Sample records for venus orbit insertion

  1. Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano; Kawakatsu, Yasuhiro

    2015-12-01

    Akatsuki ("dawn" in Japanese) is the JAXA Venus orbiter that was scheduled to enter orbit around Venus on Dec. 7 th , 2010. Following the failure of the main engine during the orbit insertion maneuver, the spacecraft escaped Venus on a 200-day orbit around the Sun, only to return in early 2017. This paper presents the design and implementation of the recovery trajectory, which involves perihelion maneuvers to re-encounter Venus in late 2015. Relying only on the onboard propellant, the trajectory rescued the mission by (1) anticipating the beginning of the science phase within the nominal lifetime of the spacecraft, and (2) halving the Δ v requirements for the orbit insertion maneuver. Several trajectories are designed with an innovative use of a technique called non-tangent V-Infinity Leveraging Transfers (VILTs). Candidate solutions are then recomputed in higher fidelity models, and one solution is finally selected for its low Δv requirements and for programmatic reasons. The results of the perihelion maneuver campaign are also presented.

  2. The result of Venus Orbit Insertion of Akatsuki on December 7th, 2015

    NASA Astrophysics Data System (ADS)

    Sugiyama, K. I.; Nakamura, M.; Imamura, T.; Ishii, N.; Abe, T.; Kawakatsu, Y.; Hirose, C.; Satoh, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Iwagami, N.; Watanabe, S.; Taguchi, M.; Fukuhara, T.; Takahashi, Y.; Yamada, M.; Imai, M.; Ohtsuki, S.; Uemizu, K.; Hashimoto, G. L.; Takagi, M.; Matsuda, Y.; Ogohara, K.; Sato, N.; Kasaba, Y.; Kouyama, T.; Hirata, N.; Nakamura, R.; Yamamoto, Y.; Horinouchi, T.; Yamamoto, M.; Hayashi, Y. Y.; Nakatsuka, J.; Kashimura, H.; Sakanoi, T.; Ando, H.; Murakami, S. Y.; Sato, T.; Takagi, S.; Nakajima, K.; Peralta, J.; Lee, Y. J.

    2015-12-01

    Japan launched Venus Climate Orbiter 'Akatsuki' (JAXA's mission code name: PLANET-C) to observe the dynamics of the Venus atmosphere globally and clarify the mechanism of the atmospheric circulation. The launch was on May 21st , 2010 from the Tanegashima Space Center. The cruise to Venus was smooth, however, the first Venus Orbit Insertion (VOI) trial on December 7th, 2010 tuned out to be a failure. Later Akatsuki has been orbiting the sun. Fortunately we keep the spacecraft in a healthy condition and surprisingly we have found another chance to let this spacecraft to meet Venus in 2015. Next VOI trial will be done on December 7th, 2015 and we report the result of this operation at this AGU meeting. This mission is planed to answer the question described below. The radius of the Earth and Venus are almost the same. In addition the radiation from the sun is also almost the same. The climates of these planets, however, are much different. For example, the strong zonal wind is observed on Venus with the period of 4 days, where Venus rotates westward with the period of 243 days. The wind speed is about 100 m s-1. This is called super rotation. We will investigate from data from Akatsuki what attributes to the difference of the climates between Earth and Venus. AKATSUKI was designed for remote sensing from an equatorial, elliptical orbit to tract the atmospheric motion at different altitudes using 5 cameras (3xIR, UV, Visible) and by the radio occultation technique. The first VOI has failed due to a malfunction of the propulsion system. The check valve between the helium tank and the fuel tank was blocked by an unexpected salt formation during the cruising from the Earth to Venus. As a result the main engine (orbital maneuvering engine, OME) became oxidizer-rich and fuel-poor condition, which led to an abnormal combustion in the engine with high temperature, and finally the engine was broken. We decide to use RCS thrusters for Trajectory Control Maneuvers' (TCMs) and finally insert Akatsuki into the orbit. Total thrust force of 4 RCS thrusters is 20 % of that of the main thruster and the orbit after VOI-R becomes a larger ellipse (apoapsis altitude will be finally 3.2x106km ) than the original plan in 2010. We have already done major 6 TCMs before July 31st, 2015 to let the spacecraft to meet Venus in December.

  3. The latest views of Venus as observed by the Japanese Orbiter "Akatsuki"

    NASA Astrophysics Data System (ADS)

    Satoh, Takehiko; Akatsuki Project Team

    2016-10-01

    Akatsuki, also known as the Venus Climate Orbiter (VCO) of Japan, was launched on 21 May 2010 from Tanegashima Space Center, Kagoshima, Japan. After 6 months of cruising to Venus, an attempt was made to insert Akatsuki in Venus orbit (VOI) on 7 December 2010. However, due to the clogged check valve in a pressurizing system of fuel line, the thrust to decelerate the spacecraft was not enough to allow it captured by the gravitational pull of Venus. After this failure, Akatsuki became an artificial planet around the sun with an orbital period of ~200 days. We waited for 5 earth years (or 9 Akatsuki years), and the second attempt (VOI-R1) was made on the same day, 7 December 2015. It was a great surprise to the world that a "once failed" spacecraft made a successful orbital insertion after many years of time. The orbital period around Venus is slightly shorter than 11 days, with the apoapsis altitude of ~0.37 million km.After Venus Express (VEX), which was in Venus orbit for 8 years, Akatsuki still keeps a unique position and is expected to make a great contribution to the Venus science due primarily to its orbit. In contrast to the polar orbits of Pioneer Venus or VEX, Akatsuki is in a near-equatorial plane and revolves westward, the same direction as the super rotating atmosphere. This orbit allows the spacecraft in a "partial" synchronization with the atmospheric motion when Akatsuki is near the planet. When at greater distances, the atmosphere moves faster than Akatsuki's orbital motion so the spacecraft maps the full longitude range of Venus in several days. This meteorological-satellite-like concept makes Akatsuki the most unique planetary orbiter in the history. To sense the various levels of the atmosphere, to draw 3-dimentional picture of dynamics, Akatsuki is equipped with 5 on-board cameras, UVI (283 and 365 nm wavelength), IR1 (0.90, 0.97, and 1.01 μm), IR2 (1.65, 1.735, 2.02, 2.26, and 2.32 μm), LIR (8-12 μm), and LAC (a special high-speed sensor at visible wavelengths), as well as the ultra-stable oscillator for radio-occultation measurements.At the lecture, the latest views of Venus as acquired with these instruments on Akatsuki will be presented.

  4. The Pioneer Venus Orbiter: 11 years of data. A laboratory for atmospheres seminar talk

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.

    1990-01-01

    The Pioneer Venus Orbiter has been in operation since orbit insertion on December 4, 1978. For the past 11 years, it has been acquiring data in the salient features of the planet, its atmosphere, ionosphere, and interaction with the solar wind. A few of the results of this mission are summarized and their contribution to our general understanding of the planet Venus is discussed. Although Earth and Venus are often called twin planets, they are only superficially similar. Possessing no obvious evidence of plate tectonics, lacking water and an intrinsic magnetic field, and having a hot, dense carbon dioxide atmosphere with sulfuric acid clouds makes Venus a unique object of study by the Orbiter's instruments.

  5. A study of an orbital radar mapping mission to Venus. Volume 3: Parametric studies and subsystem comparisons

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.

  6. System design of the Pioneer Venus spacecraft. Volume 10: Propulsion/orbit insertion subsystem studies

    NASA Technical Reports Server (NTRS)

    Rosenstein, B. J.

    1973-01-01

    The Pioneer Venus orbiter and multiprobe missions require spacecraft maneuvers for successful accomplishment. This report presents the results of studies performed to define the propulsion subsystems required to perform those maneuvers. Primary goals were to define low mass subsystems capable of performing the required missions with a high degree of reliability for low cost. A review was performed of all applicable propellants and thruster types, as well as propellant management techniques. Based on this review, a liquid monopropellant hydrazine propulsion subsystem was selected for all multiprobe mission maneuvers, and for all orbiter mission maneuvers except orbit insertion. A pressure blowdown operating mode was selected using helium as the pressurizing gas. The forces associated with spacecraft rotations were used to control the liquid-gas interface and resulting propellant orientation within the tank.

  7. Autonomous Aerobraking Development Software: Phase One Performance Analysis at Mars, Venus, and Titan

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; Bowes, Angela; Powell, Richard W.; Prince, Jill L. H.; Cianciolo, Alicia Dwyer

    2012-01-01

    When entering orbit about a planet or moon with an appreciable atmosphere, instead of using only the propulsion system to insert the spacecraft into its desired orbit, aerodynamic drag can be used after the initial orbit insertion to further decelerate the spacecraft. Several past NASA missions have used this aerobraking technique to reduce the fuel required to deliver a spacecraft into a desired orbit. Aerobraking was first demonstrated at Venus with Magellan in 1993 and then was used to achieve the science orbit of three Mars orbiters: Mars Global Surveyor in 1997, Mars Odyssey in 2001, and Mars Reconnaissance Orbiter in 2006. Although aerobraking itself reduces the propellant required to reach a final low period orbit, it does so at the expense of additional mission time to accommodate the aerobraking operations phase (typically 3-6 months), a large mission operations staff, and significant Deep Space Network (DSN) coverage. By automating ground based tasks and analyses associated with aerobraking and moving these onboard the spacecraft, a flight project could save millions of dollars in operations staffing and DSN costs (Ref. 1).

  8. State of the Venus Atmosphere from Venus Express at the time of MESSENGER FLy- By

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Markiewicz, W. J.; Titov, D.; Piccione, G.; Baines, K. H.; Robinson, M.

    2007-12-01

    The Venus Monitoring Camera (VMC) and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instruments on Venus Express spacecraft have been observing Venus since orbit insertion in April 2006. The state of the atmosphere in 2006 was in the form of a hemispheric vortex centered over the south pole, and presumably, another one in the northen hemisphere. The VMC and VIRTIS data have been used to determine cloud motions as well as the structure and organization of the atmospheric circulation from the the data collected since June 2006. In June 2007, the MESSENGER spacecraft flew-past Venus and also observed Venus on approach and departure from Venus. We report on the atmosphere of Venus as it appeared during this period.

  9. Venus within ESA probe reach

    NASA Astrophysics Data System (ADS)

    2006-03-01

    Venus Express mission controllers at the ESA Space Operations Centre (ESOC) in Darmstadt, Germany are making intensive preparations for orbit insertion. This comprises a series of telecommands, engine burns and manoeuvres designed to slow the spacecraft down from a velocity of 29000 km per hour relative to Venus, just before the first burn, to an entry velocity some 15% slower, allowing the probe to be captured into orbit around the planet. The spacecraft will have to ignite its main engine for 50 minutes in order to achieve deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of onboard propellant will be used for this manoeuvre. The spacecraft’s solar arrays will be positioned so as to reduce the possibility of excessive mechanical load during engine ignition. Over the subsequent days, a series of additional burns will be done to lower the orbit apocentre and to control the pericentre. The aim is to end up in a 24-hour orbit around Venus early in May. The Venus orbit injection operations can be followed live at ESA establishments, with ESOC acting as focal point of interest (see attached programme). In all establishments, ESA specialists will be on hand for interviews. ESA TV will cover this event live from ESOC in Darmstadt. The live transmission will be carried free-to-air. For broadcasters, complete details of the various satellite feeds are listed at http://television.esa.int. The event will be covered on the web at venus.esa.int. The website will feature regular updates, including video coverage of the press conference and podcast from the control room at ESA’s Operations Centre. Media representatives wishing to follow the event at one of the ESA establishments listed below are requested to fill in the attached registration form and fax it back to the place of their choice. For further information, please contact: ESA Media Relations Division Tel : +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Venus Express Orbit Insertion - Tuesday 11 April 2006 ESA/ESOC, Robert Bosch Strasse, 5 - Darmstadt (Germany) PROGRAMME 07:30 - Doors open 08:45 - Start of local event, welcome addresses 09:10 - ESA TV live from Mission Control Room (MCR) starts 09:17 - Engine burn sequence starts 09:45 - Occultation of spacecraft by Venus starts 09:55 - Occultation ends 10:07 - Main engine burn ends 10:20 - Address by Jean-Jacques Dordain, ESA’s Director General, and other officials Break and buffet Interview opportunities 11:30-12:15 - Press Conference Jean-Jacques Dordain, Director General, ESA Prof. David Southwood, Director of Science, ESA Gaele Winters, Director of Operations and Infrastructure, ESA Manfred Warhaut, Flight Operations Director, ESA Håkan Svedhem, Venus Express Project Scientist, ESA Don McCoy, Venus Express Project Manager, ESA 13:15 - End of event at ESOC ACCREDITATION REQUEST FORM Venus Express Orbit Insertion - ESA/ESOC Darmstadt - 11 April 2006 First name:___________________ Surname:_____________________ Media:______________________________________________________ Address: ___________________________________________________ ____________________________________________________________ Tel:_______________________ Fax: ___________________________ Mobile :___________________ E-mail: ________________________ I will be attending the Venus Express Orbit Insertion event at the following site: [ ] Germany Location: ESA/ESOC Address: Robert Bosch Strasse 5, Darmstadt, Germany Opening hours: 07:30 - 13:00 Contact: Jocelyne Landeau-Constantin, Tel: +49.6151.902.696 - Fax: +49.6151.902.961 [ ] France Location: ESA HQ Address: 8/10, rue Mario Nikis - Paris 15, France Opening hours: 08:00 - 13:00 Contact: Anne-Marie Remondin - Tel: +33(0)1.53.69.7155 - fax: +33(0)1.53.69.7690 [ ] The Netherlands Location: Newton Room, ESA/ESTEC Address: Keplerlaan 1, Noordwijk, The Netherlands Opening hours: 08:30 - 12:30 Contact: Michel van Baal, tel. + 31 71 565 3006, fax + 31 71 565 5728 [ ] Italy Location: ESA/ESRIN Address: Via Galileo Galilei, Frascati (Rome), Italy Opening hours: 07:00 - 14:00 Contact: Franca Morgia - Tel: +39.06.9418.0951 - Fax: +39.06.9418.0952 [ ] Spain Location: ESA/ESAC Address: Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain Opening hours: 8:30 - 13:30 Contact: Monica Oerke, Tel + 34 91 813 13 27/59 - Fax: + 34 91 813 12 19

  10. Four Years of Venus Express Magnetic Field Observations: Variable Bow Shock Location and Other Features

    NASA Astrophysics Data System (ADS)

    Zhang, Tielong; Baumjohann, Wolfgang; Russell, C. T.

    Since the Venus Express insertion into a highly elliptical polar orbit with a period of 24 h around the planet Venus, the magnetometer has operated continuously for about 4 years and obtained a wealth of data in the solar minimum at rather low altitude, which was not reached by earlier missions. In this paper, we review the magnetic field observations by Venus Express emphasizing on the variable bow shock location and other space environment features such as the magnetic barrier and the magnetotail.

  11. Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine

    2007-01-01

    Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.

  12. An interplanetary targeting and orbit insertion maneuver design technique

    NASA Technical Reports Server (NTRS)

    Hintz, G. R.

    1980-01-01

    The paper describes a tradeoff in selecting a planetary encounter aimpoint and a spacecraft propulsive maneuver strategy in the Pioneer Venus Orbiter Mission. The method uses parametric data spanning a region of acceptable targeting aimpoints in the delivery space and the geometric considerations. Real-time maneuver adjustments accounted for known attitude control errors, orbit determination updates, and late changes in a targeting specification.

  13. Magellan Prelaunch Mission Operations Report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Magellan spacecraft will be launched from Kennedy Space Center (KSC) within a 31-day overall launch period extending from April 28 to May 28, 1989. The launch will use the Shuttle Orbiter Atlantis to lift an Inertial Upper Stage (IUS) and the Magellan Spacecraft into low Earth orbit. After the Shuttle achieves its parking orbit, the IUS and attached Magellan spacecraft are deployed from the payload bay. After a short coast time, the two-stage IUS is fired to inject the Magellan spacecraft into an Earth-Venus transfer trajectory. The Magellan spacecraft is powered by single degree of freedom, sun-tracking, solar panels charging a set of nickel-cadmium batteries. The spacecraft is three-axis stabilized by reaction wheels using gyros and a star sensor for attitude reference. The spacecraft carries a solid rocket motor for Venus Orbit Insertion (VOI). A hydrazine propulsion system allows trajectory correction and prevents saturation of the reaction wheels. Communication with Earth through the Deep Space Network (DSN) is provided by S- and X-band telemetry channels, through alternatively a low, medium, or 3.7 m high-gain parabolic antenna rigidly attached to the spacecraft. The high-gain antenna also serves as the radar and radiometer antenna during orbit around Venus.

  14. Arecibo/Magellan Composite of Quetzalpetlatl Corona

    NASA Image and Video Library

    1997-01-16

    This composite image was created by inserting approximately 70 orbits of NASA Magellan data into an image obtained at the Arecibo, Puerto Rico radiotelescope and shows a geologically complex region in the southern hemisphere of Venus. http://photojournal.jpl.nasa.gov/catalog/PIA00217

  15. Periodical oscillation of zonal wind velocities at the cloud top of Venus

    NASA Astrophysics Data System (ADS)

    Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y.

    2010-12-01

    Zonal wind velocity of Venus increases with height and reaches about 100 m s-1 at the cloud top level (~70km). The speed is approximately 60 times faster than the rotation speed of the solid body of Venus (~1.6 m s-1, at the equator) and this phenomenon is called a "super-rotation". From previous observations, it is known that the super-rotation changes on a long timescale. At the cloud top level, it was suggested that the super-rotation has a few years period oscillation based on observations made by Pioneer Venus orbiter of USA from 1979 to 1985 (Del Genio et al.,1990). However, the period, the amplitude, the spatial structure and the mechanism of the long period oscillation have not been understood well. Venus Express (VEX) of European Space Agency has been observing Venus since its orbital insertion in April 2006. Venus Monitoring Camera (VMC) onboard VEX has an ultra violet (UV) filter (365 nm), and VMC has taken day-side cloud images at the cloud top level with this filter. Such images exhibit various cloud features made by unknown UV absorber in the atmosphere. For investigating the characteristics of long-timescale variations of the super-rotation, we analyzed zonal velocity fields derived from UV cloud images from May 2006 to January 2010 using a cloud tracking method. UV imaging of VMC is done when the spacecraft is in the ascending portion of its elongated polar orbit. Since the orbital plane is nearly fixed in the inertial space, the local time of VMC/UV observation changes with a periodicity of one Venus year. As a result, periods when VMC observation covered day-side areas of Venus, large enough for cloud trackings, are not continuous. For deriving wind velocities we were able to use cloud images taken in 280 orbits during this period. The derived zonal wind velocity from 10°S to 40°S latitude shows a prominent year-to-year variation, and the variation is well fitted by a periodical oscillation with a period of about 260 Earth days, although not all phases of the variation were observed. The 260 day period is longer than the length of one day of Venus (~117 days) and somewhat longer than the orbital revolution period (~225 days) of Venus. In the equatorial region, the amplitude of this oscillation is about 12 m s-1 with the background zonal wind speed of about 95 m s-1. The oscillation period is shorter than the long-term oscillation reported by PVO. Such oscillation has not been reported most probably because previous Venus observations had limitations of observation chances to identify the oscillations with such a period.

  16. Hypersurface Insertion Window for Long Term Orbital Stability of Artificial Satellites About the Planet Venus

    DTIC Science & Technology

    1988-12-01

    Conversion of the Geopotential into the Modified Orbital Elements 83 Appendix C: Useful Derivatives for the Geopotential Calculations 87 Appendix D...replaced by two equinoctial elements , h and k (from a coordinate system with singularities at i = x and for rectilinear orbits ). Also, for long term 3...0. 10 and 0.55 i 15.5) a more well behaved set of variables will be used: two of the equinoctial elements , h and k. These elements eliminate the

  17. MESSENGER and Venus Express Observations of the Near-tail of Venus: Magnetic Flux Transport, Current Sheet Structure, and Flux Rope Formation

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.; hide

    2008-01-01

    At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.

  18. The Magellan Venus explorer's guide

    NASA Technical Reports Server (NTRS)

    Young, Carolynn (Editor)

    1990-01-01

    The Magellan radar-mapping mission to the planet Venus is described. Scientific highlights include the history of U.S. and Soviet missions, as well as ground-based radar observations, that have provided the current knowledge about the surface of Venus. Descriptions of the major Venusian surface features include controversial theories about the origin of some of the features. The organization of the Magellan science investigators into discipline-related task groups for data-analysis purposes is presented. The design of the Magellan spacecraft and the ability of its radar sensor to conduct radar imaging, altimetry, and radiometry measurements are discussed. Other topics report on the May 1989 launch, the interplanetary cruise, the Venus orbit-insertion maneuver, and the in-orbit mapping strategy. The objectives of a possible extended mission emphasize the gravity experiment and explain why high-resolution gravity data cannot be acquired during the primary mission. A focus on the people of Magellan reveals how they fly the spacecraft and prepare for major mission events. Special items of interest associated with the Magellan mission are contained in windows interspersed throughout the text. Finally, short summaries describe the major objectives and schedules for several exciting space missions planned to take us into the 21st century.

  19. Solar Wind Interaction and Impact on the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Stenberg Wieser, Gabriella; Barabash, Stas; Luhmann, Janet G.

    2017-11-01

    Venus has intrigued planetary scientists for decades because of its huge contrasts to Earth, in spite of its nickname of "Earth's Twin". Its invisible upper atmosphere and space environment are also part of the larger story of Venus and its evolution. In 60s to 70s, several missions (Venera and Mariner series) explored Venus-solar wind interaction regions. They identified the basic structure of the near-Venus space environment, for example, existence of the bow shock, magnetotail, ionosphere, as well as the lack of the intrinsic magnetic field. A huge leap in knowledge about the solar wind interaction with Venus was made possible by the 14-year long mission, Pioneer Venus Orbiter (PVO), launched in 1978. More recently, ESA's probe, Venus Express (VEX), was inserted into orbit in 2006, operated for 8 years. Owing to its different orbit from that of PVO, VEX made unique measurements in the polar and terminator regions, and probed the near-Venus tail for the first time. The near-tail hosts dynamic processes that lead to plasma energization. These processes in turn lead to the loss of ionospheric ions to space, slowly eroding the Venusian atmosphere. VEX carried an ion spectrometer with a moderate mass-separation capability and the observed ratio of the escaping hydrogen and oxygen ions in the wake indicates the stoichiometric loss of water from Venus. The structure and dynamics of the induced magnetosphere depends on the prevailing solar wind conditions. VEX studied the response of the magnetospheric system on different time scales. A plethora of waves was identified by the magnetometer on VEX; some of them were not previously observed by PVO. Proton cyclotron waves were seen far upstream of the bow shock, mirror mode waves were observed in magnetosheath and whistler mode waves, possibly generated by lightning discharges were frequently seen. VEX also encouraged renewed numerical modeling efforts, including fluid-type of models and particle-fluid hybrid type of models, describing the plasma interaction on scales ranging from ion gyro radius to the entire induced magnetosphere. In this review article, we review what has been found from space physics measurements around Venus (from the solar wind down to the ionopause), with a particular emphasis on updated results since the Venus Express mission. We conclude the article by a short discussion on the remaining open scientific questions and the future of this field.

  20. Venus Express - the First European Mission to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Svedhem, H.; Venus Express Team

    2005-08-01

    The ESA Venus Express mission is based on reuse of the Mars Express spacecraft and the payload available from the Mars Express and Rosetta missions. In less than 3 years the spacecraft was rebuilt with modifications to cope with harsh environment at Venus and fully tested. The Venus Express will be launched in the end of October 2005 from Baykonur (Kazakhstan) by the Russian Sojuz-Fregat rocket. In the beginning of April 2006 the spacecraft will be inserted in a polar orbit around Venus with pericenter of 250 km and apocentre of 66,000 km and a period of 24 hours. The planned mission duration is two Venus sidereal days ( 500 Earth days) with possibility to extend the mission for two more Venus days. The Venus Express aims at a global investigation of the Venus atmosphere and the plasma environment, and addresses some important aspects of the surface physics. The science goals comprise investigation of the atmospheric structure and composition, cloud layer and hazes, global circulation and radiative balance, plasma and escape processes, and surface properties. These topics will be addressed by seven instruments onboard the satellite: Analyzer of Space Plasma (ASPERA), Magnetometer (MAG), IR Fourier spectrometer (PFS), spectrometer for solar and stellar occultation (SPICAV), radio science experiment (VeRa), visible and IR imaging spectrometer (VIRTIS), and Venus Monitoring Camera (VMC). Scientific operations will include observations in pericentre, off-pericentre and apocentre sessions, limb scans, solar and stellar occultation, radio occultation, bi-static radar, and solar corona sounding.

  1. CUVE - Cubesat UV Experiment: Unveil Venus' UV Absorber with Cubesat UV Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Cottini, V.; Aslam, S.; D'Aversa, E.; Glaze, L.; Gorius, N.; Hewagama, T.; Ignatiev, N.; Piccioni, G.

    2017-09-01

    Our Venus mission concept Cubesat UV Experiment (CUVE) is one of ten proposals selected for funding by the NASA PSDS3 Program - Planetary Science Deep Space SmallSat Studies. CUVE concept is to insert a CubeSat spacecraft into a Venusian orbit and perform remote sensing of the UV spectral region using a high spectral resolution point spectrometer to resolve UV molecular bands, observe nightglow, and characterize the unidentified main UV absorber. The UV spectrometer is complemented by an imaging UV camera with multiple bands in the UV absorber main band range for contextual imaging. CUVE Science Objectives are: the nature of the "Unknown" UV-absorber; the abundances and distributions of SO2 and SO at and above Venus's cloud tops and their correlation with the UV absorber; the atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking; the nightglow emissions: NO, CO, O2. This mission will therefore be an excellent platform to study Venus' cloud top atmospheric properties where the UV absorption drives the planet's energy balance. CUVE would complement past, current and future Venus missions with conventional spacecraft, and address critical science questions cost effectively.

  2. Performance of Akatsuki/IR2 in Venus orbit: the first year

    NASA Astrophysics Data System (ADS)

    Satoh, Takehiko; Sato, Takao M.; Nakamura, Masato; Kasaba, Yasumasa; Ueno, Munetaka; Suzuki, Makoto; Hashimoto, George L.; Horinouchi, Takeshi; Imamura, Takeshi; Yamazaki, Atsushi; Enomoto, Takayuki; Sakurai, Yuri; Takami, Kosuke; Sawai, Kenta; Nakakushi, Takashi; Abe, Takumi; Ishii, Nobuaki; Hirose, Chikako; Hirata, Naru; Yamada, Manabu; Murakami, Shin-ya; Yamamoto, Yukio; Fukuhara, Tetsuya; Ogohara, Kazunori; Ando, Hiroki; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko

    2017-11-01

    The first year (December 2015 to November 2016) of IR2 after Akatsuki's successful insertion to an elongated elliptical orbit around Venus is reported with performance evaluation and results of data acquisition. The single-stage Stirling-cycle cryo-cooler of IR2 has been operated with various driving voltages to achieve the best possible cooling under the given thermal environment. A total of 3091 images of Venus (1420 dayside images at 2.02 μm and 1671 night-side images at 1.735, 2.26, and 2.32 μm) were acquired in this period. Additionally, 159 images, including images of stars for calibration and dark images for the evaluation of noise levels, were captured. Low-frequency flat images (not available in pre-launch calibration data) have been constructed using the images of Venus acquired from near the pericenter to establish the procedure to correct for the IR2 flat-field response. It was noticed that multiple reflections of infrared light in the PtSi detector caused a weak but extended tail of the point-spread function (PSF), contaminating the night-side disk of Venus with light from the much brighter dayside crescent. This necessitated the construction of an empirical PSF to remove this contamination and also to improve the dayside data by deconvolution, and this work is also discussed. Detailed astrometry is performed on star-field images in the H-band (1.65 μm), hereby confirming that the geometrical distortion of IR2 images is negligible.[Figure not available: see fulltext.

  3. Ballistic mode Mercury orbiter missions.

    NASA Technical Reports Server (NTRS)

    Hollenbeck, G. R.

    1973-01-01

    The MVM'73 Mercury flyby mission will initiate exploration of this unique planet. No firm plans for follow-on investigations have materialized due to the difficult performance requirements of the next logical step, an orbiter mission. Previous investigations of ballistic mode flight opportunities have indicated requirements for a Saturn V class launch vehicle. Consequently, most recent effort has been oriented to use of solar electric propulsion. More comprehensive study of the ballistic flight mode utilizing Venus gravity-assist has resulted in identification of timely high-performance mission opportunities compatible with programmed launch vehicles and conventional spacecraft propulsion technologies. A likely candidate for an initial orbiter mission is a 1980 opportunity which offers net orbiter spacecraft mass of about 435 kg with the Titan IIIE/Centaur launch vehicle and single stage solid propulsion for orbit insertion.

  4. Solar system 'fast mission' trajectories using aerogravity assist

    NASA Technical Reports Server (NTRS)

    Randolph, James E.; Mcronald, Angus D.

    1992-01-01

    Initial analyses of the aerogravity assist (AGA) delivery technique to solar system targets (and beyond) has been encouraging. Mission opportunities are introduced that do not exist with typical gravity assist trajectories and current launch capabilities. The technique has the most payoff for high-energy missions such as outer planet orbiters and flybys. The goal of this technique is to reduce the flight duration significantly and to eliminate propulsion for orbit insertion. The paper will discuss detailed analyses and parametric studies that consider launch opportunities for missions to the sun, Saturn, Uranus, Neptune, and Pluto using AGA at Venus and Mars.

  5. Pioneer Venus Data Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Douglas E.

    1996-01-01

    Analysis and interpretation of data from the Orbiter Retarding Potential Analyzer (ORPA) onboard the Pioneer Venus Orbiter is reported. By comparing ORPA data to proton data from the Orbiter Plasma Analyzer (OPA), it was found that the ORPA suprathermal electron densities taken outside the Venusian ionopause represent solar wind electron densities, thus allowing the high resolution study of Venus bow shocks using both magnetic field and solar wind electron data. A preliminary analysis of 366 bow shock penetrations was completed using the solar wind electron data as determined from ORPA suprathermal electron densities and temperatures, resulting in an estimate of the extent to which mass loading pickup of O+ (UV ionized O atoms flowing out of the Venus atmosphere) upstream of the Venus obstacle occurred. The pickup of O+ averaged 9.95%, ranging from 0.78% to 23.63%. Detailed results are reported in two attached theses: (1) Comparison of ORPA Suprathermal Electron and OPA Solar Wind Proton Data from the Pioneer Venus Orbiter and (2) Pioneer Venus Orbiter Retarding Potential Analyzer Observations of the Electron Component of the Solar Wind, and of the Venus Bow Shock and Magnetosheath.

  6. Venus Express set for launch to the cryptic planet

    NASA Astrophysics Data System (ADS)

    2005-10-01

    On Wednesday, 26 October 2005, the sky over the Baikonur Cosmodrome, Kazakhstan, will be illuminated by the blast from a Soyuz-Fregat rocket carrying this precious spacecraft aloft. The celestial motion of the planets in our Solar System has given Venus Express the window to travel to Venus on the best route. In fact, every nineteen months Venus reaches the point where a voyage from Earth is the most fuel-efficient. To take advantage of this opportunity, ESA has opted to launch Venus Express within the next ‘launch window’, opening on 26 October this year and closing about one month later, on 24 November. Again, due to the relative motion of Earth and Venus, plus Earth’s daily rotation, there is only one short period per day when it is possible to launch, lasting only a few seconds. The first launch opportunity is on 26 October at 06:43 Central European Summer Time (CEST) (10:43 in Baikonur). Venus Express will take only 163 days, a little more than five months, to reach Venus. Then, in April 2006, the adventure of exploration will begin with Venus finally welcoming a spacecraft, a fully European one, more than ten years after humankind paid the last visit. The journey starts at launch One of the most reliable launchers in the world, the Soyuz-Fregat rocket, will set Venus Express on course for its target. Soyuz, procured by the European/Russian Starsem company, consists of three main stages with an additional upper stage, Fregat, atop. Venus Express is attached to this upper stage. The injection of Venus Express into the interplanetary trajectory which will bring it to Venus consists of three phases. In the first nine minutes after launch, Soyuz will perform the first phase, that is an almost vertical ascent trajectory, in which it is boosted to about 190 kilometres altitude by its three stages, separating in sequence. In the second phase, the Fregat-Venus Express ‘block’, now free from the Soyuz, is injected into a circular parking orbit around Earth heading east. This injection is done by the first burn of the Fregat engine, due to take place at 06:52 CEST (04:52 GMT). At 08:03 CEST, about one hour and twenty minutes after lift-off and after an almost full circle around Earth, the third phase starts. While flying over Africa, Fregat will ignite for a second time to escape Earth orbit and head into the hyperbolic trajectory that will bring the spacecraft to Venus. After this burn, Fregat will gently release Venus Express, by firing a separation mechanism. With this last step, the launcher will have concluded its task. Plenty of ground activities for a successful trip Once separated from Fregat at 08:21 CEST, Venus Express will be awoken from its dormant status by a series of automatic on-board commands, such as the activation of its propulsion and thermal control systems, the deployment of solar arrays and manoeuvres to ‘orient’ itself in space. From this moment the spacecraft comes under the control of ESA’s European Space Operations Centre (ESOC) for the full duration of the mission. The flight control team co-ordinate and manage a network of ESA ground stations and antennas around the globe, to regularly communicate with the spacecraft. The New Norcia station in Australia and the Kourou station in French Guiana will in turn communicate with Venus Express in the initial phase of the mission. The first opportunity to receive a signal and confirm that the spacecraft is in good health will be the privilege of the New Norcia station about two hours after launch. In this early phase of the mission, once ESOC has taken full control of the satellite, the spacecraft will be fully activated. Operations will also include two burns of the Venus Express thrusters, to correct any possible error in the trajectory after separation from Fregat. On 28 October, the newly inaugurated Cebreros station in Spain, with its 35-metre antenna, will start to take an active part in ground network operations to relay information between ESOC and the spacecraft. During the cruise phase and once the spacecraft has arrived at Venus, Cebreros will be the main information relay point between ESOC and Venus Express. Reaching for Venus During its 163 day journey to Venus, Venus Express will cover about 400 million kilometres at an average speed of some 28 kilometres per second with respect to the Sun. After an initial commissioning period, the spacecraft will cruise peacefully with no specific operations planned, besides routine checks of its subsystems and scientific instruments, and minor trajectory corrections if needed. The thrills will start again on 6 April 2006, at the end of the cruise, when the spacecraft will have to perform a delicate manoeuvre to brake and be captured into orbit around Venus. The energy required for Venus Orbit Insertion (VOI) is very high, and will need the main engine to fire (burn) for approximately 51 minutes. This manoeuvre will place the spacecraft in a highly elliptical ‘capture’ orbit around the planet, with a pericentre (closest point to the Venusian surface) of 250 kilometres near the north pole, and an apocentre (furthest distance from the surface) at 350 000 kilometres roughly at the south pole. At the end of this initial 10-day ‘capture’ orbit, Venus Express will ignite its main engine again. About six days later, after a series of other minor orbit adjustments, the spacecraft will have been positioned in its final operational orbit. This will be an elliptical polar orbit, lying between 250 and 66 000 kilometres above Venus, and will last 24 hours. The capture orbit could already provide the first opportunity for scientific observations, but the nominal science phase will start on 4 July 2006, after the spacecraft and instruments commissioning phase has been concluded. The set of seven instruments on board Venus Express represents an unprecedented diagnostic package to study the thick and enigmatic atmosphere of Venus - an atmosphere so dense and so intimately coupled with the planet’s surface, that studying it will help provide clues about the features, status and evolution of the entire planet. Note to editors Venus Express is an almost identical twin spacecraft to Mars Express, but adapted to operate in the hot and harsh environment around Venus. It was built by EADS Astrium, Toulouse (France), leading a group of industrial partners throughout Europe. Completing the spacecraft took less than four years from concept to launch, making it the fastest-built ESA scientific satellite ever. Besides the spacecraft manufacturing and testing, industry will still be involved during the mission on a collaboration and consultancy basis for the ESA Venus Express Project team, led by the Project Manager, and for the Venus Express ground control team, led by the Spacecraft Operations Manager. On 4 July 2006, when the nominal science phase begins, the Venus Express Project Manager will hand over responsibility for the mission to an ESA Venus Express Mission Manager, leading the Venus Express Science Operations Centre (VSOC) in ESA’s European Space Research and Technology Centre (ESTEC) in the Netherlands. The VSOC performs the routine planning for scientific observations, in co-ordination with the Project Scientist and the instrument Principal Investigators. ESA’s investment in Venus Express amounts to about 220 million Euros, covering development of the spacecraft, launch and operations. This figure also includes 15 million Euros for instrument development, including support to several research institutes (Principal Investigators) for building the instruments. Venus Express is one of a family of missions in which costs are shared, the others being Rosetta and Mars Express.

  7. Dynamic behavior of solar wind as revealed by a correlation study of magnetic fields observed at the Venus and Earth orbits

    NASA Technical Reports Server (NTRS)

    Marubashi, K.

    1995-01-01

    Correlations between interplanetary magnetic fields (IMFs) at 0.72 AU and 1.0 AU have been examined using data sets obtained from the Pioneer Venus orbiter and Earth-orbiting spacecraft. While the two-sector structures are evident in long-term variations at these two heliocentric distances, the corresponding auto-correlation coefficients are consistently smaller at 1.0 AU than at 0.72 AU. This suggests that the IMF structures become less persistent at 1.0 AU due to the effects of changing solar wind dynamics between the Venus and Earth orbits. Short-term variations exhibit generally poor correlations between IMFs near Venus and those near Earth, though good correlations are sometimes obtained for well-defined structures when the Sun, Venus, and Earth are closely aligned. The rather poor correlations in the background streams indicate that the IMFs are still changing between the Venus and Earth orbits under the strong influence of solar wind dynamics.

  8. Gravity field of Venus - A preliminary analysis

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Smith, J. C.; Wimberly, R. N.; Wagner, C. A.

    1979-01-01

    The gravitational field of Venus obtained by tracking the Pioneer Venus Orbiter is examined. For each spacecraft orbit, two hours of Doppler data centered around periapsis were used to estimate spacecraft position and velocity and the velocity residuals obtained were spline fit and differentiated to produce line of sight gravitational accelerations. Consistent variations in line of sight accelerations from orbit to orbit reveal the presence of gravitational anomalies. A simulation of isostatic compensation for an elevated region on the surface of Venus indicates that the mean depth of compensation is no greater than about 100 km. Gravitational spectra obtained from a Fourier analysis of line of sight accelerations from selected Venus orbits are compared to the earth's gravitational spectrum and spherical harmonic gravitational potential power spectra of the earth, the moon and Mars. The Venus power spectrum is found to be remarkably similar to that of the earth, however systematic variations in the harmonics suggest differences in dynamic processes or lithospheric behavior.

  9. Venus in motion: An animated video catalog of Pioneer Venus Orbiter Cloud Photopolarimeter images

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1992-01-01

    Images of Venus acquired by the Pioneer Venus Orbiter Cloud Photopolarimeter (OCPP) during the 1982 opportunity have been utilized to create a short video summary of the data. The raw roll by roll images were first navigated using the spacecraft attitude and orbit information along with the CPP instrument pointing information. The limb darkening introduced by the variation of solar illumination geometry and the viewing angle was then modelled and removed. The images were then projected to simulate a view obtained from a fixed perspective with the observer at 10 Venus radii away and located above a Venus latitude of 30 degrees south and a longitude 60 degrees west. A total of 156 images from the 1982 opportunity have been animated at different dwell rates.

  10. ESA's Venus Express to reach final destination

    NASA Astrophysics Data System (ADS)

    2006-04-01

    First step: catching Venus To begin to explore our Earth’s hot and hazy sister planet, Venus Express must complete a critical first step, the most challenging one following launch. This involves a set of complex operations and manoeuvres that will inject the spacecraft into orbit. The Venus Orbit Insertion (VOI) manoeuvre allows the spacecraft to reduce its speed relative to Venus, so that it can be captured by the planet’s gravitation. The manoeuvre is a critical one which must proceed at precisely the right place and time. The VOI phase officially started on 4 April and will not be completed until 13 April. It is split into three main sub-phases. The first consists in preparing or initialising the spacecraft for the actual capture manoeuvre so as to avoid the risk of the spacecraft going into safe mode, should parameters unrelated to VOI go off-range. The capture manoeuvre itself consists of a main-engine burn lasting about 50 minutes on the morning of 11 April starting at 09:17 (Central European Summer Time). This is the second main VOI sub-phase. The final sub-phase will be restoring all spacecraft functions, notably resuming communications with Earth and uplinking the commands to be executed during the preliminary ‘capture’ orbit. Orbital capture is controlled by an automatic sequence of predefined commands, uploaded to the spacecraft four days prior to VOI. This sequence is the minimum set needed to perform the main-engine burn. All spacecraft operations are controlled and commanded by the ground control team located at ESA’s European Spacecraft Operations Centre (ESOC) in Darmstadt, Germany. Timeeline of major VOI events (some times subject to change) 4 Aprilacecraft transmitter connected to low gain antenna is switched on. During its interplanetary cruise and during the scientific part of the mission to come, Venus Express communicates with Earth by means of its two high gain antennas. However, during the orbit capture phase (11 April), these two antennas become unusable because of the spacecraft’s required orientation at that time. The low gain antenna, carrying a feeble but instantly recognisable signal, will be transmitting throughout all VOI manoeuvres. This will allow ground controllers to monitor the velocity change during the burn, using NASA’s Deep Space Network’s 70-metre antenna near Madrid, Spain. No other means of communication with the Earth is possible during the capture burn. 5 and 9 April, targeting control manoeuvres. Two time slots are available to adjust course if needed. Given the high accuracy of the course correction performed end of March, Venus Express is currently on the right trajectory for a successful capture into orbit and it is therefore unlikely that either of these two extra slots will be required. 10 to 11 April, final preparations for VOI manoeuvre. 24 to 12 hours before VOI, spacecraft controllers will command Venus Express into its final configuration for the burn. Over the final 12 hours, they will monitor its status, ready to deal with any contingencies requiring last-minute trajectory correction or any revising of the main-engine burn duration. 11 April, 08:03 (CEST), ‘slew’ manoeuvre. This manoeuvre lasts about half an hour and rotates Venus Express so that the main engine faces the direction of motion. Thanks to this, the burn will slow down (rather than accelerate) the spacecraft. 11 April, 09:17 (CEST), main-engine burn starts. A few minutes after firing of the spacecraft thrusters to make sure the propellant settles in the feed lines to the main engine, the latter will begin its 50-minute long burn, ending at 10:07. This thrust will reduce the initial velocity of 29 000 kilometres per hour (in relation to Venus) by 15 percent, allowing capture. Venus Express will settle into its preliminary, elongated nine-day orbit. On capture, it will be at about 120 million kilometres from the Earth and, at its nearest point, within 400 km of the surface of Venus. During the burn, at 09:45 (CEST), Venus Express will disappear behind the planet and will not be visible from Earth. This is known as its ‘occultation’ period. The spacecraft will re-emerge from behind Venus’s disc some ten minutes later. So, even with the low gain antenna’s signal, it will only be visible during the first half of the burn and the last six minutes. Receiving the spacecraft signal after the occultation period will be the first positive sign of successful orbit insertion. 11 April, h 11:13 (CEST), re-establish communication with Earth. At the end of the burn, Venus Express still has to perform a few automatic operations. These re-orient the solar panels towards the sun and one of the high gain antennas (the smaller High Gain Antenna 2) towards Earth. If everything goes as expected, at 11:13 the spacecraft should be able to establish its first communication link with ESA’s Cebreros ground station near Madrid. Over the next few hours, it will send much-awaited information about its state of health. Information about its actual trajectory will be available from ESOC’s flight dynamics team around 12:30 (CEST). 12 to 13 April 2006, full reactivation starts. During the 24 hours following orbital capture, time will be devoted to reactivating all spacecraft functions, including all internal monitoring capacity. By the morning of the 13th, the larger ‘High Gain Antenna 1, hitherto unused, will be oriented and fed by the transmitter to communicate with Earth. The two high gain antennas, located on different sides of the spacecraft, will be used alternately during the mission, to avoid exposure to the sun of critical equipment on the outside. Reaching final orbit A series of further manoeuvres and many more days will be required to settle Venus Express into its final orbit. The preliminary nine-day orbit is elliptical, ranging from 350 000 kilometres at its furthest point from the planet (apocentre) to less than 400 kilometres at its closest (pericentre). During this period, Venus Express will also have to perform seven burns (two with the main engine, five with its banks of thrusters) to gradually reduce the apocentre of the following orbits. Final orbit will be reached on 7 May after 16 loops around the planet. It will be a polar orbit, ranging from 66 000 to 250 kilometres from Venus and with a pericentre located at above latitude 80° North. On 22 April, Venus Express will start its in-orbit commissioning phase. Its instruments will be switched on one by one for detailed checking until 13 May, then operated all together or in groups. This allows simultaneous observation of phenomena to be tested, to be ready for the nominal science phase beginning on 4 June. Observations in capture orbit The preliminary nine-day polar orbit will be a great opportunity to perform scientific observations. These will proceed only if other critical operations of the spacecraft do not take priority, and in any case not before 30 hours after VOI. The first opportunity to gather scientific data will be on 12-13 April. During this preliminary orbit phase, the complete disc of Venus will be fully visible for the spacecraft’s imaging instruments, an opportunity that will not occur during the nominal mission, when the range of distances from the planet will be smaller. Such observations will mainly cover the southern hemisphere, which was inadequately studied on previous missions. In particular, the geometry of the capture orbit makes it possible to observe the dynamics of the Venusian atmosphere continuously and thoroughly from a greater distance, over a duration even longer than the full rotation cycle of the atmosphere at the cloud tops (the still-unexplained four-day ‘super rotation’). Indeed, atmospheric study is one of the mission’s prime goals. For instance, from distances greater than 200 000 kilometres, the visible/near-infrared mapping spectrometer (VIRTIS) will be able to take snapshots of the entire planetary disc and atmosphere. During the nominal science phase, images of the atmosphere will need to be built up in mosaics. The analyser of space plasma and energetic atoms (ASPERA) will have an unprecedented opportunity to study from great distances the unperturbed solar wind and to gather data on the atmospheric escape processes on a planet which has no magnetic protection. In the capture orbit, all the instruments (except the VeRA radio science experiment and PFS spectrometer) may perform observations for a few hours a day on selected dates. …and plenty of science to come Venus Express is designed to carry out scientific observations over two Venusian days, corresponding to 486 Earth days. The mission could be extended to double the nominal duration. Notwithstanding the intense previous exploration (Venus is the third most visited celestial body in our solar system after the Moon and Mars), a plethora of mysteries still surround this planet. Venus Express’s unique instruments for planetary investigation are tailored to taking advantage of clues from previous missions and investigating the planet’s oddities with unprecedented precision. The instruments onboard, the spacecraft’s ‘eyes’, include a combination of spectrometers (the PFS planetary fourier spectrometer and the SpicaV/SOIR ultraviolet and infrared atmospheric spectrometer), spectro-imagers (VIRTIS ultraviolet/visible/near-infrared mapping spectrometer) and imagers (VMC Venus monitoring Camera). They are extremely sensitive in a wide range of electromagnetic wavelengths from ultraviolet to infrared and will allow detailed study of the Venusian atmosphere and its interaction with the surface. Also onboard are the MAG magnetometer, the ASPERA analyser of space plasma & energetic atoms and the VeRA radio science experiment, to study all interaction between the atmosphere and the ever-blowing solar wind. Venus Express will take advantage, for the first time ever, of the so-called ‘infrared windows’, which are narrow atmospheric bands in the infrared part of the spectrum. Through these, precious information about the lower layers of the atmosphere and even the surface can be gathered. The Venus Express mission will help find answers to several unsolved questions. How does the complex atmospheric dynamics and cloud system work? What causes the fast “super-rotation” of the atmosphere at the cloud top? And what is the origin of the double vortex at the north pole? Venus Express will also investigate the processes that determine the chemistry of the noxious Venusian atmosphere, which can be as hot as 500°C at the surface and is mainly composed of carbon dioxide, with clouds of sulphuric acid drops. It will study what role the greatest greenhouse effect in the solar system plays in the overall evolution of the Venusian climate. It will also help us to ascertain whether Venus provides a possible preview of a future Earth. Lastly, through combined analysis of the dense atmosphere and surface, Venus Express will help us to understand the planet’s geology and ascertain there are signs of present volcanic or seismic activity. “Venus Express to ground control” During the course of the nominal mission, Venus Express will communicate with Earth via ESA’s Cebreros ground station near Madrid. ESA’s New Norcia station in Australia will be used to support the VeRA radio science experiment.

  11. Artist concept of Magellan spacecraft orbiting Venus

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft orbits Venus in this artist concept. The continued quest for detailed topographic measurements of Venus will again be undertaken in April 1989 by Magellan, named after the 16th century Portuguese explorer. Magellan will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperature radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.

  12. Second Venus spacecraft set for launch

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch phase of the Pioneer Venus Multiprobe spacecraft and cruise phases of both the Pioneer Venus Orbiter and the Multiprobe spacecraft are covered. Material pertinent to the Venus encounter is included.

  13. Spatial and temporal variations of the ion velocity measured in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.; Knudsen, W. C.

    1987-01-01

    Temporal and spatial deviations of ion velocity from the dominant flow of the Venusian ionosphere were detected in data collected from a retarding potential analyzer (RPA) aboard the Pioneer-Venus orbiter spectrometer. The ion velocity measurements were analyzed for the first 3.5 Venus years of the Pioneer-Venus mission, approximately through orbit 780. The deviations of ion velocity from the dominant velocity of the Venusian ionosphere, which generally flows nightward and is almost symmetric about the sun-Venus axis, affect both the ionospheric structure and dynamics. Two examples of departure from steady symmetric flow that were measured by the RPA are discussed.

  14. The dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.

    1988-01-01

    Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.

  15. Investigating the Geophysics of Venus: Result of the post-Alpbach Summer School 2014

    NASA Astrophysics Data System (ADS)

    Koopmans, Robert-Jan; Łosiak, Anna; Białek, Agata; Donohoe, Anthony; Fernández Jiménez, María; Frasl, Barbara; Gurciullo, Antonio; Kleinschneider, Andreas; Mannel, Thurid; Muñoz Elorza, Iñigo; Nilsson, Daniel; Oliveira, Marta; Sørensen-Clark, Paul; Timoney, Ryan; van Zelst, Iris

    2015-04-01

    Venus has been investigated by only five dedicated mission programs since the beginning of space flight. This relatively low level of interest is remarkable when considering that mass and radius of Venus are very similar to Earth's, while at the same time characteristics such as spin rate, atmospheric composition, pressure and temperature, make Venus a very different, inhabitable world. The underlying causes of these differences are not well understood. Apprehending Venus' tectonics and internal structure would not only shed light on the question why those two planets evolved so differently, but also help refining current models of planetary systems formation. In order to answer the question about reasons for differences in evolution of those two planets a group of 15 young scientists and engineers designed a mission to Venus during a follow-up of the Alpbach Summer School 2014. The primary objective of this mission is to learn whether Venus is tectonically active and on what time scale. In order to accomplish this goal the mission will determine the crustal structure of Venus, the current activity and distribution of active volcanoes and the movement of continental plates. The secondary objective is to further constrain the models of Venus' internal structure and composition. To achieve this, the mission will investigate the size, state and composition of the core as well as the state and composition of the mantle. The proposed mission consists of an orbiter in a near-polar circular orbit around Venus and a balloon for in-situ measurements operating during the initial phase of the mission. The balloon carries a nephelometer, a magnetometer, a mass spectrometer and stereo microphones and meteorological package. The orbiter carries a gradiometer for determining the gravity field, a synthetic aperture radar for investigating small changes in surface topography and mapping microwave signals from the surface and an IR and UV spectrometer and IR camera for monitoring heat signatures from volcanoes. By using the previous landers as reference points it will also be possible to accurately determine the spin rate with the radar. The nominal mission duration is planned to be five years starting from the release of the balloon. The balloon will operate for 25 days during which it oscillates vertically in the atmosphere between an altitude of 40 and 60 kilometres in a period of about six hours. At the same time, due to prevailing wind directions on Venus, it will gradually spiral from the equator towards higher latitudes. During the balloon science phase the orbiter will be in an elliptical orbit to maximise the time of visibility of the balloon with the orbiter. After this phase, the orbiter will be brought into a circular orbit at an altitude of 250 kilometres. To save fuel, apoapsis lowering will be achieved by aerobreaking in Venus' atmosphere. In the presentation further details about the mission timeline will be given. Particular engineering problems such as thermal control and data communication and the proposed solutions will be presented.

  16. A suggested trajectory for a Venus-sun, earth-sun Lagrange points mission, Vela

    NASA Technical Reports Server (NTRS)

    Bender, D. F.

