clinical variables (χ(2) = 5.8) was improved by addition of RV-free (χ(2) = 8.7; P < 0.05) and further improved by addition of sum of RA strain (χ(2) = 12.0; P < 0.01). Right atrial strain appears to be a valuable additive factor for predicting outcomes for PH patients, and comprehensive functional assessment of right-sided heart using speckle tracking strain may have potential clinical implications for better management of PH patients. © 2016, Wiley Periodicals, Inc.
Chiba, J.; Takeishi, Y.; Abe, S.; Tomoike, H.
1997-01-01
OBJECTIVE: Exercise thallium-201 (201T1) single photon emission computed tomography (SPECT) has been used to detect potential ischaemia in the left ventricular myocardium but not in the right ventricle. The purpose of this study was to establish the clinical usefulness of a right ventricular polar map of 201T1 SPECT for visualisation of exercise-induced right ventricular ischaemia. METHODS: Myocardial 201T1 SPECT was obtained immediately after treadmill exercise in 97 patients with suspected coronary artery disease. A region of interest was placed over the right ventricle (RV) on post-stress transaxial images. Short axis images of this region were generated and reconstructed as a bull's eye polar map. Normal ranges of RV 201T1 uptake were determined in 12 patients with normal coronary arteries. Scintigraphic criteria for identifying RV perfusion abnormality were derived from 25 patients with right coronary artery (RCA) stenosis greater than 75%. These criteria were applied to 60 consecutive patients with suspected coronary artery disease. RESULTS: Perfusion defects in the RV were larger in patients with proximal RCA stenosis than in those with distal RCA stenosis (mean (SD) 28 (16)% v 6 (5)%, P < 0.001). The sensitivity and specificity of the RV polar map for the detection of proximal RCA stenosis were 67% (8/12) and 98% (47/48), respectively. RV perfusion defects became undetectable in 9 patients who had successful percutaneous transluminal coronary angioplasty to a proximal RCA lesion. CONCLUSIONS: A right ventricular polar map display was useful for visualising exercise-induced right ventricular ischaemia. Images PMID:9038692
Rutz, Matt A; Clary, Julie M; Kline, Jeffrey A; Russell, Frances M
2017-07-01
Focused cardiac ultrasound (FOCUS) is a useful tool in evaluating patients presenting to the emergency department (ED) with acute dyspnea. Prior work has shown that right ventricular (RV) dilation is associated with repeat hospitalizations and shorter life expectancy. Traditionally, RV assessment has been evaluated by cardiologist-interpreted comprehensive echocardiography. The primary goal of this study was to determine the inter-rater reliability between emergency physicians (EPs) and a cardiologist for determining RV dilation on FOCUS performed on ED patients with acute dyspnea. This was a prospective, observational study at two urban academic EDs; patients were enrolled if they had acute dyspnea and a computed tomographic pulmonary angiogram without acute disease. All patients had an EP-performed FOCUS to assess for RV dilation. RV dilation was defined as an RV to left ventricular ratio greater than 1. FOCUS interpretations were compared to a blinded cardiologist FOCUS interpretation using agreement and kappa statistics. Of 84 FOCUS examinations performed on 83 patients, 17% had RV dilation. Agreement and kappa, for EP-performed FOCUS for RV dilation were 89% (95% confidence interval [CI] 80-95%) and 0.68 (95% CI 0.48-0.88), respectively. Emergency physician sonographers are able to detect RV dilation with good agreement when compared to cardiology. These results support the wider use of EP-performed FOCUS to evaluate for RV dilation in ED patients with dyspnea. © 2017 by the Society for Academic Emergency Medicine.
Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu
2014-07-26
The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments.
Hodzic, Amir; Bobin, Pierre; Mika, Delphine; Ly, Mohamed; Lefebvre, Florence; Lechêne, Patrick; Le Bret, Emmanuel; Gouadon, Elodie; Coblence, Mathieu; Vandecasteele, Grégoire; Capderou, André; Leroy, Jérôme; Rucker-Martin, Catherine; Lambert, Virginie
2017-11-01
Early detection of right ventricular (RV) failure is required to improve the management of patients with congenital heart diseases. The aim of this study was to validate echocardiography for the early detection of overloaded RV dysfunction, compared with hemodynamic and myocyte contractility assessment. Using a porcine model reproducing repaired tetralogy of Fallot, RV function was evaluated over 4 months using standard echocardiography and speckle-tracking compared with hemodynamic parameters (conductance catheter). Sarcomere shortening and calcium transients were recorded in RV isolated myocytes. Contractile reserve (ΔE max ) was assessed by β-adrenergic stimulation in vivo (dobutamine 5 μg/kg) and ex vivo (isoproterenol 100 nM). Six operated animals were compared with four age- and sex-matched controls. In the operated group, hemodynamic RV efficient ejection fraction was significantly decreased (29.7% [26.2%-34%] vs 42.9% [40.7%-48.6%], P < .01), and inotropic responses to dobutamine were attenuated (ΔE max was 51% vs 193%, P < .05). Echocardiographic measurements of fraction of area change, tricuspid annular plane systolic excursion, tricuspid annular peak systolic velocity (S') and RV free wall longitudinal systolic strain and strain rate were significantly decreased. Strain rate, S', and tricuspid annular plane systolic excursion were correlated with ΔE max (r = 0.75, r = 0.78, and r = 0.65, respectively, P < .05). These alterations were associated in RV isolated myocytes with the decrease of sarcomere shortening in response to isoproterenol and perturbations of calcium homeostasis assessed by the increase of spontaneous calcium waves. In this porcine model, both standard and strain echocardiographic parameters detected early impairments of RV function and cardiac reserve, which were associated with cardiomyocyte excitation-contraction coupling alterations. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Di Petta, Antonio; Simas, Rafael; Ferreira, Clebson L; Capelozzi, Vera L; Salemi, Vera M C; Moreira, Luiz F P; Sannomiya, Paulina
2015-10-01
Chronic obstructive pulmonary disease is often associated with chronic comorbid conditions of cardiovascular disease, diabetes mellitus and hypertension. This study aimed to investigate the effects of the association of diabetes and pulmonary emphysema on cardiac structure and function in rats. Wistar rats were divided into control non-diabetic instilled with saline (CS) or elastase (CE), diabetic instilled with saline (DS) or elastase (DE), DE treated with insulin (DEI) groups and echocardiographic measurements, morphometric analyses of the heart and lungs, and survival analysis conducted 50 days after instillation. Diabetes mellitus was induced [alloxan, 42 mg/kg, intravenously (iv)] 10 days before the induction of emphysema (elastase, 0.25 IU/100 g). Rats were treated with NPH insulin (4 IU before elastase plus 2 IU/day, 50 days). Both CE and DE exhibited similar increases in mean alveolar diameter, which are positively correlated with increases in right ventricular (RV) wall thickness (P = 0.0022), cavity area (P = 0.0001) and cardiomyocyte thickness (P = 0.0001). Diabetic saline group demonstrated a reduction in left ventricular (LV) wall, interventricular (IV) septum, cardiomyocyte thickness and an increase in cavity area, associated with a reduction in LV fractional shortening (P < 0.05), and an increase in LViv relaxation time (P < 0.05). Survival rate decreased from 80% in DS group to 40% in DE group. In conclusion, alloxan diabetes did not affect RV hypertrophy secondary to chronic emphysema, even in the presence of insulin. Diabetes per se induced left ventricular dysfunction, which was less evident in the presence of RV hypertrophy. Survival rate was substantially reduced as a consequence, at least in part, of the coexistence of RV hypertrophy and diabetic cardiomyopathy. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.
Kral Kollars, Catharine A; Gelehrter, Sarah; Bove, Edward L; Ensing, Gregory
2010-03-01
Congenitally corrected transposition of the great arteries (CCTGA) is associated with tricuspid regurgitation (TR), which has been postulated to arise from the effect of ventricular septal position on the attachments of the tricuspid valve. This study was performed to determine the effect of left ventricular (LV) pressure on right ventricular (RV) and LV geometry and the degree of TR. Serial echocardiograms were reviewed from, 30 patients with CCTGA who underwent pulmonary artery banding to train the morphologic left ventricle (n = 14) or left ventricle-to-pulmonary artery conduit placement and ventricular septal defect closure in conjunction with physiologic repair (n = 16). The degree of TR, the LV/RV pressure ratio, RV and LV sphericity indexes, and tricuspid valve tethering distance and coaptation length were analyzed. After pulmonary artery banding, an increase in LV systolic pressure to > or =2/3 systemic resulted in a decrease in TR from severe to moderate (p = 0.02). The percentage of patients with severe TR decreased from 64% to 18% (p = 0.06). The RV sphericity index decreased (p = 0.05), and the LV sphericity index increased (p = 0.02). After left ventricle-to-pulmonary artery conduit placement, a decrease in LV pressure to < or =1/2 systemic resulted in an increase in TR from none to mild (p = 0.003). In conclusion, these data indicate that LV pressure in patients with CCTGA affects the degree of TR and that septal shift caused by changes in LV and RV pressure is an important mechanism. Copyright 2010. Published by Elsevier Inc.
Kim, Jiwon; Medicherla, Chaitanya B; Ma, Claudia L; Feher, Attila; Kukar, Nina; Geevarghese, Alexi; Goyal, Parag; Horn, Evelyn; Devereux, Richard B; Weinsaft, Jonathan W
2016-01-01
Non-ischemic fibrosis (NIF) on cardiac magnetic resonance (CMR) has been linked to poor prognosis, but its association with adverse right ventricular (RV) remodeling is unknown. This study examined a broad cohort of patients with RV dysfunction, so as to identify relationships between NIF and RV remodeling indices, including RV pressure load, volume and wall stress. The population comprised patients with RV dysfunction (EF<50%) undergoing CMR and transthoracic echo within a 14 day (5 ± 3) interval. Cardiac structure, function, and NIF were assessed on CMR. Pulmonary artery systolic pressure (PASP) was measured on echo. 118 patients with RV dysfunction were studied, among whom 47% had NIF. Patients with NIF had lower RVEF (34 ± 10 vs. 39 ± 9%; p = 0.01) but similar LVEF (40 ± 21 vs. 39 ± 18%; p = 0.7) and LV volumes (p = NS). RV wall stress was higher with NIF (17 ± 7 vs. 12 ± 6 kPa; p < 0.001) corresponding to increased RV end-systolic volume (143 ± 79 vs. 110 ± 36 ml; p = 0.006), myocardial mass (60 ± 21 vs. 53 ± 17 gm; p = 0.04), and PASP (52 ± 18 vs. 41 ± 18 mmHg; p = 0.001). NIF was associated with increased wall stress among subgroups with isolated RV (p = 0.005) and both RV and LV dysfunction (p = 0.003). In multivariable analysis, NIF was independently associated with RV volume (OR = 1.17 per 10 ml, [CI 1.04-1.32]; p = 0.01) and PASP (OR = 1.43 per 10 mmHg, [1.14-1.81]; p = 0.002) but not RV mass (OR = 0.91 per 10 gm, [0.69-1.20]; p = 0.5) [model χ2 = 21; p<0.001]. NIF prevalence was higher in relation to PA pressure and RV dilation and was > 6-fold more common in the highest, vs. the lowest, common tertile of PASP and RV size (p<0.001). Among wall stress components, NIF was independently associated with RV chamber dilation and afterload, supporting the concept that NIF is linked to adverse RV chamber remodeling.
Morcos, Michael; Kilner, Philip J; Sahn, David J; Litt, Harold I; Valsangiacomo-Buechel, Emanuela R; Sheehan, Florence H
2017-12-01
In patients with transposition of the great arteries corrected by interatrial baffle (TGA) and those with congenitally corrected transposition of the great arteries (ccTGA) the right ventricle (RV) is subjected to systemic pressure and fails prematurely. Previous studies have demonstrated RV dysfunction may be more pronounced in patients with TGA. The present study sought to compare patients with TGA and ccTGA using three-dimensional (3D) techniques to comprehensively analyze the shape, volume, global and regional function in the systemic RV. We compared RV size, shape, and regional and global function in 25 patients with TGA, 17 patients with ccTGA, and 9 normal subjects. The RVs were reconstructed from cardiac Magnetic Resonance Images for 3D analyses. Compared to normal, the RV in TGA and ccTGA was dilated, rounded, and reduced in function. Compared to each other, TGA and ccTGA patients had similar RV size and shape. Global RV function was lower in TGA than ccTGA when assessed from ejection fraction (EF) (30 ± 7 vs. 35 ± 7, p = 0.02) and from normalized tricuspid annular systolic plane excursion (TAPSE) (0.10 ± 0.04 vs. 0.18 ± 0.04, p < 0.01). Basilar RV function was poorer in the TGA patients when compared to ccTGA. The systemic RVs in both TGA and ccTGA are dilated, spherical, and poorly functioning. Compared to ccTGA, TGA RVs have reduced TAPSE and worse basilar hypokinesis.
2010-01-01
Aim We aimed to define reference ranges for right ventricular (RV) volumes, ejection fraction (EF) in thalassemia major patients (TM) without myocardial iron overload. Methods and results RV volumes, EF and mass were measured in 80 TM patients who had no myocardial iron overload (myocardial T2* > 20 ms by cardiovascular magnetic resonance). All patients were receiving deferoxamine chelation and none had evidence of pulmonary hypertension or other cardiovascular comorbidity. Forty age and sex matched healthy non-anemic volunteers acted as controls. The mean RV EF was higher in TM patients than controls (males 66.2 ± 4.1% vs 61.6 ± 6%, p = 0.0009; females 66.3 ± 5.1% vs 62.6 ± 6.4%, p = 0.017), which yielded a raised lower threshold of normality for RV EF in TM patients (males 58.0% vs 50.0% and females 56.4% vs 50.1%). RV end-diastolic volume index was higher in male TM patients (mean 98.1 ± 17.3 mL vs 88.4 ± 11.2 mL/m2, p = 0.027), with a higher upper limit (132 vs 110 mL/m2) but this difference was of borderline significance for females (mean 86.5 ± 13.6 mL vs 80.3 ± 12.8 mL/m2, p = 0.09, with upper limit of 113 vs 105 mL/m2). The cardiac index was raised in TM patients (males 4.8 ± 1.0 L/min vs 3.4 ± 0.7 L/min, p < 0.0001; females 4.5 ± 0.8 L/min vs 3.2 ± 0.8 L/min, p < 0.0001). No differences in RV mass index were identified. Conclusion The normal ranges for functional RV parameters in TM patients with no evidence of myocardial iron overload differ from healthy non-anemic controls. The new reference RV ranges are important for determining the functional effects of myocardial iron overload in TM patients. PMID:20416084
Park, Jae-Hyeong; Choi, Jin-Oh; Park, Seung Woo; Cho, Goo-Yeong; Oh, Jin Kyung; Lee, Jae-Hwan; Seong, In-Whan
2018-02-01
Right ventricular (RV) strain values by 2-dimensional strain echocardiography (STE) can be used as objective markers of RV systolic function. However, there is little data about normal reference RV strain values according to age and gender. We measured normal RV strain values by STE. RV strain values were analyzed from the digitally stored echocardiographic images from NORMAL (Normal echOcardiogRaphic diMensions and functions in KoreAn popuLation) study for the measurement of normal echocardiographic values performed in 23 Korean university hospitals. We enrolled total 1003 healthy persons in the NORMAL study. Of them, we analyzed 2-dimensional RV strain values in 493 subjects (261 females, mean 47 ± 15 years old) only with echocardiographic images by GE machines. Their LV systolic and diastolic functions were normal. RV fractional area change was 48 ± 6% and tricuspid annular plane systolic excursion was 23 ± 3 mm. Total RV global longitudinal peak systolic strain (RVGLS total ) was -21.5 ± 3.2%. Females had higher absolute RVGLS total (-22.3 ± 3.3 vs -20.7 ± 2.9%, p < 0.001) than males. Younger (<50 years old) females had higher absolute RVGLS total (-22.9 ± 3.2 vs -20.5 ± 2.8%, p < 0.001) than age matched males. RVGLS total in females gradually increased according to age (p for trend = 0.002) and becomes almost similar in age ≥50 years. However, this trend was not seen in males (p for trend = 0.287), and younger males had similar RVGLS total value to that of older males (age ≥50 years, -20.5 ± 2.8 vs -20.9 ± 3.1%, p = 0.224). We calculated normal RVGLS values in normal population. Females have higher absolute strain values than males, especially in younger age groups (<50 years old).
Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.
Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M
2018-01-15
Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index, in all postoperative records. For group (II): There were no statistically significant changes between the preoperative and all postoperative records for the central venous pressure, mean arterial pressure and cardiac index. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index in all postoperative records. There were statistically significant changes between the two groups in all postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index. There is right ventricular dysfunction early after major pulmonary resection caused by increased right ventricular afterload. This dysfunction is more present in pneumonectomy than in lobectomy. Heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction, and right ventricular end diastolic volume index are significantly affected by pulmonary resection.
Ganière, Vincent; Domenichini, Giulia; Niculescu, Viviana; Cassagneau, Romain; Defaye, Pascal; Burri, Haran
2013-03-01
The prerequisite for cardiac resynchronization therapy (CRT) is ventricular capture, which may be verified by analysis of the surface electrocardiogram (ECG). Few algorithms exist to diagnose loss of ventricular capture. Electrocardiograms from 126 CRT patients were analysed during biventricular (BV), right ventricular (RV), and left ventricular (LV) pacing. An algorithm evaluating QRS narrowing in the limb leads and increasing negativity in lead I to diagnose changes in ventricular capture was devised, prospectively validated, and compared with two existing algorithms. Performance of the algorithm according to ventricular lead position was also assessed. Our algorithm had an accuracy of 88% to correctly identify the changes in ventricular capture (either loss or gain of RV or LV capture). The algorithm had a sensitivity of 94% and a specificity of 96% with an accuracy of 96% for identifying loss of LV capture (the most clinically relevant change), and compared favourably with the existing algorithms. Performance of the algorithms was not significantly affected by RV or LV lead position. A simple two-step algorithm evaluating QRS width in the limb leads and changes in negativity in lead I can accurately diagnose the lead responsible for intermittent loss of ventricular capture in CRT. This simple tool may be of particular use outside the setting of specialized device clinics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurford, W.; Lowenstein, E.; Zapol, W.
1985-05-01
To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-(p-(iodophenyl))-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM)more » to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction.« less
Milks, Michael Wesley; Upadhya, Bharathi; Hall, Michael E; Vasu, Sujethra; Hundley, William Gregory; Stacey, Richard Brandon
2015-01-01
The assessment of right ventricular (RV) perfusion defects has remained challenging during vasodilator stress perfusion with cardiovascular magnetic resonance (CMR). The significance of RV signal abnormalities during vasodilator stress perfusion and late gadolinium-enhanced CMR is yet uncertain. Among 61 individuals who underwent adenosine CMR stress testing before cardiac catheterization, we assessed the severity of coronary artery stenoses, mortality, the presence of stress and rest perfusion defects, as well as the presence of late gadolinium enhancement (LGE). Right ventricular stress-induced perfusion defects were positively associated with left anterior descending artery and proximal right coronary artery stenoses but were negatively associated with left circumflex artery stenoses. The presence of RVLGE was associated with mortality, but 77% of those with RVLGE also had left ventricular LGE. Proximal right coronary artery and left anterior descending artery stenoses are positively associated, whereas left circumflex artery stenoses are negatively associated with RV stress-induced perfusion defects. Right ventricular LGE was associated with mortality, but further study is needed to determine whether this is independent of left ventricular LGE.
Pereda, Daniel; García-Lunar, Inés; Sierra, Federico; Sánchez-Quintana, Damián; Santiago, Evelyn; Ballesteros, Constanza; Encalada, Juan F; Sánchez-González, Javier; Fuster, Valentín; Ibáñez, Borja; García-Álvarez, Ana
2016-09-01
Pulmonary hypertension (PH) and right ventricular (RV) dysfunction are strong predictors of morbidity and mortality among patients with congenital heart disease. Early detection of RV involvement may be useful in the management of these patients. We aimed to assess progressive cardiac adaptation and quantify myocardial extracellular volume in an experimental porcine model of PH because of aorto-pulmonary shunt using cardiac magnetic resonance (CMR). To characterize serial cardiac adaptation, 12 pigs (aorto-pulmonary shunt [n=6] or sham operation [n=6]) were evaluated monthly with right heart catheterization, CMR, and computed tomography during 4 months, followed by pathology analysis. Extracellular volume by CMR in different myocardial regions was studied in 20 animals (aorto-pulmonary shunt [n=10] or sham operation [n=10]) 3 months after the intervention. All shunted animals developed PH. CMR evidenced progressive RV hypertrophy and dysfunction secondary to increased afterload and left ventricular dilatation secondary to volume overload. Shunt flow by CMR strongly correlated with PH severity, left ventricular end-diastolic pressure, and left ventricular dilatation. T1-mapping sequences demonstrated increased extracellular volume at the RV insertion points, the interventricular septum, and the left ventricular lateral wall, reproducing the pattern of fibrosis found on pathology. Extracellular volume at the RV insertion points strongly correlated with pulmonary hemodynamics and RV dysfunction. Prolonged systemic-to-pulmonary shunting in growing piglets induces PH with biventricular remodeling and myocardial fibrosis that can be detected and monitored using CMR. These results may be useful for the diagnosis and management of congenital heart disease patients with pulmonary overcirculation. © 2016 American Heart Association, Inc.
Harada, Daisuke; Aasanoi, Hidetsugu; Ushijima, Ryuichi; Noto, Takahisa; Takagawa, Junya; Ishise, Hisanari; Inoue, Hiroshi
2018-06-01
To elucidate involvement of age-related impairments of right ventricular (RV) distensibility in the elderly congestive heart failure (CHF), we examined the prevalence of less-distensible right ventricle in patients with preserved left ventricular ejection fraction (LVEF) over a wide range of ages. In 893 patients aged from 40 to 102 years, we simultaneously recorded electrocardiogram, phonocardiogram, and jugular venous pulse wave. Using signal-processing techniques, the prominent 'Y' descent of jugular pulse waveform was detected as a hemodynamic sign of a less-distensible right ventricle. Prevalence of less-distensible right ventricle and elevated RV systolic pressure increased along with aging from the 50s to the 90s in an exponential fashion from 3.3 and 12% up to 33 and 61%, respectively (p < 0.001 for each). This age-dependent deterioration of ventricular distensibility was not observed for the left ventricle. Higher age and higher RV systolic pressure were independently associated with less-distensible right ventricle (Odds ratio, 1.05 per 1 year, p = 0.003; and 1.03 per 1 mmHg, p = 0.026, respectively). The elderly CHF was associated with high prevalence of the less-distensible right ventricle and higher RV systolic pressure, both of which were independent risk factors for CHF (Odds ratio, 5.27, p = 0.001, and 1.08 per 1 mmHg, p < 0.001, respectively). In elderly patients with preserved LVEF, the combination of a less-distensible right ventricle and a high RV systolic pressure seems to be related to developing CHF. The less-distensible right ventricle and elevated RV systolic pressure are closely associated with CHF with preserved LVEF in the elderly patients.
Yamasaki, Yuzo; Nagao, Michinobu; Kamitani, Takeshi; Yamanouchi, Torahiko; Kawanami, Satoshi; Yamamura, Kenichiro; Sakamoto, Ichiro; Yabuuchi, Hidetake; Honda, Hiroshi
2016-10-01
To investigate the utility of eccentricity index (EI) using cardiac cine MRI for the assessment of right ventricular (RV) hemodynamics in congenital heart disease (CHD). Fifty-five patients with CHD (32 women; mean age, 40.7 ± 20.9 years) underwent both cardiac MRI and right heart catheterization. EI was defined as the ratio of the distance between the anterior-posterior wall and the septal-lateral wall measured in the short-axis of mid-ventricular cine MRI. Correlations between EIs and RV hemodynamic parameters were analyzed. EIs were compared between patients with and without late gadolinium enhancement (LGE). A strong correlation between mean pulmonary artery pressure (PAP) and systolic EI (r = 0.81, p < 0.0001) and a moderate negative correlation between diastolic EI and RV ejection fraction (EF) (r = -0.62, p < 0.0001) were observed. Receiver operating characteristic analysis revealed optimal EI thresholds for detecting patients with mean PAP ≥40 mmHg with C-statistics of 0.90 and patients with RVEF <40 % with C-statistics of 0.78. Systolic EIs were significantly greater for patients with LGE (1.45 ± 0.05) than for those without LGE (1.15 ± 0.07; p < 0.001). EI offers a simple, comprehensive index that can predict pulmonary hypertension and RV dysfunction in CHD. • EI offers a simple and comprehensive index of RV hemodynamics. • EI could predict pulmonary hypertension and RV dysfunction. • Left ventricular deformation expressed as high EI is related to myocardial fibrosis.
Arunamata, Alisa; Balasubramanian, Sowmya; Mainwaring, Richard; Maeda, Katsuhide; Selamet Tierney, Elif Seda
2017-03-01
Management of right-dominant atrioventricular septal defect (AVSD) remains a challenge given the spectrum of ventricular hypoplasia. The purpose of this study was to assess whether reported echocardiographic indices and additional measurements were associated with operative strategy in right-dominant AVSD. A blinded observer retrospectively reviewed preoperative echocardiograms of patients who underwent surgery for right-dominant AVSD (January 2000 to July 2013). Ventricular dimensions, atrioventricular valve index (AVVI; left valve area/right valve area), and right ventricular (RV)/left ventricular (RV/LV) inflow angle were measured. A second observer measured a subset of studies to assess agreement. Pearson correlation analysis was performed to examine the relationship between ventricular septal defect size (indexed to body surface area) and RV/LV inflow angle in systole. A separate validation cohort was identified using the same methodology (August 2013 to July 2016). Of 46 patients with right-dominant AVSD (median age, 1 day; range, 0-11 months), overall survival was 76% at 7 years. Twenty-eight patients (61%) underwent single-ventricle palliation and had smaller LV dimensions and volumes, AVVIs (P = .005), and RV/LV inflow angles in systole (P = .007) compared with those who underwent biventricular operations. Three patients undergoing biventricular operations underwent transplantation or died and had lower indexed LV end-diastolic volumes compared with the remaining patients (P = .005). Interobserver agreement for the measured echocardiographic indices was good (intraclass correlation coefficient = 0.70-0.95). Ventricular septal defect size and RV/LV inflow angle in systole had a strong negative correlation (r = -0.7, P < .001). In the validation cohort (n = 12), RV/LV inflow angle in systole ≤ 114° yielded sensitivity of 100% and AVVI ≤ 0.70 yielded sensitivity of 88% for single-ventricle palliation. Mortality remains high among patients with right-dominant AVSD. RV/LV inflow angle in systole and AVVI are reproducible measurements that may be used in conjunction with several echocardiographic parameters to support suitability for a biventricular operation in right-dominant AVSD. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Menon, Prahlad G; Adhypak, Srilakshmi M; Williams, Ronald B; Doyle, Mark; Biederman, Robert WW
2014-01-01
BACKGROUND We test the hypothesis that cardiac magnetic resonance (CMR) imaging-based indices of four-dimensional (4D) (three dimensions (3D) + time) right ventricle (RV) function have predictive values in ascertaining invasive pulmonary arterial systolic pressure (PASP) measurements from right heart catheterization (RHC) in patients with pulmonary arterial hypertension (PAH). METHODS We studied five patients with idiopathic PAH and two age and sex-matched controls for RV function using a novel contractility index (CI) for amplitude and phase to peak contraction established from analysis of regional shape variation in the RV endocardium over 20 cardiac phases, segmented from CMR images in multiple orientations. RESULTS The amplitude of RV contractility correlated inversely with RV ejection fraction (RVEF; R2 = 0.64, P = 0.03) and PASP (R2 = 0.71, P = 0.02). Phase of peak RV contractility also correlated inversely to RVEF (R2 = 0.499, P = 0.12) and PASP (R2 = 0.66, P = 0.04). CONCLUSIONS RV contractility analyzed from CMR offers promising non-invasive metrics for classification of PAH, which are congruent with invasive pressure measurements. PMID:25624777
Ryan, John J; Archer, Stephen L
2014-06-20
The right ventricle (RV) is the major determinant of functional state and prognosis in pulmonary arterial hypertension. RV hypertrophy (RVH) triggered by pressure overload is initially compensatory but often leads to RV failure. Despite similar RV afterload and mass some patients develop adaptive RVH (concentric with retained RV function), while others develop maladaptive RVH, characterized by dilatation, fibrosis, and RV failure. The differentiation of adaptive versus maladaptive RVH is imprecise, but adaptive RVH is associated with better functional capacity and survival. At the molecular level, maladaptive RVH displays greater impairment of angiogenesis, adrenergic signaling, and metabolism than adaptive RVH, and these derangements often involve the left ventricle. Clinically, maladaptive RVH is characterized by increased N-terminal pro-brain natriuretic peptide levels, troponin release, elevated catecholamine levels, RV dilatation, and late gadolinium enhancement on MRI, increased (18)fluorodeoxyglucose uptake on positron emission tomography, and QTc prolongation on the ECG. In maladaptive RVH there is reduced inotrope responsiveness because of G-protein receptor kinase-mediated downregulation, desensitization, and uncoupling of β-adrenoreceptors. RV ischemia may result from capillary rarefaction or decreased right coronary artery perfusion pressure. Maladaptive RVH shares metabolic abnormalities with cancer including aerobic glycolysis (resulting from a forkhead box protein O1-mediated transcriptional upregulation of pyruvate dehydrogenase kinase), and glutaminolysis (reflecting ischemia-induced cMyc activation). Augmentation of glucose oxidation is beneficial in experimental RVH and can be achieved by inhibition of pyruvate dehydrogenase kinase, fatty acid oxidation, or glutaminolysis. Therapeutic targets in RV failure include chamber-specific abnormalities of metabolism, angiogenesis, adrenergic signaling, and phosphodiesterase-5 expression. The ability to restore RV function in experimental models challenges the dogma that RV failure is irreversible without regression of pulmonary vascular disease. © 2014 American Heart Association, Inc.
Rimbaş, Roxana C; Mihăilă, Sorina; Enescu, Oana A; Vinereanu, Dragoş
2016-12-01
2D speckle tracking echocardiography (2DSTE) was proved to be accurate for the assessment of the RV function. However, normal values for RV strain refer mostly to 3- or 6-segment models, excluding the contribution of other RV walls to RV function. We analyze RV function by 2DSTE in a normal population, using parasternal two-(2C) and apical four-chamber (4C) RV views, and creating a new 12-segment model for a potential better definition of RV function. We prospectively evaluated 100 normals using 2DE and STE. We assessed the RV systolic function from regional strain (basal, mid, and apical), and at the level of each wall: lateral (LS), septal (SS), inferior (IS), and anterior (AS), and also global strain for 4C (4CGS), and 2C (2CGS). Global systolic strain rate (SRs) was measured from 2C and 4C views. Diastolic function was assessed from early (SRe) and late global strain rate (SRl), for both views. A total of 70 healthy individuals (48±15 years, 34 men) were suitable for concomitant 4C and 2CRV analysis. Feasibility of the STE analysis was 87.8%. We found significantly lower SS by comparison with LS, AS, and IS (P<.001). All S/SR parameters (GS, SRs, and SRe) were higher in 2C view than in 4C view (P<.001). All systolic S/SR parameters did not change with age. The early diastolic SR decreased, while the late diastolic SR increased with age. Our 12-segment RV strain model is feasible. Moreover, 2DSTE analysis using 2C and 4C views of the RV does not provide similar information. Rather, they offer complementary data. This might be of particularly clinical interest in diseases with regional RV dysfunction. © 2016, Wiley Periodicals, Inc.
Mukherjee, Monica; Sharma, Kavita; Madrazo, Jose A; Tedford, Ryan J; Russell, Stuart D; Hays, Allison G
2017-07-15
In urban populations, worsening renal function (WRF) is well established in patients hospitalized with acute decompensated heart failure with preserved ejection fraction (HFpEF). However, the mechanisms for development of WRF in the setting of acute HF in HFpEF are unclear. In the present study, we sought to characterize conventional echocardiographic measures of right ventricular (RV) chamber size and function to determine whether RV dysfunction and/or adverse RV remodeling is related to WRF in patients with HFpEF. Our study included 104 adult patients with HFpEF (EF ≥ 55%) with technically adequate 2-dimensional echocardiograms performed during their hospitalization for acute decompensated HF to determine echocardiographic predictors of WRF, defined as a serum creatinine (Cr) increase of ≥ 0.3 mg/dl within 72 hours of hospitalization. Thirty-eight of the 104 patients (36%) developed WRF (mean Cr increase = 0.9 ± 0.1 mg/dl) during the hospitalization (mean age ± SD of 64 ± 12 years, 27 women [71%], 29 black [76%]). There were no significant differences in LV medial E/e' ratio and RV systolic pressure by WRF status or in linear dimensions of RV and right atrial size. RV fractional area change, a measure of RV function, however, was significantly decreased in HFpEF patients with WRF compared with the no WRF group (p = 0.003), whereas RV free wall thickness (p = 0.001) was increased. In conclusion, linear and volumetric measures of dimensions of right atrial and RV chamber size did not distinguish HFpEF patients with and without WRF. However, in HFpEF patients with WRF during acute HF hospitalization, there was a significant decrease in RV function and a significant increase in RV free wall thickness compared with matched patients with no WRF. These findings suggest that adverse RV remodeling and RV dysfunction occur in HFpEF patients with WRF. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain natriuretic peptide and right heart dysfunction after heart transplantation.
Talha, Samy; Charloux, Anne; Piquard, François; Geny, Bernard
2017-06-01
Heart transplantation (HT) should normalize cardiac endocrine function, but brain natriuretic peptide (BNP) levels remain elevated after HT, even in the absence of left ventricular hemodynamic disturbance or allograft rejection. Right ventricle (RV) abnormalities are common in HT recipients (HTx), as a result of engraftment process, tricuspid insufficiency, and/or repeated inflammation due to iterative endomyocardial biopsies. RV function follow-up is vital for patient management as RV dysfunction is a recognized cause of in-hospital death and is responsible for a worse prognosis. Interestingly, few and controversial data are available concerning the relationship between plasma BNP levels and RV functional impairment in HTx. This suggests that infra-clinical modifications, such as subtle immune system disorders or hypoxic conditions, might influence BNP expression. Nevertheless, due to other altered circulating molecular forms of BNP, a lack of specificity of BNP assays is described in heart failure patients. This phenomenon could exist in HT population and could explain elevated BNP plasmatic levels despite a normal RV function. In clinical practice, intra-individual change in BNP over time, rather than absolute BNP values, might be more helpful in detecting right cardiac dysfunction in HTx. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Non-functional tricuspid valve disease
2017-01-01
Only 75% of severe tricuspid regurgitation is classified as functional, or related primarily to pulmonary hypertension, right ventricular dysfunction, or a combination of both. Non-functional tricuspid regurgitation occurs when there is damage to the tricuspid leaflets, chordae, papillary muscles, or annulus, independent of right ventricular dysfunction or pulmonary hypertension. The entities that cause non-functional tricuspid regurgitation include rheumatic and myxomatous disease, acquired and genetic connective tissue disorders, endocarditis, sarcoid, pacing, RV biopsy, blunt trauma, radiation, carcinoid, ergot alkaloids, dopamine agonists, fenfluramine, cardiac tumors, atrial fibrillation, and congenital malformations. Over time, severe tricuspid regurgitation that is initially non-functional, can blend into functional tricuspid regurgitation, related to progressive right ventricular dysfunction. Symptoms and signs, including a falling right ventricular ejection fraction, cardiac cirrhosis, ascites, esophageal varices, and anasarca, may occur insidiously and late, but are associated with substantial morbidity and mortality. Attempted valve repair or replacement at late stages carries a high mortality. Crucial to following patients with severe non-functional tricuspid regurgitation is attention to echo quantification of the tricuspid regurgitation and right ventricular function, patient symptoms, and the physical examination. PMID:28706863
Non-functional tricuspid valve disease.
Adler, Dale S
2017-05-01
Only 75% of severe tricuspid regurgitation is classified as functional, or related primarily to pulmonary hypertension, right ventricular dysfunction, or a combination of both. Non-functional tricuspid regurgitation occurs when there is damage to the tricuspid leaflets, chordae, papillary muscles, or annulus, independent of right ventricular dysfunction or pulmonary hypertension. The entities that cause non-functional tricuspid regurgitation include rheumatic and myxomatous disease, acquired and genetic connective tissue disorders, endocarditis, sarcoid, pacing, RV biopsy, blunt trauma, radiation, carcinoid, ergot alkaloids, dopamine agonists, fenfluramine, cardiac tumors, atrial fibrillation, and congenital malformations. Over time, severe tricuspid regurgitation that is initially non-functional, can blend into functional tricuspid regurgitation, related to progressive right ventricular dysfunction. Symptoms and signs, including a falling right ventricular ejection fraction, cardiac cirrhosis, ascites, esophageal varices, and anasarca, may occur insidiously and late, but are associated with substantial morbidity and mortality. Attempted valve repair or replacement at late stages carries a high mortality. Crucial to following patients with severe non-functional tricuspid regurgitation is attention to echo quantification of the tricuspid regurgitation and right ventricular function, patient symptoms, and the physical examination.
Jang, Sae; Vanderpool, Rebecca R; Avazmohammadi, Reza; Lapshin, Eugene; Bachman, Timothy N; Sacks, Michael; Simon, Marc A
2017-09-12
Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E 1 and E 2 , respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (E ed ) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P =0.010). Longitudinal E 1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P =0.018), whereas there were no significant changes in longitudinal E 2 or circumferential E 1 and E 2 . Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in E ed , and biomechanically, by an increase in longitudinal E 1 . Modest increases in tissue biomechanical stiffness are associated with large increases in E ed . Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
López-Candales, Angel
2014-07-01
Right ventricular (RV) dilatation and systolic dysfunction are known remodeling changes occurring in chronic pulmonary hypertension and are likely the result of increases in pulmonary vascular resistance (PVR). It remains unclear whether PVR affects primarily the main RV chamber (mRVc) or the RV outflow tract (RVOT). Standard echocardiography data were collected from a heterogeneous population of 85 consecutive patients (mean age of 54 ± 12 years and mean pulmonary artery systolic pressure of 56 ± 28 mm Hg) to determine how PVR affected size and function of both RV chambers. Regarding size, PVR correlated more with mRVc end systolic area (r = 0.77; P < 0.0001) than either mRVc end diastolic area (r = 0.58; P < 0.0001) or RVOT systolic length (r = 0.54; P < 0.0001), although it did not correlate with RVOT end diastolic length. In terms of fractional area change, a stronger negative correlation was seen between PVR and mRVc (r = -0.77; P < 0.0001) than with PVR and RVOT (r = -0.69; P < 0.0001). Systolic velocity of the tricuspid annulus was the best parameter in identifying elevated PVR. Based on the echocardiography results, increasing PVR values appear to result in differential RV remodeling with significant mRVc dilation and systolic dysfunction when compared with RVOT. It is important to determine whether the different RV remodeling processes occur in all patients with chronic pulmonary hypertension, regardless of etiology; alter therapeutic response; or determine clinical outcomes.
Filippov, Aleksei A; Del Nido, Pedro J; Vasilyev, Nikolay V
2016-10-25
In recent decades, significant progress has been made in the diagnosis and management of congenitally corrected transposition of the great arteries (ccTGA). Nevertheless, gradual dysfunction and failure of the right ventricle (RV) in the systemic circulation remain the main contributors to mortality and disability for patients with ccTGA, especially after adolescence. Anatomic repair of ccTGA effectively resolves the problem of failure of the systemic RV and has good early and midterm results. However, this strategy is applicable primarily in infants and children up to their teens and has associated risks and limitations, and new challenges can arise in the late postoperative period. Patients with ccTGA manifesting progressive systemic RV dysfunction beyond adolescence represent the major challenge. Several palliative options such as cardiac resynchronization therapy, tricuspid valve repair or replacement, pulmonary artery banding, and implantation of an assist device into the systemic RV can be used to improve functional status and to delay the progression of ventricular dysfunction in patients who are not suitable for anatomic correction of ccTGA. For adult patients with severe systemic RV failure, heart transplantation currently remains the only long-term lifesaving procedure, although donor organ availability remains one of the most limiting factors in this type of therapy. This review focuses on current surgical and medical strategies and interventional options for the prevention and management of systemic RV failure in adults and children with ccTGA. © 2016 American Heart Association, Inc.
Choi, Bum-Rak; Li, Weiyan; Terentyev, Dmitry; Kabakov, Anatoli Y; Zhong, Mingwang; Rees, Colin M; Terentyeva, Radmila; Kim, Tae Yun; Qu, Zhilin; Peng, Xuwen; Karma, Alain; Koren, Gideon
2018-06-01
Sudden death in long-QT syndrome type 1 (LQT1), an inherited disease caused by loss-of-function mutations in KCNQ1, is triggered by early afterdepolarizations (EADs) that initiate polymorphic ventricular tachycardia (pVT). We investigated ionic mechanisms that underlie pVT in LQT1 using a transgenic rabbit model of LQT1. Optical mapping, cellular patch clamping, and computer modeling were used to elucidate the mechanisms of EADs in transgenic LQT1 rabbits. The results showed that shorter action potential duration in the right ventricle (RV) was associated with focal activity during pVT initiation. RV cardiomyocytes demonstrated higher incidence of EADs under 50 nmol/L isoproterenol. Voltage-clamp studies revealed that the transient outward potassium current (I to ) magnitude was 28% greater in RV associated with KChiP2 but with no differences in terms of calcium-cycling kinetics and other sarcolemmal currents. Perfusing with the I to blocker 4-aminopyridine changed the initial focal sites of pVT from the RV to the left ventricle, corroborating the role of I to in pVT initiation. Computer modeling showed that EADs occur preferentially in the RV because of the larger conductance of the slow-inactivating component of I to , which repolarizes the membrane potential sufficiently rapidly to allow reactivation of I Ca,L before I Kr has had sufficient time to activate. I to heterogeneity creates both triggers and an arrhythmogenic substrate in LQT1. In the absence of I Ks , I to interactions with I Ca,L and I Kr promote EADs in the RV while prolonging action potential duration in the left ventricle. This heterogeneity of action potential enhances dispersion of refractoriness and facilitates conduction blocks that initiate pVTs. © 2018 American Heart Association, Inc.
Effect of right ventricular pacing on cardiac apex rotation assessed by a gyroscopic sensor.
Marcelli, Emanuela; Cercenelli, Laura; Parlapiano, Mario; Fumero, Roberto; Bagnoli, Paola; Costantino, Maria Laura; Plicchi, Gianni
2007-01-01
To quantify cardiac apex rotation (CAR), the authors recently proposed the use of a Coriolis force sensor (gyroscope) as an alternative to other complex techniques. The aim of this study was to evaluate the effects of right ventricular (RV) pacing on CAR. A sheep heart was initially paced from the right atrium to induce a normal activation sequence at a fixed heart rate (AAI mode) and then an atrioventricular pacing was performed (DOO mode, AV delay = 60 ms). A small gyroscope was epicardially glued on the cardiac apex to measure the angular velocity (Ang V). From AAI to DOO pacing mode, an increase (+9.2%, p < 0.05) of the maximum systolic twisting velocity (Ang VMAX) and a marked decrease (-19.9%, p < 0.05) of the maximum diastolic untwisting velocity (Ang VMIN) resulted. RV pacing had negligible effects (-3.1%, p = 0.09) on the maximum angle of CAR, obtained by integrating Ang V. The hemodynamic parameters of systolic (LVdP/dtMAX) and diastolic (LVdP/dtMIN) cardiac function showed slight variations (-3.8%, p < 0.05 and +3.9%, p < 0.05, respectively). Results suggest that cardiac dyssynchrony induced by RV pacing can alter the normal physiological ventricular twist patterns, particularly affecting diastolic untwisting velocity.
D'Errico, Luigia; Lamacie, Mariana M; Jimenez Juan, Laura; Deva, Djeven; Wald, Rachel M; Ley, Sebastian; Hanneman, Kate; Thavendiranathan, Paaladinesh; Wintersperger, Bernd J
2016-09-22
Test-retest reproducibility is of utmost importance in follow-up of right ventricular (RV) volumes and function; optimal slice orientation though is not yet known. We compared test-retest reproducibility and intra-/inter-observer variability of right ventricular (RV) volumes and function assessed with short-axis and transverse cardiovascular magnetic resonance (CMR). Eighteen volunteers underwent cine CMR for RV assessment obtaining ventricular coverage in short-axis and transverse slice orientation. Additional 2D phase contrast flow imaging of the main pulmonary artery (MPA) was performed. After complete repositioning repeat acquisitions were performed. Data sets were contoured by two blinded observers. Statistical analysis included Student's t-test, Bland-Altman plots, intra-class correlation coefficient (ICC) and 2-way ANOVA, SEM and minimal detectable difference calculations. Heart rates (65.0 ± 7.4 vs. 67.6 ± 9.9 bpm; P = 0.1) and MPA flow (89.8 ± 16.6 vs. 87.2 ± 14.9 mL; P = 0.1) did not differ between imaging sessions. EDV and ESV demonstrated an inter-study bias of 0.4 %[-9.5 %,10.3 %] and 2.1 %[-12.3 %,16.4 %] for short-axis and 1.1 %[-7.3 %,9.4 %] and 0.8 %[-16.0 %,17.6 %] for transverse orientation, respectively. There was no significant interaction between imaging orientation and interstudy reproducibility (p = 0.395-0.824), intra-observer variability (p = 0.726-0.862) or inter-observer variability (p = 0.447-0.706) by 2-way ANOVA. Inter-observer agreement by ICC was greater for short axis versus transverse orientation for all parameters (0.769-0.986 vs. 0.625-0.983, respectively). Minimal detectable differences for short axis and transverse orientations were 10.1 mL/11.5 mL for EDV, 8.3 mL/8.4 mL for ESV and 4.1 % vs. 4.7 % for EF, respectively. Short-axis and transverse orientation both provide reliable and reproducible measures for follow-up of RV volumes and global function. Therefore, additional transverse SSFP cine CMR may not necessarily be required if performed for the sole purpose of quantitative volumetric RV assessment.
Early Left and Right Ventricular Response to Aortic Valve Replacement.
Duncan, Andra E; Sarwar, Sheryar; Kateby Kashy, Babak; Sonny, Abraham; Sale, Shiva; Alfirevic, Andrej; Yang, Dongsheng; Thomas, James D; Gillinov, Marc; Sessler, Daniel I
2017-02-01
The immediate effect of aortic valve replacement (AVR) for aortic stenosis on perioperative myocardial function is unclear. Left ventricular (LV) function may be impaired by cardioplegia-induced myocardial arrest and ischemia-reperfusion injury, especially in patients with LV hypertrophy. Alternatively, LV function may improve when afterload is reduced after AVR. The right ventricle (RV), however, experiences cardioplegic arrest without benefiting from improved loading conditions. Which of these effects on myocardial function dominate in patients undergoing AVR for aortic stenosis has not been thoroughly explored. Our primary objective is thus to characterize the effect of intraoperative events on LV function during AVR using echocardiographic measures of myocardial deformation. Second, we evaluated RV function. In this supplementary analysis of 100 patients enrolled in a clinical trial (NCT01187329), 97 patients underwent AVR for aortic stenosis. Of these patients, 95 had a standardized intraoperative transesophageal echocardiographic examination of systolic and diastolic function performed before surgical incision and repeated after chest closure. Echocardiographic images were analyzed off-line for global longitudinal myocardial strain and strain rate using 2D speckle-tracking echocardiography. Myocardial deformation assessed at the beginning of surgery was compared with the end of surgery using paired t tests corrected for multiple comparisons. LV volumes and arterial blood pressure decreased, and heart rate increased at the end of surgery. Echocardiographic images were acceptable for analysis in 72 patients for LV strain, 67 for LV strain rate, and 54 for RV strain and strain rate. In 72 patients with LV strain images, 9 patients required epinephrine, 22 required norepinephrine, and 2 required both at the end of surgery. LV strain did not change at the end of surgery compared with the beginning of surgery (difference: 0.7 [97.6% confidence interval, -0.2 to 1.5]%; P = 0.07), whereas LV systolic strain rate improved (became more negative) (-0.3 [-0.4 to -0.2] s; P < 0.001). In contrast, RV systolic strain worsened (became less negative) at the end of surgery (difference: 4.6 [3.1 to 6.0]%; P < 0.001) although RV systolic strain rate was unchanged (0.0 [97.6% confidence interval, -0.1 to 0.1]; P = 0.83). LV function improved after replacement of a stenotic aortic valve demonstrated by improved longitudinal strain rate. In contrast, RV function, assessed by longitudinal strain, was reduced.
Goo, Hyun Woo; Park, Sang-Hyub
2015-12-01
To assess agreement between two semi-automatic, three-dimensional (3D) computed tomography (CT) ventricular volumetry methods with different user interactions in patients with congenital heart disease. In 30 patients with congenital heart disease (median age 8 years, range 5 days-33 years; 20 men), dual-source, multi-section, electrocardiography-synchronized cardiac CT was obtained at the end-systolic (n = 22) and/or end-diastolic (n = 28) phase. Nineteen left ventricle end-systolic (LV ESV), 28 left ventricle end-diastolic (LV EDV), 22 right ventricle end-systolic (RV ESV), and 28 right ventricle end-diastolic volumes (RV EDV) were successfully calculated using two semi-automatic, 3D segmentation methods with different user interactions (high in method 1, low in method 2). The calculated ventricular volumes of the two methods were compared and correlated. A P value <0.05 was considered statistically significant. LV ESV (35.95 ± 23.49 ml), LV EDV (88.76 ± 61.83 ml), and RV ESV (46.87 ± 47.39 ml) measured by method 2 were slightly but significantly smaller than those measured by method 1 (41.25 ± 26.94 ml, 92.20 ± 62.69 ml, 53.61 ± 50.08 ml for LV ESV, LV EDV, and RV ESV, respectively; P ≤ 0.02). In contrast, no statistically significant difference in RV EDV (122.57 ± 88.57 ml in method 1, 123.83 ± 89.89 ml in method 2; P = 0.36) was found between the two methods. All ventricular volumes showed very high correlation (R = 0.978, 0.993, 0.985, 0.997 for LV ESV, LV EDV, RV ESV, and RV EDV, respectively; P < 0.001) between the two methods. In patients with congenital heart disease, 3D CT ventricular volumetry shows good agreement and high correlation between the two methods, but method 2 tends to slightly underestimate LV ESV, LV EDV, and RV ESV.
Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo
2014-12-01
Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.
Ouda, Ahmed; Matschke, Klaus; Ghazy, Tamer; Speiser, Uwe; Alexiou, Konstantin; Tugtekin, Sems-Malte; Schoen, Steffen; Kappert, Utz
2013-09-01
The study aim was to assess the impact of reducing the right ventricular (RV) cavity in order to optimize the outcome of tricuspid valve (TV) repair in cases of functional tricuspid regurgitation (FTR) with dilated right ventricle. Between May 2007 and February 2010, a total of 17 patients (six males, 11 females; mean age 69.5 +/- 10.1 years; mean logistic EuroSCORE 24 +/- 13%) with severe FTR and severe RV dilation were included. Echocardiography and magnetic resonance imaging (MRI) were performed for geometric assessment of the right ventricle. Intraoperatively, the lateral RV free wall was plicated to reduce the RV cavum to approximate the papillary muscles and decrease tethering of the TV; a conventional ring annuloplasty was then performed. Follow up included echocardiography and MRI at one month and one year postoperatively. The mean operative time was 157 +/- 30 min, and the cross-clamp time 63 13 min. Postoperatively, the mean bleeding volume was 486 +/- 455 ml, the rethoracotomy rate 5.9%, intensive therapy unit (ITU) stay 6.0 +/- 4.4 days, and hospital stay 19.0 +/- 8.8 days. In-hospital mortality was 17.6%. The mean follow up was 14.4 +/- 2.4 months. The one-year follow up revealed a survival of 82.3%, a slight decrease in RV ejection fraction (from 33.5 +/- 4.2% to 31.7 +/- 5.7%; p = 0.13), a significant reduction in the RV end-diastolic volume index (from 160 +/- 15.6 to 128 +/- 10 ml/m2; p = 0.0001), a reduction in TV tenting area (from 3.3 +/- 0.9 to 0.9 +/- 0.3 cm2; p = 0.0001), and a significant reduction in the ratio of TR jet to right atrial surface area (from 54.8 +/- 8.2% to 14.1 +/- 3.5%; p = 0.0001). In cases of FTR, RV dilation may be considered as a correctable factor at subvalvular level to optimize the outcome of TV repair.
Rain, Silvia; Bos, Denielli da Silva Goncalves; Handoko, M. Louis; Westerhof, Nico; Stienen, Ger; Ottenheijm, Coen; Goebel, Max; Dorfmüller, Peter; Guignabert, Christophe; Humbert, Marc; Bogaard, Harm‐Jan; dos Remedios, Cris; Saripalli, Chandra; Hidalgo, Carlos G.; Granzier, Henk L.; Vonk‐Noordegraaf, Anton; van der Velden, Jolanda; de Man, Frances S.
2014-01-01
Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2+ handling proteins contribute to RV diastolic dysfunction in PAH. PMID:24895160
Mercer-Rosa, Laura; Parnell, Aimee; Forfia, Paul R; Yang, Wei; Goldmuntz, Elizabeth; Kawut, Steven M
2013-11-01
Assessing right ventricular (RV) performance is essential for patients with tetralogy of Fallot (TOF). The aim of this study was to investigate the reliability and validity of tricuspid annular plane systolic excursion (TAPSE) against cardiac magnetic resonance imaging measures and cardiopulmonary exercise testing. A retrospective study was performed in 125 outpatients with repaired TOF with available protocol-driven echocardiography, cardiac magnetic resonance imaging, and exercise stress testing obtained as part of a cross-sectional study. TAPSE was measured on the two-dimensional apical four-chamber view on echocardiography by two readers. Multivariate linear regression was used to examine the association between TAPSE and measures of RV function and exercise capacity. The mean age was 12.6 ± 3.3 years, 41 patients (33%) were female, and 104 (83%) were white. TAPSE averaged 1.6 ± 0.37 cm, with an interreader intraclass correlation coefficient of 0.78 (n = 18). TAPSE was significantly associated with cardiac magnetic resonance-based RV stroke volume after adjustment for gender and body surface area (β = 13.8; 95% confidence interval, 2.25-25.30; P = .02). TAPSE was not associated with cardiac magnetic resonance-based RV ejection fraction (P = .77). On exercise testing, TAPSE was not associated with peak oxygen consumption, percentage of predicted oxygen consumption, oxygen pulse, or the ventilatory equivalent for carbon dioxide in patients with maximal exercise stress testing (n = 73 [58%]). TAPSE is reproducibly measured by echocardiography in patients with TOF. It is not associated with RV ejection fraction or exercise performance, and its association with RV stroke volume may be confounded by body size. On the basis of these results, TAPSE is not representative of global RV performance in patients with TOF. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Raj, Ravi; Puri, Goverdhan Dutt; Jayant, Aveek; Thingnam, Shyam Kumar Singh; Singh, Rana Sandip; Rohit, Manoj Kumar
2016-11-01
Right ventricular (RV) function alterations are invariably present in all patients after tetralogy of Fallot (TOF) repair. Unlike the developed world where most of the patients with TOF are corrected in infancy, average age of presentation and thus surgery for these patients in the developing world may be higher. We aimed to study the correlation between RV function parameters such as tricuspid annular peak systolic excursion (TAPSE), fractional area change (FAC), and tricuspid annular peak systolic velocity (S') with early outcome variables after intracardiac repair for TOF. Fifty patients with a preoperative diagnosis of tetralogy of Fallot scheduled for corrective surgery were included in this single-center, prospective observational study. A preoperative transthoracic echocardiogram was performed to measure RV function parameters (FAC0, TAPSE0, S'0). Transthoracic echocardiography was repeated postoperatively to measure FAC1, TAPSE1, S'1 (day 1) and FAC2, TAPSE2, and S'2 (day 3). The relationship between preoperative and postoperative RV function parameters with in-hospital mortality, duration of mechanical ventilation, and intensive care unit stay was studied. The median age of patients was 6 years (range 1-14 years). Multiple stepwise logistic regression analysis showed RV FAC as best predictor of clinical outcome. Area under the receiver operating characteristic curve for postoperative RV function parameters, that is, FAC, TAPSE, and S' to predict early or delayed recovery was 0.944, 0.875, and 0.655, respectively. Among the RV function parameters studied, RV FAC best predicted the early outcome variables after TOF repair, followed by TAPSE while lateral tricuspid annular velocity S' being the least predictive. © 2016, Wiley Periodicals, Inc.