    1979-01-01

    The possibility is suggested of investigating the existence of small, as-yet undiscovered, asteroids orbiting in the solar system near the earth-sun or Venus-sun stable Lagrange points by means of a spacecraft which traverses these regions. The type of trajectory suggested lies in the ecliptic plane and has a period of 5/6 years and a perihelion at the Venus orbital distance. The regions in which stable orbits associated with the earth and with Venus may lie are estimated to be a thin and tadpole-shaped area extending from 35 deg to 100 deg from the planet. Crossings of the regions by the trajectory are described, and the requirements for detecting the presence of 1 km sized asteroids are presented and shown to be attainable.

  17. The effect of the hot oxygen corona on the interaction of the solar wind with Venus

    NASA Technical Reports Server (NTRS)

    Belotserkovskii, O. M.; Mitnitskii, V. IA.; Breus, T. K.; Krymskii, A. M.; Nagy, A. F.

    1987-01-01

    A numerical gasdynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gasdynamic model that includes the effects of mass loading can be used to predict these parameters.

  18. The effect of the hot oxygen corona on the interaction of the solar wind with Venus

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, O. M.; Breus, T. K.; Krymskii, A. M.; Mitnitskii, V. Ya.; Nagey, A. F.; Gombosi, T. I.

    1987-05-01

    A numerical gas dynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gas dynamic model that includes the effects of mass loading can be used to predict these parameters.

  19. An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)

    NASA Technical Reports Server (NTRS)

    Engelhardt, D. B.; Kronschnabl, G. R.; Border, J. S.

    1990-01-01

    Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements.

  20. A novel orbiter mission concept for venus with the EnVision proposal

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  1. The polar thermosphere of Venus

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, Ingo; Rosenblatt, Pascal; Bruinsma, Sean; Yelle, Roger; Svedhem, Håkan; Forbes, Jeffrey M.; Withers, Paul; Keating Sci. Gerald, Sr.; Lopez-Valverde, Miguel Angel

    The thermosphere of Venus has been extensively observed in-situ primarily by the Pioneer Venus Orbiter, but those measurements concentrated on the low latitude regions. Until recently, no in-situ observations were made of the polar thermosphere of Venus, and reference atmospheres such as the VTS3 and VIRA models relied on solar zenith angle trends inferred at low latitudes in order to extrapolate to polar latitudes. The Venus Express Atmospheric Drag Experiment (VExADE) carries out accurate orbital tracking in order to infer for the first time ever the densities in Venus' polar thermosphere near 180 km altitude at solar minimum. During 3 recent tracking campaigns we obtained density measurements that allow us to compare actual densities in those regions with those predicted by the reference atmosphere models. We constructed a hydrostatic diffusive equilibrium at-mosphere model that interpolates between the Venus Express remote sensing measurements in the upper mesosphere and lower thermosphere region and the in-situ drag measurements by VExADE. This paper will present and discuss our latest findings.

  2. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  3. The surface and interior of Venus

    NASA Technical Reports Server (NTRS)

    Masursky, H.; Kaula, W. M.; Russell, C. T.; Schubert, G.; Mcgill, G. E.; Pettengill, G. H.; Shapiro, I. I.; Phillips, R. J.

    1977-01-01

    The present knowledge of Venus is reviewed with discussions of the nature and history of both the surface, crust and interior. Instrumentation on board the Pioneer Venus Orbiter, including the radar mapper, radio tracking and the fluxgate magnetometer, is described. Topographic, geological, Bouguer gravity, magnetic, and crustal thickness maps will be constructed from Orbiter data. These maps should provide information on composition and thermal history, the major geological or geophysical provinces, the rate of past and present tectonic activity, and evidence of past or present MHD dynamos.

  4. Missions to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  5. System design of the Pioneer Venus spacecraft. Volume 11: Launch vehicle utilization

    NASA Technical Reports Server (NTRS)

    Varga, R. J.

    1973-01-01

    A summary of the spacecraft descriptions; the probe bus, large probe, small probe, and orbiter is presented. The highlights on the designs of the Atlas/Centaur spacecraft as compared to the corresponding Thor/Delta spacecraft designs are contained. A comparison is made of the two Atlas/Centaur spacecraft for reference. The major differences are the replacement of the probes of the forward end of the probe bus with the mechanically despun antenna of the orbiter and the replacement of the bicone antenna on the aft end with the orbit insertion motor. The cross sections of the large and small probes are compared. The major features of each probe are described. The Thor/Delta and Atlas/Centaur designs for the probe bus and orbiter are analyzed. The usable spacecraft mass for the Atlas/Centaur is roughly twice that for the Thor/Delta if the Type I trajectory is assumed. It is somewhat less for the Type II trajectory in the designated launch years. This additional mass capability leads to cost savings in many areas which are described.

  6. Solar Cycle Changes in the Position of the Intermediate Transition in the Venus Ionosheath.

    NASA Astrophysics Data System (ADS)

    Perez De Tejada, H. A.; Lundin, R. N. A.; Durand-Manterola, H. J.; Reyes-Ruiz, M.; Barabash, S.; Zhang, T.; Sauvaud, J. A.

    2014-12-01

    Measurements conducted with the ASPERA plasma probe and the magnetometer of the Venus Express (VEX) spacecraft in orbits that probed by the midnight plane within the Venus wake show the presence of a sharp plasma transition outside the region where enhanced fluxes of planetary ions are observed. That transition agrees with a feature reported earlier [1] from the VEX electron measurements and that is now also characterized by a sharp change in the speed and density of the solar wind H+ ions [2]. From the analysis of the plasma data of 10 VEX orbits in two different time periods (August 2006 and September 2009) it is possible to derive the position of the VEX spacecraft at the time when the plasma transition is observed in all 10 orbits. The data show a collection of different distances downstream from Venus where the plasma transition is detected and that are grouped for each time period. As a whole the X-distance on the sun-Venus line downstream from the planet for each of the 5 orbits corresponding to the August 2006 time period is smaller than that corresponding to the 5 orbits of the September 2009 time period. The average distance difference between both sets of data points is nearly one half planetary radius thus leading to two different groups in their distribution. The position of the plasma transition downstream from Venus will vary along the solar cycle being displaced to regions that extend farther away from the inner wake under solar maximum conditions. [1] Pérez-de-Tejada, H.et al., JGR, 116, JA015216, 2011. [2] Pérez-de-Tejada, H.et al., JGR, 118, JA019029, 2013.

  7. Present status of the Japanese Venus climate orbiter

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.

    The code name of 24th science spacecraft of ISAS/JAXA is Planet-C. It is the first Venus Climate Orbiter (VCO) of Japan. The ministry of finance of Japan finally agreed to start phase B study of VCO from this April, 2004. We plan 1-2 years phase B study followed by 2 years of flight model integration. The spacecraft will be launched between 2009 and 2010. After arriving Venus, 2 years of operation is expected. VCO will complemet the ESA's Venus Express mission which have several spectrometers and will reveal the composition of the Venusian atmosphere. On the other hand, VCO is designed to reveal the details of the atmospheric motion on Venus and approach the dynamics of the Venusian climate. Cooperation between Japanese VCO and ESA's Venus Express, in the colaboration framework of U.S., Europian, and Japanese scienctist is very important. To elucidate the driving mechanism of the 4-days super-rotation is one of our main targets. We have 4 cameras to take snap shots of the planets in different wave lengths. They are the IR1 camera (1 micron-meter), the IR2 camera (2.4 micron-meter), the LIR camera (10-12 micron-meter), and the UVI camera (340nm). They are attached to the side panel of the 3-axis stabilized spacecraft, and are directed to Venus with the spacecraft's attitude control. Snap shots are expected to be taken every 2 hours. The spacecraft has an orbit of 300km x 13Rv (Venusian radii) with 172 degrees inclination. Orbital period is 30 hours. The angular position of the spacecraft on this orbit is synchronized for 20 hours at its apoapsis with the global atmospheric circulation at the altitude of 50km, thus the snap shots of every 2 hours will be the images of the same side of the atmosphere. In addition to these 4 cameras, we have a Lightning and Airglow camera (LAC) in visible range. This will be operated when the orbiter is close to the planet.

  8. Future Drag Measurements from Venus Express

    NASA Astrophysics Data System (ADS)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.

  9. Data Reduction and Analysis of Pioneer Venus Orbital Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Cloutier, Paul A.

    1996-01-01

    Research was carried out on developing a flow field interaction model for both the dayside and nightside ionosphere of Venus. Specific topics related to the dayside ionosphere included: (1) wave particle mechanisms at the ionopause, (2) structure and dynamics of the Venus ionopause and Ionosphere, and (3) flows and fields in the Venus Ionosphere. The structure and dynamics of ion troughs was also studied in the nightside ionosphere of Venus.

  10. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus

    NASA Astrophysics Data System (ADS)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team

    2017-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S.E., et al., Science, 2010. 328(5978): p. 605-8.2. Helbert, J., et al., GRL, 2008. 35(11).3. Mueller, N., et al., JGR, 2008. 113.4. Helbert, J., et al. 2016. San Diego, CA: SPIE.5. Mueller, N.T., et al., JGR, 2017.

  11. Atmospheric tides on Venus. IV - Topographic winds and sediment transport

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    1993-06-01

    A novel theory is presented for the Venus boundary layer which encompasses the effects of topography and uses the mixing-length hypothesis to preclude the unknown eddy viscosity. The maps of mass-flux and erosion/deposition rate presented are based on Pioneer Venus orbiter relief measurements. The typically 19 cm/sec friction speeds associated with the present theory are several times greater than those estimated on the basis of Venera 9 and 10 anemometry, and mean aeolian transport is generally away from the equator, contrary to Magellan orbiter windstreak directions.

  12. A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

  13. Comment on the Pioneer Venus Orbiter event of February 11, 1982 - Of cometary or solar origin?

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1986-01-01

    The evidence presented by Russell et al. (1985) for the cometary origin of the Pioneer Venus Orbiter event of Febr. 11, 1982, is examined critically. It is argued that the field fluctuations and He enhancements seen at Venus and near earth, the sequence of the events, and a number of related observations all indicate that the event is of solar origin. These objections are discussed individually in a reply by Russell et al., and the claim of cometary origin is defended.

  14. Celestial mechanics experiment.

    PubMed

    Anderson, J D; Pease, G E; Efron, L; Tausworthe, R C

    1967-12-29

    Equipment on Mariner V has yielded values for the masses of Moon and Venus more accurate than any previously reported. Range and Doppler radio tracking data necessary for precise space navigation of the spacecraft from Earth to Venus can also be used to obtain data on the orbits of Earth and Venus.

  15. Venus and Mars Obstacles in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Mitchell, D. L.; Acuna, M. H.; Russell, C. T.; Brecht, S. H.; Lyon, J. G.

    2000-10-01

    Comparisons of the magnetosheaths of Venus and Mars contrast the relative simplicity of the Venus solar wind interaction and the ``Jekyll and Hyde" nature of the Mars interaction. Magnetometer observations from Mars Global Surveyor during the elliptical science phasing orbits and Pioneer Venus Orbiter in its normally elliptical orbit are compared, with various models used to compensate for the different near-polar periapsis of MGS and near-equator periapsis of PVO. Gasdynamic or MHD fluid models of flow around a conducting sphere provide a remarkably good desciption of the Venus case, and the Mars case when the strong Martian crustal magnetic anomalies are in the flow wake. In the case of Venus, large magnetosheath field fluctuations can be reliably tied to occurrence of a subsolar quasiparallel bow shock resulting from a small interplanetary field cone angle (angle between flow and field) upstream. At Mars one must also contend with such large fluctuations from the bow shock, but also from unstable solar wind proton distributions due to finite ion gyroradius effects, and from the complicated obstacle presented to the solar wind when the crustal magnetic anomalies are on the ram face or terminator. We attempt to distinguish between these factors at Mars, which are important for interpretation of the upcoming NOZOMI and Mars Express mission measurements. The results also provide more insights into a uniquely complex type of solar system solar wind interaction involving crustal fields akin to the Moon's, combined with a Venus-like ionospheric obstacle.

  16. Long-term orbit prediction for the Venus Radar Mapper Mission using an averaging method

    NASA Technical Reports Server (NTRS)

    Kwok, J. H.

    1984-01-01

    A set of singly averaged equations of motion are presented and applied to long-term orbit prediction of an orbiting spacecraft around a slowly rotating planet, using the Venus Radar Mapper Mission as an example. The equations of motion used are valid for all eccentricities less than one. The disturbing potentials used include nonsphericity of the Venus gravity field and third-body effects due to the sun. Recursive relationships are used in the expansion and evaluation of these potentials and their respective partial derivatives. Special care is taken to optimize computational efficiency. The averaging method is compared with high precision Cowell's method using a desktop microcomputer and shows computational saving of about two orders of magnitude.

  17. (abstract) Venus Gravity Field

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Sjogren, W. L.

    1995-01-01

    A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.

  18. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  19. Venus

    ERIC Educational Resources Information Center

    Martin, Paula; Stofan, Ellen

    2004-01-01

    On 8 June 2004 Venus will pass in front of the Sun as seen from the Earth. Many people will watch the small dark dot cross the solar disk, but will they stop to think about Venus as a real place? In this article we discuss what we know about Venus, what it looks like from orbit, what you might see if you were on the surface and future plans for…

  20. Contingency Operations during Failure of Inertial Attitude Acquisition Due to Star Tracker Blinding for Three-Axes-Stabilized Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Keil, Joachim; Herfort, Ulrich

    2007-01-01

    The three interplanetary ESA missions Mars-Express, Rosetta and Venus-Express (launched 2003, 2004 and 2005 resp.) are three-axes stabilized spacecraft (s/c) that estimate their inertial attitude (i.e. the attitude of the s/c w.r.t. the inertial frame) using measurements from a redundant set of star trackers (STR). Each s/c is equipped with four reaction wheels, a reaction control system based on thrusters and a redundant set of ring laser gyroscopes (gyros). The STR h/w layout of the three s/c is identical whereas there is a difference in the star pattern recognition algorithm of Rosetta which uses five neighbouring stars around a central star instead of star triads. The Rosetta algorithm has been implemented to cope with the presence of false stars which are expected to be seen during operations around the comet. The attitude acquisition capability from lost in space is different also in terms of AOCMS: The survival mode of Rosetta which is entered upon STR failure is presented. The AOCMS of Mars- and Venus-Express manages temporary STR outages during sky occultation by the planet not even by using redundancy. Though, a blinding of both STR during cruise lasting for the order of days confronts the ground operators with the limits of the AOCMS design. The operations and analyses that have been planned and partially been performed to compensate for the outage of the STR are demonstrated for Mars-Express. The caution measures taken before Venus orbit insertion of Venus-Express are detailed.

  1. Mapping the circumsolar dust ring near the orbit of Venus

    NASA Astrophysics Data System (ADS)

    Jones, M. H.; Bewsher, D.; Brown, D. S.

    2017-05-01

    Synoptic images obtained from the HI-2 instrument on STEREO-A and -B between 2007 and 2014 have been used to further investigate the circumsolar dust ring at the orbit of Venus that was reported by Jones et al. (2013). The analysis is based on high signal-to-noise ratio photometry of the zodiacal light, using data acquired over 10-day intervals, followed by a process of extracting spatial variability on scales up to about 6.5°. The resulting images provide information about the structure of the ring at the location where it is viewed tangentially. We identify 65 usable data sets that comprise about 11% of the available HI-2 data. Analysis of these images show that the orientation of the ring appears to be different to that of the orbit of Venus, with an inclination of 2.1° and longitude of ascending node of 68.5°. We map the variation of ring density parameters in a frame of reference that is co-rotating with Venus and find a pattern suggestive of dust in a 3: 2 orbital resonance. However, the location of the maxima of dust densities is not as expected from theoretical models, and there is some evidence that the dust density distribution in the ring has a pattern speed that differs from the mean motion of Venus.

  2. Large stationary wave features appearing repeatedly at the cloud top of Venus

    NASA Astrophysics Data System (ADS)

    Kouyama, Toru; Imamura, Takeshi; Taguchi, Makoto; Fukuhara, Tetsuya; Sato, Takao M.; Hashimoto, George L.; Futaguchi, Masahiko; Takamura, Mao; Yamada, Takeru; Satoh, Takehiko; Nakamura, Masato; Akatsuki Science Team

    2017-10-01

    At the first observation sequence after Akatsuki’s Venus orbiter re-insertion (VOI-R) on December 7, 2015, Akatsuki revealed an existence of a large-scale “bow-shaped” feature staying at almost same geographic location (above Aphrodite Terra) at the cloud top level with the Longwave Infrared Camera (LIR) and Ultra Violet Imager (UVI). It expanded ~10,000 km from south to north and bended to downstream side of the super-rotation of Venus. A numerical calculation in Fukuhara et al. (2017) suggested that a gravity wave generated in the lower atmosphere can propagate upward to the cloud top and reproduce the observed bow-shape structure. Because the wave can transport momentum to the upper atmosphere which possibly decelerates the super-rotation, it is an interesting topic whether the stationary wave event is regular or just an occasional event. For more than three Venus years, or four Venus solar days, Akatsuki has observed huge stationary wave features in LIR images again and again since the VOI-R. It has been confirmed that four high-altitude regions, east and west part of Aphrodite Terra, Atra Regio, and Beta Regio, accompany with the large stationary features. All four regions are located in lower latitudes (< 30°), while no clear stationary feature has been confirmed above Maxwell Mountain, which is the highest mountain but located at a high latitude (60°), indicating geographical and latitudinal dependencies of the generation of the stationary waves. Akatsuki also reveals the stationary features can be considered as "daily" phenomena in Venus atmosphere. At every timing when the four high-altitude regions were passing afternoon region of Venus, huge stationary waves became clearer. On the other hand, when the high mountains were located around mid-night and morning, stationary features were much weaker than that in afternoon, or cannot be confirmed, indicating strong local time dependency of the appearance. Since lower latitude has more incident solar flux and afternoon area experiences longer solar heating than morning area, the geographical and the local time dependencies indicate that interaction between mountains and solar heating or solar fixed atmospheric structure may cause the large-scale features.

  3. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  4. SO2 in the middle atmosphere of Venus: IR measurements from Venera 15 and comparison to UV

    NASA Technical Reports Server (NTRS)

    Zasova, L. V.; Moroz, V. I.; Esposito, L. W.; Na, C. Y.

    1992-01-01

    Two sets of measurements of SO2 bands in the Venus spectra are presented and compared: IR spectra obtained on the USSR Venera 15 orbiter and UV spectra from the American Pioneer Venus orbiter and sounding rockets. The 40-mbar level was chosen as a reference level for comparison. The UV data are referred to this level. There are three SO2 bands in the infrared spectrum: at 519, 1150, and 1360 cm(exp -1). The levels of their formation in the atmosphere may differ significantly, by more than 10 km.

  5. Pioneer Venus data analysis for the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Knudsen, William C.

    1993-01-01

    This report describes the data analysis and archiving activities, analysis results, and instrument performance of the orbiter retarding potential analyzer (ORPA) flown on the Pioneer Venus Orbiter spacecraft during the period, Aug. 1, 1988 to Sept. 30, 1993. During this period, the periapsis altitude of the Orbiter spacecraft descended slowly from 1900 km altitude, at which altitude the spacecraft was outside the Venus ionosphere, to approximately 130 km altitude in Oct. 1992 at which time communication with the spacecraft ceased as a result of entry of the spacecraft into the Venus atmosphere. The quantity of ORPA data returned during this reporting period was greatly reduced over that recovered in the previous years of the mission because of the reduced power capability of the spacecraft, loss of half of the onboard data storage, and partial failure of the ORPA. Despite the reduction in available data, especially ionospheric data, important scientific discoveries resulted from this extended period of the Pioneer Venus mission. The most significant discovery was that of a strong solar cycle change in the size of the dayside ionosphere and the resulting shutoff of flow of dayside ions into the nightside hemisphere. The large, topside O+ F2 ionospheric layer observed during the first three years of the Pioneer Venus mission, a period of solar cycle maximum activity, is absent during the solar cycle minimum activity period.

  6. VENUS CLOUD MORPHOLOGY AND MOTIONS FROM GROUND-BASED IMAGES AT THE TIME OF THE AKATSUKI ORBIT INSERTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S.

    We report Venus image observations around the two maximum elongations of the planet at 2015 June and October. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA’s Akatsuki mission on 2015 December 7. The majority of the images were acquired at ultraviolet wavelengths (380–410 nm) using small telescopes. The Venus dayside was also observed with narrowband filters at other wavelengths (890 nm, 725–950 nm, 1.435 μ m CO{sub 2} band) using the instrument PlanetCam-UPV/EHU at the 2.2 m telescope in Calar Alto Observatory. In all cases, the lucky imagingmore » methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April–June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well-developed equatorial dark belt (afternoon hemisphere), whereas during October–December the dynamical regime was dominated by planetary-scale waves (Y-horizontal, C-reversed, and ψ -horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50°N to 50°S shows agreement with retrievals from previous works.« less

  7. Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry. Part 2: Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.

    1993-01-01

    A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.

  8. The Soviet maps of Venus

    NASA Astrophysics Data System (ADS)

    Robertson, D. F.

    1990-02-01

    The USSR began mapping parts of Venus almost six years ago and have published a series of scientific results, reaching a few limited conclusions about Venus. While based on the traditional second generation Venera orbiter design, Veneras 15 and 16 carried Polyus-V sidelooking synthetic-aperture radars which used the orbiter's motion over Venus to 'synthesize' an antenna of far larger size than could practically be carried to the planet. The resolution and coverage achieved is better than one kilometer over most of the surface compared with one tenth of a kilometer partial cover expected from the Venus Radar Mapper. The radar data will take years to analyze completely, but initial results have been released and the Soviet Union has compiled an atlas of radar images. Cartographers named two craters after American astronauts Judith Resnik and Sharon Christa McAuliffe. One of the conclusions is that Venus is not a 'single plate' planet, like the earth's moon or Mercury; its crust is distinctly broken into individual blocks with independent movements. It appears that extensive volcanism is a universal factor in the evolution of planets in the inner solar system.

  9. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  10. Venus

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Carr, M. H.

    1984-01-01

    The following aspects of the planet Venus are discussed: orbit, rotation, composition, wind erosion, topography, surface roughness, gravity, and tectonics. The Venera satellites, Pioneer space probes, and Mariner space probes involved in Venusian exploration are enumerated.

  11. Analysis of Trajectory Parameters for Probe and Round-Trip Missions to Venus

    NASA Technical Reports Server (NTRS)

    Dugan, James F., Jr.; Simsic, Carl R.

    1960-01-01

    For one-way transfers between Earth and Venus, charts are obtained that show velocity, time, and angle parameters as functions of the eccentricity and semilatus rectum of the Sun-focused vehicle conic. From these curves, others are obtained that are useful in planning one-way and round-trip missions to Venus. The analysis is characterized by circular coplanar planetary orbits, successive two-body approximations, impulsive velocity changes, and circular parking orbits at 1.1 planet radii. For round trips the mission time considered ranges from 65 to 788 days, while wait time spent in the parking orbit at Venus ranges from 0 to 467 days. Individual velocity increments, one-way travel times, and departure dates are presented for round trips requiring the minimum total velocity increment. For both single-pass and orbiting Venusian probes, the time span available for launch becomes appreciable with only a small increase in velocity-increment capability above the minimum requirement. Velocity-increment increases are much more effective in reducing travel time for single-pass probes than they are for orbiting probes. Round trips composed of a direct route along an ellipse tangent to Earth's orbit and an aphelion route result in the minimum total velocity increment for wait times less than 100 days and mission times ranging from 145 to 612 days. Minimum-total-velocity-increment trips may be taken along perihelion-perihelion routes for wait times ranging from 300 to 467 days. These wait times occur during missions lasting from 640 to 759 days.

  12. Water vapor distribution in the Venusian mesosphere from SPICAV/SOIR observations

    NASA Astrophysics Data System (ADS)

    Fedorova, Anna; Korablev, Oleg; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis; Mahieux, Arnaud; Vandaele, Ann-Carine

    Water vapor is one of important gases in the Venus' atmosphere. The question why Venus is so much drier than Earth is crucial to understanding the evolution of the Venus atmosphere. H2O also play a significant role in the chemistry of the lower and middle atmosphere of Venus due to it involves in the sulfur oxidation cycle that produces H2SO4, and in active photochemistry above the clouds. Several in-situ experiments and ground-based observations allowed to measure water vapor abundance in the Venus atmosphere. The cloud-top H2O abundance has been observed by Pioneer Venus Orbiter Infrared Radiometer and Venera 15 Fourier Transform Spectrometer. The PV OIR instrument was found a substantial variation of H2O abundance in the equatorial cloud-top region shortly after the sub-solar point. Ground-based observations in microwaves also indicate a substantial variability. SPICAV VIS-IR is a part of SPICAV/SOIR experiment on Venus-Express. It is a single pixel spectrometer for the spectral range of 0.65-1.7 m based on AOTF (acousto-optical tunable filter) technology. Spectral resolution corresponds to 7.8 cm-1 for the short wavelength channel (0.65-1.1 m) and 5.2 cm-1 for the long wavelength channel (1-1.7 m). Resulting resolution power is 1400 at 1.4 m. The spectrometer sequentially measures spectra of reflected solar radiation from Venus on the dayside and the emitted Venus radiation in spectral "windows" on the night side. Based on 1.38 m band, H2O abundance above the clouds has been routinely retrieved for the dataset from the middle 2006 to the end of 2009 (VEX orbits 23-1300) taking into account multiple-scattering in the cloudy atmosphere. Altitude of cloud top level (65-73 km) corresponding =1 has been obtained from CO2 bands in the range of 1.4-1.65 m. Obtained H2O content varies inside 3-10 ppm and shows weak variations from orbit to orbit and with the latitude. In this report the local time and latitude distribution of H2O and long-term variability will be analyzed and main uncertainties will be discussed. The comparison of the morning and the evening observations at different latitudes with water vapor vertical profiles from SOIR solar occultation observations will be presented.

  13. Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus

    USGS Publications Warehouse

    Bridges, Nathan T.; McGill, George E.

    2002-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  14. Studies of the chemistry of the nightside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1991-01-01

    A combination of numerical modeling and analysis of the Pioneer Venus UADS data base is studied, specifically data from the orbiter ion mass spectrometer (OIMS), orbiter neutral mass spectrometer (ONMS), and orbiter electron temperature probe (OETP). A one dimensional model of the Venus nightside ionosphere was set up in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. The model shows that the densities of mass-28 ions, CO(+) + N(2+), resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult. A look at the data reveals that the actual densities of mass-28 ions are quite variable, from values near 10 to more than 10(exp 4) cm(exp -3). The excess mass-28 ions are assumed to be produced by electron precipitation and that the presence of high densities of mass-28 ions is a signature of auroral precipitation. A discussion of the atomic oxygen green line in the nightglow of Venus, which is produced mainly by dissociative recombination of O(2+), is presented. Original calculations of production rates of excited states for models based on Pioneer Venus data are also presented.

  15. Long-term variations in abundance and distribution of sulfuric acid vapor in the Venus atmosphere inferred from Pioneer Venus and Magellan radio occultation studies

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Steffes, P. G.

    1992-01-01

    Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued monitoring of the abundance of distribution of H2SO4(g) in the Venus atmosphere, as well as other interesting atmospheric properties. Without such measurements it will be difficult to address other issues such as the short-term spatial variability of the abundance of H2SO4(g) at similar latitudes in Venus atmosphere, and the identities of particles responsible for large-scale variations observed in NIR images.

  16. Venus - Ishtar gravity anomaly

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  17. Thermal Structure and Major Ion Composition of the Venus Ionosphere: First RPA Results from Venus Orbiter.

    PubMed

    Knudsen, W C; Spenner, K; Whitten, R C; Spreiter, J R; Miller, K L; Novak, V

    1979-02-23

    Thermal plasma quantities measured by, the retarding potential analyzer (RPA) are, together with companion Pioneer Venus measurements, the first in situ measurements of the Venus ionosphere. High ionospheric ion and electron temperatures imply significant solar wind heating of the ionosphere. Comparison of the measured altitude profiles of the dominant ions with an initial modlel indicates that the ionosphere is close to diffusive equilibrium. The ionopause height was observed to vary from 400 to 1000 kilometers in early orbits. The ionospheric particle pressure at the ionopause is apparently balanced at a solar zenith angle of about 70 degrees by the magnetic field pressure with little contribution from energetic solar wind particles. The measured ratio of ionospheric scale height to ionopause radius is consistent with that inferred from previously measured bow shock positions.

  18. Western Aphrodite Terra, tectonics, geology, and line-of-sight gravity

    NASA Technical Reports Server (NTRS)

    Hays, John E.; Morgan, Paul

    1992-01-01

    Aphrodite Terra is the largest area of high-standing topography on Venus, and isostatic considerations strongly suggest that this high topography is supported at least in part by thickened crust. Previous studies of line-of-sight gravity data from the Pioneer Venus Orbiter indicate rapidly changing apparent depths of compensation across Aphrodite Terra. Magellan imaging data provide the first detailed images of this region, and we are mapping the region along Pioneer Venus orbit 440 to investigate whether the changing apparent depths of compensation correlate with changes in surficial tectonics. Preliminary mapping of geological features on Magellan images along the path of Pioneer Venus orbit 440 do not indicate a first-order correlation among surface features and changes in the apparent depth of compensation of line-of-sight gravity data. The apparent depth of compensation appears to be most variable in regions dominated by tessera, but not all areas of tessera have distinct gravity signatures. There is a weak correlation among areas in which impact craters are relatively common and areas in which the observed and predicted gravity anomalies are poorly correlated.

  19. First results of an Investigation of Sulfur Dioxide in the Ultraviolet from Pioneer Venus through Venus Express

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Molaverdikhani, K.; Esposito, L. W.; Pankratz, C. K.

    2010-10-01

    The Laboratory for Atmospheric and Space Physics is carrying on a project to restore and preserve data products from several past missions for archival and use by the scientific community. This project includes the restoration of data from Mariner 6/7, Pioneer Venus, Voyager 1/2, and Galileo. Here, we present initial results of this project that involve Pioneer Venus Orbiter Ultraviolet Spectrometer (PVO UVS) data. Using the Discrete Ordinate Method for Radiative Transfer (DISORT), we generate a suite of models for the three free parameters in the upper atmosphere of Venus in which we are interested: sulfur dioxide abundance at 40mb, scale height of sulfur dioxide, and the typical radius of the upper haze particles (assumed to be composed of 84.5% sulfuric acid). We calculate best fits to our radiative transfer model results for multi-spectral images taken with PVO UVS, as well as the 'visible' channel (includes wavelengths from 290nm to about 1000nm) of the mapping mode of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M-Vis) on the Venus Express spacecraft, currently orbiting Venus. This work is funded though the NASA Planetary Mission Data Analysis Program, NNH08ZDA001N.

  20. Characterization of the dynamics of the atmosphere of Venus with Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Machado, Pedro Miguel Borges do Canto Mota

    Currently the study of the Venus' atmosphere grows as a theme of major interest among the astrophysics scientific community. The most significant aspect of the general circulation of the atmosphere of Venus is its retrograde super-rotation. A complete characterization of this dynamical phenomenon is crucial for understanding its driving mechanisms. This work participates in the international effort to characterize the atmospheric dynamics of this planet in coordination with orbiter missions, in particular with Venus Express. The objectives of this study are to investigate the nature of the processes governing the super-rotation of the atmosphere of Venus using ground-based observations, thereby complementing measurements by orbiter instruments. This thesis analyzes observations of Venus made with two different instruments and Doppler velocimetry techniques. The data analysis technique allowed an unambiguous characterization of the zonal wind latitudinal profile and its temporal variability, as well as an investigation of large-scale planetary waves signature and their role in the maintenance of the zonal super-rotation, and suggest that detection and investigation of large-scale planetary waves can be carried out with this technique.These studies complement the independent observations of the european space mission Venus Express, in particular as regards the study of atmospheric super-rotation, meridional flow and its variability. (Abstract shortened by ProQuest.).

  1. HAVOC: High Altitude Venus Operational Concept - An Exploration Strategy for Venus

    NASA Technical Reports Server (NTRS)

    Arney, Dale; Jones, Chris

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A lighter-than-air vehicle can carry either a host of instruments and probes, or a habitat and ascent vehicle for a crew of two astronauts to explore Venus for up to a month. The mission requires less time to complete than a crewed Mars mission, and the environment at 50 km is relatively benign, with similar pressure, density, gravity, and radiation protection to the surface of Earth. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30 day crewed mission into Venus's atmosphere. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. With advances in technology and further refinement of the concept, missions to the Venusian atmosphere can expand humanity's future in space.

  2. Initial observations of the nightside ionosphere of venus from pioneer venus orbiter radio occultations.

    PubMed

    Kliore, A J; Patel, I R; Nagy, A F; Cravens, T E; Gombosi, T I

    1979-07-06

    Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.

  3. Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.

  4. First operations of the SOIR occultation infrared spectrometer in Venus orbit.

    NASA Astrophysics Data System (ADS)

    Nevejans, D.; Neefs, E.; Vandaele, A. C.; Muller, C.; Fussen, D.; Berkenbosch, S.; Clairquin, R.; Korablev, O.; Federova, A.; Bertaux, J. L.

    Since May 2006, the Venus-Express spacecraft is in its nominal orbit around VENUS and the SPICAV optical package has begun to acquire spectra. The SOIR extension to SPICAV is an echelle spectrometer associated to an AOTF (Acousto-Optical Tunable Filter) for the order selection, which performs solar occultation measurements in the IR region (2.2-4.3 µm) at a resolution of 0.1 cm-1 . The detailed optical study and design as well as the manufacturing were performed at the BIRA/IASB in collaboration with its industrial partners OIP and PEDEO. It was funded by the Belgian Federal Science Policy Office under the ESA PRODEX programme. The wavelength range allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of gases. The first results look promising and will be qualitatively presented.

  5. Initiation of a lightning search using the lightning and airglow camera onboard the Venus orbiter Akatsuki

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Sato, Mitsuteru; Imai, Masataka; Lorenz, Ralph; Yair, Yoav; Aplin, Karen; Fischer, Georg; Nakamura, Masato; Ishii, Nobuaki; Abe, Takumi; Satoh, Takehiko; Imamura, Takeshi; Hirose, Chikako; Suzuki, Makoto; Hashimoto, George L.; Hirata, Naru; Yamazaki, Atsushi; Sato, Takao M.; Yamada, Manabu; Murakami, Shin-ya; Yamamoto, Yukio; Fukuhara, Tetsuya; Ogohara, Kazunori; Ando, Hiroki; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko

    2018-05-01

    The existence of lightning discharges in the Venus atmosphere has been controversial for more than 30 years, with many positive and negative reports published. The lightning and airglow camera (LAC) onboard the Venus orbiter, Akatsuki, was designed to observe the light curve of possible flashes at a sufficiently high sampling rate to discriminate lightning from other sources and can thereby perform a more definitive search for optical emissions. Akatsuki arrived at Venus during December 2016, 5 years following its launch. The initial operations of LAC through November 2016 have included a progressive increase in the high voltage applied to the avalanche photodiode detector. LAC began lightning survey observations in December 2016. It was confirmed that the operational high voltage was achieved and that the triggering system functions correctly. LAC lightning search observations are planned to continue for several years.

  6. The polar ionosphere of venus near the terminator from early pioneer venus orbiter radio occultations.

    PubMed

    Kliore, A J; Woo, R; Armstrong, J W; Patel, I R; Croft, T A

    1979-02-23

    Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.

  7. Characterization of Atmospheric Waves at the upper clouds in the Polar Region of Venus

    NASA Astrophysics Data System (ADS)

    Peralta, J.; Luz, D.; Berry, D. L.; Tsang, C. C. C.; Migliorini, A.; Piccioni, G.; Drossart, P.

    2012-09-01

    Non solar-fixed waves at the cloud tops of the southern polar region of Venus are studied in the winds measured with 3.9 and 5.0 μm images taken by the instrument VIRTIS-M onboard Venus Express. Wavenumbers 1, 2 and 3 are detected, with wave amplitudes ranging from 3.6 to 8.0 m/s. The evolution of the phase has been studied in 16 orbits, finding in a subset of orbits wavenumbers 1 and 2 propagating in different directions (zonal wind), and a westward progression with a phase velocity of approximately 5.7 m/s for the wavenumber 1 in the meridional wind. Finally, a new set of analytical solutions to the atmospheric waves is obtained for the planet Venus, and these are used to characterize the found waves in terms of the horizontal wavelength and phase velocity.

  8. Chemistry of the surface and lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Treiman, A.

    1992-01-01

    A comprehensive overview of the chemical interactions between the atmosphere and surface of Venus is presented. Earth-based, earth-orbital, and spacecraft data on the composition of the atmosphere and surface of Venus are presented and applied to quantitative evaluations of the chemical interactions between carbon, hydrogen, sulfur, chlorine, fluorine, and nitrogen-containing gases and possible minerals on the Venus surface. The calculation results are used to predict stable minerals and mineral assemblages on the Venus surface to determine which, if any, atmospheric gases are buffered by mineral assemblages on the surface, and to critically review and assess prior work on atmosphere-surface chemistry on Venus. It is concluded that the CO2 pressure on Venus is comparable to the CO2 equilibrium partial pressure developed by the calcite + wollastonite + quartz assemblage at the mean Venus surface temperature of 740 K.

  9. Infrared radiometer for the Pioneer Venus orbiter. I - Instrument description

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Vescelus, F. E.; Locke, J. R.; Beer, R.; Foster, G. T.; Forney, P. B.; Houghton, J. T.; Delderfield, J.; Schofield, J. T.

    1979-01-01

    A ten-channel IR radiometer for the Pioneer Venus orbiter is described. The experimental techniques used and the design of the instrumentation by which they were implemented are considered. Emphasis is placed on temperature sounding, limb sounding, limb darkening, zenith scanning, cloud top temperature, spectral albedo and water vapor measurements. Instrumentation description is also given including optics, detectors, and electronics. Attention is given to data acquisition and handling, calibration, and in-flight performance.

  10. System design of the Pioneer Venus spacecraft. Volume 2: Science

    NASA Technical Reports Server (NTRS)

    Acheson, L. K.

    1973-01-01

    The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included.

  11. Flight performance of the Pioneer Venus Orbiter solar array

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.; Powe, J. S.; Smith, Marcie

    1987-01-01

    The Pioneer Venus Orbiter (PVO) solar panel power output capability has degraded much more severely than has the power output capability of solar panels that have operated in earth-orbiting spacecraft for comparable periods of time. The incidence of solar proton events recorded by the spacecraft's scientific instruments accounts for this phenomenon only in part. It cannot explain two specific forms of anomalous behavior observed: 1) a variation of output per spin with roll angle, and 2) a gradual degradation of the maximum output. Analysis indicates that the most probable cause of the first anomaly is that the solar cells underneath the spacecraft's magnetometer boom have been damaged by a reverse biasing of the cells that occurs during pulsed shadowing of the cells by the boom as the spacecraft rotates. The second anomaly might be caused by the effects on the solar array of substances from the upper atmosphere of Venus.

  12. Ionosphere of Venus - First observations of the dayside ion composition near dawn and dusk

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Donahue, T. M.; Cloutier, P. A.; Michel, F. C.; Daniell, R. E., Jr.; Blackwell, B. H.

    1979-01-01

    Independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bus and orbiter spacecraft obtained in situ measurements of the composition of the ionosphere of Venus. The spectrometer on the bus explored the dawn region while the spectrometer on the orbiter explored the duskside region. Information on the ion composition in the topside, the lower ionosphere, and the upper ionosphere is presented. Below the O(+) peak near 200 km, the ions are found to exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport.

  13. Lightning on Venus

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1985-01-01

    On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of lightning whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  14. Venus Cloud Morphology and Motions from Ground-based Images at the Time of the Akatsuki Orbit Insertion

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Peralta, J.; Gomez-Forrellad, J. M.; Hueso, R.; Pérez-Hoyos, S.; Mendikoa, I.; Rojas, J. F.; Horinouchi, T.; Lee, Y. J.; Watanabe, S.

    2016-12-01

    We report Venus image observations around the two maximum elongations of the planet at 2015 June and October. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA’s Akatsuki mission on 2015 December 7. The majority of the images were acquired at ultraviolet wavelengths (380-410 nm) using small telescopes. The Venus dayside was also observed with narrowband filters at other wavelengths (890 nm, 725-950 nm, 1.435 μm CO2 band) using the instrument PlanetCam-UPV/EHU at the 2.2 m telescope in Calar Alto Observatory. In all cases, the lucky imaging methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April-June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well-developed equatorial dark belt (afternoon hemisphere), whereas during October-December the dynamical regime was dominated by planetary-scale waves (Y-horizontal, C-reversed, and ψ-horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50°N to 50°S shows agreement with retrievals from previous works. Partially based on observations obtained at Centro Astronómico Hispano Alemán, Observatorio de Calar Alto MPIA-CSIC, Almería, Spain.

  15. Initial products of Akatsuki 1-μm camera

    NASA Astrophysics Data System (ADS)

    Iwagami, Naomoto; Sakanoi, Takeshi; Hashimoto, George L.; Sawai, Kenta; Ohtsuki, Shoko; Takagi, Seiko; Uemizu, Kazunori; Ueno, Munetaka; Kameda, Shingo; Murakami, Shin-ya; Nakamura, Masato; Ishii, Nobuaki; Abe, Takumi; Satoh, Takehiko; Imamura, Takeshi; Hirose, Chikako; Suzuki, Makoto; Hirata, Naru; Yamazaki, Atsushi; Sato, Takao M.; Yamada, Manabu; Yamamoto, Yukio; Fukuhara, Tetsuya; Ogohara, Kazunori; Ando, Hiroki; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Kouyama, Toru

    2018-01-01

    The status and initial products of the 1-μm camera onboard the Akatsuki mission to Venus are presented. After the successful retrial of Venus' orbit insertion on Dec. 2015 (5 years after the failure in Dec. 2010), and after a long cruise under intense radiation, damage in the detector seems small and fortunately insignificant in the final quality of the images. More than 600 dayside images have been obtained since the beginning of regular operation on Apr. 2016 although nightside images are less numerous (about 150 in total at three wavelengths) due to the light scattered from the bright dayside. However, data acquisition stopped after December 07, 2016, due to malfunction of the electronics and has not been resumed since then. The 0.90-µm dayside images are of sufficient quality for the cloud-tracking procedure to retrieve wind field in the cloud region. The results appear to be similar to those reported by previous 1-μm imaging by Galileo and Venus Express. The representative altitude sampled for such dayside images is estimated to be 51-55 km. Also, the quality of the nightside 1.01-µm images is sufficient for a search for active volcanism, since interference due to cloud inhomogeneity appears to be insignificant. The quality of the 0.97-µm images may be insufficient to achieve the expected spatial resolution for the near-surface H2O mixing ratio retrievals.[Figure not available: see fulltext.

  16. Venera-D: Technology Implications

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor

    2016-01-01

    The Venera-D concept mission being developed by the Joint Russian US Science Definition Team (JSDT) is an exciting concept for exploring Venus and is based largely successful approach of heritage Soviet Veneras and VEGA missions. The desired science of Venera-D seeks to build on the results on these missions and also missions by other nations such as the American Mariners, Pioneer Venus, and Magellan missions, ESAs Venus Express, and the current Japanese Akatsuki mission. A number of elements comprise the potential full mission concept. Core elements of the mission include a long lived orbiter (3 years) and a short duration ( 2 hour) but powerful lander. Several other mission elements are possible depending on mission constraints which include cost limitations. Other possible elements include some form of mobile aerial platform, such as a balloon, long lived dropsonde(s), and sub-satellite. One can image the diverse maturity of technologies that will be needed to support the various elements of the Venera-D mission concept. Given the long heritage and recent orbiting missions, little technology challenges are expected for the orbiter. However it has been several decades since humanity has placed a functioning lander on the Venus surface or spent time floating in the Venus atmosphere so the technology challenges will be of greater concern. This briefing presents some of the results of the Venera-D technology sub-group.

  17. 10. The surface and interior of venus

    USGS Publications Warehouse

    Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.

    1977-01-01

    Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.

  18. PIONEER VENUS 2 MULTI PROBE IS ENCAPSULATED IN PROTECTIVE SHROUD

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Encapsulation of the Pioneer Venus Multiprobe in its protective nose fairing is closely monitored by technicians in Hangar AO. The 2,000-pound spacecraft is one of two being launched toward the planet Venus. The Multiprobe is scheduled for launch aboard an Atlas Centaur rocket on August 7. Flying a direct path to the cloud-shrouded planet, the Multiprobe will reach Venus five days after the arrival of its sister spacecraft, the Pioneer Venus Orbiter, which was launched May 20, 1978. Three weeks before the Multiprobe reaches Venus, its four heavily instrumented scientific probes (seen on top of the spacecraft's main body or ''bus'') will be released and will impact at various points on the planet's surface. Together, the two spacecraft will conduct a thorough scientific exploration of the planet Venus.

  19. Venus: Our Misunderstood Sister

    NASA Astrophysics Data System (ADS)

    Dyar, Darby; Smrekar, Suzanne E.

    2018-01-01

    Of all known bodies in the galaxy, Venus is the most Earth-like in size, composition, surface age, and incoming energy. As we search for habitable planets around other stars, learning how Venus works is critical to understanding how Earth evolved to host life, and whether rocky exoplanets in stars’ habitable zones are faraway Earths or Venuses. What caused Venus’ path to its present hostile environment, devoid of oceans, magnetic field, and plate tectonics? This talk reviews recent mission results, presents key unresolved science questions, and describes proposed missions to answer these questions.Despite its importance in understanding habitability, Venus is the least-explored rocky planet, last visited by NASA in 1994. Fundamental, unanswered questions for Venus include: 1. How did Venus evolve differently? 2. How have volatiles shaped its evolution? 3. Did Venus catastrophically resurface? 4. What geologic processes are active today? 5. Why does Venus lack plate tectonics?On Earth, plate tectonics supports long-term climate stability and habitability by cycling volatiles in and out of the mantle. New information on planetary volatiles disputes the long-held notion that Venus’ interior is dry; several lines of evidence indicate that planets start out wet, creating long-term atmospheres by outgassing. ESA’s Venus Express mission provided evidence for recent and ongoing volcanism and for Si-rich crust like Earth’s continents. New hypotheses suggest that lithospheric temperature can explain why Venus lacks tectonics, and are consistent with present-day initiation of subduction on Venus.New data are needed to answer these key questions of rocky planet evolution. Orbital IR data can be acquired through windows in Venus’ CO2-rich atmosphere, informing surface mineralogy, rock types, cloud variations, and active volcanism. High resolution gravity, radar, and topography data along with mineralogical constraints must be obtained. Mineralogy and geochemistry data acquisition on the surface is feasible with current technology, though challenging. Orbital measurements of noble gases/stable isotopes are needed to constrain volatile sources, escape processes, and the history of volcanic outgassing in Venus’ atmosphere.

  20. Asteroids and Meteorites from Venus? Only the Earth Goddess Knows

    NASA Astrophysics Data System (ADS)

    Dones, Henry; Zahnle, Kevin J.; Alvarellos, José L.

    2018-04-01

    No meteorites from Venus have been found; indeed, some find theirexistence unlikely because of the perceived difficulty of launchingrocks at speeds above 10 km/s and traversing the planet's 93 baratmosphere. [1] Nonetheless, we keep hope alive, since cosmochemistssay they can identify Cytherean meteorites, should candidates be found[2]. Gladman et al. [3] modeled the exchange of impact ejecta betweenthe terrestrial planets, but did not consider meteorites launched fromVenus in any detail. At the time of Gladman's work, no asteroids thatremained entirely within Earth's orbit were known. 14 suchEarth-interior objects with good orbits have now been discovered, andare known as Atiras, for the Pawnee goddess of the Earth. The largestknown member of the class is 163693 Atira, a binary whose componentshave diameters of approximately 4.8 and 1 km. Discovery of Atiras isvery incomplete because they can only be seen at small solarelongations [4]. Greenstreet et al. [5] modeled the orbitaldistribution of Atiras from main-belt asteroidal and cometary sourceregions, while Ribeiro et al. [6] mapped the stability region ofhypothetical Atiras and integrated the orbits of clones of 12 realAtiras for 1 million years. 97% of the clones survived for 1 Myrimpact with Venus was the most common fate of those that met theirends. We have performed orbital integrations of 1000 clones of each ofthe known Atiras, and of hypothetical ejecta that escape Venus afterasteroid impacts, for 10-100 Myr. The latter calculations usetechniques like those of Alvarellos et al. [7] and Zahnle et al. [8]for transfer amongst Jupiter's galilean satellites. Our goals are toestimate the fraction of Atiras that are ejecta launched from Venus,the time spent in space by hypothetical meteorites from Venus, and therate at which such meteorites strike the Earth.[1] Gilmore M., et al (2017). Space Sci. Rev. 212, 1511. [2] JourdanF., Eroglu E. (2017). MAPS 52, 884. [3] Gladman B.J., etal. (1996). Science 271, 1387. [4] Masi G. (2003). Icarus 163,389. [5] Greenstreet S., Ngo H., Gladman B. (2012). Icarus 217,355. [6] Ribeiro A.O., et al. (2016). MNRAS 458, 4471. [7] Alvarellos,J.L., et al. (2008). Icarus 194, 636. [8] Zahnle, K., etal. (2008). Icarus 194, 660.

  1. Studies of the Chemistry of the Nightside Ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J.L.

    1992-01-01

    During the tenure of this grant, we have been looking into the chemistry of the nightside ionosphere of Venus with a view toward elucidating the relative roles of electron precipitation and plasma transport as sources of the nightside ionosphere. Secondary goals have included determining the densities of minor species on the nightside, and verifying the relative normalization of the Pioneer Venus orbiter ion mass spectrometer (OIMS) and orbiter neutral mass spectrometer (ONMS) in the photochemical equilibrium region. Our studies have involved a combination of numerical modeling and analysis of the Pioneer Venus UADS data base, specifically data from the OIMS, ONMS and electron temperature probe (OETP). We have set up a one-dimensional model of the Venus nightside ionosphere, in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. Our model shows that the densities of mass-28 ions (CO+ + N+) resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult.

  2. From Keplerian Orbits to Precise Planetary Predictions: the Transits of the 1630s

    NASA Astrophysics Data System (ADS)

    Thorvaldsen, Steinar

    2013-05-01

    The first transits of Mercury and Venus ever observed were important for quite different reasons than were the transit of Venus observed in the eighteenth century. Good data of planetary orbits are necessary for the prediction of planetary transits. Under the assumption of the central position of the Sun, Johannes Kepler published the theory of elliptical orbital motion of the planets in 1609; this new astronomy made it possible to compute noticeably improved ephemerides for the planets. In 1627 Kepler published the Tabulae Rudolphinae, and thanks to these tables he was able to publish a pamphlet announcing the rare phenomenon of Mercury and Venus transiting the Sun. Although the 1631 transit of Mercury was only observed by three astronomers in France and in Switzerland, and the 1639 transit of Venus was only predicted and observed by two self-taught astronomers in the English countryside, their observation would hardly been possible without the revolutionary theories and calculations of Kepler. The Tabulae Rudolphinae count among Kepler's outstanding astronomical works, and during the seventeenth century they gradually found entrance into the astronomical praxis of calculation among mathematical astronomers and calendar makers who rated them more and more as the most trustworthy astronomical foundation.

  3. Tale of Terrestrial Orgins: Hypothesis for Water on the Primordial Mars

    NASA Astrophysics Data System (ADS)

    Brown, Cole; Williams, Darren M.

    2018-06-01

    It is clear from evidence obtained by Martian orbiters and rovers that the surface of Mars once had flowing water approximately 3.8 Gyr ago. At this time, however, the Sun was approximately 30% less luminous – indicating the Martian surface should not have had a temperature appropriate to explain the existence of liquid water. We investigate a potential solution to this Faint Young Sun Paradox of Mars. We show that Mars could have once been in a circumplanetary orbit about Venus where it would have had a surface temperature conducive to support liquid water given a less luminous Sun. We then model how Mars could have tidally evolved away from Venus until it eventually escaped and migrated to its present orbit. We show that, given the right initial conditions, Mars tends toward an orbit in the vicinity of its present orbit (1.52AU) after escaping Venus and that the rest of the solar system is changed insignificantly from its present configuration. Furthermore, we are working to show that the timescale of the tidal evolution is ~ 108 to 109 years -- long enough to explain the observed geological evidence of water on Mars.

  4. Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045

    NASA Technical Reports Server (NTRS)

    Young, A. C.; Mulqueen, J. A.; Skinner, J. E.

    1984-01-01

    Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.

  5. Winds and the occultation experiment. [for Venus and Mars atmospheric parameters

    NASA Technical Reports Server (NTRS)

    Gross, S. H.

    1974-01-01

    A spacecraft orbiting about another planet, such as Mars or Venus, may be used to obtain data about the pressure, density, and temperature fields over the planet from multiple occultations if the orbit precesses or retrogresses. Under certain conditions successive occultations will provide mean dynamic information such as wind speeds over the time and spacing intervals. It is shown that data concerning winds may be found by comparing refractivity information rather than pressure or temperature.