Kapur, Navin K; Qiao, Xiaoying; Paruchuri, Vikram; Mackey, Emily E; Daly, Gerard H; Ughreja, Kishan; Ughreja, Keshan; Morine, Kevin J; Levine, Jonathan; Aronovitz, Mark J; Hill, Nicholas S; Jaffe, Iris Z; Letarte, Michelle; Karas, Richard H
2014-07-11
Right ventricular (RV) failure is a major cause of mortality worldwide and is often a consequence of RV pressure overload (RVPO). Endoglin is a coreceptor for the profibrogenic cytokine, transforming growth factor beta 1 (TGF-β1). TGF-β1 signaling by the canonical transient receptor protein channel 6 (TRPC-6) was recently reported to stimulate calcineurin-mediated myofibroblast transformation, a critical component of cardiac fibrosis. We hypothesized that reduced activity of the TGF-β1 coreceptor, endoglin, limits RV calcineurin expression and improves survival in RVPO. We first demonstrate that endoglin is required for TGF-β1-mediated calcineurin/TRPC-6 expression and up-regulation of alpha-smooth muscle antigen (α-SMA), a marker of myofibroblast transformation, in human RV fibroblasts. Using endoglin haploinsufficient mice (Eng(+/-)) we show that reduced endoglin activity preserves RV function, limits RV fibrosis, and attenuates activation of the calcineurin/TRPC-6/α-SMA pathway in a model of angio-obliterative pulmonary hypertension. Next, using Eng(+/-) mice or a neutralizing antibody (Ab) against endoglin (N-Eng) in wild-type mice, we show that reduced endoglin activity improves survival and attenuates RV fibrosis in models of RVPO induced by pulmonary artery constriction. To explore the utility of targeting endoglin, we observed a reversal of RV fibrosis and calcineurin levels in wild-type mice treated with a N-Eng Ab, compared to an immunoglobulin G control. These data establish endoglin as a regulator of TGF-β1 signaling by calcineurin and TRPC-6 in the RV and identify it as a potential therapeutic target to limit RV fibrosis and improve survival in RVPO, a common cause of death in cardiac and pulmonary disease. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Rain, Silvia; Andersen, Stine; Najafi, Aref; Gammelgaard Schultz, Jacob; da Silva Gonçalves Bós, Denielli; Handoko, M Louis; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; Andersen, Asger; van der Velden, Jolanda; Ottenheijm, Coen A C; de Man, Frances S
2016-07-01
The purpose of this study was to determine the relative contribution of fibrosis-mediated and myofibril-mediated stiffness in rats with mild and severe right ventricular (RV) dysfunction. By performing pulmonary artery banding of different diameters for 7 weeks, mild RV dysfunction (Ø=0.6 mm) and severe RV dysfunction (Ø=0.5 mm) were induced in rats. The relative contribution of fibrosis- and myofibril-mediated RV stiffness was determined in RV trabecular strips. Total myocardial stiffness was increased in trabeculae from both mild and severe RV dysfunction in comparison to controls. In severe RV dysfunction, increased RV myocardial stiffness was explained by both increased fibrosis-mediated stiffness and increased myofibril-mediated stiffness, whereas in mild RV dysfunction, only myofibril-mediated stiffness was increased in comparison to control. Histological analyses revealed that RV fibrosis gradually increased with severity of RV dysfunction, whereas the ratio of collagen I/III expression was only elevated in severe RV dysfunction. Stiffness measurements in single membrane-permeabilized RV cardiomyocytes demonstrated a gradual increase in RV myofibril stiffness, which was partially restored by protein kinase A in both mild and severe RV dysfunction. Increased expression of compliant titin isoforms was observed only in mild RV dysfunction, whereas titin phosphorylation was reduced in both mild and severe RV dysfunction. RV myocardial stiffness is increased in rats with mild and severe RV dysfunction. In mild RV dysfunction, stiffness is mainly determined by increased myofibril stiffness. In severe RV dysfunction, both myofibril- and fibrosis-mediated stiffness contribute to increased RV myocardial stiffness. © 2016 The Authors.
Right Ventricular Myocardial Stiffness in Experimental Pulmonary Arterial Hypertension
Rain, Silvia; Andersen, Stine; Najafi, Aref; Gammelgaard Schultz, Jacob; da Silva Gonçalves Bós, Denielli; Handoko, M. Louis; Bogaard, Harm-Jan; Vonk-Noordegraaf, Anton; Andersen, Asger; van der Velden, Jolanda; Ottenheijm, Coen A.C.
2016-01-01
Background— The purpose of this study was to determine the relative contribution of fibrosis-mediated and myofibril-mediated stiffness in rats with mild and severe right ventricular (RV) dysfunction. Methods and Results— By performing pulmonary artery banding of different diameters for 7 weeks, mild RV dysfunction (Ø=0.6 mm) and severe RV dysfunction (Ø=0.5 mm) were induced in rats. The relative contribution of fibrosis- and myofibril-mediated RV stiffness was determined in RV trabecular strips. Total myocardial stiffness was increased in trabeculae from both mild and severe RV dysfunction in comparison to controls. In severe RV dysfunction, increased RV myocardial stiffness was explained by both increased fibrosis-mediated stiffness and increased myofibril-mediated stiffness, whereas in mild RV dysfunction, only myofibril-mediated stiffness was increased in comparison to control. Histological analyses revealed that RV fibrosis gradually increased with severity of RV dysfunction, whereas the ratio of collagen I/III expression was only elevated in severe RV dysfunction. Stiffness measurements in single membrane-permeabilized RV cardiomyocytes demonstrated a gradual increase in RV myofibril stiffness, which was partially restored by protein kinase A in both mild and severe RV dysfunction. Increased expression of compliant titin isoforms was observed only in mild RV dysfunction, whereas titin phosphorylation was reduced in both mild and severe RV dysfunction. Conclusions— RV myocardial stiffness is increased in rats with mild and severe RV dysfunction. In mild RV dysfunction, stiffness is mainly determined by increased myofibril stiffness. In severe RV dysfunction, both myofibril- and fibrosis-mediated stiffness contribute to increased RV myocardial stiffness. PMID:27370069
Sjöberg, Pia; Bidhult, Sebastian; Bock, Jelena; Heiberg, Einar; Arheden, Håkan; Gustafsson, Ronny; Nozohoor, Shahab; Carlsson, Marcus
2018-04-17
Indications for pulmonary valve replacement (PVR) in patients with pulmonary regurgitation (PR) after repaired tetralogy of Fallot (rToF) are debated. We aimed to compare right (RV) and left ventricular (LV) kinetic energy (KE) measured by 4D-flow magnetic resonance imaging (MRI) in patients to controls, to further understand the pathophysiological effects of PR. Fifteen patients with rToF with PR > 20% and 14 controls underwent MRI. Ventricular volumes and KE were quantified from cine MRI and 4D-flow, respectively. Lagrangian coherent structures were used to discriminate KE in the PR. Restrictive RV physiology was defined as end-diastolic forward flow. LV systolic peak KE was lower in rToF, 2.8 ± 1.1 mJ, compared to healthy volunteers, 4.8 ± 1.1 mJ, p < 0.0001. RV diastolic peak KE was higher in rToF (7.7 ± 4.3 mJ vs 3.1 ± 1.3 mJ, p = 0.0001) and the difference most pronounced in patients with non-restrictive RV physiology. KE was primarily located in the PR volume at the time of diastolic peak KE, 64 ± 17%. This is the first study showing disturbed KE in patients with rToF and PR, in both the RV and LV. The role of KE as a potential early marker of ventricular dysfunction to guide intervention needs to be addressed in future studies. • Kinetic energy (KE) reflects ventricular performance • KE is a potential marker of ventricular dysfunction in Fallot patients • KE is disturbed in both ventricles in patients with tetralogy of Fallot • KE contributes to the understanding of the pathophysiology of pulmonary regurgitation • Lagrangian coherent structures enable differentiation of ventricular inflows.
Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu
2014-01-01
The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments. PMID:25068019
Gallet, Romain; Meyer, Guy; Ternacle, Julien; Biendel, Caroline; Brunet, Anne; Meneveau, Nicolas; Rosario, Roger; Couturaud, Francis; Sebbane, Mustapha; Lamblin, Nicolas; Bouvaist, Helene; Coste, Pierre; Maitre, Bernard; Bastuji-Garin, Sylvie; Dubois-Rande, Jean-Luc; Lim, Pascal
2015-05-22
In acute pulmonary embolism (PE), poor outcome is usually related to right ventricular (RV) failure due to the increase in RV afterload. Treatment of PE with RV failure without shock is controversial and usually relies on fluid expansion to increase RV preload. However, several studies suggest that fluid expansion may worsen acute RV failure by increasing RV dilation and ischaemia, and increase left ventricular compression by RV dilation. By reducing RV enlargement, diuretic treatment may break this vicious circle and provide early improvement in normotensive patients referred for acute PE with RV failure. The Diuretic versus placebo in Pulmonary Embolism with Right ventricular enlargement trial (DiPER) is a prospective, multicentre, randomised (1:1), double-blind, placebo controlled study assessing the superiority of furosemide as compared with placebo in normotensive patients with confirmed acute PE and RV dilation (diagnosed on echocardiography or CT of the chest) and positive brain natriuretic peptide result. The primary end point will be a combined clinical criterion derived from simplified Pulmonary Embolism Severity Index (PESI) score and evaluated at 24 h. It will include: (1) urine output >0.5 mL/kg/min for the past 24 h; (2) heart rate <110 bpm; (3) systolic blood pressure >100 mm Hg and (4) arterial oxyhaemoglobin level >90%. Thirty-day major cardiac events defined as death, cardiac arrest, mechanical ventilation, need for catecholamine and thrombolysis, will be evaluated as a secondary end point. Assuming an increase of 30% in the primary end point with furosemide and a β risk of 10%, 270 patients will be required. Ethical approval was received from the ethical committee of Ile de France (2014-001090-14). The findings of the trial will be disseminated through peer-reviewed journals, and national and international conference presentations. NCT02268903. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Schiller, Petter; Vikholm, Per; Hellgren, Laila
2016-03-01
Right ventricular (RV) failure is a major cause of morbidity and mortality after left ventricular assist device (LVAD) placement and remains hard to predict. We hypothesized that partial surgical exclusion of the RV with a modified Glenn shunt during LVAD treatment would reduce RV stroke work. An LVAD was implanted in eight pigs and a modified Glenn shunt was constructed. A conductance pressure-volume catheter was placed in the right ventricle through the apex. Haemodynamic data and pressure-volume loops were obtained at the following time periods: (i) baseline, (ii) open shunt, (iii) LVAD with closed shunt and (iii) LVAD and open shunt. During LVAD therapy, the right atrial (RA) pressure increased from 9 mmHg (9-9) to 15 mmHg (12-15), P = 0.01. RV stroke volume increased from 30 ml (29-40) to 51 ml (42-53), P < 0.01. Also, RV stroke work increased to 708 mmHg ml (654-1193) from 535 mmHg ml (424-717), P = 0.04, compared with baseline. During LVAD therapy in combination with a Glenn shunt, the RA pressure decreased from 15 mmHg (12-15) to 10 mmHg (7-11) when compared with LVAD therapy only, P = 0.01. A decrease in RV stroke work from 708 mmHg ml (654-1193) to 465 mmHg ml (366-711), P = 0.04, was seen when the LVAD was combined with a shunt, not significantly different from the baseline value (535 mmHg ml). The developed pressure in the right ventricle decreased from 29 mmHg (26-32) to 21 mmHg (20-24), P < 0.01. The pressure-volume loops of the RV show a significant reduction of RV stroke work during the use of the shunt with LVAD treatment. A modified Glenn shunt reduced RV volumes, RV stroke work and RA pressure during LVAD therapy in an experimental model of heart failure in pigs. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Kutty, Shelby; Olson, Joan; Danford, Christopher J; Sandene, Erin K; Xie, Feng; Fletcher, Scott E; Erickson, Christopher C; Kugler, John D; Danford, David A; Porter, Thomas R
2012-06-01
We sought to evaluate the efficacy of ultrasound contrast (UC) and low mechanical index real-time perfusion (RTP) in the haemodynamic and anatomic assessment of repaired congenital heart disease (CHD) at rest and during supine bicycle stress echocardiography (BSE). Patients with CHD (n = 51, median age 21.5 years) were prospectively studied. All had compromised image quality, 20 (39%) had arrhythmias, and 10 (20%) had pacemakers. RTP was performed at rest and during BSE using Definity and Contrast Pulse Sequencing, with assessment of Doppler pressure gradients. Diagnoses included tetralogy of Fallot (n = 27), transposition of the great arteries (TGA) atrial switch (n = 10), TGA arterial switch (n = 2), aortic valve disease (n = 4), Fontan (n = 4), and Kawasaki disease (n = 4). UC with RTP improved endocardial border definition, with increased number of left ventricular (LV) and right ventricular (RV) segments visualized at rest (P < 0.0001) and during stress. LV ejection fraction (EF) and RV fractional area change (FAC) were measurable at rest and peak stress, RV FAC correlating closely with same-day magnetic resonance EFs (r = 0.72; P < 0.001). UC enhanced Doppler signals, enabling subpulmonary ventricular systolic pressure measurements at rest and stress. In six patients, marked elevations of subpulmonary ventricular systolic pressure were detected with UC during BSE, and quantifiable ventricular dysfunction. No adverse events occurred, other than transient low back pain in one patient. UC at rest and with supine BSE enables safe and comprehensive assessment of anatomy, haemodynamics, and biventricular functional and perfusion reserve in adolescents and young adults with surgically modified CHD.
Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
Masithulela, Fulufhelo
2016-11-25
The recognition of RV overpressure is critical to human life, as this may signify morbidity and mortality. Right ventricle (RV) dysfunction is understood to have an impact on the performance of the left ventricle (LV), but the mechanisms remain poorly understood. It is understood that ventricular compliance has the ability to affect cardiac performance. In this study, a bi-ventricular model of the rat heart was used in preference to other, single-ventricle models. Finite element analysis (FEA) of the bi-ventricular model provides important information on the function of the healthy heart. The passive myocardium was modelled as a nearly incompressible, hyperelastic, transversely isotropic material using finite element (FE) methods. Bi-ventricular geometries of healthy rat hearts reconstructed from magnetic resonance images were imported in Abaqus©. In simulating the normal passive filling of the rat heart, pressures of 4.8 kPa and 0.0098 kPa were applied to the inner walls of the LV and RV respectively. In addition, to simulate the overpressure of the RV, pressures of 2.4 kPa and 4.8 kPa were applied to the endocardial walls of the LV and RV respectively. As boundary conditions, the circumferential and longitudinal displacements at the base were set to zero. The radial displacements at the base were left free. The results show that the average circumferential stress at the mid-wall in the overloaded model increased from 2.8 kPa to 18.2 kPa. The average longitudinal stress increased from 1.5 kPa to 9.7 kPa. Additionally, in the radial direction, the average stress increased from 0.1 kPa to 0.6 kPa in the mid-wall. The average circumferential strain was found to be 0.138 and 0.100 on the endocardium of the over pressured and healthy model respectively. The average circumferential stress at the epicardium, mid-wall and endocardium in the case of a normal heart is 10 times lower than in the overloaded heart model. The finite analysis method is able to provide insights into the behaviour of the over pressured model (myocardium). In the overloaded model the high stresses and strains were observed on the septal wall. The bi-ventricular model was shown to provide useful information relating to the over pressured ventricle. The possible heart dysfunction may be attributable to high stress and strain in the over pressured heart.
Bornaun, Helen; Dedeoglu, Reyhan; Oztarhan, Kazim; Dedeoglu, Savas; Erfidan, Erkan; Gundogdu, Muge; Aydogan, Gonul; Cengiz, Dicle
2016-01-01
Background Myocardial iron overload is the most common cause of mortality in patients with thalassemia major (TM), also known as beta-thalassemia. T2* cardiovascular magnetic resonance imaging (MRI) is the best way of monitoring cardiac iron, and new echocardiographic techniques can be used to assess cardiac function. Objectives The aim of this study was to assess the systolic and diastolic right ventricular (RV) function of patients with TM using tissue Doppler imaging (TDI) and to determine whether this echocardiographic technique is an adequate diagnostic tool for the screening and detection of subclinical cardiac dysfunction. Patients and Methods Eighty-four patients with TM were evaluated by conventional echocardiography and pulse-wave TDI. The data of the TM group (Group 1) were compared with that of 85 age- and sex-matched healthy controls (Group 2). Cardiovascular T2* MRI examinations were performed in 49 of the 85 patients. Results The patients with TM had significantly lower values for weight, height, body mass index, systolic arterial pressure, deceleration time, E’/A’, and ejection time (ET) than the controls. Group 1 also had significantly higher values for peak early diastolic velocity (E) over peak late diastolic velocity (A), peak early diastolic velocity of TDI (E’), peak late diastolic velocity of TDI (A’), E/E’, isovolumetric relaxation time, isovolumetric contraction time, and RV magnetic perfusion imaging (MPI) than Group 2. Conclusions RV diastolic dysfunction occurs before systolic deterioration in patients with TM and cannot be screened with conventional echocardiographic techniques. In routine practice, TDI measurements, MPI (for global function) and the E/E’ parameter (for diastolic function) can be used to screen and detect early RV dysfunction. PMID:27617076
Kim, Jiwon; Medicherla, Chaitanya B.; Ma, Claudia L.; Feher, Attila; Kukar, Nina; Geevarghese, Alexi; Goyal, Parag; Horn, Evelyn; Devereux, Richard B.; Weinsaft, Jonathan W.
2016-01-01
Background Non-ischemic fibrosis (NIF) on cardiac magnetic resonance (CMR) has been linked to poor prognosis, but its association with adverse right ventricular (RV) remodeling is unknown. This study examined a broad cohort of patients with RV dysfunction, so as to identify relationships between NIF and RV remodeling indices, including RV pressure load, volume and wall stress. Methods and Results The population comprised patients with RV dysfunction (EF<50%) undergoing CMR and transthoracic echo within a 14 day (5±3) interval. Cardiac structure, function, and NIF were assessed on CMR. Pulmonary artery systolic pressure (PASP) was measured on echo. 118 patients with RV dysfunction were studied, among whom 47% had NIF. Patients with NIF had lower RVEF (34±10 vs. 39±9%; p = 0.01) but similar LVEF (40±21 vs. 39±18%; p = 0.7) and LV volumes (p = NS). RV wall stress was higher with NIF (17±7 vs. 12±6 kPa; p<0.001) corresponding to increased RV end-systolic volume (143±79 vs. 110±36 ml; p = 0.006), myocardial mass (60±21 vs. 53±17 gm; p = 0.04), and PASP (52±18 vs. 41±18 mmHg; p = 0.001). NIF was associated with increased wall stress among subgroups with isolated RV (p = 0.005) and both RV and LV dysfunction (p = 0.003). In multivariable analysis, NIF was independently associated with RV volume (OR = 1.17 per 10 ml, [CI 1.04–1.32]; p = 0.01) and PASP (OR = 1.43 per 10 mmHg, [1.14–1.81]; p = 0.002) but not RV mass (OR = 0.91 per 10 gm, [0.69–1.20]; p = 0.5) [model χ2 = 21; p<0.001]. NIF prevalence was higher in relation to PA pressure and RV dilation and was > 6-fold more common in the highest, vs. the lowest, common tertile of PASP and RV size (p<0.001). Conclusion Among wall stress components, NIF was independently associated with RV chamber dilation and afterload, supporting the concept that NIF is linked to adverse RV chamber remodeling. PMID:26799498
Right Heart Vortex Entrainment Volume and Right Ventricular Diastolic Dysfunction
NASA Astrophysics Data System (ADS)
Browning, James; Hertzberg, Jean; Fenster, Brett; Schroeder, Joyce
2014-11-01
Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for the 3-dimensional characterization of blood flow in the right ventricle (RV) and right atrium (RA). In this study, we investigate and quantify differences in the characteristics of coherent rotating flow structures (vortices) in the RA and RV between subjects with right ventricular diastolic dysfunction (RVDD) and normal controls. Fifteen RVDD subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine RVDD stage as well as pulmonary artery systolic pressure (PASP). CMR data was used for RA and RV vortex quantification and visualization during early and late ventricular diastole. RA and RV vortex entrainment volume is quantified and visualized using the Lambda-2 criterion, and the results are compared between healthy subjects and those with RVDD. The resulting trends are discussed and hypotheses are presented regarding differences in vortex characteristics between healthy and RVDD subjects cohorts.
Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Ando, Tomotaka; Naito, Yoshiro; Masuyama, Tohru; Hirotani, Shinichi
2017-04-06
Although adaptive servo-ventilation (ASV) therapy has beneficial effects on chronic heart failure (CHF), a relatively large number of CHF patients cannot undergo ASV therapy due to general discomfort from the mask and/or positive airway pressure. The present study aimed to clarify baseline patient characteristics which are associated with the smooth introduction of ASV treatment in stable CHF inpatients.Thirty-two consecutive heart failure (HF) inpatients were enrolled (left ventricular ejection fraction (LVEF) < 45%, estimated glomerular filtration rate (eGFR) > 10 mL/minute/1.73m 2 , and apnea-hypopnea index < 30/hour). After the patients were clinically stabilized on optimal therapy, they underwent portable polysomnography and echocardiography, and then received ASV therapy. The patients were divided into two groups: a smooth introduction group (n = 18) and non-smooth introduction group (n = 14). Smooth introduction of ASV treatment was defined as ASV usage for 4 hours and more on the first night. Univariate analysis showed that the smooth introduction group differed significantly from the non-smooth introduction group in age, hemoglobin level, eGFR, HF origin, LVEF, right ventricular (RV) diastolic dimension (RVDd), RV dp/dt, and RV fractional shortening. Multivariate analyses revealed that RVDd, eGFR, and LVEF were independently associated with smooth introduction. In addition, RVDd and eGFR seemed to be better diagnostic parameters for longer usage for ASV therapy according to the analysis of receiver operating characteristics curves.RV enlargement, eGFR, and LVEF are associated with the smooth introduction of ASV therapy in CHF inpatients.
Long-term right ventricular changes in mustard-exposed patients: A historical cohort.
Khosravi, Arezoo; Motamedi, Mohamad Ali; Kazemi-Saleh, Davoud; Aslani, Jafar; Ghanei, Mostafa
2018-02-01
Mustard gas (MG) is a chemical warfare agent widely used in the Iran-Iraq War. Its catastrophic effects on the lungs, eyes, and skin have been well studied. However, it also affects the cardiovascular system. We aimed to evaluate the long-term effect of MG on right ventricular (RV) function. All patients presenting to the university clinics between May 2014 and September 2015 were consecutively evaluated to enter the study based on the inclusion criteria (documented proof of chemical injury, no past or present cardiovascular disease, not a current smoker, and no history of sleep apnea). A comparable control group of veterans without MG exposure was randomly selected. All patients underwent echocardiographic measurement of RV size and function by a blinded cardiologist. We included 23 patients in the MG-exposed group and 19 subjects in the control group, with a mean age of 48.6 years. Mean chemical injury severity score was 29.7% and mean time from the MG exposure was 29.2 years. The main complaint of MG-exposed patients pertained to respiratory symptoms (91%). Pulmonary artery pressure was higher (32.83 vs. 28.95 mmHg) and RV strain was lower (-17.05% vs. -20.72%) in the MG-exposed than in the control group (P < .05). Our results present baseline RV values for MG-exposed patients and show mild but significant changes after 3 decades. Further cellular and molecular studies are needed to evaluate underlying mechanisms of MG cardiotoxicity. © 2017 Wiley Periodicals, Inc.
Right ventricular remodelling after transcatheter pulmonary valve implantation.
Pagourelias, Efstathios D; Daraban, Ana M; Mada, Razvan O; Duchenne, Jürgen; Mirea, Oana; Cools, Bjorn; Heying, Ruth; Boshoff, Derize; Bogaert, Jan; Budts, Werner; Gewillig, Marc; Voigt, Jens-Uwe
2017-09-01
To define the optimal timing for percutaneous pulmonary valve implantation (PPVI) in patients with severe pulmonary regurgitation (PR) after Fallot's Tetralogy (ToF) correction. PPVI among the aforementioned patients is mainly driven by symptoms or by severe right ventricular (RV) dilatation/dysfunction. The optimal timing for PPVI is still disputed. Twenty patients [age 13.9 ± 9.2 years, (range 4.3-44.9), male 70%] with severe PR (≥3 grade) secondary to previous correction of ToF, underwent Melody valve (Medtronic, Minneapolis, MN) implantation, after a pre-stent placement. Full echocardiographic assessment (traditional and deformation analysis) and cardiovascular magnetic resonance evaluation were performed before and at 3 months after the intervention. 'Favorable remodelling' was considered the upper quartile of RV size decrease (>20% in 3 months). After PPVI, indexed RV effective stroke volume increased from 38.4 ± 9.5 to 51.4 ± 10.7 mL/m 2 , (P = 0.005), while RV end-diastolic volume and strain indices decreased (123.1 ± 24.1-101.5 ± 18.3 mL/m 2 , P = 0.005 and -23.5 ± 2.5 to -21 ± 2.5%, P = 0.002, respectively). After inserting pre-PPVI clinical, RV volumetric and deformation parameters in a multiple regression model, only time after last surgical correction causing PR remained as significant regressor of RV remodelling [R 2 = 0.60, beta = 0.387, 95%CI(0.07-0.7), P = 0.019]. Volume reduction and functional improvement were more pronounced in patients treated with PPVI earlier than 7 years after last RV outflow tract (RVOT) correction, reaching close-to-normal values. Early PPVI (<7 years after last RVOT operation) is associated with a more favorable RV reverse remodelling toward normal range and should be considered, before symptoms or RV damage become apparent. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Di Maria, Michael V; Burkett, Dale A; Younoszai, Adel K; Landeck, Bruce F; Mertens, Luc; Ivy, D Dunbar; Friedberg, Mark K; Hunter, Kendall S
2015-11-01
Right ventricular (RV) failure is a key determinant of mortality in children with pulmonary arterial hypertension (PAH). RV stroke work (RVSW) can be estimated as the product of RV systolic pressure and stroke volume. The authors have shown that RVSW predicts adverse outcomes in this population when derived from hemodynamic data; noninvasive assessment of RVSW may be advantageous but has not been assessed. There are few data validating noninvasive versus invasive measurements in children with PAH. The aim of this study was to compare echocardiographically derived RVSW with RVSW determined from hemodynamic data. This was a retrospective study, including subjects with idiopathic PAH and minor or repaired congenital heart disease. Forty-nine subjects were included, in whom cardiac catheterization and echocardiography were performed within 1 month. Fourteen additional patients were included in a separate cohort, in whom catheterization and echocardiography were performed simultaneously. Catheterization-derived RVSW was calculated as RV systolic pressure × (cardiac output/heart rate). Echocardiographically derived RVSW was calculated as 4 × (peak tricuspid regurgitant jet velocity)(2) × (pulmonary valve area × velocity-time integral). Statistics included the intraclass correlation coefficient and Bland-Altman analysis. Echocardiographically derived RVSW was linearly correlated with invasively derived RVSW (r = 0.74, P < .0001, intraclass correlation coefficient = 0.76). Bland-Altman analysis showed adequate agreement. Echocardiographically derived RV work was related to indexed pulmonary vascular resistance (r = 0.43, P = .002), tricuspid annular plane systolic excursion (r = 0.41, P = .004), and RV wall thickness (r = 0.62, P < .0001). The authors demonstrate that RV work, a potential novel index of RV function, can be estimated noninvasively and is related to pulmonary hemodynamics and other indices of RV performance. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree
NASA Astrophysics Data System (ADS)
Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison
2017-11-01
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.
Drazner, Mark H; Velez-Martinez, Mariella; Ayers, Colby R; Reimold, Sharon C; Thibodeau, Jennifer T; Mishkin, Joseph D; Mammen, Pradeep P A; Markham, David W; Patel, Chetan B
2013-03-01
Although right atrial pressure (RAP) and pulmonary capillary wedge pressure (PCWP) are correlated in heart failure, in a sizeable minority of patients, the RAP and PCWP are not tightly coupled. The basis of this variability in the RAP/PCWP ratio, and whether it conveys prognostic value, is not known. We analyzed the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial database. Baseline characteristics, including echocardiographic assessment of right ventricular (RV) structure and function, and invasively measured hemodynamic parameters, were compared among tertiles of the RAP/PCWP ratio. Multivariable Cox proportional hazard models assessed the association of RAP/PCWP ratio with the primary ESCAPE outcome (6-month death or hospitalization [days]) adjusting for systolic blood pressure, blood urea nitrogen, 6-minute walk distance, and PCWP. The RAP/PCWP tertiles were 0.27 to 0.4 (tertile 1); 0.41 to 0.615 (tertile 2), and 0.62 to 1.21 (tertile 3). Increasing RAP/PCWP was associated with increasing median right atrial area (23, 26, 29 cm2, respectively; P<0.005), RV area in diastole (21, 27, 27 cm2, respectively; P<0.005), and pulmonary vascular resistance (2.4, 2.9, 3.6 woods units, respectively; P=0.003), and lower RV stroke work index (8.6, 8.4, 5.5 g·m/m2 per beat, respectively; P<0.001). RAP/PCWP ratio was associated with death or hospitalization within 6 months (hazard ratio, 1.16 [1, 1.4]; P<0.05). Increased RAP/PCWP ratio was associated with higher pulmonary vascular resistance, reduced RV function (manifest as a larger right atrium and ventricle and lower RV stroke work index), and an increased risk of adverse outcomes in patients with advanced heart failure.
The role of elastic restoring forces in right-ventricular filling
Pérez Del Villar, Candelas; Bermejo, Javier; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Benito, Yolanda; Antoranz, J. Carlos; Desco, M. Mar; Ortuño, Juan E.; Barrio, Alicia; Mombiela, Teresa; Yotti, Raquel; Ledesma-Carbayo, Maria J.; Del Álamo, Juan C.; Fernández-Avilés, Francisco
2015-01-01
Aims The physiological determinants of RV diastolic function remain poorly understood. We aimed to quantify the contribution of elastic recoil to RV filling and determine its sensitivity to interventricular interaction. Methods and results High-fidelity pressure–volume loops and simultaneous 3-dimensional ultrasound sequences were obtained in 13 pigs undergoing inotropic modulation, volume overload, and acute pressure overload induced by endotoxin infusion. Using a validated method, we isolated elastic restoring forces from ongoing relaxation using conventional pressure–volume data. The RV contracted below the equilibrium volume in >75% of the data sets. Consequently, elastic recoil generated strong sub-atmospheric passive pressure at the onset of diastole [−3 (−4 to −2) mmHg at baseline]. Stronger restoring suction pressure was related to a shorter isovolumic relaxation period, a higher rapid filling fraction, and lower atrial pressures (all P < 0.05). Restoring forces were mostly determined by the position of operating volumes around the equilibrium volume. By this mechanism, the negative inotropic effect of beta-blockade reduced and sometimes abolished restoring forces. During acute pressure overload, restoring forces initially decreased, but recovered at advanced stages. This biphasic response was related to alterations of septal curvature induced by changes in the diastolic LV–RV pressure balance. The constant of elastic recoil was closely related to the constant of passive stiffness (R = 0.69). Conclusion The RV works as a suction pump, exploiting contraction energy to facilitate filling by means of strong elastic recoil. Restoring forces are influenced by the inotropic state and RV conformational changes mediated by direct ventricular interdependence. PMID:25691537
Kim, Ho Jin; Mun, Da Na; Goo, Hyun Woo; Yun, Tae-Jin
2017-04-01
Cardiac computed tomography (CT) has emerged as an alternative to magnetic resonance imaging (MRI) for ventricular volumetry. However, the clinical use of cardiac CT requires external validation. Both cardiac CT and MRI were performed prior to pulmonary valve implantation (PVI) in 11 patients (median age, 19 years) who had undergone total correction of tetralogy of Fallot during infancy. The simplified contouring method (MRI) and semiautomatic 3-dimensional region-growing method (CT) were used to measure ventricular volumes. All volumetric indices measured by CT and MRI generally correlated well with each other, except for the left ventricular end-systolic volume index (LV-ESVI), which showed the following correlations with the other indices: the right ventricular end-diastolic volume index (RV-EDVI) (r=0.88, p<0.001), the right ventricular end-systolic volume index (RV-ESVI) (r=0.84, p=0.001), the left ventricular end-diastolic volume index (LV-EDVI) (r=0.90, p=0.001), and the LV-ESVI (r=0.55, p=0.079). While the EDVIs measured by CT were significantly larger than those measured by MRI (median RV-EDVI: 197 mL/m 2 vs. 175 mL/m 2 , p=0.008; median LV-EDVI: 94 mL/m 2 vs. 92 mL/m 2 , p=0.026), no significant differences were found for the RV-ESVI or LV-ESVI. The EDVIs measured by cardiac CT were greater than those measured by MRI, whereas the ESVIs measured by CT and MRI were comparable. The volumetric characteristics of these 2 diagnostic modalities should be taken into account when indications for late PVI after tetralogy of Fallot repair are assessed.
Li, Yidan; Wang, Yidan; Meng, Xiangli; Zhu, Weiwei; Lu, Xiuzhang
2017-11-01
The right ventricular longitudinal strain (RVLS) of pulmonary hypertension (PH) patients and its relationship with RV function parameters measured by echocardiography and hemodynamic parameters measured by right heart catheterization was investigated. According to the WHO functional class (FC), 66 PH patients were divided into FC I/II (group 1) and III/IV (group 2). RV function parameters were measured by echocardiographic examinations. Hemodynamic parameters were obtained by right heart catheterization. Patients in group 2 had higher systolic pulmonary artery pressure (sPAP; P < 0.05) than patients in group (1) significant between-group differences were observed in global RVLS (RVLS global ), free wall RVLS (RVLS FW ; P < 0.01), and RV conventional function parameters (all P < 0.05). Moreover, mPAP and PVR increased remarkably and CI decreased significantly in group (2) RVLS global had a positive correlation with 6-min walking distance (6MWD; r = 0.492, P < 0.001) and N-terminal pro-brain natriuretic peptide (NT-proBNP; r = 0.632, P < 0.001), while RVLS FW had a positive correlation with 6MWD (r = 0.483, P < 0.001) and NT-proBNP (r = 0.627, P < 0.001). Hemodynamics analysis revealed that RVLS global had a positive correlation with mPAP (r = 0.594, P < 0.001), PVR (r = 0.573, P < 0.001) and CI (r = 0.366, P = 0.003), while RVLS FW had a positive correlation with mPAP (r = 0.597, P < 0.001), PVR (r = 0.577, P < 0.001) and CI (r = 0.369, P = 0.002). According to receiver operating characteristic curves, the optimal cut-off values of RVLS global (-15.0%) and RVLS FW (-15.3%) for prognosis detection with good sensitivity and specificity. Evidence has shown that RVLS measurement can provide the much-needed and reliable information on RV function and hemodynamics. Therefore, this qualifies as a patient-friendly approach for the clinical management of PH patients.
Burghard, Philipp; Plank, Fabian; Beyer, Christoph; Müller, Silvana; Dörler, Jakob; Zaruba, Marc-Michael; Pölzl, Leo; Pölzl, Gerhard; Klauser, Andrea; Rauch, Stefan; Barbieri, Fabian; Langer, Christian-Ekkehardt; Schgoer, Wilfried; Williamson, Eric E; Feuchtner, Gudrun
2018-06-04
To evaluate right ventricle (RV) function by coronary computed tomography angiography (CTA) using a novel automated three-dimensional (3D) RV volume segmentation tool in comparison with clinical reference modalities. Twenty-six patients with severe end-stage heart failure [left ventricle (LV) ejection fraction (EF) <35%] referred to CTA were enrolled. A specific individually tailored biphasic contrast agent injection protocol was designed (80%/20% high/low flow) was designed. Measurement of RV function [EF, end-diastolic volume (EDV), end-systolic volume (ESV)] by CTA was compared with tricuspid annular plane systolic excursion (TAPSE) by transthoracic echocardiography (TTE) and right heart invasive catheterisation (IC). Automated 3D RV volume segmentation was successful in 26 (100%) patients. Read-out time was 3 min 33 s (range, 1 min 50s-4 min 33s). RV EF by CTA was stronger correlated with right atrial pressure (RAP) by IC (r = -0.595; p = 0.006) but weaker with TAPSE (r = 0.366, p = 0.94). When comparing TAPSE with RAP by IC (r = -0.317, p = 0.231), a weak-to-moderate non-significant inverse correlation was found. Interobserver correlation was high with r = 0.96 (p < 0.001), r = 0.86 (p < 0.001) and r = 0.72 (p = 0.001) for RV EDV, ESV and EF, respectively. CT attenuation of the right atrium (RA) and right ventricle (RV) was 196.9 ± 75.3 and 217.5 ± 76.1 HU, respectively. Measurement of RV function by CTA using a novel 3D volumetric segmentation tool is fast and reliable by applying a dedicated biphasic injection protocol. The RV EF from CTA is a closer surrogate of RAP than TAPSE by TTE. • Evaluation of RV function by cardiac CTA by using a novel 3D volume segmentation tool is fast and reliable. • A biphasic contrast agent injection protocol ensures homogenous RV contrast attenuation. • Cardiac CT is a valuable alternative modality to CMR for the evaluation of RV function.
Rydman, Riikka; Gatzoulis, Michael A; Ho, Siew Yen; Ernst, Sabine; Swan, Lorna; Li, Wei; Wong, Tom; Sheppard, Mary; McCarthy, Karen P; Roughton, Michael; Kilner, Philip J; Pennell, Dudley J; Babu-Narayan, Sonya V
2015-05-01
We hypothesized that fibrosis detected by late gadolinium enhancement (LGE) cardiovascular magnetic resonance predicts outcomes in patients with transposition of the great arteries post atrial redirection surgery. These patients have a systemic right ventricle (RV) and are at risk of arrhythmia, premature RV failure, and sudden death. Fifty-five patients (aged 27±7 years) underwent LGE cardiovascular magnetic resonance and were followed for a median 7.8 (interquartile range, 3.8-9.6) years in a prospective single-center cohort study. RV LGE was present in 31 (56%) patients. The prespecified composite clinical end point comprised new-onset sustained tachyarrhythmia (atrial/ventricular) or decompensated heart failure admission/transplantation/death. Univariate predictors of the composite end point (n=22 patients; 19 atrial/2 ventricular tachyarrhythmia, 1 death) included RV LGE presence and extent, RV volumes/mass/ejection fraction, right atrial area, peak Vo(2), and age at repair. In bivariate analysis, RV LGE presence was independently associated with the composite end point (hazard ratio, 4.95 [95% confidence interval, 1.60-15.28]; P=0.005), and only percent predicted peak Vo(2) remained significantly associated with cardiac events after controlling for RV LGE (hazard ratio, 0.80 [95% confidence interval, 0.68-0.95]; P=0.009/5%). In 8 of 9 patients with >1 event, atrial tachyarrhythmia, itself a known risk factor for mortality, occurred first. There was agreement between location and extent of RV LGE at in vivo cardiovascular magnetic resonance and histologically documented focal RV fibrosis in an explanted heart. There was RV LGE progression in a different case restudied for clinical indications. Systemic RV LGE is strongly associated with adverse clinical outcome especially arrhythmia in transposition of the great arteries, thus LGE cardiovascular magnetic resonance should be incorporated in risk stratification of these patients. © 2015 American Heart Association, Inc.
Imamura, Teruhiko; Kinugawa, Koichiro; Kinoshita, Osamu; Nawata, Kan; Ono, Minoru
2016-03-01
Although the right ventricular stroke work index (RVSWI) is a good index for RV function, a low RVSWI is not necessarily an indicator for the need for a right ventricular assist device at the time of left VAD implantation. We here aimed to determine a more precise indicator for the need for a biventricular assist device (BiVAD). In total, 116 patients (mean age, 38 ± 14 years), who underwent hemodynamic assessments preoperatively including 12 BiVAD patients, and had been followed at our institute from 2003 to 2015, were included. Multivariate logistic regression analysis indicated that RVSWI and pulmonary vascular resistance (PVR) were independent predictors of BiVAD requirement (P < 0.05 for both). In addition, all patients were classified into 4 groups: (1) normal (RVSWI > 5 g/m, PVR < 3.7 WU), (2) pulmonary hypertension (RVSWI > 5, PVR > 3.7), (3) RV failure (RVSWI < 5, PVR < 3.7), and (4) both pulmonary hypertension and RV failure (RVSWI < 5, PVR > 3.7), and examined. Most of the patients in Group 4 (75 %), with acutely depressed hemodynamics and inflammatory responses in the myocardium, required BiVAD. Overall, patients with BiVAD had a worse survival rate as compared with those with LVAD alone. In conclusion, high PVR in addition to low RVSWI effectively predicts BiVAD requirement.
Hoette, Susana; Creuzé, Nicolas; Günther, Sven; Montani, David; Savale, Laurent; Jaïs, Xavier; Parent, Florence; Sitbon, Olivier; Rochitte, Carlos Eduardo; Simonneau, Gerald; Humbert, Marc; Souza, Rogerio; Chemla, Denis
2018-04-01
The right ventricular ejection fraction (RVEF) is a surrogate marker of right ventricular function in pulmonary hypertension (PH), but its measurement is complicated and time consuming. The tricuspid annular plane systolic excursion (TAPSE) measures only the longitudinal component of RV contraction while the right ventricular fractional area change (RVFAC) takes into account both the longitudinal and the transversal components. The aim of our study was to evaluate the relationship between RVEF, RVFAC, and TAPSE according to hemodynamic severity in two groups of patients with PH: pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Fifty-four patients with PAH (n = 15) and CTEPH (n = 39) underwent right heart catheterization and cardiac magnetic resonance (CMR). The ventricular volumes and areas, TAPSE, and eccentricity index were measured. The RVFAC was more strongly correlated with the RVEF (r = 0.81, p < 0.0001) than the TAPSE (r = 0.63, p < 0.0001). RVEF < 35% was better predicted by the RVFAC than the TAPSE (TAPSE: AUC = 0.77 and RVFAC: AUC = 0.91; p = 0.042). In the group with the worse hemodynamic status, the RVFAC correlated much better with the RVEF than the TAPSE. There were no significant differences in the CMR data analyzed between the groups of PAH and CETPH patients. The RVFAC is a good index to estimate RVEF in PH patients; even better than the TAPSE in patients with more severe hemodynamic profile, possibly for including the transversal component of right ventricular function in its measurement. Furthermore, RVFAC performance was similar in the two PH groups (PAH and CTEPH).
Fibroblasts and the extracellular matrix in right ventricular disease.
Frangogiannis, Nikolaos G
2017-10-01
Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Levy, Philip T; El-Khuffash, Afif; Patel, Meghna D; Breatnach, Colm R; James, Adam T; Sanchez, Aura A; Abuchabe, Cristina; Rogal, Sarah R; Holland, Mark R; McNamara, Patrick J; Jain, Amish; Franklin, Orla; Mertens, Luc; Hamvas, Aaron; Singh, Gautam K
2017-07-01
The aim of this study was to determine the maturational changes in systolic ventricular strain mechanics by two-dimensional speckle-tracking echocardiography in extremely preterm neonates from birth to 1 year of age and discern the impact of common cardiopulmonary abnormalities on the deformation measures. In a prospective multicenter study of 239 extremely preterm infants (<29 weeks gestation at birth), left ventricular (LV) global longitudinal strain (GLS) and global longitudinal systolic strain rate (GLSRs), interventricular septal wall (IVS) GLS and GLSRs, right ventricular (RV) free wall longitudinal strain and strain rate, and segmental longitudinal strain in the RV free wall, LV free wall, and IVS were serially measured on days 1, 2, and 5 to 7, at 32 and 36 weeks postmenstrual age, and at 1 year corrected age (CA). Premature infants who developed bronchopulmonary dysplasia or had echocardiographic findings of pulmonary hypertension were analyzed separately. In uncomplicated preterm infants (n = 103 [48%]), LV GLS and GLSRs remained unchanged from days 5 to 7 to 1 year CA (P = .60 and P = .59). RV free wall longitudinal strain, RV free wall longitudinal strain rate, and IVS GLS and GLSRs significantly increased over the same time period (P < .01 for all measures). A significant base-to-apex (highest to lowest) segmental longitudinal strain gradient (P < .01) was seen in the RV free wall and a reverse apex-to-base gradient (P < .01) in the LV free wall. In infants with bronchopulmonary dysplasia and/or pulmonary hypertension (n = 119 [51%]), RV free wall longitudinal strain and IVS GLS were significantly lower (P < .01), LV GLS and GLSRs were similar (P = .56), and IVS segmental longitudinal strain persisted as an RV-dominant base-to-apex gradient from 32 weeks postmenstrual age to 1 year CA. This study tracks the maturational patterns of global and regional deformation by two-dimensional speckle-tracking echocardiography in extremely preterm infants from birth to 1 year CA. The maturational patterns are ventricular specific. Bronchopulmonary dysplasia and pulmonary hypertension leave a negative impact on RV and IVS strain, while LV strain remains stable. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Severe right ventricular and tricuspid valve dysfunction after pericardiocentesis.
Kuroda, Maiko; Amano, Masashi; Enomoto, Soichiro; Miyake, Makoto; Kondo, Hirokazu; Tamura, Toshihiro; Kaitani, Kazuaki; Izumi, Chisato; Nakagawa, Yoshihisa
2016-10-01
Pericardiocentesis is performed to treat cardiac tamponade or diagnose the cause of pericardial effusion. Cardiogenic shock with right ventricular (RV) dysfunction is a rare complication after pericardiocentesis. We report a case of an 82-year-old man who suddenly suffered cardiopulmonary arrest 12 h after pericardiocentesis. A transthoracic echocardiogram showed remarkable RV dysfunction and tricuspid valve dysfunction. Tricuspid valve closure was severely impaired, and the tricuspid regurgitation signal showed laminar flow with an early peak. However, after treatment with high-dose inotropic drugs, hemodynamic parameters gradually recovered. A transthoracic echocardiogram performed 24 h later showed improved motion of the RV and the tricuspid valve, resulting in a reduction in tricuspid regurgitation. RV and tricuspid valve dysfunction after pericardiocentesis needs to be recognized as a critical complication. Physicians also need to pay attention to not only the amount of drainage but also underlying RV dysfunction.
Right Heart Vorticity and Right Ventricular Diastolic Dysfunction
NASA Astrophysics Data System (ADS)
Browning, James; Hertzberg, Jean; Fenster, Brett; Schroeder, Joyce
2015-11-01
Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for the 3-dimensional characterization of blood flow in the right ventricle (RV) and right atrium (RA). In this study, we investigate and quantify differences in the characteristics of coherent rotating flow structures (vortices) in the RA and RV between subjects with right ventricular diastolic dysfunction (RVDD) and normal controls. Fifteen RVDD subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine RVDD stage as well as pulmonary artery systolic pressure (PASP). CMR data was used for RA and RV vortex quantification and visualization during early ventricular diastole and the results are compared between healthy subjects and those with RVDD. The resulting trends are discussed and hypotheses are presented regarding differences in vortex characteristics between healthy and RVDD subjects cohorts.
Squara, Fabien; Scarlatti, Didier; Riccini, Philippe; Garret, Gauthier; Moceri, Pamela; Ferrari, Emile
2018-03-13
Fluoroscopic criteria have been described for the documentation of septal right ventricular (RV) lead positioning, but their accuracy remains questioned. Consecutive patients undergoing pacemaker or defibrillator implantation were prospectively included. RV lead was positioned using postero-anterior and left anterior oblique 40° incidences, and right anterior oblique 30° to rule out coronary sinus positioning when suspected. RV lead positioning using fluoroscopy was compared to true RV lead positioning as assessed by transthoracic echocardiography (TTE). Precise anatomical localizations were determined with both modalities; then, RV lead positioning was ultimately dichotomized into two simple clinically relevant categories: RV septal or RV free wall. Accuracy of fluoroscopy for RV lead positioning was then assessed by comparison with TTE. We included 100 patients. On TTE, 66/100 had a septal RV lead and 34/100 had a free wall RV lead. Fluoroscopy had moderate agreement with TTE for precise anatomical localization of RV lead (k = 0.53), and poor agreement for septal/free wall localization (k = 0.36). For predicting septal RV lead positioning, classical fluoroscopy criteria had a high sensitivity (95.5%; 63/66 patients having a septal RV lead on TTE were correctly identified by fluoroscopy) but a very low specificity (35.3%; only 12/34 patients having a free wall RV lead on TTE were correctly identified by fluoroscopy). Classical fluoroscopy criteria have a poor accuracy for identifying RV free wall leads, which are most of the time misclassified as septal. This raises important concerns about the efficacy and safety of RV lead positioning using classical fluoroscopy criteria.
De Meester, Pieter; Van De Bruaene, Alexander; Delcroix, Marion; Belmans, Ann; Herijgers, Paul; Voigt, Jens-Uwe; Budts, Werner
2012-11-01
Elevated pulmonary artery systolic pressure (PASP) causes functional tricuspid valve insufficiency (TI). However, the differential contribution of pressure load and right ventricular (RV) dilatation is not well established. The study aim was to evaluate both variables in relation to TI. A cross-sectional study was performed of consecutive transthoracic echocardiographic studies of patients with pre-capillary pulmonary hypertension (PH). Both, demographic data and echocardiographic RV parameters were reviewed. TI was graded semi-quantitatively with color Doppler flow imaging. Trend analyses for TI severity (TI grade 0/4, 1/4, 2/4, 3/4, or 4/4) were performed. A proportional odds logistic regression analysis was carried out to identify independent predictors of TI severity. Eighty-one patients (56 females, 25 males; mean age 60 +/- 15 years) with pre-capillary PH were evaluated. Patients with more severe TI had a significantly lower body mass index, a lower mean systemic blood pressure, a shorter pulmonary acceleration time, a higher tricuspid regurgitant gradient, and a more dilated right ventricle. From the echocardiographic parameters, RV dilatation (p = 0.0143) and the tricuspid regurgitant gradient (p = 0.0026) were independently related to the degree of TI. In patients with pre-capillary PH, PASP and RV dilatation were both related to the increasing severity of TI. When focusing on TI to improve the prognosis of patients with pre-capillary PH, both PASP and RV dimensions should be taken into consideration.
Endurance sport and "cardiac injury": a prospective study of recreational ironman athletes.
Leischik, Roman; Spelsberg, Norman
2014-09-03
Participation in triathlon competitions has increased in recent years. Many studies have described left or right ventricular injury in endurance athletes. The goal of this study was to examine the right and left ventricular cardiac structures and function and dynamic cardio-pulmonary performance in a large cohort of middle- and long-distance triathletes. 87 triathletes (54 male and 33 female) were examined using spiroergometry and echocardiography. The inclusion criterion was participation in at least one middle- or long distance triathlon. Male triathletes showed a maximum oxygen absorption of 58.1 ± 8.6 mL/min/kg (female triathletes 52.8 ± 5.7 mL/min/kg), maximum ergometer performance of 347.8 ± 49.9 W (female triathletes 264.5 ± 26.1 W). Left ventricular ejection fraction (EF) was normal (male triathletes EF: 61.9% ± 3%, female triathletes EF: 63.0% ± 2.7%) and systolic right ventricular area change fraction (RV AFC%) showed normal values (males RV AFC%: 33.5% ± 2.2%, females 32.2% ± 2.8%). Doppler indices of diastolic function were normal in both groups. With respect to the echocardiographic readings the left ventricular mass for males and females were 217.7 ± 41.6 g and 145.9 ± 31.3 g, respectively. The relative wall thickness for males was 0.50 ± 0.07, whereas it was 0.47 ± 0.09 for females. The probability of left ventricular mass >220 g increased with higher blood pressure during exercise (OR: 1.027, CI 1.002-1.052, p = 0.034) or with higher training volume (OR: 1.23, CI 1.04-1.47, p = 0.019). Right or left ventricular dysfunction could not be found, although the maximal participation in triathlon competitions was 29 years. A left ventricular mass >220 g is more likely to occur with higher arterial pressure during exercise and with a higher training volume.
Endurance Sport and “Cardiac Injury”: A Prospective Study of Recreational Ironman Athletes
Leischik, Roman; Spelsberg, Norman
2014-01-01
Background: Participation in triathlon competitions has increased in recent years. Many studies have described left or right ventricular injury in endurance athletes. The goal of this study was to examine the right and left ventricular cardiac structures and function and dynamic cardio-pulmonary performance in a large cohort of middle- and long-distance triathletes. Methods: 87 triathletes (54 male and 33 female) were examined using spiroergometry and echocardiography. The inclusion criterion was participation in at least one middle- or long distance triathlon. Results: Male triathletes showed a maximum oxygen absorption of 58.1 ± 8.6 mL/min/kg (female triathletes 52.8 ± 5.7 mL/min/kg), maximum ergometer performance of 347.8 ± 49.9 W (female triathletes 264.5 ± 26.1 W). Left ventricular ejection fraction (EF) was normal (male triathletes EF: 61.9% ± 3%, female triathletes EF: 63.0% ± 2.7%) and systolic right ventricular area change fraction (RV AFC%) showed normal values (males RV AFC%: 33.5% ± 2.2%, females 32.2% ± 2.8%). Doppler indices of diastolic function were normal in both groups. With respect to the echocardiographic readings the left ventricular mass for males and females were 217.7 ± 41.6 g and 145.9 ± 31.3 g, respectively. The relative wall thickness for males was 0.50 ± 0.07, whereas it was 0.47 ± 0.09 for females. The probability of left ventricular mass >220 g increased with higher blood pressure during exercise (OR: 1.027, CI 1.002–1.052, p = 0.034) or with higher training volume (OR: 1.23, CI 1.04–1.47, p = 0.019). Conclusions: Right or left ventricular dysfunction could not be found, although the maximal participation in triathlon competitions was 29 years. A left ventricular mass >220 g is more likely to occur with higher arterial pressure during exercise and with a higher training volume. PMID:25192145
The challenges in the management of right ventricular infarction.
Inohara, Taku; Kohsaka, Shun; Fukuda, Keiichi; Menon, Venu
2013-09-01
In recent years, right ventricular (RV) infarction seems to be underdiagnosed in most cases of acute myocardial ischaemia despite its frequent association with inferior-wall and, occasionally, anterior-wall myocardial infarction (MI). However, its initial management is drastically different from that of left ventricular MI, and studies have indicated that RV infarction remains associated with significant morbidity and mortality, even in the mechanical reperfusion era. The pathophysiology of RV infarction involves the interaction between the right and left ventricle (LV), and the mechanism has been clarified with the advent of diagnostic non-invasive modalities, such as echocardiography and cardiac magnetic resonance. In recent years, considerable progress has been made in the treatment of RV infarction; early revascularization remains the cornerstone of the management, and fluid resuscitation, with appropriate target selection, is necessary to maintain appropriate preload. Early recognition in intensive care with clear understanding of the pathophysiology is essential to improve its prognosis. In terms of management, the support strategy for RV dysfunction is different from that for LV dysfunction since the former may often be temporary. Along with early reperfusion, maintenance of an adequate heart rate and atrioventricular synchrony are essential to sustain a sufficient cardiac output in patients with RV infarction. In refractory cases, more intensive mechanical support is required, and new therapeutic options, such as Tandem-Heart or percutaneous cardiopulmonary support systems, are being developed.
Lubitz, Andrea L; Sjoholm, Lars O; Goldberg, Amy; Pathak, Abhijit; Santora, Thomas; Sharp, Thomas E; Wallner, Markus; Berretta, Remus M; Poole, Lauren A; Wu, Jichuan; Wolfson, Marla R
2017-02-01
Hemorrhagic shock and pneumonectomy causes an acute increase in pulmonary vascular resistance (PVR). The increase in PVR and right ventricular (RV) afterload leads to acute RV failure, thus reducing left ventricular (LV) preload and output. Inhaled nitric oxide (iNO) lowers PVR by relaxing pulmonary arterial smooth muscle without remarkable systemic vascular effects. We hypothesized that with hemorrhagic shock and pneumonectomy, iNO can be used to decrease PVR and mitigate right heart failure. A hemorrhagic shock and pneumonectomy model was developed using sheep. Sheep received lung protective ventilatory support and were instrumented to serially obtain measurements of hemodynamics, gas exchange, and blood chemistry. Heart function was assessed with echocardiography. After randomization to study gas of iNO 20 ppm (n = 9) or nitrogen as placebo (n = 9), baseline measurements were obtained. Hemorrhagic shock was initiated by exsanguination to a target of 50% of the baseline mean arterial pressure. The resuscitation phase was initiated, consisting of simultaneous left pulmonary hilum ligation, via median sternotomy, infusion of autologous blood and initiation of study gas. Animals were monitored for 4 hours. All animals had an initial increase in PVR. PVR remained elevated with placebo; with iNO, PVR decreased to baseline. Echo showed improved RV function in the iNO group while it remained impaired in the placebo group. After an initial increase in shunt and lactate and decrease in SvO2, all returned toward baseline in the iNO group but remained abnormal in the placebo group. These data indicate that by decreasing PVR, iNO decreased RV afterload, preserved RV and LV function, and tissue oxygenation in this hemorrhagic shock and pneumonectomy model. This suggests that iNO may be a useful clinical adjunct to mitigate right heart failure and improve survival when trauma pneumonectomy is required.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-06-11
Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.
Arrhythmogenic ventricular cardiomyopathy: A paradigm shift from right to biventricular disease
Saguner, Ardan M; Brunckhorst, Corinna; Duru, Firat
2014-01-01
Arrhythmogenic ventricular cardiomyopathy (AVC) is generally referred to as arrhythmogenic right ventricular (RV) cardiomyopathy/dysplasia and constitutes an inherited cardiomyopathy. Affected patients may succumb to sudden cardiac death (SCD), ventricular tachyarrhythmias (VTA) and heart failure. Genetic studies have identified causative mutations in genes encoding proteins of the intercalated disk that lead to reduced myocardial electro-mechanical stability. The term arrhythmogenic RV cardiomyopathy is somewhat misleading as biventricular involvement or isolated left ventricular (LV) involvement may be present and thus a broader term such as AVC should be preferred. The diagnosis is established on a point score basis according to the revised 2010 task force criteria utilizing imaging modalities, demonstrating fibrous replacement through biopsy, electrocardiographic abnormalities, ventricular arrhythmias and a positive family history including identification of genetic mutations. Although several risk factors for SCD such as previous cardiac arrest, syncope, documented VTA, severe RV/LV dysfunction and young age at manifestation have been identified, risk stratification still needs improvement, especially in asymptomatic family members. Particularly, the role of genetic testing and environmental factors has to be further elucidated. Therapeutic interventions include restriction from physical exercise, beta-blockers, sotalol, amiodarone, implantable cardioverter-defibrillators and catheter ablation. Life-long follow-up is warranted in symptomatic patients, but also asymptomatic carriers of pathogenic mutations. PMID:24772256
Ağaç, Mustafa Tarık; Akyüz, Ali Rıza; Acar, Zeydin; Akdemir, Ramazan; Korkmaz, Levent; Kırış, Abdülkadir; Erkuş, Emre; Erkan, Hakan; Celik, Sükrü
2012-03-01
There is limited data on alterations in novel right ventricular (RV) function indices like tricuspid annular plane systolic excursion (TAPSE) and tricuspid annular systolic velocity (TASV) after transcatheter atrial septal defect (ASD) closure. We aimed to evaluate RV function by echocardiography (ECG) with these novel indices in early period in patients with secundum-type ASD that was closed percutaneously. Patients were enrolled to study if they had secundum-type ASD that was suitable for percutaneous closure. Patient population consisted of 4 men and 16 women. Echocardiography was performed before and 1 month after closure. Mean age was 37 ± 16. Mean diameter of ASD and total atrial septum length measured by ECG were 19 ± 6 mm and 49 ± 7 mm, respectively. Mean diameter of defect in transesophageal echocardiography was 20 ± 6 mm. Stretched mean diameter in catheterization was 23 ± 6 mm. One month after closure, there were statistically significant decreases in RV end-diastolic diameters (43.3 ± 10.7 mm vs. 34.9 ± 5.5 mm; P < 0.001), RV/left ventricular (LV) end-diastolic diameter ratio (1.1 ± 0.3 vs. 0.87 ± 0.1; P < 0.001), TASV (16.9 ± 3.2 cm/sec vs. 14.3 ± 3.3 cm/sec; P < 0.05), early diastolic tricuspid annular velocity (15.3 ± 3.1 cm/sec vs. 13.4 ± 2.4 cm/sec P <0.05), late diastolic tricuspid annular velocity (16.2 ± 5.4 cm/sec vs. 14.3 ± 6.3 cm/sec; P < 0.05), and TAPSE (29.9 ± 6.2 mm vs. 22.4 ± 7.4 mm; P < 0.001). LV end-diastolic diameter (38.0 ± 6.9 mm and 40.0 ± 4.5 P < 0.05) was increased, whereas there was no change in LV ejection fraction. Closure of ASD by using Amplatzer devices led to decrease in right heart chamber size, tissue Doppler-derived tricuspid annular velocities and TAPSE in early period. © 2011, Wiley Periodicals, Inc.