  6. Magellan: The unveiling of Venus

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In the late 1970s and early 1980s, the United States and the Soviet Union sent the Pioneer Venus and Venera spacecraft, respectively, to study Venus more closely and to image its surface with radar. These missions have answered many questions about Venus, but many more questions remain unanswered about the extent to which Venus' surface was shaped by volcanoes, plate tectonics, impact craters, and water and wind erosion. To help answer these remaining questions a new radar imaging spacecraft Magellan will be launched from the Space Shuttle. Magellan will spend eight months mapping most of the planet at a resolution nearly ten times better than any previous views of the surface. The mission of Magellan, the radar equipment, orbiting of Venus, planetary imaging, and surface exploration are discussed.

  7. Gravity field of Venus at constant altitude and comparison with earth

    NASA Technical Reports Server (NTRS)

    Bowin, C.; Abers, G.; Shure, L.

    1985-01-01

    The gravity field of Venus is characterized in gravity-anomaly and geoid-undulation maps produced by applying the harmonic-spline technique (Shure et al., 1982 and 1983; Parker and Shure, 1982) to Pioneer Venus Orbiter line-of-sight data. A positive correlation between Venusian topographic features and gravity anomalies is observed, in contrast to the noncorrelation seen on earth, and attributed to the thicker crust of Venus (70-80 vs 5-40 km for earth), crustal loading by recent volcanism, and possible regional elevation due to deep heating and thermal expansion.

  8. VLF emissions in the Venus foreshock - Comparison with terrestrial observations

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    An examination is conducted of ELF/VLF emissions observed in the solar wind upstream of the Venus shock, for the 100 Hz-30 kHz range, using data from the Pioneer Venus Orbiter's electric field detector and magnetometer instruments. Detailed comparisons are made with terrestrial measurements for both the electron and ion foreshocks. The results obtained support the Crawford et al. (1990) identification of the Venus electron foreshock emissions as electron plasma oscillations, whose waves are generated in situ and act to isotropize the electron distributions.

  9. Geologic map of the Bell Regio Quadrangle (V-9), Venus

    USGS Publications Warehouse

    Campbell, Bruce A.; Campbell, Patricia G.

    2002-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.

  10. Geologic/geomorphic map of the Galindo Quadrangle (V-40), Venus

    USGS Publications Warehouse

    Chapman, Mary G.

    2000-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.

  11. Geologic map of the Carson Quadrangle (V-43), Venus

    USGS Publications Warehouse

    Bender, Kelly C.; Senske, David A.; Greeley, Ronald

    2000-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.

  12. Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus

    USGS Publications Warehouse

    Rosenberg, Elizabeth; McGill, George E.

    2001-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  13. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.

    1979-01-01

    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  14. The geology of the terrestrial planets.

    USGS Publications Warehouse

    Carr, M.H.

    1983-01-01

    During the last four years our knowledge of the geology of the terrestrial planets has advanced rapidly. The advances are particularly noticeable for Venus and Mars. Improved understanding of Venus has come largely from the Pioneer Venus mission. The period was also one of almost continuous data gathering for Mars as the Viking orbiters and landers, emplaced at the planet in 1976, continued to function. The last orbiter ran out of attitude- control gas in August of 1980 by which time about 55 000 pictures and vast amounts of infrared data had been collected. One lander continues to function and is expected to do so for several years. Only modest advances were made in the cases of Moon and Mercury, however, for little new data was acquired. -from Author

  15. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: Results from the October 1991 experiments

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Steffes, Paul G.; Hinson, David P.; Twicken, Joseph D.; Tyler, G. Leonard

    1994-01-01

    On October 5 and 6, 1991, three dual-frequency ingress radio occultation experiments were conducted at Venus during consecutive orbits of the Magellan spacecraft. The radio signals probed a region of the atmosphere near 65 deg N, with a solar zenith angle of 108 deg, reaching below 35 km at 3.6 cm, and below 34 km at 13 cm (above a mean radius of 6052 km). The high effective isotropic radiated power (EIRP) of the Magellan spacecraft and highly successful attitude maneuvers allowed these signals to probe deeper than any previous radio occultation experiment and also resulted in the most accurate thermal and sulfuric acid vapor abundance profiles ever obtained at Venus through radio occultation techniques. The performance of the spacecraft and the experiment design are discussed in an accompanying paper. Average electron density profiles retrieved from the data possess peaks between 2600 and 6000/cu cm, well below typical values of 10,000/cu cm retrieved in 1979 by Pioneer Venus at similar solar zenith angles. Other basic results include vertical profiles of temperature, pressure, and density in the neutral atmosphere, 13- and 3.6-cm absorpttivity, and H2SO4 (g) abundance below the main cloud layer. H2SO4 (g) becomes significant below 50 km, reaching peaks between 18 and 24 ppm near 39 km before dropping precipitously below 38 km. These sharp decreases confirm the thermal decomposition of sulfuric acid vapor below 39 km. Since the Venus atmosphere rotated approximately 10 deg between experiments, the data contain information about the horizontal variability of the atmosphere. All derived profiles exhibit significant variations from orbit to orbit, indicating the presence of dynamical processes between 33 and 200 km. In particular, the orbit-to-orbit variations in temperature and in H2SO4 (g) abundance appear to be correlated, suggesting that a common mechanism may be responsible for the observed spatial variations.

  16. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W.

    2006-01-01

    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  17. Topography of Venus and earth - A test for the presence of plate tectonics

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  18. A study of an orbital radar mapping mission to Venus. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A preliminary design of a Venus radar mapping orbiter mission and spacecraft was developed. The important technological problems were identified and evaluated. The study was primarily concerned with trading off alternate ways of implementing the mission and examining the most attractive concepts in order to assess technology requirements. Compatible groupings of mission and spacecraft parameters were analyzed by examining the interaction of their functioning elements and assessing their overall cost effectiveness in performing the mission.

  19. Deep Space Navigation with Noncoherent Tracking Data

    NASA Technical Reports Server (NTRS)

    Ellis, J.

    1983-01-01

    Navigation capabilities of noncoherent tracking data are evaluated for interplanetary cruise phase and planetary (Venus) flyby orbit determination. Results of a formal covariance analysis are presented which show that a combination of one-way Doppler and delta DOR yields orbit accuracies comparable to conventional two-way Doppler tracking. For the interplanetary cruise phase, a tracking cycle consisting of a 3-hour Doppler pass and delta DOR (differential one-way range) from two baselines (one observation per overlap) acquired 3 times a month results in 100-km orbit determination accuracy. For reconstruction of a Venus flyby orbit, 10 days tracking at encounter consisting of continuous one-way Doppler and delta DOR sampled at one observation per overlap is sufficient to satisfy the accuracy requirements.

  20. New Frontiers Science at Venus from Orbit plus Atmospheric Gas Sampling

    NASA Astrophysics Data System (ADS)

    Smrekar, Suzanne; Dyar, Melinda; Hensley, Scott; Helbert, Joern; VOX Science and Engineering Teams

    2017-10-01

    Venus remains the most Earth-like body in terms of size, composition, surface age, and insulation. Venus Origins Explorer (VOX) determines how Earth’s twin diverged, and enables breakthroughs in our understanding of rocky planet evolution and habitability. At the time of the Decadal Survey the ability to map mineralogy from orbit (Helbert et al.) and present-day radar techniques to detect active deformation were not fully appreciated. VOX leverages these methods and in-situ noble gases to answer New Frontiers science objectives:1. Atmospheric physics/chemistry: noble gases and isotopes to constrain atmospheric sources, escape processes, and integrated volcanic outgassing; global search for current volcanically outgassed water.2. Past hydrological cycles: global tessera composition to determine the role of volatiles in crustal formation.3. Crustal physics/chemistry: global crustal mineralogy/chemistry, tectonic processes, heat flow, resolve the catastrophic vs. equilibrium resurfacing debate, active geologic processes and possible crustal recycling.4. Crustal weathering: surface-atmosphere weathering reactions from redox state and the chemical equilibrium of the near-surface atmosphere.5. Atmospheric properties/winds: map cloud particle modes and their temporal variations, and track cloud-level winds in the polar vortices.6. Surface-atmosphere interactions: chemical reactions from mineralogy; weathering state between new, recent and older flows; possible volcanically outgassed water.VOX’s Atmosphere Sampling Vehicle (ASV) dips into and samples the well-mixed atmosphere, using Venus Original Constituents Experiment (VOCE) to measure noble gases. VOX’s orbiter carries the Venus Emissivity Mapper (VEM) and the Venus Interferometric Synthetic Aperture Radar (VISAR), and maps the gravity field using Ka-band tracking.VOX is the logical next mission to Venus because it delivers: 1) top priority atmosphere, surface, and interior science; 2) key global data for comparative planetology; 3) high-resolution topography, composition, and imaging to optimize future landers; 4) opportunities for revolutionary discoveries with a 3-year long mission, proven implementation and 44 Tb of data.

  1. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  2. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  3. Mariner Venus Mercury, 1973. [close flyby investigation of mercury after Venus-flyby, and observation of Kohoutek comet

    NASA Technical Reports Server (NTRS)

    Wilson, J. H.

    1973-01-01

    The Mariner Venus Mercury 1973 unmanned mission is discussed, which is designed to conduct a close flyby investigation of the planet Mercury after using the gravity-turn technique in a Venus flyby. Its scientific purposes include photographic, thermal, and spectral surveys, radio occulation, and charged particle/magnetic measurements at each planet, observation of solar-system fields and particles from 1.0 a.u. down to 0.4 a.u., and comparative planetary surveys between the Earth, the Moon, Venus, and Mercury. It is also intended to observe Kohoutek's comet. The trajectory permits establishment of a solar orbit in phase with Mercury's, permitting repeated encounters with that planet.

  4. The thermosphere and ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1992-01-01

    Our knowledge of the upper atmosphere and ionosphere of Venus and its interaction with the solar wind has advanced dramatically over the last decade, largely due to the data obtained during the Pioneer Venus mission and to the theoretical work that was motivated by this data. Most of this information was obtained during the period 1978 through 1981, when the periapsis of the Pioneer Venus Orbiter (PVO) was still in the measurable atmosphere. However, solar gravitational perturbations will again lower the PVO periapsis into the upper atmosphere in September 1992, prior to the destruction of the spacecraft toward the end of this year. The physics and chemistry of the thermosphere and ionosphere of Venus are reviewed.

  5. The tectonics of Venus: An overview

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1992-01-01

    While the Pioneer Venus altimeter, Earth-based radar observatories, and the Venera 15-16 orbital imaging radars provided views of large-scale tectonic features on Venus at ever-increasing resolution, the radar images from Magellan constitute an improvement in resolution of at least an order of magnitude over the best previously available. A summary of early Magellan observations of tectonic features on Venus was published, but data available at that time were restricted to the first month of mapping and represented only about 15 percent of the surface of the planet. Magellan images and altimetry are now available for more than 95 percent of the Venus surface. Thus a more global perspective may be taken on the styles and distribution of lithospheric deformation on Venus and their implications for the tectonic history of the planet.

  6. Venus and Mercury as Planets

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  7. Magnetic flux ropes in the Venus ionosphere - Observations and models

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.

    1983-01-01

    Pioneer Venus Orbiter data are used as evidence of naturally occurring magnetic field filamentary structures which can be described by a flux rope model. The solar wind is interpreted as piling up a magnetic field on the Venus ionosphere, with the incident ram pressure being expressed as magnetic field pressure. Currents flowing at the ionopause shield out the field, allowing magnetic excursions to be observed with magnitudes of tens of nT over an interval of a few seconds. A quantitative assessment is made of the signature expected from a flux rope. It is noted that each excursion of the magnetic field detected by the Orbiter magnetometer was correlated with variations in the three components of the field. A coordinate system is devised which shows that the Venus data is indicative of the presence of flux ropes whose parameters are the coordinates of the system and would yield the excursions observed in the spacecraft crossings of the fields.

  8. A high resolution gravity model for Venus - GVM-1

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.

    1993-01-01

    A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.

  9. VLF imaging of the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    VLF plasma wave measurements obtained from the Pioneer Venus Orbiter Electric Field Detector (OEFD) have been used to construct statistical images of the Venus foreshock. Our data set contains all upstream measurements from an entire Venus year (approximately 200 orbits). Since the foreshock VLF characteristics vary with Interplanetary Magnetic Field (IMF) orientation we restrict the study to IMF orientations near the nominal Parker spiral angle (25 to 45). Our results show a strong decrease in 30 kHz wave intensity with both foreshock depth and distance. There is also an asymmetry in the 30 kHz emissions from the upstream and downstream foreshocks. The ion foreshock is characterized by strong emissions in the 5.4 kHz OEFD channel which are positioned much deeper in the foreshock than expected from terrestrial observations. No activity is observed in the region where field aligned ion distributions are expected. ULF wave activity, while weaker than at Earth, shows similar behavior and may indicate the presence of similar ion distributions.

  10. Thermal structure and major ion composition of the Venus ionosphere - First RPA results from Venus orbiter. [Retarding Potential Analyzers

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Novak, V.; Whitten, R. C.; Spreiter, J. R.

    1979-01-01

    Pioneer Venus in situ measurements of thermal plasma quantities were obtained by a retarding potential analyzer. Evidence for significant solar wind heating of the ionosphere and indications that the ionosphere is close to diffusive equilibrium are reported. Information on ionopause height, the ionospheric particle pressures at the ionopause, and the measured ratio of ionospheric scale height to ionopause ratio is presented.

  11. Venus Express Contributions to the Study of Planetary Lightning

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Hart, R. A.; Zhang, T. L.

    2014-04-01

    Jupiter, and Saturn are expected to generate the electrical potential differences in their clouds sufficient to cause a breakdown in the atmosphere,creating a conducting path for the electric potential to discharge. This high-energy phenomenon creates a hot, high-pressure channel that enables chemical reactions not possible under usual local thermodynamic conditions. Thus it is of some interest to determine if lightning occurs in an atmosphere. While Venus is not usually considered one of the wet planets, lightning has been an object of interest since the Venera landers. It was observed with electromagnetic coils on Venera 11, 12, 13, 14 landers [2]. It was observed with a visible spectrometer on the Venera 9 orbits [1]. It was mapped during solar occultations by the electric antenna on the Pioneer Venus Orbiter [4]. These measurements revealed extensive lightning activity with an electromagnetic energy flux similar to that on Earth. However, the observations were limited in number in the atmosphere and to the nightside from orbit. In order to improve the understanding of Venus lightning, the Venus Express magnetometer was given a 128-Hz sampling rate that could cover much of the ELF frequencies at which lightning could be observed in the weak magnetic fields of the Venus ionosphere [5]. This investigation was immediately successful [3], but mastering the cleaning of the broadband data took several years to accomplish. Furthermore, the high polar latitudes of VEX periapsis were not the ideal locations to conduct the more global survey that was desired. Fortunately, after precessing poleward over the first few years the latitude of periapsis has returned to lower latitudes(Figures 1 and 2) and active electrical storms are now being studied. The charged constituent of the Venus atmosphere need not be water. In fact, we believe it is H2SO4 which polarizes much as water does and which freezes and melts at similar temperatures. If it is H2SO4, we would expect the constituent to be sensitive to the rate of Venus volcanism releasing sulfur and sulfur dioxide into the atmosphere. This is one correlation we are anxious to pursue on future missions.

  12. Chemistry of atmosphere-surface interactions on Venus and Mars

    NASA Astrophysics Data System (ADS)

    Fegley, Bruce, Jr.; Treiman, Allan H.

    Earth-based, earth-orbital, and spacecraft observational data are used in the present evaluation of Venus atmosphere-surface interactions to quantitatively characterize the reactions between C, H, S, Cl, F, and N gases and plausible surface minerals. Calculation results are used to predict stable minerals and mineral assemblages on the Venus surface, in order to ascertain which (if any) of the atmospheric gases are buffeted by mineral assemblages. Chemical equilibrium calculations using extant thermodynamic data on scapolite minerals predict that carbonate-bearing scapolite and sulfate meionite are unstable on the surface of Venus, while chloride-bearing scapolite is stable.

  13. Magellan Orbit Artist Concept

    NASA Image and Video Library

    1990-08-10

    An artist's concept of the Magellan spacecraft making a radar map of Venus. Magellan mapped 98 percent of Venus' surface at a resolution of 100 to 150 meters (about the length of a football or soccer field), using synthetic aperture radar, a technique that simulates the use of a much larger radar antenna. It found that 85 percent of the surface is covered with volcanic flows and showed evidence of tectonic movement, turbulent surface winds, lava channels and pancake-shaped domes. Magellan also produced high-resolution gravity data for 95 percent of the planet and tested a new maneuvering technique called aerobraking, using atmospheric drag to adjust its orbit. The spacecraft was commanded to plunge into Venus' atmosphere in 1994 as part of a final experiment to gather atmospheric data. http://photojournal.jpl.nasa.gov/catalog/PIA18175

  14. Present Status of Janaese Venus Climate Orbiter

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Imamura, T.; Ishii, N.; Satoh, T.; Abe, T.; Ueno, M.; Suzuki, M.; Yamazaki, A.

    2007-08-01

    The start of the Japanese Venus Exploration program was in 2001, and last year (2006) we moved it to Phase C after PDR in August.We would like to report the present status of our Venus Climate Orbiter. Planet-C is the project name in ISAS/JAXA. The launch vehicle is changed from M-V to H-IIA. It will be launched from Tanegashima Space Center (TNSC) in Kagoshima. With this modification, we changed some minor design of the spacecraft and the total weight is slightly heavier than before, but the basic design has not been modified. The launch window will be kept in summer in 2010 and it will arrive at Venus in December 2010. The spacecraft will be directly put into the interplanetary orbit. Now we are preparing the Mechanical and Thermal engineering Model (MTM) which will end in middle of 2007 and will shake it and do the thermal vacuum test. Later this model will be modified to the flight model and the final integration test will be in 2009 which takes 1 year. Development of all the science instruments are going well. The first integration test of science instruments will be in August this year. We can report the results of it in the meeting.

  15. First ever in-situ density measurements in Venus' polar upper atmosphere by combined drag and torque measurements

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Mueller, Michael; Mueller-Wodarg, Ingo

    Information on the atmospheric density in the altitude range 150-200 km in the atmosphere of Venus is difficult to gather remotely. The Pioneer Venus Orbiter Neutral Mass Spectrometer measured gas densities in the equatorial upper atmosphere in-situ, but no such measurements have ever been made in the polar regions of Venus. The Venus Express spacecraft on its orbit approaches the planet in the northern polar region, but is not equipped with a mass spectrometer instrument for in-situ gas density measurements. By reducing the pericentre altitude the total mass density can however be measured in situ by monitoring the orbital decay caused by the drag on the spacecraft by the atmosphere via direct tracking of the Doppler signal on the telecommunication link. Such measurements have been performed with Venus Express several times during the last year as part of the Venus Express Atmospheric Drag Experiment (VExADE). The results indicate a large variability within only a few days and have led to questions if these variations are real or within the uncertainty of the measurements. A completely different and independent measurement is given by monitoring the torque asserted by the atmosphere on the spacecraft. This is done by monitoring the momentum accumulated in the reaction wheels during the pericentre pass and at the same time considering all other perturbing forces. This requires the spacecraft to fly in an asymmetric attitude with respect to the centre of gravity, centre of drag and the velocity vector. This technique has proven very sensitive, in particular if the asymmetry is large, and offers a further method of measuring atmospheric densities in-situ that previously had not been explored with the Venus Express spacecraft. Similar measurements have been done in the past by Magellan at Venus and by Cassini at Titan. First torque measurements carried out during last years' low pericentre passes have confirmed the density measurements by the VExADE drag measurements to an amazingly good accuracy and added to the confidence in the results from these measurements. New combined measurements, where the asymmetry is increased by rotating the solar panels, are planned for February and April 2010. The new results will be discussed at the meeting.

  16. Pioneer Mars 1979 mission options

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Hartmann, W. K.; Niehoff, J. C.

    1974-01-01

    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers.

  17. The Venus nitric oxide night airglow - Model calculations based on the Venus Thermospheric General Circulation Model

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fesen, C. G.

    1990-01-01

    The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.

  18. The Pioneer Venus Orbiter plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Taylor, W. W. L.; Virobik, P. F.

    1980-01-01

    The Pioneer Venus plasma wave instrument has a self-contained balanced electric dipole (effective length = 0.75 m) and a 4-channel spectrum analyzer (30% bandwidth filters with center frequencies at 100 Hz, 730 Hz, and 30 kHz). The channels are continuously active and the highest Orbiter telemetry rate (2048 bits/sec) yields 4 spectral scans/sec. The total mass of 0.55 kg includes the electronics, the antenna, and the antenna deployment mechanism. This report contains a brief description of the instrument design and a discussion of the in-flight performance.

  19. Surprisingly rich in H2O Soils of Mars: a Consequence of mild Degassing

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2003-04-01

    SURPRISINGLY RICH IN H2O SOILS OF MARS: A CONSEQUENCE OF MILD DEGASSING G.Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 119017, kochem@igem.ru The wave planetology [1, 2] connects principal structural characteristics of celestial bodies with their orbital properties (ellipticities &orbital frequencies). In this respect terrestrial planets Venus, Earth, Mars are suitable for comparisons not only of solid bodies structures but also of their gaseous envelopes. Their atmospheric structures closely follow structures of their solid spheres [2]: tectonic granulations in all spheres depend on the planets' orbital frequencies: 1/0.62 y - 1/1 y - ? y. Granula sizes are pR/6, pR/4, pR/2, thus Venus is fine-grained, Earth medium-grained, Mars coarse-grained. Longer orbital periods -coarser tectonic granulas -slower wave oscillations. Finer tectonic structures -more frequent oscillations -more complete degassing. Three planets confirm this conclusion. Venus is covered with a thick dense atmosphere, Mars possesses very weak transparent one, Earth is in the middle. Venus is more thoroughly shaken out and released of its volatiles than Earth &Mars. This is proved also by a large amount if nitrogen in its CO2-atmosphere and by a very low ratio in it of radiogenic to primordial Ar (Venus 1, Earth 300, Mars 3000 [3]). Compare "sweeping" volatiles out of the planets. In a sphere of radius R there are 55.7 grains of radius pR/12 (Venus), 16.5 grains of radius pR/8 (Earth), 2.06 grains of radius pR/4 (Mars). Venus is 3.38 times finer-grained than Earth and 27.04 times than Mars. Venusian wavelength 6000 km (pR/3) gives frequency 0.07 khz, terrestrial wavelength 10000 km (pR/2) gives 0.03 khz, martian 10660 km (pR/1) 0.025 khz. Venusian oscillations 2.33 times more frequent than terrestrial ones and 2.8 times more frequent than martian ones. If planets outgassing is proportional to the square (outgassing goes through surface) of the production of granulation and oscillation frequency, then Venus is 62 times more outgassed than Earth [(3.38 x 2.33)2=62.1] and 5732 times more outgassed than Mars [(27.04 x 2.8)2=5732.3]. Taking into account the smaller martian mass (1/10 of E. &M.) one would expect this outgassing difference to be 5732 x 10=57320 times. Actually venusian atmosphere is 90 times more massive than terrestrial one and ~ 18000 times than martian one. A rather high discrepancy between V &M (actually 18000, calculated 57320) is probably due to high amounts of frozen CO2 &H2O (Odyssey data) in near-surface layers constantly supplying volatiles into atmosphere, but basic reason is probably in the higher ellipticity of the martian orbit promoting volatile sweeping. So, Mars is slighter degassed than Earth &Venus. Ref.: [1] Kochemasov G.G. (1999) Geophys. Res. Abstr., v.1, #3,700; [2] Ibid.(2002) 36th Vernadsky-Brown microsymp. "Topics in Comparative Planetology", Moscow, Abstr., CD-ROM; [3]Pollack J.B., Black D.C. (1979) Science, v. 205, # 4401, 56-59.

  20. An Exo-Venus in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    A size comparison of Venus and Earth. Though they are nearly the same size and density, these two planets evolved very differently. [NASA]Earth is great place for life but Venus definitely isnt. Both planets have similar masses and densities. So why did one evolve to support life, while the other turned into a barren and inhospitable hothouse? This is a question we might be able to answer if we can gather observations of other planets similar to Earth and Venus. The recent discovery of an exo-Venus in our solar neighborhood brings us one step closer to thisgoal!A New NeighborA team of scientists led by Isabel Angelo (SETI Institute, NASA Ames Research Center, and UC Berkeley) has announced the discovery of Kepler-1649b, an exoplanet transiting a star located just 219 light-years away from us. Kepler-1649b is unique in being roughly the same size as Earth and Venus and also receiving a similar amount of starlight as Venus does from our Sun.Phase-folded light curve showing the transit of Kepler-1649b. [Angelo et al. 2017]Angelo and collaborators conducted follow-up observations after Keplers detection of 1649b to verify its planetary nature and pin down its properties. They found that Kepler-1649b has a radius of 1.08 times that of Earth, and it receives an incident flux of 2.3 times Earths which is very similar to the incident flux received by Venus. Kepler-1649b orbits a star thats only a quarter of our Suns radius, however, and it therefore orbits significantly closer to its star in order to receive the same flux, circling its host once every 8.7 days.Differences Due to a Small HostIts worth identifying howthis planet might differ from Venus. The authors suggest a few key factors:Kepler-1649b may be more prone to effects of host-star variability. M-dwarf stars like this one are typically more magnetically active than our Sun, and Kepler-1649b is orbiting very close to its star.Kepler-1649b receives comparatively low-energy radiation, compared to Venus. This is because its cooler host emits more light at lower frequencies than the Sun.Kepler-1649b may be subject to larger tidal effects from its host star. Because it orbits so close in, it might experience tidal heating, synchronous rotation, and tidal locking all of which can influence its seasons and geologic activity.Target for the FutureThe colored contours show the most likely radius and incident flux measured for Kepler-1649b. Earth, Venus, Mars, and several other exoplanets are plotted for comparison. [Angelo et al. 2017]In spite of these differences, Kepler-1649b still qualifies asthe most similarexoplanet weve found to Venus in terms of its size and incident radiation. This marks our first opportunity to study such a target to understand how it differs from Earth-like planets and what conditions might lead to habitability on a planet.We will be able to gain more information on Kepler-1649b with upcoming missions. The Transiting Exoplanet Survey Satellite (TESS) will observe more transits, and Gaias improved-accuracy distance measurements should also improve our measurements of the stars and planets properties. Whats more, Kepler-1649b will make an excellent target for the James Webb Space Telescope (launching in 2018) to examine in the hopes of learning about its atmosphere.CitationIsabel Angelo et al 2017 AJ 153 162. doi:10.3847/1538-3881/aa615f

  1. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.

    2013-12-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  2. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.; Barnes, N.

    2014-04-01

    Over the past years we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semibuoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. VAMP targets the global Venus atmosphere between 55 and 70 km altitude and would be a platform to address VEXAG goals I.A, I.B, and I.C. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Science payload accommodation, constraints, and opportunities 2. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance, performance sensitivity to payload weight 3. Feasibility of and options for the deployment of the vehicle in space 4. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals I.A, I.B, and I.C.. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  3. Venus: Mysteries Of The "forgotten Planet"

    NASA Astrophysics Data System (ADS)

    Titov, D. V.

    The first phase of Venus spacecraft exploration by the Venera, Pioneer Venus, Vega and Magellan missions and later Galileo and Cassini fly-bys established a basic de- scription of the physical and chemical conditions prevailing in the atmosphere and near-planetary environment. It also expanded considerably our knowledge of VenusS geology and geophysics. At the same time, these studies raised many questions on the physical processes on the planet, most of which remain as of today unsolved. The fundamental mysteries of Venus are related to the global atmospheric circulation, the atmospheric chemical composition and its variations, the surface-atmosphere physical and chemical interactions including volcanism, the physics and chemistry of the cloud layer, the thermal balance and role of trace gases in the greenhouse effect, the origin and evolution of the atmosphere, and the plasma environment and its interaction with the solar wind. Besides, the key issues of the history of Venusian volcanism, the global tectonic structure of Venus, and important characteristics of the planetSs surface are still unresolved. Beyond the specific case of Venus, resolving these issues is of cru- cial importance in a comparative planetology context and notably for understanding the long-term climatic evolution processes on Earth. The above problems can be effi- ciently addressed by an orbiter equipped with a suite of adequate remote sensing and in situ instruments. A combination of spectrometers, spectro-imagers, and imagers covering the UV to thermal IR range, along with other instruments such as a radar and a plasma and neutral atoms analyzer, is able to sound the entire Venus atmosphere from the surface to 200 km, and to address specific questions on the surface. Future in situ investigations by descent probes, balloons, and sample return missions will be required to provide a more detailed insight in the Venus mysteries. For more than 10 years Venus has remained the Sforgotten planetT: none of the worldSs space agencies & cedil; has considered it as a primary target. However, a great number of unsolved funda- mental problems in VenusS physics and availability of observational tools encourages the scientific community to propose missions to the planet. Venus Express in Europe and a set of Discovery missions in USA are being currently considered for inclusion in the programmes of space agencies. The Venus Orbiter mission has been recently approved in Japan.

  4. Candidate Earth Entry Trajectories to Mimic Venus Aerocapture Using a Lifting ADEPT

    NASA Technical Reports Server (NTRS)

    Williams, Jimmy

    2017-01-01

    A Lifting ADEPT is considered for aerocapture at Venus. Analysis concerning the heating environment leads to an initial sizing estimate. In tandem, a direct entry profile at Earth is considered to act as a facsimile for the Venus aerocapture heating environment. The bounds of this direct entry profile are determined and it is found that a trajectory from a Geostationary Transfer Orbit with a Lifting ADEPT capable of fitting on a rideshare opportunity is capable of matching certain aspects of this heating environment.

  5. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    NASA Technical Reports Server (NTRS)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  6. Europe Scores New Planetary Success: Venus Express Enters Orbit around the Hothouse Planet

    NASA Astrophysics Data System (ADS)

    2006-04-01

    During the next four weeks, the Venus Express probe will perform a series of manoeuvres to reach the scheduled operational orbit for its scientific mission. It will move from its current highly elongated 9-day orbit to a 24-hour polar orbit, culminating at 66,000 km. From this vantage point, the orbiter will conduct an in-depth observation of the structure, chemistry and dynamics of the atmosphere of Venus for at least two Venusian days (486 Earth days). Enigmatic atmosphere From previous missions to Venus as well as observations directly from Earth, we already know that our neighbouring planet is shrouded in a thick atmosphere where extremes of temperature and pressure conditions are common. This atmosphere creates a greenhouse effect of tremendous proportions as it spins around the planet in four days in an unexplained “super-rotation” phenomenon. The mission of Venus Express will be to carry out a detailed characterisation of this atmosphere, using state-of-the-art sensors in order to answer the questions and solve the mysteries left behind by the first wave of explorers. It will also be the first Venus orbiter to conduct optical observations of the surface through “visibility windows” discovered in the infrared spectrum.V The commissioning of the onboard scientific instruments will begin shortly and the first raw data are expected within days. The overall science payload is planned to be fully operational within two months. Europe explores the Solar System With this latest success, ESA is adding another celestial body to its range of solar system studies. ESA also operates Mars Express around Mars, SMART-1 around the Moon and is NASA’s partner on the Cassini orbiter around Saturn. In addition, ESA is also operating the Rosetta probe en route to comet 67P/Churyumov-Gerasimenko. It should reach its target and become the first spacecraft ever to enter orbit around a comet nucleus by 2014. Meanwhile, ESA also plans to complete the survey of our celestial neighbours with the launch of the BepiColombo mission to Mercury in 2013. “With the arrival of Venus Express, ESA is the only space agency to have science operations under way around four planets: Venus, the Moon, Mars and Saturn” underlines Professor David Southwood, the Director of ESA’s science programmes. “We are really proud to deliver such a capability to the international science community.” “To better understand our own planet, we need to explore other worlds in particular those with an atmosphere,” said Jean-Jacques Dordain, ESA Director General. “We’ve been on Titan and we already are around Mars. By observing Venus and its complex atmospheric system, we will be able to better understand the mechanisms that steers the evolution of a large planetary atmosphere and the change of climates. In the end, it will help us to get better models of what is actually going on in our own atmosphere, for the benefit of all Earth citizens.” State-of-the-art science package Venus Express was developed for ESA by a European industrial team led by EADS Astrium incorporating 25 main contractors from 14 European countries. Its design is derived from that of its highly successful predecessor, Mars Express, and its payload accommodates seven instruments including upgraded versions of three instruments developed for Mars Express and two for Rosetta. The PFS spectrometer will determine the temperature and composition profile of the atmosphere at very high resolution. It will also monitor the surface temperature and search for hot spots from possible volcanic activity. The UV/infrared SpicaV/SOIR spectrometer and the VeRa radioscience experiment will probe the atmosphere by observing the occultation of distant starts or the fading of radio signals on the planetary limb. SpicaV/SOIR will be particularly looking for traces of water molecules, molecular oxygen and sulphur compounds, which are suspected to exist in the atmosphere of Venus. The Virtis spectrometer will map the different layers of the atmosphere and provide imagery of the cloud systems at multiple wavelengths to characterise the atmospheric dynamics. On the outer edge of the atmosphere, the Aspera instrument and a magnetometer will investigate the interaction with the solar wind and plasma it generates in an open environment without the protection of a magnetosphere like the one we have around Earth. The VMC wide-angle multi-channel camera will provide imagery in four wavelengths, including one of the “infrared windows”, which will make imaging of the surface possible through the cloud layer. It will provide global images and will assist in the identification of phenomena detected by the other instruments

  7. Reduction and analysis of seasons 15 and 16 (1991 - 1992) Pioneer Venus radio occultation data and correlative studies with observations of the near-infrared emission of Venus

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    1992-01-01

    Radio occultation experiments, and radio astronomical observations have suggested that significant variations (both spatial and temporal) in the abundances of sulfur-bearing gases are occurring below the Venus cloud layers. In addition, recent Near Infra-Red images of the nightside of Venus revealed large-scale features which sustain their shape over multiple rotations (the rotation periods of the features are 6.0 +/- 0.5 days). Presumably, the contrast variations in the NIR images are caused by variations in the abundance of large particles in the cloud deck. If these particles are composed of liquid sulfuric acid, one would expect a strong anticorrelation between regions with a high abundance of sulfuric acid vapor, and regions where there are large particles. One technique for monitoring the abundance and distribution of sulfuric acid vapor (H2SO4) at and below the main Venus cloud layer (altitudes below 50 km) is to measure the 13-cm wavelength opacity using Pioneer Venus Orbiter Radio Occultation Studies (PV-ORO). We are working to characterize variations in the abundance and distribution of subcloud H2SO4(g) in the Venus atmosphere by using a number of 13-cm radio occultation measurements conducted with the Pioneer Venus Orbiter near the inferior conjunction of 1991. When retrieved, the vertical profiles of the abundance of H2SO4(g) will be compared and correlated with NIR images of the night side of Venus made during the same period of time. Hopefully, the combination of these two different types of data will make it possible to constrain or identify the composition of the large particles causing the features observed in the NIR images. Considered on their own, however, the parameters retrieved from the radio occultation experiments are valuable science products.

  8. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.

    2013-10-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3.

  9. Transit of Venus 2004 [detail

    NASA Image and Video Library

    2017-12-08

    To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA FILE PHOTO Date: 8 Jun 2004 NASA's TRACE satellite captured this image of Venus crossing the face of the Sun as seen from Earth orbit. The last event occurred in 1882. The next Venus transit will be visible in 2012. This image also is a good example of the scale of Earth to the Sun since Venus and Earth are similar in size. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Average dimension and magnetic structure of the distant Venus magnetotail

    NASA Technical Reports Server (NTRS)

    Saunders, M. A.; Russell, C. T.

    1986-01-01

    The first major statistical investigation of the far wake of an unmagnetized object embedded in the solar wind is reported. The investigation is based on Pioneer Venus Orbiter magnetometer data from 70 crossings of the Venus wake at altitudes between 5 and 11 Venus radii during reasonably steady IMF conditions. It is found that Venus has a well-developed-tail, flaring with altitude and possibly broader in the direction parallel to the IMF cross-flow component. Tail lobe field polarities and the direction of the cross-tail field are consistent with tail accretion from the solar wind. Average values for the cross-tail field (2 nT) and the distant tail flux (3 MWb) indicate that most distant tail field lines close across the center of the tail and are not rooted in the Venus ionosphere. The findings are illustrated in a three-dimensional schematic.

  11. Was Venus the first habitable world of our solar system?

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Del Genio, Anthony D.; Kiang, Nancy Y.; Sohl, Linda E.; Grinspoon, David H.; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas

    2016-08-01

    Present-day Venus is an inhospitable place with surface temperatures approaching 750 K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a prograde rotation period slower than ~16 Earth days, despite an incident solar flux 46-70% higher than Earth receives. At its current rotation period, Venus's climate could have remained habitable until at least 0.715 Gya. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch.

  12. Was Venus the First Habitable World of our Solar System?

    PubMed

    Way, M J; Del Genio, Anthony D; Kiang, Nancy Y; Sohl, Linda E; Grinspoon, David H; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas

    2016-08-28

    Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a rotation period slower than ~16 Earth days, despite an incident solar flux 46-70% higher than Earth receives. At its current rotation period, Venus's climate could have remained habitable until at least 715 million years ago. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch.

  13. Studies of the atmosphere of Venus by means of spacecraft: Solved and unsolved problems

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.

    Many spacecraft were used for exploration of the atmosphere of Venus. Their list consists of 25 items, including fly-by missions, orbiters, descent and landing probes and even balloons. VENERA-4 (1967) was near the beginning of this list, providing the first time in situ experiments on other planet. It started a long sequence of successful Soviet Venera missions. However after the year 1985 there were no missions to Venus in Russia. It probably was a strategic error. Now several groups of scientists in other countries work on proposals for new missions to Venus. The goal of this paper is to present a brief review of already solved and still unsolved problems in the studies of the Venus' atmosphere and to possible future aims in this field.

  14. Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.

  15. Terrestrial Planets: Volatiles Loss & Speed of Rotation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    There is a close relation between orbiting frequencies of terrestrial planets and intensities of their outgassing [1]. ``Sweeping'' out volatiles of their bodies is provoked and facilitated by body shaking (wave oscillations) caused by movement of celestial bodies in elliptical orbits. Non-round orbits cause inertia-gravity warpings in all spheres of the bodies producing their tectonic granulation. The higher orbiting frequency -- the smaller tectonic granula -- more thorough interior degassing. Sizes of tectonic granulas inversely proportional to orbiting frequencies are: Mars π R/2, Earth π R/4, Venus π R/6, Mercury π R/16. The atmospheric masses increase from Mars through Earth to Venus as ˜ 0. 01 : 1 : 90 (radiogenic/primordial Ar is 3000 : 300 : 1, marking degassing intensity). Mercury in this sequence should have been even more outgassed (˜ 500 times comparative to Venus, having in mind different planetary masses [2]). But now it possesses only very weak atmosphere of noble gases, Na, K -- remnants of past significant outgassing now witnessed by a great amount of small deep structurally controlled pits (craters), lobate scarps caused by strong contraction and slow rotation. The slow rotation is due to loss of angular momentum to the atmosphere now wiped out by the solar wind. The same partitioning of angular momentum occurs at Venus: slowly rotating solid body is wrapped in rapidly rotating massive atmosphere (the solid surface exposes many features of contraction due to subsidence -- vast areas of wrinkle ridges). On the contrary to slow Mercury and Venus, Earth and Mars keep their moderate rotation corresponding to their moderate and mild degassing [3]. Still further from Sun weakly outgassed gas giants rotate very rapidly. Sun itself with slowly rotating photosphere and corresponding supergranula size π R/60 is a strongly outgassed object (some think that Sun lost upto 10% of its original mass). In line with the established regularity between orbiting frequency and granula size, small solar granulas (1000-2000 km) could keep memory of the rapider rotation in the past before a strong degassing (mesogranulas indicate at some stage of mass loss) [3]. Thus, according to volatile loss in the Solar system there are bodies rotating rapidly -the outer planets, moderately -- Mars, Earth, slowly - Venus, Mercury, Sun. References: [1] Kochemasov G.G. (2003) Surprisingly rich in H2 O soils of Mars: a consequence of mild degassing // Geophys. Res. Abstr., v. 5, 02167, (CD-ROM); [2] Kochemasov G.G. (2003) // 38th Vernadsky-Brown microsymp. ``Topics in Comparative Planetology'', Abstr., Moscow, Oct.27-28, (CD-ROM); [3] Ibid.,Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. _

  16. ARC-1990-A90-3000

    NASA Image and Video Library

    1990-08-21

    After traveling more than 1.5 billion km (948 million mi.), the Magellan spacecraft was inserted into orbit around Venus on Aug. 10, 1990. This mosaic consists of adjacent pieces of two magellan image strips obtained in the first radar test. The radar test was part of a planned In-Orbit Checkout sequence designed to prepare the magellan spacecraft and radar to begin mapping after Aug. 31. The strip on the left was returned to the Goldstone Deep Space Network station in California; the strip to the right was received at the DSN in Canberra, Australia. A third station that will be receiving Magellan data is locaterd near Madrid, Spain. Each image strip is 20 km (12 mi.) wide and 16,000 km (10,000 mi.) long. This mosaic is a small portion 80 km (50 mi.) long. This image is centered at 21 degrees north latitude and 286.8 degrees east longitude, southeast of a volcanic highland region called Beta Regio. The resolution of the image is about 120 meters (400 feet), 10 times better than revious images of the same area of Venus, revealing many new geologic features. The bright line trending northwest-southeast across the center of the image is a fracture or fault zone cutting the volcanic plains. In the upper lest corner of the image, a multiple-ring circular feature of probable volcanic origin can be seen, approx. 4.27 km (2.65 mi.) across. The bright and dark variations seen in the plains surrounding these features correspond to volcanic lava flows of varying ages. The volcanic lava flows in the southern half of the image have been cut by north-south trending faults. This area is similar geologically to volcanic deposits seen on Earth at Hawaii and the Snake River Plains in Idaho.

  17. Two activities with a simple model of the solar system: discovering Kepler’s 3rd law and investigating apparent motion of Venus

    NASA Astrophysics Data System (ADS)

    Rovšek, Barbara; Guštin, Andrej

    2018-01-01

    An astronomy ‘experiment’ composed of three parts is described in the article. Being given necessary data a simple model of inner planets of the solar system is made in the first part with planets’ circular orbits using appropriate scale. In the second part revolution of the figurines used as model representations of the planets along their orbits is observed. In the third part of activity apparent motion of Venus with respect to the observer on the Earth is studied. In the second part of the paper problems are given, which relate to experimental activities and are designed to test if learning outcomes of the experiment have been achieved: if correlation between orbital radius and orbital velocity has been perceived, concepts related to motion of Venus as observed from the Earth have been acquired and periodicity recognized. Described astronomy ‘experiment’ was one of the three science experiments given to 11 and 12 years old students prior to Slovene science competition in 2017 (the call for competition is at www.dmfa.si, guidelines for the experiment (in Slovene) can be found at www.kresnickadmfa.si/files/2016/07/poskus_1617_r67p1_S.pdf). At the end of the paper the results obtained at competition are presented.

  18. Venus entry probe technology reference mission

    NASA Astrophysics Data System (ADS)

    van den Berg, M. L.; Falkner, P.; Atzei, A. C.; Phipps, A.; Mieremet, A.; Kraft, S.; Peacock, A.

    The Venus Entry Probe is one of ESA's Technology Reference Missions (TRM). TRMs are model science-driven missions that are, although not part of the ESA science programme, able to provide focus to future technology requirements. This is accomplished through the study of several technologically demanding and scientifically meaningful mission concepts, which are strategically chosen to address diverse technological issues. The TRMs complement ESA's current mission specific development programme and allow the ESA Science Directorate to strategically plan the development of technologies that will enable potential future scientific missions. Key technological objectives for future planetary exploration include the use of small orbiters and in-situ probes with highly miniaturized and highly integrated payload suites. The low resource, and therefore low cost, spacecraft allow for a phased strategic approach to planetary exploration. The aim of the Venus Entry Probe TRM (VEP) is to study approaches for low cost in-situ exploration of the Venusian atmosphere. The mission profile consists of two minisats. The first satellite enters low Venus orbit. This satellite contains a highly integrated remote sensing payload suite primarily dedicated to support the in-situ atmospheric measurements of the aerobot. The second minisat enters deep elliptical orbit, deploys the aerobot, and subsequently operates as a data relay, data processing and overall resource allocation satellite. The micro-aerobot consists of a long-duration balloon that will analyze the Venusian middle cloud layer at an altitude of ˜ 55 km, where the environment is relatively benign (T = 20 C and p = 0.45 bars). The balloon will deploy a swarm of active ballast probes, which determine vertical profiles of selected properties of the lower atmosphere. In this presentation, the mission objectives and profile of the Venus Entry Probe TRM will be given as well as the key technological challenges.

  19. Effects of inclination and eccentricity on optimal trajectories between earth and Venus

    NASA Technical Reports Server (NTRS)

    Gravier, J.-P.; Marchal, C.; Culp, R. D.

    1973-01-01

    The true optimal transfers, including the effects of the inclination and eccentricity of the planets' orbits, between earth and Venus are presented as functions of the corresponding idealized Hohmann transfers. The method of determining the optimal transfers using the calculus of variations is presented. For every possible Hohmann window, specified as a continuous function of the longitude of perihelion of the Hohmann trajectory, the corresponding numerically exact optimal two-impulse transfers are given in graphical form. The cases for which the optimal two-impulse transfer is the absolute optimal, and those for which a three-impulse transfer provides the absolute optimal transfer are indicated. This information furnishes everything necessary for quick and accurate orbit calculations for preliminary Venus mission analysis. This makes it possible to use the actual optimal transfers for advanced planning in place of the standard Hohmann transfers.

  20. Preliminary radar systems analysis for Venus orbiter missions

    NASA Technical Reports Server (NTRS)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  1. Swapping Rocks: Ejection and Exchange of Surface Material Among the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Tonks, W. B.

    1993-07-01

    The discovery of meteorites originating from both the Moon and Mars has led to the realization that major impacts can eject material from planetary-sized objects. Although there is not yet any direct proof, there appears to be no reason why such impacts cannot eject material from the surfaces of Earth and Venus as well. Because of this possibility, and in view of the implications of such exchange for biological evolution, we examined the orbital evolution and ultimate fate of ejecta from each of the terrestrial planets. This work employed an Opik-type orbital evolution model in which both planets and ejected particles follow elliptical orbits about the Sun, with uniformly precessing arguments of perihelion and ascending nodes. An encounter takes place when the particle passes within the sphere of influence of the planet. When this occurs, the encounter is treated as a two-body scattering event, with a randomly chosen impact parameter within the sphere of influence. If the impact parameter is less than the planet's radius, an impact is scored. Otherwise, the scattered particle either takes up a new Keplerian orbit or is ejected from the solar system. We incorporated several different space erosion models and examined the full matrix of possible outcomes of ejection from each planet in random directions with velocities at great distance from the planet of 0.5, 2.5, and 5.0 km/s. Each run analyzed the evolution of 5000 particles to achieve sufficient statistical resolution. Both the ultimate fate and median transit times of particles was recorded. The results show very little dependence on velocity of ejection. Mercury ejecta is nearly all reaccreted by Mercury or eroded in space--very little ever evolves to cross the orbits of the other planets (a few percent impact Venus). The median time between ejection and reimpact is about 30 m.y. for all erosion models. Venus ejecta is mostly reaccreted by Venus, but a significant fraction (about 30%) falls on the Earth with a median transit time of 12 m.y. Of the remainder, a few percent strike Mars and a larger fraction (about 20%) are ejected from the solar system by Jupiter. Earth ejecta is also mainly reaccreted by the Earth, but about 30% strike Venus within 15 m.y. and 5% strike Mars within 150 m.y. Again, about 20% of Earth ejecta is thrown out of the solar system by Jupiter. Mars ejecta is more equitably distributed: Nearly equal fractions fall on Earth and Venus, slightly more are accreted to Mars, and a few percent strike Mercury. About 20% of Mars ejecta is thrown out of the solar system by Jupiter. The larger terrestrial planets, Venus and Earth, thus readily exchange ejecta. Mars ejecta largely falls on Venus and Earth, but Mars only receives a small fraction of their ejecta. A substantial fraction of ejecta from all the terrestrial planets (except Mercury) is thrown out of the solar system by Jupiter, a fact that may have some implications for the panspermia mechanism of spreading life through the galaxy. From the standpoint of collecting meteorites on Earth, in addition to martian and lunar meteorites, we should expect someday to find meteorites from Earth itself (Earth rocks that have spent a median time of 5 m.y. in space before falling again on the Earth) and from Venus.

  2. Venus - Global View Centered at 180 degrees

    NASA Image and Video Library

    1996-11-26

    This global view of the surface of Venus is centered at 180 degrees east longitude. Magellan synthetic aperture radar mosaics from the first cycle of Magellan mapping, and a 5 degree latitude-longitude grid, are mapped onto a computer-simulated globe to create this image. Data gaps are filled with Pioneer-Venus Orbiter data, or a constant mid-range value. The image was produced by the Solar System Visualization project and the Magellan Science team at the JPL Multimission Image Processing Laboratory. http://photojournal.jpl.nasa.gov/catalog/PIA00478

  3. Comparisons and Evaluations of JPL Ephemerides

    NASA Astrophysics Data System (ADS)

    Deng, X. M.; Fan, M.; Xie, Y.

    2013-11-01

    Since NASA's JPL (Jet Propulsion Laboratory) Ephemerides are widely used in deep space navigation and planetary exploration, it is necessary to compare their details, including the coverage, realization and maintenance. Focusing on Chinese Venus and Mars missions in the future, we take DE405, DE421, and DE423 as samples to analyze their dynamical models and observation data. By evaluating their accuracies and performances, we investigate their effects on an orbiter around Venus and Mars, and recommend that it is better to use DE423 for Venus missions and DE421/DE423 for Mars missions.

  4. Interplanetary mission design handbook. Volume 1, part 1: Earth to Venus ballistic mission opportunities, 1991-2005

    NASA Technical Reports Server (NTRS)

    Sergeyevsky, A. B.; Yin, N. H.

    1983-01-01

    Graphical data necessary for the preliminary design of ballistic missions to Venus is presented. Contours of launch energy requirements, as well as many other launch and arrival parameters, are presented in launch data/arrival date space for all launch opportunities from 1991 through 2005. An extensive text is included which explains mission design methods, from launch window development to Venus probe and orbiter arrival design, utilizing the graphical data in this volume as well as numerous equations relating various parameters.

  5. Gravity anomalies on Venus

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Phillips, R. J.; Birkeland, P. W.; Wimberly, R. N.

    1980-01-01

    Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many anomalies were detected, and there is considerable correlation with radar altimetry topography (Pettengill et al., 1980). The amplitudes of the anomalies are relatively mild and similar to those on earth at this resolution. Calculations for isostatic adjustment reveal that significant compensation has occurred.

  6. Art concept of Magellan spacecraft in cruise configuration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.

  7. Lightning measurements from the Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Russell, C. T.

    1983-01-01

    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  8. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  9. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance π1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and corresponding them wave granule sizes. (1/338 : 1/6)πR = πR/56.3 = 342 km. (1/338 x 1/6)πR = πR/2028 = 9.5 km. The larger granules as well arranged network were seen in the near IR Galileo image PIA00073 (several miles below the visible cloud tops). The smaller granules, hopefully, will be detected by the Venus Express cameras. So, the wave planetology applying wave methods to solid planetary bodies and to surrounding them gaseous envelopes shows their structural unity. This understanding may help to analyze and predict very complex behavior of atmospheric sells at Earth (anticyclones up to 5000 km across or πR/4), other planets and Titan. Long time ago known the solar supergranules about 30000 km across were never fully understood. The comparative wave planetology placing them together with wave features of planets and satellites throws light on their origin and behavior and thus expands into an area of the solar physics. In this respect it is interesting to note that rather typical for Sun radio emission in 1 meter diapason also was never properly explained. But applying modulation of the solar photosphere frequency 1/ 1month by the Galaxy frequency 1/ 200 000 000 y. one can obtain such short waves [5]. Radio emissions of planets of the solar system also can be related to this modulation by Galaxy rotation [5]. References: [1] Kochemasov G.G. (1992) Comparison of blob tectonics (Venus) and pair tectonics (Earth) // LPS XXIII, Houston, LPI, pt. 2, 703-704; [2] Kochemasov G.G. (2000) Orbiting frequency modulation in Solar system and its imprint in shapes and structures of celestial bodies // Vernadsky-Brown microsymposium 32 on Comparative planetology, Oct. 9-11, 2000, Moscow, Russia, Abstracs, 88-89; [3] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM); [4] Kochemasov G.G. (2005) Cassini' lessons: square craters, shoulderto- shoulder even-size aligned and in grids craters having wave interference nature must be taken out of an impact craters statistics to make it real // Vernadsky-Brown microsymposium-42 "Topics in Comparative Planetology", Oct. 10-12, 2005, Vernadsky Inst., Moscow, Russia, Abstr. m42_31, CD-ROM; [5] Kochemasov G.G. (2001) Inertia-gravity waves of various scales on celestial bodies surfaces, in vertical section and their relation to radiowaves // 34thVernadsky-Brown microsymposium 'Topics in comparative planetology", Moscow, Vernadsky Inst., Abstr., CD-ROM.

  10. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance ~1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and corresponding them wave granule sizes. (1/338 : 1/6)πR = πR/56.3 = 342 km. (1/338 x 1/6)πR = πR/2028 = 9.5 km. The larger granules as well arranged network were seen in the near IR Galileo image PIA00073 (several miles below the visible cloud tops). The smaller granules, hopefully, will be detected by the Venus Express cameras. So, the wave planetology applying wave methods to solid planetary bodies and to surrounding them gaseous envelopes shows their structural unity. This understanding may help to analyze and predict very complex behavior of atmospheric sells at Earth (anticyclones up to 5000 km across or πR/4), other planets and Titan. Long time ago known the solar supergranules about 30000 km across were never fully understood. The comparative wave planetology placing them together with wave features of planets and satellites throws light on their origin and behavior and thus expands into an area of the solar physics. In this respect it is interesting to note that rather typical for Sun radio emission in 1 meter diapason also was never properly explained. But applying modulation of the solar photosphere frequency 1/ 1month by the Galaxy frequency 1/ 200 000 000 y. one can obtain such short waves [5]. Radio emissions of planets of the solar system also can be related to this modulation by Galaxy rotation [5]. References: [1] Kochemasov G.G. (1992) Comparison of blob tectonics (Venus) and pair tectonics (Earth) // LPS XXIII, Houston, LPI, pt. 2, 703-704; [2] Kochemasov G.G. (2000) Orbiting frequency modulation in Solar system and its imprint in shapes and structures of celestial bodies // Vernadsky-Brown microsymposium 32 on Comparative planetology, Oct. 9-11, 2000, Moscow, Russia, Abstracs, 88-89; [3] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM); [4] Kochemasov G.G. (2005) Cassini' lessons: square craters, shoulderto- shoulder even-size aligned and in grids craters having wave interference nature must be taken out of an impact craters statistics to make it real // Vernadsky-Brown microsymposium-42 "Topics in Comparative Planetology", Oct. 10-12, 2005, Vernadsky Inst., Moscow, Russia, Abstr. m42_31, CD-ROM; [5] Kochemasov G.G. (2001) Inertia-gravity waves of various scales on celestial bodies surfaces, in vertical section and their relation to radiowaves // 34thVernadsky-Brown microsymposium 'Topics in comparative planetology", Moscow, Vernadsky Inst., Abstr., CD-ROM.

  11. An Atmospheric Variability Model for Venus Aerobraking Missions

    NASA Technical Reports Server (NTRS)

    Tolson, Robert T.; Prince, Jill L. H.; Konopliv, Alexander A.

    2013-01-01

    Aerobraking has proven to be an enabling technology for planetary missions to Mars and has been proposed to enable low cost missions to Venus. Aerobraking saves a significant amount of propulsion fuel mass by exploiting atmospheric drag to reduce the eccentricity of the initial orbit. The solar arrays have been used as the primary drag surface and only minor modifications have been made in the vehicle design to accommodate the relatively modest aerothermal loads. However, if atmospheric density is highly variable from orbit to orbit, the mission must either accept higher aerothermal risk, a slower pace for aerobraking, or a tighter corridor likely with increased propulsive cost. Hence, knowledge of atmospheric variability is of great interest for the design of aerobraking missions. The first planetary aerobraking was at Venus during the Magellan mission. After the primary Magellan science mission was completed, aerobraking was used to provide a more circular orbit to enhance gravity field recovery. Magellan aerobraking took place between local solar times of 1100 and 1800 hrs, and it was found that the Venusian atmospheric density during the aerobraking phase had less than 10% 1 sigma orbit to orbit variability. On the other hand, at some latitudes and seasons, Martian variability can be as high as 40% 1 sigmaFrom both the MGN and PVO mission it was known that the atmosphere, above aerobraking altitudes, showed greater variability at night, but this variability was never quantified in a systematic manner. This paper proposes a model for atmospheric variability that can be used for aerobraking mission design until more complete data sets become available.

  12. Kepler-1649b: An Exo-Venus in the Solar Neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Isabel; Rowe, Jason F.; Huber, Daniel

    The Kepler mission has revealed that Earth-sized planets are common, and dozens have been discovered to orbit in or near their host star’s habitable zone. A major focus in astronomy is to determine which of these exoplanets are likely to have Earth-like properties that are amenable to follow-up with both ground- and future space-based surveys, with an ultimate goal of probing their atmospheres to look for signs of life. Venus-like atmospheres will be of particular interest in these surveys. While Earth and Venus evolved to have similar sizes and densities, it remains unclear what factors led to the dramatic divergencemore » of their atmospheres. Studying analogs to both Earth and Venus can thus shed light on the limits of habitability and the potential for life on known exoplanets. Here, we present the discovery and confirmation of Kepler-1649b, an Earth-sized planet orbiting a nearby M5V star that receives incident flux at a level similar to that of Venus. We present our methods for characterizing the star, using a combination of point-spread function photometry, ground-based spectroscopy, and imaging, to confirm the planetary nature of Kepler-1649b. Planets like Kepler-1649b will be prime candidates for atmospheric and habitability studies in the next generation of space missions.« less

  13. Densities inferred from ESA's Venus Express aerobraking campaign at 130 km altitude

    NASA Astrophysics Data System (ADS)

    Bruinsma, Sean; Marty, Jean-Charles; Svedhem, Håkan; Williams, Adam; Mueller-Wodarg, Ingo

    2015-04-01

    In June-July 2014, ESA performed a planned aerobraking campaign with Venus Express to measure neutral densities above 130 km in Venus' atmosphere by means of the engineering accelerometers. To that purpose, the orbit perigee was lowered to approximately 130 km in order to enhance the atmospheric drag effect to the highest tolerable levels for the spacecraft; the accelerometer resolution and precision were not sufficient at higher altitudes. This campaign was requested as part of the Venus Express Atmospheric Drag Experiment (VExADE). A total of 18 orbits (i.e. days) were processed using the attitude quaternions to correctly orient the spacecraft bus and solar arrays in inertial space, which is necessary to accurately compute the exposed surface in the ram direction. The accelerometer data provide good measurements approximately from 130-140 km altitude; the length of the profiles is about 85 seconds, and they are on the early morning side (LST=4.5) at high northern latitude (70°N-82°N). The densities are a factor 2-3 larger than Hedin's VTS-3 thermosphere model, which is consistent with earlier results obtained via classical precise orbit determination at higher altitudes. Wavelike structures with amplitudes of 20% and more are detected, with wavelengths of about 100-500 km. We cannot entirely rule out that these waves are caused by the spacecraft or due to some unknown instrumental effect, but we estimate this probability to be very low.

  14. Plasma Waves in the Magnetosheath of Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, Robert J.

    1996-01-01

    Research supported by this grant is divided into three basic topics of investigation. These are: (1) Plasma waves in the Venus magnetosheath, (2) Plasma waves in the Venus foreshock and solar wind, (3) plasma waves in the Venus nightside ionosphere and ionotail. The main issues addressed in the first area - Plasma waves in the Venus magnetosheath - dealt with the wave modes observed in the magnetosheath and upper ionosphere, and whether these waves are a significant source of heating for the topside ionosphere. The source of the waves was also investigated. In the second area - Plasma waves in the Venus foreshock and solar wind, we carried out some research on waves observed upstream of the planetary bow shock known as the foreshock. The foreshock and bow shock modify the ambient magnetic field and plasma, and need to be understood if we are to understand the magnetosheath. Although most of the research was directed to wave observations on the dayside of the planet, in the last of the three basic areas studied, we also analyzed data from the nightside. The plasma waves observed by the Pioneer Venus Orbiter on the nightside continue to be of considerable interest since they have been cited as evidence for lightning on Venus.

  15. Was Venus the First Habitable World of our Solar System?

    PubMed Central

    Way, M. J.; Del Genio, Anthony D.; Kiang, Nancy Y.; Sohl, Linda E.; Grinspoon, David H.; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas

    2017-01-01

    Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a rotation period slower than ~16 Earth days, despite an incident solar flux 46−70% higher than Earth receives. At its current rotation period, Venus’s climate could have remained habitable until at least 715 million years ago. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch. PMID:28408771

  16. Programming for Pioneer 12

    NASA Technical Reports Server (NTRS)

    Shem, B. C.

    1985-01-01

    Background on Pioneer probes 6 to 11 is given as well as an overview of the Pioneer Venus mission. A computer program was written in C language for analyzing radio signals from the Pioneer Venus orbiter. A second program was written to facilitate high gain antenna commands to move the antenna itself, to set the simulated spin period, and to set the attitude control system angle.

  17. Pioneer Mars surface penetrator mission. Mission analysis and orbiter design

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mars Surface Penetrator mission was designed to provide a capability for multiple and diverse subsurface science measurements at a low cost. Equipment required to adapt the Pioneer Venus spacecraft for the Mars mission is described showing minor modifications to hardware. Analysis and design topics which are similar and/or identical to the Pioneer Venus program are briefly discussed.

  18. Electron temperatures and densities in the venus ionosphere: pioneer venus orbiter electron temperature probe results.

    PubMed

    Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A

    1979-02-23

    Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.

  19. Venus - Dead or alive?

    NASA Technical Reports Server (NTRS)

    Taylor, Harry A., Jr.; Cloutier, Paul A.

    1986-01-01

    In situ nightside electric field observations from the Pioneer Venus Orbiter have been interpreted as evidence of extensive lightning in the lower atmosphere of Venus. The scenario, including proposed evidence of clustering of lightning over surface highland regions, has encouraged the acceptance of currently active volcanic output as part of several investigations of the dynamics and chemistry of the atmosphere and the geology of the planet. However, the correlation between the 100-hertz electric field events attributed to lightning and nightside ionization troughs resulting from the interaction of the solar wind with the ionosphere indicates that the noise results from locally generated plasma instabilities and not from any behavior of the lower atmosphere. Furthemore, analysis of the spatial distribution of the noise shows that it is not clustered over highland topography, but rather occurs at random throughout the latitude and longitude regions sampled by the orbiter during the first 5 years of operation, from 1978 to 1984. Thus the electric field observations do not identify lightning and do not provide a basis for inferring the presence of currently active volcanic output. In the absence of known evidence to the contrary, it appears that Venus is no longer active.

  20. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    NASA Astrophysics Data System (ADS)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the atmosphere rises on the dayside producing adiabatic cooling and drops on the nightside producing some adiabatic heating. (See figure 1). The thermosphere was discovered from drag measurements to respond to the near 27-day period of the rotating Sun, for which regions of maximum solar activity reappear every 27 days. The increased euv emission from active regions increased temperatures and thermospheric density, (See Figure 2). Fig. 2 Exospheric Temperatures Compared to 10.7cm Solar Index Second diurnal survey (12/5/79 - 3/6/80) Pioneer Venus Orbiter measurements (OAD) 11 day running means [2] Estimates were also made of the response to the 11- year Solar Cycle by combining the Pioneer Venus and Magellan data. Dayside exospheric temperatures changed about 80K over the solar cycle, [8]. Earlier estimates of temperature change gave 70K based on Lyman alpha measurements. The responses to solar variability were much weaker than on Earth due apparently to the much stronger O/CO2 cooling on Venus which tended to act as a thermostat on thermospheric temperatures. Another discovery from drag measurements was the 4 to 5 day oscillation of the Venus thermosphere [3], (See figure 3). These oscillations are interpreted as resulting from the 4-day super-rotation of the atmosphere near the cloud tops. Other indications of the super-rotation of the thermosphere come from displacement of the helium bulge and atomic hydrogen bulge from midnight to near 4AM. Fig. 3 Four to Five Day Oscillations in Thermospheric Densities Magellan 1992. During 2008, the Venus Express periapsis will be dropped from 250km down to approximately 180km to allow drag measurements to be made in the North Polar Region, [9]. Drag measurements above 200km have already been obtained from both Pioneer Venus and Magellan so measurements near 180km should be accurate. In 2009, the periapsis may be decreased to a lower altitude allowing accelerometer measurements to be obtained of drag as a function of altitude, to determine density, scale height, inferred temperature, pressure, and other parameters as a function of altitude. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects in over 30 years. The Venus Express accelerometer drag experiment is very similar to accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter which orbit Mars. The Venus Express drag measurements of the polar region will allow a global empirical model of the thermosphere to emerge. Previous drag measurements have been made principally near the equator. The experiment may help us understand on a global scale, tides, winds, gravity waves, planetary waves, and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The rotating vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The super-rotation may affect escape rates and the evolution of the atmosphere. References: [1] Keating, G. M., et al: Venus Thermosphere and Exosphere: First Satellite Drag Measurements of an Extraterrestrial Atmosphere. Science, Vol. 203, No. 4382, 772-774, Feb. 23, 1979. [2] Keating, G. M. and Bougher, S.W.: Isolation of Major Venus Cooling Mechanism and Implications for Earth and Mars, Journal of Geophysical Research, Vol. 97, 4189-4197, 1992. [3] Keating, G.M.; Taylor, F.W.; Nicholson, J. V. II; and Hinson, E.W. : Short-Term Cyclic Variations and Diurnal Variations of the Venus Upper Atmosphere, Science, Vol. 205, No. 4401, 62-64, July 6, 1979. [4] Bougher, S. W.; Dickinson, R. E.; Ridley, E. C.; Roble, R. G.; Nagy, A. F.; and Cravens, T. E.: Venus mesosphere and thermosphere, II, Global circulation, temperature, and density variations, Icarus, Vol. 68, 284-312, 1986. [5] Keating, G. M. et al.: Evidence of Long-Term Global Decline in the Earth's Thermospheric Densities Apparently Related to Anthropogenic Effects, Geophysical Research Letters, Vol. 27, No. 10, 1522-1526, 2000. [6] Keating, G. M. et al.: Models of Venus Neutral Upper Atmosphere Structure and Composition: The Venus International Reference Atmosphere (Edited by A. L. Kliore, V. I. Moros, and G. M. Keating) Advances in Space Research, Vol. 5, No. 11, 117-171,1985. [7] Keating, G. M.; Hsu, N.C., and Lyu, J.: Improved Thermospheric Model for the Venus International Reference Atmosphere, Proceedings of the 31st Scientific Assembly of COSPAR, Birmingham, England, 139, 1996 (Invited) [8] Keating, G. M. and Hsu, N. C.: The Venus Atmospheric Response to Solar Cycle Variations, Geophysical Research Letters, Vol. 20, 2751-2754, 1993. [9] Keating, G.M. et al: Future drag measurements from Venus Express. Adv

  1. Venus gravity: Summary and coming events

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.

    1992-01-01

    The first significant dataset to provide local measures of venusian gravity field variations was that acquired from the Pioneer Venus Orbiter (PVO) during the 1979-1981 period. These observations were S-band Doppler radio signals from the orbiting spacecraft received at Earth-based tracking stations. Early reductions of these data were performed using two quite different techniques. Estimates of the classical spherical harmonics were made to various degrees and orders up to 10. At that time, solutions of much higher degree and order were very difficult due to computer limitations. These reductions, because of low degree and order, revealed only the most prominent features with poor spatial resolution and very reduced peak amplitudes.

  2. Galileo orbit determination for the Venus and Earth-1 flybys

    NASA Astrophysics Data System (ADS)

    Kallemeyn, P. H.; Haw, R. J.; Pollmeier, V. M.; Nicholson, F. T.; Murrow, D. W.

    1992-08-01

    This paper presents the orbit determination strategy and results in navigating the Galileo spacecraft from launch through its Venus and first earth flybys. Many nongravitational effects were estimated, including solar radiation pressure, small velocity impulses from attitude changes and eight trajectory correction maneuvers. Tracking data consisted of S-Band Doppler and range. The fitting of Doppler was difficult since one of the cpacecraft's two antennas was offset from the spin axis, thus producing the sinusoidal velocity fluctuation seen in the data. Finally, Delta Differential One-way Range data was used during the last three months of the earth approach to help deliver the spacecraft to within desired accuracy.

  3. Measuring the accelerating effect of the planetary-scale waves on Venus observed with UVI/AKATSUKI and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.

    2017-12-01

    Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with a small error about +/- 0.1-day period in equatorial region (Figure 2). The same method will be applied for planetary-scale features captured by UVI, and ground-based observations compensate the discontinuity in UVI data. At the presentation, the variability in winds and wave propagation velocity with the time scale of a couple of months will be shown.

  4. Hybrid simulations of Venus' ionospheric magnetization states

    NASA Astrophysics Data System (ADS)

    Wiehle, Stefan; Motschmann, Uwe; Fränz, Markus

    2013-04-01

    The solar wind interaction with the plasma environment of Venus is studied with focus on ionospheric magnetization states using a 3D hybrid simulation code. The plasma environment of Venus was investigated mainly by Pioneer Venus Orbiter (PVO) and the still ongoing Venus Express (VEX) mission. Unlike many other planets, Venus' ionosphere is not shielded by a strong magnetosphere. Hence, data measured by spacecraft like PVO and VEX close to the planet are highly sensitive to solar wind and IMF upstream conditions, which cannot be measured while the spacecraft is inside the magnetosheath region about one hour before and after the closest approach. However, solar wind and IMF are known to change within minutes; ionospheric magnetization states, found by PVO and VEX, are highly dependent on the solar wind upstream pressure and also the magnetic field direction may change rapidly in case of a magnetic sector boundary crossing. When these solar wind induced transition effects occur, the causal change in the solar wind cannot be determined from ionospheric in-situ data. Additionally, with an orbital period of 24 hours, measuring transition timescales of solar wind triggered events is not possible. Our self-consistent simulations aim to provide a global picture of the solar wind interaction with Venus focusing on the effects of upstream fluctuations to the magnetic field in the vicinity of the planet. We use the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) 3D hybrid simulation code to model the entire Venus plasma environment. The simulation grid is refined within the ionosphere in order to resolve strong small-scale gradients of the magnetic field and ion density, a necessity to describe the magnetic field depletion inside the Venus' ionosphere. In contrast to other simulation studies, we apply no boundary conditions for the magnetic field at the planetary surface. Furthermore, we include varying upstream conditions like solar wind velocity and density as well as IMF strength and direction by adjusting these parameters after a first, quasi-stationary state has been reached. This allows for a simulation of dynamic processes like the transition between the magnetized and unmagnetized ionospheric state and fossil fields.

  5. Venus Interior Probe Using In-Situ Power and Propulsion (VIP-INSPR)

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.

    2016-01-01

    Venus, despite being our closest neighboring planet, is under-explored due to its hostile and extreme environment, with a 92 bar pressure and 467 C temperature at the surface. The temperature decreases at higher altitudes, almost at the rate of 7.9 C/km, reaching the Earth surface conditions at 65 km. Due to the less extreme conditions, balloon missions could survive as long as 46 h at an altitude of 54 km. However, because of the opacity of the Venus atmosphere filled with clouds of sulfuric acid and CO2, orbiter or balloon missions are not as revealing and informative in characterizing the surface, as similar missions on Moon and Mars. To understand the evolutionary paths of Venus in relation to Earth, it is imperative to gather basic information on the crust, mantle, core, atmosphere/exosphere and bulk composition of Venus, through in-situ investigations using landers, probes and variable altitude areal platforms.

  6. Neutral Mass Spectrometry for Venus Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul

    2004-01-01

    The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.

  7. Visual aid titled 'The Magellan Mission to Venus'

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Visual aid titled 'The Magellan Mission to Venus' describes data that will be collected and science objectives. Images and brightness temperatures will be obtained for 70-90% of the surface, with a radar resolution of 360 meters or better. The global gravity field model will be refined by combining Magellan and Pioneer-Venus doppler data. Altimetry data will be used to measure the topography of 70-90% of the surface with a vertical accuracy of 120-360 meters. Science objectives include: to improve the knowledge of the geological history of Venus by analysis of the surface morphology and electrical properties and the processes that control them; and to improve the knowledge of the geophysics of Venus, principally its density distribution and dynamics. Magellan, named for the 16th century Portuguese explorer, will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.

  8. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Satellite attitude determination and control, orbit determination, and onboard and ground attitude determination procedures are among the topics discussed. Other topics covered include: effect of atmosphere on Venus orbiter navigation; satellite-to-satellite tracking; and satellite onboard navigation using global positioning system data.

  9. "Dry" Mercury and "wet" Mars: comparison of two terrestrial planets with strongly differing orbital frequencies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    The modern wave planetology states that "orbits make structures". It means that all celestial bodies moving in non-round keplerian elliptical (and parabolic) orbits and rotating (all bodies rotate) are subjected to warping action of inertia-gravity waves . The waves appear in bodies due to periodically changing accelerations during cyclic orbital movements; they have a stationary character, 4 intersecting ortho- and diagonal directions and various lengths. Wave intersections and superpositions produce uplifting (+), subsiding (-) and neutral (0) regularly disposed tectonic blocks. Their sizes depend on wavelengths. The longest in a globe fundamental wave1 long 2πR is responsible for ubiquitous appearance in all celestial bodies of tectonic dichotomy or segmentation (2πR-structure). The first overtone wave2 produces tectonic sectoring (πR-structure). On this already complex wave structurization are superposed individual waves whose lengths are proportional to orbital periods or inversely proportional to orbital frequencies: higher frequency - smaller waves, lower frequency - larger waves. These waves are responsible for production of tectonic granules. In a row of terrestrial planets according to their orb. fr. sizes of the granules are as follows (this row can be started with the solar photosphere that orbits around the center of the solar system with about one month period): Photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. By this way a bridging is made between planets and stars in that concerns their wave structurization. The calculated granule sizes are rather known in nature. The solar supergranulation about 30-40 thousand km across, prevailing sizes of mercurian craters ˜500 km in diameter (a radar image from Earth), venusian "blobs" ˜3000 km across, superstructures of the Earth's cratons ˜ 5000 km across (seen now on NASA image PIA04159), martian elongated shape due to 2 waves inscribed in equator, asteroids' convexo-concave shape. "Orbits make structures" - this concerns solid planetary spheres as well as gaseous ones. Tectonic granulation of lithospheres of Venus, Earth and Mars is repeated in their atmospheres. Moreover, their atmospheric masses correlate with their orbital properties: the higher orbital fr. the larger atmospheric masses, that means more complete sweeping volatiles. Venus is covered with a thick dense atmosphere, Mars possesses very weak transparent one, Earth is in the middle, Mercury is bare. Sweeping volatiles out of the planets was compared using their granulations and oscillation frequencies [1]. Venus is ˜ 60 times more outgassed than Earth, and 6000 times more outgassed than Mars. Mercury is ˜500 times more 1 outgassed than Venus [1]. The most outgassed of the terrestrial planets Mercury is the only planet bearing distinct traces of earlier planetary contraction: escarps or lobate ledges. Numerous so-called secondary craters - small and deep holes controlled by lineaments or weakness zones could speak in favor of intense degassing. The most degassed Venus and Mercury rotate very slowly. This is due to angular momenta redistribution between a solid body and its gaseous envelopes. Solid bodies slow down, atmospheres rotate faster. However, if Venus mainly keeps its atmosphere, Mercury has lost it by solar wind sweeping (remain traces of noble gases, Na, K). Mars , on the contrary, is very mildly outgassed and keeps a lot of CO2 and H2 O. Thus, two small planets - Mars and Mercury are "antipodean" bodies. Mercury is dull, heavy, Fe-rich, low relief range, contracted (squeezed), slowly rotating, without atmosphere ("candle-end"). Mars is bright, less dense, with high relief range, extended (at least partially), rapidly rotating, with an atmosphere. And this is due to different solar distances explaining not only different primary accretion compositions but also different orbiting frequencies so crucial for evolution of celestial bodies. References: [1] Kochemasov G.G. (2003) Tectonically and chemically dichotomic Mars is the least outgassed of terrestrial planets // Vernadsky-Brown microsymposium 38, Oct. 27-29, 2003, Vernadsky Inst., Moscow, Russia, Abstr.,(CD-ROM). 2

  10. Electric currents in the subsolar region of the Venus lower ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Hoegy, W. R.

    1994-01-01

    The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.

  11. Overview of SPICAV occultation results for the UV channel

    NASA Astrophysics Data System (ADS)

    Montmessin, Franck; Bertaux, Jean-Loup; Belyaev, Denis; Marcq, Emmanuel; Korablev, Oleg; Vandaele, Ann-Carine; Fedorova, Anna

    The SPICAV instrument onboard the Venus Express spacecraft is a multi-channel suite cov-ering the far ultraviolet to the mid-infrared. In this presentation, we will focus on the results obtained by the UV channel during stellar occultations observations. Stellar occultation tech-nique possesses well-known advantages: self-calibration, low sensitivity to instrument aging, simple laws of radiative transfer. In addition, occultation with stars permit to cover a broad range of latitudes at any given season and they provide optimal geometrical registration. Since Venus Express orbit insertion, several hundreds of occultations have been performed by SPI-CAV, yielding profiles of atmospheric constituents between 80 and 140 km. In the SPICAV UV range, CO2 possesses a broad signature shortward of 200 nm which allows one to retrieve CO2 concentration and subsequently to deduce atmospheric pressure and temperature profiles in the upper mesosphere and in the thermosphere. The Venusian thermosphere shows excessive variability, with the equivalent of more than three scale heights change in density in less than a few days. No other spectral signature besides that of CO2 and haze particles was expected to appear in SPICAV ultraviolet spectra at this altitude range but a consistent search was undertaken, revealing the presence of aan ozone at 100 km (¡108 cm-3) and of sulfur dioxide above 90 km at a concentration of 0.1 to 1 ppm.

  12. High temperature, high intensity solar array. [for Venus Radar Mapper mission

    NASA Technical Reports Server (NTRS)

    Smith, B. S.; Brooks, G. R.; Pinkerton, R.

    1985-01-01

    The solar array for the Venus Radar Mapper mission will operate in the high temperature, high intensity conditions of a low Venus orbit environment. To fulfill the performance requirements in this environment at minimum cost and mass while maximizing power density and packing factor on the panel surface, several features were introduced into the design. These features included the use of optical surface reflectors (OSR's) to reduce the operating temperature; new adhesives for conductive bonding of OSR's to avoid electrostatic discharges; custom-designed large area cells and novel shunt diode circuit and panel power harness configurations.

  13. Microwave dual frequency propagation experiment using the Mariner Venus Mercury probe.

    NASA Technical Reports Server (NTRS)

    Levy, G. S.

    1972-01-01

    The Mariner Venus Mercury spacecraft (MVM) will be launched in a multiple planet flyby orbit. A coherent dual frequency down link operating at 2.3 and 8.4 GHz will be used to measure the dispersive nature of the transmission medium. Radio tracking will produce Doppler and range information at both 2.3 and 8.4 GHz so that the dispersive group and phase velocity perturbations of the medium can be measured. Interpretation of the dispersive results will yield information about the neutral and ionized atmospheres of Venus and Mercury, the interplanetary media, the solar wind, and corona.

  14. VEGA Space Mission

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Murdin, P.

    2000-11-01

    VEGA (mission) is a combined spacecraft mission to VENUS and COMET HALLEY. It was launched in the USSR at the end of 1984. The mission consisted of two identical spacecraft VEGA 1 and VEGA 2. VEGA is an acronym built from the words `Venus' and `Halley' (`Galley' in Russian spelling). The basic design of the spacecraft was the same as has been used many times to deliver Soviet landers and orbiter...

  15. Spectral analysis of the solar wind turbulence in the vicinity of Venus

    NASA Astrophysics Data System (ADS)

    Teodorescu, Eliza; Echim, Marius; Munteanu, Costel; Voitcu, Gabriel; Zhang, Tielong; Barabash, Stanislav; Budnik, Elena; Fedorov, Andrei

    2014-05-01

    In this study we analyze magnetic field data provided by Venus Express (VEX) between 2007 and 2008. During each of the probe's eccentric polar orbit around Venus, VEX performs plasma and magnetic field measurements in the environment around the planet both in Venus induced magnetosphere and in the solar wind at several tens of thousands of kilometers away from the magnetosphere. This latter data set has a unique scientific value as it provides observations of magnetic turbulence in the solar wind around 0.72 AU, in the vicinity of Venus. We discuss a semi-automated method to select solar wind magnetic field data at 1 Hz from Venus Express Magnetometer (MAG) data by using plasma data from the Analyser of Space Plasma and Energetic Atoms (ASPERA). The time intervals when VEX is in the solar wind are automatically determined for 2007 and 2008. We apply a Fourier transform on the selected data and calculate the power spectral densities (PSD) of the turbulent magnetic field through Welch's algorithm. We compute the PSD of the three components of the magnetic field for the time intervals when both MAG and ASPERA were operating in the solar wind, for each VEX orbit between 1st of January 2007 and 31st of December 2008. The data base includes a number of 374 individual spectra. We discuss the spectral properties of turbulence and illustrate similarities between fast and slow wind during the minimum phase of the solar cycle for each of VEX's orbit which satisfies the selection criteria for a period of two years. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418. Data analysis was done with the AMDA science analysis system provided by the Centre de Données de la Physique des Plasmas (IRAP, Université Paul Sabatier, Toulouse) supported by CNRS and CNES.

  16. Ballistic Mercury orbiter mission via Venus and Mercury gravity assists

    NASA Astrophysics Data System (ADS)

    Yen, Chen-Wan Liu

    1989-09-01

    This paper shows that it is possible to deliver a payload of 600 to 2000 kg to a 300-km circular orbit at Mercury, using the presently available NASA STS and a single-stage bipropellant chemical rocket. This superior payload performance is attained by swingbys of Venus, plus more importantly, the use of the reverse Delta-V/EGA process. In contrast to the familiar Delta-V/EGA process used to boost the launch energy by returning to earth for a gravity assist, the reverse process reduces the Mercury approach energy each time a spacecraft makes a near-resonant return to Mercury for a gravity assist and reduces the orbit-capture Delta-V requirement. The mission sequences for such high-performance missions are described, and example mission opportunities for the years 1990 to 2010 are presented.

  17. A statistical study of the low-altitude ionospheric magnetic fields over the north pole of Venus

    NASA Astrophysics Data System (ADS)

    Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Villarreal, M. N.; Luhmann, J. G.; Teh, W. L.

    2015-08-01

    Examination of Venus Express (VEX) low-altitude ionospheric magnetic field measurements during solar minimum has revealed the presence of strong magnetic fields at low altitudes over the north pole of Venus. A total of 77 events with strong magnetic fields as VEX crossed the northern polar region were identified between July 2008 and October 2009. These events all have strong horizontal fields, slowly varying with position. Using the superposed epoch method, we find that the averaged peak field is about 45 nT, which is well above the average ambient ionospheric field of 20 nT, with a full width at half maximum duration of 32 s, equivalent to a width of about 300 km. Considering the field orientation preference and spacecraft trajectory geometry, we conclude that these strong fields are found over the northern hemisphere with an occurrence frequency of more than 33% during solar minimum. They do not show a preference for any particular interplanetary magnetic field (IMF) orientation. However, they are found over the geographic pole more often when the interplanetary field is in the Venus orbital plane than when it is perpendicular to the orbital plane of Venus. The structures were found most frequently in the -E hemisphere, determined from the IMF orientation. The enhanced magnetic field is mainly quasi perpendicular to solar wind flow direction, and it is suggested that these structures form in the low-altitude collisional ionosphere where the diffusion and convection times are long.

  18. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  19. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Taylor, Fredric W.; Svedhem, Håkan; Head, James W.

    2018-02-01

    This is a review of current knowledge about Earth's nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.

  20. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  1. Geologic map of the Mead quadrangle (V-21), Venus

    USGS Publications Warehouse

    Campbell, Bruce A.; Clark, David A.

    2006-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Mead quadrangle (V-21) of Venus is bounded by lat 0 deg and 25 deg N., long 30 deg and 60 deg E. This quadrangle is one of 62 covering Venus at 1:5,000,000 scale. Named for the largest crater on Venus, the quadrangle is dominated by effusive volcanic deposits associated with five major coronae in eastern Eistla Regio (Didilia, Pavlova, Calakomana, Isong, and Ninmah), corona-like tectonic features, and Disani Corona. The southern extremity of Bell Regio, marked by lava flows from Nyx Mons, north of the map area, forms the north-central part of the quadrangle. The shield volcanoes Kali, Dzalarhons, and Ptesanwi Montes lie south and southwest of the large corona-related flow field. Lava flows from sources east of Mead crater flood low-lying areas along the east edge of the quadrangle.

  2. System design of the Pioneer Venus spacecraft. Volume 12: International cooperation

    NASA Technical Reports Server (NTRS)

    Kelly, R. S.

    1973-01-01

    A spectrum of plans has been prepared to illustrate the range of practical sharing possibilities available so as to assist Ames Research Center (ARC) and European Space Research Organization (ESRO) in selection of a program meeting mutual goals. Five plans are described showing increased participation by ESRO WITH ascending plan number. Each of these has sharing properties fulfilling particular requirements such as available ESRO budget level, extent of ESRO program responsibility, matching particular ESRO capability, and cost saving to ARC through sharing. All plans apply to orbiter sharing only. A sharing plan based on the model Plan 4 may offer the most attractive division of Pioneer Venus between ARC and ESRO. This plan allows ESRO to bear primary responsibility for the orbiter and to avoid an extensive financial burden. Savings to ARC are commensurate with ARC loss of program control. Duplication of effort is avoided by using orbiter subsystems that are common to the probe bus and orbiter.

  3. Probing Venus' polar upper atmosphere in situ: Preliminary results of the Venus Express Atmospheric Drag Experiment (VExADE).

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Pascal; Bruinsma, Sean; Mueller-Wodarg, Ingo; Haeusler, Bernd

    On its highly elliptical 24 hour orbit around Venus, the Venus Express (VEx) spacecraft briefly reaches a pericenter altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008 (campaign1), October 2009 (cam-paign2), February and April 2010 (campaign3), for which the pericenter altitude was lowered to about 175 km in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in-situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the pericenter pass, allowing us to infer total atmospheric mass density at the pericenter altitude. The GINS software (Géodésie par Intégration Numérique e e Simultanées) is used to accurately reconstruct the orbital motion of VEx through an iterative least-squares fitting process to the Doppler tracking data. The drag acceleration is modelled using an initial atmospheric density model (VTS model, A. Hedin). A drag scale factor is estimated for each pericenter pass, which scales Hedin's density model in order to best fit the radio tracking data. About 20 density scale factors have been obtained mainly from the second and third VExADE campaigns, which indicate a lower density by a factor of about one-third than Hedin's model predicts. These first ever polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements. The preliminary results of the VExADE cam-paigns show that it is possible to obtain reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEx pericenter altitude to below 170 Km.

  4. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  5. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Quanming; Shan Lican; Zhang Tielong

    2013-08-20

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1989-03-08

    The STS-30 patch depicts the joining of NASA's manned and unmanned space programs. The sun and inner planets of our solar system are shown with the curve connecting Earth and Venus symbolizing the shuttle orbit, the spacecraft trajectory toward Venus, and its subsequent orbit around our sister planet. A Spanish caravel similar to the ship on the official Magellan program logo commemorates the 16th century explorer's journey and his legacy of adventure and discovery. Seven stars on the patch honor the crew of Challenger. The five-star cluster in the shape of the constellation Cassiopeia represent the five STS-30 crewmembers - Astronauts David Walker, Ronald Grabe, Norman Thagard, Mary Cleave and Mark Lee - who collectively designed the patch.

  7. STS-30 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-30 patch depicts the joining of NASA's manned and unmanned space programs. The sun and inner planets of our solar system are shown with the curve connecting Earth and Venus symbolizing the shuttle orbit, the spacecraft trajectory toward Venus, and its subsequent orbit around our sister planet. A Spanish caravel similar to the ship on the official Magellan program logo commemorates the 16th century explorer's journey and his legacy of adventure and discovery. Seven stars on the patch honor the crew of Challenger. The five-star cluster in the shape of the constellation Cassiopeia represent the five STS-30 crewmembers - Astronauts David Walker, Ronald Grabe, Norman Thagard, Mary Cleave and Mark Lee - who collectively designed the patch.

  8. [Comment on “Is Venus alive?”

    NASA Astrophysics Data System (ADS)

    Scarf, Frederick

    The June 3, 1986 issue of Eos contains a Forum by Harry Taylor (National Aeronautics and Space Administration Goddard Space Flight Laboratory, Greenbelt, Md.) with a report on his latest speculations regarding Venus lightning and on his interpretation of certain measurements from the plasma wave investigation on the Pioneer Venus Orbiter. The same views have also been announced as recent discoveries by Taylor and an associate in interviews in Science News (April 5, 1986) and in New Scientist (May 15, 1986). In fact, many of the statements and interpretations in Taylor's letter (and in the interviews) are demonstrably wrong, and I want to correct the record for Eos readers.Taylor's discussion refers to a number of Pioneer Venus publications that appeared in various journals between 1979 and 1986. In these papers, my colleagues and I identified as whistler mode plasma waves certain low-frequency impulses detected with an electric antenna at low altitudes during the Venus night. These Venus noise bursts have all the characteristics of whistlers from lightning, and this connection was discussed in all of the published papers.

  9. Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Toon, O. B.; Boese, R.

    1980-01-01

    Recent measurements conducted from the Pioneer Venus probes and orbiter have provided a significantly improved definition of the solar net flux profile, the gaseous composition, temperature structure, and cloud properties of Venus' lower atmosphere. Using these data, we have carried out a series of one-dimensional radiative-convective equilibrium calculations to determine the viability of the greenhouse model of Venus' high surface temperature and to assess the chief contributors to the greenhouse effect. New sources of infrared opacity include the permitted transitions of SO2, CO, and HCl as well as opacity due to several pressure-induced transitions of CO2. We find that the observed surface temperature and lapse rate structure of the lower atmosphere can be reproduced quite closely with a greenhouse model that contains the water vapor abundance reported by the Venera spectrophotometer experiment. Thus the greenhouse effect can account for essentially all of Venus' high surface temperature. The prime sources of infrared opacity are, in order of importance, CO2, H2O, cloud particles, and SO2, with CO and HCl playing very minor roles.

  10. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth.

    PubMed

    Laskar, J; Gastineau, M

    2009-06-11

    It has been established that, owing to the proximity of a resonance with Jupiter, Mercury's eccentricity can be pumped to values large enough to allow collision with Venus within 5 Gyr (refs 1-3). This conclusion, however, was established either with averaged equations that are not appropriate near the collisions or with non-relativistic models in which the resonance effect is greatly enhanced by a decrease of the perihelion velocity of Mercury. In these previous studies, the Earth's orbit was essentially unaffected. Here we report numerical simulations of the evolution of the Solar System over 5 Gyr, including contributions from the Moon and general relativity. In a set of 2,501 orbits with initial conditions that are in agreement with our present knowledge of the parameters of the Solar System, we found, as in previous studies, that one per cent of the solutions lead to a large increase in Mercury's eccentricity-an increase large enough to allow collisions with Venus or the Sun. More surprisingly, in one of these high-eccentricity solutions, a subsequent decrease in Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets approximately 3.34 Gyr from now, with possible collisions of Mercury, Mars or Venus with the Earth.

  11. Lessons From the Pioneer Venus Program

    NASA Technical Reports Server (NTRS)

    Dorfman, Steven D.

    2005-01-01

    We began the Pioneer Venus contract in late 1974 with a planned launch of the Orbiter in May 1978 and the Multiprobe in August 1978. Because we had four years, we thought there was plenty of time. As it turned out, we barely made the launch dates. The Orbiter was relatively straightforward, compared to the Multiprobe Bus and Probes that had to survive descent through the harsh Venusian atmosphere. To help overcome our many Multiprobe problems we formed a strong global team. The GE reentry team in Philadelphia, experienced in designing vehicles to enter the earth s atmosphere, was assigned the responsibility for the Probe entry system, including protective heat shielding and parachute design to extract the scienceladen Large Probe pressure vessel and control its descent through the Venusian clouds. Since the Probes had to remain stable as they descended through the Venus atmosphere, we used the aerodynamic expertise at the Hughes Missile Division, NASA s Ames Research Center and the Langley Research Center. Since the pressure at the surface of Venus was equivalent to an ocean depth of 3300 feet, we went to the Navy s David Taylor Research Center for their deepsea expertise. To test the pressure vessel at the high pressure and temperatures anticipated at Venus we went to the only facility capable of simulating the Venus surface environment, the Southwest Research Institute in San Antonio, Texas. We had dozens of subcontractors all over the world. As we developed our design, we began an extensive program to validate the ability of our Probe hardware to withstand the Venus environment. During this testing, we encountered numerous problems, mostly associated with adapting earth-based hardware to operate in the anticipated Venus environment. For example, the Large Probe pressure vessel imploded with a very loud bang the first time we tested its ability to withstand the high pressure and temperature on the Venusian surface. We had to go back and redesign, increasing the pressure vessel wall thickness. In addition, during the first tests of the parachute system, our parachute system ripped apart and had to be redesigned. Finally, at the aptly named test range in Truth or Consequences, New Mexico, we successfully demonstrated the parachute design by drop

  12. Studies of the aurorally-induced ultraviolet emissions on the nightside of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1986-01-01

    The effect of a monoenergetic flux of electrons on a model atmosphere of the nightside thermosphere of Venus was examined. The neutral model chosen is that of Hedin for high solar activity and l65 degrees solar zenith angle. The model is based on measurements made by the Pioneer Venus Orbiter Neutral Mass Spectrometer. Four species were included in the calculation: CO2, O, CO, and N2. The numerical method that was chosen for energy deposition of the primary electrons is the continuous slowing down approximation. The secondary electron distribution was computed using the empirically determined shape of the differential cross section.

  13. Venusian k(sub 2) Tidal Love Number from Magellan and PVO Tracking Data

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Yoder, C. F.

    1996-01-01

    The k(sub 2) potential ove number which scales the tidal deformation of Venus by the Sun has been estimated from Doppler tracking of Magellan and Pioneer Venus Orbiter (PVO) spacecraft data. The nominal range for k(sub 2) from theoretical models is 0.23(less than or equal to)k(sub 2)(less than or equal to)0.29 for a liquid iron core and about 0.17 if the iron core has solidified. Our best estimate of this parameter is k(sub 2) = 0.295 +/- 0.662 (2X formal {delta}) and supports the hypothesis that Venus core is solid.

  14. Venus Express en route to probe the planet's hidden mysteries

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being reduced to once daily. If needed, trajectory correction manoeuvres can go ahead at the half-way stage in January. When making its closest approach, Venus Express will face far tougher conditions than those encountered by Mars Express on nearing the Red Planet. For while Venus's size is indeed similar to that of the Earth, its mass is 7.6 times that of Mars, with gravitational attraction to match. To resist this greater gravitational pull, the spacecraft will have to ignite its main engine for 53 minutes in order to achieve 1.3 km/second deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of propellant will be used for this manoeuvre. A second engine firing will be necessary in order to reach final operational orbit: a polar elliptical orbit with 12-hour crossings. This will enable the probe to make approaches to within 250 km of the planet's surface and withdraw to distances of up to 66 000 km, so as to carry out close-up observations and also get an overall perspective. Exploring other planets to better understand planet Earth "The launch of Venus Express is a further illustration of Europe's determination to study the various bodies in our solar system", stressed Professor David Southwood, the Director of ESA's science programmes. "We started in 2003 with the launch of Mars Express to the Red Planet and Smart-1 to the Moon and both these missions have amply exceeded our expectations. Venus Express marks a further step forward, with a view to eventually rounding off our initial overview of our immediate planetary neighbours with the BepiColombo mission to Mercury to be launched in 2013." "With Venus Express, we fully intend to demonstrate yet again that studying the planets is of vital importance for life here on Earth", said Jean Jacques Dordain, ESA Director General. "To understand climate change on Earth and all the contributing factors, we cannot make do with solely observing our own planet. We need to decipher the mechanics of the planetary atmosphere in general terms. With Mars Express, we are studying the Martian atmosphere. With Huygens, we have explored that of Saturn's satellite Titan. And now with Venus Express, we are going to add a further specimen to our collection. Originally, Venus and the Earth must have been very similar planets. So we really do need to understand why and how they eventually diverged to the point that one became a cradle for life while the other developed into a hostile environment." The Venus Express mission is planned to last at least two Venusian days (486 Earth days) and may be extended, depending on the spacecraft's operational state of health. Twin sister of Mars Express Venus Express largely reuses the architecture developed for Mars Express. This has reduced manufacturing cycles and halved the mission cost, while still targeting the same scientific goals. Finally approved in late 2002, Venus Express was thereby developed fast, indeed in record time, to be ready for its 2005 launch window. However, Venusian environmental conditions are very different to those encountered around Mars. Solar flux is four times higher and it has been necessary to adapt the spacecraft design to this hotter environment, notably by entirely redesigning the thermal insulation. Whereas Mars Express sought to retain heat to enable its electronics to function properly, Venus Express will in contrast be aiming for maximum heat dissipation in order to stay cool. The solar arrays on Venus Express have been completely redesigned. They are shorter and are interspersed with aluminium strips to help reject some solar flux to protect the spacecraft from temperatures topping 250ºC. It has even been necessary to protect the rear of the solar arrays - which normally remain in shadow - in order to counter heat from solar radiation reflected by the planet's atmosphere. An atmosphere of mystery Following on from the twenty or so American and Soviet missions to the planet carried out since 1962, Venus Express will endeavour to answer many of the questions raised by previous missions but so far left unanswered. It will focus on the characteristics of the atmosphere, its circulation, structure and composition in relation to altitude, and its interactions with the planet's surface and with the solar wind at altitude. To perform these studies, it has seven instruments onboard: three are flight-spare units of instruments already flown on Mars Express, two are from comet-chaser Rosetta and two were designed specifically for this mission. The PFS high-resolution spectrometer will measure atmospheric temperature and composition at varying altitudes. It will also measure surface temperature and search for signs of current volcanic activity. The SPICAV/SOIR infrared & ultraviolet spectrometer and the VeRa instrument will also probe the atmosphere, observing stellar occultation and detecting radio signals; the former will in particular seek to detect molecules of water, oxygen and sulphuric compounds thought to be present in the atmosphere. The Virtis spectrometer will map the various layers of the atmosphere and conduct multi-wavelength cloud observation in order to provide images of atmospheric dynamics. Assisted by a magnetometer, the ASPERA 4 instrument will analyse interaction between the upper atmosphere and the solar wind in the absence of magnetospheric protection such as that surrounding the Earth (for Venus had no magnetic field). It will analyse the plasma generated by such interaction, while the magnetometer will study the magnetic field generated by the plasma. And the VMC camera will monitor the planet in four wavelengths, notably exploiting one of the "infrared windows" revealed in 1990 by the Galileo spacecraft (when flying by Venus en route for Jupiter), making it possible to penetrate cloud cover through to the surface. The camera will also be used to monitor atmospheric dynamics, notably to observe the double atmospheric vortex at the poles, the origin of which still remains a mystery.

  15. Venus: The case for a wet origin and a runaway greenhouse

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit in the range of 1.34 S(o) to 1.43 S(o). Thus, it is possible that Venus had liquid water on its surface for several hundred million years following its formation. Paradoxically, this might have facilitated water loss by sequestering atmospheric CO2 in carbonate rocks and by providing an effective medium for surface oxidation.

  16. Venusian Earthquakes Detection by Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Lognonne, P.; Garcia, R. F.; Gudkova, T.

    2010-12-01

    Thanks to technological advances over the past fifteen years the ionosphere is now a new medium for seismological investigation. As a consequence of density structure in Venus atmosphere, the coupling between solid and fluid part of Venus induce a more significant atmospheric responce to quakes and volcanic eruptions (Lognonné & Johnson, 2007). Equivalent perturbation induced by internal activity has been detected on Earth through their subsequent ionospheric signature imaged by ionospheric tools (Doppler sounding or GPS) (Lognonné et al., 2006, Occhipinti et al., 2010). The strong solid/atmosphere coupling on Venus (Garcia et al., 2005, 2009), the thin ionospheric layer as well as absence of magnetic field present optimal circumstances for a better detection of these signals on Venus than on Earth. Consequently, ionospheric Doppler sounders on-board orbiters or balloons will provide informations on the infrasonic response of the atmosphere/ionosphere to quakes, and will help to constrain the interior structure of Venus through the solid/atmosphere coupling. With this paper we explore the future mission possibility and constrains.

  17. Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Meskhent Tessera quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N. and from long 60 degrees to 120 degrees E. In regional context, the Meskhent Tessera quadrangle is surrounded by extensive tessera regions to the west (Fortuna and Laima Tesserae) and to the south (Tellus Tessera) and by a large basinlike lowland (Atalanta Planitia) on the east. The northern third of the quadrangle covers the easternmost portion of the large topographic province of Ishtar Terra (northwestern map area) and the more localized upland of Tethus Regio (northeastern map area).

  18. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    USGS Publications Warehouse

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  19. A statistical study of ions and magnetic fields in the Venus magnetotail

    NASA Technical Reports Server (NTRS)

    Moore, K. R.; Mccomas, D. J.; Russell, C. T.; Mihalov, J. D.

    1990-01-01

    A statistical characterization is made of the combined ion and magnetic field properties of the Venus magnetosheath and magnetotail, on the basis of plasma and magnetic field data from 223 Pioneer Venus orbits; no assumptions are made as to existing regions or their plasma and field characteristics. Plasma is found to flow tailward in all locations, and the magnetotail is highly draped. Weak magnetic field asymmetries are associated with the plasma dropouts. A high-E/q plasma population, previously interpreted as planetary-pickup ions, is found asymmetrically both within the tail and in the adjacent sheath. The Venus tail is filled with plasma that is primarily shocked solar wind, at fluxes that are sometimes undetectable; the tail coexists with a photoion population which generates asymmetries in the bulk plasma and magnetic field properties.

  20. Digital amateur observations of Venus at 0.9μm

    NASA Astrophysics Data System (ADS)

    Kardasis, E.

    2017-09-01

    Venus atmosphere is extremely dynamic, though it is very difficult to observe any features on it in the visible and even in the near-IR range. Digital observations with planetary cameras in recent years routinely produce high-quality images, especially in the near-infrared (0.7-1μm), since IR wavelengths are less influenced by Earth's atmosphere and Venus's atmosphere is partially transparent in this spectral region. Continuous observations over a few hours may track dark atmospheric features in the dayside and determine their motion. In this work we will present such observations and some dark-feature motion measurements at 0.9μm. Ground-based observations at this wavelength are rare and are complementary to in situ observations by JAXA's Akatsuki orbiter, that studies the atmospheric dynamics of Venus also in this band with the IR1 camera.

  1. Systems design study of the Pioneer Venus spacecraft. Volume 1: Technical analyses and tradeoffs, sections 8-12 (part 4 of 4)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The probe bus and orbiter subsystems are defined, and tradeoffs analyzed. Subsystems discussed include: communications, electric power, data handling, attitude determination and control, propulsion, thermal control, structure and mechanisms, NASA/ESRO orbiter interface, mission operation, and flight support.

  2. Geologic Exploration of the Planets: The First 50 Years

    NASA Astrophysics Data System (ADS)

    Carr, Michael H.

    2013-01-01

    Fifty years ago, on 14 December 1962, the Mariner 2 spacecraft flew by Venus and inaugurated the modern era of planetary exploration. Since that first Venus flyby, roughly 80 spacecraft have successfully probed, orbited, flown by, landed on, or roved on other planets, satellites, asteroids, and comets. As Carl Sagan used to say, only one generation of humankind can be the first explorers of the solar system, and we are that generation.

  3. The Venus "Shell-over-Star" hieroglyph and Maya warfare: An examination of the interpretation of a Mayan symbol

    NASA Astrophysics Data System (ADS)

    Voit, Claudia Ann

    For decades, Maya scholars have associated the Mayan "Shell-Star" (also referred to as "Star-War") hieroglyph with Maya warfare. Put forward by scholars such as Floyd Lounsbury and David Kelley, and later advanced by Linda Schele, David Freidel, Ian Graham, Peter Matthews, Anthony Aveni and others, there are now dozens of published articles and chapters relating the hieroglyph to Venus and warfare. Venus is one of the most notable celestial objects outside of the Sun and Moon and was highly visible to the inhabitants of the Maya world. The Dresden Codex (an astronomical almanac) contains important information about the planet Venus, and the calendar section was deciphered by the librarian and mathematician, Ernst Förstemann in the late 1800s. In his decipherment, he deduced that the numbers contained in the tables must be connected to the orbital period of the planet. There is no other planet with the same orbital period 3 as Venus. Förstemann suggested that the decoded astronomy tables were used by the Maya to determine when to wage war. This interpretation, along with others, like Floyd Lounsbury`s study of Venus and the Long Count date at Bonampak were the seeds that have led to methodological errors that first began to take root in Maya research. The idea of the Venus association with warfare took hold and continues to propagate. Many scholars continue to assert that the "shell-star" glyph is related to warfare events. Others, like Gerardo Aldana, and Stanley Guenter, have recently come forward to reexamine and question the hieroglyph and its relationship, if any, to Maya warfare. I suggest, further, that methodological errors may have occurred along the way. I propose that these errors include data lost in translation, and inaccurate translations. In addition, the statistical analysis of Venus cycles has weak points. If this identification of the errors is correct, we need to re-evaluate the weakened foundation on which we are building our assertions about the role of Venus in Maya warfare. In this work, I examine the initial and subsequent interpretations of the Mayan "shell-star" hieroglyph, a symbol that has begun to generate an increasing amount of discussion among Mayan scholars over the last several years. In addition, I discuss new arguments (like that of Gerardo Aldana) regarding the role of Venus in Maya warfare. Finally, I would like to provide some suggestions for future research regarding this subject.