Arısoy, Arif; Topçu, Selim; Demirelli, Selami; Altunkaş, Fatih; Karayakalı, Metin; Çelik, Ataç; Tanboğa, İbrahim Halil; Aksakal, Enbiya; Sevimli, Serdar; Gürlertop, Hanefi Yekta
2015-11-25
The aim of this study was to evaluate right ventricle (RV) functions using echocardiography in healthy subjects who migrated from the sea level to moderate altitude (1890 m). The prospective observational in this study population consisted of 33 healthy subjects (23 men; mean age 20.4±3.2 years) who migrated from the sea level to a moderate altitude (Erzurum city centre, 1890 m above sea level) for long-term stay. Subjects underwent echocardiographic evaluation within the first 48 h of exposure to the moderate altitude and at the sixth month of arrival. Conventional echocardiographic parameters such as RV sizes and areas, systolic, and diastolic functional indices [fractional area change (FAC), tricuspid flow velocities, myocardial performance index (MPI), and tricuspid annular plane systolic excursion (TAPSE)] were obtained. Systolic (S) and diastolic (E', A') velocities were acquired from the apical fourchamber view using tissue Doppler imaging. Kolmogorov-Smirnov test, student's t-test, Wilcoxon test, and chi-square test were used in this study. There were no significant changes in RV size, FAC, MPI, TAPSE, inferior inspiratory vena cava collapse, tricuspid E velocity, and tricuspid annulus E' velocity. Compared with the baseline, there was a significant increase in mean pulmonary artery pressure (p=0.001); RV end systolic area (p=0.014); right atrial end diastolic area (p=0.021); tricuspid A velocity (p=0.013); tricuspid annulus S and A' velocity (p=0.031 and p=0.006, respectively); and RV free wall S, E', and A' velocity (p=0.007, p<0.001, and p=0.007 respectively) at the sixth month. Also, there was a significant decrease in tricuspid E/A ratio (1.61±0.3 vs. 1.45±0.2, p=0.038) and tricuspid annulus E'/A' ratio (1.52±0.5 vs. 1.23±0.4, p=0.002) at the sixth month. Our study revealed that right ventricular diastolic function was altered while the systolic function was preserved in healthy subjects who migrated from the sea level to a moderate altitude.
Kowalik, Ewa; Mazurkiewicz, Łukasz; Kowalski, Mirosław; Klisiewicz, Anna; Marczak, Magdalena; Hoffman, Piotr
2016-11-01
The survival in adults with congenitally corrected transposition of the great arteries (ccTGA) might be reduced due to dysfunction of the systemic right ventricle (sRV). The quantitative echocardiographic assessment of sRV function and tricuspid (systemic atrioventricular valve) regurgitation (TR) is still a diagnostic challenge. Thus, the aim of this study was to compare echocardiographic indices of sRV function and the degree of TR with corresponding MRI (magnetic resonance imaging)-derived parameters in adults with ccTGA. A prospective cross-sectional study of adults with ccTGA referred to a tertiary congenital heart disease center was conducted. All patients underwent transthoracic echocardiography and MRI examinations. Thirty-three adults (19F/14M, mean age 34.1 years) were included. We found significantly lower fractional area change (FAC) and global longitudinal strain (GLS) values in patients with MRI-derived RV ejection fraction (EF) <45%. A cutoff GLS<-16.3% identified sRV EF ≥45% with a sensitivity of 77.3% and specificity of 72.7%. A very strong correlation between MRI- and echocardiography-derived TR volume was observed (r=.84; P<.0001). GLS is the variable with the best sensitivity but less specificity to distinguish between systemic RV EF ≥45% and below 45%, and it seems to be the preferred echocardiographic index of systemic RV function in adults with ccTGA. The quantitative assessment of TR by MRI and echocardiography showed a very strong agreement in patients with ccTGA. © 2016, Wiley Periodicals, Inc.
McConnell's sign in intra-operative acute right ventricle ischaemia: An under-recognized aetiology.
Longo, S A; Echegaray, A; Acosta, C M; Rinaldi, L I; Cabrera Schulmeyer, M C; Olavide Goya, I
2016-11-01
Transoesophageal echocardiography (TEE) has become a fundamental tool in modern cardiothoracic anaesthesia. It has an indisputable role in coronary valve surgery and revascularisations with severe impairment of ventricle function. It helps in making diagnoses that can optimise the surgical strategy and to minimal invasively dynamically monitor volaemia and cardiac function during the post-operative period, detecting complications unobservable by other methods. The McConnell sign, visualised using TEE as an akinesis of the right ventricular free wall, with a normal apex motility and enlargement of the right cavities, is characteristic of right ventricular (RV) dysfunction. This sign has a 77% sensitivity and 94% specificity for the diagnosis of acute pulmonary embolism (APE). The case is presented of a 53-year-old man scheduled for aortic valve and ascending aorta replacement surgery, with a history of severe valve aortic stenosis, aortic root and arch aneurysm, and with normal coronary arteries. Post-cardiopulmonary bypass (CBP), the patient presented with haemodynamic instability, with the TEE showing a typical image of the McConnell sign, with no pulmonary hypertension. This enabled making an early diagnosis of acute RV ischaemia, that led to a change in the surgical plan, the performing of coronary revascularisation surgery. As a result, the McConnell sign, which describes the characteristics of RV dysfunction, led to making a differential diagnosis between APE, RV infarction and acute myocardial ischaemia. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Suk, J H; Cho, K I; Lee, S H; Lee, H G; Kim, S M; Kim, T I; Kim, M K; Shong, Y K
2011-09-01
Right-sided heart failure with clinical manifestation is only occasionally seen in patients with Graves' disease (GD). Recent studies revealed that pulmonary hypertension (PHT) detected by echocardiography was not rare in patients with GD. We performed this study to investigate the prevalence of PHT in patients with GD before and after antithyroid treatment, and to assess potential mechanisms from the relationship with clinical and echocardiographic features. Serial echocardiographic examinations were performed in 64 patients with newly diagnosed GD before and after antithyroid treatment to measure cardiac factors, such as pulmonary artery systolic pressure (PAPs), cardiac output, total vascular resistance, left ventricular filling pressure and right ventricular (RV) function. PHT was defined as PAPs of at least 35 mmHg. The prevalence of PHT in untreated GD patients was 44% (28 out of 64 patients). The presence of systemic hypertension was associated with PHT, especially with pulmonary venous hypertension. GD patients with PHT showed reduced RV function represented by higher RV myocardial performance index without difference of pulmonary vascular resistance, RV wall thickness and peak systolic velocity of free wall side of tricuspid annulus. Follow-up echocardiography was performed in 20 out of 28 GD patients with PHT, and PHT disappeared in all except one patient. PHT is a frequent and reversible complication in patients with GD. Our study suggests that PHT in GD may not be related to underlying autoimmune process and increased pulmonary blood flow from thyrotoxicosis might contributes to the pathogenesis of PHT related to GD.
Characterizing the spectrum of right ventricular remodelling in response to chronic training.
Sitges, Marta; Merino, Beatriz; Butakoff, Constatine; de la Garza, Maria Sanz; Paré, Carles; Montserrat, Silvia; Vidal, Barbara; Azqueta, Manel; Sarquella, Georgia; Gutierrez, Josep Antoni; Canal, Ramon; Brugada, Josep; Bijnens, Bart H
2017-03-01
The significance and spectrum of reduced right ventricular (RV) deformation, reported in endurance athletes, is unclear. To comprehensively analyze the cardiac performance at rest of athletes, especially focusing on integrating RV size and deformation to unravel the underlying triggers of this ventricular remodelling. Hundred professional male athletes and 50 sedentary healthy males of similar age were prospectively studied. Conventional echocardiographic parameters of all four chambers were obtained, as well as 2D echo-derived strain (2DSE) in the left (LV) and in the RV free wall with separate additional analysis of the RV basal and apical segments. Left and right-sided dimensions were larger in athletes than in controls, but with a disproportionate RA enlargement. RV global strain was lower in sportsmen (-26.8 ± 2.8% vs -28.5 ± 3.4%, p < 0.001) due to a decrease in the basal segment (-22.8 ± 3.5% vs -25.8 ± 4.0%, p < 0.001) resulting in a marked gradient of deformation from the RV inlet towards the apex. By integrating size, deformation and stroke volume, we observed that the LV working conditions were similar in all sportsmen while a wider variability existed in the RV. Cardiac remodelling in athletes is more pronounced in the right heart cavities with specific regional differences within the right ventricle, but with a wide variability among individuals. The large inter-individual differences, as well as its acute and chronic relevance warrant further investigation.
miR-21 is associated with fibrosis and right ventricular failure
Hu, Dong-Qing; Zhao, Mingming; Blay, Eddie; Sandeep, Nefthi; Ong, Sang-Ging; Jung, Gwanghyun; Kooiker, Kristina B.; Coronado, Michael; Fajardo, Giovanni; Bernstein, Daniel
2017-01-01
Combined pulmonary insufficiency (PI) and stenosis (PS) is a common long-term sequela after repair of many forms of congenital heart disease, causing progressive right ventricular (RV) dilation and failure. Little is known of the mechanisms underlying this combination of preload and afterload stressors. We developed a murine model of PI and PS (PI+PS) to identify clinically relevant pathways and biomarkers of disease progression. Diastolic dysfunction was induced (restrictive RV filling, elevated RV end-diastolic pressures) at 1 month after generation of PI+PS and progressed to systolic dysfunction (decreased RV shortening) by 3 months. RV fibrosis progressed from 1 month (4.4% ± 0.4%) to 3 months (9.2% ± 1%), along with TGF-β signaling and tissue expression of profibrotic miR-21. Although plasma miR-21 was upregulated with diastolic dysfunction, it was downregulated with the onset of systolic dysfunction), correlating with RV fibrosis. Plasma miR-21 in children with PI+PS followed a similar pattern. A model of combined RV volume and pressure overload recapitulates the evolution of RV failure unique to patients with prior RV outflow tract surgery. This progression was characterized by enhanced TGF-β and miR-21 signaling. miR-21 may serve as a plasma biomarker of RV failure, with decreased expression heralding the need for valve replacement. PMID:28469078
Effects of bisoprolol and losartan treatment in the hypertrophic and failing right heart.
Andersen, Stine; Schultz, Jacob Gammelgaard; Andersen, Asger; Ringgaard, Steffen; Nielsen, Jan M; Holmboe, Sarah; Vildbrad, Mads D; de Man, Frances S; Bogaard, Harm J; Vonk-Noordegraaf, Anton; Nielsen-Kudsk, Jens Erik
2014-11-01
Sympathetic adrenergic stimulation and the renin-angiotensin-aldosterone system are highly elevated in right heart failure. We evaluated if treatment with the adrenergic receptor blocker bisoprolol or the angiotensin II receptor blocker losartan could prevent the progression of right ventricular (RV) hypertrophy and failure in rats after pulmonary trunk banding (PTB). Male Wistar rats were randomized to severe PTB with a 0.5-mm banding clip (PTB0.5, n = 29), moderate PTB with a 0.6-mm banding clip (PTB0.6, n = 28), or sham operation (SHAM, n = 13). The PTB0.5 and PTB0.6 rats were randomized to 6 weeks of 10 mg/kg/d bisoprolol treatment, 20 mg/kg/d losartan treatment, or vehicle treatment. The PTB caused hypertrophy, dilation, and reduced function of the RV in all rats subjected to the procedure. Rats subjected to the more severe banding developed decompensated RV failure with extracardiac manifestations. Treatment with bisoprolol slowed the heart rate, and treatment with losartan lowered mean arterial pressure, confirming adequate dosing, but none of the treatments improved RV function or arrested the progression of RV hypertrophy and failure compared with vehicle. In our PTB model of pressure overload-induced RV hypertrophy and failure, treatment with bisoprolol and losartan did not demonstrate any beneficial effects in compensated or decompensated RV failure. Copyright © 2014 Elsevier Inc. All rights reserved.
Pueschner, Andreas; Chattranukulchai, Pairoj; Heitner, John F; Shah, Dipan J; Hayes, Brenda; Rehwald, Wolfgang; Parker, Michele A; Kim, Han W; Judd, Robert M; Kim, Raymond J; Klem, Igor
2017-10-01
This study sought to determine the prevalence, correlates, and impact on cardiac mortality of right ventricular (RV) dysfunction in nonischemic cardiomyopathy. Current heart failure guidelines place little emphasis on RV assessment due to limited available data on determinants of RV function, mechanisms leading to its failure, and relation to outcomes. We prospectively studied 423 patients with cardiac magnetic resonance (CMR). The pre-specified study endpoint was cardiac mortality. In 100 patients, right heart catheterization was performed as clinically indicated. During a median follow-up time of 6.2 years (interquartile range: 2.9 to 7.6 years), 101 patients (24%) died of cardiac causes. CMR right ventricular ejection fraction (RVEF) was a strong independent predictor of cardiac mortality after adjustment for age, heart failure-functional class, blood pressure, heart rate, serum sodium, serum creatinine, myocardial scar, and left ventricular ejection fraction (LVEF). Patients with the lowest quintile of RVEF had a nearly 5-fold higher cardiac mortality risk than did patients with the highest quintile (hazard ratio: 4.68; 95% confidence interval [CI]: 2.43 to 9.02; p < 0.0001). RVEF was positively correlated with LVEF (r = 0.60; p < 0.0001), and inversely correlated with right atrial pressure (r = -0.32; p = 0.001), pulmonary artery pressure (r = -0.34; p = 0.0005), transpulmonary gradient (r = -0.28; p = 0.006) but not with pulmonary wedge pressure (r = -0.15; p = 0.13). In multivariable logistic regression analysis of CMR, clinical, and hemodynamic data the strongest predictors of right ventricular dysfunction were LVEF (odds ratio [OR]: 0.85; 95% CI: 0.78 to 0.92; p < 0.0001), transpulmonary gradient (OR: 1.20; 95% CI: 1.09 to 1.32; p = 0.0003), and systolic blood pressure (OR: 0.97; 95% CI: 0.94 to 0.99; p = 0.02). CMR assessment of RVEF provides important prognostic information independent of established risk factors and LVEF in heart failure patients with nonischemic cardiomyopathy. Right ventricular dysfunction is strongly associated with both indices of intrinsic myocardial contractility and increased afterload from pulmonary vascular dysfunction. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Zhou, Qiongjie; Ren, Yunyun; Yan, Yingliu; Chu, Chen; Gui, Yonghao; Li, Xiaotian
2012-11-01
This study's aim was to evaluate the effect of preeclampsia and intrauterine growth restriction (IUGR) on fetal cardiac function, and the relationship of the latter with adverse pregnancy outcomes. We did a cross-sectional study of 132 women with uncomplicated singleton pregnancies, 34 with preeclampsia without IUGR, and 12 with preeclampsia and IUGR. Fetal cardiac structure and function were evaluated using fetal two-dimension ultrasound, pulsed wave Doppler and tissue Doppler imaging (TDI). Data were analyzed by t-tests, ANOVA, Chi-square tests, or Wilcoxon rank-sum test. Compared with the normal pregnancy group, mitral/tricuspid early systolic peak velocity of annulus/late diastolic peak velocity of annulus (Sa) and left ventricular (LV)/right ventricular (RV) early diastolic peak velocity at the annulus (Ea) in TDI decreased in preeclampsia with or without IUGR (P < 0.05). LV/RV Ea underwent a gestational decrease in preeclampsia with or without IUGR (P < 0.05). The changes in mitral/tricuspid Sa and LV Sa associated with preeclampsia were even more pronounced with preterm delivery at less than 34 gestational weeks and stillbirth (P < 0.05). Intrauterine growth restriction influences fetal cardiac function in the presence of preeclampsia, and TDI may be a sensitive and preferable method to detect such changes. Fetal LV/RV Ea is a potential marker for early fetal cardiac diastolic impairment, and mitral/tricuspid Sa and LV Sa may be predictors for adverse pregnancy outcomes. © 2012 John Wiley & Sons, Ltd.
Said, Sarmad; Cooper, Chad J; Quevedo, Karla; Rodriguez, Emmanuel; Hernandez, German T
2013-01-01
Male, 22 FINAL DIAGNOSIS: Cardiomyopathy Symptoms: Shortness of breath • dispnoea • chest discomfort - Clinical Procedure: Echocardiogram • cardiac MRI Specialty: Cardiology. Challenging differential diagnosis. Non-compaction cardiomyopathy (NCM) is a rare congenital cardiomyopathy characterized by increased trabeculation in one or more segments of the ventricle. The left ventricle is most commonly affected. However, biventricular involvement or right ventricle predominance has also been described. Clinical features of NCM are non-specific and can range from being asymptomatic to symptoms of congestive heart failure, arrhythmia, and systemic thromboembolism. 22-year-old Hispanic male presented with two month history of chest discomfort. Laboratory workup revealed an elevated brain-natriuretic-peptide of 1768 pg/ml. ECG and chest x-ray was nonspecific. Transthoracic echocardiogram revealed prominent trabeculae and spongiform appearance of the left ventricle (LV) with an ejection-fraction of 15-20%; 5 of 9 segments of the LV were trabeculated with deep intertrabecular recesses also involving the right ventricle (RV) with demonstrated blood flow in these recesses on color-doppler. The biventricular spongiform appearance was morphologically suggestive for NCM with involvement of the RV. Confirmatory cardiac MRI was performed, demonstrating excessive trabeculation of the left-ventricular apex and mid-ventricular segments. Hypertrabecularion was exhibited at the apical and lateral wall of the RV. Cardiac catheterization showed an intact cardiac vessel system. The patient was discharged on heart failure treatment and was placed on the heart transplantation list. NCM is a unique disorder resulting in serious and severe complications. The majority of the reported cases describe the involvement of the left ventricle. However, the right ventricle should be taken into careful consideration. The early diagnosis may help to increase the event-free survival.
Alizade, Elnur; Avci, Anil; Tabakcı, Mehmet Mustafa; Toprak, Cuneyt; Zehir, Regayip; Acar, Goksel; Kargin, Ramazan; Emiroğlu, Mehmet Yunas; Akçakoyun, Mustafa; Pala, Selçuk
2016-08-01
Right ventricular (RV) effects of long-term use of anabolic-androgenic steroids (AAS) are not clearly known. The aim of this study was to assess RV systolic functions by two-dimensional speckle tracking echocardiography (2DSTE) in AAS user and nonuser bodybuilders. A total of 33 competitive male bodybuilders (15 AAS users, 18 AAS nonusers) were assessed. To assess RV systolic functions, all participants underwent standard two-dimensional and Doppler echocardiography, and 2DSTE. Interventricular septal thickness, left ventricle posterior wall thickness, relative wall thickness, and left ventricle mass index were significantly higher in AAS users than nonusers. While standard diastolic parameters were not statistically different between the groups, tissue Doppler parameters including RV E' and E'/A' were lower in AAS users than nonusers (10.1 ± 2.0 vs. 12.7 ± 2.1; P = 0.001, 1.1 ± 0.1 vs. 1.5 ± 0.4; P = 0.009, respectively). Tricuspid annular plane systolic excursion, RV fractional area change, and RV S' were in normal ranges. However, RV S' was found to be lower in users than nonusers (12.2 ± 2.2 vs. 14.6 ± 2.8, P = 0.011). RV free wall longitudinal strain and strain rate were decreased in AAS users in comparison with nonusers (-20.2 ± 3.1 vs. -23.3 ± 3.5; P = 0.012, -3.2 ± 0.1 vs. -3.4 ± 0.1; P = 0.022, respectively). In addition, there were good correlations between 2DSTE parameters and RV S', E', and E'/A'. Despite normal standard systolic echo parameters, peak systolic RV free wall strain and strain rate were reduced in AAS user bodybuilders in comparison with nonusers. Strain and strain rate by 2DSTE may be useful for early determination of subclinical RV dysfunction in AAS user bodybuilders. © 2016, Wiley Periodicals, Inc.
Arvidsson, Per M; Töger, Johannes; Carlsson, Marcus; Steding-Ehrenborg, Katarina; Pedrizzetti, Gianni; Heiberg, Einar; Arheden, Håkan
2017-02-01
Intracardiac blood flow is driven by hemodynamic forces that are exchanged between the blood and myocardium. Previous studies have been limited to 2D measurements or investigated only left ventricular (LV) forces. Right ventricular (RV) forces and their mechanistic contribution to asymmetric redirection of flow in the RV have not been measured. We therefore aimed to quantify 3D hemodynamic forces in both ventricles in a cohort of healthy subjects, using magnetic resonance imaging 4D flow measurements. Twenty five controls, 14 elite endurance athletes, and 2 patients with LV dyssynchrony were included. 4D flow data were used as input for the Navier-Stokes equations to compute hemodynamic forces over the entire cardiac cycle. Hemodynamic forces were found in a qualitatively consistent pattern in all healthy subjects, with variations in amplitude. LV forces were mainly aligned along the apical-basal longitudinal axis, with an additional component aimed toward the aortic valve during systole. Conversely, RV forces were found in both longitudinal and short-axis planes, with a systolic force component driving a slingshot-like acceleration that explains the mechanism behind the redirection of blood flow toward the pulmonary valve. No differences were found between controls and athletes when indexing forces to ventricular volumes, indicating that cardiac force expenditures are tuned to accelerate blood similarly in small and large hearts. Patients' forces differed from controls in both timing and amplitude. Normal cardiac pumping is associated with specific force patterns for both ventricles, and deviation from these forces may be a sensitive marker of ventricular dysfunction. Reference values are provided for future studies. NEW & NOTEWORTHY Biventricular hemodynamic forces were quantified for the first time in healthy controls and elite athletes (n = 39). Hemodynamic forces constitute a slingshot-like mechanism in the right ventricle, redirecting blood flow toward the pulmonary circulation. Force patterns were similar between healthy subjects and athletes, indicating potential utility as a cardiac function biomarker. Copyright © 2017 the American Physiological Society.
Luo, Qingzhi; Jin, Qi; Zhang, Ning; Han, Yanxin; Wang, Yilong; Huang, Shangwei; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun
2017-04-13
The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, <1 min) and long-duration ventricular fibrillation VF (LDVF, >1 min) in normal and heart failure (HF) canine hearts. Ventricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode. In the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest. A global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.
Hui, Wei; Slorach, Cameron; Dragulescu, Andreea; Mertens, Luc; Bijnens, Bart; Friedberg, Mark K
2014-07-01
Right bundle branch block and right ventricular (RV) dysfunction are common after tetralogy of Fallot repair (rTOF). We hypothesized that right bundle branch block is associated with specific RV mechanical dyssynchrony and inefficient contraction. We studied rTOF children and age-matched controls. QRS duration and morphology were assessed. RV mechanical dyssynchrony, indicated by early septal activation (right-sided septal flash), RV lateral wall prestretch/late contraction, postsystolic shortening, and intraventricular delay were analyzed using 2-dimensional strain echocardiography. Peak oxygen consumption reflected exercise capacity. Pulmonary regurgitation and RV volumes were assessed by MRI. Forty-six rTOF patients and 46 controls were studied. Ninety-three percent of rTOF patients demonstrated a right-sided septal flash with simultaneous RV basal lateral wall prestretch/late activation. The RV basal segment was the most delayed in onset (115 [0-194] versus 35 [0-96] ms) and termination (462 [369-706] versus 412 [325-529] ms) of longitudinal shortening, with postsystolic shortening. QRS duration correlated with RV basal time to onset and peak shortening (P<0.05). Intra-RV delay was higher in rTOF (P<0.05) in association with RV dilatation (r=0.33; P=0.04). In rTOF, RV mechanics were inefficient, with prestretch and postsystolic shortening comprising 15±11% and 16±9% of total shortening, respectively. A composite parameter of electric and mechanical dyssynchrony correlated with RV end-diastolic volume (r=0.39; P=0.03). Typical electromechanical dyssynchrony associated with mechanical inefficiency, regional dysfunction, and RV dilatation is common in rTOF children, possibly contributing to progressive RV dysfunction. The potential of cardiac resynchronization in appropriate patients requires further study. © 2014 American Heart Association, Inc.
Markin, Nicholas W; Chamsi-Pasha, Mohammed; Luo, Jiangtao; Thomas, Walker R; Brakke, Tara R; Porter, Thomas R; Shillcutt, Sasha K
2017-02-01
Perioperative evaluation of right ventricular (RV) systolic function is important to follow intraoperative changes, but it is often not possible to assess with transthoracic echocardiographic (TTE) imaging, because of surgical field constraints. Echocardiographic RV quantification is most commonly performed using tricuspid annular plane systolic excursion (TAPSE), but it is not clear whether this method works with transesophageal echocardiographic (TEE) imaging. This study was performed to evaluate the relationship between TTE and TEE TAPSE distances measured with M-mode imaging and in comparison with speckle-tracking TTE and TEE measurements. Prospective observational TTE and TEE imaging was performed during elective cardiac surgical procedures in 100 subjects. Speckle-tracking echocardiographic TAPSE distances were determined and compared with the TTE M-mode TAPSE standard. Both an experienced and an inexperienced user of the speckle-tracking echocardiographic software evaluated the images, to enable interobserver assessment in 84 subjects. The comparison between TTE M-mode TAPSE and TEE M-mode TAPSE demonstrated significant variability, with a Spearman correlation of 0.5 and a mean variance in measurement of 6.5 mm. There was equivalence within data pairs and correlations between TTE M-mode TAPSE and both speckle-tracking TTE and speckle-tracking TEE TAPSE, with Spearman correlations of 0.65 and 0.65, respectively. The average variance in measurement was 0.6 mm for speckle-tracking TTE TAPSE and 1.5 mm for speckle-tracking TEE TAPSE. Using TTE M-mode TAPSE as a control, TEE M-mode TAPSE results are not accurate and should not be used clinically to evaluate RV systolic function. The relationship between speckle-tracking echocardiographic TAPSE and TTE M-mode TAPSE suggests that in the perioperative setting, speckle-tracking TEE TAPSE might be used to quantitatively evaluate RV systolic function in the absence of TTE imaging. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Wadia, Subeer K.; Kovach, Julie; Fogg, Louis; Tandon, Rajive
2016-01-01
Abstract Right ventricular (RV) dysfunction in acute respiratory distress syndrome (ARDS) contributes to increased mortality. Our aim is to identify reproducible transthoracic echocardiography (TTE) parameters of RV dysfunction that can be used to predict outcomes in ARDS. We performed a retrospective single-center cohort pilot study measuring tricuspid annular plane systolic excursion (TAPSE), Tei index, RV-fractional area change (RV-FAC), pulmonary artery systolic pressure (PASP), and septal shift, reevaluated by an independent blinded cardiologist (JK). Thirty-eight patients were included. Patients were divided on the basis of 30-day survival. Thirty-day mortality was 47%. Survivors were younger than nonsurvivors. Survivors had a higher pH, PaO2∶FiO2 ratio, and TAPSE. Acute Physiology and Chronic Health Evaluation II (APACHE II), Simplified Acute Physiology Score II (SAPS II), and Sequential Organ Failure Assessment (SOFA) scores were lower in survivors. TAPSE has the strongest association with increased 30-day mortality from date of TTE. Accordingly, TAPSE has a strong positive correlation with PaO2∶FiO2 ratios, and Tei index has a strong negative correlation with PaO2∶FiO2 ratios. Septal shift was associated with lower PaO2∶FiO2 ratios. Decrease in TAPSE, increase in Tei index, and septal shift were seen in the severe ARDS group. In multivariate logistic regression models, TAPSE maintained a significant association with mortality independent of age, pH, PaO2∶FiO2 ratios, positive end expiratory pressure, PCO2, serum bicarbonate, plateau pressures, driving pressures, APACHE II, SAPS II, and SOFA scores. In conclusion, TAPSE and other TTE parameters should be used as novel predictive indicators for RV dysfunction in ARDS. These parameters can be used as surrogate noninvasive RV hemodynamic measurements to be manipulated to improve mortality in patients with ARDS and contributory RV dysfunction. PMID:27252840
Right Ventricular Tissue Doppler in Space Flight
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Ebert, Douglas; Garcia, Kathleen M.; Martin, David S.; Dulchavsky, Scott A.; Duncan, J. Michael
2009-01-01
Tissue Doppler (TD) registers movement of a given sample of cardiac tissue throughout the cardiac cycle. TD spectra of the right ventricle (RV) were obtained from a long-duration ISS crewmember as a portion of an ongoing experiment ("Braslet" test objective). To our knowledge, this is the first report of RV TD conducted in space flight, and the data represent reproducibility and fidelity of this application in space and serve as the first "space normal" data set. Methods RV TD was performed by astronaut scientists remotely guided by an ultrasound expert from Mission Control Center, Houston, TX. In four of the subjects, RV TD was acquired from the free wall near the tricuspid annulus in two separate sessions 4 to 7 days apart. A fifth subject had only one session. All digital DICOM frames were exported for off-line analysis. Systolic (S ), early diastolic (E ) and late diastolic (A ) velocities were measured. RV Tei-index was calculated using diastolic and systolic time intervals as a combined measure of myocardial performance. Results and Discussion The mean values from the first 4 subjects (8 sessions) were used as the on-orbit reference data, and subject 5 was considered as a hypothetical patient for comparison (see Table). The greatest difference was in the early diastolic A (31 %) yet the standard deviation (a) for A amongst the reference subjects was 2.25 (mean = 16.02). Of interest is the Tei index, a simple and feasible indicator of overall ventricular function; it was similar amongst all the subjects. The late diastolic A seems to compensate for the variance in E . Normal Tei index for the RV is < 0.3, yet our data show all but one subject consistently above this level, notwithstanding their nominal responses to daily exercise in microgravity. These data remind us that the physiology of RV preload in altered gravity environments is still not completely understood.
Luijkx, Tim; Velthuis, Birgitta K; Backx, Frank J G; Buckens, Constantinus F M; Prakken, Niek H J; Rienks, Rienk; Mali, Willem P Th M; Cramer, Maarten J
2013-08-10
Uncertainty remains about possible cardiac adaptation to resistance training. Androgenic anabolic steroids (AAS) use plays a potential role and may have adverse cardiovascular effects. To elucidate the effect of resistance training and of AAS-use on cardiac dimensions and function. Cardiac magnetic resonance (CMR) were performed in 156 male subjects aged 18-40 years: 52 non-athletes (maximum of 3 exercise hours/week), 52 strength-endurance (high dynamic-high static, HD-HS) athletes and 52 strength (low dynamic-high static, LD-HS) trained athletes (athletes ≥ 6 exercise hours/week). 28 LD-HS athletes denied and 24 admitted to AAS use for an average duration of 5 years (range 3 months-20 years). No significant differences were found between non-athletes and non-AAS-using LD-HS athletes. AAS-using LD-HS athletes had significantly larger LV and RV volumes and LV wall mass than non-AAS-using LD-HS athletes, but lower than HD-HS athletes. In comparison to all other groups AAS-using LD-HS athletes showed lower ejection fractions of both ventricles (LV/RV EF 51/48% versus 55-57/51-52%) and lower E/A ratios (LV/RV 1.5/1.2 versus 1.9-2.0/1.4-1.5) as an indirect measure of diastolic function. Linear regression models demonstrated a significant effect of AAS-use on LV EDV, LV EDM, systolic function and mitral valve E/A ratio (all ANOVA-tests p<0.05). Strength athletes who use AAS show significantly different cardiac dimensions and biventricular systolic dysfunction and impaired ventricular inflow as compared to non-athletes and non-AAS-using strength athletes. Increased ventricular volume and mass did not exceed that of strength-endurance athletes. These findings may help raise awareness of the consequences of AAS use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th
1998-01-01
Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.
Ventricular myocardial fat: CT findings and clinical correlates.
Jacobi, Adam H; Gohari, Arash; Zalta, Benjamin; Stein, Marjorie W; Haramati, Linda B
2007-05-01
Replacement of the myocardium by fat is a feature of arrythmogenic right ventricular dysplasia (ARVD). Pathology literature describes ventricular myocardial fat to be present not only in ARVD, but much more frequently related to aging, prior myocardial infarction (MI), and chronic ischemia. We noted focal ventricular myocardial fat in a group of patients who underwent chest computed tomography (CT) for varied indications. The aim of this study is to describe the noncontrast CT findings and clinical correlates of ventricular myocardial fat in this population. We prospectively identified 26 patients whose noncontrast chest CT (5/03 to 6/04) demonstrated ventricular myocardial fat and whose clinical charts were available. There were 14 men and 12 women with a mean age of 70 years. Twenty-three percent (6/26) had prior CTs. Each CT was reviewed by 3 radiologists in consensus. The site of the ventricular fat was noted. Each patient was categorized based on the location of the fat as follows: group 1-right ventricle (RV) only, group 2-left ventricle (LV) only, group 3-biventricular. Results of cardiac history, laboratory tests, and cardiac imaging were noted. The distribution of ventricular myocardial fat was: group 1 RV-27% (7/26), group 2 LV-46% (12/26), and group 3 biventricular-27% (7/26). Echocardiographic, nuclear cardiology, or electrocardiographic data localizing a prior MI to a specific site were available in 35% (9/26) of patients: 14% (1/7) of group 1, 50% (6/12) of group 2, and 29% (2/7) of group 3. Myocardial fat corresponded to the site of MI in 89% (8/9). The presence and distribution of ventricular fat on CT was unchanged from prior CT in 100% (6/6). When comparing group 1 and group 2, group 1 was older (77 vs. 64 y, P=0.005), more often female (57% vs. 17%, P=0.13) and had fewer prior MI (14% vs. 50%, P=0.17) than group 2. Only 1 patient in this series had ARVD. He was in group 3. The significance of ventricular myocardial fat varies by location. Fat in the RV is most often related to aging. Prior RV MI and ARVD are less common etiologies. Fat in the LV is frequently related to prior MI. Recognition of myocardial fat on a noncontrast chest CT may be the first opportunity to diagnose a silent MI.
Kolb, Christof; Solzbach, Ulrich; Biermann, Jürgen; Semmler, Verena; Kloppe, Axel; Klein, Norbert; Lennerz, Carsten; Szendey, Istvan; Andrikopoulos, George; Tzeis, Stylianos; Asbach, Stefan
2014-07-01
Detrimental effects of right ventricular (RV) apical pacing have directed the interest toward alternative pacing sites such as the RV mid-septum. As safety data are scarce for implantable cardioverter defibrillator (ICD) recipients the study aims to evaluate ICD lead performance in the mid-septal position. A total of 299 ICD recipients (79% male, aged 65.2 ± 12.1 years, 83% primary prevention of sudden cardiac death) were randomized to receive the RV ICD electrode either in a mid-septal (n=145) or apical (n=154) location. Event-free survival was evaluated at 3 (primary endpoint) and 12 months (secondary endpoint). Events included a composite of lead revision, suboptimal right ventricular electrode performance (including defibrillation thresholds (DFT)>25 J) or lead position not in accordance with randomized location. Event-free survival at 3 (12) months was observed in 80.6% (72.3%) of patients randomized to a mid-septal and in 82.2% (72.1%) of patients randomized to an apical lead position, p=0.726 (p=0.969). Pre-defined margins for non-inferiority were not reached at 3 or 12 months. High DFT was found in 7 patients (5.0%) of the mid-septal and in 3 (2.2%) patients of the apical group (p=0.209). In ICD recipients electrode positioning to the RV mid-septum or the RV apex results in slightly different rates concerning the survival free of lead revision, suboptimal right ventricular electrode performance or non-randomized lead position. Non-inferiority of the mid-septal lead location cannot be concluded. This should be taken into consideration when a mid-septal lead position is pursued. ClinicalTrials.gov identifier NCT00745745. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kim, Jiwon; Srinivasan, Aparna; Garcia, Tania S.; Franco, Antonino Di; Peskin, Charles S.; McQueen, David M.; Paul, Tracy K.; Feher, Attila; Geevarghese, Alexi; Rozenstrauch, Meenakshi; Devereux, Richard B.; Weinsaft, Jonathan W.
2016-01-01
Background Echo-derived linear dimensions offer straightforward indices of right ventricular (RV) structure but have not been systematically compared to RV volumes on cardiac magnetic resonance (CMR). Methods Echo and CMR were interpreted among CAD patients imaged via prospective (90%) or retrospective (10%) registries. For echo, American Society of Echocardiography (ASE) recommended RV dimensions were measured in apical 4-chamber (basal RV width, mid RV width, RV length), parasternal long (proximal RV outflow tract [pRVOT]) and short axis (distal RVOT) views. For CMR, RV end-diastolic (RV-EDV) and end-systolic (RV-ESV) volumes were quantified via border planimetry. Results 272 patients underwent echo and CMR within a narrow interval (0.4±1.0 days); complete acquisition of all ASE dimensions was feasible in 98%. All echo dimensions differed between patients with and without RV dilation on CMR (p<0.05). Basal RV width (r=0.70), pRVOT width (r=0.68), and RV length (r=0.61) yielded highest correlations with RV-EDV on CMR; end-systolic dimensions yielded similar correlations (r=0.68, 0.66, 0.65 respectively). In multivariable regression, basal RV width (regression coefficient 1.96 per mm [CI 1.22–2.70], p<0.001), RV length (0.97[0.56–1.37], p<0.001) and pRVOT width (2.62 [1.79–3.44], p<0.001) were independently associated with CMR RV-EDV[r= 0.80]. RV-ESV was similarly associated with echo dimensions (basal RV width; 1.59 per mm [CI 1.06–2.13], p<0.001) | RV length; 1.00 [0.66–1.34], p<0.001) | pRVOT width; 1.80 [1.22–2.39], p<0.001) [r= 0.79]. Conclusions RV linear dimensions provide readily obtainable markers of RV chamber size. Proximal RVOT and basal width are independently associated with CMR volumes, supporting use of multiple linear dimensions when assessing RV size on echo. PMID:27297619
Hyldebrandt, Janus Adler; Agger, Peter; Sivén, Eleonora; Wemmelund, Kristian Borup; Heiberg, Johan; Frederiksen, Christian Alcaraz; Ravn, Hanne Berg
2015-09-01
Right ventricular failure (RVF) secondary to pulmonary regurgitation (PR) impairs right ventricular (RV) function and interrupts the interventricular relationship. There are few recommendations for the medical management of severe RVF after prolonged PR. PR was induced in 16 Danish landrace pigs by plication of the pulmonary valve leaflets. Twenty-three pigs served as controls. At reexamination the effect of milrinone, epinephrine, and dopamine was evaluated using biventricular conductance and pulmonary catheters. Seventy-nine days after PR was induced, RV end-diastolic volume index (EDVI) had increased by 33% (P = 0.006) and there was a severe decrease in the load-independent measurement of contractility (PRSW) (-58%; P = 0.003). Lower cardiac index (CI) (-28%; P < 0.0001), mean arterial pressure (-15%; P = 0.01) and mixed venous oxygen saturation (SvO2) (36%; P < 0.0001) were observed compared with the control group. The interventricular septum deviated toward the left ventricle (LV). Milrinone improved RV-PRSW and CI and maintained systemic pressure while reducing central venous pressure (CVP). Epinephrine and dopamine further improved biventricular PRSW and CI equally in a dose-dependent manner. Systemic and pulmonary pressures were higher in the dopamine-treated animals compared with epinephrine-treated animals. None of the treatments improved stroke volume index (SVI) despite increases in contractility. Strong correlation was detected between SVI and LV-EDVI, but not SVI and biventricular contractility. In RVF due to PR, milrinone significantly improved CI, SvO2, and CVP and increased contractility in the RV. Epinephrine and dopamine had equal inotropic effect, but a greater vasopressor effect was observed for dopamine. SV was unchanged due to inability of both treatments to increase LV-EDVI. Copyright © 2015 the American Physiological Society.
Cavasin, Maria A.; Demos-Davies, Kim; Horn, Todd R.; Walker, Lori A.; Lemon, Douglas D.; Birdsey, Nicholas; Weiser-Evans, Mary C. M.; Harral, Jules; Irwin, David C.; Anwar, Adil; Yeager, Michael E.; Li, Min; Watson, Peter A.; Nemenoff, Raphael A.; Buttrick, Peter M.; Stenmark, Kurt R.; McKinsey, Timothy A.
2012-01-01
Rationale Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular (LV) heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension (PH) with associated right ventricular (RV) cardiac remodeling are poorly understood. Objective This study was performed to assess the utility of selective small molecule inhibitors of class I HDACs in a pre-clinical model of PH. Methods and Results Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs −1, −2 and −3. The compound reduced pulmonary arterial pressure (PAP) more dramatically than tadalafil, a standard-of-care therapy for human PH that functions as a vasodilator. MGCD0103 improved pulmonary artery (PA) acceleration time (PAAT) and reduced systolic notching of the PA flow envelope, suggesting a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced PAP in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening due to suppression of smooth muscle cell proliferation. RV function was maintained in MGCD0103 treated animals. Although the class I HDAC inhibitor only modestly reduced RV hypertrophy, it had multiple beneficial effects on the RV, which included suppression of pathological gene expression, inhibition of pro-apoptotic caspase activity, and repression of pro-inflammatory protein expression. Conclusions By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for PH that will complement vasodilator standards-of-care. PMID:22282194
Monfredi, Oliver; Luckie, Matthew; Mirjafari, Hoda; Willard, Terence; Buckley, Helen; Griffiths, Linda; Clarke, Bernard; Mahadevan, Vaikom S
2013-08-20
To investigate the echocardiographic effects of percutaneous closure of secundum atrial septal defect (ASD) in adults and assess which pre-closure parameters predict good response to closure. ASD is a common congenital heart disease often undiscovered until adulthood. ASD closure has been revolutionized by the use of percutaneous devices. The effects of these procedures on echocardiographic parameters are not well characterized. Patients undergoing percutaneous device closure of ASD between June 2007 and June 2009 had 3 sequential echocardiograms reviewed: pre-procedure, immediate post-procedure (24 hours) and 6-8 weeks post-procedure. Significant changes from baseline were investigated using paired t-test/1-way ANOVA. Pearson correlation (2-tailed) tests were used to categorize patients as 'good responders' to closure in terms of selected parameters. 129 echocardiograms in 43 consecutive patients were included. Remodeling of both ventricles occurred immediately following ASD closure and was sustained. Right ventricular (RV) diameter in diastole decreased by 13.5% and 19.3% compared to baseline at 24 hours and 6-8 weeks post-closure, respectively (p<0.05); Left ventricular (LV) diameter in diastole increased by 8.5% and 15.6%, respectively (p<0.05). Functional parameters of the RV also demonstrated early and sustained decreases (TAPSE decreased by 8.3% and 17% compared to baseline at 24 hours and 6-8 weeks post-closure, respectively (p<0.05)). Smaller RV baseline diameter appeared to predict good response to closure. Percutaneous ASD closure has immediate, sustained benefits on multiple echocardiographic parameters. Good responders have smaller RV at baseline, suggesting early closure is preferable. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Raffa, Santi; Fantoni, Cecilia; Restauri, Luigia; Auricchio, Angelo
2005-10-01
We describe the case of a patient with atrioventricular (AV) junction ablation and chronic biventricular pacing in which intermittent dysfunction of the right ventricular (RV) lead resulted in left ventricular (LV) stimulation alone and onset of severe right heart failure. Restoration of biventricular pacing by increasing device output and then performing lead revision resolved the issue. This case provides evidence that LV pacing alone in patients with AV junction ablation may lead to severe right heart failure, most likely as a result of iatrogenic mechanical dyssynchrony within the RV. Thus, probably this pacing mode should be avoided in pacemaker-dependent patients with heart failure.
Gillis, Anne M
2014-10-01
The results from numerous clinical studies provide guidance for optimizing outcomes related to RV or biventricular pacing in the pacemaker and ICD populations. (1) Programming algorithms to minimize RV pacing is imperative in patients with dual-chamber pacemakers who have intrinsic AV conduction or intermittent AV conduction block. (2) Dual-chamber ICDs should be avoided in candidates without an indication for bradycardia pacing. (3) Alternate RV septal pacing sites may be considered at the time of pacemaker implantation. (4) Biventricular pacing may be beneficial in some patients with mild LV dysfunction. (5) LV lead placement at the site of latest LV activation is desirable. (6) Programming CRT systems to achieve biventricular/LV pacing >98.5% is important. (7) Protocols for AV and VV optimization in patients with CRT are not recommended after device implantation but may be considered for CRT nonresponders. (8) Novel algorithms to maximize the benefit of CRT are in evolution further.
Bove, Thierry; Vandekerckhove, Kristof; Bouchez, Stefaan; Wouters, Patrick; Somers, Pamela; Van Nooten, Guido
2014-06-01
The age for correction of tetralogy of Fallot has progressively declined to the postnatal period, often despite an increased rate of transannular patch repair. However, the long-term effect of premature exposure to chronic pulmonary insufficiency on the right ventricle remains unknown. On the basis of the relationship between the duration of pressure overload and age, the role of previous pressure load-related hypertrophy on right ventricular (RV) performance after chronic volume overload was investigated in a porcine model. RV hypertrophy (RVH), induced by pulmonary artery banding, was studied in pigs with (RVH plus pulmonary insufficiency [PI]) and without (RVH) subsequent PI. The effect of volume overload was compared between these 2 groups and pigs without RVH but with PI and controls (sham). Both acute and chronic effects on RV function were studied using conductance technology and validated using echocardiography. After chronic volume overload, the end-systolic and end-diastolic volumes were smaller in the RVH+PI group than in the PI group, including a lower pulmonary regurgitation fraction (25% ± 5% vs 35% ± 5%; P = .002). RVH resulted in better preserved systolic function, confirmed by an increased preload recruitable stroke work slope (14.7 ± 1.8 vs 9.3 ± 1.3 Mw.s/mL; P = .025) and higher RV ejection fraction (51% ± 3% vs 45% ± 4%; P = .05). Myocardial stiffness was impaired in the RVH+PI group versus the PI group (β, 0.19 ± 0.03 vs 0.12 ± 0.02 mL(-1); P = .001), presenting restrictive physiology only in the condition associating RVH and PI. The results of the present study have demonstrated that RVH attenuates the RV remodeling process related to chronic PI. It enables better preservation of contractility but at the cost of sustained diastolic impairment. These findings might help to determine the timing and strategy for repair of tetralogy of Fallot when RV outflow tract morphology indicates a definite need for transannular reconstruction. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Torres, Jose Luis; Shah, Bindi K; Greenberg, Richard M; Deger, Florin Titus; Gerstenfeld, Edward P
2010-10-01
We hypothesized that in patients with left ventricular dysfunction undergoing implant of a biventricular ICD, the local dominant frequency during early induced ventricular fibrillation would be higher at an epicardial left ventricular position compared to an endocardial right ventricular position. Patients undergoing implant of a biventricular ICD were studied. During ventricular fibrillation induction, bipolar electrograms were recorded from leads at an epicardial left ventricular position and an endocardial right ventricular position. Overlapping 2-s fast Fourier transforms were obtained for 6 s of ventricular fibrillation. The dominant frequency and organizational index were compared. Thirty-four patients (20 men, age 64 ± 11 years) underwent 57 inductions of ventricular fibrillation. Eighteen patients had non-ischemic dilated cardiomyopathy and 16 had ischemic dilated cardiomyopathy. The dominant frequency was higher at a lateral epicardial left ventricular position than an apical endocardial right ventricular position in 18 patients with non-ischemic dilated cardiomyopathy (LV epicardial 5.34 ± 0.37 Hz, RV endocardial 5.09 ± 0.41 Hz, p < 0.001), but not in 16 patients with ischemic dilated cardiomyopathy (LV epicardial 4.99 ± 0.57 Hz, RV epicardial 4.87 ± 0.65 Hz, p = 0.094). In patients with non-ischemic dilated cardiomyopathy, there is a dominant frequency gradient during early ventricular fibrillation induced at ICD testing from the lateral left ventricular epicardium to the apical right ventricular endocardium.
Right Ventricular Pacing for Assessment of Cavo-Tricuspid Isthmus Block.
Venkataraman, Ganesh; Wish, Marc; Friehling, Ted; Strickberger, S Adam
2016-01-01
Background: Cavo-tricuspid isthmus (CTI) dependent atrial flutter is typically treated with cardiac ablation. Standard techniques to assess CTI block after ablation can be technically challenging. Right ventricular (RV) pacing may allow for another technique to assess CTI block after ablation. Objective: The purpose of this study was to evaluate RV pacing as a method to assess CTI block after ablation of CTI dependent atrial flutter, and define endpoints of ablation using this technique. Methods: 28 patients undergoing ablation of CTI dependent atrial flutter with intact ventriculoatrial (VA) conduction were prospectively enrolled in this study and underwent the RV pacing protocol, as well as standard coronary sinus (CS) pacing techniques to assess CTI block. Results: The mean trans-isthmus conduction interval during CS pacing (TICI CS ) at 600 and 400ms after CTI ablation was 168 +/- 9ms and 175 +/- 18ms, respectively. The mean trans-isthmus conduction interval during RV pacing (TICI RV ) at 600ms and 400ms after CTI ablation was 109 +/- 5ms and 111 +/- 5ms, respectively. A TICI RV >100ms was associated with a successful outcome after CTI ablation. Conclusions: RV pacing may add incremental value in the assessment of CTI block in patients undergoing ablation of CTI dependent atrial flutter.
NASA Astrophysics Data System (ADS)
Tumbur, O.; Safri, Z.; Hassan, R.
2018-03-01
Different types of left ventricular hypertrophy geometry are associated with different risk of cardiovascular disease. The purpose of this study was to determine the role of various ECG voltages of LVH to distinguish the type of LVH geometry. A cross-sectional study from June to November 2015, 100 patients in Adam Malik Hospital Medan. The result of LVH ECG criteria of Sokolow-Lyon was not met then obtained normal left ventricular geometry with 60% sensitivity, 72.22% specificity, and 71% accuracy. The eccentric type of LVH is obtained when the Cornel Voltage is not met; the sensitivity is 25%, specificity 71.88%, and 55% accuracy. Concentric geometric hypertrophy when the RV6/V5> 1 ratio is satisfied, the sensitivity is 55.56%, specificity 56.36%, and 56% accuracy. The RV6/V5>1 ratio was not met, the concentric geometry type of hypertrophy remodeling was determined with a sensitivity of 55.56%, specificity 49.45%, and 50% accuracy. Conclusions, various LVHECG criteria distinguish the type of LVH geometry. Sokolow-Lyon and Cornel Voltage sensitivity and specificity are better than the RV6/V5 ratio.
'Caterpillar right ventricle': unusual manifestation of a rare disease.
Kalliath, Suneesh; Rajesh, Gopalan Nair
2017-01-01
A 66-year-old man presented with abdominal distension and pedal oedema for the past 10 years. He had history of right heart failure on several occasions in the past, and one of these admissions prompted referral to a cardiac specialist. On examination, he had markedly elevated jugular venous pressure with prominent 'y-descent', a tricuspid regurgitation murmur, gross ascites and pedal oedema. A full blood count, routine biochemical screen and serum bicarbonate levels were normal. Right ventricular angiogram revealed a 'caterpillar'-like aneurysm of the right ventricle (RV) apex (figure 1 arrow) with a dilated right ventricular outflow tract and significant tricuspid regurgitation with a dilated right atrium (see online supplementary video 1). Figure 1 A cine angiographic frame of the right ventricle in posteroanterior view, showing a 'caterpillar'-like right ventricle aneurysm (arrow). 10.1136/heartasia-2017-010957.supp3Supplementary file 3. On the basis of the clinical and right ventriculography features, what is the most likely diagnosis for this patient?Arrhythmogenic right ventricular cardiomyopathy (ARVC)Right ventricular endomyocardial fibrosis (RV-EMF) with an RV aneurysmCardiac sarcoidosisCongenital diverticulum of the right ventricle.
PERKAT RV: first in vivo data of a novel right heart assist device.
Kretzschmar, Daniel; Lauten, Alexander; Schubert, Harald; Bischoff, Sabine; Schulze, Christian; Ferrari, Markus W
2018-04-06
Mechanical right ventricular (RV) support offers a treatment option for critically ill patients with RV failure (RVF). We developed an assist device for rapid percutaneous implantation. The aim of the present study was to investigate the implantation procedure, haemodynamic performance and possible side effects of the novel right ventricular assist device - PERKAT RV - in an animal model. The PERkutane KATheterpumptechnologie RV (PERKAT RV) device consists of a nitinol chamber covered by foil containing inflow valves. An outlet tube is attached to its distal part. The system is designed for 18 Fr percutaneous implantation. The chamber is unfolded in the inferior vena cava while the outlet tube bypasses the right heart with the tip in the pulmonary trunk. An IABP balloon is placed inside. Balloon deflation generates blood flow into the chamber; during inflation, blood is guided into the pulmonary arteries. Acute RVF was induced by venous injection of Sephadex in seven sheep for evaluation of the device. The PERKAT RV was able to improve haemodynamics immediately generating a median increase in cardiac output of 59%. Longer pump support was evaluated in a second study. Four sheep were supported for eight hours without any problems. The percutaneous implantation and explantation of the PERKAT RV device was possible in the designed way. The sheep studies proved beneficial haemodynamic effects in acute RVF. The system offers easy and safe treatment in acute RVF.
Medvedofsky, Diego; Addetia, Karima; Patel, Amit R; Sedlmeier, Anke; Baumann, Rolf; Mor-Avi, Victor; Lang, Roberto M
2015-10-01
Echocardiographic assessment of the right ventricle is difficult because of its complex shape. Three-dimensional echocardiographic (3DE) imaging allows more accurate and reproducible analysis of the right ventricle than two-dimensional methodology. However, three-dimensional volumetric analysis has been hampered by difficulties obtaining consistently high-quality coronal views, required by the existing software packages. The aim of this study was to test a new approach for volumetric analysis without coronal views by using instead right ventricle-focused three-dimensional acquisition with multiple short-axis views extracted from the same data set. Transthoracic 3DE and cardiovascular magnetic resonance (CMR) images were prospectively obtained on the same day in 147 patients with wide ranges of right ventricular (RV) size and function. RV volumes and ejection fraction were measured from 3DE images using the new software and compared with CMR reference values. Comparisons included linear regression and Bland-Altman analyses. Repeated measurements were performed to assess measurement variability. Sixteen patients were excluded because of suboptimal image quality (89% feasibility). RV volumes and ejection fraction obtained with the new 3DE technique were in good agreement with CMR (end-diastolic volume, r = 0.95; end-systolic volume, r = 0.96; ejection fraction, r = 0.83). Biases were, respectively, -6 ± 11%, 0 ± 15%, and -7 ± 17% of the mean measured values. In a subset of patients with suboptimal 3DE images, the new analysis resulted in significantly improved accuracy against CMR and reproducibility, compared with previously used coronal view-based techniques. The time required for the 3DE analysis was approximately 4 min. The new software is fast, reproducible, and accurate compared with CMR over a wide range of RV size and function. Because right ventricle-focused 3DE acquisition is feasible in most patients, this approach may be applicable to a broader population of patients who can benefit from RV volumetric assessment. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Heiskanen, Marja A; Leskinen, Tuija; Heinonen, Ilkka H A; Löyttyniemi, Eliisa; Eskelinen, Jari-Joonas; Virtanen, Kirsi; Hannukainen, Jarna C; Kalliokoski, Kari K
2016-09-01
Despite the recent studies on structural and functional adaptations of the right ventricle (RV) to exercise training, adaptations of its metabolism remain unknown. We investigated the effects of short-term, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on RV glucose and fat metabolism. Twenty-eight untrained, healthy 40-55 yr-old-men were randomized into HIIT (n = 14) and MICT (n = 14) groups. Subjects performed six supervised cycle ergometer training sessions within 2 wk (HIIT session: 4-6 × 30 s all-out cycling/4-min recovery; MICT session: 40-60 min at 60% peak O2 uptake). Primary outcomes were insulin-stimulated RV glucose uptake (RVGU) and fasted state RV free fatty acid uptake (RVFFAU) measured by positron emission tomography. Secondary outcomes were changes in RV structure and function, determined by cardiac magnetic resonance. RVGU decreased after training (-22% HIIT, -12% MICT, P = 0.002 for training effect), but RVFFAU was not affected by the training (P = 0.74). RV end-diastolic and end-systolic volumes, respectively, increased +5 and +7% for HIIT and +4 and +8% for MICT (P = 0.002 and 0.005 for training effects, respectively), but ejection fraction mildly decreased (-2% HIIT, -4% MICT, P = 0.034 for training effect). RV mass and stroke volume remained unaltered. None of the observed changes differed between the training groups (P > 0.12 for group × training interaction). Only 2 wk of physical training in previously sedentary subjects induce changes in RV glucose metabolism, volumes, and ejection fraction, which precede exercise-induced hypertrophy of RV. Copyright © 2016 the American Physiological Society.