  4. Dynamics of some fictitious satellites of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tadashi

    1999-05-01

    The dynamics of some fictitious satellites of Venus and Mars are studied considering only solar perturbation and the oblateness of the planet, as disturbing forces. Several numerical integrations of the averaged system, taking different values of the obliquity of ecliptic (ε), show the existence of strong chaotic motion, provided that the semi major axis is near a critical value. As a consequence, large increase of eccentricities occur and the satellites may collide with the planet or cross possible internal orbits. Even starting from almost circular and equatorial orbits, most satellites can easily reach prohibitive values. The extension of the chaotic zone depends clearly on the value of ε, so that, previous regular regions may become chaotic, provided ε increases sufficiently.

  5. The Quasi-monochromatic ULF Wave Boundary in the Venusian Foreshock: Venus Express Observations

    NASA Astrophysics Data System (ADS)

    Shan, Lican; Mazelle, Christian; Meziane, Karim; Romanelli, Norberto; Ge, Yasong S.; Du, Aimin; Lu, Quanming; Zhang, Tielong

    2018-01-01

    The location of ultralow-frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary at Venus is sensitive to the interplanetary magnetic field (IMF) direction like the terrestrial one and appears well defined for a cone angle larger than 30°. In the Venusian foreshock, the inclination angle of the wave boundary with respect to the Sun-Venus direction increases with the IMF cone angle. We also found that for the IMF nominal direction (θBX = 36°) at Venus' orbit, the value of this inclination angle is 70°. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock. For an IMF nominal direction at Venus, the inferred bulk speed of ions traveling along this boundary is 1.07 VSW, sufficiently enough to overcome the solar wind convection. This strongly suggests that the backstreaming ions upstream of the Venusian bow shock provide the main energy source for the ULF waves.

  6. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  7. Venus spherical harmonic gravity model to degree and order 60

    NASA Technical Reports Server (NTRS)

    Konopliv, Alex S.; Sjogren, William L.

    1994-01-01

    The Magellan and Pioneer Venus Orbiter radiometric tracking data sets have been combined to produce a 60th degree and order spherical harmonic gravity field. The Magellan data include the high-precision X-band gravity tracking from September 1992 to May 1993 and post-aerobraking data up to January 5, 1994. Gravity models are presented from the application of Kaula's power rule for Venus and an alternative a priori method using surface accelerations. Results are given as vertical gravity acceleration at the reference surface, geoid, vertical Bouguer, and vertical isostatic maps with errors for the vertical gravity and geoid maps included. Correlation of the gravity with topography for the different models is also discussed.

  8. Advancing Venus Geophysics with the NF4 VOX Gravity Investigation.

    NASA Astrophysics Data System (ADS)

    Iess, L.; Mazarico, E.; Andrews-Hanna, J. C.; De Marchi, F.; Di Achille, G.; Di Benedetto, M.; Smrekar, S. E.

    2017-12-01

    The Venus Origins Explorer is a JPL-led New Frontiers 4 mission proposal to Venus to answer critical questions about the origin and evolution of Venus. Venus stands out among other planets as Earth's twin planet, and is a natural target to better understand our own planet's place, in our own Solar System but also among the ever-increasing number of exoplanetary systems. The VOX radio science investigation will make use of an innovative Ka-band transponder provided by the Italian Space Agency (ASI) to map the global gravity field of Venus to much finer resolution and accuracy than the current knowledge, based on the NASA Magellan mission. We will present the results of comprehensive simulations performed with the NASA GSFC orbit determination and geodetic parameter estimation software `GEODYN', based on a realistic mission scenario, tracking schedule, and high-fidelity Doppler tracking noise model. We will show how the achieved resolution and accuracy help fulfill the geophysical goals of the VOX mission, in particular through the mapping of subsurface crustal density or thickness variations that will inform the composition and origin of the tesserae and help ascertain the heat loss and importance of tectonism and subduction.

  9. High-resolution gravity model of Venus

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  10. Ionosphere of Venus - First observations of day-night variations of the ion composition

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Cloutier, P. A.; Daniell, R. E., Jr.; Donahue, T. M.

    1979-01-01

    Preliminary observations of day-night variations in the ion composition of the ionosphere of Venus, obtained by the Pioneer Venus Orbiter ion mass spectrometer experiment, are reported. A remarkable abundance and extent of ionization in the deep regions of the nightside ionosphere was observed, in spite of the long Venus night. A comparison of dayside and nightside ion distributions reveals a nightside composition similar in several respects to that of the dayside, with the ions O(+) and O2(+) forming the nightside F 2 and F 1 regions, respectively, as in the dayside. Important differences include a greater abundance of low-latitude ionization in the nightside, a significant increase of H(+) and NO(+) ions with increasing solar zenith angle, and extreme dynamic variability of the nightside region above 160 km. Ion composition data support the view that the nightside ionosphere can be maintained by the transport of ionization from the dayside.

  11. Variations in plasma wave intensity with distance along the electron foreshock boundary at Venus

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1991-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. Wave intensity is analyzed as a function of distance along the electron foreshock boundary. It is found that the peak wave intensity may increase along the foreshock boundary from the tangent point to a maximum value at several Venus radii, then decrease in intensity with subsequent increase in distance. These observations could be associated with the instability process: the instability of the distribution function increasing with distance from the tangent point to saturation at the peak. Thermalization of the beam for distances beyond this point could reduce the distribution function instability resulting in weaker wave signatures.

  12. A seven-month solar cycle observed with the Langmuir probe on Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wolff, C. L.

    1989-01-01

    Data collected by the Langmuir probe aboard the Pioneer Venus orbiter (PVO) over the years 1979 though 1987 were normalized to remove the long-period 11-year solar maximum to minimum trend and were analyzed for periodicity. Results yield evidence for the existence of an approximately 7-month solar cycle, which was also observed from SME Lyman alpha and 2800-MHz radio flux measurements carried out from an earth-based platform. This coincidence suggests that the cycle is an intrinsic periodicity in the solar output. The cycle has a frequency independent of the orbital frequency of the PVO and is distinct from a 'rotating beacon' cycle whose period depends on the orbital motion of the PVO about the sun. The second most dominant cycle discovered was a 5-month period. Results of an oscillation model of solar periodicity indicate that the 7-month and 5-month cycles are caused by long-lived flux enhancements from nonlinear interactions of global oscillation modes in the sun's convective envelope (r modes) and radiative interior (g modes).

  13. VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution

    NASA Astrophysics Data System (ADS)

    Glaze, L. S.; Garvin, J. B.

    2017-12-01

    Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental chemistry measurements, including depth profiles through the weathering rind and subsurface, and the first ever direct mineralogy measurements on the Venus surface. VICI's payloads build on the success of the Mars Science Laboratory (MSL) by carrying the same instrumentation that has delivered high-impact science results on Mars.

  14. An Assessment of Aerocapture and Applications to Future Missions to Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Beauchamp, P. M.; Spilker, T. R.

    2017-12-01

    Our investigation examined the current state of readiness of aerocapture at several destinations of interest, including Uranus and Neptune, to identify what technologies are needed, and to determine if a technology demonstration mission is required, prior to the first use of aerocapture for a science mission. The study team concluded that the current state of readiness is destination dependent, with aerocaptured missions feasible at Venus, Mars, and Titan with current technologies. The use of aerocapture for orbit insertion at the ice giant planets Uranus and Neptune requires at least additional study to assess the expected performance of new guidance, navigation, and control algorithms, and possible development of new hardware, such as a mid-L/D entry vehicle shape or new thermal protection system materials. A variety of near-term activities could contribute to risk reduction for missions proposing use of aerocapture, but a system-level technology demonstration mission is not deemed necessary before the use of aerocapture for a NASA science mission.

  15. Fugitives from the Hungaria region: Close encounters and impacts with terrestrial planets

    NASA Astrophysics Data System (ADS)

    Galiazzo, M. A.; Bazsó, Á.; Dvorak, R.

    2013-08-01

    Hungaria asteroids, whose orbits occupy the region in element space between 1.78

  16. European Venus Explorer: An in-situ mission to Venus using a balloon platform

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Korablev, O.; Imamura, T.; Baines, K. H.; Wilson, C. F.; Titov, D. V.; Aplin, K. L.; Balint, T.; Blamont, J. E.; Cochrane, C. G.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Leitner, J. J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S. V.; Rodin, A.; Whiteway, J. A.; Zasova, L. V.; the EVE Team

    2009-07-01

    Planetary balloons have a long history already. A small super-pressure balloon was flown in the atmosphere of Venus in the eighties by the Russian-French VEGA mission. For this mission, CNES developed and fully tested a 9 m diameter super-pressure balloon, but finally replaced it by a smaller one due to mass constraints (when it was decided to send Vega to Halley's Comet). Furthermore, several kinds of balloons have been proposed for planetary exploration [Blamont, J., in: Maran, S.P. (Ed.), The Astronomy and Astrophysics Encyclopedia. Cambridge University Press, p. 494, 1991]. A Mars balloon has been studied for the Mars-94 Russian-French mission, which was finally cancelled. Mars and Venus balloons have also been studied and ground tested at JPL, and a low atmosphere Venus balloon is presently under development at JAXA (the Japanese Space Agency). Balloons have been identified as a key element in an ongoing Flagship class mission study at NASA, with an assumed launch date between 2020 and 2025. Recently, it was proposed by a group of scientists, under European leadership, to use a balloon to characterize - by in-situ measurements - the evolution, composition and dynamics of the Venus atmosphere. This balloon is part of a mission called EVE (European Venus Explorer), which has been proposed in response to the ESA AO for the first slice of the Cosmic Vision program by a wide international consortium including Europe, Russia, Japan and USA. The EVE architecture consists of one balloon platform floating at an altitude of 50-60 km, one short lived probe provided by Russia, and an orbiter with a polar orbit to relay data from the balloon and probe, and to perform remote sensing science observations. The balloon type preferred for scientific goals is one, which would oscillate in altitude through the cloud deck. To achieve this flight profile, the balloon envelope would contain a phase change fluid. While this proposal was not selected for the first slice of Cosmic Vision missions, it was ranked first among the remaining concepts within the field of solar system science.

  17. Investigating the Concept of Using Airglow Measurements to Detect Seismicity on Venus

    NASA Astrophysics Data System (ADS)

    Kenda, Balthasar; Lognonné, Philippe; Komjathy, Attila; Banerdt, Bruce; Cutts, Jim; Soret, Lauriane; Jackson, Jennifer

    2017-04-01

    The internal structure and dynamics of Venus are poorly constrained by observations. Seismology is among the best candidates for probing the interior of the planet, and it would also provide indispensable information about the present-day tectonic activity of Venus. However, due to the extreme surface temperatures, a long-duration seismic station seems to be beyond the technical capabilities achievable today. Nonetheless, the thick and dense atmosphere, which strongly couples with the ground, gives rise to the attractive option of detecting seismic waves from quakes within the atmosphere itself (Garcia et al., 2005, Lognonné and Johnson, 2007, 2015) using in-situ or remote-sensing measurements (Cutts et al., 2015). Here, we consider the bright airglow emission of O2 at 1.27 μm on the nightside of Venus and we model the intensity fluctuations induced by Venus quakes. Synthetic seismograms in the airglow layer, at 90-120 km altitude, are computed using normal-mode summation for a fully coupled solid planet-atmosphere system, including the effects of molecular relaxation of CO2 and a radiative boundary condition at the top of the atmosphere (Lognonné et al., 2016). The corresponding variations in the volumetric emission rate, calculated for realistic background intensities of the airglow (Soret et al., 2012), are then vertically integrated to reproduce the signals that would be seen from orbit. The noise level of existing airglow cameras suggests that the Rayleigh waves generated by quakes of magnitude 5 and above occurring on the nightside of the planet may be detectable up to about 60° in epicentral distance. A significant advantage of this technique is that a single orbiting camera may be sufficient to serve the role of a seismic network. By identifying and tracking the waves it is indeed possible to locate the source, estimate the magnitude and measure the horizontal surface-wave propagation velocities on Venus. In particular, it is expected that this would significantly constrain seismicity on Venus and, through the analysis of Rayleigh-wave dispersion, the structure of the crust and upper mantle.

  18. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus' Polar Region

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Marcq, E.; Tsang, C.; Mueller, N. T.; Kappel, D.; Helbert, J.; Dyar, M. D.; Smrekar, S. E.

    2017-12-01

    Venus' climate evolution is driven by the energy balance of its global cloud layers. Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012). Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013). The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA's Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of 10 km. Circular polar orbit geometry would provide an unprecedented study of both polar regions within the same mission. In addition, VEM's pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals. Tracking lower cloud motions as proxies for wind measurements at high spatial resolutions will greatly benefit modeling of the vortice's physics, as well as wave-generating dynamical instabilities (Garate-Lopez et al. 2015).

  19. Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Khatuntsev, I. V.; Patsaeva, M. V.; Titov, D. V.; Ignatiev, N. I.; Turin, A. V.; Fedorova, A. A.; Markiewicz, W. J.

    2017-11-01

    For more than 8 years the Venus Monitoring Camera (VMC) onboard the Venus Express orbiter performed continuous imaging of the Venus cloud layer in UV, visible and near-IR filters. We applied the correlation approach to sequences of the near-IR images at 965 nm to track cloud features and determine the wind field in the middle and lower cloud (49-57 km). From the VMC images that spanned from December of 2006 through August of 2013 we derived zonal and meridional components of the wind field. In low-to-middle latitudes (5-65°S) the velocity of the retrograde zonal wind was found to be 68-70 m/s. The meridional wind velocity slowly decreases from peak value of +5.8 ± 1.2 m/s at 15°S to 0 at 65-70°S. The mean meridional speed has a positive sign at 5-65°S suggesting equatorward flow. This result, together with the earlier measurements of the poleward flow at the cloud tops, indicates the presence of a closed Hadley cell in the altitude range 55-65 km. Long-term variations of zonal and meridional velocity components were found during 1,200 Earth days of observation. At 20° ± 5°S the zonal wind speed increases from -67.18 ± 1.81 m/s to -77.30 ± 2.49 m/s. The meridional wind gradually increases from +1.30 ± 1.82 m/s to +8.53 ± 2.14 m/s. Following Bertaux et al. (2016) we attribute this long-term trend to the influence from the surface topography on the dynamical process in the atmosphere via the upward propagation of gravity waves that became apparent in the VMC observations due to slow drift of the Venus Express orbit over Aphrodite Terra.

  20. Venusians: the Planet Venus in the 18th-Century Extraterrestrial Life Debate

    NASA Astrophysics Data System (ADS)

    Duner, David

    2013-05-01

    In the seventeenth and eighteenth centuries it became possible to believe in the existence of life on other planets on scientific grounds. Once the Earth was no longer the center of the universe according to Copernicus, once Galileo had aimed his telescope at the Moon and found it a rough globe with mountains and seas, the assumption of life on other planets became much less far-fetched. In general there were no actual differences between Earth and Venus, since both planets orbited the Sun, were of similar size, and possessed mountains and an atmosphere. If there is life on Earth, one may ponder why it could not also exist on Venus. In the extraterrestrial life debate of the seventeenth and eighteenth centuries, the Moon, our closest celestial body, was the prime candidate for life on other worlds, although a number of scientists and scholars also speculated about life on Venus and on other planets, both within our solar system and beyond its frontiers. This chapter discusses the arguments for life on Venus and those scientific findings that were used to support them, which were based in particular on assumptions and claims that both mountains and an atmosphere had been found on Venus. The transits of Venus in the 1760s became especially important for the notion that life could thrive on Venus. Here, I detect two significant cognitive processes that were at work in the search for life on Venus, i.e., analogical reasoning and epistemic perception, while analogies and interpretations of sensory impressions based on prior knowledge played an important role in astrobiological theories.

  1. Exploring the interior structure of Venus with balloons and satellites

    NASA Astrophysics Data System (ADS)

    Mimoun, David; Cutts, Jim; Stevenson, Dave

    2015-04-01

    Although present daily in our sky as the brightest object at dusk and dawn, many characteristics of Venus remains a mystery. Its dense atmosphere hides the surface from orbital viewing, and the extreme conditions experienced at its surface (460°C, almost 100 bar of pressure at the surface) pose a formidable challenge to the sustained survival and operation of planetary landers. Despite their sharply contrasting atmospheres, Venus is not very different from Earth in size, its composition should be very similar, its orbit is very close to be circular and it is only a little closer to the Sun ( 0.7 A.U). So what are the processes that turned the twin sister of our planet into such a different object? And how can we better understand the processes that have shaped the terrestrial planets, and to understand their formation history? With its harsh surface environment, conventional seismology on Venus, requiring seismometers to be deployed at the surface for months or even years seems impractical. In June 2014, the Keck Institute for Space Studies (KISS) at the California Institute of Technology sponsored a one-week workshop with 30 specialists in the key techniques and technologies relevant to investigating Venus's interior structure focusing on alternative approaches to seismology . As the vertical component of surface motion on Venus is very efficiently coupled into the atmosphere as infrasonic waves, especially at low frequency, several alternative approaches to detecting seismic events can be considered. Seismo-acoustic waves propagate upwards producing pressure fluctuations in the middle atmosphere of Venus and the seismic wave energy is ultimately dissipated by local heating, ionospheric perturbation, or airglow. These atmospheric perturbations can therefore be recorded either in-situ (with a barometer network, deployed on balloons floating in the cloud layer near 55 km) or remotely via optical imaging or electromagnetic sounding deployed on a spacecraft. A report, describing the findings of a workshop, sponsored by the Keck Institute of Space Studies (KISS), concludes that seismic investigations can be successfully conducted from all three vantage points - surface, middle atmosphere and space; these three vantage points being complementary in the information they provide. These novel techniques open a new window for the exploration of the interior structure of Venus, and enables a roadmap leading to a dedicated geophysical mission to our sister planet.

  2. The Venera-D Mission Concept: Evaluation by a Joint Science Definition Team of a Means for the Comprehensive Scientific Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Senske, D.; Zasova, L. V.; Economou, T.; Eismont, N.; Esposito, L. W.; Gerasimov, M.; Ignatiev, N. I.; Ivanov, M.; Jessup, K. L.; Korablev, O.; Tibor, K.; Limaye, S. S.; Martynov, A.; Ocampo, A.

    2016-12-01

    Located in the same part of the solar system and formed out of the same protoplanetary material, Venus is Earth's twin. Although these siblings have nearly the same size, mass, and density, the climate of Venus, fueled by a massive CO2 atmosphere has an enormous greenhouse effect with a surface pressure of 90 atm. and a temperature of 470°C. Shrouded in clouds of sulfuric acid, the surface lacks water and has been sculpted by volcanism and deformed by faulting and folding forming rifts and belts of mountains. The lack of an intrinsic magnetic field suggests the planet's interior structure may be different than that of the earth. The study of Venus will aid in better understanding our own world and the possible future evolution of our climate. In particular, the instability of our climate and the increase in amount of greenhouse gases-can our climate be slowly going in Venus' direction? Despite the advancement in understanding achieved from previous and ongoing missions, the key questions concerning the origin and evolution of Venus and its climate cannot be solved by observations from orbit alone. Direct measurements in the atmosphere and on the surface are required. In this regard, a Joint Science Definition Team (JSDT) chartered by NASA and IKI/Roscosmos has been studying a concept for the comprehensive investigation of Venus that would consist of an orbiter (>3 yr. of operation) and a lander (2 hrs. on the surface). The scientific goals of the concept are tied closely to the key objectives established by VEXAG and the NASA Planetary Decadal Survey and include: investigation of the thermal structure and chemical composition of the atmosphere and clouds, abundances and isotopic ratios of the light and noble gases; study of the thermal balance, dynamics, and super-rotation of the atmosphere; determination of the surface mineralogy and elemental composition including key radioactive isotopes; study of potential current volcanic and electrical activity; and study of the plasma environment, magnetosphere, and atmospheric escape. The JSDT is also evaluating technology needs and the potential for innovative flight element augmentations including, free flying aerial platforms, sub-satellites, and drop sondes. The status of the JSDT activity and the context of the mission within past and current Venus exploration will be reported.

  3. Initial observations of the pioneer venus orbiter solar wind plasma experiment.

    PubMed

    Wolfe, J; Intriligator, D S; Mihalov, J; Collard, H; McKibbin, D; Whitten, R; Barnes, A

    1979-02-23

    Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.

  4. Foreshock ULF wave boundary at Venus

    NASA Astrophysics Data System (ADS)

    Shan, L.; Mazelle, C. X.; Meziane, K.; Romanelli, N. J.; Ge, Y.; Du, A.; Zhang, T.

    2017-12-01

    Foreshock ULF waves are a significant physical phenomenon on the plasma environment for terrestrial planets. The occurrence of ULF waves, associated with backstreaming ions and accelerated at shocks, implies the conditions and properties of the shock and its foreshock. The location of ultra-low frequency (ULF) quasi-monochromatic wave onset upstream of Venus bow shock is explored using Venus Express magnetic field data. We report the existence of a spatial foreshock boundary behind which ULF waves are present. We have found that the ULF wave boundary is sensitive to the interplanetary magnetic field (IMF) direction and appears well defined for a cone angle larger than 30o. In the Venusian foreshock, the slope of the wave boundary with respect to the Sun-Venus direction increase with IMF cone angle. We also found that for the IMF nominal direction at Venus' orbit, the boundary makes an inclination of 70o. Moreover, we have found that the inferred velocity of an ion traveling along the ULF boundary is in a qualitative agreement with a quasi-adiabatic reflection of a portion of the solar wind at the bow shock.

  5. Pioneer Venus Orbiter planar retarding potential analyzer plasma experiment

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.

    1980-01-01

    The retarding potential analyzer (RPA) on the Pioneer Venus Orbiter Mission measures most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. Several functions not previously used in RPA's were developed and incorporated into this instrument to accomplish these measurements on a spinning spacecraft with a small bit rate. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection.

  6. Venus gravity and topography: 60th degree and order model

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.

    1993-01-01

    We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.

  7. Extended atmospheres of outer planet satellites and comets

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1984-01-01

    The cometary hydrogen particle-trajectory model was used successfully to analyze observations of Comet P/Encke. The Pioneer Venus Orbiter Ultraviolet Spectrometer observed the comet at 1216A (hydrogen Lyman-alpha) on 15 April 1984, when the comet was .58 AU from the Sun and 1.02 AU from Venus. The analysis implies a production rate at .58 AU of 3.3 x 10 to the 28th power/sec of the water molecules which photodissociate to produce the observed hydrogen.

  8. Venus gravity anomalies and their correlations with topography

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  9. Innovative Seismological Techniques for Investigating the Interior Structure of Venus

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.; Cutts, J. A.; Mimoun, D.

    2014-12-01

    The formation, evolution and structure of Venus remain a mystery more than fifty years after the first visit by a robotic spacecraft. Radar images have revealed a surface that is much younger than those of the Moon, Mercury and Mars as well as a variety of enigmatic volcanic and tectonic features quite unlike those generated by plate tectonics on Earth. To understand how Venus works as a planet it is necessary to probe the interior of Venus. To accomplish this seismology must play a key role. Conventional seismology employs sensors in contact with the planetary surface but for Venus theses sensors must tolerate the Venus environment (460oC and 90 bars) for up to a year. The dense atmosphere of Venus, which efficiently couples seismic energy into the atmosphere as infrasonic waves, enables an alternative: detection of infrasonic waves in the upper atmosphere using either high altitude balloons or orbiting spacecraft. In June 2014, the Keck Institute for Space Studies (KISS) at the California Institute of Technology sponsored a one week workshop with 30 specialists in the key techniques and technologies that can bring these technique to readiness. In this paper, we describe the key synergies with earth science drawing on methods from terrestrial seismology and oceanography and identify key technical issues that need to be solved as well as important precursor measurements that should be made.

  10. Microwave absorptivity by sulfuric acid in the Venus atmosphere derived from the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Oschlisniok, J.; Pätzold, M.; Häusler, B.; Tellmann, S.; Bird, M.; Andert, T.; Remus, S.; Krüger, C.; Mattei, R.

    2011-10-01

    Earth's nearest planetary neighbour Venus is shrouded within a roughly 22 km thick three-layered cloud deck, which is located approximately 48 km above the surface and extends to an altitude of about 70 km. The clouds are mostly composed of sulfuric acid. The latter is responsible for a strong absorption of radio signals at microwaves, which is observed in radio occultation experiments. The absorption of the radio signal intensity is used to determine the abundance of H2SO4. This way a detailed study of the H2SO4 height distribution within the cloud deck is possible. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa onboard probes the atmosphere with radio signals at 3.4 cm (X-Band) and 13 cm (S-Band). Absorptivity profiles of the 3.4 cm radio wave and the resulting vertical sulfuric acid profiles in the cloud region of Venus' atmosphere are presented. The three-layered structure and a distinct latitudinal variation of H2SO4 are observed. Convective atmospheric motions within the equatorial latitudes, which transport absorbing material from lower to higher altitudes, are clearly visible. Results of the Venus Monitoring Camera (VMC) and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) are compared with the VeRa results.

  11. Global view of Venus from Magellan, Pioneer, and Venera data

    NASA Image and Video Library

    1991-10-29

    This global view of Venus, centered at 270 degrees east longitude, is a compilation of data from several sources. Magellan synthetic aperature radar mosaics from the first cycle of Magellan mapping are mapped onto a computer-simulated globe to create the image. Data gaps are filled with Pioneer-Venus orbiter data, or a constant mid-range value. Simulated color is used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the Jet Propulsion Laboratory (JPL) Multimission Image Processing Laboratory and is a single frame from a video released at the JPL news conference, 10-29-91. View provided by JPL with alternate number P-39225 MGN81.

  12. The cartography of Venus with Magellan data

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Morgan, H. F.; Russell, J. F.

    1993-01-01

    Maps of Venus based on Magellan data are being compiled at 1:50,000,000, 1:5,000,000 and 1:1,500,000 scales. Topographic contour lines based on radar altimetry data are overprinted on the image maps, along with feature nomenclature. Map controls are based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control for bodies where framing cameras were used, is not feasible with the radar images of Venus. Preliminary synthetic aperture radar (SAR) image maps have some data gaps and cosmetic inconsistencies, which will be corrected on final compilations. Eventual revision of geodetic controls and of the adopted Venusian spin-axis location will result in geometric adjustments, particularly on large-scale maps.

  13. Characterization of SO2 abundance in Venus' night-side mesosphere from SPICAV/VEX observations

    NASA Astrophysics Data System (ADS)

    Belyaev, Denis; Fedorova, Anna; Piccialli, Arianna; Marcq, Emmanuel; Montmessin, Franck; Bertaux, Jean-Loup; Evdokimova, Daria

    Sulfur dioxide (SO _{2}) is a key component of Venus’ atmosphere since the planet is totally covered by H _{2}SO _{4} droplets clouds at altitudes 50-70 km. Any significant change in the SO _{x} oxides above and within the clouds affects the photochemistry in the mesosphere (70-120 km). Recent continuous observations from the Venus Express orbiter (Belyaev et al., 2012; Marcq et al., 2013) and ground-based telescopes (Sandor et al., 2010; Krasnopolsky, 2010; Encrenaz et al., 2012) showed high variability of SO _{2} abundance with years, diurnal time and latitude on the day-side and terminators (commonly from 20 to 500 ppbv above the clouds). In the night-side mesosphere SO _{2} is not photo dissociative but, so far, its behavior has never been explored in details. In this paper we present first results from sulfur dioxide observations made by SPICAV UV spectrometer onboard Venus Express orbiter in regime of stellar occultation (Bertaux et al., 2007). In this mode the instrument observes night-side mesosphere and can register SO _{2} absorption bands in 190-220 nm and CO _{2} bands in 120-200 nm at altitudes from 85 to 110 km (spectral resolution is ˜2 nm). As a result, vertical distribution of SO _{2} and CO _{2} concentrations has been retrieved in observation period from June 2006 to April 2012, at latitude range 60(°) S-60(°) N and Venus local time 20:00-04:00. On the average, mixing ratio of sulfur dioxide fluctuates around ˜100 ppbv along altitude range 90-100 km. Our work is supported by the Program No.22 of RAS and grant of the Russian Government to MIPT. References: Belyaev D. et al., 2012. Vertical profiling of SO _{2} and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus 217, 740-751. Bertaux J.-L. et al., 2007. SPICAV on Venus Express: three spectrometers to study the global structure and composition of Venus atmosphere. Planet. Space Sci. 55, 1673-1700. Encrenaz T. et al., 2012. HDO and SO _{2} thermal mapping on Venus: evidence for strong SO _{2} variability. A&A 543, A153. Krasnopolsky V.A., 2010. Spatially-resolved high-resolution spectroscopy of Venus. 2. Variations of HDO, OCS, and SO _{2} at the cloud tops. Icarus 209, 314-322. Marcq E. et al., 2013. Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nature Geoscience, vol. 6, 25-28. DOI: 10.1038/NGEO1650. Sandor B.J. et al., 2010. Sulfur chemistry in the Venus mesosphere from SO _{2} and SO microwave spectra. Icarus 208, 49-60.

  14. Aerocapture Performance Analysis of A Venus Exploration Mission

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Westhelle, Carlos H.

    2005-01-01

    A performance analysis of a Discovery Class Venus Exploration Mission in which aerocapture is used to capture a spacecraft into a 300km polar orbit for a two year science mission has been conducted to quantify its performance. A preliminary performance assessment determined that a high heritage 70 sphere-cone rigid aeroshell with a 0.25 lift to drag ratio has adequate control authority to provide an entry flight path angle corridor large enough for the mission s aerocapture maneuver. A 114 kilograms per square meter ballistic coefficient reference vehicle was developed from the science requirements and the preliminary assessment s heating indicators and deceleration loads. Performance analyses were conducted for the reference vehicle and for sensitivity studies on vehicle ballistic coefficient and maximum bank rate. The performance analyses used a high fidelity flight simulation within a Monte Carlo executive to define the aerocapture heating environment and deceleration loads and to determine mission success statistics. The simulation utilized the Program to Optimize Simulated Trajectories (POST) that was modified to include Venus specific atmospheric and planet models, aerodynamic characteristics, and interplanetary trajectory models. In addition to Venus specific models, an autonomous guidance system, HYPAS, and a pseudo flight controller were incorporated in the simulation. The Monte Carlo analyses incorporated a reference set of approach trajectory delivery errors, aerodynamic uncertainties, and atmospheric density variations. The reference performance analysis determined the reference vehicle achieves 100% successful capture and has a 99.87% probability of attaining the science orbit with a 90 meters per second delta V budget for post aerocapture orbital adjustments. A ballistic coefficient trade study conducted with reference uncertainties determined that the 0.25 L/D vehicle can achieve 100% successful capture with a ballistic coefficient of 228 kilograms per square meter and that the increased ballistic coefficient increases post aerocapture V budget to 134 meters per second for a 99.87% probability of attaining the science orbit. A trade study on vehicle bank rate determined that the 0.25 L/D vehicle can achieve 100% successful capture when the maximum bank rate is decreased from 30 deg/s to 20 deg/s. The decreased bank rate increases post aerocapture delta V budget to 102 meters per second for a 99.87% probability of attaining the science orbit.

  15. Robotic Technology for Exploration of Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    Venus, the "greenhouse planet", is a scientifically fascinating place. A huge number of important scientific questions remain to be answered. Venus is sometimes called Earth's "sister planet" due to the fact that it is closest to the Earth in distance and similar to Earth in size. Despite its similarity to Earth, however, the climate of Venus is vastly different from Earth's. Understanding the atmosphere, climate, geology, and history of Venus could shed considerable light on our understanding of our own home planet. The surface of Venus is a hostile environment, with an atmosperic pressure of over 90 bar of carbon dioxide, temperature of 450 C, and shrouded in sulphuric-acid clouds. Venus has been explored by a number of missions from Earth, including the Russian Venera missions which landed probes on the surface, the American Pioneer missions which flew both orbiters and atmospheric probes to Venus, the Russian "Vega" mission, which floated balloons in the atmosphere of Venus, and most recently the American Magellan mission which mapped the surface by radar imaging. While these missions have answered basic questions about Venus, telling us the surface temperature and pressure, the elevations and topography of the continents, and the composition of the atmosphere and clouds, scientific mysteries still abound. Venus is of considerable interest to terrestrial atmospheric science, since of all the planets in the solar system, it is the closest analogue to the Earth in terms of atmosphere. Yet Venus' atmosphere is an example of "runaway greenhouse effect." Understanding the history and the dynamics of Venus' atmosphere could tell us considerable insight about the workings of the atmosphere of the Earth. It also has some interest to astrobiology-- could life have existed on Venus in an earlier, pre-greenhouse-effect phase? Could life still be possible in the temperate middle-atmosphere of Venus? The geology of Venus also has interest in the study of Earth. surface robot will require new technologies; specifically, it will require electronics, scientific instruments, power supplies, and mechanical linkages designed to operate at a temperature above 450 C-hot enough to melt the solder on a standard electronic circuit board. This will require devices made from advanced semiconductor materials, such as silicon carbide, or even new approaches, such as micro-vacuum tube electronics. Such materials are now being developed in the laboratory.

  16. An overview on Bernese projects in planetary geodesy and deep-space orbit determination

    NASA Astrophysics Data System (ADS)

    Bertone, S.; Jaeggi, A.; Arnold, D.; Girardin, V.; Hosseini, A.; Desprats, W.; Inamdar, J.

    2017-12-01

    The Astronomical Institute of the University of Bern (AIUB) is still a rather new player in the field of planetary geodesy and orbit determination using deep-space radio-tracking data. Nevertheless, our latest developments in the in-house Bernese GNSS Software (BSW) and the experience gained with the processing of GRAIL data opened the way to many research and collaboration opportunities. In this presentation, we give an overview on our current projects and advances, as well as on our ongoing collaborations. We will present closed-loop simulations of BepiColombo Mercury Planetary Orbiter (MPO) Doppler and altimetry data, including realistic noise models. We use our newly established simulation environment in the BSW and calibration results of the BepiColombo Laser Altimeter (BELA) performed by the Space Research and Planetary Sciences division of the University of Bern. The ultimate goal of these activities is to test different realistic scenarios of the BELA in-orbit performance to improve the recovery of Mercury geodesy and geophysical parameters. We recently started to work on the combined re-processing of all historical missions to Venus to improve their orbits and hence Venus gravity field using new available data (e.g., new atmospheric models), processing tools and techniques and computational power. We shall present our latest advances in processing Magellan data and towards a rigorous solution for the Venus gravity field, e.g., avoiding a step-wise processing as used by Konopliv et al. (1999). The AIUB is currently involved in the Joint Europa Mission proposal. In this framework we present our results for a realistic orbit and gravity field recovery based on simulated Doppler radio-tracking data from the planned scenario of a three months low altitude polar orbit around Europa. We describe our efforts in adapting our simulation tools to the peculiar environment of the Jovian satellite system. Eventually we briefly present the highlights of our latest results in Moon geodesy, including our latest gravity field and tidal parameters solutions from GRAIL data. A separate presentation will be dedicated to detail our Moon-related activities within this session.

  17. Deuterium on Venus: Observations from Earth

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, C.; Bezard, B.; Owen, T.; Crisp, D.; Maillard, J.-P.

    1991-01-01

    In view of the importance of the deuterium-to-hydrogen ratio in understanding the evolutionary scenario of planetary atmospheres and its relationship to understanding the evolution of our own Earth, we undertook a series of observations designed to resolve previous observational conflicts. We observed the dark side of Venus in the 2.3 micron spectral region in search of both H2O and HDO, which would provide us with the D/H ratio in Venus' atmosphere. We identified a large number of molecular lines in the region, belonging to both molecules, and, using synthetic spectral techniques, obtained mixing ratios of 34 plus or minus 10 ppm and 1.3 plus or minus 0.2 ppm for H2O and HDO, respectively. These mixing ratios yield a D/H ratio for Venus of D/H equals 1.9 plus or minus 0.6 times 10 (exp 12) and 120 plus or minus 40 times the telluric ratio. Although the detailed interpretation is difficult, our observations confirm that the Pioneer Venus Orbiter results and establish that indeed Venus had a period in its early history in which it was very wet, perhaps not unlike the early wet period that seems to have been present on Mars, and that, in contrast to Earth, lost much of its water over geologic time.

  18. Sampling the Cloudtop Region on Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Ashish, Kumar; Alam, Mofeez; Landis, Geoffrey; Widemann, Thomas; Kremic, Tibor

    2014-05-01

    The details of the cloud structure on Venus continue to be elusive. One of the main questions is the nature and identity of the ultraviolet absorber(s). Remote sensing observations from Venus Express have provided much more information about the ubiquitous cloud cover on Venus from both reflected and emitted radiation from Venus Monitoring Camera (VMC) and Visible InfraRed Imaging Spectrometer (VIRTIS) observations. Previously, only the Pioneer Venus Large Probe has measured the size distribution of the cloud particles, and other probes have measured the bulk optical properties of the cloud cover. However, the direct sampling of the clouds has been possible only below about 62 km, whereas the recent Venus Express observations indicate that the cloud tops extend from about 75 km in equatorial region to about 67 km in polar regions. To sample the cloud top region of Venus, other platforms are required. An unmanned aerial vehicle (UAV) has been proposed previously (Landis et al., 2002). Another that is being looked into, is a semi-buoyant aerial vehicle that can be powered using solar cells and equipped with instruments to not only sample the cloud particles, but also to make key atmospheric measurements - e.g. atmospheric composition including isotopic abundances of noble and other gases, winds and turbulence, deposition of solar and infrared radiation, electrical activity. The conceptual design of such a vehicle can carry a much more massive payload than any other platform, and can be controlled to sample different altitudes and day and night hemispheres. Thus, detailed observations of the surface using a miniature Synthetic Aperture Radar are possible. Data relay to Earth will need an orbiter, preferably in a low inclination orbit, depending on the latitude region selected for emphasis. Since the vehicle has a large surface area, thermal loads on entry are low, enabling deployment without the use of an aeroshell. Flight characteristics of such a vehicle have been studied (Alam et al., 2014; Kumar et al., 2014) Acknowledgements Mr. Ashish Kumar and Mr. Mofeez Alam were supported by the Indo US Forum for Science and Technology (IUSSTF) as S.N. Bose Scholars at the University of Wisconsin, Madison as Summer interns. We are grateful for the guidance support provided by Dr. Kristen Griffin and Dr. Daniel Sokol, Northrop Grumman Aerospace Corporation. References Alam, M., K. Ashish, and S.S. Limaye. Aerodynamic Analysis of BlimPlane- a Conceptual Hybrid UAV for Venus Exploration. Accepted for publication, 2014 IEEE Aerospace Conference, Big Sky, Montana, 1-8 March 2014. Ashish, K., M. Alam, and S.S. Limaye, Flight Analysis of a Venus Atmospheric Mobile Platform. Accepted for publication, 2014 IEEE Aerospace Conference, Big Sky, Montana, 1-8 March 2014. Landis, G.A., A. Colozza, C.M. LaMarre, Atmospheric flight on Venus. NASA/TM—2002-211467, AIAA-2001-0819, June 2002

  19. Contingency study for the third international Sun-Earth Explorer (ISEE-3) satellite

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    The third satellite of the international Sun-Earth Explorer program was inserted into a periodic halo orbit about L sub 1, the collinear libration point between the Sun and the Earth-Moon barycenter. A plan is presented that was developed to enable insertion into the halo orbit in case there was a large underperformance of the Delta second or third stage during the maneuver to insert the spacecraft into the transfer trajectory. After one orbit of the Earth, a maneuver would be performed near perigee to increase the energy of the orbit. A relatively small second maneuver would put the spacecraft in a transfer trajectory to the halo orbit, into which it could be inserted for a total cost within the fuel budget. Overburns (hot transfer trajectory insertions) were also studied.

  20. Magnetic Field Control of the Entry into the Ionosphere of Whistler-Mode Waves Produced by Venus Lightning

    NASA Astrophysics Data System (ADS)

    Russell, Christopher; Wei, Hanying; Zhang, Tielong

    The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.

  1. Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Arney, G.; Meadows, V. S.; Lincowski, A.

    2017-01-01

    The Venus atmosphere is extremely complex, and because of this the spectrum of Earths sister planet is likewise intricate and a challenge to model accurately. However, accurate modeling of Venus spectrum opens up multiple opportunities to better understand the planet next door, and even for understanding Venus-like planets beyond our solar system. Near-infrared (1-2.5 um, NIR) spectral windows observable on the Venus nigthside present the opportunity to probe beneath the Venusian cloud deck and measure thermal emission from the surface and lower atmosphere remotely from Earth or from orbit. These nigthside spectral windows were discovered by Allen and Crawford (1984) and have since been used measure trace gas abundances in the Venus lower atmosphere (less than 45 km), map surface emissivity varisions, and measure properties of the lower cloud deck. These windows sample radiation from below the cloud base at roughly 45 km, and pressures in this region range from roughly Earthlike (approx. 1 bar) up to 90 bars at the surface. Temperatures in this region are high: they range from about 400 K at the base of the cloud deck up to about 740 K at the surface. This high temperature and pressure presents several challenges to modelers attempting radiative transfer simulations of this region of the atmosphere, which we will review. Venus is also important to spectrally model to predict the remote observables of Venus-like exoplanets in anticipation of data from future observatories. Venus-like planets are likely one of the most common types of terrestrial planets and so simulations of them are valuable for planning observatory and detector properties of future telescopes being designed, as well as predicting the types of observations required to characterize them.

  2. Future Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay

    Venus has been the target of exploration for half a century, before the successful Mariner 2 fly-by in December 1962. The decade after that was marked by growing sophistication in the instruments and spacecraft. During the second decade of Venus exploration (1972 - 1981) the instruments and spacecraft had advanced to make the first detailed survey of the planet and image the surface. During the third decade Venus was explored with more advanced instruments such as synthetic aperture radar and by balloons - the only balloons in another atmosphere ever flown till present. Then came a long pause until 2005 when ESA launched Venus Express, which is still orbiting the planet and returning data. The nearly two-dozen missions flown to Venus have painted a puzzling picture of Venus - we still do not have answers to some key questions. The foremost is why did Venus evolve so differently from Earth? International space agencies and scientists have been considering various approaches to exploring Venus through small and large missions. The Venus Exploration Analysis Group (NASA) has developed a Venus Exploration Roadmap and a comprehensive list of goals, objectives and investigations (www.lpi.usra.edu/vexag), but an international coordinated, comprehensive plan to explore Venus is needed. To fill this void, the COSPAR International Venus Exploration Working Group (IVEWG) has been active in fostering dialog and discussions among the space faring agencies. One small step in the future exploration of Venus is the formation of a joint Science Definition Team (SDT) (NASA and Roscosmos/IKI) for Russia’s Venera-D mission in early 2014. The team is expected to submit a report to respective agencies in early 2015. Towards identifying key surface regions and atmospheric regions of Venus, a workshop is being held in May 2014 by VEXAG to seek community input. It is likely that calls for proposals for missions will also be announced under the M class by ESA and under the Discovery Program by NASA during 2014. Given that the science questions about Venus are many - ranging from the surface and interior and extending into the atmosphere to 120 km and beyond, it is likely that there will be opportunities for other efforts to contribute to the comprehensive exploration of Venus. If undertaken in a coordinated and collaborative manner, we may make substantial progress in understanding Venus, why and/or how it evolved differently from Earth. This knowledge will help us understand Earth-like rocky planets around other stars that are being discovered at a rapid pace now.

  3. Systems design study of the Pioneer Venus spacecraft. Appendices to volume 1, sections 8-11 (part 3 of 3). [power subsystem/cost tradeoffs for Venus probe

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Power subsystem cost/weight tradeoffs are discussed for the Venus probe spacecraft. The cost estimations of power subsystem units were based upon DSCS-2, DSP, and Pioneer 10 and 11 hardware design and development and manufacturing experience. Parts count and degree of modification of existing hardware were factored into the estimate of manufacturing and design and development costs. Cost data includes sufficient quantities of units to equip probe bus and orbiter versions. It was based on the orbiter complement of equipment, but the savings in fewer slices for the probe bus balance the cost of the different probe bus battery. The preferred systems for the Thor/Delta and for the Atlas/Centaur are discussed. The weights of the candidate designs were based upon slice or tray weights for functionally equivalent circuitry measured on existing hardware such as Pioneers 10 and 11, Intelsat 3, DSCS-2, or DSP programs. Battery weights were based on measured cell weight data adjusted for case weight or off-the-shelf battery weights. The solar array weight estimate was based upon recent hardware experience on DSCS-2 and DSP arrays.

  4. Ist Merkur auf einer chaotischen, instabilen Bahn ?

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Freistetter, F.

    2001-08-01

    From different approaches we believe in the stability of our planetary system over time scales of billions of years. Since the pioneering work of J. Laskar concerning the dynamics of the inner planetary system we know that it is chaotic; this does not mean that it is unstable, but it let opened these question. It was again J. Laskar who published a study on the long term dynamics of the whole planetary system over billions of years. There he found in fact that Mercury's orbit - after some minor ``corrections'' of the initial conditions - could achieve an eccentricity of almost 1! He concludes, that this could lead - after a close approach to Venus - to an escape of the innermost planet. The results were derived with the aid of numerical integrations of the secular system, where the right hand sides were developed up to the 5(th) order in the small parameters eccentricities and inclinations. Test calculations of the equations of motions (taking into account all the Newtonian perturbations with the planets as mass points) could confirm the results partly. It is shown, that Venus cannot really throw Mercury out, but a different effect could lead to very eccentric Venus crossing orbits, where even collisions may happen.

  5. Launch window analysis in a new perspective with examples of departures from Earth to Mars

    NASA Technical Reports Server (NTRS)

    Thibodeau, J. R., III; Bond, V. R.

    1972-01-01

    Earth-departure windows are investigated for two round trip stopover missions to Mars. These are the 1981 inbound Venus swingby mission and the 1986 direct minimum-energy mission. The secular effects of planetary oblateness are used to predict the motion of the parking orbit. A procedure is developed for matching the motion of the parking orbit and the escape asymptote. Earth-departure velocity penalties, caused by orbital plane misalinement, are reduced by synchronizing the motion of the parking orbit and the escape trajectory.

  6. Orbit determination singularities in the Doppler tracking of a planetary orbiter

    NASA Technical Reports Server (NTRS)

    Wood, L. J.

    1985-01-01

    On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.

  7. Pioneer Venus 1978

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An orbiter and a multiprobe spacecraft will be sent to Venus in 1978 to conduct a detailed examination of the planet's atmosphere and weather. The spin-stabilized multiprobe spacecraft consists of a bus, a large probe and three identical small probes, each carrying a complement of scientific instruments. The large probe will conduct a detailed sounding of the lower atmosphere, obtaining measurements of the clouds, atmospheric structure, wind speed, and atmospheric composition. Primary emphasis will be placed on the planet's energy balance and clouds. The three small probes will provide information on the circulation pattern of the lower atmosphere. The probe bus will provide data on the upper atmosphere and ionosphere down to an altitude of about 120 km. The orbiter is designed to globally map the atmosphere, ionosphere, and the solar wind/ionosphere interaction. In addition, it will utilize radar mapping techniques to study the surface.

  8. The Venus flybys opportunity with BEPICOLOMBO

    NASA Astrophysics Data System (ADS)

    Mangano, Valeria; de la Fuente, Sara; Montagnon, Elsa; Benkhoff, Johannes; Zender, Joe; Orsini, Stefano

    2017-04-01

    BepiColombo is a dual spacecraft mission to Mercury to be launched in October 2018 and carried out jointly between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mercury Planetary Orbiter (MPO) payload comprises eleven experiments and instrument suites. It will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will test Einstein's theory of general relativity. The second spacecraft, the Mercury Magnetosphere Orbiter (MMO), will carry five experiments or instrument suites to study the environment around the planet including the planet's exosphere and magnetosphere, and their interaction processes with the solar wind. The composite spacecraft made of MPO, MMO, a transfer module (MTM) and a sunshield (MOSIF) will be launched on an escape trajectory that will bring it into heliocentric orbit on its way to Mercury. During the cruise of 7.2 years toward the inner part of the Solar System, BepiColombo will make 1 flyby to the Earth, 2 to Venus, and 6 to Mercury. Only part of its payload will be obstructed by the sunshield and the cruise spacecraft configuration, so that the two flybys to Venus will allow operations of many instruments, like: spectrometers at many wavelengths, accelerometer, radiometer, ion and electron detectors. A scientific working group has recently formed from the BepiColombo community to identify potentially interesting scientific cases and to analyse operation timelines. Preliminary outputs will be presented and discussed.

  9. A Venus-mass Planet Orbiting a Brown Dwarf: A Missing Link between Planets and Moons

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Jung, Y. K.; Han, C.; Gould, A.; Kozłowski, S.; Skowron, J.; Poleski, R.; Soszyński, I.; Pietrukowicz, P.; Mróz, P.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrzyński, G.; Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Gaudi, B. S.; Hwang, K.-H.; Choi, J.-Y.; Shin, I.-G.; Park, H.; Bozza, V.

    2015-10-01

    The co-planarity of solar system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the Kepler satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. Here we report the discovery of an intermediate system, OGLE-2013-BLG-0723LB/Bb, composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled-down version of a planet plus a star or as a scaled-up version of a moon plus a planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us to suggest that the formation processes of companions within accretion disks around stars, brown dwarfs, and planets are similar.

  10. MAVEN Mapping of Plasma Clouds Near Mars

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Tran, T.; DiBraccio, G. A.; Espley, J. R.; Soobiah, Y. I. J.

    2017-12-01

    Brace et al. identified parcels of ionospheric plasma above the nominal ionosphere of Venus, dubbed plasma clouds. These were envisioned as instabilities on the ionopause that evolved to escaping parcels of ionospheric plasma. Mars Global Surveyor (MGS) Electron Reflectometer (ER) also detected signatures of ionospheric plasma above the nominal ionopause of Mars. Initial examination of the MGS ER data suggests that plasma clouds are more prevalent at Mars than at Venus, and similarly exhibit a connection to rotations in the upstream Interplanetary Magnetic Field (IMF) as Zhang et al. showed at Venus. We examine electron data from Mars to determine the locations of plasma clouds in the near-Mars environment using MGS and MAVEN data. The extensive coverage of the MAVEN orbit enables mapping an occurrence rate of the photoelectron spectra in Solar Wind Electron Analyzer (SWEA) data spanning all relevant altitudes and solar zenith angles. Martian plasma clouds are observed near the terminator like at Venus. They move to higher altitude as solar zenith angle increases, consistent with the escaping plasma hypothesis.

  11. Magellan radar to reveal secrets of enshrouded Venus

    NASA Technical Reports Server (NTRS)

    Saunders, R. Stephen

    1990-01-01

    Imaging Venus with a synthetic aperture radar (SAR) with 70 percent global coverage at 1-km optical line-pair resolution to provide a detailed global characterization of the volcanic land-forms on Venus by an integration of image data with altimetry is discussed. The Magellan radar system uses navigation predictions to preset the radar data collection parameters. The data are collected in such a way as to preserve the Doppler signature of surface elements and later they are transmitted to the earth for processing into high-resolution radar images. To maintain high accuracy, a complex on-board filter algorithm allows the altitude control logic to respond only to a narrow range of expected photon intensity levels and only to signals that occur within a small predicted interval of time. Each mapping pass images a swath of the planet that varies in width from 20 to 25 km. Since the orbital plane of the spacecraft remains fixed in the inertial space, the slow rotation of Venus continually brings new areas into view of the spacecraft.

  12. The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.

    2017-01-01

    Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.

  13. Venus - Stein Triplet Crater

    NASA Image and Video Library

    1996-01-29

    NASA Magellan synthetic aperture radar SAR imaged this unique triplet crater, or crater field during orbits 418-421 on Sept. 21, 1990. The three craters appear to have relatively steep walls. http://photojournal.jpl.nasa.gov/catalog/PIA00088

  14. Exploring the interior of Venus with seismic and infrasonic techniques

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Cutts, J. A.; Pauken, M.; Komjathy, A.; Smrekar, S. E.; Kedar, S.; Mimoun, D.; Garcia, R.; Schubert, G.; Lebonnois, S.; Stevenson, D. J.; Lognonne, P. H.; Zhan, Z.; Ko, J. Y. T.; Tsai, V. C.