Tadic, Marijana; Celic, Vera; Cuspidi, Cesare; Ilic, Sanja; Pencic, Biljana; Radojkovic, Jana; Ivanovic, Branislava; Stanisavljevic, Dejana; Kocabay, Gonenc; Marjanovic, Tamara
2015-03-01
The aim of this study was to determine right ventricular (RV) and right atrial (RA) deformation assessed by two-dimensional echocardiographic and three-dimensional echocardiographic (3DE) imaging in patients with prediabetes and type 2 diabetes mellitus. This cross-sectional study included 47 untreated normotensive subjects with prediabetes, 57 recently diagnosed normotensive patients with diabetes, and 54 healthy controls of similar sex and age distributions. All subjects underwent laboratory analyses and complete two-dimensional echocardiographic and 3DE examinations. Three-dimensional echocardiographic RV end-diastolic volume index gradually decreased from controls across patients with diabetes to those with diabetes (69 ± 10 vs 63 ± 8 vs 58 ± 8 mL/m(2), P < .001), whereas 3DE RV end-systolic volume index was higher in controls compared with patients with diabetes and those with diabetes (25 ± 4 vs 23 ± 4 vs 22 ± 4 mL/m(2), P < .001). However, there was no difference in 3DE RV ejection fraction among the three groups (63 ± 4% vs 62 ± 4% vs 61 ± 5%, P = .063). RV and RA global strain and systolic and early diastolic strain rates were decreased in patients with prediabetes and in those with diabetes compared with controls, whereas RV and RA late diastolic strain rates were increased in these patients. Multivariate regression analysis showed that RV global strain was associated with glycated hemoglobin, independent of left ventricular parameters. RV and RA myocardial deformation and function obtained by 3DE and two-dimensional echocardiographic strain, even in normal ranges, were decreased in patients with prediabetes and in those with diabetes compared with controls. The long-term parameter of glucose control was correlated with the right heart mechanics. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Favorable Changes in Cardiac Geometry and Function Following Gastric Bypass Surgery
Owan, Theophilus; Avelar, Erick; Morley, Kimberly; Jiji, Ronny; Hall, Nathaniel; Krezowski, Joseph; Gallagher, James; Williams, Zachary; Preece, Kevin; Gundersen, Nancy; Strong, Michael B.; Pendleton, Robert C.; Segerson, Nathan; Cloward, Tom V.; Walker, James M.; Farney, Robert J.; Gress, Richard E.; Adams, Ted D.; Hunt, Steven C.; Litwin, Sheldon E.
2013-01-01
Objectives The objective of this study was to test the hypothesis that gastric bypass surgery (GBS) would favorably impact cardiac remodeling and function. Background GBS is increasingly used to treat severe obesity, but there are limited outcome data. Methods We prospectively studied 423 severely obese patients undergoing GBS and a reference group of severely obese subjects that did not have surgery (n = 733). Results At a 2-year follow up, GBS subjects had a large reduction in body mass index compared with the reference group (−15.4 ± 7.2 kg/m2 vs. −0.03 ± 4.0 kg/m2; p < 0.0001), as well as significant reductions in waist circumference, systolic blood pressure, heart rate, triglycerides, low-density lipoprotein cholesterol, and insulin resistance. High-density lipoprotein cholesterol increased. The GBS group had reductions in left ventricular (LV) mass index and right ventricular (RV) cavity area. Left atrial volume did not change in GBS but increased in reference subjects. In conjunction with reduced chamber sizes, GBS subjects also had increased LV midwall fractional shortening and RV fractional area change. In multivariable analysis, age, change in body mass index, severity of nocturnal hypoxemia, E/E', and sex were independently associated with LV mass index, whereas surgical status, change in waist circumference, and change in insulin resistance were not. Conclusions Marked weight loss in patients undergoing GBS was associated with reverse cardiac remodeling and improved LV and RV function. These data support the use of bariatric surgery to prevent cardiovascular complications in severe obesity. PMID:21292133
Medvedofsky, Diego; Aronson, Doron; Gomberg-Maitland, Mardi; Thomeas, Vasiliki; Rich, Stuart; Spencer, Kirk; Mor-Avi, Victor; Addetia, Karima; Lang, Roberto M; Shiran, Avinoam
2017-01-01
The aim of this study was to determine the mechanism of tricuspid regurgitation (TR) progression in pulmonary arterial hypertension (PAH) and its effect on survival. We studied 88 patients with PAH and functional TR (mean pulmonary artery pressure 49 ± 14 mmHg; 43% idiopathic PAH) who had serial echocardiograms. TR progression (n = 35) was defined as ≤mild TR on Echo 1 and ≥moderate TR on Echo 2. TR regression (n = 17) was defined as ≥moderate TR on Echo 1 and ≤mild TR on Echo 2. Stable TR (n = 36) was defined as ≤mild TR on both echoes. TR progression was associated with an increase in pulmonary artery systolic pressure (PASP, 62 ± 22-92 ± 23 mmHg, P < 0.0001), right ventricular (RV) enlargement, mainly at mid-ventricular level, increased RV sphericity (6.1 ± 1.7-6.9 ± 1.8, P = 0.004), tricuspid annular (TA) dilatation (4.0 ± 0.7-4.6 ± 0.7 cm, P < 0.0001), and increased tricuspid valve (TV) tenting area (2.0 ± 0.7-2.5 ± 1.0 cm 2 , P = 0.0003). TR regression was associated with a reduction in PASP (84 ± 15-55 ± 18 mmHg, P < 0.0001), reverse RV remodelling with a reduction in RV sphericity (6.3 ± 1.4-5.5 ± 1.0, P = 0.02), and a reduction in TA size (4.1 ± 0.7-3.6 ± 0.7 cm, P = 0.02) and TV tenting (2.1 ± 0.7-1.3 ± 0.5 cm 2 , P = 0.0002). TR progression was associated with all-cause mortality (log-rank P = 0.0007). In PAH, TR progression was associated with worsening pulmonary hypertension and adverse RV and TV apparatus remodelling. TR progression is associated with poor outcome in PAH. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Gregori, Mario; Giammarioli, Benedetta; Tocci, Giuliano; Befani, Alberto; Ciavarella, Giuseppino Massimo; Ferrucci, Andrea; Paneni, Francesco
2015-12-01
Right ventricular dysfunction (RVD) is associated with poor cardiovascular outcome. The renin-angiotensin-aldosterone system is involved in alterations of the left ventricular geometry and function. Detrimental effects of the renin-angiotensin-aldosterone system on the right ventricular function are being postulated, but data supporting this assumption are still lacking. The aim of the study was to assess the impact of hyperreninemia, hyperaldosteronism or their combination on right ventricular function in hypertensive individuals. Plasma renin activity (PRA) and plasma aldosterone concentrations (PACs) were measured in 116 hypertensive patients, divided as follows: normal PRA and PAC (n = 38); high PRA and normal PAC (hypereninemia) (n = 26); normal PRA and high PAC (hyperaldosternism) (n = 27); high PRA and PAC (HRA) (n = 25). Echocardiographic evaluation of the left and right ventricles (RV), including tissue Doppler imaging, was performed. RVD was identified by tissue Doppler Imaging-derived Myocardial Performance Index, calculated with a multisegmental approach. Indices of the right ventricular structure and function, as well as the prevalence of RVD, were higher in hyperreninemia and hyperaldosternism groups as compared with the normal group, and a further increase was observed in the HRA patients. Regression models showed a similar risk of RVD in the hyperreninemia and hyperaldosternism patients, regardless of systemic and pulmonary pressure, as well as left ventricular dysfunction. Notably, patients with both hyperreninemia and hyperaldosternism exhibited the strongest association with RVD as compared with patients with only hyperreninemia or hyperaldosternism. Isolated hyperreninemia or hyperaldosternism determines a similar impairment of the right ventricular function, whereas their combination is further detrimental. Renin and aldosterone may represent early biomarkers of right ventricular dysfunction in hypertension.
Tavares-Silva, Marta; Alaa, Mohamed; Leite, Sara; Oliveira-Pinto, José; Lopes, Lucas; Leite-Moreira, Adelino F; Lourenço, André P
2017-09-01
The choice of inodilator drug in the acute management of patients with pulmonary hypertension (PH) having right ventricular (RV) failure remains unsettled and challenging. Comprehensive experimental evaluations may provide further insight and fundamental translational research clues to support inodilator selection and clinical trial design. Our aim was to compare acute dose-response hemodynamic effects of inodilators dobutamine (DOB), milrinone (MIL), and levosimendan (LEV) in chronic experimental PH. Seven-week-old male Wistar rats were randomly injected with 60 mg·kg -1 monocrotaline (MCT) or vehicle (Ctrl, n = 7) and underwent systemic and pulmonary artery (PA) pressure and RV pressure-volume (PV) hemodynamic evaluation under halogenate anesthesia 24 to 30 days after injection. The MCT-injected animals (n = 7 each) randomly received dose-response infusions of DOB (1, 3, 6 and 12 μg·kg -1 ·min -1 ), MIL (MIL: 1, 3, 6 and 12 μg·kg -1 ·min -1 ), or LEV (0.3, 0.6, 1.2 and 2.4 μg·kg -1 ·min -1 ). Load-independent indexes were obtained by inferior vena cava occlusion at baseline and after the last dose. All inodilators increased RV ejection fraction, preload recruitable stroke work, and ventricular-vascular coupling without jeopardizing perfusion pressure. Dobutamine raised heart rate and PA pressure. Only LEV increased cardiac index and decreased PA elastance and pulmonary vascular resistance (PVR). Moreover, only LEV downward-shifted the end-diastolic PV relationship, thereby improving RV compliance. Adding sildenafil to LEV further decreased PVR. Levosimendan had beneficial acute systolic and diastolic functional effects in experimental chronic PH and RV afterload compared to DOB and MIL. It should be further tested in clinical trials enrolling patients with PH in the perioperative and critical care settings.
Pham, Toan; Nisbet, Linley; Taberner, Andrew; Loiselle, Denis; Han, June-Chiew
2018-04-01
Pulmonary arterial hypertension (PAH) triggers right ventricle (RV) hypertrophy and left ventricle (LV) atrophy, which progressively leads to heart failure. We designed experiments under conditions mimicking those encountered by the heart in vivo that allowed us to investigate whether consequent structural and functional remodelling of the ventricles affects their respective energy efficiencies. We found that peak work output was lower in RV trabeculae from PAH rats due to reduced extent and velocity of shortening. However, their suprabasal enthalpy was unaffected due to increased activation heat, resulting in reduced suprabasal efficiency. There was no effect of PAH on LV suprabasal efficiency. We conclude that the mechanism underlying the reduced energy efficiency of hypertrophied RV tissues is attributable to the increased energy cost of Ca 2+ cycling, whereas atrophied LV tissues still maintain normal mechano-energetic performance. Pulmonary arterial hypertension (PAH) greatly increases the afterload on the right ventricle (RV), triggering RV hypertrophy, which progressively leads to RV failure. In contrast, the disease reduces the passive filling pressure of the left ventricle (LV), resulting in LV atrophy. We investigated whether these distinct structural and functional consequences to the ventricles affect their respective energy efficiencies. We studied trabeculae isolated from both ventricles of Wistar rats with monocrotaline-induced PAH and their respective Control groups. Trabeculae were mounted in a calorimeter at 37°C. While contracting at 5 Hz, they were subjected to stress-length work-loops over a wide range of afterloads. They were subsequently required to undergo a series of isometric contractions at various muscle lengths. In both protocols, stress production, length change and suprabasal heat output were simultaneously measured. We found that RV trabeculae from PAH rats generated higher activation heat, but developed normal active stress. Their peak external work output was lower due to reduced extent and velocity of shortening. Despite lower peak work output, suprabasal enthalpy was unaffected, thereby rendering suprabasal efficiency lower. Crossbridge efficiency, however, was unaffected. In contrast, LV trabeculae from PAH rats maintained normal mechano-energetic performance. Pulmonary arterial hypertension reduces the suprabasal energy efficiency of hypertrophied right ventricular tissues as a consequence of the increased energy cost of Ca 2+ cycling. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Korcarz, Claudia E; Peppard, Paul E; Young, Terry B; Chapman, Carrie B; Hla, K Mae; Barnet, Jodi H; Hagen, Erika; Stein, James H
2016-06-01
To characterize the prospective associations of obstructive sleep apnea (OSA) with future echocardiographic measures of adverse cardiac remodeling. This was a prospective long-term observational study. Participants had overnight polysomnography followed by transthoracic echocardiography a mean (standard deviation) of 18.0 (3.7) y later. OSA was characterized by the apnea-hypopnea index (AHI, events/hour). Echocardiography was used to assess left ventricular (LV) systolic and diastolic function and mass, left atrial volume and pressure, cardiac output, systemic vascular resistance, and right ventricular (RV) systolic function, size, and hemodynamics. Multivariate regression models estimated associations between log10(AHI+1) and future echocardiographic findings. A secondary analysis looked at oxygen desaturation indices and future echocardiographic findings. At entry, the 601 participants were mean (standard deviation) 47 (8) y old (47% female). After adjustment for age, sex, and body mass index, baseline log10(AHI+1) was associated significantly with future reduced LV ejection fraction and tricuspid annular plane systolic excursion (TAPSE) ≤ 15 mm. After further adjustment for cardiovascular risk factors, participants with higher baseline log10(AHI+1) had lower future LV ejection fraction (β = -1.35 [standard error = 0.6]/log10(AHI+1), P = 0.03) and higher odds of TAPSE ≤ 15 mm (odds ratio = 6.3/log10(AHI+1), 95% confidence interval = 1.3-30.5, P = 0.02). SaO2 desaturation indices were associated independently with LV mass, LV wall thickness, and RV area (all P < 0.03). OSA is associated independently with decreasing LV systolic function and with reduced RV function. Echocardiographic measures of adverse cardiac remodeling are strongly associated with OSA but are confounded by obesity. Hypoxia may be a stimulus for hypertrophy in individuals with OSA. © 2016 Associated Professional Sleep Societies, LLC.
Guerrero-Orriach, José Luis; Ariza-Villanueva, Daniel; Florez-Vela, Ana; Garrido-Sánchez, Lourdes; Moreno-Cortés, María Isabel; Galán-Ortega, Manuel; Ramírez-Fernández, Alicia; Alcaide Torres, Juan; Fernandez, Concepción Santiago; Navarro Arce, Isabel; Melero-Tejedor, José María; Rubio-Navarro, Manuel; Cruz-Mañas, José
2016-01-01
To evaluate if the preoperative administration of levosimendan in patients with right ventricular (RV) dysfunction, pulmonary hypertension, and high perioperative risk would improve cardiac function and would also have a protective effect on renal and neurological functions, assessed using two biomarkers neutrophil gelatinase-associated lipocalin (N-GAL) and neuronal enolase. This is an observational study. Twenty-seven high-risk cardiac patients with RV dysfunction and pulmonary hypertension, scheduled for cardiac valve surgery, were prospectively followed after preoperative administration of levosimendan. Levosimendan was administered preoperatively on the day before surgery. All patients were considered high risk of cardiac and perioperative renal complications. Cardiac function was assessed by echocardiography, renal function by urinary N-GAL levels, and the acute kidney injury scale. Neuronal damage was assessed by neuron-specific enolase levels. After surgery, no significant variations were found in mean and SE levels of N-GAL (14.31 [28.34] ng/mL vs 13.41 [38.24] ng/mL), neuron-specific enolase (5.40 [0.41] ng/mL vs 4.32 [0.61] ng/mL), or mean ± SD creatinine (1.06±0.24 mg/dL vs 1.25±0.37 mg/dL at 48 hours). RV dilatation decreased from 4.23±0.7 mm to 3.45±0.6 mm and pulmonary artery pressure from 58±18 mmHg to 42±19 mmHg at 48 hours. Preoperative administration of levosimendan has shown a protective role against cardiac, renal, and neurological damage in patients with a high risk of multiple organ dysfunctions undergoing cardiac surgery.
Low, See-Wei; Pasha, Ahmed K; Howe, Carol L; Lee, Kwan S; Suryanarayana, Prakash G
2018-01-01
Background Accurate determination of right ventricular ejection fraction (RVEF) is challenging because of the unique geometry of the right ventricle. Tricuspidannular plane systolic excursion (TAPSE) and fractional area change (FAC) are commonly used echocardiographic quantitative estimates of RV function. Cardiac MRI (CMRI) has emerged as the gold standard for assessment of RVEF. We sought to summarise the available data on correlation of TAPSE and FAC with CMRI-derived RVEF and to compare their accuracy. Methods We searched PubMed, EMBASE, Web of Science, CINAHL, ClinicalTrials.gov and the Cochrane Library databases for studies that assessed the correlation of TAPSE or FAC with CMRI-derived RVEF. Data from each study selected were pooled and analysed to compare the correlation coefficient of TAPSE and FAC with CMRI-derived RVEF. Subgroup analysis was performed on patients with pulmonary hypertension. Results Analysis of data from 17 studies with a total of 1280 patients revealed that FAC had a higher correlation with CMRI-derived RVEF compared with TAPSE (0.56vs0.40, P=0.018). In patients with pulmonary hypertension, there was no statistical difference in the mean correlation coefficient of FAC and TAPSE to CMR (0.57vs0.46, P=0.16). Conclusions FAC provides a more accurate estimate of RV systolic function (RVSF) compared with TAPSE. Adoption of FAC as a routine tool for the assessment of RVSF should be considered, especially since it is also an independent predictor of morbidity and mortality. Further studies will be needed to compare other methods of echocardiographic measurement of RV function. PMID:29387425
Calcutteea, Avin; Chung, Robin; Lindqvist, Per; Hodson, Margaret; Henein, Michael Y
2011-06-01
The right ventricle is multicompartmental in orientation. To assess the normal differential function of the right ventricular (RV) inflow, apical and outflow compartments, also their inter-relations and the response to pulmonary arterial hypertension (PAH). 45 people were studied--16 controls and 29 patients with left-sided heart failure, 15 without (group 1) and 14 with (group 2) secondary PAH, using two-dimensional (2D) and 3D echocardiography in addition to conventional Doppler techniques. There was a strong correlation between RV inlet diameter (2D) and end-diastolic volume (3D) (r=0.69, p<0.001) and between tricuspid annular plane systolic excursion and RV ejection fraction (3D) (r=0.71, p<0.001). In controls and patients, the apical ejection fraction was less than the inflow and outflow (controls: p<0.01 and p<0.01, group 1: p<0.05 and p<0.01 and group 2: p<0.05 and p<0.01, respectively). Ejection fraction was reduced in patients (inflow: p<0.001 for both, apical: p<0.01 for both and outflow tract: p<0.05 for both). In controls, the inflow compartment reached the minimum volume 20 ms before the outflow and apex but in group 2 it was simultaneous. Isovolumic contraction and relaxation times were prolonged in patients (Group 1: p=0.02 and p<0.01 and Group 2: p=0.01 for both). Peak RV ejection time correlated with the rate of outflow volume fall in controls but with the apex in group 2 (r=0.6, p<0.05). The right ventricle has distinct features for the inflow, apical and outflow tract compartments, with different extent of contribution to the overall systolic function. In PAH, the right ventricle becomes one dyssynchronous compartment, which itself may have perpetual effect on overall cardiac dysfunction.
Bellofiore, Alessandro; Dinges, Eric; Naeije, Robert; Mkrdichian, Hamorabi; Beussink-Nelson, Lauren; Bailey, Melissa; Cuttica, Michael J; Sweis, Ranya; Runo, James R; Keevil, Jon G; Francois, Christopher J; Shah, Sanjiv J; Chesler, Naomi C
2017-03-01
Inadequate right ventricular (RV) and pulmonary arterial (PA) functional responses to exercise are important yet poorly understood features of pulmonary arterial hypertension (PAH). This study combined invasive catheterisation with echocardiography to assess RV afterload, RV function and ventricular-vascular coupling in subjects with PAH. Twenty-six subjects with PAH were prospectively recruited to undergo right heart catheterisation and Doppler echocardiography at rest and during incremental exercise, and cardiac MRI at rest. Measurements at rest included basic haemodynamics, RV function and coupling efficiency (η). Measurements during incremental exercise included pulmonary vascular resistance (Z 0 ), characteristic impedance (Z C , a measure of proximal PA stiffness) and proximal and distal PA compliance (C PA ). In patients with PAH, the proximal PAs were significantly stiffer at maximum exercise (Z C =2.31±0.38 vs 1.33±0.15 WU×m 2 at rest; p=0.003) and PA compliance was decreased (C PA =0.88±0.10 vs 1.32±0.17 mL/mm Hg/m 2 at rest; p=0.0002). Z 0 did not change with exercise. As a result, the resistance-compliance (RC) time decreased with exercise (0.67±0.05 vs 1.00±0.07 s at rest; p<10 -6 ). When patients were grouped according to resting coupling efficiency, those with poorer η exhibited stiffer proximal PAs at rest, a lower maximum exercise level, and more limited C PA reduction at maximum exercise. In PAH, exercise causes proximal and distal PA stiffening, which combined with preserved Z 0 results in decreased RC time with exercise. Stiff PAs at rest may also contribute to poor haemodynamic coupling, reflecting reduced pulmonary vascular reserve that contributes to limit the maximum exercise level tolerated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Levy, Philip T.; Diodena, Brittney; Holland, Mark R.; Sekarski, Timothy J.; Lee, Caroline K.; Mathur, Amit; Cade, W. Todd; Cahill, Alison G.; Hamvas, Aaron; Singh, Gautam K.
2015-01-01
Background Right Ventricle fractional area of change (RV FAC) is a quantitative two- dimensional echocardiographic measurement of RV function. RV FAC expresses the percentage change in the RV chamber area between end-diastole (RVEDA) to end-systole (RVESA). The objectives of this study were to determine the maturational (age- and weight- related) changes of RV FAC and RV areas and to establish reference values in healthy preterm and term neonates. Methods A prospective longitudinal study was conducted in 115 preterm infants (23-28 weeks gestational age at birth, 500-1500 gram). RV FAC was measured at 24 hours of age, 72 hours of age, 32 weeks and 36 weeks postmenstrual age (PMA). The maturational patterns of RVEDA, RVESA, and RV FAC were compared to 60 healthy full term infants in a cross sectional study (> 37 weeks, 3.5 +/− 1 kg), who received echocardiograms at birth (n=25) and one month of age (n=35). RVEDA and RVESA were traced in the RV focused apical 4-chamber view, and FAC was calculated using the formula: 100 * [(RVEDA – RVESA)/RVEDA)]. Premature infants that developed chronic lung disease or had a clinically and hemodynamically significant PDA were excluded (n=55) from the reference values. Intra- and inter- observer reproducibility analysis was performed. Results RV FAC ranged from 26% at birth to 35% by 36 weeks PMA in preterm infants (n=60) and increased almost two times faster in the first month of age as compared to healthy term infants (n=60). Similarly, RVEDA and RVESA increased throughout maturation in both term and preterm infants. RV FAC and RV areas correlated with weight (r=0.81, p<0.001), but were independent of gestational age at birth (r=0.3, p=0.45). RVEDA and RVESA correlated with PMA in weeks (r=0.81, p<0.001). RV FAC trended lower in preterm infants with bronchopulmonary dysplasia (p=0.04), but did not correlate to size of PDA (p=0.56). There was no difference in RV FAC based on gender or need for mechanical ventilation. Conclusions This study establishes reference values of RV areas (RVEDA and RVESA) and RV fractional area of change (RV FAC) in healthy term and preterm infants and tracks their maturational changes during postnatal development. These measures increase from birth to 36 weeks PMA, and this is reflective of the postnatal cardiac growth as a contributor to the maturation of cardiac function These measures are also linearly associated with increasing weight throughout maturation. This study suggests that two-dimensional RV FAC can be used as a complementary modality to assess global RV systolic function in neonates and facilitates its incorporation into clinical pediatric and neonatal guidelines. PMID:25753503
Sirvente, Raquel A.; Irigoyen, Maria C.; Souza, Leandro E.; Mostarda, Cristiano; La Fuente, Raquel N.; Candido, Georgia O.; Souza, Pamella R. M.; Medeiros, Alessandra; Mady, Charles; Salemi, Vera M. C.
2014-01-01
Background Sympathetic hyperactivity may be related to left ventricular (LV) dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE) using intracardiac echocardiographic catheter. Methods and Results We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD). The rats (n = 32) were divided into 4 groups: 16 Wistar (W) with (n = 8) or without SAD (n = 8) and 16 spontaneously hypertensive rats (SHR) with (n = 8) or without SAD (SHRSAD) (n = 8). Blood pressure (BP) and heart rate (HR) did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV) concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV) pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD. Conclusions Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease. PMID:24828834
Schmack, Bastian; Weymann, Alexander; Popov, Aron-Frederik; Patil, Nikhil Prakash; Sabashnikov, Anton; Kremer, Jamila; Farag, Mina; Brcic, Andreas; Lichtenstern, Christoph; Karck, Matthias; Ruhparwar, Arjang
2016-05-05
Right ventricular failure (RVF) is an unfortunate complication that continues to limit outcomes following durable left ventricular assist device (LVAD) implantation. Despite several 'RVF risk scores' having been proposed, preoperative prediction of post-LVAD RVF remains a guesstimate at best. Current strategies for institution of temporary RVAD support are invasive, necessitate additional re-thoracotomy, restrict postoperative mobilization, and/or entail prolonged retention of prosthetic material in-situ. The authors propose a novel surgical strategy comprising simultaneous implantation of a permanent LVAD and percutaneous TandemHeart® plus ProtekDuo® to provide temporary RVAD support and preempt RVF in patients with impaired RV function.
Loeffler endocarditis: silent right ventricular myocardium!
Çetin, Süha; Heper, Gülümser; Gökhan Vural, Mustafa; Hazirolan, Tuncay
2016-07-01
We present the case of a 54-year-old male patient with Loeffler endocarditis. It is a rare disorder characterized by fibrous thickening of the endocardium leading to apical obliteration and restrictive cardiomyopathy resulting in heart failure, thromboembolic events or atrial fibrillation. To the best of our knowledge, this is the first case reporting the electrical silence of the right ventricular (RV) apex caused by fibrothrombotic thickening of this area. Under these circumstances RV apical implantation of an implantable cardioverter defibrillator (ICD) or pacemaker electrode may lead to unsuccessful stimulation of these devices.
Killingsworth, Cheryl R; Rippy, Marian K; Virmani, Renu; Rollins, Dennis L; McGiffin, David C; Ideker, Raymond E
2008-08-01
Sudden death is prevalent in heart failure patients. We tested an implantable ventricular support device consisting of a wireform harness with one or two pairs of integrated defibrillation electrode coils. The device was implanted into six pigs (36-44 kg) through a subxiphoid incision. Peak voltage (V) defibrillation thresholds (DFT) were determined for five test configurations compared with a control transvenous lead (RV to CanPect). Defibrillator can location (abdominal or pectoral) and common coil separation on the implant (0 degrees or 60 degrees ) were studied.(.) The DFT for RV60 to LV60 + CanPect was significantly less than control (348 +/- 57 vs 473 +/- 27 V, P < 0.05). The DFTs for other vectors were similar to control except for RV0 to LV0 + CanAbd (608 +/- 159 V). The device was implanted into 12 adult dogs for 42, 90, or 180 days with DFT and pathological examination performed at the terminal study. Cardiac pressures were determined at baseline, after implantation, and at the terminal study. The DFT was also determined in a separate group of four dogs at 42 days following implantation of the support device with one pair of defibrillation electrodes. The DFTs at implant and explant in dogs with one pair (8 +/- 1.5 Joules [J] and 6 +/- 1.9 J) or two pairs (8 +/- 3.4 J and 7 +/- 1.9 J) of defibrillation electrodes were not significantly different from each other but significantly less than control measured at the terminal study (18 +/- 3.4 J). Left-sided pressures were significantly decreased at explant but within expected normal ranges. Right-sided pressures were not different except for RV systolic. Histopathology indicated mild to moderate epicardial inflammation and fibrosis, consistent with a foreign body healing response. This defibrillation-enabled ventricular support system maintained mechanical functionality for up to 6 months while inducing typical chronic healing responses. The DFT was equal to or lower than a standard transvenous vector.
Is exercise good for the right ventricle? Concepts for health and disease.
La Gerche, André; Claessen, Guido
2015-04-01
There is substantial evidence supporting the prescription of exercise training in patients with left-sided heart disease, but data on the effects of exercise are far more limited for conditions that primarily affect the right ventricle. There is evolving evidence that right ventricular (RV) function is of critical importance to circulatory function during exercise. Even in healthy individuals with normal pulmonary vascular function, the hemodynamic load on the right ventricle increases relatively more during exercise than that of the left ventricle, and this disproportionate load is far greater in patients with pulmonary hypertension. Exercise-induced increases in pulmonary artery pressures can exceed RV contractile reserve (so-called arterioventricular uncoupling), resulting in attenuated cardiac output and exercise intolerance. In this review, we explore the spectrum of RV reserve-from transient RV dysfunction observed in athletes after extreme bouts of intense endurance exercise to RV failure with minimal exertion in patients with advanced pulmonary hypertension. Recent advances and novel approaches to echocardiographic and cardiac magnetic resonance imaging have provided more accurate means of assessing the right ventricle and pulmonary circulation during exercise such that quantification of exercise reserve may provide a valuable means of assessing prognosis and response to therapies. We discuss the potential benefits and risks of exercise training in both health and disease while recognizing the need for prospective studies that assess the long-term efficacy and safety of exercise interventions in patients with pulmonary vascular and RV pathologic conditions. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Nyns, Emile C A; Dragulescu, Andreea; Yoo, Shi-Joon; Grosse-Wortmann, Lars
2016-09-01
Right ventricular (RV) volume and function evaluation is essential in the follow-up of patients after arterial switch operation (ASO) for dextro-transposition of the great arteries (d-TGA). Cardiac magnetic resonance (CMR) imaging using the Simpson's method is the gold-standard for measuring these parameters. However, this method can be challenging and time-consuming, especially in congenital heart disease. Knowledge-based reconstruction (KBR) is an alternative method to derive volumes from CMR datasets. It is based on the identification of a finite number of anatomical RV landmarks in various planes, followed by computer-based reconstruction of the endocardial contours by matching these landmarks with a reference library of representative RV shapes. The purpose of this study was to evaluate the feasibility, accuracy, reproducibility and labor intensity of KBR for RV volumetry in patients after ASO for d-TGA. The CMR datasets of 17 children and adolescents (males 11, median age 15) were studied for RV volumetry using both KBR and Simpson's method. The intraobserver, interobserver and intermethod variabilities were assessed using Bland-Altman analyses. Good correlation between KBR and Simpson's method was noted. Intraobserver and interobserver variability for KBR showed excellent agreement. Volume and function assessment using KBR was faster when compared with the Simpson's method (5.1 ± 0.6 vs. 6.7 ± 0.9 min, p < 0.001). KBR is a feasible, accurate, reproducible and fast method for measuring RV volumes and function derived from CMR in patients after ASO for d-TGA.
Blakeslee, Weston W.; Demos-Davies, Kimberly M.; Lemon, Douglas D.; Lutter, Katharina M.; Cavasin, Maria A.; Payne, Sam; Nunley, Karin; Long, Carlin S.; McKinsey, Timothy A.; Miyamoto, Shelley D.
2017-01-01
Background Histone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac disease. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle heart disease of right ventricular morphology (SV), as well as in a rodent model of right ventricular hypertrophy (RVH). Methods Homogenates of RV explants from non-failing controls and SV children were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day old rat pups were placed in hypoxic conditions and echocardiographic analysis, gene expression, HDAC catalytic activity and isoform expression studies of the RV were performed. Results Class I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in hearts of SV children. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression and elevated class I and class IIb HDAC catalytic activity and protein expression in the RV compared to control. Conclusions These data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. While further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for pre-clinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies. PMID:28549058
Avery, Ryan; Day, Kevin; Jokerst, Clinton; Kazui, Toshinobu; Krupinski, Elizabeth; Khalpey, Zain
2017-10-10
Advanced heart failure treated with a left ventricular assist device is associated with a higher risk of right heart failure. Many advanced heart failures patients are treated with an ICD, a relative contraindication to MRI, prior to assist device placement. Given this limitation, left and right ventricular function for patients with an ICD is calculated using radionuclide angiography utilizing planar multigated acquisition (MUGA) and first pass radionuclide angiography (FPRNA), respectively. Given the availability of MRI protocols that can accommodate patients with ICDs, we have correlated the findings of ventricular functional analysis using radionuclide angiography to cardiac MRI, the reference standard for ventricle function calculation, to directly correlate calculated ejection fractions between these modalities, and to also assess agreement between available echocardiographic and hemodynamic parameters of right ventricular function. A retrospective review from January 2012 through May 2014 was performed to identify advanced heart failure patients who underwent both cardiac MRI and radionuclide angiography for ventricular functional analysis. Nine heart failure patients (8 men, 1 woman; mean age of 57.0 years) were identified. The average time between the cardiac MRI and radionuclide angiography exams was 38.9 days (range: 1 - 119 days). All patients undergoing cardiac MRI were scanned using an institutionally approved protocol for ICD with no device-related complications identified. A retrospective chart review of each patient for cardiomyopathy diagnosis, clinical follow-up, and echocardiogram and right heart catheterization performed during evaluation was also performed. The 9 patients demonstrated a mean left ventricular ejection fraction (LVEF) using cardiac MRI of 20.7% (12 - 40%). Mean LVEF using MUGA was 22.6% (12 - 49%). The mean right ventricular ejection fraction (RVEF) utilizing cardiac MRI was 28.3% (16 - 43%), and the mean RVEF calculated by FPRNA was 32.6% (9 - 56%). The mean discrepancy for LVEF between cardiac MRI and MUGA was 4.1% (0 - 9%), and correlation of calculated LVEF using cardiac MRI and MUGA demonstrated an R of 0.9. The mean discrepancy for RVEF between cardiac MRI and FPRNA was 12.0% (range: 2 - 24%) with a moderate correlation (R = 0.5). The increased discrepancies for RV analysis were statistically significant using an unpaired t-test (t = 3.19, p = 0.0061). Echocardiogram parameters of RV function, including TAPSE and FAC, were for available for all 9 patients and agreement with cardiac MRI demonstrated a kappa statistic for TAPSE of 0.39 (95% CI of 0.06 - 0.72) and for FAC of 0.64 (95% of 0.21 - 1.00). Heart failure patients are increasingly requiring left ventricular assist device placement; however, definitive evaluation of biventricular function is required due to the increased mortality rate associated with right heart failure after assist device placement. Our results suggest that FPRNA only has a moderate correlation with reference standard RVEFs calculated using cardiac MRI, which was similar to calculated agreements between cardiac MRI and echocardiographic parameters of right ventricular function. Given the need for identification of patients at risk for right heart failure, further studies are warranted to determine a more accurate estimate of RVEF for heart failure patients during pre-operative ventricular assist device planning.
Vorticity is a marker of diastolic ventricular interdependency in pulmonary hypertension
Browning, James; Schroeder, Joyce D.; Shandas, Robin; Kheyfets, Vitaly O.; Buckner, J. Kern; Hunter, Kendall S.; Hertzberg, Jean R.; Fenster, Brett E.
2016-01-01
Abstract Our objective was to determine whether left ventricular (LV) vorticity (ω), the local spinning motion of a fluid element, correlated with markers of ventricular interdependency in pulmonary hypertension (PH). Maladaptive ventricular interdependency is associated with interventricular septal shift, impaired LV performance, and poor outcomes in PH patients, yet the pathophysiologic mechanisms underlying fluid-structure interactions in ventricular interdependency are incompletely understood. Because conformational changes in chamber geometry affect blood flow formations and dynamics, LV ω may be a marker of LV-RV (right ventricular) interactions in PH. Echocardiography was performed for 13 PH patients and 10 controls for assessment of interdependency markers, including eccentricity index (EI), and biventricular diastolic dysfunction, including mitral valve (MV) and tricuspid valve (TV) early and late velocities (E and A, respectively) as well as MV septal and lateral early tissue Doppler velocities (e′). Same-day 4-dimensional cardiac magnetic resonance was performed for LV E (early)-wave ω measurement. LV E-wave ω was significantly decreased in PH patients (P = 0.008) and correlated with diastolic EI (Rho = −0.53, P = 0.009) as well as with markers of LV diastolic dysfunction, including MV E(Rho = 0.53, P = 0.011), E/A (Rho = 0.56, P = 0.007), septal e′ (Rho = 0.63, P = 0.001), and lateral e′ (Rho = 0.57, P = 0.007). Furthermore, LV E-wave ω was associated with indices of RV diastolic dysfunction, including TV e′ (Rho = 0.52, P = 0.012) and TV E/A (Rho = 0.53, P = 0.009). LV E-wave ω is decreased in PH and correlated with multiple echocardiographic markers of ventricular interdependency. LV ω may be a novel marker for fluid-tissue biomechanical interactions in LV-RV interdependency. PMID:27162613
Sade, Leyla Elif; Ozin, Bülent; Ulus, Taner; Açikel, Sadik; Pirat, Bahar; Bilgi, Muhammed; Uluçam, Melek; Müderrisoğlu, Haldun
2009-06-26
We investigated whether isovolumic acceleration (IVA) under inotropic stimulation as a means of right ventricular (RV) contractile reserve, is a surrogate for hemodynamic burden and has prognostic value in patients with mitral stenosis (MS). Thirty-one pure MS patients and 20 controls underwent cardiac catheterization, exercise test, and dobutamine stress echocardiography. RV fractional area change (FAC), +dP/dt/P(max), RV tissue Doppler indices (isovolumic contraction [IVC] and systolic [S] velocity, and IVA) were measured. Patients were followed-up for the occurrence of cardiac adverse events. Inotropic modulation unmasked statistically significant differences regarding magnitude of changes in IVA, IVC, S, and +dP/dt/P(max), but not RV FAC. Inability to increase IVA more than 6.5 m/s(2) was the only independent determinant of pulmonary capillary wedge pressure >or=18 mm Hg (P=.004). Although MS severity did not predict the RV contractile reserve and pulmonary artery pressure (PAP) behavior during inotropic stimulation, the RV contractile reserve was related to the degree of systolic PAP. IVA increases of <3.4 m/s(2) had 86% sensitivity and 75% specificity to predict unfavorable outcomes during long-term follow-up (20+/-8 months). RV contractile reserve provides complementary data to the hemodynamic significance of MS severity, may contribute to clinical decision making, and be of prognostic value in these patients.
Kim, Jiwon; Srinivasan, Aparna; Seoane, Tania; Di Franco, Antonino; Peskin, Charles S; McQueen, David M; Paul, Tracy K; Feher, Attila; Geevarghese, Alexi; Rozenstrauch, Meenakshi; Devereux, Richard B; Weinsaft, Jonathan W
2016-09-01
Echocardiography-derived linear dimensions offer straightforward indices of right ventricular (RV) structure but have not been systematically compared with RV volumes on cardiac magnetic resonance (CMR). Echocardiography and CMR were interpreted among patients with coronary artery disease imaged via prospective (90%) and retrospective (10%) registries. For echocardiography, American Society of Echocardiography-recommended RV dimensions were measured in apical four-chamber (basal RV width, mid RV width, and RV length), parasternal long-axis (proximal RV outflow tract [RVOT]), and short-axis (distal RVOT) views. For CMR, RV end-diastolic volume and RV end-systolic volume were quantified using border planimetry. Two hundred seventy-two patients underwent echocardiography and CMR within a narrow interval (0.4 ± 1.0 days); complete acquisition of all American Society of Echocardiography-recommended dimensions was feasible in 98%. All echocardiographic dimensions differed between patients with and those without RV dilation on CMR (P < .05). Basal RV width (r = 0.70), proximal RVOT width (r = 0.68), and RV length (r = 0.61) yielded the highest correlations with RV end-diastolic volume on CMR; end-systolic dimensions yielded similar correlations (r = 0.68, r = 0.66, and r = 0.65, respectively). In multivariate regression, basal RV width (regression coefficient = 1.96 per mm; 95% CI, 1.22-2.70; P < .001), RV length (regression coefficient = 0.97; 95% CI, 0.56-1.37; P < .001), and proximal RVOT width (regression coefficient = 2.62; 95% CI, 1.79-3.44; P < .001) were independently associated with CMR RV end-diastolic volume (r = 0.80). RV end-systolic volume was similarly associated with echocardiographic dimensions (basal RV width: 1.59 per mm [95% CI, 1.06-2.13], P < .001; RV length: 1.00 [95% CI, 0.66-1.34], P < .001; proximal RVOT width: 1.80 [95% CI, 1.22-2.39], P < .001) (r = 0.79). RV linear dimensions provide readily obtainable markers of RV chamber size. Proximal RVOT and basal width are independently associated with CMR volumes, supporting the use of multiple linear dimensions when assessing RV size on echocardiography. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Nadadur, Rangarajan D.; Umar, Soban; Wong, Gabriel; Eghbali, Mansour; Iorga, Andrea; Matori, Humann; Partow-Navid, Rod
2012-01-01
Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 μg·kg−1·day−1, 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-β agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-β. PMID:22628376
Samie, F H; Berenfeld, O; Anumonwo, J; Mironov, S F; Udassi, S; Beaumont, J; Taffet, S; Pertsov, A M; Jalife, J
2001-12-07
Ventricular fibrillation (VF) is the leading cause of sudden cardiac death. Yet, the mechanisms of VF remain elusive. Pixel-by-pixel spectral analysis of optical signals was carried out in video imaging experiments using a potentiometric dye in the Langendorff-perfused guinea pig heart. Dominant frequencies (peak with maximal power) were distributed throughout the ventricles in clearly demarcated domains. The fastest domain (25 to 32 Hz) was always on the anterior left ventricular (LV) wall and was shown to result from persistent rotor activity. Intermittent block and breakage of wavefronts at specific locations in the periphery of such rotors were responsible for the domain organization. Patch-clamping of ventricular myocytes from the LV and the right ventricle (RV) demonstrated an LV-to-RV drop in the amplitude of the outward component of the background rectifier current (I(B)). Computer simulations suggested that rotor stability in LV resulted from relatively small rectification of I(B) (presumably I(K1)), whereas instability, termination, and wavebreaks in RV were a consequence of strong rectification. This study provides new evidence in the isolated guinea pig heart that a persistent high-frequency rotor in the LV maintains VF, and that spatially distributed gradients in I(K1) density represent a robust ionic mechanism for rotor stabilization and wavefront fragmentation.
2018-01-01
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates. PMID:29352276
Osadchii, Oleg E
2018-01-01
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates.
Mohammed, Selma F; Hussain, Imad; AbouEzzeddine, Omar F; Abou Ezzeddine, Omar F; Takahama, Hiroyuki; Kwon, Susan H; Forfia, Paul; Roger, Véronique L; Redfield, Margaret M
2014-12-23
The prevalence and clinical significance of right ventricular (RV) systolic dysfunction (RVD) in patients with heart failure and preserved ejection fraction (HFpEF) are not well characterized. Consecutive, prospectively identified HFpEF (Framingham HF criteria, ejection fraction ≥50%) patients (n=562) from Olmsted County, Minnesota, underwent echocardiography at HF diagnosis and follow-up for cause-specific mortality and HF hospitalization. RV function was categorized by tertiles of tricuspid annular plane systolic excursion and by semiquantitative (normal, mild RVD, or moderate to severe RVD) 2-dimensional assessment. Whether RVD was defined by semiquantitative assessment or tricuspid annular plane systolic excursion ≤15 mm, HFpEF patients with RVD were more likely to have atrial fibrillation, pacemakers, and chronic diuretic therapy. At echocardiography, patients with RVD had slightly lower left ventricular ejection fraction, worse diastolic dysfunction, lower blood pressure and cardiac output, higher pulmonary artery systolic pressure, and more severe RV enlargement and tricuspid valve regurgitation. After adjustment for age, sex, pulmonary artery systolic pressure, and comorbidities, the presence of any RVD by semiquantitative assessment was associated with higher all-cause (hazard ratio=1.35; 95% confidence interval, 1.03-1.77; P=0.03) and cardiovascular (hazard ratio=1.85; 95% confidence interval, 1.20-2.80; P=0.006) mortality and higher first (hazard ratio=1.99; 95% confidence interval, 1.35-2.90; P=0.0006) and multiple (hazard ratio=1.81; 95% confidence interval, 1.18-2.78; P=0.007) HF hospitalization rates. RVD defined by tricuspid annular plane systolic excursion values showed similar but weaker associations with mortality and HF hospitalizations. In the community, RVD is common in HFpEF patients, is associated with clinical and echocardiographic evidence of more advanced HF, and is predictive of poorer outcomes. © 2014 American Heart Association, Inc.
Stockburger, Martin; de Teresa, Eduardo; Lamas, Gervasio; Desaga, Martin; Koenig, Carsten; Habedank, Dirk; Cobo, Erik; Navarro, Xavier; Wiegand, Uwe
2014-01-01
Previous studies showed unfavourable effects of right ventricular (RV) pacing. Ventricular pacing (VP), however, is required in many patients with atrioventricular (AV) block. The PREVENT-HF study explored left ventricular (LV) remodelling during RV vs. biventricular (BIV) pacing in AV block without advanced heart failure. The pre-specified PREVENT-HF German Substudy examined exercise capacity and N-terminal pro-brain natriuretic peptide (NT-proBNP). Patients with expected VP ≥80% were randomized to RV or BIV pacing. Endpoints were peak oxygen uptake (pVO2), oxygen uptake at the anaerobic threshold (VO2AT), ventilatory efficiency (VE/VCO2), and logNT-proBNP. Considering crossover, intention to treat (ITT), and on-treatment (OT) analyses of covariance (ANCOVA) were performed. For exercise testing 44 (RV: 25, BIV: 19), and for NT-proBNP 53 patients (RV: 29, BIV: 24) were included. The ITT analysis revealed significant differences in pVO2 [ANCOVA effect 2.83 mL/kg/min, confidence interval (CI) 0.83-4.91, P = 0.007], VO2AT (ANCOVA effect 2.14 mL/min/k, CI 0.14-4.15, P = 0.03), and VE/VCO2 (ANCOVA effect -5.46, CI -10.79 to -0.13, P = 0.04) favouring BIV randomization. The significant advantage in pVO2 persisted in OT analysis, while VO2AT and VE/VCO2 showed trends favouring BIV pacing. LogNT-proBNP did not differ between groups. (ITT: ANCOVA effect 0.008, CI -0.40 to +0.41, P = 0.97; OT: ANCOVA effect -0.03, CI -0.44 to 0.30, P = 0.90). Our study suggests that BIV pacing produces better exercise capacity over 1 year compared with RV pacing in patients without advanced heart failure and AV block. In contrast, we observed no significant changes of NT-proBNP. Larger trials will allow appraising the clinical usefulness of BIV pacing in AV block. ClinicalTrials.gov Identifier: NCT00170326.
Borgia, Francesco; Pezzullo, Enrica; Schiano Lomoriello, Vincenzo; Sorrentino, Regina; Lo Iudice, Francesco; Cocozza, Sara; Della Casa, Roberto; Parenti, Giancarlo; Strisciuglio, Pietro; Trimarco, Bruno; Galderisi, Maurizio
2017-02-01
Mucopolysaccharidoses (MPS) are inherited lysosomal storage disorders caused by deficiency of required glycosaminoglycans breakdown enzymes, inducing cardiac involvement. Little is known about myocardial deformation involvement in MPS. Our aim was to assess biventricular structure and function in asymptomatic children with MPS using standard echo Doppler and 2D speckle tracking (STE). Fifteen MPS children (one type I, six type II, three type III A, one III B, three IV A, one VI), asymptomatic for cardiac symptoms, and 15 age and sex-matched healthy controls underwent echo Doppler and STE. Left ventricular (LV) wall thicknesses, diameters, and mass were normalized by z-score. LV global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain (GRS) at papillary muscles, LV twisting, and right ventricular (RV) GLS were measured. The two groups were comparable for body mass index, heart rate, and blood pressure. LV mass index and relative wall thickness were higher in MPS. Ejection fraction (EF), and s' velocity did not differ between the two groups. E/A ratio was lower and E/e' higher in MPS. Tricuspid annular plane systolic excursion, RV s' and e' were lower in MPS. LV GLS did not differ between the two groups, but GCS (P=.014), GRS (P=.023), twisting (P=.012), and RV GLS (P<.001) were lower in the MPS group. LV strain abnormalities are detectable in MPS pediatric patients, independently of MPS type, when EF is still normal. RV GLS is also involved consensually with TAPSE reduction. STE can be useful for detection of subclinical myocardial damage in MPS. © 2017, Wiley Periodicals, Inc.
Mahoney, Liam; Fernandez-Alvarez, Jose R; Rojas-Anaya, Hector; Aiton, Neil; Wertheim, David; Seddon, Paul; Rabe, Heike
2018-02-24
To explore the intra- and inter-rater agreement of superior vena cava (SVC) flow and right ventricular (RV) outflow in healthy and unwell late preterm neonates (33-37 weeks' gestational age), term neonates (≥37 weeks' gestational age), and neonates receiving total-body cooling. The intra- and inter-rater agreement (n = 25 and 41 neonates, respectively) rates for SVC flow and RV outflow were determined by echocardiography in healthy and unwell late preterm and term neonates with the use of Bland-Altman plots, the repeatability coefficient, the repeatability index, and intraclass correlation coefficients. The intra-rater repeatability index values were 41% for SVC flow and 31% for RV outflow, with intraclass correlation coefficients indicating good agreement for both measures. The inter-rater repeatability index values for SVC flow and RV outflow were 63% and 51%, respectively, with intraclass correlation coefficients indicating moderate agreement for both measures. If SVC flow or RV outflow is used in the hemodynamic treatment of neonates, sequential measurements should ideally be performed by the same clinician to reduce potential variability. © 2018 by the American Institute of Ultrasound in Medicine.
Prognostic value of right ventricular dilatation in patients with low-risk pulmonary embolism.
Côté, Benoit; Jiménez, David; Planquette, Benjamin; Roche, Anne; Marey, Jonathan; Pastré, Jean; Meyer, Guy; Sanchez, Olivier
2017-12-01
The prognosis of multidetector computed tomography (MDCT) assessed right ventricular dilatation (RVD) is unclear in patients with pulmonary embolism (PE) and a simplified Pulmonary Embolism Severity Index (sPESI) of 0. We investigated in these patients whether MDCT-assessed RVD, defined by a right to left ventricular ratio (RV/LV) ≥0.9 or ≥1.0, is associated with worse outcomes.We combined data from three prospective cohorts of patients with PE. The main study outcome was the composite of 30-day all-cause mortality, haemodynamic collapse or recurrent PE in patients with sPESI of 0.Among 779 patients with a sPESI 0, 420 (54%) and 299 (38%) had a RV/LV ≥0.9 and ≥1.0 respectively. No difference in primary outcome was observed, 0.95% (95% CI 0.31-2.59) versus 0.56% (95% CI 0.10-2.22; p=0.692) and 1.34% (95% CI 0.43-3.62) versus 0.42% (95% CI 0.07-1.67; p=0.211) with RV/LV ≥0.9 and ≥1.0 respectively. Increasing the RV/LV threshold to ≥1.1, the outcome occurred more often in patients with RVD (2.12%, 95% CI 0.68-5.68 versus 0.34%, 95% CI 0.06-1.36; p=0.033).MDCT RV/LV ratio of ≥0.9 and ≥1.0 in sPESI 0 patients is frequent but not associated with a worse prognosis but higher cut-off values might be associated with worse outcome in these patients. Copyright ©ERS 2017.
Chetboul, Valérie; Gouni, Vassiliki; Sampedrano, Carolina Carlos; Tissier, Renaud; Serres, François; Pouchelon, Jean-Louis
2007-01-01
Tissue Doppler Imaging (TDI) or strain (St) imaging could provide sensitive indices for early detection and treatment follow-up of canine dilated cardiomyopathy (DCM). Analysis of TDI and St features in dogs with overt DCM is a prerequisite before using these new criteria in prospective screenings of predisposed families or in clinical trials. Radial and longitudinal right and left myocardial motion, assessed by TDI and St variables, is altered in dogs with DCM. Case records for 26 dogs; 14 with DCM and 12 healthy controls of comparable age and weight were reviewed. A retrospective analysis was conducted of conventional echocardiography, 2-dimensional color TDI, and St imaging data. The DCM group was characterized by decreases in radial and longitudinal systolic velocity gradients of the left ventricular free wall (LVFW), radial and longitudinal absolute values of peak systolic St of the LVFW, and longitudinal systolic right ventricular (RV) velocities (all P < .001 versus control) associated with longitudinal postsystolic contraction waves in 7/14 dogs. Early diastolic LVFW velocities also were decreased for longitudinal (P < .01) and radial (P < .05) motions. All radial LVFW, longitudinal basal LVFW, and RV systolic velocities were negatively correlated with heart rate (P < .01). LV contractility along both the short and long axes is impaired in dogs with spontaneous DCM, as is systolic RV and diastolic LVFW function. These myocardial alterations are associated with an inverse force-frequency relationship. Studies now are needed to determine the comparative sensitivity of TDI and St variables for the early detection of canine DCM.
Carluccio, Erberto; Biagioli, Paolo; Alunni, Gianfranco; Murrone, Adriano; Zuchi, Cinzia; Coiro, Stefano; Riccini, Clara; Mengoni, Anna; D'Antonio, Antonella; Ambrosio, Giuseppe
2018-01-01
In heart failure (HF) with reduced ejection fraction, right ventricular (RV) impairment, as defined by reduced tricuspid annular plane systolic excursion, is a predictor of poor outcome. However, peak longitudinal strain of RV free wall (RVFWS) has been recently proposed as a more accurate and sensitive tool to evaluate RV function. Accordingly, we investigated whether RVFWS could help refine prognosis of patients with HF with reduced ejection fraction in whom tricuspid annular plane systolic excursion is still preserved. A total of 200 patients with HF with reduced ejection fraction (age, 66±11 years; ejection fraction, 30±7%) with preserved tricuspid annular plane systolic excursion (>16 mm) underwent RV function assessment using speckle-tracking echocardiography to measure peak RVFWS. After a median follow-up period of 28 months, 62 (31%) patients reached the primary composite end point of all-cause death/HF rehospitalization. Median RVFWS was -19.3% (interquartile range, -23.3% to -15.0%). By lasso-penalized Cox-hazard model, RVFWS was an independent predictor of outcome, along with Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure-HF score, Echo-HF score, and severe mitral regurgitation. The best cutoff value of RVFWS for prediction of outcome was -15.3% (area under the curve, 0.68; P <0.001; sensitivity, 50%; specificity, 80%). In 50 patients (25%), RVFWS was impaired (ie, ≥-15.3%); event rate (per 100 patients per year) was greater in them than in patients with RVFWS <-15.3% (29.5% [95% confidence interval, 20.4-42.7] versus 9.4% [95% confidence interval, 6.7-13.1]; P <0.001). RVFWS yielded a significant net reclassification improvement (0.584 at 3 years; P <0.001), with 68% of nonevents correctly reclassified. In patients with HF with reduced ejection fraction with preserved tricuspid annular plane systolic excursion, RV free-wall strain provides incremental prognostic information and improved risk stratification. © 2018 American Heart Association, Inc.
Schroeder, Janina; Peterschroeder, Andreas; Vaske, Bernhard; Butz, Thomas; Barth, Peter; Oldenburg, Olaf; Bitter, Thomas; Burchert, Wolfgang; Horstkotte, Dieter; Langer, Christoph
2009-11-01
In humans with normal hearts multi-slice computed tomography (MSCT) based volumetry was shown to correlate well with the gold standard, cardiac magnetic resonance imaging (CMR). We correlated both techniques in patients with various degrees of heart failure and reduced ejection fraction (HFREF) resulting from cardiac dilatation. Twenty-four patients with a left ventricular enddiastolic volume (LV-EDV) of C 150 ml measured by angiography underwent MSCT and CMR scanning for left and right ventricular (LV, RV) volumetry. MSCT based short cardiac axis views were obtained beginning at the cardiac base advancing to the apex. These were reconstructed in 20 different time windows of the RR-interval (0-95%) serving for identification of enddiastole (ED) and end-systole (ES) and for planimetry. ED and ES volumes and the ejection fraction (EF) were calculated for LV and RV. MSCT based volumetry was compared with CMR. MSCT based LV volumetry significantly correlates with CMR as follows: LV-EDV r = 0.94, LV-ESV r = 0.98 and LV-EF r = 0.93, but significantly overestimates LV-EDV and LV-ESV and underestimates EF (P \\ 0.0001). MSCT based RV volumetry significantly correlates with CMR as follows: RV-EDV r = 0.79, RVESV r = 0.78 and RV-EF r = 0.73, but again significantly overestimates RV-EDV and RV-ESV and underestimates RV-EF (P \\ 0.0001). When compared with CMR a continuous overestimation of volumes and underestimation of EF needs to be considered when applying MSCT in HFREF patients.
Ghimire, Anukul; Andersen, Mads J; Burrowes, Lindsay M; Bouwmeester, J Christopher; Grant, Andrew D; Belenkie, Israel; Fine, Nowell M; Borlaug, Barry A; Tyberg, John V
2016-12-01
Using the reservoir-wave approach (RWA) we previously characterized pulmonary vasculature mechanics in a normal canine model. We found reflected backward-traveling waves that decrease pressure and increase flow in the proximal pulmonary artery (PA). These waves decrease right ventricular (RV) afterload and facilitate RV ejection. With pathological alterations to the pulmonary vasculature, these waves may change and impact RV performance. Our objective in this study was to characterize PA wave reflection and the alterations in RV performance in cardiac patients, using the RWA. PA pressure, Doppler-flow velocity, and pulmonary arterial wedge pressure were measured in 11 patients with exertional dyspnea. The RWA was employed to analyze PA pressure and flow; wave intensity analysis characterized PA waves. Wave-related pressure was partitioned into two components: pressures due to forward-traveling and to backward-traveling waves. RV performance was assessed by examining the work done in raising reservoir pressure and that associated with the wave components of systolic PA pressure. Wave-related work, the mostly nonrecoverable energy expended by the RV to eject blood, tended to vary directly with mean PA pressure. Where PA pressures were lower, there were pressure-decreasing/flow-increasing backward waves that aided RV ejection. Where PA pressures were higher, there were pressure-increasing/flow-decreasing backward waves that impeded RV ejection. Pressure-increasing/flow-decreasing backward waves were responsible for systolic notches in the Doppler flow velocity profiles in patients with the highest PA pressure. Pulmonary hypertension is characterized by reflected waves that impede RV ejection and an increase in wave-related work. The RWA may facilitate the development of therapeutic strategies. Copyright © 2016 the American Physiological Society.
Ikeda, Shohei; Satoh, Kimio; Kikuchi, Nobuhiro; Miyata, Satoshi; Suzuki, Kota; Omura, Junichi; Shimizu, Toru; Kobayashi, Kenta; Kobayashi, Kazuto; Fukumoto, Yoshihiro; Sakata, Yasuhiko; Shimokawa, Hiroaki
2014-06-01
Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans. © 2014 American Heart Association, Inc.
Bond, A R; Iacobazzi, D; Abdul-Ghani, S; Ghorbel, M T; Heesom, K J; George, S J; Caputo, M; Suleiman, M-S; Tulloh, R M
2018-03-20
Right ventricle (RV) remodelling occurs in neonatal patients born with ventricular septal defect (VSD). The presence of a defect between the two ventricles allows for shunting of blood from the left to right side. The resulting RV hypertrophy leads to molecular remodelling which has thus far been largely investigated using right atrial (RA) tissue. In this study we used proteomic and phosphoproteomic analysis in order to determine any difference between the proteomes for RA and RV. Samples were therefore taken from the RA and RV of five infants (0.34 ± 0.05 years, mean ± SEM) with VSD who were undergoing cardiac surgery to repair the defect. Significant differences in protein expression between RV and RA were seen. 150 protein accession numbers were identified which were significantly lower in the atria, whereas none were significantly higher in the atria compared to the ventricle. 19 phosphorylation sites (representing 19 phosphoproteins) were also lower in RA. This work has identified differences in the proteome between RA and RV which reflect differences in contractile activity and metabolism. As such, caution should be used when drawing conclusions based on analysis of the RA and extrapolating to the hypertrophied RV. RV hypertrophy occurs in neonatal patients born with VSD. Very little is known about how the atria responds to RV hypertrophy, especially at the protein level. Access to tissue from age-matched groups of patients is very rare, and we are in the unique position of being able to get tissue from both the atria and ventricle during reparative surgery of these infants. Our findings will be beneficial to future research into heart chamber malformations in congenital heart defects. Copyright © 2018. Published by Elsevier B.V.
Bai, Rong; Lü, Jiagao; Pu, Jun; Liu, Nian; Zhou, Qiang; Ruan, Yanfei; Niu, Huiyan; Zhang, Cuntai; Wang, Lin; Kam, Ruth
2005-10-01
Benefits of cardiac resynchronization therapy (CRT) are well established. However, less is understood concerning its effects on myocardial repolarization and the potential proarrhythmic risk. Healthy dogs (n = 8) were compared to a long QT interval (LQT) model (n = 8, induced by cesium chloride, CsCl) and a dilated cardiomyopathy with congestive heart failure (DCM-CHF, induced by rapid ventricular pacing, n = 5). Monophasic action potential (MAP) recordings were obtained from the subendocardium, midmyocardium, subepicardium, and the transmural dispersion of repolarization (TDR) was calculated. The QT interval and the interval from the peak to the end of the T wave (T(p-e)) were measured. All these characteristics were compared during left ventricular epicardial (LV-Epi), right ventricular endocardial (RV-Endo), and biventricular (Bi-V) pacing. In healthy dogs, TDR prolonged to 37.54 ms for Bi-V pacing and to 47.16 ms for LV-Epi pacing as compared to 26.75 ms for RV-Endo pacing (P < 0.001), which was parallel to an augmentation in T(p-e) interval (Bi-V pacing, 64.29 ms; LV-Epi pacing, 57.89 ms; RV-Endo pacing, 50.29 ms; P < 0.01). During CsCl exposure, Bi-V and LV-Epi pacing prolonged MAPD, TDR, and T(p-e) interval as compared to RV-Endo pacing. The midmyocardial MAPD (276.30 ms vs 257.35 ms, P < 0.0001) and TDR (33.80 ms vs 27.58 ms, P=0.002) were significantly longer in DCM-CHF dogs than those in healthy dogs. LV-Epi and Bi-V pacing further prolonged the MAPD and TDR in this model. LV-Epi and Bi-V pacing result in prolongation of ventricular repolarization time, and increase of TDR accounted for a parallel augmentation of the T(p-e) interval, which provides evidence that T(p-e) interval accurately represents TDR. These effects are magnified in the LQT and DCM-CHF canine models in addition to their intrinsic transmural heterogeneity in the intact heart. This mechanism may contribute to the development of malignant ventricular arrhythmias, such as torsades de pointes (TdP) in congestive heart failure (CHF) patients treated with CRT.
Selective reduction of afterload in right heart assist therapy: a mock loop study†.
Hsu, Po-Lin; Hatam, Nima; Unterkofler, Jan; Goetzenich, Andreas; McIntyre, Madeleine; Wong, Kai Chun; Egger, Christina; Schmitz-Rode, Thomas; Autschbach, Rüdiger; Steinseifer, Ulrich
2014-07-01
The treatment of right ventricular failure is closely linked to effects on pulmonary vascular resistance and thus the right ventricular (RV) afterload. Medical therapy includes afterload-decreasing drugs such as nitric oxide and prostacycline. However, current devices for mechanical unloading of the right ventricle aim at a decrease in preload increasing the pulmonary volume loading. In our concept study, we tested a minimally invasive right ventricular assist device (MIRVAD) that specifically reduces the afterload. The MIRVAD is supposed to be a foldable device for temporary transvascular placement in the pulmonary artery. We incorporated a MIRVAD prototype into a mock circulatory loop that can reproduce haemodynamic interaction between the pump and the physiological system. Pulmonary hypertension (PH), right heart failure (RHF) and MIRVAD-assisted cases were simulated. The key haemodynamic parameters for RV unloading were recorded. Mock loop simulation attested to a sufficient right ventricular unloading by serial application of a miniaturized impeller pump in the pulmonary artery. The afterload, represented by the pulmonary arterial root pressure, was recovered to the healthy range (32.62-10.93 mmHg) for the simulated PH case. In the simulated RHF case, the impaired pulmonary perfusion increased from 43.4 to 88.8% of the healthy level and the total ventricular work reduced from 0.381 to 0.197 J at a pump speed of 3500 rpm. At pump speeds higher than 3500 rpm, the pulmonary valve remains constantly open and the right ventricular configuration changes into a simple perfused hollow body. The feasibility of RV unloading by a selective decrease in RV afterload was proved in principle. By alternation of the pump speed, gradual reloading in sense of a myocardial training may be achieved. The results will be validated by future animal trials where the relationship between the level of support and pulmonary vascular pressure can be investigated in vivo. Further device design concerning foldable impeller leaflets will be carried out. At a final stage, the crimped version is supposed to reach a size below 1 cm to facilitate minimally invasive insertion. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Germanakis, Ioannis; Matsui, Hikoro; Gardiner, Helena M
2012-01-01
To compare myocardial deformation patterns in fetuses with congenital heart disease (CHD) with our reference range using speckle tracking echocardiography. We prospectively stored and analyzed 4-chamber loops of 28 fetuses with CHD (median gestation 27 weeks, range 20.9-37.0). The peak longitudinal left (LVs) and right (RVs) ventricular free wall Lagrangian strain and LV/RV strain ratio were measured from Syngo VVI software- (Siemens) derived original coordinates. Strain values from the first examination were compared with normative data from the same population using ANOVA with post hoc tests and serial examinations described in 14 fetuses. Simple shunt lesions (0.82) and shunts with pulmonary stenosis or atresia (0.93) had reduced mean LV/RV strain ratios compared to normal fetuses (1.01; 95% CI 0.97-1.05). Fetuses with hypoplastic left heart had the lowest (0.29), and those with Ebstein the highest (1.55), LV:RV ratio. Serial measurements showed increased LVs in aortic coarctation and aortic stenosis, but not in one developing important mitral regurgitation. Increased right ventricular loading in a fetus developing pulmonary regurgitation was associated with increasing RVs. Myocardial strain reflects the changing physiology of fetal CHD. Speckle tracking might be a useful tool to study the progress of myocardial function in affected fetuses. Copyright © 2012 S. Karger AG, Basel.
Cardiopulmonary Exercise Testing in Patients Following Massive and Submassive Pulmonary Embolism.
Albaghdadi, Mazen S; Dudzinski, David M; Giordano, Nicholas; Kabrhel, Christopher; Ghoshhajra, Brian; Jaff, Michael R; Weinberg, Ido; Baggish, Aaron
2018-03-03
Little data exist regarding the functional capacity of patients following acute pulmonary embolism. We sought to characterize the natural history of symptom burden, right ventricular (RV) structure and function, and exercise capacity among survivors of massive and submassive pulmonary embolism. Survivors of submassive or massive pulmonary embolism (n=20, age 57±13.3 years, 8/20 female) underwent clinical evaluation, transthoracic echocardiography, and cardiopulmonary exercise testing at 1 and 6 months following hospital discharge. At 1 month, 9/20 (45%) patients had New York Heart Association II or greater symptoms, 13/20 (65%) demonstrated either persistent RV dilation or systolic dysfunction, and 14/20 (70%) had objective exercise impairment as defined by a peak oxygen consumption (V˙O 2 ) of <80% of age-sex predicted maximal values (16.25 [13.4-20.98] mL/kg per minute). At 6 months, no appreciable improvements in symptom severity, RV structure or function, and peak V˙O 2 (17.45 [14.08-22.48] mL/kg per minute, P =NS) were observed. No patients demonstrated an exercise limitation attributable to either RV/pulmonary vascular coupling, as defined by a VE/VCO 2 slope >33, or a pulmonary mechanical limit to exercise at either time point. Similarly, persistent RV dilation or dysfunction was not significantly related to symptom burden or peak V˙O 2 at either time point. Persistent symptoms, abnormalities of RV structure and function, and objective exercise limitation are common among survivors of massive and submassive pulmonary embolism. Functional impairment appears to be attributable to general deconditioning rather than intrinsic cardiopulmonary limitation, suggesting an important role for prescribed exercise rehabilitation as a means toward improved patient outcomes and quality of life. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Right ventricular involution: What can we learn from nature's model of compensated hypertrophy?
Bowen, Megan E; Liu, Xiaoqing; Sundwall, Peter M; Drakos, Stavros G; Li, Dean Y; Selzman, Craig H; McKellar, Stephen H
2018-05-01
Right ventricular (RV) failure (RVF) is a vexing problem facing patients with various disease processes and carries a high mortality. RVF is a poorly understood phenomenon with limited treatment options. In mammalian fetal circulation, the right ventricle is the systemic ventricle. In neonates, however, the left ventricle assumes that role and gradually thickens compared with the right ventricle. This process, known as right ventricular involution (RVI), is poorly understood. We sought to define the time course and identify mechanisms involved in RVI. Wild-type mice were bred and sacrificed on day of life (DOL) 1, 4, 8, 16, and 30 to evaluate left ventricular (LV) and RV wall thickness and apoptosis. A terminal deoxynucleotidyl transferase nick-end labeling assay and RNA sequencing were performed to measure changes during RVI. Morphometric analysis demonstrated the changes in RV and LV wall thickness occurring between DOL 1 and DOL 16 (RV:LV, 0.53:0.44; P = .03). In addition, apoptosis was most active early, with the highest percentage of apoptotic cells on DOL 1 (1.0%) and a significant decrease by DOL 30 (0.23%) (P = .02). Similarly, expression of the proapoptotic genes BCL2l11 and Pawr were increased at DOL 1, and the antiapoptotic genes Nol3 and Naip2 were significantly increased at DOL 30. RVI is a misnomer, but significant changes occur early (by DOL 16) in neonatal mouse hearts. Apoptosis plays a role in RVI, but whether manipulation of apoptotic pathways can prevent or reverse RVI is unknown and warrants further investigation. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Levosimendan Prevents Pressure-Overload-induced Right Ventricular Failure.
Hillgaard, Thomas Krarup; Andersen, Asger; Andersen, Stine; Vildbrad, Mads D; Ringgaard, Steffen; Nielsen, Jan M; Nielsen-Kudsk, Jens E
2016-04-01
We investigated if chronic levosimendan treatment can prevent and revert pressure-overload-induced right ventricular hypertrophy and failure in rats. Right ventricular hypertrophy and failure was induced in Wistar rats by pulmonary trunk banding (PTB). The PTB rats were treated with levosimendan (3 mg·kg·d) 3 days before surgery [n = 10, prevention (PREV)], 3 weeks after surgery [n = 10, reversal (REV)] or vehicle (n = 10, VEH). Sham-operated rats received vehicle (n = 16, SHAM). Right ventricular function was evaluated 7 weeks after surgery by echocardiography, magnetic resonance imaging, pressure-volume relations, gross anatomy, and histology. PTB induced right ventricular hypertrophy and compensated heart failure evident by reduced cardiac index (CI) without extra cardiac signs of heart failure. Levosimendan treatment prevented deterioration of right ventricular function measured by CI and right ventricular ejection fraction (RVEF) (CI: VEH vs. PREV 281 ± 17 vs. 362 ± 34 mL·min·kg, P ≤ 0.05, RVEF: VEH vs. PREV 57 ± 2% vs. 68 ± 3%, P ≤ 0.01) to values similar to SHAM (CI: 345 ± 21 mL·min·kg, RVEF: 71 ± 2%). RV contractility was improved in the REV group measured by preload recruitable stroke work (VEH vs. REV 39 ± 3 vs. 66 ± 10 mmHg P ≤ 0.05). Chronic treatment with levosimendan prevents the development of right ventricular failure and improves contractility in established pressure-overload-induced right ventricular failure.
2014-01-01
Background Although increased volume of pericardial fat has been associated with decreased cardiac function, it is unclear whether this association is mediated by systemic overall obesity or direct regional fat interactions. We hypothesized that if local effects dominate, left ventricular (LV) function would be most strongly associated with pericardial fat that surrounds the left rather than the right ventricle (RV). Methods Female obese subjects (n = 60) had cardiovascular magnetic resonance (CMR) scans to obtain measures of LV function and pericardial fat volumes. LV function was obtained using the cine steady state free precession imaging in short axis orientation. The amount of pericardial fat was determined volumetrically by the cardiac gated T1 black blood imaging and normalized to body surface area. Results In this study cohort, LV fat correlated with several LV hemodynamic measurements including cardiac output (r = -0.41, p = 0.001) and stroke volume (r = -0.26, p = 0.05), as well as diastolic functional parameters including peak-early-filling rate (r = -0.38, p = 0.01), early late filling ratio (r = -0.34, p = 0.03), and time to peak-early-filling (r = 0.34, p = 0.03). These correlations remained significant even after adjusting for the body mass index and the blood pressure. However, similar correlations became weakened or even disappeared between RV fat and LV function. LV function was not correlated with systemic plasma factors, such as C-reactive protein (CRP), B-type natriuretic peptide (BNP), Interleukin-6 (IL-6), resistin and adiponectin (all p > 0.05). Conclusions LV hemodynamic and diastolic function was associated more with LV fat as compared to RV or total pericardial fat, but not with systemic inflammatory markers or adipokines. The correlations between LV function and pericardial fat remained significant even after adjusting for systemic factors. These findings suggest a site-specific influence of pericardial fat on LV function, which could imply local secretion of molecules into the underlying tissue or an anatomic effect, both mechanisms meriting future evaluation. PMID:24884541
Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.
Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît
2016-12-01
Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Palit, Arnab; Bhudia, Sunil K; Arvanitis, Theodoros N; Turley, Glen A; Williams, Mark A
2015-02-26
Majority of heart failure patients who suffer from diastolic dysfunction retain normal systolic pump action. The dysfunction remodels the myocardial fibre structure of left-ventricle (LV), changing its regular diastolic behaviour. Existing LV diastolic models ignored the effects of right-ventricular (RV) deformation, resulting in inaccurate strain analysis of LV wall during diastole. This paper, for the first time, proposes a numerical approach to investigate the effect of fibre-angle distribution and RV deformation on LV diastolic mechanics. A finite element modelling of LV passive inflation was carried out, using structure-based orthotropic constitutive law. Rule-based fibre architecture was assigned on a bi-ventricular (BV) geometry constructed from non-invasive imaging of human heart. The effect of RV deformation on LV diastolic mechanics was investigated by comparing the results predicted by BV and single LV model constructed from the same image data. Results indicated an important influence of RV deformation which led to additional LV passive inflation and increase of average fibre and sheet stress-strain in LV wall during diastole. Sensitivity of LV passive mechanics to the changes in the fibre distribution was also examined. The study revealed that LV diastolic volume increased when fibres were aligned more towards LV longitudinal axis. Changes in fibre angle distribution significantly altered fibre stress-strain distribution of LV wall. The simulation results strongly suggest that patient-specific fibre structure and RV deformation play very important roles in LV diastolic mechanics and should be accounted for in computational modelling for improved understanding of the LV mechanics under normal and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of body repositioning after venous air embolism. An echocardiographic study
NASA Technical Reports Server (NTRS)
Geissler, H. J.; Allen, S. J.; Mehlhorn, U.; Davis, K. L.; Morris, W. P.; Butler, B. D.
1997-01-01
BACKGROUND: Current therapy for massive venous air embolism (VAE) may include the use of the left lateral recumbent (LLR) position, although its effectiveness has been questioned. This study used transesophageal echocardiography to evaluate the effect of body repositioning on intracardiac air and acute cardiac dimension changes. METHODS: Eighteen anesthetized dogs in the supine position received a venous air injection of 2.5 ml/kg at a rate of 5 ml/ s. After 1 min the dogs were repositioned into either the LLR, LLR 10 degrees head down (LLR-10 degrees), right lateral recumbence, or remained in the supine position. RESULTS: Repositioning after VAE resulted in relocation of intracardiac air to nondependent areas of the right heart. Peak right ventricular (RV) diameter increase and mean arterial pressure decrease were greater in the repositioned animals compared with those in the supine position (P < 0.05). Right ventricular diameter and mean arterial pressure showed an inverse correlation (r = 0.81). Peak left atrial diameter decrease was greater in the LLR and LLR-10 degrees positions compared with the supine position (P < 0.05). Repositioning did not influence peak pulmonary artery pressure increase, and no correlation was found between RV diameter and pulmonary artery pressure. All animals showed electrocardiogram and echocardiographic changes reconcilable with myocardial ischemia. CONCLUSIONS: In dogs, body repositioning after VAE provided no benefit in hemodynamic performance or cardiac dimension changes, although relocation of intracardiac air was demonstrated. Right ventricular air did not appear to result in significant RV outflow obstruction, as pulmonary artery pressure increased uniformly in all groups and was not influenced by the relocation of intracardiac air. The combination of increased RV afterload and arterial hypotension, possibly with subsequent RV ischemia rather than RV outflow obstruction by an airlock appeared to be the primary mechanism for cardiac dysfunction after VAE.
Right Ventricle before and after Atrial Septal Defect Device Closure.
Akula, Vidya Sagar; Durgaprasad, Rajasekhar; Velam, Vanajakshamma; Kasala, Latheef; Rodda, Madhavi; Erathi, Harsha Vardhan
2016-09-01
Percutaneous atrial septal defect (ASD) device closure is a safe and effective means of reducing or eliminating interatrial shunting. The response of the right heart to device closure is incompletely understood. To evaluate the effects of transcatheter closure of secundum ASD on right ventricle size and function, that is, both systolic and diastolic by transthoracic echocardiography (TTE) over a 6-month period. Seventy-three patients had 73 device implantations. The patients were assessed with echocardiography before and at 1 and 6 months after procedure. Mean age was 26 ± 17 years. Mean ASD size indexed to body surface area (BSA) was 19.1 ± 8.6 mm/m(2) . The device size ranged from 12 to 42 mm. One month after closure, there were statistically significant decreases in right ventricular (RV) basal diameter (3.5 ± 0.7 cm vs. 4.2 ± 0.8 cm), RV/LV end-diastolic diameter ratio (0.9 ± 0.1 vs. 1.2 ± 0.2), left ventricular eccentricity index (LVEI) (1.0 ± 0.1 vs. 1.2 ± 0.2), right atrial (RA) major dimension (4.4 ± 0.8 cm vs. 4.8 ± 1.0 cm), RA end-systolic area (13.2 ± 4.6 cm(2) vs. 18.5 ± 6.7 cm(2) ), tricuspid annular plane systolic excursion (TAPSE) (2.2 ± 1.8 cm vs. 2.8 ± 0.5 cm), tricuspid annular systolic velocity (TASV or S') (13.1 ± 3.0 cm/sec vs. 16.0 ± 2.8 cm/sec), E/A (1.4 ± 0.3 vs. 1.7 ± 0.5), and E/e' (5.9 ± 5.0 vs. 7.2 ± 2.0) in comparison with baseline. Six months after closure, there were statistically significant decreases in RV major dimension (5.9 ± 1.1 cm vs. 6.3 ± 1.0 cm), RV/LV end-diastolic diameter ratio (0.8 ± 0.1 vs. 0.9 ± 0.1), RA major dimension (4.1 ± 0.8 cm vs. 4.4 ± 0.8 cm), and RA end-systolic area (11.4 ± 3.8 cm(2) vs. 13.2 ± 4.6 cm(2) ) in comparison with 1 month post-device closure. After 6 months, there was a statistically insignificant increase in both TASV (13.7 ± 2.8 cm/sec vs. 13.1 ± 3.0 cm/sec) and TAPSE (2.5 ± 1.6 cm/sec vs. 2.2 ± 1.8 cm/sec). There was no significant change in tissue Doppler MPI at baseline, 1 month, and 6 months after closure (0.38 ± 0.19 vs. 0.35 ± 0.15 vs. 0.38 ± 0.13). There was significant decrease in E/e' from baseline to 1 month and 1 month to 6 months after closure (7.2 ± 2.0 vs. 5.9 ± 5.0 vs. 4.7 ± 1.5). RV volumes decreased significantly in the first month after ASD device closure and continued up to 6 months. There was no change in global right ventricular systolic function but a high basal RV systolic function decreased after closure. Some patients had impaired diastolic function before closure of defect, which reversed to normal within 6 months after closure. Diastolic dysfunction in older age-group may be a cause for long duration taken by right heart chambers to regress and deserves further investigation. © 2016, Wiley Periodicals, Inc.
Paffett, Michael L.; Hesterman, Jacob; Candelaria, Gabriel; Lucas, Selita; Anderson, Tamara; Irwin, Daniel; Hoppin, Jack; Norenberg, Jeffrey; Campen, Matthew J.
2012-01-01
Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis. PMID:22815866
Stylus/tablet user input device for MRI heart wall segmentation: efficiency and ease of use.
Taslakian, Bedros; Pires, Antonio; Halpern, Dan; Babb, James S; Axel, Leon
2018-05-02
To determine whether use of a stylus user input device (UID) would be superior to a mouse for CMR segmentation. Twenty-five consecutive clinical cardiac magnetic resonance (CMR) examinations were selected. Image analysis was independently performed by four observers. Manual tracing of left (LV) and right (RV) ventricular endocardial contours was performed twice in 10 randomly assigned sessions, each session using only one UID. Segmentation time and the ventricular function variables were recorded. The mean segmentation time and time reduction were calculated for each method. Intraclass correlation coefficients (ICC) and Bland-Altman plots of function variables were used to assess intra- and interobserver variability and agreement between methods. Observers completed a Likert-type questionnaire. The mean segmentation time (in seconds) was significantly less with the stylus compared to the mouse, averaging 206±108 versus 308±125 (p<0.001) and 225±140 versus 353±162 (p<0.001) for LV and RV segmentation, respectively. The intra- and interobserver agreement rates were excellent (ICC≥0.75) regardless of the UID. There was an excellent agreement between measurements derived from manual segmentation using different UIDs (ICC≥0.75), with few exceptions. Observers preferred the stylus. The study shows a significant reduction in segmentation time using the stylus, a subjective preference, and excellent agreement between the methods. • Using a stylus for MRI ventricular segmentation is faster compared to mouse • A stylus is easier to use and results in less fatigue • There is excellent agreement between stylus and mouse UIDs.
Enhanced functional expression of transient outward current in hypertrophied feline myocytes.
Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L
1993-08-01
Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).
Ricci, Davide; Tazelaar, Henry D; Miyagi, Naoto; Rao, Vinay P; Pedersen, Rachel A; Kremers, Walter K; Byrne, Guerard W; McGregor, Christopher G A
2007-01-01
Introduction Endomyocardial biopsy (EmBx) is the standard means of establishing cardiac allograft rejection diagnosis. The efficacy of this procedure in xenotransplantation has not been determined. In this study we compare the histology of right ventricular EmBx specimens with the corresponding full cross sections of explanted right ventricle (RV). We also compare RV with the related left ventricle (LV) cross sections. Methods Heterotopic CD46 pig to baboon cardiac xenotransplants (n=64) were studied. RVEmBxs were taken at cardiac explant, using either a standard bioptome (RVEmBxBT; n=24) or by sharp dissection (RVEmBxSD; n=40). Hematoxylin-eosin stained sections of RV and LV cross section and RVEmBxs were compared in a blinded fashion. Characteristics of delayed xenograft rejection (DXR) and a global assessment of ischemia, were scored from 0 to 4 based on the percentage of myocardium involved (0 = 0%, 1=1−25%, 2 = 26−50%, 3 = 51−75%, 4 = 76−100%). Results Median graft survival was 30 days (range 3–137). Linear regression analysis of histology scores demonstrated that both RVEmBxBT and RVEmBxSD equally represented the histology of RV cross section. Global ischemic injury was strongly correlated between RV and RVEmBx (R2=0.84) and between RV and LV cross sections (R2=0.84). Individual characteristics of DXR showed no significant variation between RV and RVEmBx or between RV and LV (p<0.05). Conclusions These results indicate that DXR is a widespread process involving both right and left ventricles similarly. This study shows that histologic assessment of RVEmBx specimens is an effective method for the monitoring of DXR after cardiac xenotransplantation. PMID:17919623
NASA Technical Reports Server (NTRS)
Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.
1996-01-01
It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.
Kim, Hyungseop; Bae Lee, Jin; Park, Jae-Hyeong; Yoo, Byung-Su; Son, Jang-Won; Yang, Dong Heon; Lee, Bong-Ryeol
2017-01-01
Bosentan reduces pulmonary arterial pressure and improves exercise capacity in patients with pulmonary arterial hypertension (PAH). However, there are limited data regarding the extent to which the changes in echocardiographic variables reflect improvements in exercise capacity. We aimed to assess the improvement of echocardiographic variables and exercise capacity after 6 months of bosentan treatment for PAH. We performed a prospective study from June 2012 to June 2015 in seven participating medical centers. Echocardiography, including tissue Doppler imaging (TDI) and the 6-minute walk test distance (6MWD), was performed at baseline and after 6 months of bosentan treatment. We analyzed 19 patients with PAH: seven with congenital shunt, six with collagen vascular disease, and six with idiopathic PAH. After bosentan treatment, mean 6MWD increased by 50 meters. Right ventricle (RV) systolic pressure, tricuspid annular plane systolic excursion, myocardial performance index (MPI) derived from TDI (MPI-TDI) of RV and left ventricle (LV), RV fractional area change, and RV ejection fraction were significantly improved. In particular, the magnitude of RV and LV MPI-TDI showed good correlation with changes in the 6MWD. The magnitude of RV and LV MPI-TDI was strongly associated with improvements in exercise capacity. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:28-34, 2017. © 2016 Wiley Periodicals, Inc.
Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki
2013-01-01
Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Venkatachalam, Sridhar; Wu, Geru; Ahmad, Masood
2017-12-01
The right ventricle has unique structural and functional characteristics. It is now well recognized that the so-called forgotten ventricle is a key player in cardiovascular physiology. Furthermore, there is accumulating evidence that demonstrates right ventricular dysfunction as an important marker of morbidity and mortality in several commonly encountered clinical situations such as heart failure, pulmonary hypertension, pulmonary embolism, right ventricular myocardial infarction, and adult congenital heart disease. In contrast to the left ventricle, echocardiographic assessment of right ventricular function is more challenging as volume estimations are not possible without the use of three-dimensional (3D) echocardiography. Guidelines on chamber quantification provide a standardized approach to assessment of the right ventricle. The technique and limitations of each of the parameters for RV size and function need to be fully understood. In this era of multimodality imaging, echocardiography continues to remain a useful tool for the initial assessment and follow-up of patients with right heart pathology. Several novel approaches such as 3D and strain imaging of the right ventricle have expanded the usefulness of this indispensable modality. © 2017, Wiley Periodicals, Inc.
Physiological differences between various types of Eisenmenger syndrome and relation to outcome.
Moceri, Pamela; Kempny, Aleksander; Liodakis, Emmanouil; Alonso Gonzales, Rafael; Germanakis, Ioannis; Diller, Gerhard-Paul; Swan, Lorna; Marino, Philip S; Wort, Stephen J; Babu-Narayan, Sonya V; Ferrari, Emile; Gatzoulis, Michael A; Li, Wei; Dimopoulos, Konstantinos
2015-01-20
Eisenmenger syndrome (ES) is the most advanced form of pulmonary arterial hypertension (PAH) related to congenital heart disease. Several studies have suggested that the presence and location of the shunt defines the natural history of these patients by influencing right ventricular adaptation to PAH. We aimed to echocardiographically assess differences in cardiac physiology and outcome between various types of ES. In this longitudinal cohort study, 191 patients with ES and non-complex congenital heart disease were recruited, 36 with pre-tricuspid and 155 with post-tricuspid shunts. Patients with pre-tricuspid shunts were older, had higher BNP concentrations and lower exercise tolerance compared to patients with post-tricuspid shunts. Right ventricular (RV) function was impaired in patients with atrial septal defects, with larger right ventricles, impaired systolic function and adaptation. The left ventricular eccentricity index was significantly higher in pre-tricuspid defects. Within post-tricuspid shunts, patients with atrio-ventricular septal defects had better right ventricular function compared to ventricular septal defects, while in those with a patent ductus arteriosus this was worse. There was a trend towards lower mortality in patients with post versus pre-tricuspid shunts, which was significant for patients above the age of 48 years. The presence of a post-tricuspid shunt appears to carry physiological and possibly prognostic benefits in ES compared to patients with pre-tricuspid shunts. This should be borne in mind when management decisions and advanced therapies are considered. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-07-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.
A man with multiple cardiac masses.
Indrabhinduwat, Manasawee; Arciniegas Calle, Maria C; Colgan, Joseph P; Villarraga, Benoy N
2018-06-12
A 37-year-old male presented with cough, dyspnea, significant weight loss (45 pounds) and subacute fever for the past two months. Physical examination revealed inspiratory and expiratory wheezing bilaterally. A normal S1, S2 and a 3/6 systolic ejection murmur at the left upper parasternal border with respiratory variation were found during cardiac auscultation. Kidney and bone marrow biopsy reported a high grade B cell lymphoma. Echocardiography and cardiac CT findings consisted of multiple intracardiac masses affecting the right ventricular (RV) outflow track, RV apex, medial portion of the right atrium and posterior left atrium, as well as mild impairment of the RV systolic function. The masses in the RV outflow track caused partial obstruction (Pulmonary Valve peak velocity 2.3 m/s) with a RV systolic pressure of 43 mmHg. The infiltrative mass in the interatrial septum extended into both the right and left atrial cavities. The right superior pulmonary vein was occluded. This patient was treated with aggressive chemotherapy and had a good clinical response that resulted in mass size reduction after the first course of chemotherapy. Multimodality imaging techniques such as echocardiography, cardiac CT and PET scan can provide complementary information to better evaluate, stage and manage these patients. © 2018 The authors.
Colin, Geoffrey C; Gerber, Bernhard L; de Meester de Ravenstein, Christophe; Byl, David; Dietz, Anna; Kamga, Michele; Pasquet, Agnes; Vancraeynest, David; Vanoverschelde, Jean-Louis; D'Hondt, Anne-Marie; Ghaye, Benoit; Pouleur, Anne-Catherine
2018-05-14
To evaluate the ability of chest computed tomography (CT) to predict pulmonary hypertension (PH) and outcome in chronic heart failure with reduced ejection fraction (HFrEF). We reviewed 119 consecutive patients with HFrEF by CT, transthoracic echocardiography (TTE) and right heart catheterization (RHC). CT-derived pulmonary artery (PA) diameter and PA to ascending aorta diameter ratio (PA:A ratio), left atrial, right atrial, right ventricular (RV) and left ventricular volumes were correlated with RHC mean pulmonary arterial pressure (mPAP) . Diagnostic accuracy to predict PH and ability to predict primary composite endpoint of all-cause mortality and HF events were evaluated. RV volume was significantly higher in 81 patients with PH compared to 38 patients without PH (133 ml/m 2 vs. 79 ml/m 2 , p < 0.001) and was moderately correlated with mPAP (r=0.55, p < 0.001). Also, RV volume had higher ability to predict PH (area under the curve: 0.88) than PA diameter (0.79), PA:A ratio (0.76) by CT and tricuspid regurgitation gradient (0.83) and RV basal diameter by TTE (0.84, all p < 0.001). During the follow-up period (median: 3.4 years), 51 patients (43%) had HF events or died. After correction for important clinical, TTE and RHC parameters, RV volume (adjusted hazard ratio [HR]: 1.71, 95% CI 1.31-2.23, p < 0.001) and PA diameter (HR: 1.61, 95% CI 1.18-2.22, p = 0.003) were independent predictors of the primary endpoint. In patients with HFrEF, measurement of RV volume and PA diameter on ungated CT are non-invasive markers of PH and may help to predict the patient outcome. • Right ventricular (RV) volume measured by chest CT has good ability to identify pulmonary hypertension (PH) in patients with chronic heart failure (HF) and reduced ejection fraction (HFrEF). • The accuracy of pulmonary artery (PA) diameter and PA to ascending aorta diameter ratio (PA:A ratio) to predict PH was similar to previous studies, however, with lower cut-offs (28.1 mm and 0.92, respectively). • Chest CT-derived PA diameter and RV volume independently predict all-cause mortality and HF events and improve outcome prediction in patients with advanced HFrEF.
Right ventricular and pulmonary arterial dimensions in adults with osteogenesis imperfecta.
Radunovic, Zoran; Wekre, Lena L; Steine, Kjetil
2012-06-15
We examined right ventricular (RV) and ascending pulmonary artery (PA1) dimensions in adults with osteogenesis imperfecta (OI). The survey included 99 adults with OI divided in 3 clinical types (I, III, and IV) and 52 controls. RV and PA1 dimensions were measured by echocardiography and indexed for body surface area. Scoliosis was registered, and spirometry was performed in 75 patients with OI. All RV dimensions indexed by body surface area were significantly larger in the OI group compared to controls (RV basal dimension 1.9 ± 0.5 vs 1.7 ± 0.3 cm/m(2), p <0.05; RV midcavity dimension 1.7 ± 0.5 vs 1.5 ± 0.3 cm/m(2), p <0.05; RV longitudinal dimension 4.3 ± 1.1 vs 4.0 ± 0.9 cm/m(2), p <0.05). RV outflow tract (RVOT) proximal diameter (1.8 ± 0.4 vs 1.5 ± 0.2 cm/m(2), p <0.05), RVOT distal diameter (1.2 ± 0.2 vs 1.0 ± 0.1 cm/m(2), p <0.05), and PA1 (1.2 ± 0.3 vs 1.0 ± 0.2 cm/m(2), p <0.05) were also significantly larger in the OI group. Furthermore, all RV dimensions and PA1 were significantly larger in patients with OI type III compared to patients with OI types I and IV and controls. There were no differences in RV, RVOT, or PA1 dimensions between patients presenting a restrictive ventilatory pattern (n = 11) and patients a normal ventilatory pattern. Scoliosis was registered in 42 patients. Patients with OI type III had greater RV and PA1 dimensions compared to controls and patients with OI types I and IV. Impaired ventilatory patterns and scoliosis did not have any impact on RV dimensions in these patients. In conclusion, patients with OI had increased RV and PA1 dimensions compared to the control group. Copyright © 2012 Elsevier Inc. All rights reserved.
Right ventricular myocardial infarction: presentation and acute outcomes.
Chockalingam, Anand; Gnanavelu, G; Subramaniam, T; Dorairajan, Smrita; Chockalingam, V
2005-01-01
Acute inferior wall myocardial infarction can be complicated by right ventricular myocardial infarction (RVMI), and the excess mortality cannot be fully explained by mechanical reasons. The authors try to systematically assess the incidence, clinical presentation and early outcomes of right ventricular infarction in a tertiary-care setup. Their study was a prospective observational series of consecutive patients with RVMI. All patients with acute inferior myocardial infarction (n=135) were enlisted. RVMI was diagnosed by > or = 1 mm ST elevation in lead V(4R) in a right-sided electrocardiogram. Right ventricular (RV) infarction occurred in 37% (n=50) of patients with acute inferior infarctions. Patients with isolated inferior infarction served as controls (n=85). Echocardiography was performed within 24 hours of admission. From both groups, 66% qualified for thrombolysis. The incidence of hypotension-bradycardia and heart blocks requiring pacing support was much higher in right ventricular infarction (n=21) than in inferior infarction (n=13). Clinically manifest RV dysfunction (raised jugular venous pulse [JVP], hypotension, tricuspid regurgitation) and right ventricular dilation detected by echocardiography were seen in only 13 patients. The in-hospital mortality rate was significantly higher (n=8, 16%) in right ventricular infarction group than in inferior infarction group (n=3, 3.5%). Right ventricular infarction was seen in a third of inferior myocardial infarctions (IMIs), but hemodynamically evident right ventricular dysfunction occurred in only a tenth of acute IMIs. Nevertheless, the acute in-hospital mortality rate of patients with right ventricular infarction was much higher than in those with inferior infarction owing to arrhythmic and mechanical complications.
Hugues, T; Ducreux, D; Bertora, D; Berthier, F; Lemoigne, F; Padovani, B; Gibelin, P
2010-04-01
The ultrasound assessment of RV structure and function is often sub-optimal. The range of excursions of the mitral or tricuspid annulus measured in millimetre by 2D or TM-mode in centimetre per second by DTI-mode echocardiography has been shown to reflect the systolic function of both ventricles. We studied a new technique based on a tissue tracking algorithm that is ultrasound beam angle independent for automated detection of tricuspid annular displacement (TAD) (QLAB, Philips Medical Imaging). Twenty-six patients (pts) referred for magnetic resonance imaging (MRI) and 44 control subjects underwent a complete transthoracic echocardiography. MRI of the right ventricular ejection fraction (RVEF) was correlated by linear regression with TAD. Sixteen pts (61.5%) exhibited right ventricular systolic dysfunction (MRI RVEF<40%). The MRI RVEF was positively correlated with TAD (R(2)=0,65; p<0,0001). A value of TAD <14mm predicted right ventricular dysfunction with a sensitivity of 87.5% and a specificity of 90%. Most of (90%) healthy subjects exhibited TAD values exceeding this cut-off point (mean: 16.9+/-1.64mm; range: 13.3 to 24.8mm). Negative correlation was found between TAD and age (R(2)=0,36; p<0,0001). Our study is the first to correlate TAD with MRI RVEF. TAD is a simple, rapid, and non-invasive tool for right ventricular systolic function assessment.
Dandel, Michael; Knosalla, Christoph; Kemper, Dagmar; Stein, Julia; Hetzer, Roland
2015-03-01
Right ventricle (RV) performance is load dependent, and right-sided heart failure (RHF) is the main cause of death in pulmonary arterial hypertension (PAH). Prediction of RV worsening for timely identification of patients needing transplantation (Tx) is paramount. Assessment of RV adaptability to load has proved useful in certain clinical circumstances. This study assessed its predictive value for RHF-free and Tx-free outcome with PAH. Between 2006 and 2012, all potential Tx candidates with PAH, without RHF at the first evaluation, were selected for follow-up (except congenital heart diseases). At selection and at each follow-up, N-terminal prohormone brain natriuretic peptide (NT-proBNP) and the 6-minute walk distance were measured, and RV adaptability to load was assessed by echocardiography. Collected data were tested for the ability to predict RV stability and Tx-free survival. During a 12-month to 92-month follow-up, RHF developed in 23 of 79 evaluated patients, despite similar medication and no differences in initial RV size and ejection fraction compared with the patients who remained stable. However, unstable patients had an initially lower RV load-adaptation index and afterload-corrected peak global systolic longitudinal strain-rate values as well as higher RV dyssynchrony, tricuspid regurgitation, and NT-proBNP levels (p ≤ 0.01). At certain cutoff values, these variables appeared predictive for 1-year and 3-year freedom from RHF and 3-year Tx-free survival. An RV load-adaptation index reduction of ≥20% showed the highest predictive value (90.0%) for short-term (≤1 year) RV decompensation. Assessment of RV adaptability to load allows prediction of RV function and Tx-free survival with severe PAH during the next 1 to 3 years. This can improve the timing of listing for Tx. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Christensson, Anders; Grubb, Anders; Molvin, John; Holm, Hannes; Gransbo, Klas; Tasevska-Dinevska, Gordana; Bachus, Erasmus; Jujic, Amra; Magnusson, Martin
2016-11-01
The close relationship between heart and kidney diseases was studied with respect to the 'Shrunken pore syndrome' that is characterized by a difference in renal filtration between cystatin C and creatinine. Patients were retrieved from the HeARt and brain failure inVESTigation trail (HARVEST) which is an ongoing study undertaken in individuals hospitalized for the diagnosis of heart failure. Ninety-five of 116 patients who underwent transthoracic echocardiograms (TTE) were eligible for this study. We used four different formulas for estimated glomerular filtration rate (eGFR); CKD-EPI creatinine , CKD-EPI cystatin C , LMrev and CAPA. Presence of the syndrome was defined as eGFR cystatin C ≤ 60% of eGFR creatinine and absence of the syndrome as eGFR cystatin C >90% and <110% of eGFR creatinine . In a linear regression model, adjusted for age and sex, and the 'Shrunken pore syndrome' defined by the equation pair CAPA and LMrev and the equation pair CKD-EPI cystatin C and CKD-EPI creatinine, echocardiographic parameters were studied. The 'Shrunken pore syndrome' showed statistically significant associations with measurements of right ventricular (RV) systolic function; (TAPSE and RV S') (according to the equation pair CKD-EPI cystatin C and CKD-EPI creatinine ). In conclusion, heart failure patients with the 'Shrunken pore syndrome' are at increased risk of having RV systolic dysfunction whilst heart failure patients without 'Shrunken pore syndrome' seem protected. These findings may indicate common pathophysiological events in the kidneys and the heart explaining the observed increased risk of mortality in subjects with the 'Shrunken pore syndrome'.
Topilsky, Yan; Khanna, Amber; Le Tourneau, Thierry; Park, Soon; Michelena, Hector; Suri, Rakesh; Mahoney, Douglas W; Enriquez-Sarano, Maurice
2012-05-01
Functional tricuspid regurgitation (FTR) with structurally normal valve is of poorly defined mechanisms. Prevalence and clinical context of idiopathic FTR (Id-FTR) (without overt TR cause) are unknown. To investigate prevalence, clinical context, and mechanisms specific to FTR types, Id-FTR versus pulmonary hypertension-related (PHTN-FTR, systolic pulmonary pressure ≥50 mm Hg), we analyzed 1161 patients with prospectively quantified TR. Id-FTR (prevalence 12%) was associated with aging and atrial fibrillation. For mechanistic purposes, we measured valvular and right ventricular (RV) remodeling in 141 Id-FTR matched to 140 PHTN-FTR and to 99 controls with trivial TR for age, sex, atrial fibrillation, and ejection fraction. PHTN-FTR and Id-FTR were also matched for TR effective-regurgitant-orifice (ERO). Id-FTR valvular alterations (versus controls) were largest annular area (3.53±0.6 versus 2.74±0.4 cm(2), P<0.0001) and lowest valvular/annular coverage ratio (1.06±0.1 versus 1.45±0.2, P<0.0001) but normal valve tenting height. PHTN-FTR had mild annular enlargement but excessive valve tenting height (0.8±0.3 versus 0.35±0.1 cm, P<0.0001). Valvular changes were linked to specific RV changes, largest basal dilatation, and normal length (RV conical deformation) in Id-FTR versus longest RV with elliptical/spherical deformation in PHTN-FTR. With increasing FTR severity (ERO ≥40 mm(2)), changes specific to each FTR type were accentuated, and RV function (index of myocardial performance) was consistently reduced. Id-FTR is frequent, linked to aging and atrial fibrillation, can be severe, and is of unique mechanism. In Id-FTR, excess annular and RV-basal enlargement exhausts valvular/annular coverage reserve, and RV conical deformation does not cause notable valvular tenting. Conversely, PHTN-FTR is determined by valvular tethering with tenting linked to RV elongation and elliptical/spherical deformation. These specific FTR-mechanisms may be important in considering surgical correction in FTR.
Li, K; Qiao, J; Zhao, L; Dong, S; Ou, D; Wang, J; Wang, H; Xu, T
2006-11-01
Right ventricular hypertrophy and failure is an important step in the development of ascites syndrome (AS) in broiler chickens. Cytoplasmic calcium concentration is a major regulator of cardiac contractile function and various physiological processes in cardiac muscle cells. The purpose of this study was to measure the right ventricular pressure and investigate the precise ultrastructural location of Ca(2+) and Ca(2+)-ATPase in the right ventricular myocardium of chickens with AS induced by low ambient temperature. The results showed that the right ventricular diastolic pressure of ascitic broilers was significantly higher than that of control broilers (P < 0.01), and the maximum change ratio of right intraventricular pressure (RV +/- dp/dt(max)) of ascitic broilers was significantly lower than that of the controls (P < 0.01). Extensively increased calcium deposits were observed in the right ventricular myocardium of ascitic broilers, whereas in the age-matched control broilers, calcium deposits were much less. The Ca(2+)-ATPase reactive products were obviously found on the sarcoplasmic reticulum and mitochondrial membrane of the control right ventricular myocardium, but rarely observed in the ascitic broilers. The data suggest that in ascitic broilers there is the right ventricular diastolic dysfunction, in which the overload of intracellular calcium and the decreased Ca(2+)-ATPase activity might be the important factors.
Wadia, Subeer Kanwar; Shah, Trushil G; Hedstrom, Grady; Kovach, Julie A; Tandon, Rajive
2016-12-01
Right ventricular (RV) dysfunction is an independent predictor of morbidity and mortality in acute respiratory distress syndrome (ARDS). Our goal was to describe morphologic changes in the RV using objective measures on transthoracic echocardiography (TTE) that occur following ARDS. We retrospectively measured changes in the following RV parameters from a pre-ARDS TTE to an ARDS TTE: tricuspid annular plane systolic excursion (TAPSE), myocardial performance index (MPI), fractional area change (FAC), systolic pulmonary artery pressure (SPAP), peak tricuspid regurgitant (TR) velocity, and septal shift. Over 24 months, 14 patients met inclusion/exclusion criteria. Mean TAPSE decreased from 22.4 mm pre-ARDS to 16.3 mm during ARDS, P<.001. Mean MPI increased from 0.19 to 0.38, P=.001. Mean FAC decreased from 60.8% to 41.2%, P=.003. Peak TR velocity increased from 2.67 m/s pre-ARDS to 3.31 m/s during ARDS, P=.02. SPAP and septal shift demonstrated trends but not statistically different between pre-ARDS and ARDS states. TAPSE correlated with ARDS severity (PaO 2 /FiO 2 ratios), P=.004, and was lower among 30-day nonsurvivors compared with survivors, P=.002. Mild RV dysfunction is common after ARDS onset. RV morphologic changes coupled with dysfunction can be detected noninvasively through TTE changes with TAPSE, MPI, and FAC. Mild RV dysfunction by TAPSE is associated with ARDS severity and mortality. © 2016, Wiley Periodicals, Inc.
Effects of testosterone and nandrolone on cardiac function: a randomized, placebo-controlled study.
Chung, T; Kelleher, S; Liu, P Y; Conway, A J; Kritharides, L; Handelsman, D J
2007-02-01
Androgens have striking effects on skeletal muscle, but the effects on human cardiac muscle function are not well defined, neither has the role of metabolic activation (aromatization, 5alpha reduction) of testosterone on cardiac muscle been directly studied. To assess the effects of testosterone and nandrolone, a non-amplifiable and non-aromatizable pure androgen, on cardiac muscle function in healthy young men. Double-blind, randomized, placebo-controlled, three-arm parallel group clinical trial. Ambulatory care research centre. Healthy young men randomized into three groups of 10 men. Weekly intramuscular injections of testosterone (200 mg mixed esters), nandrolone (200 mg nandrolone decanoate) or matching (2 ml arachis oil vehicle) placebo for 4 weeks. Comprehensive measures of cardiac muscle function involving transthoracic cardiac echocardiography measuring myocardial tissue velocity, peak systolic strain and strain rates, and bioimpedance measurement of cardiac output and systematic vascular resistance. Left ventricular (LV) function (LV ejection fraction, LV modified TEI index), right ventricular (RV) function (ejection area, tricuspid annular systolic planar motion, RV modified TEI index) as well as cardiac afterload (mean arterial pressure, systemic vascular resistance) and overall cardiac contractility (stroke volume, cardiac output) were within age- and gender-specific reference ranges and were not significantly (P < 0.05) altered by either androgen or placebo over 4 weeks of treatment. Minor changes remaining within normal range were observed solely within the testosterone group for: increased LV end-systolic diameter (30 +/- 7 vs. 33 +/- 5 mm, P = 0.04) and RV end-systolic area (12.8 +/- 1.3 vs. 14.6 +/- 3.3 cm(2), P = 0.04), reduced LV diastolic septal velocity (Em, 9.5 +/- 2.6 vs. 8.7 +/- 2.0 cm/s, P = 0.006), increased LV filling pressure (E/Em ratio, 7.1 +/- 1.6 vs. 8.3 +/- 1.8, P = 0.02) and shortened PR interval on the electrocardiogram (167 +/- 13 vs. 154 +/- 12, P = 0.03). Four weeks of treatment with testosterone or nandrolone had no beneficial or adverse effects compared with placebo on cardiac function in healthy young men.
Kutty, Shelby; Li, Ling; Danford, David A; Houle, Helene; Datta, Saurabh; Mancina, Joel; Xiao, Yunbin; Pedrizzetti, Gianni; Porter, Thomas R
2014-12-01
The purpose of this investigation was to test the hypothesis that flow patterns in the right ventricle are abnormal in patients with repaired tetralogy of Fallot (TOF). High-resolution echocardiographic contrast particle imaging velocimetry was used to investigate rotation intensity and kinetic energy dissipation of right ventricular (RV) flow in patients with TOF compared with normal controls. Forty-one subjects (16 with repaired TOF and varying degrees of RV dilation and 25 normal controls) underwent prospective contrast imaging using the lipid-encapsulated microbubble (Definity) on Sequoia systems. A mechanical index of 0.4, three-beat high-frame rate (>60 Hz) captures, and harmonic frequencies were used. Rotation intensity and kinetic energy dissipation of flow in the right and left ventricles were studied (Hyperflow). Ventricular volumes and ejection fractions in all subjects were derived from same-day cardiac magnetic resonance (CMR). Measurable planar maps were obtained for the left ventricle in 14 patients and the right ventricle in 10 patients among those with TOF and for the left ventricle in 23 controls and the right ventricle in 21 controls. Compared with controls, the TOF group had higher RV indexed end-diastolic volumes (117.8 ± 25.5 vs 88 ± 15.4 mL/m(2), P < .001) and lower RV ejection fractions (44.6 ± 3.6% vs 51.8 ± 3.6%, P < .001). Steady-streaming (heartbeat-averaged) flow rotation intensities were higher in patients with TOF for the left ventricle (0.4 ± 0.13 vs 0.29 ± 0.08, P = .012) and the right ventricle (0.53 ± 0.15 vs 0.26 ± 0.12, P < .001), whereas kinetic energy dissipation in TOF ventricles was lower (for the left ventricle, 0.51 ± 0.29 vs 1.52 ± 0.69, P < .001; for the right ventricle, 0.4 ± 0.24 vs 1.65 ± 0.91, P < .001). It is feasible to characterize RV and left ventricular flow parameters and planar maps in adolescents and adults with repaired TOF using echocardiographic contrast particle imaging velocimetry. Intraventricular flow patterns in the abnormal and/or enlarged right ventricle in patients with TOF differ from those in normal young adults. The rotation intensity and energy dissipation trends in this investigation suggest that they may be quantitative markers of RV and left ventricular compliance abnormalities in patients with repaired TOF. This hypothesis merits further investigation. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Unique Abnormalities in Right Ventricular Longitudinal Strain in Systemic Sclerosis Patients.
Mukherjee, Monica; Chung, Shang-En; Ton, Von Khue; Tedford, Ryan J; Hummers, Laura K; Wigley, Fredrick M; Abraham, Theodore P; Shah, Ami A
2016-06-01
Cardiac involvement in systemic sclerosis (scleroderma [SSc]) adversely affects long-term prognosis, often remaining undetectable despite close clinical examination and 2-dimensional echocardiographic monitoring. Speckle-derived strain of the right ventricle (RV) was utilized to detect occult abnormalities in regional and global contractility in SSc patients. A total of 138 SSc patients with technically adequate echocardiograms was studied and compared with 40 age- and sex-matched healthy non-SSc controls. Standard assessment of RV chamber function included tricuspid annular plane systolic excursion and fractional area change. RV longitudinal systolic speckle-derived strain was assessed in the basal, mid, and apical free wall. Tricuspid annular plane systolic excursion was not different between groups (P=0.307). Although fractional area change was lower in SSc patients than in controls (mean, 48.9 versus 55; P=0.002), the mean fractional area change was still within the normal range (>35). In contrast, RV longitudinal systolic speckle-derived strain measures were significantly different between groups, both globally (-20.4% versus -17.7%; P=0.005) and regionally: they were decreased in the apex (-8.5% versus -17.1%; P<0.0001) and mid segments (-12.4% versus -20.9%; P<0.0001), and increased in the base (-32.2% versus -23.3%; P=0.0001) for the SSc group. The regional difference in the base compared with the apex was significantly greater for SSc than for controls (P<0.0001 for interaction). The differences observed in regional strain between SSc and control were unchanged after adjusting for RV systolic pressure. Speckle-derived strain reveals a heterogenous pattern of regional heart strain in SSc that is not detected by conventional measures of function, suggestive of occult RV myocardial disease. © 2016 American Heart Association, Inc.
Friesen, Richard M; Schäfer, Michal; Ivy, D Dunbar; Abman, Steven H; Stenmark, Kurt; Browne, Lorna P; Barker, Alex J; Hunter, Kendall S; Truong, Uyen
2018-05-16
Main pulmonary artery (MPA) stiffness and abnormal flow haemodynamics in pulmonary arterial hypertension (PAH) are strongly associated with elevated right ventricular (RV) afterload and associated with disease severity and poor clinical outcomes in adults with PAH. However, the long-term effects of MPA stiffness on RV function in children with PAH remain poorly understood. This study is the first comprehensive evaluation of MPA stiffness in children with PAH, delineating the mechanistic relationship between flow haemodynamics and MPA stiffness as well as the prognostic ability of these measures regarding clinical outcomes. Fifty-six children diagnosed with PAH underwent baseline cardiac magnetic resonance (CMR) acquisition and were compared with 23 control subjects. MPA stiffness and wall shear stress (WSS) were evaluated using phase contrast CMR and were evaluated for prognostic potential along with standard RV volumetric and functional indices. Pulse wave velocity (PWV) was significantly increased (2.8 m/s vs. 1.4 m/s, P < 0.0001) and relative area change (RAC) was decreased (25% vs. 37%, P < 0.0001) in the PAH group, correlating with metrics of RV performance. Decreased WSS was associated with a decrease in RAC over time (r = 0.679, P < 0.001). For each unit increase in PWV, there was approximately a 3.2-fold increase in having a moderate clinical event. MPA stiffness assessed by non-invasive CMR was increased in children with PAH and correlated with RV performance, suggesting that MPA stiffness is a major contribution to RV dysfunction. PWV is predictive of moderate clinical outcomes, and may be a useful prognostic marker of disease activity in children with PAH.
VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David
2013-05-20
Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heartmore » failure.« less
In vivo experimental testing of a microaxial blood pump for right ventricular support.
Christiansen, Stefan; Perez-Bouza, Alberto; Reul, Helmut; Autschbach, Rüdiger
2006-02-01
The incidence of isolated right ventricular (RV) failure is rare in postcardiotomy patients, but high in patients undergoing implantation of a left ventricular assist device or cardiac transplantation. Therefore, we have developed a new microaxial flow device and report on our first in vivo animal trials. Six healthy adult female sheep weighing 80-90 kg underwent implantation of the microaxial blood pump for partial unloading of the right ventricle. This pump is a miniaturized rotary blood pump with a diameter of only 6.4 mm and a weight of 11 g. The inner volume of the pump is limited to 12 mL, and the inner artificial blood contacting surface is 65 cm(2). The pump consists of a rotor driven by an incorporated brushless direct current motor, the housing of the rotor, the inflow cage, the outflow cannula, and the driveline. At the maximum speed of 32,500 rotations/min, a flow of 6 L/min can be delivered. The inflow and outflow conduit were anastomosed to the right atrium and the main pulmonary artery, respectively. Hemodynamic and echocardiographic data as well as blood samples were measured over the whole test period of 7 days. The hearts and lungs as well as the pump were explanted for a thorough examination at the end of the trial. Systemic arterial blood pressures remained unchanged during the entire test period. RV cardiac output was diminished significantly as demonstrated by the echocardiographic studies. The number of platelets decreased perioperatively, but recovered within the test period. The free hemoglobin was not enhanced postoperatively indicating no significant hemolysis. Liver function was only slightly impaired due to operative reasons (increase in bilirubin on the first postoperative day but normalization within the test period). The pathologic examination revealed some clots at the inflow cage and fibrin depositions on the impeller as well as on the inner surface of the outflow graft without an impairment of pump function. Our results demonstrate that this newly developed microaxial blood pump is a promising device for RV support, but it cannot be driven without any anticoagulation.