    2016-12-01

    The dense atmosphere of Venus, which efficiently couples seismic energy into the atmosphere as infrasonic waves, enables an alternative to conventional seismology: detection of infrasonic waves in the upper atmosphere using either high altitude balloons or orbiting spacecraft. Infrasonic techniques for probing the interior of Venus can be implemented without exposing sensors to the severe surface environments on Venus. This approach takes advantage of the fact that approximately sixty-times the energy from a seismic event on Venus is coupled into the atmosphere on Venus as would occur for a comparable event on Earth. The direct or epicentral wave propagates vertically above the event, and the indirect wave propagates through the planet as a Rayleigh wave and then couples to an infrasonic wave. Although there is abundant evidence of tectonic activity on Venus, questions remain as to whether the planet is still active and whether energy releases are seismic or aseismic. In recent years, seismologists have developed techniques for probing crustal and interior structure in parts of the Earth where there are very few quakes. We have begun an effort to determine if this is also possible for Venus. Just as seismic energy propagates more efficiently upward across the surface atmosphere interface, equally acoustic energy originating in the atmosphere will propagate downwards more effectively. Measurements from a balloon platform in the atmosphere of Venus could assess the nature and spectral content of such sources, while having the ability to identify and discriminate signatures from volcanic events, storm activity, and meteor impacts. We will discuss our ongoing assessment on the feasibility of a balloon acoustic monitoring system. In particular, we will highlight our results of the flight experiment on Earth that will focus on using barometer instruments on a tethered helium-filled balloon in the vicinity of a known seismic source generated by a seismic hammer. Implications for conducting such measurements on Venus, including seismic and aseismic energy sources and propagation through its atmosphere, will also be discussed.

  15. Intensities of the Venusian N2 electron-impact excited dayglow emissions

    NASA Astrophysics Data System (ADS)

    Fox, Jane L.; F. Hać, Nicholas E.

    2013-12-01

    Dayglow emissions are signatures of both the energy deposition into an atmosphere and the abundances of the species from which they arise. The first N2 dayglow emissions from Mars, the (0,5) and (0,6) bands of the N2 Vegard-Kaplan band system, were detected by the Spectroscopy for Investigations of the Characteristics of the Atmosphere of Mars (SPICAM) UV spectrometer on board the Mars Express spacecraft. The Vegard-Kaplan band system arises from the transition from the lowest N2 triplet state (A3Σu+;v') to the electronic ground state (X1Σg+;v″). It is populated by direct electron-impact excitation and by cascading from higher triplet states. The Venus UV dayglow is currently being probed by an instrument similar to SPICAM, the Spectroscopy for the Investigations of the Characteristics of the Atmosphere of Venus (SPICAV) UV spectrometer on Venus Express, but no N2 emissions have been detected. Because the N2 mixing ratios in the Venus thermosphere are larger than those in the thermosphere of Mars and the solar flux is greater at the orbit of Venus than that at Mars, we expect the Venus N2 emissions to be significantly more intense than those of Mars. A prediction of the intensities of various N2 emissions from Venus could be used to guide observations by the SPICAV and other instruments that are used to measure the Venus dayglow. Employing updated data, we here construct models of the low and high solar activity thermospheres of Venus, and we compute the integrated overhead intensities of 17 N2 band systems and limb profiles of the Vegard-Kaplan bands. The ratios of the predicted intensities of the various N2 bands at Venus to those at Mars are in the range 5.5-9.5.

  16. Aerobraking Magellan

    NASA Technical Reports Server (NTRS)

    Lyons, Daniel T.; Sjogren, William; Johnson, William T. K.; Schmitt, Durwin; Mcronald, Angus

    1992-01-01

    While the Magellan spacecraft is currently in an elliptical orbit around Venus, its orbit may be circularized by means of an aerobraking maneuver during which a minor amount of aerodynamic drag is applied to 1000-2000 orbits. An evaluation is presently undertaken of the thermal-control and operational problems arising from such a maneuver, in virtue of its not having been considered among the design requirements of the spacecraft. Attention is given to atmospheric erosion and contamination problems to which the spacecraft surfaces could be exposed.

  17. The orbital evolution of the Aten asteroids over 11,550 years (9300 BC to 2250 AD)

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    1991-04-01

    The orbital evolution of five Aten asteroids was monitored by the Everhart method in the time interval from 9300 BC to 2250 AD. The closest encounters with large planets in the evolution process are calculated. Four out of five asteroids exhibit stable resonances with earth and Venus over the period from 9300 BC to 2250 AD.

  18. Venus surface optical imaging from a balloon or a probe during descent : Monte Carlo simulation and the proposal of the experiment on TV-camera in transparency windows of a 1.02 and 0.85 microns

    NASA Astrophysics Data System (ADS)

    Ekonomov, A.

    2011-10-01

    The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.

  19. Venus surface optical imaging from a balloon or a probe during descent : Monte Carlo simulation and the proposal of the experiment on TV-camera in transparency windows of a 1.02 and 0.85 microns.

    NASA Astrophysics Data System (ADS)

    Ekonomov, A.

    2011-10-01

    The problem of imaging of the planet surfaces is a priority for space exploration, since the surface is crucial to study the origin mechanisms . However, if for other planets in the solar system conducted hundreds of experiments in this direction, for Venus there are only a few . This is due to an optically dense cloud cover in the upper atmosphere of Venus. Until now, the global picture is obtained only in radio wavelengths. First spacecraft to the board which was carried out large-scale location of Venus was on the Pioneer Venus Orbiter (1978), which carried out radar mapping of the surface. AMS Venus 15/16 (1978) have got on board the DBR with a resolution of 1-2 km, and Magellan (1989) had a DBR with a resolution of 100 m. During 1975-1982 Soviet leanders, being on a surface, have taken a number of panoramas with the high resolution of the order of shares of meter. Thus, there is a gap between the resolution of 100 m and shares of meter and it should be filled. Such experiment could be imaging from undercloud layer in a transparency window of 1 microns. Idea is not new, but technical study was not conducted.

  20. Mars lander survey

    NASA Technical Reports Server (NTRS)

    Stump, William R.; Babb, Gus R.; Davis, Hubert P.

    1986-01-01

    The requirements, issues, and design options are reviewed for manned Mars landers. Issues such as high 1/d versus low 1/d shape, parking orbit, and use of a small Mars orbit transfer vehicle to move the lander from orbit to orbit are addressed. Plots of lander mass as a function of Isp, destination orbit, and cargo up and down, plots of initial stack mass in low Earth orbit as a function of lander mass and parking orbit, detailed weight statements, and delta V tables for a variety of options are included. Lander options include a range from minimum landers up to a single stage reusable design. Mission options include conjunction and Venus flyby trajectories using all-cryogenic, hybrid, NERVA, and Mars orbit aerobraking propulsion concepts.

  1. Small-scale plasma irregularities in the nightside Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.

    1991-12-01

    The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.

  2. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  3. Comparing Volcanic Terrains on Venus and Earth: How Prevalent are Pyroclastic Deposits on Venus?

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, B. A.; Glaze, L. S.

    2012-01-01

    In the last several years, astronomers have discovered several exoplanets with masses less than 10 times that of the Earth [1]. Despite the likely abundance of Earth-sized planets, little is known about the pathways through which these planets evolve to become habitable or uninhabitable. Venus and Earth have similar planetary radii and solar orbital distance, and therefore offer a chance to study in detail the divergent evolution of two objects that now have radically different climates. Understanding the extent, duration, and types of volcanism present on Venus is an important step towards understanding how volatiles released from the interior of Venus have influenced the development of the atmosphere. Placing constraints on the extent of explosive volcanism on Venus can provide boundary conditions for timing, volumes, and altitudes for atmospheric injection of volatiles. In addition, atmospheric properties such as near-surface temperature and density affect how interior heat and volatiles are released. Radar image data for Venus can be used to determine the physical properties of volcanic deposits, and in particular, they can be used to search for evidence of pyroclastic deposits that may result from explosive outgassing of volatiles. For explosive volcanism to occur with the current high atmospheric pressure, magma volatile contents must be higher than is typical on Earth (at least 2-4% by weight) [2,3]. In, addition, pyroclastic flows should be more prevalent on Venus than convective plumes and material may not travel as far from the vent source as it would on Earth [3]. Areas of high radar backscatter with wispy margins that occur near concentric fractures on Sapho Patera [4] and several coronae in Eastern Eistla Regio [5] have been attributed to collapse of eruption columns and runout of rough materials.

  4. The Evening/Morning Star.

    ERIC Educational Resources Information Center

    Riddle, Bob

    1997-01-01

    Explains how Venus changes visibility regularly from morning to evening because of its quick orbit time during part of the year. Includes a brief history of observations of this phenomenon and provides a detailed account from the Australian Aborigines. (DDR)

  5. Magellan: Radar performance and data products

    USGS Publications Warehouse

    Pettengill, G.H.; Ford, P.G.; Johnson, W.T.K.; Raney, R.K.; Soderblom, L.A.

    1991-01-01

    The Magellan Venus orbiter carries only one scientific instrument: a 12.6-centimeter-wavelength radar system shared among three data-taking modes. The syntheticaperture mode images radar echoes from the Venus surface at a resolution of between 120 and 300 meters, depending on spacecraft altitude. In the altimetric mode, relative height measurement accuracies may approach 5 meters, depending on the terrain's roughness, although orbital uncertainties place a floor of about 50 meters on the absolute uncertainty. In areas of extremely rough topography, accuracy is limited by the inherent line-of-sight radar resolution of about 88 meters. The maximum elevation observed to date, corresponding to a planetary radius of 6062 kilometers, lies within Maxwell Mons. When used as a thermal emission radiometer, the system can determine surface emissivities to an absolute accuracy of about 0.02. Mosaicked and archival digital data products will be released in compact disk (CDROM) format.

  6. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Wagner, T. C. G.; Blackwell, B. H.; Cordier, G. R.

    1980-01-01

    Identical Bennett radio-frequency ion mass spectrometer instruments on the Pioneer Venus Bus and Orbiter have provided the first in-situ measurements of the detailed composition of the planet's ionosphere. The sensitivity, resolution, and dynamic range are sufficient to provide measurements of the solar-wind-induced bow-shock, the ionopause, and highly structured distributions of up to 16 thermal ion species within the ionosphere. The use of adaptive scan and detection circuits and servo-controlled logic for ion mass and energy analysis permits detection of ion concentrations as low as 5 ions/cu cm and ion flow velocities as large as 9 km/sec for O(+). A variety of commandable modes provides ion sampling rates ranging from 0.1 to 1.6 sec between measurements of a single constituent. A lightweight sensor and electronics housing are features of a compact instrument package.

  7. Artist concept of Magellan spacecraft above Venusian surface

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Artist concept shows Magellan spacecraft in cruise configuration oriented above Venusian surface, during data collection and radar mapping sequence. Solar panels are deployed and low-gain and high gain antennas, altimeter antenna, thermal control louvers, forward equipment module, equipment bus with thermal control louvers, and control rocket engine module are visible. The continued quest for detailed topographic measurements of Venus will again be undertaken in April 1989 by Magellan, named after the 16th century Portuguese explorer. Magellan will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperature radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Aircraft Company,

  8. Retarding potential analyzer for the Pioneer-Venus Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Bakke, J.; Spenner, K.; Novak, V.

    1979-01-01

    The retarding potential analyzer on the Pioneer-Venus Orbiter Mission has been designed to measure most of the thermal plasma parameters within and near the Venusian ionosphere. Parameters include total ion concentration, concentrations of the more abundant ions, ion temperatures, ion drift velocity, electron temperature, and low-energy (0-50 eV) electron distribution function. To accomplish these measurements on a spinning vehicle with a small telemetry bit rate, several functions, including decision functions not previously used in RPA's, have been developed and incorporated into this instrument. The more significant functions include automatic electrometer ranging with background current compensation; digital, quadratic retarding potential step generation for the ion and low-energy electron scans; a current sampling interval of 2 ms throughout all scans; digital logic inflection point detection and data selection; and automatic ram direction detection. Extensive numerical simulation and plasma chamber tests have been conducted to verify adequacy of the design for the Pioneer Mission.

  9. Observation sequences and onboard data processing of Planet-C

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  10. Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.

  11. Planetary mission summaries. Volume 1: Introduction and overview

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Tabular synopses of twelve missions are presented along with the Mariner Jupiter/Saturn 1977 mission for comparison. Mission definitions considered include: Mars Polar Orbiter; Mars Surface Sample Return; Mars Rover; Marine Jupiter/Uranus 1979 with Uranus Entry Probe; Mariner Jupiter Orbiter; Mariner Mercury Orbiter 1978; Early Mariner Comet Flyby Solar Electric Encke Slow Flyby; Mariner Encke Ballistic Flyby; Solar Electric Encke Rendezvous 1981; Venus Orbital Imaging Radar; Solar Electric Out-of-the-Eliptic Probe 1979. Technical conclusions of mission studies are given in order that these results may interact with the broader questions of scope, pace, and priorities in the planetary exploration program.

  12. Unlocking the secrets of Venus surface mineralogy from orbit

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Mueller, N. T.; Smrekar, S. E.; Koulen, J.

    2016-12-01

    The surface composition of a planet is a key to understand its interior and evolution. Proper interpretations of Venus surface observations in the near-infrared require a dedicated laboratory effort. The atmosphere of Venus dictates which spectral bands on the surface can be observed. This places severe constraints on the ability to identify rock-forming minerals. To complicate matters further, we cannot observe reflectance, as would be the standard at 1 mm. Observations are obtained on the night side where the thermal emission of the surface is measured directly. Finally, high surface temperatures are known to affect band positions of mineral spectra as expected from crystal field theory. Over the last year we have started at the Planetary Spectroscopy Laboratory (PSL) at DLR in Berlin, Germany to systematically build a spectral library for rocks and minerals under Venus thermal conditions. Using funding from the European Union as part of the EuroPlanet consortium we extended the spectral coverage for high temperature measurements down to 0.7 micron. The spectral library will be key in understanding and modeling differences in emissivity between ambient and Venus conditions, potentially enabling calibration transfer between datasets. We can show that the expected emissivity variation between felsic and mafic minerals would be observable even with the limited number of surface windows available. Furthermore the absolute emissivity derived from our laboratory measurements at Venus temperature match in situ reflectivity data from the Venera 9 and 10 landing sites in the same bands. Based on experience gained from using the VIRTIS instrument on Venus Express to observe the surface of Venus and the new high temperature laboratory experiments, we have developed the multi-spectral Venus Emissivity Mapper (VEM) to study the surface of Venus. VEM imposes minimal requirements on the spacecraft and mission design and can therefore be added to any future Venus mission. Ideally, the VEM instrument will be combined with a high-resolution radar mapper to provide accurate topographic information, as it will be the case for the proposed NASA Discovery VERITAS mission or the ESA EnVision M5 proposal.

  13. Planetary plasma and atmospheres explored by space missions in Japan: Hisaki, Akatsuki, and beyond

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Imamura, T.; Tsuchiya, F.; Terada, N.; Miyoshi, Y.; Kasai, Y.; Saito, Y.

    2017-06-01

    Planetary plasma and atmospheres have been challenged by space missions of Japanese science community from 1990s, with ISAS and JAXA. The first trial, a Martian orbiter Nozomi, was launched in July 1998. At the departure from Earth in Dec. 1998, she met an engine trouble but we struggled and found a narrow and long path connecting to the Dec 2003 arrival, which is the simultaneous arrival with ESA Mars Express. Unfortunately, we had an additional power trouble in Apr. 2002 associated with a solar flare event, and we gave up the trial at the gate of Mars in Dec. 2003. In parallel to the Kaguya Lunar orbiter in 2007-2009, a next trial to planets, the Akatsuki orbiter to Venus, was prepared. She departed from Earth in May 2010. However, she got an engine trouble at the arrival to Venus in Dec. 2010, and we again endured another long path, but this road was at last ended by a success of the orbit entry in Dec. 2015. We also created the UV/EUV space telescope, Hisaki, using the sensor and optics technologies extracted from Nozomi. It is going well after the launch in 2013 and actively looking planetary thin atmospheres collaborating with other space missions. This paper summarizes the Hisaki and Akatsuki missions which are now on orbit, with the next missions, Arase (ERG), BepiColombo, JUICE, and beyond.

  14. Ion dynamics in the Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Whitten, R. C.

    1991-02-01

    Measurement data on the ion velocity in the Venus ionosphere (mainly from the Pioneer Venus Orbiter Retarding Potential Analyzer) are summarized, and theoretical models developed to explain them are reviewed. Data and theoretical predictions are compared in extensive graphs and diagrams and discussed in detail. It is shown that the predominant flow is away from the subsolar point, at up to 3 km/sec in the terminator region. A model of axisymmetric flow based on momentum, energy, and mass conservation laws is found to reproduce the observed ion velocities at solar zenith angles less than about 140 deg, but not the high velocities and chaotic behavior seen near the antisolar point. Also discussed are significant differences between the flow above and below about 400 km and the effects of changes in the dynamic pressure of the solar wind.

  15. Application of advanced computational procedures for modeling solar-wind interactions with Venus: Theory and computer code

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.

    1980-01-01

    Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.

  16. Periodic Trojan-type orbits in the earth-sun system

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.; Wetherill, G. W.

    1974-01-01

    Periodic orbits about the triangular equilibrium points are found for the planar restricted three-body problem using the earth-sun system. The maximum semimajor axis for tadpole orbits ranges from the infinitesimal orbit at 1.000 AU to the near-limiting orbit at 1.00285 AU. Horseshoe orbits are found for 1.0029 to 1.0080 AU, larger horseshoes being unstable because of close approaches to the earth. Using stability tests devised by Rabe (1961, 1962), the limit of stability for nonperiodic orbits is found to occur for maximum semimajor axes near 1.0020 AU. In addition, near-periodic tadpole orbits appear to be stable against perturbations by Jupiter and Venus for periods of at least 10,000 yr. The possibility that minor planets actually exist in such orbits is considered.

  17. Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Campbell, Donald B.; Morgan, Gareth A.; Carter, Lynn M.; Nolan, Michael C.; Chandler, John F.

    2014-01-01

    We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had similar viewing geometries. Processing of both datasets with better image focusing and co-registration techniques, and summing over multiple looks, yields maps with 1-2 km spatial resolution and improved signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest for future spacecraft landings. The Earth-based radar images reveal multiple examples of tessera mantling by impact ''parabolas'' or ''haloes'', and can extend mapping of locally thick material from Magellan data by revealing thinner deposits over much larger areas. Of particular interest is an ejecta deposit from Stuart crater that we infer to mantle much of eastern Alpha Regio. Some radar-dark tessera occurrences may indicate sediments that are trapped for longer periods than in the plains. We suggest that such radar information is important for interpretation of orbital infrared data and selection of future tessera landing sites.

  18. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  19. An Alternate View of Venus

    NASA Astrophysics Data System (ADS)

    Ackerman, J.

    2002-05-01

    Overwhelming physical evidence has been present since Pioneer Venus (PV), indicating that Venus is a hot new planet. I maintain that a fireball, with a mass some ten times that of Venus, rebounded from a high energy impact (1043 ergs) on Jupiter 6,000 years ago. Heating due to the gravitational contraction of the ejected material along with tidal and electromagnetic braking at subsequent perihelion passes produced temperatures >10,000 K. The rapid conversion of orbital energy to heat reduced proto-Venus' eccentricity and expelled the lighter atoms into space, resulting in a high average density terrestrial body. Differentiation of heavy elements and fractionation of naturally radioactive elements occurred quickly. Subsequent close planetary interactions resulted in its final orbit and uplifted the continents, by means of which the tidal force of the Earth induced Venus' spin orbit resonance. This process left much volatile material in interplanetary space, for later acquisition by the proto-planet as it cooled and by extant planets. I maintain that this is the genesis of all terrestrial bodies. Corroborating evidence exists in the form of upwelling radiation measurements from five independent PV probes, all indicating that Venus is radiating 20 w/m2. Due to its recent catastrophic origin, the interior is molten rock with a tenuous crust less than a kilometer thick. Venus' rapid cooling is manifested by two processes: (1) Via radiation from raw lava lying in many surface cracks, radiation which was so strong, that the PV LIR (sensitive infrared radiometer) data collected below the lower cloud layer was discarded; (2) The high velocity expulsion, from 200,000 small domes, of massive quantities of S8, which shoots to an altitude of 48 km. Evidence for (2) stems from the temperatures of three interfaces in the lower atmosphere. The surface temperature is maintained just above 444.5 C, the boiling point of S8, by the evaporation of raining sulfur. The altitude of the ubiquitous lower cloud layer corresponds to the exact temperatures at which the rising S8 gas freezes to form monoclinic (119.2 C) and rhombic (96. C) crystals. These comprise the lower cloud layer and catalyze reactions which capture sulfur, creating a sulfur 'cap.' The energy being released at this level was measured as a +20 C temperature offset. This hot rising S8 flux was so intense that it disabled the sensors on all the PV probes at 14 km (40,000 feet!) CS also apparently crystalizes (200. C) from the rising gases at 31 km causing the thin red haze which extends upward to the lower cloud layer. CS crystals catalyze reactions which capture carbon in that altitude range. This caused the `dropout' of CO2, CO and COS between 31 and 50 km, in the PV mass spec data, not a clogging of the input leak. Thus S8 dominates the lower atmosphere, and it is the great mass of sulfur suspended there which produces the high surface pressure, not CO2. S8 was not detected because it is beyond the mass range of the PV instruments. This paradigm reveals the driving force behind the 'four day' zonal winds, which encircle the planet at all latitudes. S8 jetting vertically from 200,000 small domes, is continuously transferring angular momentum from the slowly rotating planet to the atmosphere. Venus' atmosphere is composed of two altitude regimes. The sulfur dominated 'Hadesphere' extends from the surface to 50 km. The upper atmosphere, captured from interactions with Mars or reacquired from interplanetary space, exhibits earthlike temperatures and pressures. As Venus cools and the intensity of the jetting sulfur gases decreases, the Hadesphere will gradually collapse, bringing the normal atmosphere down to the surface.

  20. Magellan Final Science Reports

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.

    1993-01-01

    This volume is a brief summary of the scientific results of the Magellan Venus mapping mission as reported by the Magellan science investigators. Magellan has exceeded all of its mission objectives by obtaining high resolution radar images, surface elevation, and radiometry for more than 98% of the planet. The amount of stereo data gathered on Venus is more than that available for any other planet. Magellan's fourth cycle collected gravity data from an elliptical orbit to provide information on the relationships between surface features and the interior of the planet. With the successful completion of the aerobraking experiment, the spacecraft, in its lower orbit around Venus, has captured high resolution gravity near the poles from the nearly circular orbit. Every attempt has been made to provide useful documentation for the complete Magellan data set. Magellan data have been released to the public through the Planetary Data System (PDS) and the National Space Science Data Center (NSSDC) in photographs, lithos, brochures, digital form, and compact discs. With the release of Magellan data on the compact disc read-only-memory (CD-ROM) a revolutionary new way of doing science has resulted. This technology provides a way to store, distribute and access large volumes of data. The Magellan science investigators have utilized this wealth of data to provide answers to questions we have been asking for a long time. I would like to personally thank everyone on the Magellan team for the success of this important mission, a mission that has revealed information that will help us to better understand our own Planet Earth.

  1. A Venus Flagship Mission: Exploring a World of Contrasts

    NASA Astrophysics Data System (ADS)

    Senske, D.; Bullock, M.; Balint, T.; Benz, A.; Campbell, B.; Chassefiere, E.; Colaprete, A.; Cutts, J.; Glaze, L.; Gorevan, S.; Grinspoon, D.; Hall, J.; Hasimoto, G.; Head, J.; Hunter, G.; Johnson, N.; Kiefer, W.; Kolawa, E.; Kremic, T.; Kwok, J.; Limaye, S.; Mackwell, S.; Marov, M.; Peterson, C.; Schubert, G.; Spilker, T.; Stofan, E.; Svedhem, H.; Titov, D.; Treiman, A.

    2008-12-01

    Results from past missions and the current Venus Express Mission show that Venus is a world of contrasts, providing clear science drivers for renewed exploration of this planet. In early 2008, NASA's Science Mission Directorate formed a Science and Technology Definition Team (STDT) to formulate science goals and objectives, mission architecture and a technology roadmap for a flagship class mission to Venus. This 3- to 4 billon mission, to launch in the post 2020 timeframe, should revolutionize our understanding of how climate works on terrestrial planets, including the close relationship between volcanism, tectonism, the interior, and the atmosphere. It would also more clearly elucidate the geologic history of Venus, including the existence and persistence of an ancient ocean. Achieving these objectives will provide a basis to understand the habitability of extra solar terrestrial planets. To address a broad range of science questions this mission will be composed of flight elements that include an orbiter that is highlighted by an interferometric SAR to provide surface topographic and image information at scales one to two orders of magnitude greater than that achieved by any previous spacecraft to Venus. Two balloons with a projected lifetime of weeks will probe the structure and dynamics of the atmosphere at an altitude of 50 to 70-km. In addition, two descent probes will collect data synergistic to that from the balloon and analyze the geochemistry of surface rocks over a period of hours. The technology road map focuses on key areas of science instruments and enabling engineering to provide greater in situ longevity in the hostile Venus environment.

  2. Cupid's Arrow: An Innovative Nanosat to Sample Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernie; Darrach, Murray; Madzunkov, Stojan; Sotin, Christophe

    2016-01-01

    In NASA's Discovery 2014 AO, the opportunity to propose a Technology Demonstration Opportunity (TDO) to enhance the primary mission was specified. For the Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy (VERITAS) mission, we elected to include the Cupid's Arrow nanosat TDO to sample and measure the abundances of noble gases and their isotopic ratios in Venus's upper atmosphere below the homopause. This paper will provide a basic overview of the VERITAS mission, with a focus on the Cupid's Arrow concept including a description of the mission, spacecraft design, and JPL's quadrupole ion trap mass spectrometer (QITMS) instrument specifications and design. In previous planetary entry probe mission designs, particularly at Venus, engineers w ere focused on entry and descent. A landed probe was also proposed for the New Frontiers SAGE mission. For Cupid's Arrow, the nanosat is designed to skim through the upper atmosphere, just below the homopause, in order to sample the atmosphere, perform the analysis, and then exit the atmosphere to transmit its data to the orbiting VERITAS spacecraft. Cupid's Arrow is a compelling addition to the VERITAS geology mission. A key missing link in our understanding of Venus' evolution is the noble gas abundances and their isotopic ratios. Not since Pioneer Venus have these measurements been made in the Venus atmosphere and never in the upper atmosphere, just below the homopause, to the degree of accuracy that will be accomplished by VERITAS' Cupid's Arrow nanosat.Such measurements were ranked as the number 1 investigation of the number 1 objective of the goal "Atmospheric Formation, Evolution, and Climate History ".

  3. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  4. The orbital evolution of the AMOR asteroidal group during 11,550 years

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Zausaev, A. F.; Pushkaryov, A. N.

    The orbital evolution of twenty seven Amor asteroids was determined by the Everhart method for the time interval from 2250 AD to 9300 BC. Closest encounters with terrestrial planets are calculated in the evolution process. Stable resonances with Venus, Earth and Jupiter over the period from 2250 AD to 9300 BC have been obtained. Theoretical coordinates of radiants on initial and final moments of integrating were calculated.

  5. Ion measurements during Pioneer Venus reentry: Implications for solar cycle variation of ion composition and dynamics

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.

    1993-01-01

    During the final, low solar activity phase of the Pioneer Venus (PV) mission, the Orbiter Ion Mass Spectrometer (OIMS) measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum 'disappearing' ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.

  6. Systems design study of the Pioneer Venus spacecraft. Volume 2. Preliminary program development plan

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The preliminary development plan for the Pioneer Venus program is presented. This preliminary plan treats only developmental aspects that would have a significant effect on program cost. These significant development areas were: master program schedule planning; test planning - both unit and system testing for probes/orbiter/ probe bus; ground support equipment; performance assurance; and science integration Various test planning options and test method techniques were evaluated in terms of achieving a low-cost program without degrading mission performance or system reliability. The approaches studied and the methodology of the selected approach are defined.

  7. UVMAS: Venus ultraviolet-visual mapping spectrometer

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Zasova, L.; Altieri, F.; Nuccilli, F.; Ignatiev, N.; Moroz, V.; Khatuntsev, I.; Korablev, O.; Rodin, A.

    This paper summarizes the capabilities and technical solutions of an Ultraviolet Visual Mapping Spectrometer designed for remote sensing of Venus from a planetary orbiter. The UVMAS consists of a multichannel camera with a spectral range 0.19 << 0.49 μm which acquires data in several spectral channels (up to 400) with a spectral resolution of 0.58 nm. The instantaneous field of view of the instrument is 0.244 × 0.244 mrad. These characteristics allow: a) to study the upper clouds dynamics and chemistry; b) giving constraints on the unknown absorber; c) observation of the night side airglow.

  8. Gravity anomalies, compensation mechanisms, and the geodynamics of western Ishtar Terra, Venus

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Phillips, Roger J.

    1991-01-01

    Pioneer Venus line-of-sight orbital accelerations were utilized to calculate the geoid and vertical gravity anomalies for western Ishtar Terra on various planes of altitude z sub 0. The apparent depth of isostatic compensation at z sub 0 = 1400 km is 180 + or - 20 km based on the usual method of minimum variance in the isostatic anomaly. An attempt is made here to explain this observation, as well as the regional elevation, peripheral mountain belts, and inferred age of western Ishtar Terra, in terms of one or three broad geodynamic models.

  9. On remote sounding of the upper atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Houghton, J. T.; Taylor, F. W.

    1975-01-01

    Some of the possibilities for remote sensing of the upper atmosphere of Venus from an orbiting spacecraft are studied quantitatively. Temperature sounding over a wide vertical range, from the main cloud top near 60 km altitude to the nanobar level near 160 km, is shown to be feasible. Techniques which deconvolve the cloud structure from the temperature profile measurements are examined. Humidity measurements by simple radiometry are feasible for column abundances greater than or equal to 10 precipitable micrometers. The information content of limb radiance measurements, in different wavelengths and for various viewing geometries, is also analyzed.

  10. Plasma motion in the Venus ionosphere: Transition to supersonic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, R.C.; Barnes, A.; McCormick, P.T.

    1991-07-01

    A remarkable feature of the ionosphere of Venus is the presence of nightward supersonic flows at high altitude near the terminator. In general the steady flow of an ideal gas admits a subsonic-supersonic transition only in the presence of special conditions, such as a convergence of the flow followed by divergence, or external forces. In this paper, the authors show that the relatively high pressure dayside plasma wells up slowly, and at high altitude it is accelerated horizontally through a relatively constricted region near the terminator toward the low-density nightside. In effect, the plasma flows through a nozzle that ismore » first converging, then diverging, permitting the transition to supersonic flow. Analysis of results from previously published models of the plasma flow in the upper ionosphere of Venus shows how such a nozzle is formed. The model plasma does indeed accelerate to supersonic speeds, reaching sonic speed just behind the terminator. The computed speeds prove to be close to those observed by the Pioneer Venus orbiter, and the ion transport rates are sufficient to produce and maintain the nightside ionosphere.« less

  11. Venus mapping

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Morgan, H. F.; Sucharski, Robert

    1991-01-01

    Semicontrolled image mosaics of Venus, based on Magellan data, are being compiled at 1:50,000,000, 1:10,000,000, 1:5,000,000, and 1:1,000,000 scales to support the Magellan Radar Investigator (RADIG) team. The mosaics are semicontrolled in the sense that data gaps were not filled and significant cosmetic inconsistencies exist. Contours are based on preliminary radar altimetry data that is subjected to revision and improvement. Final maps to support geologic mapping and other scientific investigations, to be compiled as the dataset becomes complete, will be sponsored by the Planetary Geology and Geophysics Program and/or the Venus Data Analysis Program. All maps, both semicontrolled and final, will be published as I-maps by the United States Geological Survey. All of the mapping is based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control on planets where framing cameras were used, is not feasible with the radar images of Venus, although an eventual shift of coordinate system to a revised spin-axis location is anticipated. This is expected to be small enough that it will affect only large-scale maps.

  12. Telecommunications and data acquisition support for the Pioneer Venus Project: Pioneers 12 and 13, prelaunch through March 1984

    NASA Technical Reports Server (NTRS)

    Miller, R. B.; Ryan, R. E.; Renzetti, N. A.; Traxler, M. R.

    1984-01-01

    The support provided by the Telecommunications and Data Acquisition organization of the Jet Propulsion Laboratory (JPL) to the Pioneer Venus missions is described. The missions were the responsibility of the Ames Research Center (ARC). The Pioneer 13 mission and its spacecraft design presented one of the greatest challenges to the Deep Space Network (DSN) in the implementation and operation of new capabilities. The four probes that were to enter the atmosphere of Venus were turned on shortly before arrival at Venus, and the DSN had to acquire each of these probes in order to recover the telemetry being transmitted. Furthermore, a science experiment involving these probes descending through the atmosphere required a completed new data type to be generated at the ground stations. This new data type is known as the differential very long baseline interferometry. Discussions between ARC and JPL of the implementation requirements involved trade-offs in spacecraft design and led to a very successful return of science data. Specific implementation and operational techniques are discussed, not only for the prime mission, but also for the extended support to the Pioneer 12 spacecraft (in orbit around Venus) with its science instruments including that for radar observations of the planet.

  13. Mars Observer Lecture: Mars Orbit Insertion

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne R. (Personal Name)

    1993-01-01

    The Mars Observer mission spacecraft was primarily designed for exploring Mars and the Martian environment. The Mars Observer was launched on September 25, 1992. The spacecraft was lost in the vicinity of Mars on August 21, 1993 when the spacecraft began its maneuvering sequence for Martian orbital insertion. This videotape shows a lecture by Suzanne R. Dodd, the Mission Planning Team Chief for the Mars Observer Project. Ms Dodd begins with a brief overview of the mission and the timeline from the launch to orbital insertion. Ms Dodd then reviews slides showing the trajectory of the spacecraft on its trip to Mars. Slides of the spacecraft being constructed are also shown. She then discusses the Mars orbit insertion and the events that will occur to move the spacecraft from the capture orbit into a mapping orbit. During the trip to Mars, scientists at JPL had devised a new strategy, called Power In that would allow for an earlier insertion into the mapping orbit. The talk summarizes this strategy, showing on a slide the planned transition orbits. There are shots of the Martian moon, Phobos, taken from the Viking spacecraft, as Ms Dodd explains that the trajectory will allow the orbiter to make new observations of that moon. She also explains the required steps to prepare for mapping after the spacecraft has achieved the mapping orbit around Mars. The lecture ends with a picture of Mars from the Observer on its approach to the planet.

  14. Outgassing of planets in relation to their obital frequencies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Planetary atmospheres as inseparable parts of their geospheres have close structural and compositional ties with underlying solid formations. The comparative wave planetology having stated that "orbits make structures" finds that two fundamental properties of all celestial bodies are most important for their structurization: movement and rotation. All bodies move in non-round keplerian elliptic (and parabolic) orbits that implies periodic change of accelerations and delivery of inertia-gravity forces producing warping waves. In rotating bodies (but all celestial bodies rotate !) these waves are ordered in 4 ortho- and diagonal directions. Having stationary character and various lengths they interfere producing positive (+), negative (-) and neutral (0) tectonic blocks. The fundamental wave 1 long 2πR give ubiquitous tectonic dichotomy, the first overtone wave 2 makes tectonic sectoring. Individual for any body waves whose lengths are inversely proportional to their orbital frequencies produce tectonic granules: higher frequency - smaller granule. The following row shows increasing granule sizes (a half of a wavelength, Earth as a scale): Titan πR/91, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. One may say that Venus is tectonically "fine-grained", Earth "medium-grained", Mars "coarse-grained". The wave produced granulation indicates that fine-grained Venus is more thoroughly shaken out and released of its volatiles (degassed) than Earth and Mars. This is proved by its massive atmosphere containing a large amount of nitrogen and having very low ratio of radiogenic to primordial argon (Venus 1, Earth 300, Mars 3000). Compare "sweeping" volatiles out of Venus and Earth [1]. Venus is 3.38 times finer-grained than Earth (in the terrestrial globe there are 16.5 grains of radius πR/8, in the venusian one 55.7 grains of radius πR/12; 55.7 : 16.5=3.38). To the terrestrial wavelength 10000 km (πR/2) corresponds frequency 0.03 khz, to the venusian 6000 km (πR/3) 0.07 khz. Venusian oscillations thus 2.33 times more frequent. If a degassing difference of two planets is the square (degassing goes through surface) of the production of differences in granulation and oscillation frequencies, then Venus is 62 times more outgassed [Dv /De = (3.38 x 2.33)2 =62.1]. Actually the venusian atmosphere is 90 times more massive than the terrestrial one. Comparing Mars (1/10th of the Earth's mass) and Earth by the same method we get 920 times less massive martian atmosphere (actually only about 200 times). The discrepancy probably is due to large amounts of volatiles in soils and crust (ice, aqueous salts, zeolites) exchanging them with atmosphere under changing conditions. On contrary, Mercury is completely "shaken out", 1 dry, its would-be massive atmosphere is completely eliminated by solar wind. The smaller volatile rich Titan with high orbital frequency has an important atmosphere -probably only remnants of what was totally outgassed during eons. All Titan's dark plains (frozen methane?) are intensively warped by cross-cutting ridge-groove systems -a consequence of an important subsidence, loosing radius. So, there is an inverse relation between atmospheric masses and a volatile stock in planets. Dry Venus has a massive atmosphere, wet Mars has a weak one. Earth is in the middle: rather wet interior and an important atmosphere. Most outgassed Mercury with distinct traces of earlier contraction (escarps or lobate ledges), alas, has lost its gaseous envelope. Asteroids , next to Mars, as show carboneceous chondrites are rich in volatiles. Sharing an angular momentum between a solid body and a massive gaseous envelope enforces this body rotate slower (Venus, Mercury). This observation could perhaps explain one enigmatic situation: the larger asteroids rotate faster than smaller ones. A reason: the former less wasted their "original" momentum not spending it with loosing volatiles than the latter, more degassed. References: [1] Kochemaov G.G. (2003) Tectonically and chemically dichotomic Mars is the least outgassed of terrestrial planets // Vernadsky-Brown microsymp. 38, Oct. 27-29, 2003, Vernadsky Inst., Moscow, Russia, Abstr.,(CD-ROM). 2

  15. Ion Escape from the Ionosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Lipatov, A.

    2008-01-01

    Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.

  16. SAEVe: A Long Duration Small Sat Class Venus Lander - Seismic and Atmospheric Exploration of Venus

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Ghail, Richard; Gilmore, Martha; Hunter, Gary; Kiefer, Walter; Limaye, Sanjay; Pauken, Michael; Tolbert, Carol; Wilson, Colin

    2017-01-01

    NASA's science mission directorate has put increasing emphasis on innovative, smaller, and lower cost missions to achieve their science objectives. One example of this was the recent call by the Planetary Science Division for cube and small satellite concepts expected to cost $100M or less, not including launch and weighing less than 180kg. Over 100 proposals were submitted suggesting that indeed this is a size of mission worthy of being considered in future planning. Nineteen missions were selected for study, one being a long-lived Venus mission called SAEVe, for Seismic and Atmospheric Exploration of Venus. The science objectives and relevance of SAEVe include: Is Venus seismically active? What can we learn about its crust (thickness and composition) and its interior (lithosphere, mantle, and core)? What can be learned about its evolutionary history or about the planet / atmosphere interactions? SAEVe begins to address these science questions with simple, but capable, instrumented probes that can survive on the surface of Venus and take temporal measurements over months something never attempted before. The data returned will further our understanding of the solar system and Earth, and aid in meeting the NASA Science Plan goal to ascertain the content, origin, and evolution of the solar system and the chemical and physical processes in our solar system. SAEVe is delivered to Venus as a ride-along on another mission to Venus. Its two small probes are placed into the Venus atmosphere via a single Stardust-like entry capsule, are ejected at different times, free fall, and decelerate in the thickening atmosphere to touchdown under 8 m/s2 or less. The probes will begin taking measurements and transmitting important parameters at or near the surface and will focus on measurements like seismic activity, heat flux, wind speed and direction, basic chemical abundances, temperature, and pressure. At preset intervals, the probes acquire the science measurements and beam the data to the orbiting host spacecraft. SAEVe will serve as a highly capable precursor and pave the way for larger and more complex lander missions to explore Venus.

  17. Solar wind flow past Venus - Theory and comparisons

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Stahara, S. S.

    1980-01-01

    Advanced computational procedures are applied to an improved model of solar wind flow past Venus to calculate the locations of the ionopause and bow wave and the properties of the flowing ionosheath plasma in the intervening region. The theoretical method is based on a single-fluid, steady, dissipationless, magneto-hydrodynamic continuum model and is appropriate for the calculation of axisymmetric supersonic, super-Alfvenic solar wind flow past a nonmagnetic planet possessing a sufficiently dense ionosphere to stand off the flowing plasma above the subsolar point and elsewhere. Determination of time histories of plasma and magnetic field properties along an arbitrary spacecraft trajectory and provision for an arbitrary oncoming direction of the interplanetary solar wind have been incorporated in the model. An outline is provided of the underlying theory and computational procedures, and sample comparisons of the results are presented with observations from the Pioneer Venus orbiter.

  18. Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn

    NASA Astrophysics Data System (ADS)

    Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.

    2017-07-01

    While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3-D model, we investigate the influence of lightning-emitted electromagnetic pulses on the upper atmosphere of Venus, Saturn, and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, and oblique) can produce mesospheric transient optical emissions of different shapes, sizes, and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.

  19. The near-UV absorber OSSO and its isomers.

    PubMed

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  20. Mariner 10 magnetic field observations of the Venus wake

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Behannon, K. W.

    1977-01-01

    Magnetic field measurements made over a 21-hour interval during the Mariner 10 encounter with Venus were used to study the down-stream region of the solar wind-Venus interaction over a distance of approximately 100 R sub v. For most of the day before closest approach the spacecraft was located in a sheath-like region which was apparently bounded by planetary bow shock on the outer side and either a planetary wake boundary or transient boundary-like feature on the inner side. The spacecraft made multiple encounters with the wake-like boundary during the 21-hour interval with an increasing frequency as it approached the planet. Each pass into the wake boundary from the sheath region was consistently characterized by a slight decrease in magnetic field magnitude, a marked increase in the frequency and amplitude of field fluctuations, and a systematic clockwise rotation of the field direction when viewed from above the plane of the planet orbit.

  1. Venus - Venera 8 Landing Site in Navka Region

    NASA Image and Video Library

    1996-09-26

    This image is a mosaic of 24 orbits of the Navka region of Venus. The image is centered at about 10 degrees south latitude and 335 degrees east longitude. The image is about 400 km (240 miles) across. 'Behepa 8' marks the approximate landing site of the Soviet Venera 8 lander, which took measurements at the surface of Venus in 1972. The Venera 8 lander measured granitic or continental-like materials at the landing site. Magellan data reveals the landing site to lie in a region of plains cut by tectonic ridges and troughs. Volcanic domes and flows are seen throughout the region. Studying the regional setting of the Venera landing sites is important in linking information about surface composition to surface morphology seen in radar images. Resolution of the Magellan data is about 120 meters (400 feet). http://photojournal.jpl.nasa.gov/catalog/PIA00460

  2. Electron plasma oscillations in the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1990-01-01

    Plasma waves are observed in the solar wind upstream of the Venus bow shock by the Pioneer Venus Orbiter. These wave signatures occur during periods when the interplanetary magnetic field through the spacecraft position intersects the bow shock, thereby placing the spacecraft in the foreshock region. The electron foreshock boundary is clearly evident in the data as a sharp onset in wave activity and a peak in intensity. Wave intensity is seen to drop rapidly with increasing penetration into the foreshock. The peak wave electric field strength at the electron foreshock boundary is found to be similar to terrestrial observations. A normalized wave spectrum was constructed using measurements of the electron plasma frequency and the spectrum was found to be centered about this value. These results, along with polarization studies showing the wave electric field to be field aligned, are consistent with the interpretation of the waves as electron plasma oscillations.

  3. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  4. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Richard Parker, with NASA, watches a monitor showing images from a camera inserted beneath tiles of the orbiter Endeavour to inspect for corrosion.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Richard Parker, with NASA, watches a monitor showing images from a camera inserted beneath tiles of the orbiter Endeavour to inspect for corrosion.

  5. False Color Image of Volcano Sapas Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day, is the length of a Magellan mapping cycle. The spacecraft completed its first mapping cycle and primary mission on May 15, 1991, and immediately began its second cycle. During the first cycle, Magellan mapped more than 80 percent of the planet's surface and the current and subsequent cycles of equal duration will provide complete mapping of Venus. Magellan was launched May 4, 1989, aboard the space shuttle Atlantis and went into orbit around Venus August 10, 1990.

  6. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  7. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the second mothercraft stays in a libration-point or DLS staging orbit until the first mothercraft has achieved nearly 180 separation from the Earth. The timing of the second mothercraft's subsequent lunar flyby is planned such that this spacecraft will be located 180 from the first mothercraft upon completion of its heliocentric circularization maneuvers. Both groups of satellites then only have to spread out over 180 to obtain full 360 coverage around the Sun.

  8. The orbital evolution of the Apollo asteroid group over 11,550 years

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    1992-08-01

    The Everhard method was used to monitor the orbital evolution of 20 Apollo asteroids in the time interval from 2250 A.D. to 9300 B.C. The closest encounters with large planets in the evolution process are calculated. Stable resonances with Venus and Earth over the period from 2250 A.D. to 9300 B.C. are obtained. Theoretical coordinates of radiants on initial and final moments of integration are calculated.

  9. Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Rafkin, S.; Drossart, P.

    2006-11-01

    A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).

  10. An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.

    1990-10-01

    An analysis of Mars and Venus nightside electron density profiles obtained with radio occultation methods shows how the nightside ionospheres of both planets vary with solar zenith angle. From previous studies it is known that the dayside peak electron densities at Mars and Venus show a basic similarity in that they both exhibit Chapman layer-like behavior. In contrast, the peak altitudes at mars behave like an ideal Chapman layer on the dayside, whereas the altitude of the peak at Venus is fairly constant up to the terminator. The effect of major dust storms can also be seen in the peakmore » altitudes at Mars. All Venus nightside electron density profiles show a distinct main peak for both solar minimum and maximum, whereas many profiles from the nightside of Mars do not show any peak at all. This suggests that the electron density in the Mars nightside ionosphere is frequently too low to be detected by radio occultation. On the Pioneer Venus orbiter, disappearing ionospheres were observed near solar maximum in the in-situ data when the solar wind dynamic pressure was exceptionally high. This condition occurs because the high solar wind dynamic pressure decreases the altitude of the ionopause near the terminator below {approximately}250 km, thus reducing the normal nightward transport of dayside ionospheric plasma. On the basis of the Venus observations, one might predict that if a positive correlation of nightside peak density with dynamic pressure was found, it could mean that transport from the dayside is the only significant source for the nightside ionosphere of Mars. The lack of a correlation would imply that the precipitation source at Mars is quite variable.« less

  11. Cross-terminator ion flow in the ionospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Fraenz, Markus; Dubinin, Eduard; Angsmann, Anne; Nielsen, Erling; Woch, Joachim; Barabash, Stas; Lundin, Rickard; Fedorov, A.

    The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question wether these fields can put the dense ionospheric plasma into motion. If so, the cross-terminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5km/s for O+ ions at Venus above 300km altitude at the terminator (Knudsen et al, GRL 1982). At Venus the flow has been explained by the pressure gradient force between dayside and nightside. It can explain the ion supply to the nightside ionosphere. At Mars comparable measurements have never been made. We here report on new measurements of the cross-terminator ion flow at Mars by the ASPERA 3 experiment onboard Mars Express with support from the MARSIS radar experiment which confirm O+ flow speeds of around 6km/s with fluxes of 1.2 ∗ 109 /cm2 s. We also discuss the complicated influence of the spacecraft potential on low energy measurements. At Mars the nightside ionosphere is much weaker than on Venus and the escape velocity only 5km/s. This means that the observed flow leads to escape from the planet. We discuss the implication of these new observation on the total ion escape and possible extensions of the analysis to dayside observations which might allow us to infer the flow structure imposed by the induced magnetic field. We then discuss the observational situation at Venus where the ASPERA-4 instrument allows similar measurements.

  12. Space weather at planet Venus during the forthcoming BepiColombo flybys

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Jackson, B.; Odstrcil, D.

    2018-03-01

    The BepiColombo (BC) Mission which will be launched in 2018, will include during its Cruise Phase two flybys of Venus and five Mercury flybys. It will then enter a one Earth year orbit about Mercury (with a possible one-year extension) during which two spacecraft, one provided by ESA (MPO) and one provided by JAXA (MMO), will perform both autonomous and coordinated observations of the Hermean environment at various separations. The measurements will take place during the minimum of solar cycle 24 and the rise of solar cycle 25. At the start of the minimum of solar cycle 23, four major flares, each associated with the production of MeV particle radiation and CME activity occurred. Predictions of the HAFv.2 model of the arrival of particle radiation and a travelling shock at Venus on 6 December 2006 were verified by in-situ measurements made aboard Venus Express (VEX) by the ASPERA 4 instrument. Interplanetary scintillation observations, as well as the ENLIL 3-D MHD model when employed separately or in combination, enable the making of predictions of the solar wind density and speed at various locations in the inner heliosphere. Both methods, which outdate HAFv.2, are utilized in the present paper to predict (retrospectively) the arrival of the flare related, interplanetary propagating shock recorded at Venus on 6 December 2006 aboard VEX with a view to putting in place the facility to make very reliable space weather predictions for BC during both its Cruise Phase and when in the Hermean environment itself. The successful matching of the December 2006 predictions with in-situ signatures recorded aboard Venus Express provide confidence that the predictive methodology to be adopted will be appropriate to provide space weather predictions for BepiColombo during its Venus flybys and throughout the mission.

  13. Dynamics of Venus Upper Atmosphere from Infrared Heterodyne Spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, G.; Kroetz, P. J.; Stupar, D.; Schieder, R. T.; Sandor, B.; Clancy, T.

    2009-09-01

    Wind velocities in the upper atmosphere of Venus can be determined from Doppler-shifts of narrow non-LTE emission lines of CO2 at 10 µm with an precision of up to 10 m/s using infrared heterodyne spectroscopy. Such observations address a narrow altitude region in the upper atmosphere of Venus around 110 km. At the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) this method also guarantees high spatial resolution on the planet (FOV of 1.7 arcsec on an apparent diameter of Venus of 20 arcsec using the McMath-Pierce-Solar Telescope on Kitt Peak). Over the last two years we observed wind velocities with THIS at several characteristic orbital positions of Venus. In May and November 2007 Venus was at its maximum eastern and western elongation, respectively. This specific observing geometry with an illumination of about 50% of the apparent planetary disk allows us to detect dominantly the superrotation component in Venus upper atmosphere. So far results indicate surprisingly low wind velocities of a few tens of m/s with almost no wind at the equator and highest values at mid latitudes. Observations close to inferior conjunction have been accomplished in March and April 2009. This observing geometry gives wind velocities consisting of a combination of the superrotation and the SS-AS flow close to the terminator. Data analysis is still ongoing but first analysis indicate a higher wind velocity than found in the results from maximum elongation. We are going to present data and results from these runs as well as results from a first coordinated observation between our infrared group and JCMT sub-mm observations in March 2009.

  14. The orbital distribution of Near-Earth Objects inside Earth's orbit

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Ngo, Henry; Gladman, Brett

    2012-01-01

    Canada's Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399-433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% of the steady-state NEO population. Vatiras are a previously undiscussed NEO population clearly defined in our integrations, whose orbits lie completely interior to that of Venus. Our integrations also uncovered the unexpected production of retrograde orbits from main-belt asteroid sources; this retrograde NEA population makes up ≃0.1% of the steady-state NEO population. The relative NEO impact rate onto Mercury, Venus, and Earth, as well as the normalized distribution of impact speeds, was calculated from the NEOSSat-1.0 orbital model under the assumption of a steady-state. The new model predicts a slightly higher Mercury impact flux.

  15. Variability of dayside electron temperature at Venus

    NASA Technical Reports Server (NTRS)

    Mahajan, K. K.; Ghosh, S.; Paul, R.; Hoegy, W. R.

    1994-01-01

    Langmuir probe measurements on Pioneer Venus Orbiter show that electron temperature (Te) profiles exhibit two distinct regions. The lower, but more extended region is in the main ionosphere where Te increases slowly with altitude. The other, less extended region is in the ionopause, where Te rise sharply with altitude. If horizontal magnetic fields and flux ropes in the ionosphere inhibit vertical thermal conductivity sufficiently, then the observed Te profile could be explained with EUV as the major heat source (Cravens et al., 1980). The rise in Te in the ionopause region has generally been attributed to solar wind heating (Brace and Kliore, 1991). We suggest that this sharp rise in Te is due primarily to the steep fall in electron density, Ne. If the heating rate is essentially unchanged and heat conduction is not of primary importance, then a steep rise in Te will maintain a constant electron cooling rate for a steeply falling Ne. We have observed large orbit to orbit variations in Te in the ionopause region which are found to be inversely related to changes in Ne. Variations in solar wind dynamic pressure do not seem to have a direct effect on Te, rather the effect is indirect coming through the sharp decrease in Ne.