Arvidsson, Per M; Töger, Johannes; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan
2013-05-15
Kinetic energy (KE) of atrial blood has been postulated as a possible contributor to ventricular filling. Therefore, we aimed to quantify the left (LA) and right (RA) atrial blood KE using cardiac magnetic resonance (CMR). Fifteen healthy volunteers underwent CMR at 3 T, including a four-dimensional phase-contrast flow sequence. Mean LA KE was lower than RA KE (1.1 ± 0.1 vs. 1.7 ± 0.1 mJ, P < 0.01). Three KE peaks were seen in both atria: one in ventricular systole, one during early ventricular diastole, and one during atrial contraction. The systolic LA peak was significantly smaller than the RA peak (P < 0.001), and the early diastolic LA peak was larger than the RA peak (P < 0.05). Rotational flow contained 46 ± 7% of total KE and conserved energy better than nonrotational flow did. The KE increase in early diastole was higher in the LA (P < 0.001). Systolic KE correlated with the combination of atrial volume and systolic velocity of the atrioventricular plane displacement (r(2) = 0.57 for LA and r(2) = 0.64 for RA). Early diastolic KE of the LA correlated with left ventricle (LV) mass (r(2) = 0.28), however, no such correlation was found in the right heart. This suggests that LA KE increases during early ventricular diastole due to LV elastic recoil, indicating that LV filling is dependent on diastolic suction. Right ventricle (RV) relaxation does not seem to contribute to atrial KE. Instead, RA KE generated during ventricular systole may be conserved in a hydraulic "flywheel" and transferred to the RV through helical flow, which may contribute to RV filling.
Mafi Rad, Masih; Blaauw, Yuri; Dinh, Trang; Pison, Laurent; Crijns, Harry J; Prinzen, Frits W; Vernooy, Kevin
2014-11-01
Current targeted left ventricular (LV) lead placement strategy is directed at the latest activated region during intrinsic activation. However, cardiac resynchronization therapy (CRT) is most commonly applied by simultaneous LV and right ventricular (RV) pacing without contribution from intrinsic conduction. Therefore, targeting the LV lead to the latest activated region during RV pacing might be more appropriate. We investigated the difference in LV electrical activation sequence between left bundle-branch block (LBBB) and RV apex (RVA) pacing using coronary venous electro-anatomic mapping (EAM). Twenty consecutive CRT candidates with LBBB underwent intra-procedural coronary venous EAM during intrinsic activation and RVA pacing using EnSite NavX. Left ventricular lead placement was aimed at the latest activated region during LBBB according to current recommendations. In all patients, LBBB was associated with a circumferential LV activation pattern, whereas RVA pacing resulted in activation from the apex of the heart to the base. In 10 of 20 patients, RVA pacing shifted the latest activated region relative to LBBB. In 18 of 20 patients, the LV lead was successfully positioned in the latest activated region during LBBB. For the whole study population, LV lead electrical delay, expressed as percentage of QRS duration, was significantly shorter during RVA pacing than during LBBB (72 ± 13 vs. 82 ± 5%, P = 0.035). Right ventricular apex pacing alters LV electrical activation pattern in CRT patients with LBBB, and shifts the latest activated region in a significant proportion of these patients. These findings warrant reconsideration of the current practice of LV lead targeting for CRT. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
Mehta, Bhairav B; Auger, Daniel A; Gonzalez, Jorge A; Workman, Virginia; Chen, Xiao; Chow, Kelvin; Stump, Claire J; Mazimba, Sula; Kennedy, Jamie L W; Gay, Elizabeth; Salerno, Michael; Kramer, Christopher M; Epstein, Frederick H; Bilchick, Kenneth C
2015-12-21
Assessment of diffuse right ventricular (RV) fibrosis is of particular interest in pulmonary hypertension (PH) and heart failure (HF). Current cardiovascular magnetic resonance (CMR) T1 mapping techniques such as Modified Look-Locker inversion recovery (MOLLI) imaging have limited resolution, but accelerated and navigator-gated Look-Locker imaging for cardiac T1 estimation (ANGIE) is a novel CMR sequence with spatial resolution suitable for T1 mapping of the RV. We tested the hypothesis that patients with PH would have significantly more RV fibrosis detected with MRI ANGIE compared with normal volunteers and patients having HF with reduced (LV) ejection fraction (HFrEF) without co-existing PH, independent of RV dilitation and dysfunction. Patients with World Health Organization group 1 or group 4 PH, patients with HFrEF without PH, and normal volunteers were recruited to undergo contrast-enhanced CMR. RV and LV extracellular volume fractions (RV-ECV and LV-ECV) were determined using pre-contrast and post-contrast T1 mapping using ANGIE (RV and LV) and MOLLI (LV only). Thirty-two participants (53.1% female, median age 52 years, IQR 26-65 years) were enrolled, including n = 12 with PH, n = 10 having HFrEF without co-existing PH, and n = 10 normal volunteers. ANGIE ECV imaging was of high quality, and ANGIE measurements of LV-ECV were highly correlated with those of MOLLI (r = 0.91; p < 0.001). The RV-ECV in PH patients was 27.2% greater than the RV-ECV in normal volunteers (0.341 v. 0.268; p < 0.0001) and 18.9% greater than the RV-ECV in HFrEF patients without PH (0.341 v. 0.287; p < 0.0001). RV-ECV was greater than LV-ECV in PH (RV-LV difference = 0.04), but RV-ECV was nearly equivalent to LV-ECV in normal volunteers (RV-LV difference = 0.002) (p < 0.0001 for RV-LV difference in PH versus normal volunteers). RV-ECV was linearly associated with both increasing RVEDVI (p = 0.049) and decreasing RVEF (p = 0.04) in a multivariable linear model, but PH was still associated with greater RV-ECV even after adjustment for RVEDVI and RVEF. Pre- and post-contrast ANGIE imaging provides high-resolution ECV determination for the RV. PH is independently associated with increased RV-ECV even after adjustment for RV dilatation and dysfunction, consistent with an independent effect of PH on fibrosis. ANGIE RV imaging merits further clinical evaluation in PH.
Role of microtubules in the contractile dysfunction of hypertrophied myocardium
NASA Technical Reports Server (NTRS)
Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th
1999-01-01
OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.
Angadi, Siddhartha S; Jarrett, Catherine L; Sherif, Moustafa; Gaesser, Glenn A; Mookadam, Farouk
2017-08-01
High-intensity interval training (HIIT) improves peak oxygen uptake and left ventricular diastology in patients with heart failure with preserved ejection fraction (HFpEF). However, its effects on myocardial strain in HFpEF remain unknown. We explored the effects of HIIT and moderate-intensity aerobic continuous training (MI-ACT) on left and right ventricular strain parameters in patients with HFpEF. Furthermore, we explored their relationship with peak oxygen uptake (VO 2peak ). Fifteen patients with HFpEF (age = 70 ± 8.3 years) were randomized to either: (i) HIIT (4 × 4 min, 85-90% peak heart rate, interspersed with 3 min of active recovery; n = 9) or (ii) MI-ACT (30 min at 70% peak heart rate; n = 6). Patients were trained 3 days/week for 4 weeks and underwent VO 2peak testing and 2D echocardiography at baseline and after completion of the 12 sessions of supervised exercise training. Left ventricular (LV) and right ventricular (RV) average global peak systolic longitudinal strain (GLS) and peak systolic longitudinal strain rate (GSR) were quantified. Paired t-tests were used to examine within-group differences and unpaired t-tests used for between-group differences (α = 0.05). Right ventricular average global peak systolic longitudinal strain improved significantly in the HIIT group after training (pre = -18.4 ± 3.2%, post = -21.4 ± 1.7%; P = 0.02) while RV-GSR, LV-GLS, and LV-GSR did not (P > 0.2). No significant improvements were observed following MI-ACT. No significant between-group differences were observed for any strain measure. ΔLV-GLS and ΔRV-GLS were modestly correlated with ΔVO 2peak (r = -0.48 and r = -0.45; P = 0.1, respectively). In patients with HFpEF, 4 weeks of HIIT significantly improved RV-GLS. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Zierer, Andreas; Voeller, Rochus K.; Melby, Spencer J.; Steendijk, Paul; Moon, Marc R.
2009-01-01
Purpose Patients with chronic pulmonary hypertension (CPH) who demonstrate a pulmonary vasodilation following calcium channel blocker (CCB) administration are defined as “responders”. In contrast, “non-responders” are patients who do not show such a pulmonary vasodilation with CCB therapy. The purpose of this investigation was to study the effects of CCB therapy on right heart mechanics in experimental CCB responders versus CCB non-responders. Methods In 12 dogs, right atrial (RA) and ventricular (RV) pressure and volume (conductance catheters) were simultaneously recorded after 3 months of progressive pulmonary artery (PA) banding. Diltiazem was given at 10 mg/hr with the PA constricted (simulated CCB non-responder). Responders were then created by releasing the PA band to unload the ventricle. RA and RV contractility and diastolic stiffness (slope of end-systolic and end-diastolic pressure-volume relations) were calculated and RA reservoir and conduit function were quantified as RA inflow with the tricuspid valve closed versus open, respectively. Results With CCB, RA contractility (p<0.03) and cardiac output (p<0.004) were compromised in simulated non-responders while RA stroke work was pharmacologically depressed in the setting of an unchanged afterload. After simulating a responder by controlled PA band release, the RA became less distensible, causing a shift from reservoir to conduit function (p<0.001) towards physiologic baseline conditions and a recovery in the hyperdynamic compensatory response in both chambers (p<0.007) as evidenced in a declined RA and RV contractility with an improved cardiac output as compared to CPH and simulated non-responders. RA and RV diastolic function in both groups was not affected by CCB. Conclusions CCB did not impact RV function in simulated non-responders, but significantly impaired RA contractility and cardiac output. In simulated responders, afterload fell substantially, thereby allowing the RA and RV to recover from their pathological hyperdynamic contractile response to CPH. This affect was able to outweigh the intrinsic negative effects of CCB therapy on systolic RA function. Current data suggest that the RA in CPH is much more sensitive to CCB therapy than the RV and delineate for the first time why CCB therapy in CPH has been empirically restricted to documented responders. PMID:19237986
Kawata, Takayuki; Daimon, Masao; Kimura, Koichi; Nakao, Tomoko; Lee, Seitetsu L; Hirokawa, Megumi; Kato, Tomoko S; Watanabe, Masafumi; Yatomi, Yutaka; Komuro, Issei
2017-10-01
Right ventricular (RV) function has recently gained attention as a prognostic predictor of outcome even in patients who have left-sided heart failure. Since several conventional echocardiographic parameters of RV systolic function have been proposed, our aim was to determine if any of these parameters (tricuspid annular plane systolic excursion: TAPSE, tissue Doppler derived systolic tricuspid annular motion velocity: S', fractional area change: FAC) are associated with outcome in advanced heart failure patients with dilated cardiomyopathy (DCM). We retrospectively enrolled 68 DCM patients, who were New York Heart Association (NYHA) Class III or IV and had a left ventricular (LV) ejection fraction <35%. All patients were undergoing evaluation for heart transplantation or management of heart failure. Primary outcomes were defined as LV assist device implantation or cardiac death within one year. Thirty-nine events occurred (5 deaths, 32 LV assist devices implanted). Univariate analysis showed that age, systolic blood pressure, heart rate, NYHA functional class IV, plasma brain natriuretic peptide concentration, intravenous inotrope use, left atrial volume index, and FAC were associated with outcome, whereas TAPSE and S' were not. Receiver-operating characteristic curve analysis showed that the optimal FAC cut-off value to identify patients with an event was <26.7% (area under the curve=0.74). The event-free rate determined by Kaplan-Meier analysis was significantly higher in patients with FAC≥26.7% than in those with FAC<26.7% (log-lank, p=0.0003). Moreover, the addition of FAC<26.7% improved the prognostic utility of a model containing clinical variables and conventional echocardiographic indexes. FAC may provide better prognostic information than TAPSE or S' in advanced heart failure patients with DCM. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Johns, S M; Nelson, O L; Gay, J M
2012-01-01
Congestive heart failure (CHF) in cats with left-sided heart disease is sometimes manifest as pleural effusion, in other cases as pulmonary edema. Those cats with pleural effusion have more severe left atrial (LA) dysfunction than cats with pulmonary edema. 30 healthy cats, 22 cats with pleural effusion, and 12 cats with pulmonary edema. All cats were client owned. Retrospective study. Measurements of LA size and function were made using commercial software on archived echocardiograms. Cases were identified through searches of medical records and of archived echocardiograms for cats with these conditions. There was no difference (P = .3) in LA size between cats with pleural effusion and cats with pulmonary edema. Cats with pleural effusion had poorer (P = .04) LA active emptying and increased (P = .006) right ventricular (RV) diameter when compared with cats with pulmonary edema and healthy cats. Cats that exhibited LA active emptying of <7.9%, total emptying of <13.6% (diameter) or <19.4% (area), or RV diameter of >3.6 mm were significantly (P < .001) more likely to manifest pleural effusion. Poorer LA function and increased RV dimensions are associated with pleural effusion in cats with left-sided heart disease. Copyright © 2012 by the American College of Veterinary Internal Medicine.
Polsinelli, Vincenzo B; Sinha, Arjun; Shah, Sanjiv J
2017-12-01
Visceral venous congestion of the gut may play a key role in the pathogenesis of right-sided heart failure (HF) and cardiorenal syndromes. Here, we review the role of right ventricular (RV) dysfunction, visceral congestion, splanchnic hemodynamics, and the intestinal microenvironment in the setting of right-sided HF. We review recent literature on this topic, outline possible mechanisms of disease pathogenesis, and discuss potential therapeutics. There are several mechanisms linking RV-gut interactions via visceral venous congestion which could result in (1) hypoxia and acidosis in enterocytes, which may lead to enhanced sodium-hydrogen exchanger 3 (NHE3) expression with increased sodium and fluid retention; (2) decreased luminal pH in the intestines, which could lead to alteration of the gut microbiome which could increase gut permeability and inflammation; (3) alteration of renal hemodynamics with triggering of the cardiorenal syndrome; and (4) altered phosphate metabolism resulting in increased pulmonary artery stiffening, thereby increasing RV afterload. A wide variety of therapeutic interventions that act on the RV, pulmonary vasculature, intestinal microenvironment, and the kidney could alter these pathways and should be tested in patients with right-sided HF. The RV-gut axis is an important aspect of HF pathogenesis that deserves more attention. Modulation of the pathways interconnecting the right heart, visceral congestion, and the intestinal microenvironment could be a novel avenue of intervention for right-sided HF.
Rowe, Matthew K; Moore, Peter; Pratap, Jit; Coucher, John; Gould, Paul A; Kaye, Gerald C
2017-05-01
Controversy exists regarding the optimal lead position for chronic right ventricular (RV) pacing. Placing a lead at the RV septum relies upon fluoroscopy assisted by a surface 12-lead electrocardiogram (ECG). We compared the postimplant lead position determined by ECG-gated multidetector contrast-enhanced computed tomography (MDCT) with the position derived from the surface 12-lead ECG. Eighteen patients with permanent RV leads were prospectively enrolled. Leads were placed in the RV septum (RVS) in 10 and the RV apex (RVA) in eight using fluoroscopy with anteroposterior and left anterior oblique 30° views. All patients underwent MDCT imaging and paced ECG analysis. ECG criteria were: QRS duration; QRS axis; positive or negative net QRS amplitude in leads I, aVL, V1, and V6; presence of notching in the inferior leads; and transition point in precordial leads at or after V4. Of the 10 leads implanted in the RVS, computed tomography (CT) imaging revealed seven to be at the anterior RV wall, two at the anteroseptal junction, and one in the true septum. For the eight RVA leads, four were anterior, two septal, and two anteroseptal. All leads implanted in the RVS met at least one ECG criteria (median 3, range 1-6). However, no criteria were specific for septal position as judged by MDCT. Mean QRS duration was 160 ± 24 ms in the RVS group compared with 168 ± 14 ms for RVA pacing (P = 0.38). We conclude that the surface ECG is not sufficiently accurate to determine RV septal lead tip position compared to cardiac CT. © 2017 Wiley Periodicals, Inc.
Saba, Samir; Mathier, Michael A.; Mehdi, Haider; Gursoy, Erdal; Liu, Tong; Choi, Bum-Rak; Salama, Guy; London, Barry
2008-01-01
Background: Biventricular (BIV) pacing can improve cardiac function in heart failure (HF). Objective: To investigate the mechanisms of benefit of BIV pacing using a rabbit model of myocardial infarction (MI). Methods: New Zealand White rabbits were divided into 4 groups: sham-operated (C), MI with no pacing (MI), MI with right ventricular pacing (MI+RV), and MI with BIV pacing (MI+BIV), and underwent serial electrocardiograms and echocardiograms. At 4 weeks, hearts were excised and tissue was extracted from various areas of the left ventricle (LV). Results: Four weeks after coronary ligation, BIV pacing prevented systolic and diastolic dilation of the LV as well as the reduction in its fractional shortening, restored the QRS width and the rate-dependent QT intervals to their baseline values, and prevented the decline of the ether-a-go-go (erg) protein levels. This prevention of remodeling was not documented in the MI+RV groups. Conclusions: In this rabbit model of BIV pacing and MI, we demonstrate prevention of adverse mechanical and electrical remodeling of the heart. These changes may underlie some of the benefits seen with BIV pacing in HF patients with more severe LV dysfunction. PMID:18180026
James, Susan H; Wald, Rachel; Wintersperger, Bernd J; Jimenez-Juan, Laura; Deva, Djeven; Crean, Andrew M; Nguyen, Elsie; Paul, Narinder S; Ley, Sebastian
2013-08-01
The left ventricle (LV) is routinely assessed with cardiac magnetic resonance imaging (MRI) by using short-axis orientation; it remains unclear whether the right ventricle (RV) can also be adequately assessed in this orientation or whether dedicated axial orientation is required. We used phase-contrast (PC) flow measurements in the main pulmonary artery (MPA) and the ascending aorta (Aorta) as nonvolumetric standard of reference and compared RV and LV volumes in short-axis and axial orientations. A retrospective analysis identified 30 patients with cardiac MRI data sets. Patients underwent MRI (1.5 T or 3 T), with retrospectively gated cine steady-state free-precession in axial and short-axis orientations. PC flow analyses of MPA and Aorta were used as the reference measure of RV and LV output. There was a high linear correlation between MPA-PC flow and RV-stroke volume (SV) short axis (r = 0.9) and RV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 1.4 mL for RV axial and -2.3 mL for RV-short-axis vs MPA-PC flow. There was a high linear correlation between Aorta-PC flow and LV-SV short-axis (r = 0.9) and LV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 4.8 m for LV short axis and 7.0 mL for LV axial vs Aorta-PC flow. There was no significant difference (P = .6) between short-axis-LV SV and short-axis-RV SV. No significant impact of the slice acquisition orientation for determination of RV and LV stroke volumes was found. Therefore, cardiac magnetic resonance workflow does not need to be extended by an axial data set for patients without complex cardiac disease for assessment of biventricular function and volumes. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Lee, William; Tay, Andre; Walker, Bruce D; Kuchar, Dennis L; Hayward, Christopher S; Spratt, Phillip; Subbiah, Rajesh N
2016-12-01
Bradyarrhythmia following heart transplantation is common-∼7.5-24% of patients require permanent pacemaker (PPM) implantation. While overall mortality is similar to their non-paced counterparts, the effects of chronic right ventricular pacing (CRVP) in heart transplant patients have not been studied. We aim to examine the effects of CRVP on heart failure and mortality in heart transplant patients. Records of heart transplant recipients requiring PPM at St Vincent's Hospital, Sydney, Australia between January 1990 and January 2015 were examined. Patient's without a right ventricular (RV) pacing lead or a follow-up time of <1 year were excluded. Patients with pre-existing abnormal left ventricular function (<50%) were analysed separately. Patients were grouped by pacing dependence (100% pacing dependent vs. non-pacing dependent). The primary endpoint was clinical or echocardiographic heart failure (<35%) in the first 5 years post-PPM. Thirty-three of 709 heart transplant recipients were studied. Two patients had complete RV pacing dependence, and the remaining 31 patients had varying degrees of pacing requirement, with an underlying ventricular escape rhythm. The primary endpoint occurred significantly more in the pacing-dependent group; 2 (100%) compared with 2 (6%) of the non pacing dependent group (P < 0.0001 by log-rank analysis, HR = 24.58). Non-pacing-dependent patients had reversible causes for heart failure, unrelated to pacing. In comparison, there was no other cause of heart failure in the pacing-dependent group. Permanent atrioventricular block is rare in the heart transplant population. We have demonstrated CRVP as a potential cause of accelerated graft failure in pacing-dependent heart transplant patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Albertsen, Andi Eie; Nielsen, Jens Cosedis; Poulsen, Steen Hvitfeldt; Mortensen, Peter Thomas; Pedersen, Anders Kirstein; Hansen, Peter Steen; Jensen, Henrik Kjaerulf; Egeblad, Henrik
2008-02-01
Increasing evidence from randomized trials and experimental studies indicates that right ventricular (RV) pacing may induce congestive heart failure. We studied regional left ventricular (LV) dyssynchrony and global LV function in 50 consecutive patients with sick sinus syndrome (SSS) randomized to either atrial pacing [AAI(R)] or dual chamber RV-pacing [DDD(R)]. Fifty consecutive patients were randomized to AAI(R) or DDD(R)-pacing. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). Left ventricular ejection fraction (LVEF) was measured using three-dimensional echocardiography. Dyssynchrony was more pronounced in the DDD(R)-group than in the AAI(R)-group at the 12 months follow-up (P < 0.05). This reflected a significant increase of dyssynchrony in the DDD(R)-group from baseline to the 12 months follow-up (1.3 +/- 1 to 2.1 +/- 1 segments displaying DLC per patient), P < 0.05. No change was observed in the AAI(R)-group (1.6 +/- 2 to 1.3 +/- 2 segments displaying DLC per patient, NS). No difference in LVEF, NYHA or NT-proBNP was observed between AAI(R)- and DDD(R)-mode after 12 months of pacing although LVEF decreased significantly in the DDD(R)-group from baseline (63.1 +/- 8%) to the 12 months follow-up (59.3 +/- 8%, P < 0.05), while LVEF remained unchanged in the AAI(R)-group (61.5 +/- 11% at baseline vs. 62.3 +/- 7% after 12 months, NS. In patients with SSS, DDD(R)-pacing but not AAI(R)-pacing induces significant LV desynchronization and reduction of LVEF.
Differential calcium handling in two canine models of right ventricular pressure overload.
Moon, Marc R; Aziz, Abdulhameed; Lee, Anson M; Moon, Cynthia J; Okada, Shoichi; Kanter, Evelyn M; Yamada, Kathryn A
2012-12-01
The purpose of this investigation was to characterize differential right atrial (RA) and ventricular (RV) molecular changes in Ca(2+)-handling proteins consequent to RV pressure overload and hypertrophy in two common, yet distinct models of pulmonary hypertension: dehydromonocrotaline (DMCT) toxicity and pulmonary artery (PA) banding. A total of 18 dogs underwent sternotomy in four groups: (1) DMCT toxicity (n = 5), (2) mild PA banding over 10 wk to match the RV pressure rise with DMCT (n = 5); (3) progressive PA banding to generate severe RV overload (n = 4); and (4) sternotomy only (n = 4). In the right ventricle, with DMCT, there was no change in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) or phospholamban (PLB), but we saw a trend toward down-regulation of phosphorylated PLB at serine-16 (p[Ser-16]PLB) (P = 0.07). Similarly, with mild PA banding, there was no change in SERCA or PLB, but p(Ser-16)PLB was down-regulated by 74% (P < 0.001). With severe PA banding, there was no change in PLB, but SERCA fell by 57% and p(Ser-16)PLB fell by 67% (P < 0.001). In the right atrium, with DMCT, there were no significant changes. With both mild and severe PA banding, p(Ser-16)PLB fell (P < 0.001), but SERCA and PLB did not change. Perturbations in Ca(2+)-handling proteins depend on the degree of RV pressure overload and the model used to mimic the RV effects of pulmonary hypertension. They are similar, but blunted, in the atrium compared with the ventricle. Copyright © 2012 Elsevier Inc. All rights reserved.
Kuc, Rhoda E; Carlebur, Myrna; Maguire, Janet J; Yang, Peiran; Long, Lu; Toshner, Mark; Morrell, Nicholas W; Davenport, Anthony P
2014-11-24
In pulmonary arterial hypertension (PAH), increases in endothelin-1 (ET-1) contribute to elevated pulmonary vascular resistance which ultimately causes death by right ventricular (RV) heart failure. ET antagonists are effective in treating PAH but lack efficacy in treating left ventricular (LV) heart failure, where ETA receptors are significantly increased. The aim was to quantify the density of ETA and ETB receptors in cardiopulmonary tissue from PAH patients and the monocrotaline (MCT) rat, which recapitulates some of the pathophysiological features, including increased RV pressure. Radioligand binding assays were used to quantify affinity, density and ratio of ET receptors. In RV from human PAH hearts, there was a significant increase in the ratio of ETA to ETB receptors compared with normal hearts. In the RV of the MCT rat, the ratio also changed but was reversed. In both human and rat, there was no change in LV. In human PAH lungs, ETA receptors were significantly increased in the medial layer of small pulmonary arteries with no change detectable in MCT rat vessels. Current treatments for PAH focus mainly on pulmonary vasodilatation. The increase in ETA receptors in arteries provides a mechanism for the beneficial vasodilator actions of ET antagonists. The increase in the ratio of ETA in RV also implicates changes to ET signalling although it is unclear if ET antagonism is beneficial but the results emphasise the unexploited potential for therapies that target the RV, to improve survival in patients with PAH. Copyright © 2014. Published by Elsevier Inc.
Dambrauskaite, Virginija; Delcroix, Marion; Claus, Piet; Herbots, Lieven; Palecek, Tomas; D'hooge, Jan; Bijnens, Bart; Rademakers, Frank; Sutherland, George R
2005-11-01
Right ventricular (RV) blood pool-derived isovolumic relaxation time (IVRT) correlates well with systolic pulmonary arterial pressure (PAP). However, because of complex parameter derivation, the method is rarely used. The aim of this study was to validate the measurement of myocardial velocity imaging-derived RV IVRT (IVRT') against invasively measured PAP. Transthoracic echocardiography with myocardial velocity imaging and right heart catheterization were performed in 33 patients with pulmonary hypertension. Blood pool IVRT and myocardial IVRTs for the tricuspid valve annulus ring, basal and apical RV free wall segments were measured and compared with data from 33 age- and sex-matched control subjects. Measured IVRTs were significantly longer in patients with pulmonary hypertension than in control subjects. The strongest correlation (R = 0.74, P < .0001) was found between systolic PAP and the heart rate-corrected IVRT' derived from the basal RV free wall segment. The basal segment IVRT' corrected for heart rate correlates well with the invasive PAP measurement and, therefore, can be used to predict systolic PAP. It can even be considered as an alternative to tricuspid regurgitation-derived PAP systolic when tricuspid regurgitation is nonrecordable. A proposed method to derive systolic PAP should be used while screening the patients at risk for pulmonary hypertension, monitoring the disease progression and the effect of treatment.
Malinowski, Marcin; Wilton, Penny; Khaghani, Asghar; Brown, Michael; Langholz, David; Hooker, Victoria; Eberhart, Lenora; Hooker, Robert L; Timek, Tomasz A
2016-09-01
Left ventricular assist device (LVAD) implantation may alter right ventricular shape and function and lead to tricuspid regurgitation. This in turn has been reported to be a determinant of right ventricular (RV) failure after LVAD implantation, but the effect of mechanical left ventricular (LV) unloading on the tricuspid annulus is unknown. The aim of the study was to provide insight into the effect of LVAD support on tricuspid annular geometry and dynamics that may help to optimize LV unloading with the least deleterious effect on the right-sided geometry. In seven open-chest anaesthetized sheep, nine sonomicrometry crystals were implanted on the right ventricle. Additional nine crystals were implanted around the tricuspid annulus, with one crystal at each commissure defining three separate annular regions: anterior, posterior and septal. Left ventricular unloading was achieved by connecting a cannula in the left atrium and the aorta to a continuous-flow pump. The pump was used for 15 min at a full flow of 3.8 ± 0.3 l/min. Epicardial echocardiography was used to assess the degree of tricuspid insufficiency. Haemodynamic, echocardiographic and sonomicrometry data were collected before and during full unloading. Tricuspid annular area, and the regional and total perimeter were calculated from crystal coordinates, while 3D annular geometry was expressed as the orthogonal distance of each annular crystal to the least squares plane of all annular crystals. There was no significant tricuspid regurgitation observed either before or during LV unloading. Right ventricular free wall to septum diameter increased significantly at end-diastole during unloading from 23.6 ± 5.8 to 26.3 ± 6.5 mm (P = 0.009), but the right ventricular volume, tricuspid annular area and total perimeter did not change from baseline. However, the septal part of the annulus significantly decreased its maximal length (38.6 ± 8.1 to 37.9 ± 8.2 mm, P = 0.03). Annular contraction was not altered. The tricuspid annulus had a complex 3D saddle-shaped geometry that was unaffected during experimental conditions. In healthy sheep hearts, left ventricular unloading increased septal-free wall RV diameter and reduced the length of the septal annulus, without altering the motion or geometry of the tricuspid annulus. Acute left ventricular unloading alone in healthy sheep was not sufficient to significantly perturb tricuspid annular dynamics and result in tricuspid insufficiency. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Adamson, Philip B; Magalski, Anthony; Braunschweig, Frieder; Böhm, Michael; Reynolds, Dwight; Steinhaus, David; Luby, Allyson; Linde, Cecilia; Ryden, Lars; Cremers, Bodo; Takle, Teri; Bennett, Tom
2003-02-19
This study examined the characteristics of continuously measured right ventricular (RV) hemodynamic information derived from an implantable hemodynamic monitor (IHM) in heart failure patients. Hemodynamic monitoring might improve the day-to-day management of patients with chronic heart failure (CHF). Little is known about the characteristics of long-term hemodynamic information in patients with CHF or how such information relates to meaningful clinical events. Thirty-two patients with CHF received a permanent RV IHM system similar to a single-lead pacemaker. Right ventricular systolic and diastolic pressures, heart rate, and pressure derivatives were continuously measured for nine months without using the data for clinical decision-making or management of patients. Data were then made available to clinical providers, and the patients were followed up for 17 months. Pressure characteristics during optimal volume, clinically determined volume-overload exacerbations, and volume depletion events were examined. The effect of IHM on hospitalizations was examined using the patients' historical controls. Long-term RV pressure measurements had either marked variability or minimal time-related changes. During 36 volume-overload events, RV systolic pressures increased by 25 +/- 4% (p < 0.05) and heart rate increased by 11 +/- 2% (p < 0.05). Pressure increases occurred in 9 of 12 events 4 +/- 2 days before the exacerbations requiring hospitalization. Hospitalizations before using IHM data for clinical management averaged 1.08 per patient year and decreased to 0.47 per patient-year (57% reduction, p < 0.01) after hemodynamic data were used. Long-term ambulatory pressure measurements from an IHM may be helpful in guiding day-to-day clinical management, with a potentially favorable impact on CHF hospitalizations.
Jacobs, Wouter; van de Veerdonk, Mariëlle C.; Trip, Pia; de Man, Frances; Heymans, Martijn W.; Marcus, Johannes T.; Kawut, Steven M.; Bogaard, Harm-Jan; Boonstra, Anco
2014-01-01
Background: Male sex is an independent predictor of worse survival in pulmonary arterial hypertension (PAH). This finding might be explained by more severe pulmonary vascular disease, worse right ventricular (RV) function, or different response to therapy. The aim of this study was to investigate the underlying cause of sex differences in survival in patients treated for PAH. Methods: This was a retrospective cohort study of 101 patients with PAH (82 idiopathic, 15 heritable, four anorexigen associated) who were diagnosed at VU University Medical Centre between February 1999 and January 2011 and underwent right-sided heart catheterization and cardiac MRI to assess RV function. Change in pulmonary vascular resistance (PVR) was taken as a measure of treatment response in the pulmonary vasculature, whereas change in RV ejection fraction (RVEF) was used to assess RV response to therapy. Results: PVR and RVEF were comparable between men and women at baseline; however, male patients had a worse transplant-free survival compared with female patients (P = .002). Although male and female patients showed a similar reduction in PVR after 1 year, RVEF improved in female patients, whereas it deteriorated in male patients. In a mediator analysis, after correcting for confounders, 39.0% of the difference in transplant-free survival between men and women was mediated through changes in RVEF after initiating PAH medical therapies. Conclusions: This study suggests that differences in RVEF response with initiation of medical therapy in idiopathic PAH explain a significant portion of the worse survival seen in men. PMID:24306900
Winter, Randolph L; Ray Dillon, A; Cattley, Russell C; Blagburn, Byron L; Michael Tillson, D; Johnson, Calvin M; Brawner, William R; Welles, Elizabeth G; Barney, Sharon
2017-11-09
Dirofilaria immitis infection occurs in dogs and cats, both of which species are clinically affected by mature adult infections. Cats are uniquely affected by immature-adult infections with an inflammatory pulmonary disease called Heartworm-Associated Respiratory Disease (HARD). D. immitis infection causes pulmonary parenchymal and vascular pathology in the dog and cat. Dogs develop pulmonary hypertension and cor pulmonale, whereas the development of pulmonary hypertension is rare in the cat. D. immitis infection in the dog causes alteration of the right ventricular (RV) extracellular matrix, including a decrease in myocardial collagen. In this study, the RV myocardial changes of cats infected with adult and immature-adult D. immitis were assessed. The cardiopulmonary systems of six groups of SPF cats (n = 9-10 per group) were examined 8 or 18 months after infection with L3 D. immitis. Two groups were untreated and allowed to develop adult HW; two groups were treated with ivermectin starting 3 months post infection, thus allowing HARD but no mature adult heartworms; and two groups were treated with selamectin beginning 1 month post infection, preventing development of L5 or adult heartworms. A group of specific pathogen free (SPF) normal cats was utilized as a negative control (n = 12). Lung pathologic lesions were objectively assessed, and both RV and left ventricular (LV) weights were obtained to calculate an RV/LV ratio. Intramural RV myocardial collagen content was quantitatively assessed. RV/LV weight ratios were not different between groups. Negative control cats had significantly greater RV collagen content than all other affected groups (P = 0.032). Analysis of the RV/LV ratios and collagen content revealed no significant relationship (r = 0.03, P = 0.723, respectively). Collagen content had a modest, but significant, negative correlation, however, with both pulmonary vascular pathology (r = -0.25, P = 0.032) as well as the total pulmonary parenchymal and vascular pathology (r = -0.26, P = 0.025). Cats infected with mature and immature D. immitis did not develop RV hypertrophy but did demonstrate loss of RV myocardial collagen content. The collagen loss was present at 8 and 18 months after infection in all infected cats. This loss of RV myocardial collagen was correlated with the severity of pulmonary parenchymal and vascular pathology.
Frea, Simone; Pidello, Stefano; Bovolo, Virginia; Iacovino, Cristina; Franco, Erica; Pinneri, Francesco; Galluzzo, Alessandro; Volpe, Alessandra; Visconti, Massimiliano; Peirone, Andrea; Morello, Mara; Bergerone, Serena; Gaita, Fiorenzo
2016-05-01
The purpose of this study was to evaluate the additional prognostic value of echocardiography in acute decompensation of advanced chronic heart failure (CHF), focusing on right ventricular (RV) dysfunction and its interaction with loading conditions. Few data are available on the prognostic role of echocardiography in acute HF and on the significance of pulmonary hypertension in patients with severe RV failure. A total of 265 NYHA IV patients admitted for acute decompensation of advanced CHF (EF 22 ± 7%, systolic blood pressure 107 ± 20 mmHg) were prospectively enrolled. Fifty-nine patients met the primary composite endpoint of cardiac death, urgent heart transplantation, and urgent mechanical circulatory support implantation at 90 days. Pulmonary hypertension failed to predict events, while patients with a low transtricuspid systolic gradient (TR gradient <20 mmHg) showed a worse outcome [hazard ratio (HR) 2.37, 95% confidence interval (CI) 1.12-5.00, P = 0.02]. RV dysfunction [tricuspid annular plane systolic excursion (TAPSE) ≤14 mm] in the presence of a low TR gradient identified patients at higher risk of events (HR 2.97, 95% CI 1.19-7.41, P = 0.02). Multivariate analysis showed as best predictors of outcome low RV contraction pressure index (RVCPI), defined as TAPSE × TR gradient, and high estimated right atrial pressure (eRAP). Adding RVCPI (<400 mm*mmHg) and eRAP (≥20 mmHg) to conventional clinical (ADHERE risk tree and NT-proBNP) and echocardiographic risk evaluation resulted in an increase in net reclassification improvement of +19.1% and +20.1%, respectively (P = 0.01) and in c-statistic from 0.59 to 0.73 (P < 0.01). In acute decompensation of advanced CHF, pulmonary hypertension failed to predict events. The in-hospital and short-term prognosis can be better predicted by eRAP and RVCPI. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
The Impact of Dominant Ventricle Morphology on Palliation Outcomes of Single Ventricle Anomalies.
Alsoufi, Bahaaldin; Gillespie, Scott; Kim, Dennis; Shashidharan, Subhadra; Kanter, Kirk; Maher, Kevin; Kogon, Brian
2016-08-01
Differences in right ventricle and tricuspid valve structure compared with left ventricle and mitral valve structure make them less equipped to support the systemic circulation long term, with subsequent systemic right ventricle failure. We examined the effect of dominant ventricle morphology on single ventricle palliation outcomes. We grouped 530 neonates who underwent first-stage palliation into two groups based on dominant ventricle morphology: right dominant ventricle (RV group; n = 302, 57%) and left dominant ventricle or functional single ventricle with two well-formed ventricles (LV group; n = 228, 43%). Comparisons of hospital outcomes, interstage mortality, progression to subsequent palliation stages, and late survival was performed, and factors affecting outcomes were examined. After first-stage palliation, the RV group and LV group, respectively, had comparable extracorporeal membrane oxygenation requirements (12% versus 11%, p = 0.648), unplanned reoperation (12% versus 13%, p = 0.586), and hospital death (16% versus 13%, p = 0.437). Among hospital survivors, interstage mortality (11% versus 9%, p = 0.509) and progression to Glenn operation (89% versus 84%, p = 0.182) were comparable; however, death after Glenn was higher in the RV group (10%, versus LV group 4%, p = 0.020) with a trend for lower 8-year survival (66% versus 73%, p = 0.081). On multivariable analysis, dominant RV was not associated with mortality (hazard ratio 0.75, 95% confidence interval: 0.6 to 1.0, p = 0.081), whereas factors such as genetic syndromes, weight 2.5 kg or less, underlying cardiac anomaly, and first-stage palliation type affected survival. At midterm follow-up, underlying cardiac anomaly and patient characteristics affect single ventricle palliation outcomes more than dominant ventricular morphology. As right ventricle and associated tricuspid valve failure might occur at late stages, the impact of dominant ventricular morphology on long-term outcomes requires further assessment. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias
Park, David S.; Cerrone, Marina; Morley, Gregory; Vasquez, Carolina; Fowler, Steven; Liu, Nian; Bernstein, Scott A.; Liu, Fang-Yu; Zhang, Jie; Rogers, Christopher S.; Priori, Silvia G.; Chinitz, Larry A.; Fishman, Glenn I.
2014-01-01
SCN5A encodes the α subunit of the major cardiac sodium channel NaV1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure and function similar to humans, to better define the arrhythmic substrate. We introduced a nonsense mutation originally identified in a child with Brugada syndrome into the orthologous position (E558X) in the pig SCN5A gene. SCN5AE558X/+ pigs exhibited conduction abnormalities in the absence of cardiac structural defects. Sudden cardiac death was not observed in young pigs; however, Langendorff-perfused SCN5AE558X/+ hearts had an increased propensity for pacing-induced or spontaneous VF initiated by short-coupled ventricular premature beats. Optical mapping during VF showed that activity often began as an organized focal source or broad wavefront on the right ventricular (RV) free wall. Together, the results from this study demonstrate that the SCN5AE558X/+ pig model accurately phenocopies many aspects of human cardiac sodium channelopathy, including conduction slowing and increased susceptibility to ventricular arrhythmias. PMID:25500882
Right ventricular mechanics in hypertrophic cardiomyopathy using feature tracking
Badran, Hala Mahfouz; Soliman, Mahmood; Hassan, Hesham; Abdelfatah, Raed; Saadan, Haythem; Yacoub, Magdi
2013-01-01
Objectives: Right ventricular (RV) mechanics in hypertrophic cardiomyopathy (HCM) are poorly understood. We investigate global and regional deformation of the RV in HCM and its relationship to LV phenotype, using 2D strain vector velocity imaging (VVI). Methods: 100 HCM patients (42% females, 41 ± 19 years) and 30 control patients were studied using VVI. Longitudinal peak systolic strain (ϵsys), strain rate (SR), time to peak (ϵ) (TTP), displacement of RV free wall (RVFW) and septal wall were analyzed. Similar parameters were quantified in LV septal, lateral, anterior and inferior segments. Intra-V-delay was defined as SD of TTP. Inter-V-delay was estimated from TTP difference between the most delayed LV segment & RVFW. Results: ϵsys and SR of both RV & LV, showed loss of base to apex gradient and significant decline in HCM (p < 0.001). Deformation variables estimated from RVFW were strongly correlated with each other (r = 0.93, p < 0.0001). Both were directly related to LV ϵsys, SRsys, SRe, ejection fraction (EF)%, RVFW displacement (P < 0.001) and inversely related to age, positive family history (p < 0.004, 0.005), RV wall thickness, maximum wall thickness (MWT), intra-V-delay, LA volume (P < 0.0001), LVOT gradient (p < 0.02, 0.005) respectively. ROC curves were constructed to explore the cut-off point that discriminates RV dysfunction. Global and RVFW ϵsys: − 19.5% shows 77, 70% sensitivity & 97% specificity, SRsys: − 1.3s− 1 shows 82, 70% sensitivity & 30% specificity. Multivariate analyses revealed that RVFW displacement (β = − 0.9, p < 0.0001) and global LV SRsys (β = 5.9, p < 0.0001) are independent predictors of global RV deformation. Conclusions: Impairment of RV deformation is evident in HCM using feature tracking. It is independently influenced by LV mechanics and correlated to the severity of LV phenotype. RVFW deformation analysis and global RV assessment are comparable. PMID:24689019
Zheng, Shuai; Yang, Keming; Li, Kun; Li, Shoujun
2014-07-01
Right ventricle-pulmonary artery (RV-PA) conduit and systemic-to-pulmonary artery (S-PA) shunt in younger infants for the first-stage palliation with pulmonary atresia with ventricular septal defect (PAVSD) obtained good results. However, the pulmonary arteries (PA) grow slow in older infants undergoing an S-PA shunt. We compared the clinical outcomes of the two procedures in older infants with PAVSD. A total of 48 patients with PAVSD underwent the first-stage palliative procedure between January 2010 and July 2012. Patients were divided into the RV-PA group and the S-PA group based on whether they had an RV-PA conduit (n = 24) or an S-PA shunt (n = 24). The early and late outcomes were compared between groups. There was no significant difference in in-hospital mortality, mechanical ventilation time, paediatric intensive care unit stay and hospital stay between groups (all P > 0.05). The RV-PA conduits were associated with better PA growth compared with the S-PA shunts (P < 0.001). The RV-PA group had a higher rate of second-stage biventricular surgery compared with the S-PA group (P = 0.03). The early outcomes among different conduits of the RV-PA conduit were not different (all P > 0.05). A positive correlation was found between the size of conduits and body weight (R(2) = 0.684, P < 0.001). In older infants with PAVSD who underwent the first-stage palliative procedure, early outcomes showed no difference between the RV-PA conduit group and the S-PA shunt group. The RV-PA conduits were associated with better growth of the PA and higher rates of second-stage biventricular repair. Autologous pericardium is a good choice for RV-PA conduits, and there is a correlation between body weight and size of conduit. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Tamborini, Gloria; Fusini, Laura; Muratori, Manuela; Gripari, Paola; Ghulam Ali, Sarah; Fiorentini, Cesare; Pepi, Mauro
2016-06-01
According to current recommendations, patients could benefit from tricuspid valve (TV) annuloplasty at the time mitral valve (MV) surgery if tricuspid regurgitation is severe or if tricuspid annulus (TA) dilatation is present. Therefore, an accurate pre-operative echocardiographic study is mandatory for left but also for right cardiac structures. Aims of this study are to assess right atrial (RA), right ventricular (RV) and TA geometry and function in patients undergoing MV repair without or with TV annuloplasty. We studied 103 patients undergoing MV surgery without (G1: 54 cases) or with (G2: 49 cases) concomitant TV annuloplasty and 40 healthy subjects (NL) as controls. RA, RV and TA were evaluated by three-dimensional (3D) transthoracic echocardiography. Comparing the pathological to the NL group, TA parameters and 3D right chamber volumes were significantly larger. RA and RV ejection fraction and TA% reduction were lower in pathological versus NL, and in G2 versus G1. In pathological patients, TA area positively correlated to systolic pulmonary pressure and negatively with RV and RA ejection fraction. Patients undergoing MV surgery and TV annuloplasty had an increased TA dimensions and a more advanced remodeling of right heart chambers probably reflecting an advanced stage of the disease.
Karamanlidis, Georgios; Bautista-Hernandez, Victor; Fynn-Thompson, Francis; Nido, Pedro del; Tian, Rong
2011-01-01
Background The outcome of the surgical repair in congenital heart disease (CHD) correlates with the degree of myocardial damage. In this study we determined whether mitochondrial DNA depletion is a sensitive marker of right ventricular (RV) damage and whether impaired mitochondrial DNA (mtDNA) replication contributes to the transition from compensated hypertrophy to failure. Methods and Results RV samples obtained from 31 patients undergoing cardiac surgery were compared to 5 RV samples from non-failing hearts (control). Patients were divided into compensated hypertrophy and failure groups based on preoperative echocardiography, catheterization and/or MRI data. Mitochondrial enzyme activities (citrate synthase and succinate dehydrogenase) were maintained during hypertrophy and decreased by ~40% (p<0.05 vs. control) at the stage of failure. In contrast, mtDNA content was progressively decreased in the hypertrophied RV through failure (by 28±8% and 67±11% respectively, p<0.05 for both), whereas mtDNA encoded gene expression was sustained by increased transcriptional activity during compensated hypertrophy but not in failure. MtDNA depletion was attributed to reduced mtDNA replication in both hypertrophied and failing RV and it was independent of PGC-1 down-regulation but was accompanied by reduced expression of proteins constituting the mtDNA replication fork. Decreased mtDNA content in compensated hypertrophy was also associated with pathological changes of mitochondria ultrastructure. Conclusions Impaired mtDNA replication causes early and progressive depletion of mtDNA in the RV of the CHD patients during the transition from hypertrophy to failure. Decreased mtDNA content is likely a sensitive marker of mitochondrial injury in this patient population. PMID:21840936
Garcia-Montilla, Romel; Imam, Faryal; Miao, Mi; Stinson, Kathryn; Khan, Akram; Heitner, Stephen
2017-06-01
Right ventricular (RV) systolic dysfunction is common in acute respiratory distress syndrome (ARDS). While preload optimization is crucial in its management, dynamic fluid responsiveness indices lack reliability, and there is no consensus on target central venous pressure (CVP). We analyzed the utility of RV free wall longitudinal strain (RVFWS) in the estimation of optimal RV filling pressure in ARDS. A retrospective cross-sectional analysis of clinical data and echocardiograms of patients with ARDS was performed. Tricuspid annular plane systolic excursion (TAPSE), tricuspid peak systolic velocity (S'), RV fractional area change (RVFAC), RVFWS, CVP, systolic pulmonary artery pressure (SPAP), and left ventricular ejection fraction (LVEF) were measured. Fifty-one patients with moderate-severe ARDS were included. There were inverse correlations between CVP and TAPSE, S', RVFAC, RVFWS, and LVEF. The most significant was with RVFWS (r:.74, R 2 :.55, P:.00001). Direct correlations with creatinine and lactate were noted. Receiver operating characteristic analysis showed that RVFWS -21% (normal reference value) was associated with CVP: 13 mm Hg (AUC: 0.92, 95% CI: 0.83-1.00). Regression model analysis of CVP, and RVFWS interactions established an RVFWS range from -18% to -24%. RVFWS -24% corresponded to CVP: 11 mm Hg and RVFWS -18% to CVP: 15 mm Hg. Beyond a CVP of 15 mm Hg, biventricular systolic dysfunction rapidly ensues. Our data are the first to show that an RV filling pressure of 13±2 mm Hg-as by CVP-correlates with optimal RV mechanics as evaluated by strain echocardiography in patients with moderate-severe ARDS. © 2017, Wiley Periodicals, Inc.
Shiran, Avinoam; Sagie, Alex
2009-02-03
Tricuspid regurgitation (TR) in patients with mitral valve (MV) disease is associated with poor outcome and predicts poor survival, heart failure, and reduced functional capacity. It is common if left untreated after MV replacement mainly in rheumatic patients, but it is also common in patients with ischemic mitral regurgitation. It is less common, however, in those with degenerative mitral regurgitation. It might appear many years after surgery and might not resolve after correcting the MV lesion. Late TR might be caused by prosthetic valve dysfunction, left heart disease, right ventricular (RV) dysfunction and dilation, persistent pulmonary hypertension, chronic atrial fibrillation, or by organic (mainly rheumatic) tricuspid valve disease. Most commonly, late TR is functional and isolated, secondary to tricuspid annular dilation. Outcome of isolated tricuspid valve surgery is poor, because RV dysfunction has already occurred at that point in many patients. MV surgery or balloon valvotomy should be performed before RV dysfunction, severe TR, or advanced heart failure has occurred. Tricuspid annuloplasty with a ring should be performed at the initial MV surgery, and the tricuspid annulus diameter (>or=3.5 cm) is the best criterion for performing the annuloplasty. In this article we will review the current data available for understanding the prognostic implications, mechanism, and management of TR in patients with MV disease.
Three-dimensional changes in left and right ventricular geometry in chronic mitral regurgitation.
Young, A A; Orr, R; Smaill, B H; Dell'Italia, L J
1996-12-01
Regional three-dimensional (3-D) right (RV) and left ventricular (LV) geometry was studied in eight dogs before and 5-6 mo after induction of mitral regurgitation (MR). Ventricular shape changes were quantified with a 3-D finite-element model fitted to chamber contours traced on cardiac magnetic resonance images. MR increased LV end-diastolic volume (LVEDV; 99 vs. 57 ml; P < 0.001) and LV stroke volume (LVSV; 55 vs. 26 ml; P < 0.001). In contrast, RVEDV decreased (45 vs. 55 ml; P < 0.01), whereas SV was maintained. LV mass (free wall plus septum) increased (115 vs. 94 g; P < 0.05), whereas RV free-wall mass was relatively unchanged. Shape changes due to MR were characterized by a marked (7.4-mm) rightward shift of the septum relative to the lateral LV free wall at end diastole. In contrast, the distance from the RV free wall to the lateral LV free wall was relatively unchanged (2.7 mm). The distance between the LV lateral free wall and septum increased more than the distance between the anterior and posterior LV walls (22 vs. 15%; P = 0.04). During systole, the displacement of the septum into the LV increased significantly (7.3 vs. 2.9 mm; P < 0.01). Consistent with the end-diastolic dimension changes, LV endocardial circumferential curvature was decreased at end diastole to a greater extent in the anterior and posterior walls than in the septal and lateral walls (P < 0.01). Thus chronic MR produced an asymmetric LV dilatation with regional variation in geometry. The septum increased its contribution to the LVSV at the expense of RVEDV. RVSV was maintained, possibly by ventricular interaction.
Right ventricular dysfunction in acute pulmonary embolism: NT-proBNP vs. troponin T.
Cotugno, Marilena; Orgaz-Molina, Jacinto; Rosa-Salazar, Vladimir; Guirado-Torrecillas, Leticia; García-Pérez, Bartolomé
2017-04-21
Dysfunction of the right ventricle (RV) is a parameter of severity in acute pulmonary embolism (PE). Echocardiographic assessment is not always possible in accident and emergency, hence the need to predict the presence of RV dysfunction using easily measurable parameters. To analyse the value of NT-proBNP and troponin T as markers of RV dysfunction in patients with acute PE. Secondarily, to assess the relationship between RV failure and clinical parameters related to PE. Analytical, observational, cross-sectional and retrospective study comparing the values NT-proBNP, troponin T and presenting symptoms of PE among patients with and without RV dysfunction. One hundred seventy-two patients (52 with RV failure,120 without) were included. All symptoms occurred with similar frequency between the 2groups except dyspnea and syncope (more common in the group with RV failure). Both NT-proBNP and troponin T had significantly higher values in the group of patients with RV dysfunction. However, in the multivariate analysis, NT-proBNP had a higher explanatory value for RV failure than troponin T. NT-proBNP is a diagnostic parameter of RV dysfunction with higher sensitivity in the context of acute PE. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Defibrillation efficacy of different electrode placements in a human thorax model.
de Jongh, A L; Entcheva, E G; Replogle, J A; Booker, R S; Kenknight, B H; Claydon, F J
1999-01-01
The objective of this study was to measure the defibrillation threshold (DFT) associated with different electrode placements using a three-dimensional anatomically realistic finite element model of the human thorax. Coil electrodes (Endotak DSP, model 125, Guidant/CPI) were placed in the RV apex along the lateral wall (RV), withdrawn 10 mm away from the RV apex along the lateral wall (RVprox), in the RV apex along the anterior septum (RVseptal), and in the SVC. An active pulse generator (can) was placed in the subcutaneous prepectoral space. Five electrode configurations were studied: RV-->SVC, RVprox-->SVC, RVSEPTAL-->SVC, RV-->Can, and RV-->SVC + Can. DFTs are defined as the energy required to produce a potential gradient of at least 5 V/cm in 95% of the ventricular myocardium. DFTs for RV-->SVC, RVprox-->SVC, RVseptal-->SVC, RV-->Can, and RV-->SVC + Can were 10, 16, 7, 9, and 6 J, respectively. The DFTs measured at each configuration fell within one standard deviation of the mean DFTs reported in clinical studies using the Endotak leads. The relative changes in DFT among electrode configurations also compared favorably. This computer model allows measurements of DFT or other defibrillation parameters with several different electrode configurations saving time and cost of clinical studies.
Obad, Ante; Palada, Ivan; Valic, Zoran; Ivančev, Vladimir; Baković, Darija; Wisløff, Ulrik; Brubakk, Alf O; Dujić, Željko
2007-01-01
Diving-induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo-controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non-randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow-mediated dilatation (FMD) and heart function with increased mean PAP. Twenty-four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P = 0.005), while right ventricle ejection fraction (RV-EF), left ventricle EF and endocardial fractional shortening were reduced much less (∼2–3%). At the same time RV end-systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post-dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre-dive placebo, whereas for most cardiovascular parameters this occurred earlier (24–48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects. PMID:17110413
Obad, Ante; Palada, Ivan; Valic, Zoran; Ivancev, Vladimir; Baković, Darija; Wisløff, Ulrik; Brubakk, Alf O; Dujić, Zeljko
2007-02-01
Diving-induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo-controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non-randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow-mediated dilatation (FMD) and heart function with increased mean PAP. Twenty-four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P = 0.005), while right ventricle ejection fraction (RV-EF), left ventricle EF and endocardial fractional shortening were reduced much less (approximately 2-3%). At the same time RV end-systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post-dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre-dive placebo, whereas for most cardiovascular parameters this occurred earlier (24-48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects.
Acute Right Ventricular Dysfunction in Intensive Care Unit
Domingo, Enric
2017-01-01
The role of the left ventricle in ICU patients with circulatory shock has long been considered. However, acute right ventricle (RV) dysfunction causes and aggravates many common critical diseases (acute respiratory distress syndrome, pulmonary embolism, acute myocardial infarction, and postoperative cardiac surgery). Several supportive therapies, including mechanical ventilation and fluid management, can make RV dysfunction worse, potentially exacerbating shock. We briefly review the epidemiology, pathophysiology, diagnosis, and recommendations to guide management of acute RV dysfunction in ICU patients. Our aim is to clarify the complex effects of mechanical ventilation, fluid therapy, vasoactive drug infusions, and other therapies to resuscitate the critical patient optimally. PMID:29201914
Clinical findings in right ventricular noncompaction in hypoplastic left heart syndrome.
Gardner, Monique M; Cohen, Meryl S
2017-12-01
Noncompaction is a poorly understood form of cardiomyopathy that typically affects the left ventricle and may be associated with congenital heart disease. Right ventricular noncompaction (RVNC) may occur when the left ventricle is affected but is rarely seen in isolation. RVNC may have clinical significance affecting surgical and long-term outcomes. We describe the diagnosis and clinical course in three patients at our institution. We performed a retrospective review of patients diagnosed with RVNC over a 12-month period at our institution and reviewed their imaging and clinical course. Three patients were identified. All had diagnosis of RVNC by echocardiography (echo) made on postnatal imaging which reviewed degree of trabeculation, and noncompaction-to-compaction ratio of the myocardium. Patient A was a neonate with hypoplastic left heart syndrome (HLHS) who underwent a Norwood operation with Sano modification. Her postoperative course was notable for low-normal RV function. She returned with a pericardial effusion warranting immediate pericardiocentesis. She continued to have effusions, which were medically managed. She was subsequently found to have an RV apical pseudoaneurysm, which required surgical resection. Patient B was a neonate with HLHS who had a Norwood operation with Sano modification. She had low-normal RV function on echo. She required medical management for pericardial effusion. Patient C was a neonate with HLHS who also underwent a Norwood operation with Sano modification. His postoperative course was notable for elevated serum brain natriuretic peptide, which was treated with digoxin. RVNC is a rare diagnosis with limited known clinical impact. One of these patients had a very rare complication after pericardiocentesis (pseudoaneurysm) that may have been related to the RVNC. Our understanding of this disease process is limited and requires additional investigation, but emphasizes the importance of appropriate diagnosis to allow for timely follow-up and counseling for this unique population. © 2017 Wiley Periodicals, Inc.
Velasco, Omar; Beckett, Morgan Q; James, Aaron W; Loehr, Megan N; Lewis, Taylor G; Hassan, Tahmin; Janardhanan, Rajesh
2017-01-01
Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.
Influence of pacing site characteristics on response to cardiac resynchronization therapy.
Wong, Jorge A; Yee, Raymond; Stirrat, John; Scholl, David; Krahn, Andrew D; Gula, Lorne J; Skanes, Allan C; Leong-Sit, Peter; Klein, George J; McCarty, David; Fine, Nowell; Goela, Aashish; Islam, Ali; Thompson, Terry; Drangova, Maria; White, James A
2013-07-01
Transmural scar occupying left ventricular (LV) pacing regions has been associated with reduced response to cardiac resynchronization therapy (CRT). However, spatial influences of lead tip delivery relative to scar at both pacing sites remain poorly explored. This study evaluated scar distribution relative to LV and right ventricular (RV) lead tip placement through coregistration of late gadolinium enhancement MRI and cardiac computed tomographic (CT) findings. Influences on CRT response were assessed by serial echocardiography. Sixty patients receiving CRT underwent preimplant late gadolinium enhancement MRI, postimplant cardiac CT, and serial echocardiography. Blinded segmental evaluations of mechanical delay, percentage scar burden, and lead tip location were performed. Response to CRT was defined as a reduction in LV end-systolic volume ≥15% at 6 months. The mean age and LV ejection fraction were 64±9 years and 25±7%, respectively. Mean scar volume was higher among CRT nonresponders for both the LV (23±23% versus 8±14% [P=0.01]) and RV pacing regions (40±32% versus 24±30% [P=0.04]). Significant pacing region scar was identified in 13% of LV pacing regions and 37% of RV pacing regions. Absence of scar in both regions was associated with an 81% response rate compared with 55%, 25%, and 0%, respectively, when the RV, LV, or both pacing regions contained scar. LV pacing region dyssynchrony was not predictive of response. Myocardial scar occupying the LV pacing region is associated with nonresponse to CRT. Scar occupying the RV pacing region is encountered at higher frequency and seems to provide a more intermediate influence on CRT response.
Risk-adapted management of pulmonary embolism.
Barco, Stefano; Konstantinides, Stavros V
2017-03-01
The presence and severity of right ventricular (RV) dysfunction is a key determinant of prognosis in the acute phase of pulmonary embolism (PE). Risk-adapted treatment strategies continue to evolve, tailoring initial management to the clinical presentation and the functional status of the RV. Beyond pharmacological and, if necessary, mechanical circulatory support, systemic thrombolysis remains the mainstay of treatment for hemodynamically unstable patients; in contrast, it is not routinely recommended for intermediate-risk PE. Catheter-directed pharmacomechanical reperfusion treatment represents a promising option for minimizing bleeding risk; for reduced-dose intravenous thrombolysis, the data are still preliminary. Non-vitamin K-dependent oral anticoagulants, directly inhibiting factor Xa (rivaroxaban, apixaban, edoxaban) or thrombin (dabigatran), have simplified initial and long-term anticoagulation for PE while reducing major bleeding risk. Use of vena cava filters should be restricted to selected patients with absolute contraindications to anticoagulation, or PE recurrence despite adequately dosed anticoagulants. © 2017 Elsevier Ltd. All rights reserved.
World Health Organization Group I Pulmonary Hypertension: Epidemiology and Pathophysiology.
Prins, Kurt W; Thenappan, Thenappan
2016-08-01
Pulmonary arterial hypertension (PAH) is a debilitating disease characterized by pathologic remodeling of the resistance pulmonary arteries, ultimately leading to right ventricular (RV) failure and death. In this article we discuss the definition of PAH, the initial epidemiology based on the National Institutes of Health Registry, and the updated epidemiology gleaned from contemporary registries, pathogenesis of pulmonary vascular dysfunction and proliferation, and RV failure in PAH. Copyright © 2016 Elsevier Inc. All rights reserved.
Murgatroyd, Francis D; Helmling, Erhard; Lemke, Bernd; Eber, Bernd; Mewis, Christian; van der Meer-Hensgens, Judith; Chang, Yanping; Khalameizer, Vladimir; Katz, Amos
2010-06-01
The Secura ICD and Consulta CRT-D are the first defibrillators to have automatic right atrial (RA), right ventricular (RV), and left ventricular (LV) capture management (CM). Complete CM was evaluated in an implantable cardioverter defibrillator (ICD) population. Two prospective clinical studies were conducted in 28 centres in Europe and Israel. Automatic CM data were compared with manual threshold measurements, the CM applicability was determined, and adjustments to pacing outputs were analysed. In total, 160 patients [age 64.6 +/- 10.4 years, 77% male, 80 ICD and 80 cardiac resynchronization therapy defibrillator (CRT-D)] were included. The differences between automatic and manual measurements were =0.25 V in 97% (RA CM) and 96% (RV CM) and were all within the safety margin. Fully automatic CM measurements were available within 1 week prior to the 3-month visit in 90% (RA), 99% (RV), and 97% (LV) of the patients. Results indicated increased output (threshold >2.5 V) due to raised RA threshold in seven (4.4%), high RV threshold in nine (5.6%), and high LV threshold in three patients (3.8%). All high threshold detections and all automatic modulations of pacing output were adjudicated appropriate. Complete CM adjusts pacing output appropriately, permitting a reduction in office visits while it may maximize device longevity. The study was registered at ClinicalTrials.gov identifiers: NCT00526227 and NCT00526162.
Upregulation of GLUT-4 in right ventricle of rats with monocrotaline-induced pulmonary hypertension.
Broderick, Tom L; King, Tiffany M
2008-12-01
Pulmonary hypertension is characterized by abnormal vascular remodeling leading to occlusion of pulmonary arteries and increased stress placed on the right ventricle (RV). This causes the RV to hypertrophy and eventually to failure. This study was designed to examine the effects of pulmonary hypertension in rats on right ventricular remodeling and glucose transporter protein (GLUT4) content in right (RV) and left ventricle (LV). Pulmonary hypertension was induced in male Sprague-Dawley rat by a single subcutaneous injection of monocrotaline (MCT) at the concentration of 60 mg/kg. Forty-six days following the injection of MCT, animals were sacrificed. MCT-treated rats displayed significant increases in lung weight and RV weight. Marked RV hypertrophy was evident as the ratio of the RV to LV plus septum weight was nearly 40% higher in MCT-treated rats compared to control rats. Total GLUT4 content from whole homogenates from the RV was increased by approximately 28% in MCT-treated hearts compared to control hearts. No differences, however, in the LV content between groups were observed. Our findings indicate that the structural remodeling of the RV in MCT-induced pulmonary hypertension results in the upregulation of glucose transporters. This increase in RV GLUT4 levels may potentially result in alterations in substrate energy metabolism.
Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation
NASA Technical Reports Server (NTRS)
Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th;
1999-01-01
Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the hypertrophic response; and 3) load, independent of the RAS, is capable of stimulating cardiac growth.
Canine left ventricle electromechanical behavior under different pacing modes.
Vo Thang, Thanh-Thuy; Thibault, Bernard; Finnerty, Vincent; Pelletier-Galarneau, Matthieu; Khairy, Paul; Grégoire, Jean; Harel, François
2012-10-01
Cardiac resynchronization therapy may improve survival and quality of life in patients suffering from heart failure with left ventricular (LV) contraction dyssynchrony. While several studies have investigated electrical or mechanical determinants of synchronous contraction, few have focused on activation contraction coupling at a macroscopic level. The objective of the study was to characterize LV electromechanical behavior and response to pacing in a heart failure model. We analyzed data from 3D electroanatomic non-contact mapping and blood pool SPECT for 12 dogs with right ventricular (RV) tachycardia pacing-induced dilated cardiomyopathy. Surfaces generated by the two modalities were registered. Electrical signals were analyzed, and endocardial wall displacement curves were portrayed. Rapid pacing decreased the mean LV ejection fraction (LVEF) to 20.9 % and prolonged the QRS duration to 79 ± 10 ms (normal range: 40-50 ms). QRS duration remained unchanged with biventricular pacing (88.5 ms), while single site pacing further prolonged the QRS duration (113.3 ms for RV pacing and 111.6 ms for LV pacing). No trend was observed in LV systolic function. Activation duration time was significantly increased with all pacing modes compared to baseline. Finally, electromechanical delay, as defined by the delay between electrical activation and mechanical response, was increased by single site pacing (172.9 ms for RV pacing and 174.6 ms for LV pacing) but not by biventricular pacing (162.4 ms). Combined temporal and spatial coregistration electroanatomic maps and baseline gated blood pool SPECT imaging allowed us to quantify activation duration time, electromechanical delay, and LVEF for different pacing modes. Even if pacing modes did not significantly modify LVEF or activation duration, they produced alterations in electromechanical delay, with biventricular pacing significantly decreasing the electromechanical delay as measured by surface tracings and endocardial non-contact mapping.
García-Álvarez, Ana; Pereda, Daniel; García-Lunar, Inés; Sanz-Rosa, David; Fernández-Jiménez, Rodrigo; García-Prieto, Jaime; Nuño-Ayala, Mario; Sierra, Federico; Santiago, Evelyn; Sandoval, Elena; Campelos, Paula; Agüero, Jaume; Pizarro, Gonzalo; Peinado, Víctor I; Fernández-Friera, Leticia; García-Ruiz, José M; Barberá, Joan A; Castellá, Manuel; Sabaté, Manel; Fuster, Valentín; Ibañez, Borja
2016-07-01
Beta-3 adrenergic receptor (β3AR) agonists have been shown to produce vasodilation and prevention of ventricular remodeling in different conditions. Given that these biological functions are critical in pulmonary hypertension (PH), we aimed to demonstrate a beneficial effect of β3AR agonists in PH. An experimental study in pigs (n = 34) with chronic PH created by pulmonary vein banding was designed to evaluate the acute hemodynamic effect and the long-term effect of β3AR agonists on hemodynamics, vascular remodeling and RV performance in chronic PH. Ex vivo human experiments were performed to explore the expression of β3AR mRNA and the vasodilator response of β3AR agonists in pulmonary arteries. Single intravenous administration of the β3AR agonist BRL37344 produced a significant acute reduction in PVR, and two-weeks treatment with two different β3AR selective agonists, intravenous BRL37344 or oral mirabegron, resulted in a significant reduction in PVR (median of -2.0 Wood units/m(2) for BRL37344 vs. +1.5 for vehicle, p = 0.04; and -1.8 Wood units/m(2) for mirabegron vs. +1.6 for vehicle, p = 0.002) associated with a significant improvement in magnetic resonance-measured RV performance. Histological markers of pulmonary vascular proliferation (p27 and Ki67) were significantly attenuated in β3AR agonists-treated pigs. β3AR was expressed in human pulmonary arteries and β3AR agonists produced vasodilatation. β3AR agonists produced a significant reduction in PVR and improved RV performance in experimental PH, emerging as a potential novel approach for treating patients with chronic PH.
2014-01-01
Objectives To evaluate the interobserver reliability of echocardiographic findings of right ventricle (RV) dysfunction for prognosticating normotensive patients with pulmonary embolism (PE). Methods A central panel of cardiologists evaluated echocardiographic studies of 75 patients included in the PROTECT study for the following signs: RV diameter, RV/left ventricular (LV) diameter ratio, hypokinesis of the RV free wall, and tricuspid plane systolic excursion (TAPSE). Investigators used intraclass correlation to assess agreement between the measurements of the central panel and each of the local cardiologists. Investigators used the single weighted kappa statistic to test for agreement between readers of interpretation of RV enlargement and RV hypokinesis. Results The two observers had fair agreement (k = 0.45) for RV enlargement assessed by the RV diameter, and good agreement (k = 0.65) for RV enlargement assessed by the RV/LV diameter ratio. The interobserver reliability of the assessment whether hypokinesis of the RV free wall is present was good (к = 0.70), and whether RV dysfunction (assessed by TAPSE measurement) is present was very good (k = 0.86). The intraclass correlation for the RV/LV diameter ratio was fair (0.55; 95% confidence interval [CI], 0.37-0.69), for the RV diameter was good (0.70; 95% CI, 0.56-0.80), and for the TAPSE measurement was very good (0.85; 95% CI, 0.77-0.90). On Bland-Altman analysis, the mean differences for RV diameter, RV/LV diameter ratio and TAPSE measurement were 2.33 (±5.38), 0.06 (±0.23) and 0.08 (±2.20), respectively. Conclusion TAPSE measurement is the least user dependent and most reproducible echocardiographic finding of RV dysfunction in normotensive patients with PE. PMID:25092465
Mueller, Indra; Jansen-Park, So-Hyun; Neidlin, Michael; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas; Sonntag, Simon Johannes
2017-04-01
Right heart failure (RHF), e.g. due to pulmonary hypertension (PH), is a serious health issue with growing occurrence and high mortality rate. Limited efficacy of medication in advanced stages of the disease constitutes the need for mechanical circulatory support of the right ventricle (RV). An essential contribution to the process of developing right ventricular assist devices (RVADs) is the in vitro test bench, which simulates the hemodynamic behavior of the native circulatory system. To model healthy and diseased arterial-pulmonary hemodynamics in adults (mild and severe PH and RHF), a right heart mock circulation loop (MCL) was developed. Incorporating an anatomically shaped silicone RV and a silicone atrium, it not only enables investigations of hemodynamic values but also suction events or the handling of minimal invasive RVADs in an anatomical test environment. Ventricular pressure-volume loops of all simulated conditions as well as pressure and volume waveforms were recorded and compared to literature data. In an exemplary test, an RVAD was connected to the apex to further test the feasibility of studying such devices with the developed MCL. In conclusion, the hemodynamic behavior of the native system was well reproduced by the developed MCL, which is a useful basis for future RVAD tests.
Tuominen, Heikki; Haarala, Atte; Tikkakoski, Antti; Kähönen, Mika; Nikus, Kjell; Sipilä, Kalle
2018-05-02
In up to 65% of cardiac sarcoidosis patients, the disease is confined to the heart. Diagnosing isolated cardiac sarcoidosis is challenging due to the low sensitivity of endomyocardial biopsy. If cardiac sarcoidosis is part of biopsy-confirmed systemic sarcoidosis, the diagnosis can be based on cardiac imaging studies. We compared the imaging features of patients with isolated cardiac FDG uptake on positron emission tomography with those who had findings indicative of systemic sarcoidosis. 137 consecutive cardiac FDG-PET/CT studies performed on subjects suspected of having cardiac sarcoidosis were retrospectively analyzed. 33 patients had pathological left ventricular FDG uptake, and 12 of these also had pathological right ventricular uptake. 16/33 patients with pathological cardiac uptake had pathological extracardiac uptake. 10/12 patients with both LV- and RV-uptake patterns had extracardiac uptake compared to 6/21 of those with pathological LV uptake without RV uptake. SUVmax values in the myocardium were higher among patients with abnormal extracardiac uptake. The presence of extracardiac uptake was the only imaging-related factor that could predict a biopsy indicative of sarcoidosis. Right ventricular involvement seems to be more common in patients who also have findings suggestive of suspected systemic sarcoidosis, compared with patients with PET findings indicative of isolated cardiac disease.
Antzelevitch, Charles
2007-01-01
This review examines the role of spatial electrical heterogeneity within ventricular myocardium on the function of the heart in health and disease. The cellular basis for transmural dispersion of repolarization (TDR) is reviewed and the hypothesis that amplification of spatial dispersion of repolarization underlies the development of life-threatening ventricular arrhythmias associated with inherited ion channelopathies is evaluated. The role of TDR in the long QT, short QT and Brugada syndromes as well as catecholaminergic polymorphic ventricular tachycardia (CPVT) are critically examined. In the long QT Syndrome, amplification of TDR is often secondary to preferential prolongation of the action potential duration (APD) of M cells, whereas in the Brugada Syndrome, it is thought to be due to selective abbreviation of the APD of right ventricular (RV) epicardium. Preferential abbreviation of APD of either endocardium or epicardium appears to be responsible for amplification of TDR in the short QT syndrome. In catecholaminergic polymorphic VT, reversal of the direction of activation of the ventricular wall is responsible for the increase in TDR. In conclusion, the long QT, short QT, Brugada and catecholaminergic polymorphic VT syndromes are pathologies with very different phenotypes and etiologies, but which share a common final pathway in causing sudden cardiac death. PMID:17586620
Levy, Philip T.; Sanchez, Aura; Machefsky, Aliza; Fowler, Susan; Holland, Mark R.; Singh, Gautam K.
2014-01-01
Background Establishment of the range of normal values and associated variations of two-dimensional speckle-tracking echocardiography (2DSTE) derived right ventricular (RV) strain is a prerequisite for its routine clinical application in children. The objectives of this study were to perform a meta-analysis of normal ranges of RV longitudinal strain measurements derived by 2DSTE in children and identify confounders that may contribute to differences in reported measures. Methods A systematic review was launched in PubMed, Embase, Scopus, Cochrane, and ClinicTrials.gov. Search hedges were created to cover the concepts of pediatrics, speckle-tracking echocardiography, and right heart ventricle. Two investigators independently identified and included studies if they reported the 2DSTE derived RV strain measures: RV peak global longitudinal strain (pGLS), systolic strain rate (pGLSRs), early diastolic strain rate (pGLSRe), late diastolic strain rate (pGLSRa), or segmental longitudinal strain at the apical, mid, and basal ventricular levels in healthy children. Quality and reporting of the studies were assessed. The weighted mean was estimated by using random-effects with 95% confidence intervals (CI), heterogeneity was assessed by the Cochran's Q statistic and the inconsistency index (I2), and publication bias was evaluated using funnel plots and the Egger test. Effects of demographic, clinical, equipment, and software variables were assessed in a meta-regression. Results The search identified 226 children from 10 studies. The reported normal mean values of pGLS among the studies varied from −20.80% to −34.10% (mean, −29.03%, 95%CI, −31.52% to −26.54%), pGLSRs varied from −1.30 to −2.40 1/sec (mean, −1.88, 95%CI, −2.10 to −1.59), pGLSRe ranged from 1.7 to 2.69 1/sec (mean, 2.34, 95%CI, 2.00 to 2.67) and pGLSRa ranged from 1.00 to 1.30 1/sec (mean, 1.18, 95% CI, 1.04 to 1.33). A significant base-to-apex segmental strain gradient (p <0.05) was observed in the right ventricular free wall. There was significant between-study heterogeneity and inconsistency (I2>88% and p<0.01 for each strain measure), which was not explained by age, gender, body surface area, heart rate, frame rate, tissue tracking methodology, equipment, or software. The meta-regression showed that these effects were not significant determinants of variations among normal ranges of strain values. There was no evidence of publication bias (Egger test, p=0.59). Conclusions This study is the first to define normal values of two-dimensional speckle tracking echocardiographic (2DSTE) derived right ventricle strain in children on the basis of a meta-analysis. The normal mean value in children for RV global strain is −29.03% (95% CI, −31.52% to −26.54%). The normal mean value for RV global systolic strain rate is −1.88 1/sec (95% CI, −2.10 to −1.59). RV segmental strain has a stable base-to-apex gradient that highlights the dominance of deep longitudinal layers of the RV that are aligned base to apex. Variations among different normal ranges do not appear to be dependent on differences in demographic, clinical, or equipment parameters in this meta-analysis. All of the eligible studies used equipment and software from one manufacturer, General Electric (GE). PMID:24582163
Simulated Microgravity and Recovery-Induced Remodeling of the Left and Right Ventricle
Zhong, Guohui; Li, Yuheng; Li, Hongxing; Sun, Weijia; Cao, Dengchao; Li, Jianwei; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Song, Hailin; Yuan, Xinxin; Wu, Xiaorui; Li, Qi; Xu, Qing; Kan, Guanghan; Cao, Hongqing; Ling, Shukuan; Li, Yingxian
2016-01-01
Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can be reversed. Furthermore, in the early stages of recovery, cardiac remodeling may be intensified. Finally, compared with the LV, the RV is not as easily reversed. Cardiac remodeling pathways, such as, HDAC4, ERK1/2, LC3-II, and AMPK were involved in the process. PMID:27445861
Vieillard-Baron, Antoine; Naeije, R; Haddad, F; Bogaard, H J; Bull, T M; Fletcher, N; Lahm, T; Magder, S; Orde, S; Schmidt, G; Pinsky, M R
2018-05-09
This is a state-of-the-art article of the diagnostic process, etiologies and management of acute right ventricular (RV) failure in critically ill patients. It is based on a large review of previously published articles in the field, as well as the expertise of the authors. The authors propose the ten key points and directions for future research in the field. RV failure (RVF) is frequent in the ICU, magnified by the frequent need for positive pressure ventilation. While no universal definition of RVF is accepted, we propose that RVF may be defined as a state in which the right ventricle is unable to meet the demands for blood flow without excessive use of the Frank-Starling mechanism (i.e. increase in stroke volume associated with increased preload). Both echocardiography and hemodynamic monitoring play a central role in the evaluation of RVF in the ICU. Management of RVF includes treatment of the causes, respiratory optimization and hemodynamic support. The administration of fluids is potentially deleterious and unlikely to lead to improvement in cardiac output in the majority of cases. Vasopressors are needed in the setting of shock to restore the systemic pressure and avoid RV ischemia; inotropic drug or inodilator therapies may also be needed. In the most severe cases, recent mechanical circulatory support devices are proposed to unload the RV and improve organ perfusion CONCLUSION: RV function evaluation is key in the critically-ill patients for hemodynamic management, as fluid optimization, vasopressor strategy and respiratory support. RV failure may be diagnosed by the association of different devices and parameters, while echocardiography is crucial.
Kaye, Gerald C; Linker, Nicholas J; Marwick, Thomas H; Pollock, Lucy; Graham, Laura; Pouliot, Erika; Poloniecki, Jan; Gammage, Michael
2015-04-07
Chronic right ventricle (RV) apical (RVA) pacing is standard treatment for an atrioventricular (AV) block but may be deleterious to left ventricle (LV) systolic function. Previous clinical studies of non-apical pacing have produced conflicting results. The aim of this randomized, prospective, international, multicentre trial was to compare change in LV ejection fraction (LVEF) between right ventricular apical and high septal (RVHS) pacing over a 2-year study period. We randomized 240 patients (age 74 ± 11 years, 67% male) with a high-grade AV block requiring >90% ventricular pacing and preserved baseline LVEF >50%, to receive pacing at the RVA (n = 120) or RVHS (n = 120). At 2 years, LVEF decreased in both the RVA (57 ± 9 to 55 ± 9%, P = 0.047) and the RVHS groups (56 ± 10 to 54 ± 10%, P = 0.0003). However, there was no significant difference in intra-patient change in LVEF between confirmed RVA (n = 85) and RVHS (n = 83) lead position (P = 0.43). There were no significant differences in heart failure hospitalization, mortality, the burden of atrial fibrillation, or plasma brain natriutetic peptide levels between the two groups. A significantly greater time was required to place the lead in the RVHS position (70 ± 25 vs. 56 ± 24 min, P < 0.0001) with longer fluoroscopy times (11 ± 7 vs. 5 ± 4 min, P < 0.0001). In patients with a high-grade AV block and preserved LV function requiring a high percentage of ventricular pacing, RVHS pacing does not provide a protective effect on left ventricular function over RVA pacing in the first 2 years. ClinicalTrials.gov number NCT00461734. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Borisov, Konstantin V
2017-07-01
Right ventricular (RV) hypertrophy is common in patients with hypertrophic cardiomyopathy (HCM), and is associated with more severe disease. Conventional surgical strategies such as the traditional Morrow procedure pose a particularly high risk to patients with severe hypertrophy and RV obstruction, for whom the most appropriate therapeutic approach has not yet been established. We have proposed a new technique for surgical correction in patients with hypertrophic obstructive cardiomyopathy and severe hypertrophy, which involves approaching the area of obstruction by entering through the conal part of the RV. This novel technique provides effective elimination of biventricular obstruction and the precise removal of the areas of septal fibrosis in patients with hypertrophic obstructive cardiomyopathy. The current literature review analyzes the indications and various techniques for performing a RV myectomy, and presents the results of follow-up assessments in patients with biventricular obstruction and severe hypertrophy.
Dilemma in clinical diagnosis of right ventricular masses.
Sušić, Livija; Baraban, Vedrana; Vincelj, Josip; Maričić, Lana; Ćatić, Jasmina; Blažeković, Robert; Manojlović, Spomenka
2017-07-08
Detection of an intracardiac mass always represents a clinical challenge. We present a 61-year-old female patient with symptoms of New York Heart Association class III. Two-dimensional transthoracic echocardiography revealed a hypoechogenic mass in the cavity of the dilated right ventricle (RV). Cardiac MRI described a pathologic structure of the RV free wall with pedunculated tumor in its cavity. Three months later, on a repeated echocardiography, there were three individual masses. The patient underwent surgery and the pathohistologic report demonstrated thrombotic masses. During the postoperative period, after reviewing all medical records, the conclusion was arrhythmogenic RV cardiomyopathy. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:362-369, 2017. © 2016 Wiley Periodicals, Inc.
Kobayashi, Daisuke; Gowda, Srinath T; Forbes, Thomas J
2014-08-01
A 9-year-old male, with history of pulmonary atresia and ventricular septal defect, status post complete repair with a 16 mm pulmonary homograft in the right ventricular outflow tract (RVOT) underwent 3110 Palmaz stent placement for conduit stenosis. Following deployment the stent embolized proximally into the right ventricle (RV). We undertook the choice of repositioning the embolized stent into the conduit with a transcatheter approach. Using a second venous access, the embolized stent was carefully maneuvered into the proximal part of conduit with an inflated Tyshak balloon catheter. A second Palmaz 4010 stent was deployed in the distal conduit telescoping through the embolized stent. The Tyshak balloon catheter was kept inflated in the RV to stabilize the embolized stent in the proximal conduit until it was successfully latched up against the conduit with the deployment of the overlapping second stent. One year later, he underwent Melody valve implantation in the pre-stented conduit relieving conduit insufficiency. This novel balloon assisted two-stents telescoping technique is a feasible transcatheter option to secure an embolized stent from the RV to the RVOT. © 2014 Wiley Periodicals, Inc.
Havranek, Stepan; Palecek, Tomas; Kovarnik, Tomas; Vitkova, Ivana; Psenicka, Miroslav; Linhart, Ales; Wichterle, Dan
2015-03-10
Left dominant arrhythmogenic cardiomyopathy (LDAC) is a rare condition characterised by progressive fibrofatty replacement of the myocardium of the left ventricle (LV) in combination with ventricular arrhythmias of LV origin. A thirty-five-year-old male was referred for evaluation of recurrent sustained monomorphic ventricular tachycardia (VT) of 200 bpm and right bundle branch block (RBBB) morphology. Cardiac magnetic resonance imaging showed late gadolinium enhancement distributed circumferentially in the epicardial layer of the LV free wall myocardium including the rightward portion of the interventricular septum (IVS). The clinical RBBB VT was reproduced during the EP study. Ablation at an LV septum site with absence of abnormal electrograms and a suboptimum pacemap rendered the VT of clinical morphology noninducible. Three other VTs, all of left bundle branch block (LBBB) pattern, were induced by programmed electrical stimulation. The regions corresponding to abnormal electrograms were identified and ablated at the mid-to-apical RV septum and the anteroseptal portion of the right ventricular outflow tract. No abnormalities were found at the RV free wall including the inferolateral peritricuspid annulus region. Histological examination confirmed the presence of abnormal fibrous and adipose tissue with myocyte reduction in endomyocardial samples taken from both the left and right aspects of the IVS. LDAC rarely manifests with sustained monomorphic ventricular tachycardia. In this case, several VTs of both RBBB and LBBB morphology were amenable to endocardial radiofrequency catheter ablation.
Nazarian, Saman; Hansford, Rozann; Roguin, Ariel; Goldsher, Dorith; Zviman, Menekhem M.; Lardo, Albert C.; Caffo, Brian S.; Frick, Kevin D.; Kraut, Michael A.; Kamel, Ihab R.; Calkins, Hugh; Berger, Ronald D.; Bluemke, David A.; Halperin, Henry R.
2015-01-01
Background Magnetic resonance imaging (MRI) is avoided in most patients with implanted cardiac devices because of safety concerns. Objective To define the safety of a protocol for MRI at the commonly used magnetic strength of 1.5 T in patients with implanted cardiac devices. Design Prospective nonrandomized trial. (ClinicalTrials.gov registration number: NCT01130896) Setting One center in the United States (94% of examinations) and one in Israel. Patients 438 patients with devices (54% with pacemakers and 46% with defibrillators) who underwent 555 MRI studies. Intervention Pacing mode was changed to asynchronous for pacemaker-dependent patients and to demand for others. Tachy-arrhythmia functions were disabled. Blood pressure, electrocardiography, oximetry, and symptoms were monitored by a nurse with experience in cardiac life support and device programming who had immediate backup from an electrophysiologist. Measurements Activation or inhibition of pacing, symptoms, and device variables. Results In 3 patients (0.7% [95% CI, 0% to 1.5%]), the device reverted to a transient back-up programming mode without long-term effects. Right ventricular (RV) sensing (median change, 0 mV [interquartile range {IQR}, −0.7 to 0 V]) and atrial and right and left ventricular lead impedances (median change, −2 Ω[IQR, −13 to 0 Ω], −4 Ω [IQR, −16 to 0 Ω], and −11 Ω [IQR, −40 to 0 Ω], respectively) were reduced immediately after MRI. At long-term follow-up (61% of patients), decreased RV sensing (median, 0 mV, [IQR, −1.1 to 0.3 mV]), decreased RV lead impedance (median, −3 Ω, [IQR, −29 to 15 Ω]), increased RV capture threshold (median, 0 V, IQR, [0 to 0.2 Ω]), and decreased battery voltage (median, −0.01 V, IQR, −0.04 to 0 V) were noted. The observed changes did not require device revision or reprogramming. Limitations Not all available cardiac devices have been tested. Long-term in-person or telephone follow-up was unavailable in 43 patients (10%), and some data were missing. Those with missing long-term capture threshold data had higher baseline right atrial and right ventricular capture thresholds and were more likely to have undergone thoracic imaging. Defibrillation threshold testing and random assignment to a control group were not performed. Conclusion With appropriate precautions, MRI can be done safely in patients with selected cardiac devices. Because changes in device variables and programming may occur, electrophysiologic monitoring during MRI is essential. Primary Funding Source National Institutes of Health. PMID:21969340
Right ventricular outflow tract aneurysm with thrombus
Peer, Syed Murfad; Bhat, P.S. Seetharama; Furtado, Arul Dominic; Chikkatur, Raghavendra
2012-01-01
Right ventricular outflow tract (RVOT) aneurysm is a known complication of tetralogy of Fallot repair when a ventriculotomy is done. It leads to RV dysfunction and may require re-operation. We describe a rare instance of a patient who developed an RVOT aneurysm after trans-ventricular repair of tetralogy of Fallot, which was complicated with the formation of a thrombus in the aneurysm sac. The patient underwent re-operation with thrombectomy, excision of the RVOT aneurysm and pulmonary valve replacement. To the best of our knowledge, the occurrence of this combination and its implications have not been reported. PMID:22232231
Marques, Pedro; Nobre Menezes, Miguel; Lima da Silva, Gustavo; Bernardes, Ana; Magalhães, Andreia; Cortez-Dias, Nuno; Carpinteiro, Luís; de Sousa, João; Pinto, Fausto J
2016-06-01
Multi-site pacing is emerging as a new method for improving response to cardiac resynchronization therapy (CRT), but has been little studied, especially in patients with atrial fibrillation. We aimed to assess the effects of triple-site (Tri-V) vs. biventricular (Bi-V) pacing on hemodynamics and QRS duration. This was a prospective observational study of patients with permanent atrial fibrillation and ejection fraction <40% undergoing CRT implantation (n=40). One right ventricular (RV) lead was implanted in the apex and another in the right ventricular outflow tract (RVOT) septal wall. A left ventricular (LV) lead was implanted in a conventional venous epicardial position. Cardiac output (using the FloTrac™ Vigileo™ system), mean QRS and ejection fraction were calculated. Mean cardiac output was 4.81±0.97 l/min with Tri-V, 4.68±0.94 l/min with RVOT septal and LV pacing, and 4.68±0.94 l/min with RV apical and LV pacing (p<0.001 for Tri-V vs. both BiV). Mean pre-implantation QRS was 170±25 ms, 123±18 ms with Tri-V, 141±25 ms with RVOT septal pacing and LV pacing and 145±19 with RV apical and LV pacing (p<0.001 for Tri-V vs. both BiV and pre-implantation). Mean ejection fraction was significantly higher with Tri-V (30±11%) vs. Bi-V pacing (28±12% with RVOT septal and LV pacing and 28±11 with RV apical and LV pacing) and pre-implantation (25±8%). Tri-V pacing produced higher cardiac output and shorter QRS duration than Bi-V pacing. This may have a significant impact on the future of CRT. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Electrically contractile polymers augment right ventricular output in the heart.
Ruhparwar, Arjang; Piontek, Patricia; Ungerer, Matthias; Ghodsizad, Ali; Partovi, Sasan; Foroughi, Javad; Szabo, Gabor; Farag, Mina; Karck, Matthias; Spinks, Geoffrey M; Kim, Seon Jeong
2014-12-01
Research into the development of artificial heart muscle has been limited to assembly of stem cell-derived cardiomyocytes seeded around a matrix, while nonbiological approaches to tissue engineering have rarely been explored. The aim of the study was to apply electrically contractile polymer-based actuators as cardiomyoplasty for positive inotropic support of the right ventricle. Complex trilayer polypyrrole (PPy) bending polymers for high-speed applications were generated. Bending motion occurred directly as a result of electrochemically driven charging and discharging of the PPy layers. In a rat model (n = 5), strips of polymers (3 × 20 mm) were attached and wrapped around the right ventricle (RV). RV pressure was continuously monitored invasively by direct RV cannulation. Electrical activation occurred simultaneously with either diastole (in order to evaluate the polymer's stand-alone contraction capacity; group 1) or systole (group 2). In group 1, the pressure generation capacity of the polymers was measured by determining the area under the pressure curve (area under curve, AUC). In group 2, the RV pressure AUC was measured in complexes directly preceding those with polymer contraction and compared to RV pressure complexes with simultaneous polymer contraction. In group 1, the AUC generated by polymer contraction was 2768 ± 875 U. In group 2, concomitant polymer contraction significantly increased AUC compared with complexes without polymer support (5987 ± 1334 U vs. 4318 ± 691 U, P ≤ 0.01). Electrically contractile polymers are able to significantly augment right ventricular contraction. This approach may open new perspectives for myocardial tissue engineering, possibly in combination with fetal or embryonic stem cell-derived cardiomyocytes. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Nakamura, Kohki; Naito, Shigeto; Kaseno, Kenichi; Nakatani, Yosuke; Sasaki, Takehito; Anjo, Naofumi; Yamashita, Eiji; Kumagai, Koji; Funabashi, Nobusada; Kobayashi, Yoshio; Oshima, Shigeru
2017-02-01
We aimed to optimize the acquisition of the left atrial (LA) and pulmonary vein (PV) ultrasound contours for more accurate integration of intracardiac echocardiography (ICE) and computed tomography (CT) using the CARTO ® 3 system during atrial fibrillation (AF) ablation. Eighty-five AF patients underwent integration of ICE and CT using (1) the LA roof and posterior wall contours acquired from the right atrium (RA), (2) all LA/PV contours from the RA (Whole-RA-integration), (3) the LA roof/posterior wall contours from the RA and right ventricular outflow tract (RVOT) (Posterior-RA/RV-integration), and (4) all LA/PV contours from the RA and RVOT (Whole-RA/RV-integration). The integration accuracy was compared using the (1) surface registration error, (2) distances between the three-dimensional CT and eight specific sites on the anterior, posterior, superior, and inferior aspects of the right and left circumferential PV isolation lines, and (3) registration score: a score of 0 or 1 was assigned for whether or not each specific site was visually aligned with the CT, and summed for each method (0 best, 8 worst). Posterior-RA/RV-integration revealed a significantly lower surface registration error (1.30±0.15mm) than Whole-RA- and Whole-RA/RV-integration (p<0.001). The mean distances of the eight specific sites and the registration score for Posterior-RA/RV-integration (median 1.26mm and 2, respectively) were significantly smaller than those for the other integration approaches (p<0.001). Image integration with the LA roof and posterior wall contours acquired from the RA and RVOT may provide greater accuracy for catheter navigation with three-dimensional CT during AF ablation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gowing, Lucy; Forsey, Jonathan; Ramanujam, Paramanantham; Miller, Felicity; Stuart, A Graham; Williams, Craig A.
2015-01-01
Background left ventricular (LV) and right ventricular (RV) myocardial reserve during exercise in adolescents has not been directly characterized. The aim of this study was to quantify myocardial performance response to exercise by using two-dimensional (2-D) speckle tracking echocardiography and describe the relationship between myocardial reserve, respiratory, and metabolic exercise parameters. A total of 23 healthy boys and girls (mean age 13.2 ± 2.7 yr; stature 159.1 ± 16.4 cm; body mass 49.5 ± 16.6 kg; BSA 1.47 ± 0.33 m2) completed an incremental cardiopulmonary exercise test (25 W·3 min increments) with simultaneous acquisition of 2-D transthoracic echocardiography at rest, each exercise stage up to 100 W, and in recovery at 2 min and 10 min. Two-dimensional LV (LV Sl) and RV (RV Sl) longitudinal strain and LV circumferential strain (LV Sc) were analyzed to define the relationship between myocardial performance reserve and metabolic exercise parameters. Participants achieved a peak oxygen uptake (V̇o2peak) of 40.6 ± 8.9 ml·kg−1·min−1 and a work rate of 154 ± 42 W. LV Sl and LV Sc and RV Sl increased significantly across work rates (P < 0.05). LV Sl during exercise was significantly correlated to resting strain, V̇o2peak, oxygen pulse, and work rate (0.530 ≤ r ≤ 0.784, P < 0.05). This study identifies a positive and moderate relationship between LV and RV myocardial performance and metabolic parameters during exercise by using a novel methodology. Relationships detected present novel data directly describing myocardial adaptation at different stages of exercise and recovery that in the future can help directly assess cardiac reserve in patients with cardiac pathology. PMID:26475589
Stockinger, Jochem; Staier, Klaus; Schiebeling-Römer, Jochen; Keyl, Cornelius
2011-11-01
To evaluate the acute hemodynamic effects of different right (RV) and left ventricular (LV) pacing sites in patients undergoing the implantation of a cardiac resynchronization therapy defibrillator (CRT-D). Stroke volume index (SVI), assessed via pulse contour analysis, and dp/dt max, obtained in the abdominal aorta, were analyzed in 21 patients with New York Heart Association class III heart failure and left bundle branch block (mean ejection fraction of 24 ± 6%), scheduled for CRT-D implantation under general anesthesia. We compared the hemodynamic effects of RV apical (A), RV septal (B), and biventricular pacing using the worst (lowest SVI; C) and best (highest SVI; D) coronary sinus lead positions. Mean arterial pressure, SVI, and dp/dt max did not differ significantly between RV apical and septal pacing. Dp/dt max and SVI increased significantly during biventricular pacing (dp/dt max: B, 588 ± 160 mmHg/s; C, 651 ± 218 mmHg/s, P = 0.03 vs B; D, 690 ± 220 mmHg/s, P = 0.02 vs C; SVI: B, 33.6 ± 5.5 mL/m², C, 34.8 ± 6.1 mL/m², P = 0.08 vs B, D 36.0 ± 6.0 mL/m², P < 0.001 vs C). The best hemodynamic response was associated with lateral or inferior lead positions in 15 patients. Other LV lead positions were most effective in six patients. The optimal LV lead position varies significantly among patients and should be individually determined during CRT-D implantation. The impact of the RV stimulation site in patients with intraventricular conduction delay, undergoing CRT-D implantation, has to be investigated in further studies.
Advanced heart failure due to cancer therapy.
Shah, Sachin; Nohria, Anju
2015-01-01
Certain chemotherapeutic agents and mediastinal irradiation can be cardiotoxic and place cancer survivors at risk for developing advanced heart failure (HF). Anthracyclines are the prototypical agents associated with left ventricular (LV) dysfunction. Newer agents including trastuzumab and certain tyrosine kinase inhibitors such as sunitinib can also cause cardiomyopathy. Cancer survivors with advanced HF refractory to standard medical management should be considered for advanced therapies, including mechanical circulatory support (MCS) and transplantation. While overall outcomes after MCS and transplantation are similar in cancer survivors compared to other etiologies of HF, patients with radiation-induced restrictive cardiomyopathy have a significantly worse prognosis after transplantation. The increased need for right ventricular (RV) support after MCS in cancer survivors necessitates a careful evaluation for pre-operative RV dysfunction. Special consideration must also be given to the risk for recurrent malignancy, neurocognitive dysfunction, and increased psychological needs in this patient population.
Ozcinar, Evren; Cakici, Mehmet; Dikmen Yaman, Nur; Baran, Cagdas; Aliyev, Anar; Inan, Bahadir; Durdu, Serkan; Akar, Ahmet R; Sirlak, Mustafa
2017-10-01
This study aims to evaluate the efficacy and safety of ultrasound-accelerated catheter-directed thrombolysis (UACDT) in the treatment of massive and submassive pulmonary embolism (PE). We conducted a prospective, observational cohort study of consequtive patients with massive or submassive PE treated with low-dose UACDT using EKOS EkoSonic® system at single center from May 2014 until April 2015. Overall, thirty-eight patients (median age, 64.5 years) were included. The primary safety outcomes were change in right ventricular (RV) to left ventricular (LV) diameter ratio within 24 hours of procedure initiation, at 1- and 6-month follow-up and major bleeding within 96 hours of the procedure initiation. BNP, troponin and D-dimer levels were also measured. The ultrasound-accelerated thrombolytic catheters were bilaterally placed in 25 (65.8%) patients. The median tissue plasminogen activator (tPA) dose for all patients in our study was 21.0 mg and the median infusion time was 15 hours. Measurements before and after treatment showed a decrease in pulmonary artery pressure. The median value of RV/LV diameter ratio decreased from 0.9 (0.7-1.1) at baseline to 0.7 (0-0.97) at 6-month follow-up (P=0.001) and pulmonary artery pressure from 61.4 ±16.7 to 37.2±9.1 mmHg (P=0.001). The median BNP level at baseline was 169 (29-721) pg/mL and 45.5 (0-328) pg/mL at 6 month follow-up (P=0.001). Of 38 patients with PE, one had intracranial hemorrage, one gastrointestinal bleeding and two developed puncture site bleeding. This prospective study provides alternative treatment option and an addition to the treatment algorithm for the management of pulmonary embolism.
Bai, Rong; Pu, Jun; Liu, Nian; Lu, Jia-Gao; Zhou, Qiang; Ruan, Yan-Fei; Niu, Hui-Yan; Wang, Lin
2003-12-25
In order to verify the hypothesis that left ventricular epicardial (LV-Epi) pacing and biventricular (BiV) pacing unavoidably influence the myocardial electrophysiological characters and may result in high risk of malignant ventricular arrhythmia, we calculated, in both normal mongrel dogs and dog models with rapid-right-ventricular-pacing induced dilated cardiomyopathy congestive heart failure (DCM-CHF), the monophasic action potential duration (MAPD) and the transmural dispersion of repolarization (TDR) in intracardiac electrogram together with the QT interval and T(peak)-T(end) (T(p(-T(e)) interval in surface electrocardiogram (ECG) during LV-Epi and BiV pacing, compared with those during right ventricular endocardial (RV-Endo) pacing. To prepare the DCM-CHF dog model, rapid right ventricular pacing (250 bpm) was performed for 23.6+/-2.57 days to the dog. All the normal and DCM-CHF dogs were given radio frequency catheter ablation (RFCA) to His bundle with the guide of X-ray fluoroscopy. After the RFCA procedures, the animals were under the situation of complete atrioventricular block so that the canine heart rates could be voluntarily controlled in the following experiments. After a thoracotomy, ECG and monophasic action potentials (MAP) of subendocardial, subepicardial and mid-layer myocardium were recorded synchronously in 8 normal and 5 DCM-CHF dogs during pacing from endocardium of RV apex (RV-Endo), epicardium of LV anterior wall (LV-Epi) and simultaneously both of the above (biventricular, BiV), the later was similar to the ventricular resynchronization therapy to congestive heart failure patients in clinic. The Tp-Te) meant the interval from the peak to the end of T wave, which was a representative index of TDR in surface ECG. The TDR was defined as the difference between the longest and the shortest MAPD of subendocardial, subepicardial and mid-layer myocardium. Our results showed that in normal dogs, pacing participating of LV (LV-Epi, BiV) prolonged MAPD of all the three layers of the myocardium (P<0.05) with the character that mid-layer MAPD was the longest and subepicardial MAPD was the shortest following subendocardial MAPD. At the same time, TDR prolonged from 26.75 ms at RV-Endo pacing to 37.54 ms at BiV pacing and to 47.16 ms at LV-Epi pacing (P<0.001). Meanwhile in surface ECG, BiV and LV-Epi pacing resulted in a longer Tp-Te) interval compared with RV-Endo pacing (P<0.01), without parallel QT interval prolongation. Furthermore, all the DCM-CHF model dogs showed manifestations of congestive heart failure and enlargement of left ventricles. Based on the lengthening of mid-layer MAPD from 257.35 ms to 276.30 ms (P<0.0001) and increase of TDR from 27.58 ms to 33.80 ms (P equals;0.002) in DCM-CHF model due to the structural disorders of myocardium compared with the normal dog, LV-Epi and BiV pacing also led to the effect of prolonging MAPD of three layers of the myocardium and enlarging TDR. From these results we make the conclusions that prolongation of MAPD of subendocardial, subepicardial and mid-layer myocardium and increase in TDR during pacing participating of LV (LV-Epi, BiV) may contribute to the formation of unidirectional block and reentry, which play roles or at least are the high risk factors in the development of malignant ventricular arrhythmia, especially in case of structural disorders of myocardium. These findings must be considered seriously when ventricular resynchronization therapy is performed to congestive heart failure patients.
Improving on the diagnostic characteristics of echocardiography for pulmonary hypertension.
Broderick-Forsgren, Kathleen; Davenport, Clemontina A; Sivak, Joseph A; Hargett, Charles William; Foster, Michael C; Monteagudo, Andrew; Armour, Alicia; Rajagopal, Sudarshan; Arges, Kristine; Velazquez, Eric J; Samad, Zainab
2017-09-01
This retrospective study evaluated the diagnostic characteristics of a combination of echocardiographic parameters for pulmonary hypertension (PH). Right ventricular systolic pressure (RVSP) estimation by echocardiography (echo) is used to screen for PH. However, the sensitivity of this method is suboptimal. We hypothesized that RVSP estimation in conjunction with other echo parameters would improve the value of echo for PH. The Duke Echo database was queried for adult patients with known or suspected PH who had undergone both echo and right heart catheterization (RHC) within a 24 h period between 1/1/2008 and 12/31/2013. Patients with complex congenital heart disease, heart transplantation, ventricular assist device, or on mechanical ventilation at time of study were excluded. Diagnostic characteristics of several echo parameters (right atrial enlargement, pulmonary artery (PA) enlargement, RV enlargement, RV dysfunction, and RVSP) for PH (mean PA pressure 25 mmHg on RHC) were evaluated among 1007 patients. RVSP ≥40 had a sensitivity of 77% (accuracy 77), while RVSP ≥35 had the highest sensitivity at 88% (81% accuracy). PA enlargement had the lowest sensitivity at 17%. The area under the curve (AUC) for RVSP was 0.844. A model including RVSP, RA, PA, RV enlargement and RV dysfunction had a higher AUC (AUC = 0.87) than RVSP alone. The value of echo as a screening test for PH is improved by a model incorporating a lower RVSP in addition to other right heart parameters. These findings need to be validated in prospective cohorts.
Use of Early Inhaled Nitric Oxide Therapy in Fat Embolism Syndrome to Prevent Right Heart Failure
Koyfman, Leonid; Kutz, Ruslan; Frenkel, Amit; Gruenbaum, Shaun E.; Zlotnik, Alexander; Klein, Moti
2014-01-01
Fat embolism syndrome (FES) is a life-threatening condition in which multiorgan dysfunction manifests 48–72 hours after long bone or pelvis fractures. Right ventricular (RV) failure, especially in the setting of pulmonary hypertension, is a frequent feature of FES. We report our experience treating 2 young, previously healthy trauma patients who developed severe hypoxemia in the setting of FES. Neither patient had evidence of RV dysfunction on echocardiogram. The patients were treated with inhaled nitric oxide (NO), and their oxygenation significantly improved over the subsequent few days. Neither patient developed any cardiovascular compromise. Patients with FES that have severe hypoxemia and evidence of adult respiratory distress syndrome (ARDS) are likely at risk for developing RV failure. We recommend that these patients with FES and severe refractory hypoxemia should be treated with inhaled NO therapy prior to the onset of RV dysfunction. PMID:25180103
Kamath, Ganesh S.; Zareba, Wojciech; Delaney, Jessica; Koneru, Jayanthi N.; McKenna, William; Gear, Kathleen; Polonsky, Slava; Sherrill, Duane; Bluemke, David; Marcus, Frank; Steinberg, Jonathan S.
2011-01-01
Background Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited disease causing structural and functional abnormalities of the right ventricle (RV). The presence of late potentials as assessed by the signal averaged electrocardiogram (SAECG) is a minor Task Force criterion. Objective The purpose of this study was to examine the diagnostic and clinical value of the SAECG in a large population of genotyped ARVC/D probands. Methods We compared the SAECGs of 87 ARVC/D probands (age 37 ± 13 years, 47 males) diagnosed as affected or borderline by Task Force criteria without using the SAECG criterion with 103 control subjects. The association of SAECG abnormalities was also correlated with clinical presentation; surface ECG; VT inducibility at electrophysiologic testing; ICD therapy for VT; and RV abnormalities as assessed by cardiac magnetic resonance imaging (cMRI). Results When compared with controls, all 3 components of the SAECG were highly associated with the diagnosis of ARVC/D (p<0.001). These include the filtered QRS duration (fQRSD) (97.8 ± 8.7 msec vs. 119.6 ± 23.8 msec), low amplitude signal (LAS) (24.4 ± 9.2 msec vs. 46.2 ± 23.7 msec) and root mean square amplitude of the last 40 msec of late potentials (RMS-40) (50.4 ± 26.9 µV vs. 27.9 ± 36.3 µV). The sensitivity of using SAECG for diagnosis of ARVC/D was increased from 47% using the established 2 of 3 criteria (i.e. late potentials) to 69% by using a modified criterion of any 1 of the 3 criteria, while maintaining a high specificity of 95%. Abnormal SAECG as defined by this modified criteria was associated with a dilated RV volume and decreased RV ejection fraction detected by cMRI (p<0.05). SAECG abnormalities did not vary with clinical presentation or reliably predict spontaneous or inducible VT, and had limited correlation with ECG findings. Conclusion Using 1 of 3 SAECG criteria contributed to increased sensitivity and specificity for the diagnosis of ARVC/D. This finding is incorporated in the recent modification of the Task Force criteria. PMID:20933608
Grandin, E Wilson; Zamani, Payman; Mazurek, Jeremy A; Troutman, Gregory S; Birati, Edo Y; Vorovich, Esther; Chirinos, Julio A; Tedford, Ryan J; Margulies, Kenneth B; Atluri, Pavan; Rame, J Eduardo
2017-01-01
Right ventricular (RV) adaptation to afterload is crucial for patients undergoing continuous-flow left ventricular assist device (cf-LVAD) implantation. We hypothesized that stratifying patients by RV pulsatile load, using pulmonary arterial compliance (PAC), and RV response to load, using the ratio of central venous to pulmonary capillary wedge pressure (CVP:PCWP), would identify patients at high risk for early right heart failure (RHF) and 6-month mortality after cf-LVAD. During the period from January 2008 to June 2014, we identified 151 patients at our center with complete hemodynamics prior to cf-LVAD. Pulsatile load was estimated using PAC indexed to body surface area (BSA), according to the formula: indexed PAC (PACi) = [SV / (PA systolic - PA diastolic )] / BSA, where SV is stroke volume and PA is pulmonary artery. Patients were divided into 4 hemodynamic groups by PACi and CVP:PCWP. RHF was defined as the need for unplanned RVAD, inotropic support ≥14 days or death due to RHF within 14 days. Risk factors for RHF and 6-month mortality were examined using logistic regression and Cox proportional hazards modeling. Sixty-one patients (40.4%) developed RHF and 34 patients (22.5%) died within 6 months. Patients with RHF had lower PACi (0.92 vs 1.17 ml/mm Hg/m 2 , p = 0.008) and higher CVP:PCWP (0.48 vs 0.37, p = 0.001). Higher PACi was associated with reduced risk of RHF (adjusted odds ratio [adj-OR] 0.61, 95% confidence interval [CI] 0.39 to 0.94, p = 0.025) and low PACi with increased risk of 6-month mortality (adjusted hazard ratio [adj-HR] 3.18, 95% CI 1.40 to 7.25, p = 0.006). Compared to patients with low load (high PACi) and adequate right heart response to load (low CVP:PCWP), patients with low PACi and high CVP:PCWP had an increased risk of RHF (OR 4.74, 95% CI 1.23 to 18.24, p = 0.02) and 6-month mortality (HR 8.68, 95% CI 2.79 to 26.99, p < 0.001). A hemodynamic profile combining RV pulsatile load and response to load identifies patients at high risk for RHF and 6-month mortality after cf-LVAD. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease.
Ju, Chun-Rong; Chen, Miao; Zhang, Jian-Heng; Lin, Zhi-Ya; Chen, Rong-Chang
2016-01-01
To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05). Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05. Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD.
Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease
Ju, Chun-rong; Chen, Miao; Zhang, Jian-heng; Lin, Zhi-ya; Chen, Rong-chang
2016-01-01
Objective To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). Methods The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. Results The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05). Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05. Conclusions Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD. PMID:26998756
Development of porcine model of chronic tachycardia-induced cardiomyopathy.
Paslawska, Urszula; Gajek, Jacek; Kiczak, Liliana; Noszczyk-Nowak, Agnieszka; Skrzypczak, Piotr; Bania, Jacek; Tomaszek, Alicja; Zacharski, Maciej; Sambor, Izabela; Dziegiel, Piotr; Zysko, Dorota; Banasiak, Waldemar; Jankowska, Ewa A; Ponikowski, Piotr
2011-11-17
There are few experimental models of heart failure (HF) in large animals, despite structural and functional similarities to human myocardium. We have developed a porcine model of chronic tachycardia-induced cardiomyopathy. Homogenous siblings of White Large breed swine (n=6) underwent continuous right ventricular (RV) pacing at 170 bpm; 2 subjects served as controls. In the course of RV pacing, animals developed a clinical picture of HF and were presented for euthanasia at subsequent stages: mild, moderate and end-stage HF. Left ventricle (LV) sections were analyzed histologically and relative ANP, BNP, phospholamban and sarcoplasmic reticulum calcium ATPase 2a transcript levels in LV were quantified by real time RT-PCR. In the course of RV pacing, animals demonstrated reduced exercise capacity (time of running until being dyspnoeic: 6.6 ± 0.5 vs. 2.4 ± 1.4 min), LV dilatation (LVEDD: 4.9 ± 0.4 vs. 6.7 ± 0.4 cm), impaired LV systolic function (LVEF: 69 ± 8 vs. 32 ± 7 %), (all baseline vs. before euthanasia, all p<0.001). LV tissues from animals with moderate and end-stage HF demonstrated local foci of interstitial fibrosis, congestion, cardiomyocyte hypertrophy and atrophy, which was not detected in controls and mild HF animals. The up-regulation of ANP and BNP and a reduction in a ratio of sarcoplasmic reticulum calcium ATPase 2a and phospholamban in failing myocardium were observed as compared to controls. In pigs, chronic RV pacing at relatively low rate can be used as an experimental model of HF, as it results in a gradual deterioration of exercise tolerance accompanied by myocardial remodeling confirmed at subcellular level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Scharf, Michael; Oezdemir, Derya; Schmid, Axel; Kemmler, Wolfgang; von Stengel, Simon; May, Matthias S; Uder, Michael; Lell, Michael M
2017-01-01
Although musculoskeletal effects in resistance training are well described, little is known about structural and functional cardiac adaption in formerly untrained subjects. We prospectively evaluated whether short term high intensity (resistance) training (HI(R)T) induces detectable morphologic cardiac changes in previously untrained men in a randomized controlled magnetic resonance imaging (MRI) study. 80 untrained middle-aged men were randomly assigned to a HI(R)T-group (n = 40; 43.5±5.9 years) or an inactive control group (n = 40; 42.0±6.3 years). HI(R)T comprised 22 weeks of training focusing on a single-set to failure protocol in 2-3 sessions/week, each with 10-13 exercises addressing main muscle groups. Repetitions were decreased from 8-10 to 3-5 during study period. Before and after HI(R)T all subjects underwent physiologic examination and cardiac MRI (cine imaging, tagging). Indexed left (LV) and right ventricular (RV) volume (LV: 76.8±15.6 to 78.7±14.8 ml/m2; RV: 77.0±15.5 to 78.7±15.1 ml/m2) and mass (LV: 55.5±9.7 to 57.0±8.8 g/m2; RV: 14.6±3.0 to 15.0±2.9 g/m2) significantly increased with HI(R)T (all p<0.001). Mean LV and RV remodeling indices of HI(R)T-group did not alter with training (0.73g/mL and 0.19g/mL, respectively [p = 0.96 and p = 0.87]), indicating balanced cardiac adaption. Indexed LV (48.4±11.1 to 50.8±11.0 ml/m2) and RV (48.5±11.0 to 50.6±10.7 ml/m2) stroke volume significantly increased with HI(R)T (p<0.001). Myocardial strain and strain rates did not change following resistance exercise. Left atrial volume at end systole slightly increased after HI(R)T (36.2±7.9 to 37.0±8.4 ml/m2, p = 0.411), the ratio to end-diastolic LV volume at baseline and post-training was unchanged (0.47 vs. 0.47, p = 0.79). 22 weeks of HI(R)T lead to measurable, physiological changes in cardiac atrial and ventricular morphologic characteristics and function in previously untrained men. The PUSH-trial is registered at the US National Institutes of Health (ClinicalTrials.gov), NCT01766791.