  16. STS-30 ATLANTIS - ORBITER VEHICLE (OV)-104 - CREW INSIGNIA

    NASA Image and Video Library

    1989-02-17

    S89-20025 (3 March 1989) --- The STS-30 patch depicts the joining of NASA's manned and unmanned space programs. The sun and inner planets of our solar system are shown with the curve connecting Earth and Venus symbolizing the shuttle orbit, the spacecraft trajectory toward Venus and its subsequent orbit around our sister planet. A Spanish caravel similar to the ship on the official Magellan program logo commemorates the 16th century explorer's journey and his legacy of adventure and discovery. Seven stars on the patch honor the crew of Challenger. The five-star cluster in the shape of the constellation Cassiopeia represent the five STS-30 crew members--astronauts David M. Walker, Ronald J. Grabe, Norman E. Thagard, Mary L. Cleave and Mark C. Lee-who collectively designed the patch. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  17. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.

    1990-04-01

    Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less

  18. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering new instrument designs for future Venus missions.

  19. Venus Atmospheric Maneuverable Platform Science Mission

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Lee, Gregory; Ross, Floyd; Sokol, Daniel; Bolisay, Linden

    2015-11-01

    Over the past several years, we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop (non-NASA) development programs and have come up with a new class of exploration vehicle: an atmospheric rover. We will discuss a possible suite of instruments and measurements to study the current climate through detailed characterization of cloud level atmosphere and to understand the processes that control climate on Earth-like planets.Our Venus atmospheric rover concept, the Venus Atmospheric Maneuverable Platform (VAMP), is a hypersonic entry vehicle with an ultra-low ballistic coefficient that transitions to a semi-buoyant air vehicle (AV) after entering the Venus atmosphere. Prior to entry, the AV fully deploys to enable lifting entry and eliminates the need for an aeroshell. The mass savings realized by eliminating the aeroshell allows VAMP to accommodate significantly more instruments compared to previous Venus in situ exploration missions. VAMP targets the global Venus atmosphere between 50-65 km altitudes and would be an ideal, stable platform for atmospheric and surface interaction measurements. We will present a straw man concept of VAMP, including its science instrument accommodation capability and platform’s physical characteristics (mass, power, wingspan, etc). We will discuss the various instrument options.VAMP’s subsonic flight regime starts at ~94 km and after <1 hour, the AV will reach its cruise altitude of ~65 km. During this phase of flight, the VAMP sensor suite will acquire a pre-defined set of upper atmosphere measurements. The nominal VAMP lifetime at cruise altitude is several months to a year, providing numerous circumnavigation cycles of Venus at mid-latitude. The stability of the AV and its extended residence time provide the very long integration times required for isotopic mass analysis. VAMP communicates with the orbiter, which provides data relay and possibly additional science measurements complementing the in situ measurements from the AV. We will specifically focus upon key factors impacting the design and performance of VAMP science.

  20. The need for New In Situ Measurements to Understand the Climate, Geology and Evolution of Venus.

    NASA Astrophysics Data System (ADS)

    Grinspoon, D. H.

    2017-12-01

    Many measurements needed to address outstanding questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. Among these are precise determination of the value and altitude dependence of the deuterium-to-hydrogen ratio, an important tracer of water history which, while clearly greatly elevated compared to the terrestrial ratio, is still unknown within a large range of uncertainty and appears, based on Venus Express results, to display an enigmatic altitude dependence. Rare gas abundances and isotopes provide clues to volatile sources and histories of outgassing and exospheric escape. Modern mass spectrometry at Venus would yield abundances of the eight stable xenon isotopes, bulk abundances of krypton, and isotopes of neon. Altitude profiles of sulfur-containing chemical species would illuminate global geochemical cycles, including cloud formation, outgassing rates and surface-atmosphere interactions. The altitude profile of wind speeds and radiation fluxes, interpreted in light of the Venus Express and Akatsuki data, would enrich understanding of the global circulation and climate dynamics of Venus. Descent and surface images of carefully chosen locations would lend ground truth to interpretations of the near-global Magellan data sets and provide context for global remote sensing data obtained by future orbiter missions. Landed instruments would provide refinement and calibration for chemical abundance measurements by historical missions as well as direct mineralogical measurements of Venusian surface and subsurface rocks. In concert with atmospheric measurements these would greatly constrain geologic history as well as the nature of surface-atmosphere interactions. Such a suite of measurements will deepen our understanding of the origin and evolution of Venus in the context of Solar System and extrasolar terrestrial planets, determine the level and style of current geological activity, characterize the divergent climate evolution of Venus and Earth and extend our knowledge of the limits of habitability on hot terrestrial planets.

  1. Observations of energetic ions near the Venus ionopause

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Taylor, H. A.; Brace, L. H.; Niemann, H. B.; Scarf, F. L.

    1982-01-01

    Ions (primarily O/+/) with spacecraft rest frame energies greater than 40 eV have been observed by the Pioneer Venus Neutral Mass Spectrometer. The signature occurs in about 13% of the 700 orbits examined, primarily near the ionopause and at all solar zenith angles. The energetic ions coincide in location with superthermal ions observed by the Ion Mass Spectrometer and more rarely occur in some of the plasma clouds observed by the Electron Temperature Probe. These observations in conjunction with measurements by the Plasma Wave Instrument near the ionopause suggest that the ions are accelerated out of ionospheric plasma by the shocked solar wind through plasma wave-particle interactions.

  2. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1988-01-01

    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space.

  3. Space Shuttle to deploy Magellan planetary science mission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).

  4. Artist concept of Galileo with inertial upper stage (IUS) in low Earth orbit

    NASA Image and Video Library

    1989-08-25

    S89-42940 (April 1989) --- In this artist's rendition, the Galileo spacecraft is being boosted into its inter-planetary trajectory by the Inertial Upper Stage (IUS) rocket. The Space Shuttle Atlantis, which is scheduled to take Galileo and the IUS from Earth's surface into space, is depicted against the curve of Earth. Galileo will be placed on a trajectory to Venus, from which it will return to Earth at higher velocity and then gain still more energy in two gravity-assist passes, until it has enough velocity to reach Jupiter. Passing Venus, it will take scientific data using instruments designed for observing Jupiter; later, it will make measurements at Earth and the moon, crossing above the moon's north pole in the second pass. Between the two Earth passes, it will edge into the asteroid belt, beyond Mars' orbit; there, the first close-up observation of an asteroid is planned. Crossing the belt later, another asteroid flyby is possible.

  5. Solar thermal vacuum tests of Magellan spacecraft

    NASA Technical Reports Server (NTRS)

    Neuman, James C.

    1990-01-01

    The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.

  6. Aerocapture Design Study for a Titan Polar Orbiter

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Kirchman, F.; Esper, J.; Folta, D.; Mashiku, A.

    2016-03-01

    In 2014 a team at NASA Goddard Space Flight Center (GSFC) studied the feasibility of using active aerocapture to reduce the chemical ΔV requirements for inserting a small scientific satellite into Titan polar orbit. The scientific goals of the mission would be multi-spectral imaging and active radar mapping of Titan's surface and subsurface. The study objectives were to: (i) identify and select from launch window opportunities and refine the trajectory to Titan; (ii) study the aerocapture flight path and refine the entry corridor; (iii) design a carrier spacecraft and systems architecture; (iv) develop a scientific and engineering plan for the orbital portion of the mission. Study results include: (i) a launch in October 2021 on an Atlas V vehicle, using gravity assists from Earth and Venus to arrive at Titan in January 2031; (ii) initial aerocapture via an 8-km wide entry corridor to reach an initial 350-6000 km orbit, followed by aerobraking to reach a 350-1500 km orbit, and a periapse raise maneuver to reach a final 1500 km circular orbit; (iii) a three-part spacecraft system consisting of a cruise stage, radiator module, and orbiter inside a heat shield; (iv) a 22-month mission including station keeping to prevent orbital decay due to Saturn perturbations, with 240 Gb of compressed data returned. High-level issues identified include: (i) downlink capability - realistic downlink rates preclude the desired multi- spectral, global coverage of Titan's surface; (ii) power - demise of the NASA ASRG (Advanced Stirling Radioisotope Generator) program, and limited availability at present of MMRTGs (Multi-Mission Radioisotope Generators) needed for competed outer planet missions; (iii) thermal - external radiators must be carried to remove 4 kW of waste heat from MMRTGs inside the aeroshell, requiring heat pipes that pass through the aeroshell lid, compromising shielding ability; (iv) optical navigation to reach the entry corridor; (v) the NASA requirement of continuous critical event coverage ! for the orbiter, especially during the peak heating of the aerocapture when the radio link will be broken. In conclusion, although Titan aerocapture allows for considerable savings in propellant mass, this comes at a cost of increased mission complexity. Further architecture study and refinement is required to reduce high-level mission risks and to elucidate the optimum architecture.

  7. Aerocapture Design Study for a Titan Polar Orbiter

    NASA Technical Reports Server (NTRS)

    Nixon, Conor A.; Kirchman, Frank; Esper, Jaime; Folta, David; Mashiku, Alinda

    2016-01-01

    In 2014 a team at NASA Goddard Space Flight Center (GSFC) studied the feasibility of using active aerocapture to reduce the chemical Delta V requirements for inserting a small scientific satellite into Titan polar orbit. The scientific goals of the mission would be multi-spectral imaging and active radar mapping of Titan's surface and subsurface. The study objectives were to: (i) identify and select from launch window opportunities and refine the trajectory to Titan; (ii) study the aerocapture flight path and refine the entry corridor; (iii) design a carrier spacecraft and systems architecture; (iv) develop a scientific and engineering plan for the orbital portion of the mission. Study results include: (i) a launch in October 2021 on an Atlas V vehicle, using gravity assists from Earth and Venus to arrive at Titan in January 2031; (ii) initial aerocapture via an 8-km wide entry corridor to reach an initial 350X6000 km orbit, followed by aerobraking to reach a 350X1500 km orbit, and a periapse raise maneuver to reach a final 1500 km circular orbit; (iii) a three-part spacecraft system consisting of a cruise stage, radiator module, and orbiter inside a heat shield; (iv) a 22-month mission including station keeping to prevent orbital decay due to Saturn perturbations, with 240 Gb of compressed data returned. High-level issues identified include: (i) downlink capability - realistic downlink rates preclude the desired multi-spectral, global coverage of Titan's surface; (ii) power - demise of the NASA ASRG (Advanced Stirling Radioisotope Generator) program, and limited availability at present of MMRTGs (Multi-Mission Radioisotope Generators) needed for competed outer planet missions; (iii) thermal - external radiators must be carried to remove 4 kW of waste heat from MMRTGs inside the aeroshell, requiring heat pipes that pass through the aeroshell lid, compromising shielding ability; (iv) optical navigation to reach the entry corridor; (v) the NASA requirement of continuous critical event coverage for the orbiter, especially during the peak heating of the aerocapture when the radio link will be broken. In conclusion, although Titan aerocapture allows for considerable savings in propellant mass, this comes at a cost of increased mission complexity. Further architecture study and refinement is required to reduce high-level mission risks and to elucidate the optimum architecture.

  8. Orbital evolution studies of planet-crossing asteroids

    NASA Astrophysics Data System (ADS)

    Hahn, Gerhard; Lagerkvist, Claes-Ingvar

    The orbits of 26 planet-crossing Aten-Apollo-Amor asteroids are predicted on the basis of numerical integrations covering 33,000 or 100,000 yrs; the values reported supplement the preliminary findings of Hahn and Lagerkvist (1987). A solar-system dynamics model accounting for the effects of all planets from Venus to Neptune is employed, along with the 15th-order integration algorithm RADAU (Everhart, 1985). The results are presented in extensive tables and graphs and discussed in detail.

  9. System design of the Pioneer Venus spacecraft. Volume 4: Probe bus and orbiter spacecraft vehicle studies

    NASA Technical Reports Server (NTRS)

    Bozajian, J. M.

    1973-01-01

    The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.

  10. KSC-04pd1531

    NASA Image and Video Library

    2004-07-21

    KENNEDY SPACE CENTER, FLA. - MESSENGER, a NASA Discovery mission. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission is a scientific investigation of the planet Mercury. MESSENGER will be launched in the summer of 2004 and will enter Mercury orbit in March of 2011, after one Earth flyby, two flybys of Venus, and three of Mercury along the way. The flyby and orbital phases of the mission will provide global mapping and detailed characterization of the planet's surface, interior, atmosphere and magnetosphere.

  11. Reduction and analysis of seasons 15 and 16 (1991 - 1992) Pioneer Venus radio occulation data and correlative studies with observations of the near infrared emission of Venus

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.

    1995-01-01

    In this study, we sought to characterize variations in the abundance and distribution of subcloud H2SO4(g) in the Venus atmosphere by using a number of 13cm radio occultation measurements conducted with the Pioneer Venus Orbiter near the inferior conjunction of 1991. A total of ten data sets were examined and analyzed, producing vertical profiles of temperature and pressure in the neutral atmosphere, and sulfuric acid vapor abundance below the main cloud layer. Two of the vertical profiles of the abundance of H2SO4(g) were correlated with NIR images of the night side of Venus made during the same period of time by Boris Ragent (under a separate PVO Guest Investigator Grant). Initially, we had hoped that the combination of these two different types of data would make it possible to constrain or identify the composition of the large particles causing the features observed in the NIR images. However, the sparseness of the radio occultation data set, combined with the sparseness of the NIR data set (one image per day over an 8 day period) made it impossible to draw strong conclusions. Considered on their own, however, the parameters retrieved from the radio occultation experiments are valuable science products.

  12. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces

    NASA Astrophysics Data System (ADS)

    Ikegawa, Shinichi; Horinouchi, Takeshi

    2016-06-01

    Accurate wind observation is a key to study atmospheric dynamics. A new automated cloud tracking method for the dayside of Venus is proposed and evaluated by using the ultraviolet images obtained by the Venus Monitoring Camera onboard the Venus Express orbiter. It uses multiple images obtained successively over a few hours. Cross-correlations are computed from the pair combinations of the images and are superposed to identify cloud advection. It is shown that the superposition improves the accuracy of velocity estimation and significantly reduces false pattern matches that cause large errors. Two methods to evaluate the accuracy of each of the obtained cloud motion vectors are proposed. One relies on the confidence bounds of cross-correlation with consideration of anisotropic cloud morphology. The other relies on the comparison of two independent estimations obtained by separating the successive images into two groups. The two evaluations can be combined to screen the results. It is shown that the accuracy of the screened vectors are very high to the equatorward of 30 degree, while it is relatively low at higher latitudes. Analysis of them supports the previously reported existence of day-to-day large-scale variability at the cloud deck of Venus, and it further suggests smaller-scale features. The product of this study is expected to advance the dynamics of venusian atmosphere.

  13. Tidal constraints on the interior of Venus

    NASA Astrophysics Data System (ADS)

    Dumoulin, Caroline; Tobie, Gabriel; Verhoeven, Olivier; Rosenblatt, Pascal; Rambaux, Nicolas

    2017-04-01

    As a prospective study for a future exploration of Venus, we compute the tidal response of Venus' interior assuming various mantle compositions and temperature profiles representative of different scenarios of Venus' formation and evolution. The mantle density and seismic velocities are modeled from thermodynamical equilibria of mantle minerals and used to predict the moment of inertia, Love numbers and tidal lag characterizing the signature of the internal structure in the gravity field. The viscoelasticity of the mantle is parameterized using an Andrade rheology. From the models considered here, the moment of inertia lies in the range of 0.327 to 0.342, corresponding to a core radius of 2900 to 3450 km. The potential Love number, k2, varies from 0.25 to 0.36. Viscoelasticity of the mantle strongly increases the Love number relative to previous elastic models : depending on mantle viscosity, k2 is increased by up to 25% using a liquid core. Moreover, once a viscoelastic rheology is assumed for the core, our calculations show that the estimation of k2 from tracking of Magellan and Pioneer Venus Orbiter does not rule out the possibility of a completely solid core. Except if the solid core has a high viscosity (≥ 1018 Pa.s), solutions with both liquid and solid cores are consistent with the present-day estimation of k2. More accurate estimation of the Love number together with estimation of tidal lag by future exploration mission are required to determine the state of Venus' core and to constrain the thermo-compositional evolution of the mantle.

  14. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  15. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  16. The red and green lines of atomic oxygen in the nightglow of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1990-01-01

    O(1D) and O(1S), the excited states that give rise to the atomic oxygen red and green lines, are produced in the Venus nightglow in dissociative recombination of O2(+). The emissions should also be excited by precipitation of soft electrons, the suggested source of the 'auroral' emission features of atomic oxygen at 1304 and 1356 A, which have been reported from observations of the Pioneer Venus Orbiter Ultraviolet Spectrometer. No emisison at 6300 or 5577 A was detected, however, by the visible spectrophotometers on the Soviet spacecraft Veneras 9 and 10; upper limits have been placed on the intensities of these features. The constraints placed on models for the auroral production mechanism by the Venera upper limits by modeling the intensities of the red and green lines in the nightglow are evaluated, combining a model for the vibrational distribution of O2(+) on the nightside of Venus with rate coefficients recently computed by Guberman for production of O(1S) and O(1D) in dissociative recombination of O2(+) from different vibrational levels. The integrated overhead intensities are 1 - 2 R for the green line and about 46 R for the red line.

  17. Radio Occultation Experiments with Venus Express and Mars Express using the Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.

    2017-12-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.

  18. Study of ballistic mode Mercury Orbiter missions. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Hollenbeck, G. R.

    1973-01-01

    A summary is given of the scope, approach, and major results of the study of ballistic mode Mercury orbit missions (the Mariner Venus-Mercury spacecraft). The performance potential of ballistic flight mode is presented along with a study of alternate flight techniques. Orbit selection considerations are discussed in terms of the thermal environment of Mercury. Orbiter science experiments are summarized. Technology assessments were conducted for major subsystems appropriate to spin-stabilized and three-axis-stabilized spacecraft designs. Conclusions from this study are: ballistic mode Mercury orbiter missions offer adequate performance for effective follow-up of the MVM'73 science findings; the existing and programmed technology base is adequate for implementation of Mercury orbit spacecraft design; and when pending MVM flyby has been accomplished and the results analyzed, the data base will be adequate to support detailed orbiter spacecraft design efforts.

  19. "Geometric" planetology and origin of the Moon

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The comparative wave planetology [1 & othres] demonstrates graphically its main conceptual point: orbits make structures. The structures are produced by a warping action of stationary waves induced in bodies by non-circular orbits with periodically changing bodies' accelerations. A geometric model of tectonic granulation of planets is a schematic row of even circles adorned with granules radius of which increases in direction from Sun to the outer planets. It was shown that the granule radii are inversely proportional to the orbital frequencies of planets. Thus, there is a following row of these radii: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. It was also shown that these radii well correlate with planetary surface "ruggedness". This observation led to a conception of the "relief-forming potential of planets"[2]. So, this potential is rather weak in Mercury and Venus, rather high in Mars and intermediate in Earth. Certainly, orbital eccentricities were even higher at the earlier period of planet formation, at debris zones of their accretion causing scattering debris material. This scattering was small at Mercury' and Venus' zones, large at the Mars' zone and intermediate at the Earth's zone. Consequently, gravity kept debris in the first zones, allowed them escape in the martian zone, and allowed to have separated debris sub zone in the vicinity of the Earth's zone or around not fully consolidated (accreted) Earth. Rejecting the giant impact hypotheses of Moon formation as contradicting the fact of the ubiquitous wave induced tectonic dichotomy of celestial bodies (Theorem1 [3]) one should concentrate at hypotheses dealing with formation of the satellite from primordial debris in a near-Earth heliocentric orbit or in a circumterrestrial orbit from debris wave separated from the Earth' zone of accretion. Wave scattering of primordial material from an accretion zone or from a not fully accreted (consolidated) body is a normal process traces of which one observes now in presence of satellites around all planets except Venus and Mercury (both have smallest wave induced granula sizes: R/6 and R/16, correspondingly). So, Venus during its formation was not able to throw away enough solids to form a satellite (but degassing was important, nearly complete and the huge atmosphere is there). Earth with the larger amplitude of its granula forming waves produced enough solids to make a satellite (during a pre-planet stage from accretion debris or during earlier stages of debris accretion into a body). Mars with still larger granula forming waves (granula size R/2) threw away a lot of material but its small gravity now keeps only two small satellites. The martian body itself warped by huge waves lost a lot of its mass and is semi-destructed. In the asteroid belt still larger wave (granula size R/1, and in the 1:1 resonance with the fundamental wave !) scattered away almost all primary mass of material and there was no chance to gather any decent planetary body. In the outer Solar system large planets with important gravities keep "exuberant" satellite systems and debris rings. The wave comparative planetology, thus, introducing the conception of warping structurizing waves, is not surprised by the Moon appearance. What is needed, just to recognize a special position of Earth in the planetary sequence determining its orbital frequency and thus a size of its tectonic granulation. References: [1] Kochemasov, G.G. (1992) Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), p. 36-37. [2] Kochemasov G.G. (2009) New Concepts in Global Tectonics Newsletter, # 51, 58-61. [3] Kochemasov G. (1999) Geophys. Res. Abstr., V.1, #3, 700.

  20. The Venus Emissivity Mapper - Investigating the Atmospheric Structure and Dynamics of Venus’ Polar Region

    NASA Astrophysics Data System (ADS)

    Widemann, Thomas; Marcq, Emmanuel; Tsang, Constantine; Mueller, Nils; Kappel, David; Helbert, Joern; Dyar, Melinda; Smrekar, Suzanne

    2017-10-01

    Venus displays the best-known case of polar vortices evolving in a fast-rotating atmosphere. Polar vortices are pervasive in the Solar System and may also be present in atmosphere-bearing exoplanets. While much progress has been made since the early suggestion that the Venus clouds are H2O-H2SO4 liquid droplets (Young 1973), several cloud parameters are still poorly constrained, particularly in the lower cloud layer and optically thicker polar regions. The average particle size is constant over most of the planet but increases toward the poles. This indicates that cloud formation processes are different at latitudes greater than 60°, possibly as a result of the different dynamical regimes that exist in the polar vortices (Carlson et al. 1993, Wilson et al. 2008, Barstow et al. 2012).Few wind measurements exist in the polar region due to unfavorable viewing geometry of currently available observations. Cloud-tracking data indicate circumpolar circulation close to solid-body rotation. E-W winds decrease to zero velocity close to the pole. N-S circulation is marginal, with extremely variable morphology and complex vorticity patterns (Sanchez-Lavega et al. 2008, Luz et al. 2011, Garate-Lopez et al. 2013).The Venus Emissivity Mapper (VEM; Helbert et al., 2016) proposed for NASA’s Venus Origins Explorer (VOX) and the ESA M5/EnVision orbiters has the capability to better constrain the microphysics (vertical, horizontal, time dependence of particle size distribution, or/and composition) of the lower cloud particles in three spectral bands at 1.195, 1.310 and 1.510 μm at a spatial resolution of ~10 km. Circular polar orbit geometry would provide an unprecedented simultaneous study of both polar regions within the same mission. In addition, VEM’s pushbroom method will allow short timescale cloud dynamics to be assessed, as well as local wind speeds, using repeated imagery at 90 minute intervals. Tracking lower cloud motions as proxies for wind measurements at high spatial resolutions will greatly benefit modeling of the vortice’s physics, as well as wave-generating dynamical instabilities (Garate-Lopez et al. 2015).

  1. A Survey of Ballistic Transfers to Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Peterson, Andrew

    2011-01-01

    A simple strategy is identified to generate ballistic transfers between the Earth and Moon, i.e., transfers that perform two maneuvers: a trans-lunar injection maneuver to depart the Earth and a Lunar Orbit Insertion maneuver to insert into orbit at the Moon. This strategy is used to survey the performance of numerous transfers between varying Earth parking orbits and varying low lunar target orbits. The transfers surveyed include short 3-6 day direct transfers, longer 3-4 month low energy transfers, and variants that include Earth phasing orbits and/or lunar flybys.

  2. Studies of Venus from Orbit - Microwave Remote Sensing after Magellan

    NASA Astrophysics Data System (ADS)

    Campbell, B. A.

    2005-12-01

    The Magellan dataset provided the first opportunity for detailed analysis of the geology and geophysics of Venus, revealing that the surface is characterized by three major landform types: upland tessera plateaus, large shield volcanoes, and vast lowland plains assumed to reflect volcanic flooding. Plate tectonics does not appear to be currently active, so heat is released by some combination of conduction through the crust and effusive volcanism. The relative importance of these mechanisms is not well understood. The dense atmosphere filters the small impactors that form the basis of relative age dating among regions on the Moon, Mercury, and Mars. The remaining impactor population is reflected in ~1000 craters larger than ~5 km in diameter, which suggest that the surface is younger than ~1 b.y. Beyond this, the low spatial density of craters precludes definitive relative dating of even regional-scale features. It is also likely that the high surface temperature precludes the use of radioisotope age dating, either in situ or on returned samples. Unlike any other terrestrial planet, Venus therefore offers no simple evidence for differences in relative age or rates of formation between major regions and landforms. This has led to widely varying interpretations of geologic history and atmospheric evolution. For example, it is possible that Venus has undergone an essentially linear progression of geologic processes now recorded at the surface by the tesserae, plains, and volcanic constructs. It has also been suggested that large, episodic releases of heat by effusive volcanism would inject atmospheric volatiles, leading to transient heating of the atmosphere to perhaps 1000 K. The contrasting view is that Venus' surface reflects a progression of processes generally linked to lithospheric thickness, but that this progression may occur at very different times in different places. The choice between these interpretations is crucial to understanding the geologic and climate history of Venus, and the potential range of terrestrial planet evolutionary styles. More than ten years after Magellan, these questions appear to be impossible to answer without a fundamentally new view of the planet. The key to solving the mystery may lie below the Venus plains. Are there buried impact craters or basins, and do these indicate age differences between the major plains regions? Do the tesserae comprise a regional or global basement? Are the plains formed in great lava floods, or by a sequence of thinner flow units? How thick are the plains, and what does this indicate about release of heat by resurfacing? Are the great shield volcanoes always younger than the plains, or do their earlier deposits lie buried by interleaved plains-forming lavas? We present the science rationale for VISTA, a Discovery-class orbital mission to Venus, carrying ground-penetrating radar sounder and high-resolution radar altimeter instruments, to answer these fundamental questions and place the Magellan data in an entirely new context.

  3. Ancient heliocentrists, Ptolemy, and the equant

    NASA Astrophysics Data System (ADS)

    Rawlins, Dennis

    1987-03-01

    Evidence is presented suggesting an ancient heliocentrist origin for geocentrist C. Ptolemy's planetary orbit elements and the equant. Pliny's data for Venus are shown to be inconsistent with geocentricity, and a heliocentric period-relation is found to be the basis of Ptolemy's previously unexplained and astonishingly accurate tables of the mean motion of Mars, the very planet whose orbit produced the equant. The admirable correctness of his adopted Mars elements is patently inconsistent with the ordmag 1° inaccuracy of Ptolemy's geocentric model and of his alleged empirical production.

  4. The role of automatic control in future interplanetary spaceflight

    NASA Technical Reports Server (NTRS)

    Scull, J. R.; Moore, J. W.

    1976-01-01

    The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.

  5. Evolution of orbits of the Apollo group asteroids over 11550 years.

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    The Everhart method is used to study the evolution of the orbits of 20 asteroids of the Apollo group over the time period from 9300 B.C. to 2250 A.D. Minimum distances of the asteroids to the major planets over the evolution process are calculated. The stability of resonances with Venus and Earth over the 9300 B.C.to 2250 A.D. time period is shown. Theoretical coordinates of radiants for the initial and final integration times are presented.

  6. Dance of the Planets

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  7. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  8. Geophysical Interpretation of Venus Gravity Data

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.

    1985-01-01

    The subsurface distribution of Venus was investigated through the analysis of the data from Pioneer Venus Orbiter (PVO). In particular, the Doppler tracking data were used to map the gravitational potential. These were compared to the topographic data from the PVO radar (ORAD). In order to obtain an unbiased comparison, the topography data obtained from the PVO-ORAD were filtered to introduce distortions which are the same as those of the gravity models. Both the gravity and filtered topography maps are derived by two stage processes with a common second stage. In the first stage, the topography was used to calculate a corresponding spacecraft acceleration under the assumptions that the topography has a uniform given density and no compensation. In the second stage, the acceleration measures found in the first stage were passed through a linear inverter to yield maps of gravity and topography. Because these maps are the result of the same inversion process, they contain the same distortion; a comparison between them is unbiased to first order.

  9. Alfvén eigenmode evolution computed with the VENUS and KINX codes for the ITER baseline scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaev, M. Yu., E-mail: isaev-my@nrcki.ru; Medvedev, S. Yu.; Cooper, W. A.

    A new application of the VENUS code is described, which computes alpha particle orbits in the perturbed electromagnetic fields and its resonant interaction with the toroidal Alfvén eigenmodes (TAEs) for the ITER device. The ITER baseline scenario with Q = 10 and the plasma toroidal current of 15 MA is considered as the most important and relevant for the International Tokamak Physics Activity group on energetic particles (ITPA-EP). For this scenario, typical unstable TAE-modes with the toroidal index n = 20 have been predicted that are localized in the plasma core near the surface with safety factor q = 1.more » The spatial structure of ballooning and antiballooning modes has been computed with the ideal MHD code KINX. The linear growth rates and the saturation levels taking into account the damping effects and the different mode frequencies have been calculated with the VENUS code for both ballooning and antiballooning TAE-modes.« less

  10. The altitude distribution of the Venus ultraviolet nightglow and implications on vertical transport

    NASA Technical Reports Server (NTRS)

    Gerard, J. C.; Stewart, A. I. F.; Bougher, S. W.

    1981-01-01

    The altitude distribution of the nitric oxide nightglow was measured with an ultraviolet spectrometer on board Pioneer Venus, in order to study the effects of the distribution on the Venus nightside lower thermosphere transport properties. Limb profiles were obtained with an 8 ms integration period on several orbits near periapsis. The observations were made between P minus 2 min and P plus 4 min, where altitude ranges between 150 and 350 km, and latitude varies from 24 degrees N to 9 degrees S. A method independent of the spacecraft attitude data was used to fit the observed limb profiles, and to find the altitude of the maximum of the layer (115 plus or minus 2 km), and the topside scale height (about 3 km). It is shown that downward transport by diffusion alone is not sufficient, and if vertical motion is parameterized by eddy diffusion, an eddy diffusion coefficient is deduced from the altitude of the layer.

  11. Venus - Global gravity and topography

    NASA Technical Reports Server (NTRS)

    Mcnamee, J. B.; Borderies, N. J.; Sjogren, W. L.

    1993-01-01

    A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisonsbetween this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.

  12. Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki

    NASA Astrophysics Data System (ADS)

    Imamura, Takeshi; Ando, Hiroki; Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Yamazaki, Atsushi; Sato, Takao M.; Noguchi, Katsuyuki; Futaana, Yoshifumi; Oschlisniok, Janusz; Limaye, Sanjay; Choudhary, R. K.; Murata, Yasuhiro; Takeuchi, Hiroshi; Hirose, Chikako; Ichikawa, Tsutomu; Toda, Tomoaki; Tomiki, Atsushi; Abe, Takumi; Yamamoto, Zen-ichi; Noda, Hirotomo; Iwata, Takahiro; Murakami, Shin-ya; Satoh, Takehiko; Fukuhara, Tetsuya; Ogohara, Kazunori; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko; Takagi, Seiko; Yamamoto, Yukio; Hirata, Naru; Hashimoto, George L.; Yamada, Manabu; Suzuki, Makoto; Ishii, Nobuaki; Hayashiyama, Tomoko; Lee, Yeon Joo; Nakamura, Masato

    2017-10-01

    After the arrival of Akatsuki spacecraft of Japan Aerospace Exploration Agency at Venus in December 2015, the radio occultation experiment, termed RS (Radio Science), obtained 19 vertical profiles of the Venusian atmosphere by April 2017. An onboard ultra-stable oscillator is used to generate stable X-band downlink signals needed for the experiment. The quantities to be retrieved are the atmospheric pressure, the temperature, the sulfuric acid vapor mixing ratio, and the electron density. Temperature profiles were successfully obtained down to 38 km altitude and show distinct atmospheric structures depending on the altitude. The overall structure is close to the previous observations, suggesting a remarkable stability of the thermal structure. Local time-dependent features are seen within and above the clouds, which is located around 48-70 km altitude. The H2SO4 vapor density roughly follows the saturation curve at cloud heights, suggesting equilibrium with cloud particles. The ionospheric electron density profiles are also successfully retrieved, showing distinct local time dependence. Akatsuki RS mainly probes the low and middle latitude regions thanks to the near-equatorial orbit in contrast to the previous radio occultation experiments using polar orbiters. Studies based on combined analyses of RS and optical imaging data are ongoing.[Figure not available: see fulltext.

  13. On the past orbital history of Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Carusi, A.; Valsecchi, G. B.; Kresak, L.; Perozzi, E.

    The results of backward integration of the Comet P/Halley behavior over the time span from 1585 AD to 9367 BC (a total of 4 million days) are discussed. The integration was performed on the FPS 364, using the integrator described by Everhart (1985); planets from Venus to Neptune were included, and nongravitational forces were neglected. Graphs are presented for the temporal evolution of the orbital eccentricity (computed along the barycentric orbit at each aphelion passage), orbital inclination, the argument of perihelion of the orbit, perihelion distance, and the two nodal distances of P/Halley comet. A more or less continuous decrease of the orbital eccentricity and inclination were found, as well as of the argument of perihelion. It is suggested that Comet P/Halley may have undergone strong gravitational interactions with Jupiter about 11,000 years ago, and that the time span spent by the comet in a short period orbit may be as short as that.

  14. Magellan

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Of all the planets in the solar system, Venus is the most like our own Earth in size, mass, and distance from the Sun. The motions of our planetary "twin" were known to the ancients, and its apparent changes in shape, similar to the phases of the Moon, were first studied by Galileo more than four centuries ago. In the modern era, it is by far the most visited world in the solar system - more than 20 spacecraft from the Soviet Union and the United States have been sent there since the early 1960's. The clouds of Venus have been probed, the structure and composition of its atmosphere measured, its landscape photographed, and its rocks chemically analyzed by automated landers. Yet, for all our fascination with Venus, we have only a sketchy, general knowledge of the planet's surface. While the other three "terrestrial" worlds - Earth, Mercury, and Mars have long since been mapped, details of the face of Venus are still largely unknown, due to the planet's dense, constant cloud cover. The clouds prevent us from ever photographing the solid surface, even from space, with conventional cameras. Beginning in the early 1960s, scientists on Earth began to counter this problem by using radar waves, which, unlike visible light, are able to penetrate the Venusian clouds and reflect off the solid planet back to Earth. With the help of computer processing, these radar reflections can be turned into pictures of the Venus surface. Earth-based radar imaging is thus extremely valuable. but it also is limited-Venus always shows the same hemisphere to us when it is near enough in its orbit for high-resolution study, so only a fraction of the planet can be explored from Earth.

  15. Venus winds from ultraviolet, visible and near infrared images from the VIRTIS instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Garate-Lopez, I.; Peralta, J.; Bandos, T.; Sánchez-Lavega, A.

    2013-10-01

    After more than 6 years orbiting Venus the Venus Express mission has provided the largest database of observations of Venus atmosphere at different cloud layers with the combination of VMC and VIRTIS instruments. We present measurements of cloud motions in the South hemisphere of Venus analyzing images from the VIRTIS-M visible channel at different wavelengths sensitive to the upper cloud haze at 65-70 km height (dayside ultraviolet images) and the middle cloud deck (dayside visible and near infrared images around 1 μm) about 5-8 km deeper in the atmosphere. We combine VIRTIS images in nearby wavelengths to increase the contrast of atmospheric details and measurements were obtained with a semi-automatic cloud correlation algorithm. Both cloud layers are studied simultaneously to infer similarities and differences in these vertical levels in terms of cloud morphologies and winds. For both levels we present global mean zonal and meridional winds, latitudinal distribution of winds with local time and the wind shear between both altitudes. The upper branch of the Hadley cell circulation is well resolved in UV images with an acceleration of the meridional circulation at mid-latitudes with increasing local time peaking at 14-16h. This organized meridional circulation is almost absent in NIR images. Long-term variability of zonal winds is also found in UV images with increasing winds over time during the VEX mission. This is in agreement with current analysis of VMC images (Kathuntsev et al. 2013). The possible long-term acceleration of zonal winds is also examined for NIR images. References Khatuntsev et al. Icarus 226, 140-158 (2013)

  16. Notes on the diversity of the properties of radio bursts observed on the nightside of Venus

    NASA Technical Reports Server (NTRS)

    Sonwalkar, Vikas S.; Carpenter, D. L.

    1995-01-01

    We report on further studies of radio wave bursts detected by the Orbiting Electric Field Detector (OEFD) on the Pioneer Venus Orbiter (PVO) in the nightside ionosphere of Venus. We have tested a total of 25 cases of wave burst activity for evidence of whistler-mode propagation to the spacecraft from impulsive subionospheric sources. As in a previous study of 11 of these cases (Sonwalkar et al., 1991) we find at least two distinct classes of events, one, mostly involving bursts at 100 Hz only, that passes certain tests for whistler-mode propagation, and another, mostly involving bursts in two or more of the four PVO narrowband channels (at 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz), that fails to pass the tests. The subionospheric lightning hypothesis continues to be tenable as a candidate explanation for many of the 100 Hz-only events, but its number of 100 Hz-only cases that do no pass all the applicable whistler-mode tests, as well as the existence at a wide range of altitudes of multichannel cases that are clearly not propagating whistler-mode waves. The wideband bursts are often observed at altitudes above 1000 km and frequently occur in regions of locally reduced electron density. Those observed at high altitude (and possibly low altitude as well) are believed to be generated near the spacecraft, possibly by an as yet unknown mechanism responsible for similar burst observations made near Earth and other planets.

  17. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  18. 3.6 cm signal attenuation in Venus' lower and middle atmosphere observed by the Radio Science experiment VeRa onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Oschlisniok, J.; Tellmann, S.; Pätzold, M.; Häusler, B.; Andert, T.; Bird, M.; Remus, S.

    2012-09-01

    The planet Venus is shrouded within a roughly 20 km thick cloud layer, which extends from the lower to the middle atmosphere (ca. 50 - 70 km). While the clouds are mostly composed of sulfuric acid droplets, a haze layer of sulfuric acid vapor exists below the clouds. Within the cloud and the sub - cloud region Radio signal strength variations (intensity scintillations) caused by atmospheric waves and a decrease in the signal intensity caused by absorption by H2SO4 are observed by radio occultation experiments. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa probes the atmosphere with radio signals at 3.6 cm (XBand) and 13 cm (S-Band) wavelengths. The disturbance of the radio signal intensity is used to investigate the cloud region with respect to atmospheric waves. The absorption of the signal is used to determine the abundance of H2SO4 near the cloud base. This way a detailed study of the H2SO4 abundance within the cloud and sub - cloud region is possible. Results from the intensity scintillations within the cloud deck are presented and compared with gravity wave studies based on temperature variations inferred from VeRa soundings. Vertical absorptivity profiles and resulting sulfuric acid vapor profiles are presented and compared with previous missions. A distinct latitudinal dependence and a southern northern symmetry are clearly visible.

  19. Aeolian sand transport and aeolian deposits on Venus: A review

    NASA Astrophysics Data System (ADS)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.

    2017-06-01

    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the most effective way to obtain essential new knowledge about aeolian transport on Venus.

  20. Venus Express is a step toward the surface of the planet

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.

    2005-12-01

    The Venus atmosphere makes it extremely challenging to mimic the steps of the successful Mars Exploration Program, namely orbital reconnaissance, followed by targeted in situ landers, rovers and sample return. Thus, many fundamental questions about the Venus surface remain unanswered, the most important of which is composition. We must measure the composition of the crust to constrain the thermal, volatile and geochemical evolution of the planet. In addition to measurement of recent processes, the crustal composition may contain clues to the first 80% of the history of this planet. This need has been recognized by the scientific community who has placed Venus in situ science as a high priority mission in the Decadal Survey and the Solar System Roadmap. Consider VEX as a helpful step in a Venus Exploration Program that includes a New Frontiers to Flagship class mission to the surface in the coming decade. How can VEX drive landing site selection? The VIRTIS instrument will provide a new map of the Venus surface at several wavelengths, including the atmospheric window at ~1 micron. Hashimoto and Sugita (2003 JGR E9) contend that observations in the NIR will allow the distinction of emissivity differences between mafic and felsic materials. Certainly the spatial resolution of VIRTIS will allow comparison of tessera plateaus to plains and potentially lava flow fields as well. Such a first order compositional map, in the context of the Venera measurements and Magellan observations, may reveal areas of special attention including: compositional contacts, regions of unique or unusual compositions (ala the Opportunity landing site on Mars), and thermal aberrations that may be related to volcanic activity. The emissivity data will improve understanding of the thermal environment of potential landing sites. A model Venus sample return mission (Sweetser et al. 1999 IEEEAC; Rodgers et al. 2000 IEEEAC) will be described as an example of the long term goal of this prototype program.

  1. Pioneer Venus orbiter search for Venusian lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borucki, W.J.; Dyer, J.W.; Phillips, J.R.

    1991-07-01

    During the 1988 and 1990, the star sensor aboard the Pioneer Venus orbiter (PVO) was used to search for optical pulses from lightning on the nightside of Venus. Useful data were obtained for 53 orbits in 1988 and 55 orbits in 1990. During this period, approximately 83 s of search time plus 7749 s of control data were obtained. The results again find no optical evidence for lightning activity. With the region that was observed during 1988, the results imply that the upper bound to short-duration flashes is 4 {times} 10{sup {minus}7} flashes/km{sup 2}/s for flashes that are at leastmore » 50% as bright as typical terrestrial lightning. During 1990, when the 2-Hz filter was used, the results imply an upper bound of 1 {times} 10{sup {minus}7} flashes/km{sup 2}/s for long-duration flashes at least 1.6% as bright as typical terrestrial lightning flashes or 33% as bright as the pulses observed by the Venera 9. The upper bounds to the flash rates for the 1988 and 1990 searches are twice and one half the global terrestrial rate, respectively. These two searches covered the region from 60{degrees}N latitude to 30{degrees}S latitude, 250{degrees} to 350{degrees} longitude, and the region from 45{degrees}N latitude to 55{degrees}S latitude, 155{degrees} to 300{degrees} longitude. Both searches sampled much of the nightside region from the dawn terminator to within 4 hours of the dusk terminator. These searches covered a much larger latitude range than any previous search. The results show that the Beat and Phoebe Regio areas previously identified by Russell et al. (1988) as areas with high rates of lightning activity were not active during the two seasons of the observations. When the authors assume that their upper bounds to the nightside flash rate are representative of the entire planet, the results imply that the global flash rate and energy dissipation rate derived by Krasnopol'sky (1983) from his observation of a single storm are too high.« less

  2. Gravity-assist trajectories to Venus, Mars, and the ice giants: Mission design with human and robotic applications

    NASA Astrophysics Data System (ADS)

    Hughes, Kyle M.

    Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each launch year are cataloged for orbiter missions to Uranus and Neptune. Solutions with sufficient delivered payload for a multi-planet mission (e.g. sending a probe to Saturn on the way to delivering an orbiter at Uranus) become available when the Space Launch System (SLS) launch vehicle is employed. A set of possible approach trajectories are modeled at the target planet to assess what (if any) adjustments are needed for ring avoidance, and to determine the probe entry conditions. Mars free-return trajectories are found with an emphasis on short flight times for application to near-term human flyby missions (similar to that of Inspiration Mars). Venus free-returns are also investigated and proposed as an alternative to a human Mars flyby mission. Attractive Earth-Mars free-return opportunities are identified that use an intermediate Venus flyby. One such opportunity, in 2021, has been adopted by the Inspiration Mars Foundation as a backup to the currently considered 2018 Mars free-return opportunity. Methods to establish spacecraft into Earth-Mars cycler trajectories are also investigated to reduce the propellant cost required to inject a 95-metric ton spacecraft into a cycler orbit. The establishment trajectories considered use either a V-infinity leveraging maneuver or low thrust. The V-infinity leveraging establishment trajectories are validated using patched conics via the STOUR program. Establishment trajectories that use low-thrust were investigated with particular focus on validating the patched-conic based solutions at instances where Earth encounter times are not negligible.

  3. Radio interferometric measurements for accurate planetary orbiter navigation

    NASA Technical Reports Server (NTRS)

    Poole, S. R.; Ananda, M.; Hildebrand, C. E.

    1979-01-01

    The use of narrowband delta-VLBI to achieve accurate orbit determination is presented by viewing a spacecraft from widely separated stations followed by viewing a nearby quasar from the same stations. Current analysis is examined that establishes the orbit determination accuracy achieved with data arcs spanning up to 3.5 d. Strategies for improving prediction accuracy are given, and the performance of delta-VLBI is compared with conventional radiometric tracking data. It is found that accuracy 'within the fit' is on the order of 0.5 km for data arcs having delta-VLBI on the ends of the arcs and for arc lengths varying from one baseline to 3.5 d. The technique is discussed with reference to the proposed Venus Orbiting Imaging Radar mission.

  4. Venus - Lineated Plains in Lakshmi Region

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This mosaic shows an area of the Lakshmi region that is located 30 degrees north latitude and 333.3 degrees east longitude. (Longitude on Venus is measured from 0 degrees to 360 degrees east). The area shown measures about 37 kilometers (23 miles) wide and 80 kilometers (50 miles) long. Based on data from the Pioneer Venus Orbiter and the ground-based Arecibo Radar Observatory, it is known that this region is located on the low rise that separates Sedna Planitia and Guinevere Planitia, just to the west of Eistla Regio. Two sets of parallel lineations are seen intersecting almost at right angles. The fainter lineations are spaced at regular intervals of about one kilometer (0.6 mile) and extend beyond the boundary of the image. The width of the faint lineations is at the limit of resolution of the best Magellan images. The brighter, more dominant lineations are less regular and, in places, appear to begin and end where they intersect the fainter lineations. It is not clear whether the two sets of lineations are faults or fractures, but in other Magellan images, these bright lineations are associated with pit craters and volcanic features. This type of terrain has not been seen on Venus nor on other planets. North is at the top of the image.

  5. Venus - Lineated Plains in Lakshmi Region

    NASA Image and Video Library

    1996-01-29

    This mosaic shows an area of the Lakshmi region that is located 30 degrees north latitude and 333.3 degrees east longitude. (Longitude on Venus is measured from 0 degrees to 360 degrees east). The area shown measures about 37 kilometers (23 miles) wide and 80 kilometers (50 miles) long. Based on data from the Pioneer Venus Orbiter and the ground-based Arecibo Radar Observatory, it is known that this region is located on the low rise that separates Sedna Planitia and Guinevere Planitia, just to the west of Eistla Regio. Two sets of parallel lineations are seen intersecting almost at right angles. The fainter lineations are spaced at regular intervals of about one kilometer (0.6 mile) and extend beyond the boundary of the image. The width of the faint lineations is at the limit of resolution of the best Magellan images. The brighter, more dominant lineations are less regular and, in places, appear to begin and end where they intersect the fainter lineations. It is not clear whether the two sets of lineations are faults or fractures, but in other Magellan images, these bright lineations are associated with pit craters and volcanic features. This type of terrain has not been seen on Venus nor on other planets. North is at the top of the image. http://photojournal.jpl.nasa.gov/catalog/PIA00085

  6. Venus high temperature atmospheric dropsonde and extreme-environment seismometer (HADES)

    NASA Astrophysics Data System (ADS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2015-06-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration; however, the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  7. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    NASA Technical Reports Server (NTRS)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  8. Long-term Behaviour Of Venus Winds At Cloud Level From Virtis/vex Observations

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Peralta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Piccioni, G.; Drossart, P.

    2009-09-01

    The Venus Express (VEX) mission has been in orbit to Venus for more than three years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present an analysis of the overall dynamics of Venus’ atmosphere at both levels using observations that cover a large fraction of the VIRTIS dataset. We will present our latest results concerning the zonal winds, the overall stability in the lower cloud deck motions and the variability in the upper cloud. Meridional winds are also observed in the upper and lower cloud in the UV and IR images obtained with VIRTIS. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present more irregular, variable and less intense motions in the meridional direction. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  9. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs.

    PubMed

    Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G

    2005-12-01

    Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.

  10. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles✰

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Lebonnois, Sebastien; Mahieux, Arnaud; Pätzold, Martin; Bougher, Steven; Bruinsma, Sean; Chamberlain, Sarah; Clancy, R. Todd; Gérard, Jean-Claude; Gilli, Gabriella; Grassi, Davide; Haus, Rainer; Herrmann, Maren; Imamura, Takeshi; Kohler, Erika; Krause, Pia; Migliorini, Alessandra; Montmessin, Franck; Pere, Christophe; Persson, Moa; Piccialli, Arianna; Rengel, Miriam; Rodin, Alexander; Sandor, Brad; Sornig, Manuela; Svedhem, Håkan; Tellmann, Silvia; Tanga, Paolo; Vandaele, Ann C.; Widemann, Thomas; Wilson, Colin F.; Müller-Wodarg, Ingo; Zasova, Ludmila

    2017-09-01

    The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components. The differences between the VEx temperature profiles and the VIRA below 0.1 mbar/95 km are small. There is, however, a clear discrepancy at high latitudes in the 10-30 mbar (70-80 km) range. The VEx observations will also allow the improvement of the empirical models (VTS3 by Hedin et al., 1983 and VIRA by Keating et al., 1985) above 0.03 mbar/100 km, in particular the 100-150 km region where a sufficient observational coverage was previously missing. The next steps in order to define the updated VIRA temperature structure up to 150 km altitude are (1) define the grid on which this database may be provided, (2) fill what is possible with the results of the data intercomparison, and (3) fill the observational gaps. An interpolation between the datasets may be performed by using available General Circulation Models as guidelines. An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude and at all local solar times for a complete description of the atmospheric thermal structure, in particular on the dayside above 100 km. New in-situ observations in the atmosphere below 40 km are missing, an altitude region that cannot be accessed by occultation experiments. All these questions need to be addressed by future missions.

  11. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1989-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. Some research projects as well as some applications are highlighted. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  12. Contemporary achievements in astronautics: Salyut-7, the Vega Project and Spacelab

    NASA Technical Reports Server (NTRS)

    Kubasov, V. N.; Balebanov, V. M.; Goldovskiy, D. Y.

    1986-01-01

    The latest achievements in Soviet aeronautics are described; the new stage in the space program to study Venus using Soviet automated space probes, and the next space mission by cosmonauts to the Salyut-7 station. Information is also presented on the flight of the Spacelab orbiting laboratory created by Western European specialists.

  13. Evidence for day-to-night ion transport at low solar activity in the Venus pre-dawn ionosphere

    NASA Technical Reports Server (NTRS)

    Brannon, J. F.; Fox, J. L.; Porter, H. S.

    1993-01-01

    Periapsis of the Pioneer Venus (PV) spacecraft dropped below 180 km on August 28, 1992 near midnight, and 42 orbits of low altitude data at moderately low solar activity in the pre-dawn sector were obtained before contact was lost to the spacecraft in October, 1992. Through a combination of analysis of data from the PV orbiter ion mass spectrometer (OIMS) and modeling, we consider here what can be learned about the relative importance of plasma transport from the dayside and electron precipitation in maintaining the nightside ionosphere during the re-entry period. In particular, we examine here the atomic ion density profiles. We compute the average peak density of O(+) as a function of solar zenith angle and determine what fluxes of atomic ions or precipitating electrons would be necessary to produce those values. We then compare model calculations of the ion densities to those observed during the re-entry period. We find that the low solar activity nightside ionosphere shows evidence of significant day-to-night plasma transport.

  14. Evidence for Day-to-Night Ion Transport at Low Solar Activity in the Venus Pre-Dawn Ionosphere

    NASA Technical Reports Server (NTRS)

    Brannon, J. F.; Fox, J. L.; Porter, H. S.

    1993-01-01

    Periapsis of the Pioneer Venus spacecraft dropped below 180 km on August 28, 1992 near midnight, and 42 orbits of low altitude data at moderately low solar activity in the pre-dawn sector were obtained before contact was lost to the spacecraft in October, 1992. Through a combination of analysis of data from the PV orbiter ion mass spectrometer (OIMS) and modeling, we consider here what can be learned about the relative importance of plasma transport from the dayside and electron precipitation in maintaining the nightside ionosphere during the re-entry period. In particular, we examine here the atomic ion density profiles. We compute the average peak density of O(+) as a function of solar zenith angle and determine what fluxes of atomic ions or precipitating electrons would be necessary to produce those values. We then compare model calculations of the ion densities to those observed during the re-entry period. We find that the low solar activity nightside ionosphere shows evidence of significant day-to-night plasma transport.

  15. Evidence for Day-to-Night Ion Transport at Low Solar Activity in the Venus Pre-Dawn Ionosphere

    NASA Technical Reports Server (NTRS)

    Brannon, J. F.; Fox, J. L.; Porter, H. S.