Konstam, Marvin A; Kiernan, Michael S; Bernstein, Daniel; Bozkurt, Biykem; Jacob, Miriam; Kapur, Navin K; Kociol, Robb D; Lewis, Eldrin F; Mehra, Mandeep R; Pagani, Francis D; Raval, Amish N; Ward, Carey
2018-05-15
The diverse causes of right-sided heart failure (RHF) include, among others, primary cardiomyopathies with right ventricular (RV) involvement, RV ischemia and infarction, volume loading caused by cardiac lesions associated with congenital heart disease and valvular pathologies, and pressure loading resulting from pulmonic stenosis or pulmonary hypertension from a variety of causes, including left-sided heart disease. Progressive RV dysfunction in these disease states is associated with increased morbidity and mortality. The purpose of this scientific statement is to provide guidance on the assessment and management of RHF. The writing group used systematic literature reviews, published translational and clinical studies, clinical practice guidelines, and expert opinion/statements to summarize existing evidence and to identify areas of inadequacy requiring future research. The panel reviewed the most relevant adult medical literature excluding routine laboratory tests using MEDLINE, EMBASE, and Web of Science through September 2017. The document is organized and classified according to the American Heart Association to provide specific suggestions, considerations, or reference to contemporary clinical practice recommendations. Chronic RHF is associated with decreased exercise tolerance, poor functional capacity, decreased cardiac output and progressive end-organ damage (caused by a combination of end-organ venous congestion and underperfusion), and cachexia resulting from poor absorption of nutrients, as well as a systemic proinflammatory state. It is the principal cause of death in patients with pulmonary arterial hypertension. Similarly, acute RHF is associated with hemodynamic instability and is the primary cause of death in patients presenting with massive pulmonary embolism, RV myocardial infarction, and postcardiotomy shock associated with cardiac surgery. Functional assessment of the right side of the heart can be hindered by its complex geometry. Multiple hemodynamic and biochemical markers are associated with worsening RHF and can serve to guide clinical assessment and therapeutic decision making. Pharmacological and mechanical interventions targeting isolated acute and chronic RHF have not been well investigated. Specific therapies promoting stabilization and recovery of RV function are lacking. RHF is a complex syndrome including diverse causes, pathways, and pathological processes. In this scientific statement, we review the causes and epidemiology of RV dysfunction and the pathophysiology of acute and chronic RHF and provide guidance for the management of the associated conditions leading to and caused by RHF. © 2018 American Heart Association, Inc.
Wang, Yali; Hu, Feng; Mu, Xiaoyan; Wu, Feng; Yang, Dechun; Zheng, Guixiang; Sun, Xiaoning; Gong, Kaizheng; Zhang, Zhengang
2016-01-27
Drag-reducing polymers (DRPs) are blood-soluble macromolecules which may increase blood flow and reduce vascular resistance. The purpose of the present study was to observe the effect of DRPs on monocrotaline-induced pulmonary hypertension (PH) in the rat model. A total of 64 male Wistar rats were randomly divided into four groups: Group I (pulmonary hypertension model + DRP treatment); Group II (pulmonary hypertension model + saline treatment); Group III (control + DRP treatment); Group IV (control + saline treatment). After five weeks, comparisons were made of the following indices: survival rate, body weight, blood pressure, right ventricular systolic pressure, right ventricular hypertrophy, wall thickness of pulmonary arteries, the internal diameter of small pulmonary arteries, plasma IL-1β and IL-6. The survival rate after 5 weeks varied significantly across all groups (P=0.013), but the survival rates of Groups I and II were not statistically significantly different. Administration of DRP (intravenous injection twice weekly) attenuated the PH-induced increase in right ventricular systolic pressure and suppressed the increases in right ventricular (RV) weight and the ratio of right ventricular weight to left ventricle plus septum weight (RV/LV + S). DRP treatment also significantly decreased the wall thickness of pulmonary arteries, augmented the internal diameter of small pulmonary arteries, and suppressed increases in the plasma levels of IL-1β and IL-6. DRP treatment with intravenous injection effectively inhibited the development of monocrotaline-induced pulmonary hypertension in the rat model. DRPs may have potential application for the treatment of pulmonary hypertension.
Atrioventricular nonuniformity of pericardial constraint.
Hamilton, Douglas R; Sas, Rozsa; Tyberg, John V
2004-10-01
Physiologists and clinicians commonly refer to "pressure" as a measure of the constraining effects of the pericardium; however, "pericardial pressure" is really a local measurement of epicardial radial stress. During diastole, from the bottom of the y descent to the beginning of the a wave, pericardial pressure over the right atrium (P(pRA)) is approximately equal to that over the right ventricle (P(pRV)). However, in systole, during the interval between the bottom of the x descent and the peak of the v wave, these two pericardial pressures appear to be completely decoupled in that P(pRV) decreases, whereas P(pRA) remains constant or increases. This decoupling indicates considerable mechanical independence between the RA and RV during systole. That is, RV systolic emptying lowers P(pRV), but P(pRA) continues to increase, suggesting that the relation of the pericardium to the RA must allow effective constraint, even though the pericardium over the RV is simultaneously slack. In conclusion, we measured the pericardial pressure responsible for the previously reported nonuniformity of pericardial strain. P(pRA) and P(pRV) are closely coupled during diastole, but during systole they become decoupled. Systolic nonuniformity of pericardial constraint may augment the atrioventricular valve-opening pressure gradient in early diastole and, so, affect ventricular filling.
Implantable cardioverter defibrillator does not cure the heart.
Sławuta, Agnieszka; Boczar, Krzysztof; Ząbek, Andrzej; Gajek, Jacek; Lelakowski, Jacek; Vijayaraman, Pugazhendhi; Małecka, Barbara
2018-01-23
A man with non-ischemic cardiomyopathy, EF 22%, permanent AF and ICD was admitted for elective device replacement. The need for the optimization of the ventricular rate and avoidance of right ventricular pacing made it necessary to up-grade the existing pacing system using direct His bundle pacing and dual chamber ICD. This enabled the regularization of ventricular rate, avoiding the RV pacing and optimize the beta-blocker dose. The one month follow-up already showed reduction in left ventricle diameter, improvement in ejection fraction, NYHA class decrease to II. The His bundle pacing enabled the optimal treatment of the patient resulting in excellent clinical improvement.
Heermann, Philipp; Hedderich, Dennis M; Paul, Matthias; Schülke, Christoph; Kroeger, Jan Robert; Baeßler, Bettina; Wichter, Thomas; Maintz, David; Waltenberger, Johannes; Heindel, Walter; Bunck, Alexander C
2014-10-07
Fibrofatty degeneration of myocardium in ARVC is associated with wall motion abnormalities. The aim of this study was to examine whether Cardiovascular Magnetic Resonance (CMR) based strain analysis using feature tracking (FT) can serve as a quantifiable measure to confirm global and regional ventricular dysfunction in ARVC patients and support the early detection of ARVC. We enrolled 20 patients with ARVC, 30 with borderline ARVC and 22 subjects with a positive family history but no clinical signs of a manifest ARVC. 10 healthy volunteers (HV) served as controls. 15 ARVC patients received genotyping for Plakophilin-2 mutation (PKP-2), of which 7 were found to be positive. Cine MR datasets of all subjects were assessed for myocardial strain using FT (TomTec Diogenes Software). Global strain and strain rate in radial, circumferential and longitudinal mode were assessed for the right and left ventricle. In addition strain analysis at a segmental level was performed for the right ventricular free wall. RV global longitudinal strain rates in ARVC (-0.68 ± 0.36 sec⁻¹) and borderline ARVC (-0.85 ± 0.36 sec⁻¹) were significantly reduced in comparison with HV (-1.38 ± 0.52 sec⁻¹, p ≤ 0.05). Furthermore, in ARVC patients RV global circumferential strain and strain rates at the basal level were significantly reduced compared with HV (strain: -5.1 ± 2.7 vs. -9.2 ± 3.6%; strain rate: -0.31 ± 0.13 sec(-1) vs. -0.61 ± 0.21 sec⁻¹). Even for patients with ARVC or borderline ARVC and normal RV ejection fraction (n=30) global longitudinal strain rate proved to be significantly reduced compared with HV (-0.9 ± 0.3 vs. -1.4 ± 0.5 sec(-1); p < 0.005). In ARVC patients with PKP-2 mutation there was a clear trend towards a more pronounced impairment in RV global longitudinal strain rate. On ROC analysis RV global longitudinal strain rate and circumferential strain rate at the basal level proved to be the best discriminators between ARVC patients and HV (AUC: 0.9 and 0.92, respectively). CMR based strain analysis using FT is an objective and useful measure for quantification of wall motion abnormalities in ARVC. It allows differentiation between manifest or borderline ARVC and HV, even if ejection fraction is still normal.
Transferrin Receptor 1 in Chronic Hypoxia-Induced Pulmonary Vascular Remodeling.
Naito, Yoshiro; Hosokawa, Manami; Sawada, Hisashi; Oboshi, Makiko; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Morisawa, Daisuke; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Fujii, Kenichi; Mano, Toshiaki; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru
2016-06-01
Iron is associated with the pathophysiology of several cardiovascular diseases, including pulmonary hypertension (PH). In addition, disrupted pulmonary iron homeostasis has been reported in several chronic lung diseases. Transferrin receptor 1 (TfR1) plays a key role in cellular iron transport. However, the role of TfR1 in the pathophysiology of PH has not been well characterized. In this study, we investigate the role of TfR1 in the development of hypoxia-induced pulmonary vascular remodeling. PH was induced by exposing wild-type (WT) mice and TfR1 hetero knockout mice to hypoxia for 4 weeks and evaluated via assessment of pulmonary vascular remodeling, right ventricular (RV) systolic pressure, and RV hypertrophy. In addition, we assessed the functional role of TfR1 in pulmonary artery smooth muscle cells in vitro. The morphology of pulmonary arteries did not differ between WT mice and TfR1 hetero knockout mice under normoxic conditions. In contrast, TfR1 hetero knockout mice exposed to 4 weeks hypoxia showed attenuated pulmonary vascular remodeling, RV systolic pressure, and RV hypertrophy compared with WT mice. In addition, the depletion of TfR1 by RNA interference attenuated human pulmonary artery smooth muscle cells proliferation induced by platelet-derived growth factor-BB (PDGF-BB) in vitro. These results suggest that TfR1 plays an important role in the development of hypoxia-induced pulmonary vascular remodeling. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Eindhoven, Jannet A; Menting, Myrthe E; van den Bosch, Annemien E; Cuypers, Judith A A E; Ruys, Titia P E; Witsenburg, Maarten; McGhie, Jackie S; Boersma, Eric; Roos-Hesselink, Jolien W
2014-07-01
Amino-terminal B-type natriuretic peptide (NT-proBNP) may detect early cardiac dysfunction in adults with tetralogy of Fallot (ToF) late after corrective surgery. We aimed to determine the value of NT-proBNP in adults with ToF and establish its relationship with echocardiography and exercise capacity. NT-proBNP measurement, electrocardiography and detailed 2D-echocardiography were performed on the same day in 177 consecutive adults with ToF (mean age 34.6 ± 11.8 years, 58% male, 89% NYHA I, 29.3 ± 8.5 years after surgical correction). Thirty-eight percent of the patients also underwent a cardiopulmonary-exercise test. Median NT-proBNP was 16 [IQR 6.7-33.6] pmol/L, and was elevated in 55%. NT-proBNP correlated with right ventricular (RV) dilatation (r = 0.271, p < 0.001) and RV systolic dysfunction (r = -0.195, p = 0.022), but more strongly with LV systolic dysfunction (r=-0.367, p<0.001), which was present in 69 patients (39%). Moderate or severe pulmonary regurgitation was not associated with higher NT-proBNP. Tricuspid and pulmonary regurgitation peak velocities correlated with NT-proBNP (r = 0.305, p < 0.001 and r = 0.186, p = 0.045, respectively). LV twist was measured with speckle-tracking echocardiography in 71 patients. An abnormal LV twist (20 patients, 28%) was associated with elevated NT-proBNP (p = 0.030). No relationship between NT-proBNP and exercise capacity was found. NT-proBNP levels are elevated in more than 50% of adults with corrected ToF, while they are in stable clinical condition. Higher NT-proBNP is most strongly associated with elevated pulmonary pressures, and with LV dysfunction rather than RV dysfunction. NT-proBNP has the potential to become routine examination in patients with ToF to monitor ventricular function and may be used for timely detection of clinical deterioration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lampe, Brigitte; Hammerstingl, Christoph; Schwab, Jörg Otto; Mellert, Fritz; Stoffel-Wagner, Birgit; Grigull, Andreas; Fimmers, Rolf; Maisch, Bernhard; Nickenig, Georg; Lewalter, Thorsten; Yang, Alexander
2012-10-01
The impact of atrial fibrillation (AF) on heart failure (HF) was evaluated in patients with preserved left ventricular (LV) function and long-term right ventricular (RV) pacing for complete heart block. Clinical, echocardiographic, and laboratory parameters of HF were assessed in 35 patients with established AF who had undergone ablation of the atrioventricular node and pacemaker implantation (Group A) and 31 patients who received dual-chamber pacing for spontaneous complete heart block (Group B). During a follow-up period of 12.7 ± 7.5 years, New York Heart Association (NYHA) functional class increased from 1.3 ± 0.5 to 2.1 ± 0.6 (p < 0.0001) in Group A, and from 1.3 ± 0.4 to 1.6 ± 0.7 (p < 0.01) in Group B. Left ventricular ejection fraction (LVEF) decreased from 59.7 ± 5.1 to 53.0 ± 8.2 (p < 0.0001) in Group A, but remained stable (58.6 ± 4.2 vs. 56.9 ± 7.0 %, p = 0,21) in Group B. At the end of follow-up, markers of LV function were moderately depressed in Group A compared with those in Group B: NYHA class 2.1 ± 0.6 versus 1.6 ± 0.7, p = 0.001; LVEF 53.0 ± 8.2 versus 56.9 ± 7.0 %, p < 0.05; LV diastolic diameter 53.6 ± 5.8 mm versus 50.7 ± 4.9 mm, p < 0.05; N-terminal pro-brain natriuretic peptide (NT-proBNP) 1116.8 ± 883.9 versus 622.9 ± 1059.4 pg/ml, p < 0.05. Progression of paroxysmal AF to permanent AF during follow-up was common, while new onset of AF was rare. Permanent AF was an independent predictor of declining LVEF >10 %, increasing NYHA class ≥1, and NT-proBNP levels >1,000 pg/ml. Permanent AF was associated with adverse effects on LV function and symptoms of HF in patients with long-term RV pacing for complete heart block, and appears to play an important role in the development of HF in this specific patient cohort.
Tang, Dalin; Del Nido, Pedro J; Yang, Chun; Zuo, Heng; Huang, Xueying; Rathod, Rahul H; Gooty, Vasu; Tang, Alexander; Wu, Zheyang; Billiar, Kristen L; Geva, Tal
2016-01-01
Accurate calculation of ventricular stress and strain is critical for cardiovascular investigations. Sarcomere shortening in active contraction leads to change of ventricular zero-stress configurations during the cardiac cycle. A new model using different zero-load diastole and systole geometries was introduced to provide more accurate cardiac stress/strain calculations with potential to predict post pulmonary valve replacement (PVR) surgical outcome. Cardiac magnetic resonance (CMR) data were obtained from 16 patients with repaired tetralogy of Fallot prior to and 6 months after pulmonary valve replacement (8 male, 8 female, mean age 34.5 years). Patients were divided into Group 1 (n = 8) with better post PVR outcome and Group 2 (n = 8) with worse post PVR outcome based on their change in RV ejection fraction (EF). CMR-based patient-specific computational RV/LV models using one zero-load geometry (1G model) and two zero-load geometries (diastole and systole, 2G model) were constructed and RV wall thickness, volume, circumferential and longitudinal curvatures, mechanical stress and strain were obtained for analysis. Pairwise T-test and Linear Mixed Effect (LME) model were used to determine if the differences from the 1G and 2G models were statistically significant, with the dependence of the pair-wise observations and the patient-slice clustering effects being taken into consideration. For group comparisons, continuous variables (RV volumes, WT, C- and L- curvatures, and stress and strain values) were summarized as mean ± SD and compared between the outcome groups by using an unpaired Student t-test. Logistic regression analysis was used to identify potential morphological and mechanical predictors for post PVR surgical outcome. Based on results from the 16 patients, mean begin-ejection stress and strain from the 2G model were 28% and 40% higher than that from the 1G model, respectively. Using the 2G model results, RV EF changes correlated negatively with stress (r = -0.609, P = 0.012) and with pre-PVR RV end-diastole volume (r = -0.60, P = 0.015), but did not correlate with WT, C-curvature, L-curvature, or strain. At begin-ejection, mean RV stress of Group 2 was 57.4% higher than that of Group 1 (130.1±60.7 vs. 82.7±38.8 kPa, P = 0.0042). Stress was the only parameter that showed significant differences between the two groups. The combination of circumferential curvature, RV volume and the difference between begin-ejection stress and end-ejection stress was the best predictor for post PVR outcome with an area under the ROC curve of 0.855. The begin-ejection stress was the best single predictor among the 8 individual parameters with an area under the ROC curve of 0.782. The new 2G model may be able to provide more accurate ventricular stress and strain calculations for potential clinical applications. Combining morphological and mechanical parameters may provide better predictions for post PVR outcome.
Tanshinone IIA protects against pulmonary arterial hypertension in broilers.
Hu, Guoliang; Song, Yalu; Ke, Shanlin; Cao, Huabin; Zhang, Caiying; Deng, Guangfu; Yang, Fei; Zhou, Sihui; Liu, Pei; Guo, Xiaoquan; Liu, Ping
2017-05-01
This investigation was conducted to study the effects of tanshinone IIA (TIIA) on pulmonary arterial hypertension (PAH) in broilers. Two-hundred newly hatched Arbor Acre commercial broilers were randomly divided into 3 groups. All groups, with the exception of the control group (tap water), were given NaCl water (0.3%) starting on the d 15, and broilers in the protected group were fed a diet supplemented with TIIA (2.5 g/kg) starting on the d 15. On d 28, 35, 42, and 49, the ratio of the right ventricular weight to the total ventricular weight (RV: TV) and the values of other biochemical indicators for each group chickens were determined. The concentrations of interleukin-6 (IL-6), interleukin-1β (IL-1β), nuclear factor kappa (NF-κB), and P38 (a mitogen-activated protein kinase) were measured using enzyme-linked immune sorbent assays (ELISA). The results showed that the proportion of chickens in the diseased group with an RV:TV ratio in the range of 0.250 to 0.299 (10%) was significantly higher (25 to 30%) compared to that of the other groups (P < 0.05), and the proportion in all chickens was 28%. In addition, the IL-6, IL-1β, NF-κB, and P38 protein concentrations were higher in the diseased group, whereas there were no differences between the control group and the protected group. Moreover, the measurements of body weight, liver function, kidney function and electrolytes showed significant differences between the diseased group and the other groups. These findings suggest that tanshinone IIA may protect broilers from PAH, which is an important piece of information for the poultry industry. © 2016 Poultry Science Association Inc.
Stratton, Matthew S.; McKinsey, Timothy A.
2016-01-01
Acetylation of lysine residues within nucleosomal histone tails provides a crucial mechanism for epigenetic control of gene expression. Acetyl groups are coupled to lysine residues by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), which are also commonly referred to as “writers” and “erasers”, respectively. In addition to altering the electrostatic properties of histones, lysine acetylation often creates docking sites for bromodomain-containing “reader” proteins. This review focuses on epigenetic control of pulmonary hypertension (PH) and associated right ventricular (RV) cardiac hypertrophy and failure. Effects of small molecule HDAC inhibitors in pre-clinical models of PH are highlighted. Furthermore, we describe the recently discovered role of bromodomain and extraterminal (BET) reader proteins in the control of cardiac hypertrophy, and provide evidence suggesting that one member of this family, BRD4, contributes to the pathogenesis of RV failure. Together, the data suggest intriguing potential for pharmacological epigenetic therapies for the treatment of PH and right-sided heart failure. PMID:25707943
Vavlitou, A; Minas, G; Zannetos, S; Kyprianou, T; Tsagourias, M; Matamis, D
2016-01-01
Patent foramen ovale (PFO) is an anatomic variant that may lead to several pathological conditions, notably right to left shunt, paradoxical embolism, hypoxemia, and cerebral fat embolism. Mechanical positive pressure ventilation may increase the prevalence of PFO opening in Intensive Care Unit (ICU) patients; however, the respiratory and hemodynamic determinants of PFO opening have been poorly investigated. Contrast-enhanced transesophageal echocardiogram (ce-TEE) is considered the gold standard for PFO detection. We prospectively performed a multicenter study using ce-TEE in order to determine the respiratory and hemodynamic factors that may lead to PFO opening. One hundred and eight consecutive ICU adult patients under mechanical ventilation from three tertiary care hospitals, were included in the study. A standard multiplane ce-TEE was performed, and the dimensions and function of the right and left ventricle were studied. In each patient, the right ventricle (RV) end-diastolic area, RV end-systolic area, left ventricle (LV) end-diastolic area, and LV ejection fraction were measured using the modified Simpson's rule and the four-chamber view. At least three bubble tests were performed to detect PFO opening. Ventilatory parameters such as tidal volume, plateau pressure, static lung compliance, and positive end-expiratory pressure were recorded during the bubble test. Data for 81 men and 27 women were analyzed. PFO was detected in 27 % of the study population. Statistical significance was found between the presence of PFO and plateau pressure (odds ratio 3.421, 95 % CI: 1.2-9.4, p =0.017). Additionally, the presence of right ventricular dilatation (RV>LV) was strongly associated with PFO opening (odds ratio 3.163, 95 % CI: 1.2-8.075, p =0.018). In this group of mechanically ventilated, critically ill adult patients, right ventricular dilatation and plateau pressure above 26 mmHg were significantly associated with foramen ovale opening. Hippokratia 2016, 20(3): 209-213.
Steding-Ehrenborg, K; Arvidsson, P M; Töger, J; Rydberg, M; Heiberg, E; Carlsson, M; Arheden, H
2016-01-01
The kinetic energy (KE) of intracardiac blood may play an important role in cardiac function. The aims of the present study were to 1) quantify and investigate the determinants of KE, 2) compare the KE expenditure of intracardiac blood between athletes and control subjects, and 3) quantify the amount of KE inside and outside the diastolic vortex. Fourteen athletes and fourteen volunteers underwent cardiac MRI, including four-dimensional phase-contrast sequences. KE was quantified in four chambers, and energy expenditure was calculated by determining the mean KE/cardiac index. Left ventricular (LV) mass was an independent predictor of diastolic LVKE (R(2) = 0.66, P < 0.001), whereas right ventricular (RV) end-diastolic volume was important for diastolic RVKE (R(2) = 0.76, P < 0.001). The mean KE/cardiac index did not differ between groups (control subjects: 0.53 ± 0.14 mJ·l(-1)·min·m(2) and athletes: 0.56 ± 0.21 mJ·l(-1)·min·m(2), P = 0.98). Mean LV diastolic vortex KE made up 70 ± 1% and 73 ± 2% of total LV diastolic KE in athletes and control subjects (P = 0.18). In conclusion, the characteristics of the LV as a pressure pump and the RV as a volume pump are demonstrated as an association between LVKE and LV mass and between RVKE and end-diastolic volume. This also suggests different filling mechanisms where the LV is dependent on diastolic suction, whereas the RV fills with a basal movement of the atrioventricular plane over "stationary" blood. Both groups had similar energy expenditure for intracardiac blood flow, indicating similar pumping efficiency, likely explained by the lower heart rate that cancels the higher KE per heart beat in athletes. The majority of LVKE is found within the LV diastolic vortex, in contrast to earlier findings. Copyright © 2016 the American Physiological Society.
Sharma, Sharan Prakash; Dahal, Khagendra; Dominic, Paari; Sangha, Rajbir S
2018-04-01
Traditionally the right ventricular (RV) pacing lead is placed in the RV apex in cardiac resynchronization therapy (CRT). It is not clear whether nonapical placement of the RV lead is associated with a better response to CRT. We aimed to perform a meta-analysis of all randomized controlled trials (RCTs) that compared apical and nonapical RV lead placement in CRT. We searched PubMed, EMBASE, Cochrane, Scopus, and relevant references for studies and performed meta-analysis using random effects model. Our main outcome measures were all-cause mortality, composite of death and heart failure hospitalization, improvement in ejection fraction (EF), left ventricle end-diastolic volume (LVEDV), left ventricle end-systolic volume (LVESV), and adverse events. Seven RCTs with a total population of 1641 patients (1199 apical and 492 nonapical) were included in our meta-analysis. There was no difference in all-cause mortality (5% vs 4.3%, odds ratio (OR) = 0.86; 95% confidence interval (CI) 0.45-1.64; P = .65; I 2 = 11%) and a composite of death and heart failure hospitalization (14.2% vs 12.9%, OR = 0.92; 95% CI: 0.61-1.38; P = .68; I 2 = 0) between apical and nonapical groups. No difference in improvement in EF (Weighted mean difference (WMD) = 0.37; 95% CI: -2.75-3.48; P = .82; I 2 = 68%), change in LVEDV (WMD = 3.67; 95% CI: -4.86-12.20; P = .40; I 2 = 89%) and LVESV (WMD = -1.20; 95% CI: -4.32-1.91; P = .45; I 2 = 0) were noted between apical and nonapical groups. Proportion of patients achieving >15% improvement in EF was similar in both groups (OR = 0.85; 95% CI: 0.62-1.16; P = .31; I 2 = 0). In patients with CRT, nonapical RV pacing is not associated with improved clinical and echocardiographic outcomes compared with RV apical pacing.
Platts, David G; Diab, Sara; Dunster, Kimble R; Shekar, Kiran; Burstow, Darryl J; Sim, Beatrice; Tunbridge, Matthew; McDonald, Charles; Chemonges, Saul; Chan, Jonathan; Fraser, John F
2015-03-01
Transthoracic echocardiography (TTE) during extra corporeal membrane oxygenation (ECMO) is important but can be technically challenging. Contrast-specific TTE can improve imaging in suboptimal studies. These contrast microspheres are hydrodynamically labile structures. This study assessed the feasibility of contrast echocardiography (CE) during venovenous (VV) ECMO in a validated ovine model. Twenty-four sheep were commenced on VV ECMO. Parasternal long-axis (Plax) and short-axis (Psax) views were obtained pre- and postcontrast while on VV ECMO. Endocardial definition scores (EDS) per segment were graded: 1 = good, 2 = suboptimal 3 = not seen. Endocardial border definition score index (EBDSI) was calculated for each view. Endocardial length (EL) in the Plax view for the left ventricle (LV) and right ventricle (RV) was measured. Summation EDS data for the LV and RV for unenhanced TTE (UE) versus CE TTE imaging: EDS 1 = 289 versus 346, EDS 2 = 38 versus 10, EDS 3 = 33 versus 4, respectively. Wilcoxon matched-pairs rank-sign tests showed a significant ranking difference (improvement) pre- and postcontrast for the LV (P < 0.0001), RV (P < 0.0001) and combined ventricular data (P < 0.0001). EBDSI for CE TTE was significantly lower than UE TTE for the LV (1.05 ± 0.17 vs. 1.22 ± 0.38, P = 0.0004) and RV (1.06 ± 0.22 vs. 1.42 ± 0.47, P = 0.0.0006) respectively. Visualized EL was significantly longer in CE versus UE for both the LV (58.6 ± 11.0 mm vs. 47.4 ± 11.7 mm, P < 0.0001) and the RV (52.3 ± 8.6 mm vs. 36.0 ± 13.1 mm, P < 0.0001), respectively. Despite exposure to destructive hydrodynamic forces, CE is a feasible technique in an ovine ECMO model. CE results in significantly improved EDS and increased EL. © 2014, Wiley Periodicals, Inc.
Teijeira-Fernandez, Elvis; Cochet, Hubert; Bourier, Felix; Takigawa, Masateru; Cheniti, Ghassen; Thompson, Nathaniel; Frontera, Antonio; Camaioni, Claudia; Massouille, Gregoire; Jalal, Zakaria; Derval, Nicolas; Iriart, Xavier; Denis, Arnaud; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Thambo, Jean-Benoit; Sacher, Frederic
2018-03-20
Voltage criteria for ventricular mapping have been obtained from small series of patients and prioritizing high specificity. The purpose of this study was to analyse the potential influence of contact force (CF) on voltage mapping and to define voltage cutoff values for right ventricular (RV) scar using the tetralogy of Fallot as a model of transmural RV scar and magnetic resonance imaging (MRI) as reference. Fourteen patients (age 32.6 ± 14.3 years; 5 female) with repaired tetralogy of Fallot underwent high-resolution cardiac MRI (1.25 × 1.25 × 2.5 mm). Scar, defined as pixels with intensity >50% maximum, was mapped over the RV geometry and merged within the CARTO system to RV endocardial voltage maps acquired using a 3.5-mm ablation catheter with CF technology (SmartTouch, Biosense Webster). In total, 2446 points were analyzed, 915 within scars and 1531 in healthy tissue according to MRI. CF correlated to unipolar (ρ = 0.186; P <.001) and bipolar voltage in healthy tissue (ρ = 0.245; P <.001) and in scar tissue. Receiver operating characteristic curve analysis excluding points with very low CF (<5g) identified optimal voltage cutoffs of 5.19 mV for unipolar voltage and 1.76 mV for bipolar voltage, yielding sensitivity/specificity of 0.89/0.85 and 0.9/0.9, respectively. CF is an important factor to be taken into account for voltage mapping. If good CF is applied, unipolar and bipolar voltage cutoffs of 5.19 mV and 1.76 mV are optimal for identifying RV scar on endocardial mapping with the SmartTouch catheter. Data on the diagnostic accuracy of different voltage cutoff values are provided. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
van Riel, Annelieke C. M. J.; Systrom, David M.; Oliveira, Rudolf K. F.; Landzberg, Michael J.; Mulder, Barbara J. M.; Bouma, Berto J.; Maron, Bradley A.; Shah, Amil M.; Waxman, Aaron B.
2017-01-01
Background We recently reported a novel observation that many patients with equal resting supine right ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract(RVOT) pressure gradient during upright exercise. The current work details the characteristics of patients who develop such an RVOT gradient. Methods We studied 294 patients (59.7±15.5 years-old, 49% male) referred for clinical invasive cardiopulmonary exercise testing, who did not have a resting RVOT pressure gradient defined by the simultaneously measured peak-to-peak difference between RV and PA systolic pressures. Results The magnitude of RVOT gradient did not correspond to clinical or hemodynamic findings suggestive of right heart failure; rather, higher gradients were associated with favorable exercise findings. The presence of a high peak RVOT gradient (90th percentile, ≥33mmHg) was associated with male sex (70 vs. 46%, p = 0.01), younger age (43.6±17.7 vs. 61.8±13.9 years, p<0.001), lower peak right atrial pressure (5 [3–7] vs. 8 [4–12]mmHg, p<0.001), higher peak heart rate (159±19 vs. 124±26 beats per minute, p<0.001), and higher peak cardiac index (8.3±2.3 vs. 5.7±1.9 L/min/m2, p<0.001). These associations persisted when treating peak RVOT as a continuous variable and after age and sex adjustment. At peak exercise, patients with a high exercise RVOT gradient had both higher RV systolic pressure (78±11 vs. 66±17 mmHg, p<0.001) and lower PA systolic pressure (34±8 vs. 50±19 mmHg, p<0.001). Conclusions Development of a systolic RV-PA pressure gradient during upright exercise is not associated with an adverse hemodynamic exercise response and may represent a normal physiologic finding in aerobically fit young people. PMID:28636647
Di Maria, Michael V; Younoszai, Adel K; Mertens, Luc; Landeck, Bruce F; Ivy, D Dunbar; Hunter, Kendall S; Friedberg, Mark K
2014-09-01
RV performance is an important determinant of outcomes in children with pulmonary arterial hypertension (PAH). RV stroke work (RVSW), the product of mean pulmonary artery pressure and stroke volume, integrates contractility, afterload and ventricular-vascular coupling. RVSW has not been evaluated in children with PAH. We tested the hypothesis that RVSW would be a predictor of outcomes in children with PAH. Patients in the Children's Hospital Colorado PAH database were evaluated retrospectively, and those with idiopathic PAH and those with minor or repaired congenital heart disease were included. Haemodynamic data were obtained by catheterisation and echocardiography, performed within 3 months. RVSW was calculated: mean pulmonary arterial pressure × stroke volume, and indexed to body surface area. Statistics included Kruskal-Wallis, Wilcoxon rank sum, and Spearman correlation. Fifty patients were included. Median age of the cohort was 9.5 (6.0, 15.7) years, with a median indexed pulmonary vascular resistance (PVRi) of 6.5 (3.7, 11.6) WU m(2). RVSW had a significant association with PVRi (r=0.6, p<0.0001), tricuspid annular systolic plane excursion (r=0.55, p=0.0001), and RV fractional area change (r=-0.4, p=0.005). Grouped by WHO class, there was a significant difference in RVSW (p=0.04). Need for atrial septostomy and death were associated with higher RVSW (p=0.04 and p=0.03, respectively). RVSW can be estimated in children with PAH, and is significantly associated with abnormal WHO class, the need for septostomy, as well as mortality. Indices accounting for RV performance as well as ventricular-vascular coupling may be useful in the prognosis and, hence, management of children with PAH. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Dawood, Faten A; Rahmat, Rahmita W; Kadiman, Suhaini B; Abdullah, Lili N; Zamrin, Mohd D
2014-01-01
This paper presents a hybrid method to extract endocardial contour of the right ventricular (RV) in 4-slices from 3D echocardiography dataset. The overall framework comprises four processing phases. In Phase I, the region of interest (ROI) is identified by estimating the cavity boundary. Speckle noise reduction and contrast enhancement were implemented in Phase II as preprocessing tasks. In Phase III, the RV cavity region was segmented by generating intensity threshold which was used for once for all frames. Finally, Phase IV is proposed to extract the RV endocardial contour in a complete cardiac cycle using a combination of shape-based contour detection and improved radial search algorithm. The proposed method was applied to 16 datasets of 3D echocardiography encompassing the RV in long-axis view. The accuracy of experimental results obtained by the proposed method was evaluated qualitatively and quantitatively. It has been done by comparing the segmentation results of RV cavity based on endocardial contour extraction with the ground truth. The comparative analysis results show that the proposed method performs efficiently in all datasets with overall performance of 95% and the root mean square distances (RMSD) measure in terms of mean ± SD was found to be 2.21 ± 0.35 mm for RV endocardial contours.
Topilsky, Yan; Oh, Jae K; Shah, Dipesh K; Boilson, Barry A; Schirger, John A; Kushwaha, Sudhir S; Pereira, Naveen L; Park, Soon J
2011-03-01
The purpose of the study was to identify echocardiographic predictors of adverse outcome in patients implanted with continuous-flow left ventricular assist devices (LVAD). Continuous flow LVAD have become part of the standard of care for the treatment of advanced heart failure. However, knowledge of echocardiographic predictors of outcome after LVAD are lacking. Overall, 83 patients received continuous-flow LVAD (HeartMate II, Thoratec Corporation, Pleasanton, California) from February 2007 to June 2010. The LVAD database, containing various echocardiographic parameters, was examined to analyze their influence on in-hospital mortality, a compound cardiac event (in-hospital mortality or acute right ventricular [RV] dysfunction), and long-term mortality. Eight patients died before discharge (operative mortality 9.6%), and another 15 patients were considered to have acute RV dysfunction immediately after surgery. Patients with relatively small left ventricular end-diastolic diameters (<63 mm) had significantly higher risk for in-hospital mortality (odds ratio [OR]: 0.9; 95% confidence interval [CI]: 0.83 to 0.99; p = 0.04) or occurrence of the compound cardiac event (OR: 0.89; 95% CI: 0.84 to 0.95; p < 0.001). The most significant predictor of outcome was the decreased timing interval between the onset and the cessation of tricuspid regurgitation flow corrected for heart rate (TRDc), a surrogate for early systolic equalization of RV and right atrial pressure. Short TRDc predicted in-hospital mortality (OR: 0.85; 95% CI: 0.74 to 0.97; p = 0.01) and the compound cardiac event (OR: 0.83; 95% CI: 0.74 to 0.91; p < 0.0001). Multivariate analysis based on a logistic regression model demonstrated that the accuracy of predicting the 30-day compound adverse outcome was improved with the addition of echocardiographic variables when added to the commonly used hemodynamic or clinical scores. TRDc predicted long-term survival, with adjusted risk ratios of 0.89 for death from any cause (95% CI: 0.83 to 0.96; p = 0.003) and 0.88 for cardiac-related death (95% CI: 0.77 to 0.98; p = 0.03). The presence of either a relatively small left ventricle (<63 mm) or early systolic equalization of RV and right atrial pressure (short TRDc) demonstrated by echocardiography is associated with increased 30-day morbidity and mortality. Prediction of early adverse outcomes by echocardiographic parameters is additive to laboratory or hemodynamic variables. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Can, Mehmet Mustafa; Özveren, Olcay; Biteker, Murat; Şengül, Cihan; Uz, Ömer; Işılak, Zafer; Kırılmaz, Ata
2013-06-01
Pulmonary embolism (PE) and severe pulmonary stenosis (PS) are two distinct conditions accompanied by increased pressure load of the right ventricle (RV). Despite major advances in our understanding of the mechanisms of RV adaptation to the increased pressure, substantial gaps in our knowledge remain unsettled. One of much less known aspect of pressure overload of RV is its impact on electrocardiographic (ECG) changes. In this study, we aimed to study whether acute and chronic RV overload are accompanied by different ECG patterns. Thirty-eight patients with PE underwent ECG monitoring were compared with 20 matched patients with PS in this observational retrospective study. ECG abnormalities suggestive of RV overload were recorded and analyzed in both groups. Logistic regression analysis was used to define the predictors of chronic RV overload. Among the ECG changes studied, premature atrial contraction (OR-12.2, 95% CI, 1.3-107, p=0.008), right axis deviation (OR-20.4, 95% CI 4.2-98, p<0.001), indeterminate axis (OR-0.11, 95% CI 0.02-0.44, p=0.001 0.11), incomplete right bundle branch block (OR-4.2, 95% CI, 1.1-15.4, p=0.02), late R in aVR (OR-8.4, 95% CI 2.1-33.2, p=0.001), qR in V1 lead (OR-8.3, 95% CI 1.2-74.8, p=0.03) were found to be the independent predictors of chronic RV pressure overload. Our data indicate that the ECG changes that attributed to the acute RV pressure loading states may be more prevalent in chronic RV overload as compared with acute RV overload.
Lindman, Brian R; Maniar, Hersh S; Jaber, Wael A; Lerakis, Stamatios; Mack, Michael J; Suri, Rakesh M; Thourani, Vinod H; Babaliaros, Vasilis; Kereiakes, Dean J; Whisenant, Brian; Miller, D Craig; Tuzcu, E Murat; Svensson, Lars G; Xu, Ke; Doshi, Darshan; Leon, Martin B; Zajarias, Alan
2015-04-01
Tricuspid regurgitation (TR) and right ventricular (RV) dysfunction adversely affect outcomes in patients with heart failure or mitral valve disease, but their impact on outcomes in patients with aortic stenosis treated with transcatheter aortic valve replacement has not been well characterized. Among 542 patients with symptomatic aortic stenosis treated in the Placement of Aortic Transcatheter Valves (PARTNER) II trial (inoperable cohort) with a Sapien or Sapien XT valve via a transfemoral approach, baseline TR severity, right atrial and RV size and RV function were evaluated by echocardiography according to established guidelines. One-year mortality was 16.9%, 17.2%, 32.6%, and 61.1% for patients with no/trace (n=167), mild (n=205), moderate (n=117), and severe (n=18) TR, respectively (P<0.001). Increasing severity of RV dysfunction as well as right atrial and RV enlargement were also associated with increased mortality (P<0.001). After multivariable adjustment, severe TR (hazard ratio, 3.20; 95% confidence interval, 1.50-6.82; P=0.003) and moderate TR (hazard ratio, 1.60; 95% confidence interval, 1.02-2.52; P=0.042) remained associated with increased mortality as did right atrial and RV enlargement, but not RV dysfunction. There was an interaction between TR and mitral regurgitation severity (P=0.04); the increased hazard of death associated with moderate/severe TR only occurred in those with no/trace/mild mitral regurgitation. In inoperable patients treated with transcatheter aortic valve replacement, moderate or severe TR and right heart enlargement are independently associated with increased 1-year mortality; however, the association between moderate or severe TR and an increased hazard of death was only found in those with minimal mitral regurgitation at baseline. These findings may improve our assessment of anticipated benefit from transcatheter aortic valve replacement and support the need for future studies on TR and the right heart, including whether concomitant treatment of TR in operable but high-risk patients with aortic stenosis is warranted. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01314313. © 2015 American Heart Association, Inc.
Baur, Alexander Daniel Jacques; Kunz, Florian; Schwenke, Carsten; Pschowski, René; Röpke, Torsten Kai; Pavel, Marianne; Denecke, Timm
2016-01-01
The aim of this study was to evaluate signs of right-sided heart dysfunction on staging computed tomography (CT) as indirect indicators of carcinoid heart disease. Patients with functionally active neuroendocrine neoplasm and different grades of tricuspid valve regurgitation (TR) were identified. Two readers independently reviewed contrast-enhanced staging CT performed within 90 days before or after echocardiography. Logistic regression and receiver operating analyses were used to asses the predictive value of right ventricle-left ventricle ratio (RV-LV ratio), ventricular septal bowing, retrograde contrast filling of the hepatic veins during contrast injection, and time to aortal enhancement greater than 100 Hounsfield units during bolus tracking for TR. Forty-four examinations were evaluated (11 with TR = 0, 16 with TR = 1, 9 with TR = 2, and 8 with TR = 3). Right ventricle-LV ratio was found to predict TR less than or equal to 1 versus TR greater than 1 (P = 0.0188) and TR less than or equal to 1 versus TR equals 2 (P = 0.0082). A prolonged time to aortal enhancement greater than 100 Hounsfield units during bolus tracking predicted TR less than or equal to 1 versus TR greater than 1 (P = 0.0077). Area under the curve for RV-LV ratio was 0.86 when differentiating TR less than or equal to 1 versus TR equals 2. With a cutoff of 1.07, sensitivity was 0.89, and specificity was 0.72. In patients with functionally active neuroendocrine neoplasm, an RV-LV ratio of more than 1.07 predicted TR with a relatively high sensitivity and moderate specificity and thus could serve as an indicator of subclinical carcinoid heart disease on routine staging CT.
Right ventricle best predicts the race performance in amateur ironman athletes.
Bernheim, Alain Marcel; Attenhofer Jost, Christine Helena; Zuber, Michel; Pfyffer, Monica; Seifert, Burkhardt; De Pasquale, Gabriella; Linka, Andre; Faeh-Gunz, Anja; Medeiros-Domingo, Argelia; Knechtle, Beat
2013-08-01
The ironman (IM) triathlon is a popular ultraendurance competition, consisting of 3.8 km of swimming, 180.2 km of cycling, and 42.2 km of running. The aim of this study was to investigate the predictors of IM race time, comparing echocardiographic findings, anthropometric measures, and training characteristics. Amateur IM athletes (ATHL) participating in the Zurich IM race in 2010 were included. Participants were examined the day before the race by a comprehensive echocardiographic examination. Moreover, anthropometric measurements were obtained the same day. During the 3 months before the race, each IM-ATHL maintained a detailed training diary. Recorded data were related to total IM race time. Thirty-eight IM finishers (mean ± SD age = 38 ± 9 yr, 32 men [84%]) were evaluated. Total race time was 684 ± 89 min (mean ± SD). For right ventricular fractional area change (45% ± 7%, Spearman ρ = -0.33, P = 0.05), a weak correlation with race time was observed. Race performance exhibited stronger associations with percent body fat (15.2 ± 5.6%, ρ = 0.56, P = 0.001), speed in running training (11.7 ± 1.2 km · h(-1), ρ = -0.52, P = 0.002), and left ventricular myocardial mass index (98 ± 24 g · m(-2), ρ = -0.42, P = 0.009). The strongest association was found between race time and right ventricular end-diastolic area (22 ± 4 cm2, ρ = -0.64, P < 0.0001). In multivariate analysis, right ventricular end-diastolic area (β = -16.7, 95% confidence interval = -27.3 to -6.1, P = 0.003) and percent body fat (β = 6.8, 95% confidence interval = 1.1-12.6, P = 0.02) were independently predictive of IM race time. In amateur IM-ATHL, RV end-diastolic area and percent body fat were independently related to race performance. RV end-diastolic area was the strongest predictor of race time. The role of the RV in endurance exercise may thus be more important than previously thought and needs to be further studied.
Hickson, LaTonya J; Negrotto, Sara M; Onuigbo, Macaulay; Scott, Christopher G; Rule, Andrew D; Norby, Suzanne M; Albright, Robert C; Casey, Edward T; Dillon, John J; Pellikka, Patricia A; Pislaru, Sorin V; Best, Patricia J M; Villarraga, Hector R; Lin, Grace; Williams, Amy W; Nkomo, Vuyisile T
2016-03-15
Cardiovascular disease among hemodialysis (HD) patients is linked to poor outcomes. The Acute Dialysis Quality Initiative Workgroup proposed echocardiographic (ECHO) criteria for structural heart disease (SHD) in dialysis patients. The association of SHD with important patient outcomes is not well defined. This study sought to determine prevalence of ECHO-determined SHD and its association with survival among incident HD patients. We analyzed patients who began chronic HD from 2001 to 2013 who underwent ECHO ≤1 month prior to or ≤3 months following initiation of HD (n = 654). Mean patient age was 66 ± 16 years, and 60% of patients were male. ECHO findings that met 1 or more and ≥3 of the new criteria were discovered in 87% and 54% of patients, respectively. Over a median of 2.4 years, 415 patients died: 108 (26%) died within 6 months. Five-year mortality was 62%. Age- and sex-adjusted structural heart disease variables associated with death were left ventricular ejection fraction (LVEF) ≤45% (hazard ratio [HR]: 1.48; confidence interval [CI]: 1.20 to 1.83) and right ventricular (RV) systolic dysfunction (HR: 1.68; CI: 1.35 to 2.07). An additive of higher death risk included LVEF ≤45% and RV systolic dysfunction rather than neither (HR: 2.04; CI: 1.57 to 2.67; p = 0.53 for test for interaction). Following adjustment for age, sex, race, diabetic kidney disease, and dialysis access, RV dysfunction was independently associated with death (HR: 1.66; CI 1.34 to 2.06; p < 0.001). SHD was common in our HD study population, and RV systolic dysfunction independently predicted mortality. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Czosek, Richard J; Cnota, James F; Knilans, Timothy K; Pratt, Jesse; Guerrier, Karine; Anderson, Jeffrey B
2014-09-01
In attempts to detect diseases that may place adolescents at risk for sudden death, some have advocated for population-based screening. Controversy exists over electrocardiography (ECG) screening due to the lack of specificity, cost, and detrimental effects of false positive or extraneous outcomes. Analyze the relationship between precordial lead voltage on ECG and left ventricle (LV) mass by echocardiogram in adolescent athletes. Retrospective cohort analysis of a prospectively obtained population of self-identified adolescent athletes during sports screening with ECG and echocardiogram. Correlation between ECG LV voltages (R wave in V6 [RV6] and S wave in lead V1 [SV1]) was compared to echocardiogram-based measurements of left ventricular mass. Potential effects on ECG voltages by body anthropometrics, including weight, body mass index (BMI), and body surface area were analyzed, and ECG voltages indexed to BMI were compared to LV mass indices to analyze for improved correlation. A total of 659 adolescents enrolled in this study (64% male). The mean age was 15.4 years (14-18). The correlations between LV mass and RV6, SV1, and RV6 + SV1 were all less than 0.20. The false positive rate for abnormal voltages was relatively high (5.5%) but improved if abnormal voltages in both RV6 and SV1 were mandated simultaneously (0%). Indexing ECG voltages to BMI significantly improved correlation to LV mass, though false positive findings were increased (12.9%). There is poor correlation between ECG precordial voltages and echocardiographic LV mass. This relationship is modified by BMI. This finding may contribute to the poor ECG screening characteristics. ©2014 Wiley Periodicals, Inc.
Benitez-Amaro, Aleyda; Samouillan, Valerie; Jorge, Esther; Dandurand, Jany; Nasarre, Laura; de Gonzalo-Calvo, David; Bornachea, Olga; Amoros-Figueras, Gerard; Lacabanne, Colette; Vilades, David; Leta, Ruben; Carreras, Francesc; Gallardo, Alberto; Lerma, Enrique; Cinca, Juan; Guerra, Jose M; Llorente-Cortés, Vicenta
2018-06-19
Our aim was to identify biophysical biomarkers of ventricular remodelling in tachycardia-induced dilated cardiomyopathy (DCM). Our study includes healthy controls (N = 7) and DCM pigs (N = 10). Molecular analysis showed global myocardial metabolic abnormalities, some of them related to myocardial hibernation in failing hearts, supporting the translationality of our model to study cardiac remodelling in dilated cardiomyopathy. Histological analysis showed unorganized and agglomerated collagen accumulation in the dilated ventricles and a higher percentage of fibrosis in the right (RV) than in the left (LV) ventricle (P = .016). The Fourier Transform Infrared Spectroscopy (FTIR) 1st and 2nd indicators, which are markers of the myofiber/collagen ratio, were reduced in dilated hearts, with the 1st indicator reduced by 45% and 53% in the RV and LV, respectively, and the 2nd indicator reduced by 25% in the RV. The 3rd FTIR indicator, a marker of the carbohydrate/lipid ratio, was up-regulated in the right and left dilated ventricles but to a greater extent in the RV (2.60-fold vs 1.61-fold, P = .049). Differential scanning calorimetry (DSC) showed a depression of the freezable water melting point in DCM ventricles - indicating structural changes in the tissue architecture - and lower protein stability. Our results suggest that the 1st, 2nd and 3rd FTIR indicators are useful markers of cardiac remodelling. Moreover, the 2nd and 3rd FITR indicators, which are altered to a greater extent in the right ventricle, are associated with greater fibrosis. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Vuissoz, Pierre-André; Odille, Freddy; Fernandez, Brice; Lohezic, Maelene; Benhadid, Adnane; Mandry, Damien; Felblinger, Jacques
2012-02-01
To assess cardiac function by means of a novel free-breathing cardiac magnetic resonance imaging (MRI) strategy. A stack of ungated 2D steady-state free precession (SSFP) slices was acquired during free breathing and reconstructed as cardiac cine imaging based on the generalized reconstruction by inversion of coupled systems (GRICS). A motion-compensated sliding window approach allows reconstructing cine movies with most motion artifacts cancelled. The proposed reconstruction uses prior knowledge from respiratory belts and electrocardiogram recordings and features a piecewise linear model that relates the electrocardiogram signal to cardiac displacements. The free-breathing protocol was validated in six subjects against a standard breath-held protocol. Image sharpness, as assessed by the image gradient entropy, was comparable to that of breath-held images and significantly better than in uncorrected images. Volumetric parameters of cardiac function in the left ventricle (LV) and right ventricle (RV) were similar, including end-systolic volumes, end-diastolic volumes and mass, stroke volumes, and ejection fractions (with differences of 3% ± 2.4 in the LV and 2.9% ± 4.4 in the RV). The duration of the free-breathing protocol was nearly the same as the breath-held protocol. Free-breathing cine-GRICS enables accurate assessment of volumetric parameters of cardiac function with efficient correction of motion. Copyright © 2011 Wiley Periodicals, Inc.
Pellicori, Pierpaolo; Zhang, Jufen; Lukaschuk, Elena; Joseph, Anil C; Bourantas, Christos V; Loh, Huan; Bragadeesh, Thanjavur; Clark, Andrew L; Cleland, John G F
2015-03-21
Left atrial (LA) volume is an important marker of cardiac dysfunction and cardiovascular outcome in heart failure (HF), but LA function is rarely measured. Left atrial emptying function (LAEF), its clinical associations and prognostic value was studied in outpatients referred with suspected HF who were in sinus rhythm and had cardiac magnetic resonance imaging (CMRI). Heart failure was defined as relevant symptoms and signs with either a left ventricular ejection fraction (LVEF) <50% or amino-terminal pro-B-type natriuretic peptide (NTproBNP) >400 pg/mL (or >125 pg/mL if taking loop diuretics). Of 982 patients, 664 fulfilled the HF criteria and were in sinus rhythm. The median (interquartile range, IQR) LAEF was 42 (31-51)% and 55 (48-61)% in patients with and without HF (P < 0.001). Patients with HF in the lowest quartile of LAEF (23%; IQR: 17-28%) had lower LV and right ventricular (RV) EF, and greater LV and RV mass and higher plasma NTproBNP than those in the highest quartile of LAEF (56%; IQR: 53-61%). Log[LAEF] and log[NTproBNP] were inversely correlated (r = -0.410, P < 0.001). During a median follow-up of 883 (IQR: 469-1626) days, 394 (59%) patients with HF died or were admitted with HF and 101 (15%) developed atrial fibrillation (AF). In a multivariable Cox model, increasing LAEF, but not LVEF, was independently associated with survival (HR for 10% change: 0.81 (95%CI: 0.73-0.90), P = <0.001). Increasing age and decreasing LAEF predicted incident AF. In patients with HF, LAEF predicts adverse outcome independently of other measures of cardiac dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Clinical Significance of Epsilon Waves in Arrhythmogenic Cardiomyopathy.
Protonotarios, Alexandros; Anastasakis, Aris; Tsatsopoulou, Adalena; Antoniades, Loizos; Prappa, Efstathia; Syrris, Petros; Tousoulis, Dimitrios; McKENNA, William J; Protonotarios, Nikos
2015-07-16
Epsilon waves are hallmark features of arrhythmogenic cardiomyopathy (ACM) but information about their clinical significance is variable. We evaluated epsilon wave prevalence, characteristics, and their clinical significance in an ACM population. Eighty-six unselected patients fulfilling the 2010 Task Force criteria were enrolled. Seventy-six of them were carriers of desmosomal mutations. All subjects were serially evaluated with standard 12-lead ECG and 2-dimensional echocardiography. Epsilon waves were evaluated in all precordial and inferior leads. Novel parameters assessed included their duration and precordial/inferior lead extension. Twenty-five subjects (29%) had epsilon waves that were present in lead V3 and beyond in 9, and in the inferior leads in 7. Epsilon waves were associated with right ventricular outflow tract (RVOT) (P = 0.001) but not RV posterior wall (P = 0.21), RV apex (P = 0.30), or left ventricular (P = 0.94) wall motion abnormalities. Patients with epsilon waves had increased RVOT diameter (P < 0.0001). Extension of epsilon waves in lead V3 and beyond was associated with increased epsilon wave duration (P = 0.002) and RVOT diameter (P = 0.04). The duration of epsilon waves was positively correlated with RVOT diameter (r = 0.70, P = 0.0001). Epsilon waves were also associated with episodes of sustained ventricular tachycardia (P = 0.004) but not with heart failure (P = 0.41) or sudden cardiac death (P = 0.31). Detection of epsilon waves on 12-lead ECG reflects significant RVOT involvement, which was associated with episodes of sustained ventricular tachycardia but not sudden cardiac death. © 2015 Wiley Periodicals, Inc.
Saba, Samir; Mathier, Michael A; Mehdi, Haider; Liu, Tong; Choi, Bum-Rak; London, Barry; Salama, Guy
2008-02-01
Myocardial infarction (MI) disrupts electrical conduction in affected ventricular areas. We investigated the effect of MI on the regional voltage and calcium (Ca) signals and their propagation properties, with special attention to the effect of the site of ventricular pacing on these properties. New Zealand White rabbits were divided into four study groups: sham-operated (C, n = 6), MI with no pacing (MI, n = 7), MI with right ventricular pacing (MI + RV, n = 6), and MI with BIV pacing (MI + BIV, n = 7). At 4 weeks, hearts were excised, perfused, and optically mapped. As previously shown, systolic and diastolic dilation of the LV were prevented by BIV pacing, as was the reduction in LV fractional shortening. Four weeks after MI, optical mapping revealed markedly reduced action potential amplitudes and conduction velocities (CV) in MI zones, and these increased gradually in the border zone and normal myocardial areas. Also, Ca transients were absent in the infarcted areas and increased gradually 3-5 mm from the border of the normal zone. Neither BIV nor RV pacing affected these findings in any of the MI, border, or normal zones. MI has profound effects on the regional electrical and Ca signals and on their propagation properties in this rabbit model. The absence of differences in these parameters by study group suggests that altering the properties of myocardial electrical conduction and Ca signaling are unlikely mechanisms by which BIV pacing confers its benefits. Further studies into the regional, cellular, and molecular benefits of BIV pacing are therefore warranted.
Serum levels of natriuretic peptides in children with various types of loading conditions.
Eerola, Anneli; Jokinen, Eero; Pihkala, Jaana I
2009-06-01
To evaluate the influence of volume overload of the left (LV) and right ventricle (RV) and pressure overload of LV and restrictive physiology on levels of N-terminal proatriopeptide (ANPN) and N-terminal pro-brain natriuretic peptide (NT-proBNP). We studied 41 children with atrial septal defect (ASD), 35 with patent ductus arteriosus (PDA), 27 with coarctation of the aorta (CoA), 25 with restrictive physiology caused by Mulibrey nanism, and 64 control children. We measured serum concentrations of natriuretic peptides and evaluated ventricular size and function with echocardiography. In patients with ASD, PDA, and Mulibrey nanism, levels of both ANPN and NT-proBNP were higher than in controls but in children with CoA, only ANPN levels were higher. ANPN levels correlated with RV size in ASD and NT-proBNP levels with LV size in PDA. In patients with restriction, NT-proBNP levels correlated negatively with LV size. Correlation between echo measurements and levels of natriuretic peptides varied according to loading condition. Measurement of natriuretic peptide levels provides a supplemental method for non-invasive haemodynamic evaluation of children's heart disease.
Lei, M H; Ko, Y L; Kuan, P; Lien, W P; Chen, D S
1992-04-01
Unusual patterns of cardiac metastasis were noted in three cases of hepatocellular carcinoma (HCC): one patient was noted to have a large right ventricular (RV) tumor mass with intracavitary growth and myocardial invasion; the second had massive pulmonary and left atrial (LA) metastasis; and the third patient had a right atrial tumor mass with concomitant RV and LA involvement. Tumor implantation to the RV without right atrial involvement and extensive myocardial invasion is unusual in HCC. The LA involvement is probably related to tumor growth from the pulmonary veins following massive metastasis to the lung, direct invasion of the atrial septum or tumor implantation via a subclinical right-to-left shunt through the patent foramen ovale. To the best of our knowledge, such unusual intracavitary metastases in HCC have not been reported previously. Cardiac metastasis, without local gross recurrence, may be one of the presentations after lobectomy in patients with HCC.