    1993-01-01

    Periapsis of the Pioneer Venus spacecraft 2 dropped below 180 km on August 28, 1992 near midnight, and 42 orbits of low altitude data at moderately low solar activity in the pre-dawn sector were obtained before contact was lost to the spacecraft in October, 1992. Through a combination of analysis of data from the PV orbiter ion mass spectrometer (OIMS) and modeling, we consider here what can be learned about the relative importance of plasma transport from the dayside and electron precipitation in maintaining the nightside ionosphere during the re-entry period. In particular, we examine here the atomic ion density profiles. We compute the average peak density of O(+) as a function of solar zenith angle and determine what fluxes of atomic ions or precipitating electrons would he necessary to produce those values. We then compare model calculations of the ion densities to those observed during the re-entry period. We find that the low solar activity nightside ionosphere shows evidence of significant day-to-night plasma transport.

  16. Ground-based observation of the cyclic nature and temporal variability of planetary-scale UV features at the Venus cloud top level

    NASA Astrophysics Data System (ADS)

    Imai, Masataka; Takahashi, Yukihiro; Watanabe, Makoto; Kouyama, Toru; Watanabe, Shigeto; Gouda, Shuhei; Gouda, Yuya

    2016-11-01

    A planetary-scale bright and dark UV feature, known as the ;Y-feature,; rotates around Venus with a period of 4-5 days and has been long-time interpreted as planetary waves. When assuming this, its rotation period and spatial structure might help to understand the propagation of the planetary-scale waves and find out their role in the acceleration-deceleration of the zonal wind speed, which is essential for understanding the super-rotation of the planet. The rotation period of the UV feature varied over the course of observation by the Pioneer Venus orbiter. However, in previous explorations of Venus such as Pioneer Venus and Venus Express, the spacecraft were operated in nearly fixed inertial space. As a result, the periodicity variations on sub-yearly timescales (one Venusian year is ∼224 Earth days) were obscured by the limitations of continuous dayside observations. We newly conducted six periods of ground-based Venus imaging observations at 365 nm from mid-August 2013 to the end of June 2014. Each observation period spanned over half or one month, enabling long-term monitoring of Venus' atmosphere above the equator region. Distributions of the relative brightness were obtained from the equatorial (EQ) to mid-latitudinal regions in both hemispheres, and from the cyclical variations of these distributions we deduced the rotation periods of the UV features of the cloud tops brightness. The relative brightness exhibited periods of 5.2 and 3.5 days above 90% of significance. The relative intensities of these two significant components also seemed subject to temporal variations. Although the 3.5-day component considered persists throughout the observation periods, its dominance over the longer period varied in a cyclic fashion. The prevailing first significant mode seems to change from 5.2-day waves to 3.5-day waves in about nine months, which is clearly inconsistent with the Venusian year. Clear periodic perturbations, indicating stability of the planetary-scale UV-feature, were observed only in the presence of single longer or shorter periodic waves. During the transition periods of dominant-wave changing, the amplitude of the relative brightness was largely changed. This can be explained by the deformation of the Y-shaped UV feature as observed by Pioneer Venus in 1979.

  17. Tidal Venuses: triggering a climate catastrophe via tidal heating.

    PubMed

    Barnes, Rory; Mullins, Kristina; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, René

    2013-03-01

    Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

  18. Mars Observer trajectory and orbit design

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Roncoli, Ralph B.

    1991-01-01

    The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.

  19. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  20. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    NASA Astrophysics Data System (ADS)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  1. Asteroid-type orbit evolution near the 5:2 resonance

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.

    1992-01-01

    In this case of the 5:2 commensurability with the motion of Jupiter, an asteroid can reach the orbits of Mars, Earth, and Venus when eccentricity e is greater than 0.41, 0.65, and 0.74, respectively. For individual fictitious asteroids, Ipatov and Yoshikawa obtained a growth in e from 0.15 to 074-0.76. Rates of changes in orbital orientations are different for Mars, Earth, Venus, and the asteroid. Therefore, for corresponding values of e, the asteroid could encounter these planets and leave the gap at those encounters. In order to investigate this hypothesis of the 5:2 Kirkwood gap formation, Ipatov studied the regions of initial data for which the eccentricities of asteroids located near the 5:2 commensurability exceeded 0.41 during evolution. The orbit evolution for 500 fictitious asteroids was investigated by numerical integration of the complete (unaveraged) equations of motion for the three-body problem (Sun-Jupiter-asteroid). The equations of motion were integrated in the time intervals T is greater than or equal to 5(10)(exp 3)t(sub J) (t(sub J) is the heliocentric orbital period of Jupiter) in the planar model, T is greater than or equal to 10(exp 4)t(sub J) at initial inclination 5 deg is less than or equal to i(sub 0) is less than or equal to 20 deg and T = 10(exp 5)t(sub J) at i(sub 0) = 40 deg. The larger interval T was taken at i(sub 0) = 40 deg because in this case for the majority of runs maximum values of e and i were reached in the time delta(t) is greater than 2(10)(exp 4)t(sub J).

  2. Sealing scientific probes against deep space and the Venusian environment A tough job

    NASA Technical Reports Server (NTRS)

    Pokras, J.; Reinert, R. P.; Switz, R. J.

    1978-01-01

    The Pioneer Venus mission evolved from studies conducted during the late 1960s and early 1970s. It was found that a need existed for low cost orbiters and landers to explore the planet. The considered mission was to be accomplished with six separate vehicles arriving at Venus nearly simultaneously in mid-December 1978. The probes are designed to survive entry and descent into the atmosphere. A description is presented of the approaches used to maintain sealing integrity for the large and small probes under the constraints imposed by the harsh Venusian environment. Attention is given to probe vehicle configuration, pressure vessel sealing requirements, material and configuration considerations, permanent seals, separable seals, development problems, and aspects of seal testing.

  3. Magellan project

    NASA Technical Reports Server (NTRS)

    Scott, J. F.; Griffith, D. G.; Gunn, J. M.; Piereson, R. G.; Stewart, J. M.; Tavormina, A. M.; Thompson, T. W.

    1992-01-01

    The Magellan spacecraft was placed into orbit around Venus on 10 Aug. 1990 and started radar data acquisition on 15 Sep. 1990. Since then, Magellan has completed mapping over 2.75 rotations of the planet (as of mid-July 1992). Synthetic aperture radar (SAR), altimetry, and radiometry observations have covered 84 percent of the surface during the first mission cycle from mid-Sep. 1990 through mid-May 1991. Operations in the second mission cycle from mid-May 1991 through mid-Jan. 1992 emphasized filling the larger gaps (the south polar region and a superior conjunction) from that first cycle. Planned observations in the fourth mission cycle from mid-Sep. 1992 through mid-May 1993 will emphasize high-resolution gravity observations of the equatorial regions of Venus.

  4. Geologic Map of the Sif Mons Quadrangle (V-31), Venus

    USGS Publications Warehouse

    Copp, Duncan L.; Guest, John E.

    2007-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Sif Mons quadrangle of Venus includes lat 0? to 25? N. and long 330? to 0? E.; it covers an area of about 8.10 x 106 km2 (fig. 1). The data used to construct the geologic map were from the National Aeronautics and Space Administration (NASA) Magellan Mission. The area is also covered by Arecibo images, which were also consulted (Campbell and Campbell, 1990; Campbell and others, 1989). Data from the Soviet Venera orbiters do not cover this area. All of the SAR products were employed for geologic mapping. C1-MIDRs were used for general recognition of units and structures; F-MIDRs and F-MAPs were used for more specific examination of surface characteristics and structures. Where the highest resolution was required or some image processing was necessary to solve a particular mapping problem, the images were examined using the digital data on CD-ROMs. In cycle 1, the SAR incidence angles for images obtained for the Sif Mons quadrangle ranged from 44? to 46?; in cycle 3, they were between 25? and 26?. We use the term 'high backscatter' of a material unit to imply a rough surface texture at the wavelength scale used by Magellan SAR. Conversely, 'low backscatter' implies a smooth surface. In addition, altimetric, radiometric, and rms slope data were superposed on SAR images. Figure 2 shows altimetry data; figure 3 shows images of ancillary data for the quadrangle; and figure 4 shows backscatter coefficient for selected units. The interpretation of these data was discussed by Ford and others (1989, 1993). For corrected backscatter and numerical ancillary data see tables 1 and 2; these data allow comparison with units at different latitudes on the planet, where the visual appearance may differ because of a different incidence angle. Synthetic stereo images, produced by overlaying SAR images and altimetric data, were of great value in interpreting structures and stratigraphic relations.

  5. Correlation studies of Pioneer Venus imagery obtained from PV experiments with near IR imagery obtained from ground-based observations during Venus inferior conjunction

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1993-01-01

    The purpose of this study is to attempt to find correlations between data taken by experiments aboard the Pioneer-Venus Orbiter (PVO) and those obtained from Earth-based near-infrared (NIR) measurements of Venus during periods near inferior conjunction. Since the NIR measurements have been found to provide data on the middle atmosphere cloud morphology and motion, it is assumed that any correlations will also indicate that the PVO experiments are also documenting cloud behavior. If such correlations are found, then a further task is to attempt to study the long term behavior of the cloud features implied by the correlations. Many PVO data have been obtained over an extended period extending from 1978 until the PV demise in 1992. There exists a long, somewhat ill-conditioned time series of data that may contain valuable information on the long time, as well as short term behavior of the clouds, and, derivatively from cloud motion, atmospheric dynamics and wave activity in the Venus atmosphere. For example, determination of the zonal velocities of any OCPP (Cloud Photopolarimeter) 0.935 micron features could then be used for comparisons with data from other sources to attempt to fix the altitude region in which such features existed. A further task of this study is to attempt to correlate any features found in simultaneously obtained data, for example, the OCPP 0.365 and 0.935 micron data. The existence of such correlations may imply that data was obtained in overlapping altitude regions of the atmosphere.

  6. Laboratory Measurements of Sulfuric Acid Vapor Opacity at Millimeter Wavelengths Under Venus Conditions

    NASA Astrophysics Data System (ADS)

    Akins, Alexander Brooks; Steffes, Paul G.

    2017-10-01

    Radio astronomical observations of the lower-cloud and sub-cloud regions of the Venusian atmosphere at millimeter wavelengths can provide insight into the nature of the sub-cloud sulfur chemistry. Previous observations (de Pater et al., Icarus 90, 1991 and Sagawa, J. Natl. Inst. of Inf. And Comm. Tech. 55, 2008) indicate substantial variations in Venus disc brightness at millimeter wavelengths, likely due to variations in SO2 and H2SO4 vapor abundances. Although previous measurements of H2SO4 vapor opacity provide accurate information at centimeter wavelengths (Kolodner and Steffes, Icarus 132, 1998), extrapolation to millimeter wavelength observations is speculative. A Fabry-Perot open resonator with a quality factor in excess of 15,000 has been designed to measure the opacity of H2SO4 vapor in a CO2 atmosphere under Venus temperature and pressure conditions below the clouds. The resonator system has been designed using corrosion-resistant materials to ensure data integrity. Opacity measurements made with this system target the 2-4 millimeter wavelength range, applicable to recent Atacama Large Millimeter Array observations of Venus. Initial laboratory results for H2SO4 vapor opacity will be presented, and the implications of these results for pressure broadened opacity formalisms will be discussed. In addition to radio astronomical observations, these results of these measurements can aid in the interpretation of radiometer and radio occultation measurements from future Venus missions, such as the Venera D orbiter. This work is supported by the NASA Solar System Workings Program under grant NNX17AB19G.

  7. Venus winds at cloud level from VIRTIS during the Venus Express mission

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  8. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  9. Venus nighttime hydrogen bulge

    NASA Technical Reports Server (NTRS)

    Brinton, H. C.; Taylor, H. A., Jr.; Niemann, H. B.; Mayr, H. G.; Nagy, A. F.; Cravens, T. E.; Strobel, D. F.

    1980-01-01

    The concentration of atomic hydrogen in the Venus thermosphere near 165 km altitude and approximately 18 deg north latitude has been derived from Pioneer Venus in situ measurements of H(+), O(+), O and CO2 concentrations, under the assumption of chemical equilibrium. Altitude profiles of derived H concentration suggest that chemical equilibrium prevails to an altitude of at least 200 km on the dayside and to 165 km on the nightside. Measurements below these limits were made by the ion and neutral mass spectrometers on the orbiter spacecraft between December 1978 and July 1979, while periapsis traversed a complete diurnal cycle. The hydrogen concentration is found to rise sharply at both terminators from a dayside value of approximately 50,000/cu cm, and to exhibit an asymmetric nightside distribution with a peak density in the predawn sector approximately 400 times greater than the dayside value. Analysis suggests that wind-induced diffusion, combined with exospheric return flow, can account for the observed hydrogen behavior. The large day-night temperature contrast enhances advective transport, which produces the large H concentration diurnal variation; the shift of the H concentration nighttime maximum toward dawn is caused by atmospheric superrotation.

  10. An investigation of solar wind effects on the evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, Janet G.

    1994-01-01

    This investigation concentrated on the question of how atmosphere escape, related to both photochemistry and the Mars solar wind interaction, may have affected the evolution of Mars' atmosphere over time. The principal investigator and postdoctoral researcher adopted the premise that contemporary escape processes have dominated the losses to space over the past 3.5 billion years, but that the associated loss rates have been modified by solar evolution. A model was constructed for the contemporary escape scenario based on knowledge gained from both Venus in-situ measurements from Pioneer Venus Orbiter and Mars measurements from Phobos-2. Venus provided a valuable second example of a weakly magnetized planet having a similar solar wind interaction where we have more knowledge from observations. The model included photochemical losses from recombining ionospheric molecular ions, scavenging Martian upper atmosphere ('pickup') ions by the solar wind, and sputtering of the atmosphere by reentering pickup ions. The existence of the latter mechanism was realized during the course of the supported investigation, and is now thought by Jakosky and Pepin to explain some of the Martian noble gas isotope ratios.

  11. Abort Options for Potential Mars Missions

    NASA Technical Reports Server (NTRS)

    Tartabini, P. V.; Striepe, S. A.; Powell, R. W.

    1994-01-01

    Mars trajectory design options were examined that would accommodate a premature termination of a nominal manned opposition class mission for opportunities between 2010 and 2025. A successful abort must provide a safe return to Earth in the shortest possible time consistent with mission constraints. In this study, aborts that provided a minimum increase in the initial vehicle mass in low Earth orbit (IMLEO) were identified by locating direct transfer nominal missions and nominal missions including an outbound or inbound Venus swing-by that minimized IMLEO. The ease with which these missions could be aborted while meeting propulsion and time constraints was investigated by examining free return (unpowered) and powered aborts. Further reductions in trip time were made to some aborts by the addition or removal of an inbound Venus swing-by. The results show that, although few free return aborts met the specified constraints, 85% of each nominal mission could be aborted as a powered abort without an increase in propellant. Also, in many cases, the addition or removal of a Venus swing-by increased the number of abort opportunities or decreased the total trip time during an abort.

  12. An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.

    1981-01-01

    The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.

  13. Comet and asteroid hazard to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13,000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 years step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but may give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region or most of such comets disintegrated during their motion in near-Earth object orbits.

  14. Modeling Venus-like Worlds Through Time and Implications for the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Way, M.; Del Genio, A. D.; Amundsen, D. S.; Sohl, L. E.; Kiang, N. Y.; Aleinov, I. D.; Kelley, M.

    2017-12-01

    In recent work [1] we demonstrated that the climatic history of Venus may have allowed for surface liquid water to exist for several billion years using a 3D GCM [2]. Model resolution was 4x5 latitude x longitude, 20 atmospheric layers and a 13 layer fully coupled ocean. Several assumptions were made based on what data we have for early Venus: a.) Used a solar spectrum from 2.9 billion years ago, and 715 million years ago for the incident radiation. b.) Assumed Venus had the same slow modern retrograde rotation throughout the 2.9 to 0.715 Gya history explored, although one simulation at faster rotation rate was shown not to be in the HZ. c.) Used atmospheric constituents similar to modern Earth: 1 bar N2, 400ppmv CO2, 1ppmv CH4. d.) Gave the planet a shallow 310m deep ocean constrained by published D/H ratio observations. e.) Used present day Venus topography and one run with Earth topography.In all cases except the faster rotating one the planet was able to maintain surface liquid water. We have now inserted the SOCRATES [3] radiation scheme into our 3D GCM to more accurately calculate heating fluxes for different atmospheric constituents. Using SOCRATES we have explored a number of other possible early histories for Venus including: f.) An aquaplanet configuration at 2.9Gya with present day rotation period.g.) A Land planet configuration at 2.9Gya with the equivalent of 10m of water in soil and lakes. h.) A synchronously rotating version of a, f, and g (supported by recent work of [4] and older work of [5]) i.) A Venus topography with a 310m ocean, but using present day insolation (1.9 x Earth). j.) Versions of most of the worlds above but with solar insolations >1.9 to explore more Venus-like exoplanetary worlds around G-type stars. In these additional cases the planet still resides in the liquid water habitable zone. Studies such as these should help Astronomers better understand whether exoplanets found in the Venus zone [6] are capable of hosting liquid water on their surfaces and whether significant resources should be directed at their characterization in the future. [1] Way, M.J. et al. (2016) GRL, 43, 8376 [2] Way, M.J. et al. (2017) ApJS, 231, 1[3] Edwards, J.M., Slingo, A. (1996) Q. J. Royal. Met. Soc. 122, 689[4] Barnes, R. (2017) Cel Mech Dyn Ast, in Press[5] Dobrovolskis & Ingersoll (1980), Icarus, 41, 1[6] Kane et al. (2013), ApJL 794, 5

  15. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  16. Objectives of the Mariner Venus Microwave Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Barrett, A. H.; Copeland, J.; Jones, D. E.; Lilley, A. E.

    1961-01-01

    At present, there are several models involving the surface, atmosphere (and ionosphere), and cloud conditions of the planet Venus which attempt to account for the observed high brightness temperature of 600 degrees Kelvin in the microwave temperature region. None of these models can be definitely accepted or rejected on the basis of presently available data, and it is the goal of the microwave radiometer experiment planned for the Mariner Venus mission to determine which of the proposed models most nearly approximates Venusian conditions. The disc of the planet will be scanned at 4 wavelengths - 4, 8, 13.5 and 19 millimeters - to measure the temperature distribution across the planet. Measurement accuracy is expected to be to within 2 percent. In addition to the study of gross thermal characteristics of surface and atmosphere (or ionosphere), some information regarding the fine-scale thermal variations will be obtained. Since Venus appears to be continuously covered by clouds, it is obvious that only in the microwave region can one be sure of penetrating clear to the solid surface. Because of the absorbing characteristics of the Earth's atmosphere, and because of the relatively poor resolution obtainable in this region of the spectrum, one is forced to utilize the platform afforded by a planetary flyby or orbiter in order to conduct a reliable high resolution study of the planet. To do so from Earth (neglecting terrestrial atmospheric attenuation ) would require colossal radio telescopes.

  17. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotationmore » rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.« less

  18. Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.

    1972-01-01

    On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.

  19. The psychosocial benefits of secondary hydroxyapatite orbital implant insertion and prosthesis wearing for patients with anophthalmia.

    PubMed

    Wang, Junming; Zhang, Hong; Chen, Wei; Li, Guigang

    2012-01-01

    Anophthalmia is associated with a range of psychosocial difficulties and hydroxyapatite orbital implant insertion and prosthesis wearing is the predominant rehabilitation therapy for anophthalmia. However, few articles have compared preoperative and postoperative psychosocial outcomes using standardized questionnaires. This study aimed to investigate the psychosocial benefits of hydroxyapatite orbital implant insertion and prosthesis wearing in this patient population. In all, 36 participants were tested preoperatively and 6-months postoperatively using standardized measures of anxiety and depression (Hospital Anxiety and Depression Scale), social anxiety and social avoidance (Derriford Appearance Scale-Short Form), and quality of life (World Health Organization Quality of Life Scale-Short Form). Before treatment, levels of depression were comparable with population norms; however, levels of general anxiety were slightly raised, levels of social anxiety, social avoidance, and quality of life were significantly poorer than population norms. Treatment resulted in significant improvement in psychosocial adjustment with improvements in all study variables for the participant group as a whole. Hydroxyapatite orbital implant insertion and prosthesis wearing offers significant improvements in psychological and physical functioning for patients with anophthalmia.

  20. Tracking and data system support for the Mariner Mars 1971 mission. Volume 2: First trajectory correction maneuver through orbit insertion

    NASA Technical Reports Server (NTRS)

    Textor, G. P.; Kelly, L. B.; Kelly, M.

    1972-01-01

    The Deep Space Tracking and Data System activities in support of the Mariner Mars 1971 project from the first trajectory correction maneuver on 4 June 1971 through cruise and orbit insertion on 14 November 1971 are presented. Changes and updates to the TDS requirements and to the plan and configuration plus detailed information on the TDS flight support performance evaluation and the preorbital testing and training are included. With the loss of Mariner 8 at launch, a few changes to the Mariner Mars 1971 requirements, plan, and configuration were necessitated. Mariner 9 is now assuming the former mission plan of Mariner 8, including the TV mapping cycles and a 12-hr orbital period. A second trajectory correction maneuver was not required because of the accuracy of the first maneuver. All testing and training for orbital operations were completed satisfactorily and on schedule. The orbit insertion was accomplished with excellent results.

  1. Primeval substance delivery from Phobos to the Earth—the Phobos-Soil project: Ballistics, navigation, and flight control

    NASA Astrophysics Data System (ADS)

    Akim, E. L.; Zaslavsky, G. S.; Morskoy, I. M.; Ruzsky, E. G.; Stepaniants, V. A.; Tuchin, A. G.

    2010-02-01

    This paper is concerned with the problems of ballistics, navigation, and flight control of the space craft (SC) in the Phobos-Grunt mission. We consider an insertion into the Earth-Mars transfer trajectory, the Earth-Mars transfer, the strategy of corrections, and the accuracy of the insertion of the SC into Martian orbit. During the orbital maneuvering stage in the sphere of influence of Mars, we set up a scheme that allows for the insertion of the SC, with the prescribed accuracy, into a point 80-km above the Phobos surface over the theoretical landing area. We specify the sequence for a controlled landing and provide methods for solving the problems of navigation and control during a self-c ontained landing. We also consider the liftoff from Phobos, insertion into the parking orbit, and the Mars-Earth transfer.

  2. First Materials Science Research Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  3. Solar forcing, and ionospheric ion outflow from Venus, Earth and Mars - A comparison

    NASA Astrophysics Data System (ADS)

    Lundin, R. N.

    2012-12-01

    Solar forcing by e.g. EUV radiation and the solar wind leads to outflow and escape of ionospheric ions from Earth, Venus and Mars. In-situ measurements in the Earth's space environment have demonstrated that the ion escape rate correlates with the magnitude of solar forcing, i.e. high solar EUV and solar wind forcing leads to enhanced escape rates. The Terrestrial outflow is dominated by H+ and O+ suggesting that the ultimate origin of outflowing ions is water. Recent measurements from the two arid planets Mars and Venus, their atmospheres dominated by CO2, display characteristics similar to that of the Earth - an outflow dominated by hydrogen (H+) and oxygen (O+, O2+) ions. Despite major differences in atmospheric composition, the composition of the ion outflow from Earth and Venus is very similar, i.e. H+ and O+ dominates and the outflow has a stoichiometric H/O ratio of close to 2. The latter implies escape of water. The ion outflow from Mars is dominated by O+, O2+, and H+. Here the stoichiometric ratio between hydrogen and oxygen ion is ≈1, implying that if the ion outflow originates from water, about half of the hydrogen mass disappears by other means. The primary origin of the ion outflow from Earth, Venus and Mars is a complex issue. Nevertheless, a predominant hydrogen and oxygen loss implies that water can easily escape planets orbiting close to the Sun, while Carbon-based molecules (e.g. CO2) resides more easily. Observations shows that the outflow of e.g. CO+ and CO2+ from Mars and Venus is minute compared to the outflow of hydrogen and oxygen ions. Magnetic shielding is an issue affecting the net ion outflow and escape from a planet, because acceleration processes are also the characteristics of magnetized plasmas. Recent findings suggests that, despite magnetic field pile-up at Mars and Venus, the stand-off distance is insufficient to prohibit a direct interaction between the solar wind and the magnetized ionospheric plasma in the induced magnetospheres of Mars and Venus. On the other hand, a planetary magnetic field, such as the Earth's dipole field and the Martian multipole crustal field, may foster shielding as well as plasma acceleration. However, in this case the ion acceleration may be confined in closed planetary magnetic flux tubes, leading to a low escape rates.

  4. Venus surface peeking through the atmosphere - gaining a global perspective on the surface composition through near infrared observations

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Dyar, M. D.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Mueller, N. T.; Smrekar, S. E.

    2017-12-01

    Venus is the most Earth-like of the terrestrial planets, though very little is known about its surface composition. Thanks to recent advances in laboratory spectroscopy and spectral analysis techniques, this is about to change. Although the atmosphere prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, five transparent windows between 0.86 µm and 1.18 µm occur in the atmosphere's CO2 spectrum. New high temperature laboratory spectra from the Planetary Spectroscopy Laboratory at DLR show that spectra in these windows are highly diagnostic for surface mineralogy [1]. The Venus Emissivity Mapper (VEM) [2] builds on these recent advances. It is proposed for NASA's Venus Origins Explorer where a radar will provided the needed high-resolution altimetry and ESA's EnVision would provide stereo topography instead. VEM is the first flight instrument specially designed to focus solely on mapping Venus' surface using the windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of composition as well as redox state of the surface, enabling a comprehensive picture of surface-atmosphere interaction on Venus. VEM will return a complex data set containing surface, atmospheric, cloud, and scattering information. Total planned data volume for a typical mission scenario exceeds 1TB. Classical analysis techniques have been successfully used for VIRTIS on Venus Express [3-5] and could be employed with the VEM data. However, application of machine learning approaches to this rich dataset is vastly more efficient, as has already been confirmed with laboratory data. Binary classifiers [6] demonstrate that at current best estimate errors, basalt spectra are confidently discriminated from basaltic andesites, andesites, and rhyolite/granite. Applying the approach of self-organizing maps to the increasingly large set of laboratory measurements allows searching for additional mineralogical indicators, especially including their temperature dependence. [1] Dyar M. D. et al. 2017 LPS XLVIII, #1512. [2] Helbert, J. et al. 2016. San Diego, CA: SPIE. [3] Smrekar, S.E., et al. Science, 2010 328(5978), 605-8. [4] Helbert, J., et al., GRL, 2008 35(11). [5] Mueller, N., et al., JGR, 2008 113[6] Dyar M. D. et al. 2017 LPS XLVIII, #3014.

  5. A Study of Pioneer Venus Nightglow Spectra

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1993-01-01

    The work performed during the 12-month period of this contract involved: (1) further analysis of latitudinal variations in the Venusian NO nightglow intensity from PVOUVS data; (2) corrections made to the input data for the VTGCM model, relating specifically to a factor of three increase in the three-body recombination rate coefficient of N + O; (3) consideration of limits on the rate of reaction of N-atoms with CO2; (4) consideration of the Venusian equivalent of the terrestrial hot N-atom reaction for NO production; and (5) successful location of video images of meteor trails from space, for the purpose of making a comparison with the meteor trail that we have hypothesized as an explanation of intense UV spectra observed on a particular Pioneer Venus (PV) orbit.

  6. Navigation with noncoherent data - A demonstration for VEGA Venus flyby phase

    NASA Technical Reports Server (NTRS)

    Bhat, Ramachandra S.; Ellis, Jordan; Mcelrath, Timothy P.

    1988-01-01

    Deep Space navigation with noncoherent (one-way) data types is demonstrated for the VEGA Venus flyby phase under extreme conditions. Estimates and statistics are computed using one-way Doppler and wideband Very Long Baseline Interferometry (VLBI) data. The behavior of the onboard oscillator is modeled for both spacecraft to obtain useful orbit determination results. Even with this limitation, it is demonstrated that one-way data solutions are comparable with the solutions using both Soviet sparse coherent (two-way) and wideband VLBI data. During the useful life time of VEGA balloons, the two solutions differ by a maximum of 4.7 km in position and 7.6 cm/sec in velocity for VEGA 1 and by a maximum of 8 km and 42 cm/sec for VEGA 2.

  7. O+ pickup ions outside of Venus' bow shock: Venus Express observation

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Fraenz, M.; Dubinin, E.; Zhang, T. L.; Wan, W.; Barabash, S.; Woch, J.; Lundin, R.

    2012-09-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified about ten cases with clear signature of O+ pickup ion. With these observations, we will determine the location and the scale height of the source region of O+ pickup ions and describe the relationship between the behavior of these O+ and the upstream solar wind condition. The results would provide new information for numerical simulation of plasma environment near Venus and contribute to estimation of total O+ ion loss from Venus.

  8. Climate evolution on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Toon, O. B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.

  9. Solar system plasma Turbulence: Observations, inteRmittency and Multifractals

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2016-04-01

    The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a function of the targeted system (solar wind/magnetospheres/geomagnetic indices), solar cycle phase (minimum versus maximum), type of result (PSDs, PDFs, Multifractals). The results catalogues, available online from http://www.storm-fp7.eu, include 4094 PSD spectra, 9566 PDFs and 15633 multifractal spectra (from partition function and respectively Rank Ordered (ROMA) formalisms). These results are obtained at solar maximum (2001-2002, both in the solar wind and the terrestrial magnetosheath) and solar minimum (1997-1998 in the solar wind, 2007-2008 in the solar wind, Venus and Earth magnetosheath and selected regions of the magnetosphere). Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM.

  10. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1988-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. This paper highlights some of our research projects as well as some of our applications. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  11. Pioneer-Venus radio occultation (ORO) data reduction: Profiles of 13 cm absorptivity

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1990-01-01

    In order to characterize possible variations in the abundance and distribution of subcloud sulfuric acid vapor, 13 cm radio occultation signals from 23 orbits that occurred in late 1986 and 1987 (Season 10) and 7 orbits that occurred in 1979 (Season 1) were processed. The data were inverted via inverse Abel transform to produce 13 cm absorptivity profiles. Pressure and temperature profiles obtained with the Pioneer-Venus night probe and the northern probe were used along with the absorptivity profiles to infer upper limits for vertical profiles of the abundance of gaseous H2SO4. In addition to inverting the data, error bars were placed on the absorptivity profiles and H2SO4 abundance profiles using the standard propagation of errors. These error bars were developed by considering the effects of statistical errors only. The profiles show a distinct pattern with regard to latitude which is consistent with latitude variations observed in data obtained during the occultation seasons nos. 1 and 2. However, when compared with the earlier data, the recent occultation studies suggest that the amount of sulfuric acid vapor occurring at and below the main cloud layer may have decreased between early 1979 and late 1986.

  12. Launch Vehicle Directorate and Centaur Rocket Model

    NASA Image and Video Library

    1979-05-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center’s Launch Vehicle Directorate in front of a full-scale model of the Centaur second-stage rocket. The photograph was taken to mark Centaur’s fiftieth launch. NASA Lewis managed the Centaur Program since 1962. At that time, the only prior launch attempt ended in failure. Lewis improved the spacecraft and tested it extensively throughout the early 1960s. In May 1966 an Atlas-Centaur sent the Surveyor spacecraft to the moon. It was the first successful soft landing on another planet. The Launch Vehicles Division was formed in 1969 to handle the increasing number of Centaur launches. The Lewis team became experts at integrating the payload with the Centaur and calculating proper trajectories for the missions. Centaur’s first 50 missions included Orbiting Astronomical Observatories, the Mariner 6 and 7 flybys of Mars, Mariner 9 which was the first spacecraft to orbit around another planet, the Pioneer 10 and 11 missions to the outer solar system, the Mariner 10 flyby of Venus and Mercury, the Viking 1 and 2 Mars landers, Voyagers 1 and 2 missions to Jupiter, Saturn, Uranus, and Neptune, and the Pioneer 12 and 13 flights to Venus.

  13. Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

    2004-01-01

    Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

  14. Art concept of Magellan spacecraft and inertial upper stage (IUS) deployment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft mounted on inertial upper stage drifts above Atlantis, Orbiter Vehicle (OV) 104, after its deployment during mission STS-30 in this artist concept. Solar panels are deployed and in OV-104's open payload bay (PLB) the airborne support equipment (ASE) is visible. Both spacecraft are orbiting the Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar.

  15. Kepler, Horrocks and the Transit of Venus in 1639

    NASA Astrophysics Data System (ADS)

    Posch, Thomas; Kerschbaum, Franz

    2004-08-01

    Kepler was the first astronomer to predict a transit of Venus in his 'Admonitio' from 1629. This prediction was based on his 'Rudolphine Tables', published three years before. Even though both works - making use of his ground-breaking new theory of the planetary motions - and the message of his 'Admonitio' are a great achievement, it turned out some years later that the latter contained some views that needed to be corrected. First of all, there was a small but -- for European observers -- fatal error concerning the exact time of the Venus transit of 1631, leading to its non-observation in Paris. Second, Kepler failed to predict the 1639 Venus transit. It was the English astronomer Horrocks who first recognized this and who did indeed observe the latter. Third, Kepler's ideas about the size of the solar system (and, hence, the apparent diameters of the planets) were substantially wrong. In our contribution, we analyze the historical background to these errors of a genius, based on his original texts, as well as Horrocks' and Hevelius' views and discoveries on the subject. It seems that Hevelius' annotated edition of Horrocks' account 'Venus in sole visa' has scarcely been studied in the way it would deserve -- which is maybe due to the fact that only a few libraries are still in possession of this book. There is little doubt that Kepler, had he lived until 1639, would have had to change his views on the proportions of our solar system dramatically. At the same time, it should be stressed that his predition and Horrocks' observations demonstrate that knowing the mechanism of the planetary motions is by far more important than knowing the actual size of the planetary orbits and planetary bodies.

  16. Infrared spectrometry of Venus: IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.

    2004-01-01

    Thermal infrared spectrometry in the range 6-40 μm with spectral resolution of 4.5-6.5 cm -1 was realized onboard of Venera 15 for the middle atmosphere of Venus investigations. The 3-D temperature and zonal wind fields ( h, ϕ, LT) in the range 55-100 km and the 3-D aerosol field ( h, ϕ, LT) in the range 55-70 km were retrieved and analyzed. The solar related waves at isobaric levels, generated by the absorbed solar energy, were investigated. In the thermal IR spectral range the, ν1, ν2 and ν3 SO 2 and the H 2O rotational (40 μm) and vibro-rotational (6.3 μm) absorption bands are observed and used for minor compounds retrieval. An advantage of the thermal infrared spectrometry method is that both the temperature and aerosol profiles, which need for retrieval of the vertical profiles of minor compounds, are evaluated from the same spectrum. The Fourier spectrometer on Venera-15 may be considered as a precursor of the Planetary Fourier Spectrometer (PI Prof. V. Formisano), which is included in the payload of the planned Venus Express mission. It has a spectral range 0.9-45 μm, separated into two channels: a short wavelength channel (SWC) in the range 0.9-5 μm and a long wavelength channel (LWC) from 6 to 45 μm, and spectral resolution of 1-2 cm -1. In the history of planetary Fourier spectrometry the PFS is a unique instrument, which possesses a short wavelength channel. A functioning of this instrument on the polar orbit with a good spatial and local time coverage will advance our knowledge in the fundamental problems of the Venus atmosphere.

  17. Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Wilquet, V.; Fedorova, A.; Montmessin, F.; Drummond, R.; Mahieux, A.; Vandaele, A. C.; Villard, E.; Korablev, O.; Bertaux, J.-L.

    2009-07-01

    The Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus/Solar Occultation at Infrared (SPICAV/SOIR) suite of instruments onboard the Venus Express spacecraft comprises three spectrometers covering a wavelength range from ultraviolet to midinfrared and an altitude range from 70 to >100 km. However, it is only recently (more than 1 year after the beginning of the mission) that the three spectrometers can operate simultaneously in the solar occultation mode. These observations have enabled the study of the properties of the Venusian mesosphere over a broad spectral range. In this manuscript, we briefly describe the instrument characteristics and the method used to infer haze microphysical properties from a data set of three selected orbits. Discussion focuses on the wavelength dependence of the continuum, which is primarily shaped by the extinction caused by the aerosol particles of the upper haze. This wavelength dependence is directly related to the effective particle radius (cross section weighted mean radius) of the particles. Through independent analyses for the three channels, we demonstrate the potential to characterize the aerosols in the mesosphere of Venus. The classical assumption that the upper haze is only composed of submicron particles is not sufficient to explain the observations. We find that at high northern latitudes, two types of particles coexist in the upper haze of Venus: mode 1 of mean radius 0.1 ≤ r g ≤ 0.3 μm and mode 2 of 0.4 ≤ r g ≤ 1.0 μm. An additional population of micron-sized aerosols seems, therefore, needed to reconcile the data of the three spectrometers. Moreover, we observe substantial temporal variations of aerosol extinction over a time scale of 24 h.

  18. Night OH In The Mesosphere Of Venus and Earth: A Comparative Planetology Perspective

    NASA Astrophysics Data System (ADS)

    Parkinson, Chris; Brecht, A.; Bougher, S.; Mills, F.; Yung, Y.

    2009-09-01

    Satellite measurements of the terrestrial nightside mesosphere from the MLS/Aura MLS instrument show a layer of OH near 82 km. This layer confirms earlier measurements by ground-based UVFTS. The MLS and UVFTS observations measure OH in the lowest vibrational state and are distinct, but related chemically, from vibrationally-excited emission from the OH Meinel bands in the near infrared. The Caltech 1-D KINETICS model has been extended to include vibrational dependence of OH reactions and shows good agreement with MLS OH data and with observations of the Meinel bands. The model shows a chemical lifetime of HOx that increases from less than a day at 80 km to over a month at 87 km. Above this altitude transport processes become an important part of HOx chemistry. The model predicts that ground state OH represents 99% of the total OH up to 84 km. Similarly, Venus airglow emissions detected at wave-lengths of 1.40-1.49 and 2.6-3.14 μm in limb obser-vations by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on the Venus Express space-craft are attributed to the OH (2-0) and (1-0) Meinel band transitions as well. The integrated emission rates for the OH (2-0) and (1-0) bands were measured to be 100±40 and 880±90 kR respectively, both peaking at an altitude of 96±2 km near midnight local time for the considered orbit. We use the same Caltech 1-D KINETICS model to model these observations for Venus as was used for the Earth and discuss the conclusions from a comparative planetology perspective, highlighting the similarities and differences between Venus and Earth.

  19. Neutral atmosphere composition from SOIR measurements on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Drummond, R.; Wilquet, V.; Vandaele, A. C.; Federova, A.; Belyaev, D.; Korablev, O.; Villard, E.; Montmessin, F.; Bertaux, J.-L.

    2009-04-01

    The SOIR instrument performs solar occultation measurements in the IR region (2.2 - 4.3 m) at a resolution of 0.12 cm-1, the highest on board Venus Express. It combines an echelle spectrometer and an AOTF (Acousto-Optical Tunable Filter) for the order selection [1,2]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer with an emphasis on vertical distribution of the gases. Measurements of HDO, H2O, HCl, HF, CO and CO2 vertical profiles have been routinely performed, as well as those of their isotopologues [3,4]. We will discuss the improvements introduced in the analysis algorithm of the SOIR spectra. This discussion will be illustrated by presenting new results of retrievals of minor constituents of the Venus mesosphere, in terms of vertical profiles and geographical distribution. CO2 is the major constituent of the Venus atmosphere and was therefore observed in many solar occultations, leading to a good geographical coverage, although limited by the geometry of the orbit. Depending on the abundance of the absorbing isotopologue and on the intensity of the band measured, we will show that the SOIR instrument is able to furnish CO2 vertical profiles ranging typically from 65 to 150 km, reaching in some conditions 185 km altitude. This information is important in the frame of compiling, in collaboration with other teams, a new Venus Atmosphere Model. 1. A. Mahieux, S. Berkenbosch, R. Clairquin, D. Fussen, N. Mateshvili, E. Neefs, D. Nevejans, B. Ristic, A. C. Vandaele, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, E. Villard, F. Montmessin and J.-L. Bertaux, "In-Flight performance and calibration of SPICAV SOIR on board Venus Express", Applied Optics 47 (13), 2252-65 (2008). 2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois and E. Villard, "Compact high-resolution space-borne echelle grating spectrometer with AOTF based on order sorting for the infrared domain from 2.2 to 4.3 micrometer", Applied Optics 45 (21), 5191-5206 (2006). 3. A. Fedorova, O. Korablev, A. C. Vandaele, J.-L. Bertaux, D. Belyaev, A. Mahieux, E. Neefs, V. Wilquet, R. Drummond, F. Montmessin and E. Villard, "HDO and H2O vertical distribution and isotopic ratio in the Venus mesosphere by SOIR spectrometer on board Venus Express", JGR, doi:10.1029/2008JE003146 (2008). 4. A. C. Vandaele, M. De Mazière, R. Drummond, A. Mahieux, E. Neefs, V. Wilquet, D. Belyaev, A. Fedorova, O. Korablev, F. Montmessin and J.-L. Bertaux, "Composition of the Venus mesosphere measured by SOIR on board Venus Express", J. Geophysic. Res., doi:10.1029/2008JE003140 (2008).

  20. Aerobraking at Venus and Mars: A Comparison of the Magellan and Mars Global Surveyor Aerobraking Phases

    NASA Technical Reports Server (NTRS)

    Lyons, Daniel T.

    2000-01-01

    On February 4, 1999 the Mars Global Surveyor spacecraft became the second spacecraft to successfully aerobrake into a nearly circular orbit about another planet. This paper will highlight some of the similarities and differences between the aerobraking phases of this mission and the first mission to use aerobraking, the Magellan mission to Venus. Although the Mars Global Surveyor (MGS) spacecraft was designed for aerobraking and the Magellan spacecraft was not, aerobraking MGS was a much more challenging task than aerobraking Magellan, primarily because the spacecraft was damaged during the initial deployment of the solar panels. The MGS aerobraking phase had to be completely redesigned to minimize the bending moment acting on a broken yoke connecting one of the solar panels to the spacecraft. Even if the MGS spacecraft was undamaged, aerobraking at Mars was more challenging than aerobraking at Venus for several reasons. First, Mars is subject to dust storms, which can significantly change the temperature of the atmosphere due to increased solar heating in the low and middle altitudes (below 50 km), which in turn can significantly increase the density at the aerobraking altitudes (above 100 km). During the first part of the MGS aerobraking phase, a regional dust storm was observed to have a significant and very rapid effect on the entire atmosphere of Mars. Computer simulations of global dust storms on Mars indicate that even larger density increases are possible than those observed during the MGS aerobraking phases. For many aerobraking missions, the duration of the aerobraking phase must be kept as short as possible to minimize the total mission cost. For Mars missions, a short aerobraking phase means that there will be less margin to accommodate atmospheric variability, so the operations team must be ready to propulsively raise periapsis by tens of kilometers on very short notice. This issue was less of a concern on Venus, where the thick lower atmosphere and the slow planet rotation resulted in more predictable atmospheric densities from one orbit to the next.

  1. Field-of-View Guiding Camera on the HISAKI (SPRINT-A) Satellite

    NASA Astrophysics Data System (ADS)

    Yamazaki, A.; Tsuchiya, F.; Sakanoi, T.; Uemizu, K.; Yoshioka, K.; Murakami, G.; Kagitani, M.; Kasaba, Y.; Yoshikawa, I.; Terada, N.; Kimura, T.; Sakai, S.; Nakaya, K.; Fukuda, S.; Sawai, S.

    2014-11-01

    HISAKI (SPRINT-A) satellite is an earth-orbiting Extreme UltraViolet (EUV) spectroscopic mission and launched on 14 Sep. 2013 by the launch vehicle Epsilon-1. Extreme ultraviolet spectroscope (EXCEED) onboard the satellite will investigate plasma dynamics in Jupiter's inner magnetosphere and atmospheric escape from Venus and Mars. EUV spectroscopy is useful to measure electron density and temperature and ion composition in plasma environment. EXCEED also has an advantage to measure spatial distribution of plasmas around the planets. To measure radial plasma distribution in the Jovian inner magnetosphere and plasma emissions from ionosphere, exosphere and tail separately (for Venus and Mars), the pointing accuracy of the spectroscope should be smaller than spatial structures of interest (20 arc-seconds). For satellites in the low earth orbit (LEO), the pointing displacement is generally caused by change of alignment between the satellite bus module and the telescope due to the changing thermal inputs from the Sun and Earth. The HISAKI satellite is designed to compensate the displacement by tracking the target with using a Field-Of-View (FOV) guiding camera. Initial checkout of the attitude control for the EXCEED observation shows that pointing accuracy kept within 2 arc-seconds in a case of "track mode" which is used for Jupiter observation. For observations of Mercury, Venus, Mars, and Saturn, the entire disk will be guided inside slit to observe plasma around the planets. Since the FOV camera does not capture the disk in this case, the satellite uses a star tracker (STT) to hold the attitude ("hold mode"). Pointing accuracy during this mode has been 20-25 arc-seconds. It has been confirmed that the attitude control works well as designed.

  2. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  3. O+ pickup ions outside of Venus' bow shock: Venus Express observations

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Fraenz, Markus; Dubinin, Eduard; Zhang, Tielong; Jarvinen, Riku; Wan, Weixing; Kallio, Esa; Collinson, Glyn; Barabash, Stars; Norbert, Krupp; Woch, Joachim; Lundin, Rickard; delva, Magda

    2013-04-01

    Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. In addition, Galileo also did not capture O+ outside bowshock during its 1-hour Venus flyby though its plasma instrument had ability to cover the energy band of O+ pickup ions [4]. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified 80 cases with clear signature of O+ pickup ion. With these observations, we can determine the location and the scale height of the source region of O+ pickup ions and describe the relationship between the behavior of these O+ and the upstream solar wind condition. The results would provide new information for numerical simulation of plasma environment near Venus and contribute to estimation of total O+ ion loss from Venus. Reference: [1] Dubinin, E., M. Fränz, J. Woch, E. Roussos, S. Barabash, R. Lundin, J. D. Winningham, R. A. Frahm, and M. Acuña (2006a), Plasma morphology at Mars: Aspera-3 observations, Space Sci. Rev., 126, 209-238, doi:10.1007/s11214-006-9039-4. [2] Cravens, T. E., A. Hoppe, S. A. Ledvina, and S. McKenna-Lawlor (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107, 1170, doi:10.1029/2001JA000125. [3] Luhmann, J. G., S. A. Ledvina, J. G. Lyon, and C. T. Russell (2006), Venus O+ pickup ions: Collected PVO results and expectations for Venus Express, Planet. Space Sci., 54, 1457-1471, doi:10.1016/j.pss.2005.10.009. [4] Williams, D. J. et al.(1991), Energetic Particles at Venus: Galileo Results. Science 253, 1525-1528.

  4. Report on the loss of the Mars Climate Orbiter Mission : JPL special review board

    NASA Technical Reports Server (NTRS)

    Brace, Richard; Casani, John; Farquhar, Robert; Haynes, Norm; Jordan, Frank; Kohlhase, Charles; Mitchell, Robert; Polutchko, Robert J.; Schallenmuller, Al; Slonski, John P.; hide

    1999-01-01

    The Mars Climate Orbiter (MCO) was launched on December 11, 1998. The MCO was to arrive at Mars and begin orbit insertion on September 23, 1999. The Mars Orbit Insertion (MOI) burn, a 16-minute maneuver to slow the spacecraft and enable capture into an orbit around Mars, began on schedule. Five minutes into the maneuver, and approximately 49 seconds before the anticipated time for loss of communication, the MCO was occulted by Mars. Thereafter, no contact with the spacecraft could be established. On September 24, 1999, an internal JPL team (the MCO Peer Review Team) was appointed to help investigate the reason for the loss of spacecraft signal. The Peer Review Team's findings are presented in this report.

  5. Log N-log S in inconclusive

    NASA Technical Reports Server (NTRS)

    Klebesadel, R. W.; Fenimore, E. E.; Laros, J.

    1983-01-01

    The log N-log S data acquired by the Pioneer Venus Orbiter Gamma Burst Detector (PVO) are presented and compared to similar data from the Soviet KONUS experiment. Although the PVO data are consistent with and suggestive of a -3/2 power law distribution, the results are not adequate at this state of observations to differentiate between a -3/2 and a -1 power law slope.

  6. Antenna dimensions of synthetic aperture radar systems on satellites

    NASA Technical Reports Server (NTRS)

    Richter, K. R.

    1973-01-01

    Design of a synthetic aperture radar (SAR) for a satellite must take into account the limitation in weight and dimensions of the antenna. The lower limits of the antenna area are derived from the conditions of unambiguity of the SAR system. This result is applied to estimate the antenna requirements for SARs on satellites in circular orbits of various altitudes around Earth and Venus.

  7. Deep space navigation systems and operations

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1981-01-01

    The history of the deep space navigation system developed by NASA is outlined. Its application to Mariner, Viking and Pioneer missions is reviewed. Voyager navigation results for Jupiter and Saturn are commented on and velocity correction in relation to fuel expenditure and computer time are discussed. The navigation requirements of the Gahleo and Venus orbiting imaging radar (VOIR) missions are assessed. The measurement and data processing systems are described.

  8. Radial evolution of the solar wind turbulence with application to charged particle transport

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.

    1991-01-01

    The proposed research efforts funded by the Pioneer-Venus Guest Investigator Grant to the Bartol Research Institute center on a study of the radial and temporal variation of the large-scale interplanetary magnetic field (IMF) and include a study of the radial variation of the observed north-south asymmetry of the IMF spiral based on the previous results of Bieber (1988). The preliminary results of Bieber demonstrated that at Earth orbit there exists an asymmetry between the yearly average winding angles of toward and away sector fields that can be as large as 10 degrees. The Bieber (1988) analysis employed the NSSDC omnitape data set of 1 AU measurements. When the observed asymmetry is related to the state of the solar magnetic dipole, it is possible to conclude that the IMF north of the heliospheric current sheet is more tightly wound than the IMF spiral south of the current sheet. The average difference in the winding angle as measured over a 21 year period spanning 1965 through 1985 was 3.1 degrees + 1.1 degrees. The Bieber analysis was able to rule-out several possible sources for the observed behavior including a possible asymmetry in the solar wind speed or the observed hemispherical dependence of solar rotation. The object of this research was to extend this previous result to include observations within the inner and outer heliosphere, to examine the radial dependence of the reported asymmetry, and to better resolve the possible source of the observations. The Pioneer-Venus Orbiter has proven to be the perfect monitor for the inner heliospheric observations. It has provided 9 years of continuous observations at a fixed heliocentric distance (except for those periods when the spacecraft was within the region of space where the magnetic field is influenced by the presence of the planet). Comparisons between the 1 AU observations recorded on the NSSDC omnitape and the 0.7 AU observations of the Pioneer-Venus Orbiter have greatly improved our understanding of the IMF winding angle asymmetry. Further comparison with outer heliospheric measurements have proven interesting, although less conclusive.

  9. Development of Exoplanet database "ExoKyoto" aiming for inter-comparison with different criteria of Habitable zones

    NASA Astrophysics Data System (ADS)

    Yamashiki, Yosuke; Notsu, Yuta; Sasaki, Takanori; Hosono, Natsuki; Kuroki, Ryusuke; Notsu, Shota; Murashima, Keiya; Takagi, Fuka; Doi, Takao

    2017-05-01

    An integrated database of confirmed exoplanets has been developed and launched as “ExoKyoto,” for the purpose of better comprehension of exoplanetary systems in different star systems. The HOSTSTAR module of the database includes not only host stars for confirmed exoplanets, but also hundreds of thousands of stars existing in the star database listed in (HYG database). Each hoststar can be referred to in the catalogue with its habitable zone calculated, based on the observed/estimated star parameters. For outreach and observation support purpose, ExoKyoto possesses Stellar Windows, developed by the Xlib & Ggd module, and interfaces with GoogleSky for easy comprehension of those celestial bodies on a stellar map. Target stars can be identified and listed by using this database, based on the target magnitude, transit frequency, and photon decrease ratio by its transit.If we interpolate deficient data using assumed functions about the exoplanets that were discovered until now, Sub-Neptune size (1.9-3.1R_Earth) are the most common (971); then Super Earth size (1.2-1.9 R_earth) have been allocated (681).Using the Solar Equivalent Astronomical Unit (SEAU), most of the exoplanets discovered are within a Venus equivalent orbit (3029), and 197 are located within the habitable zone (Venus to Mars equivalent orbit). If we classify them using Kopparapu et al.(2013), within Recent Venus equivalent orbit (3048), there are 130 located in the habitable zone (runaway greenhouse-maximum greenhouse). For example, Kepler-560b is defined as in the habitable zone by its SEAU, but not by Kopparapu et al. (2013). Furthermore, based on an exoplanet's solar revolution, radius, assumed mass (Larsen & Geoffrey, 2014), transit parameters , and main start information (location, class, spectral class, etc.); observation target selection is practical and possible.In addition to the previous habitable zone based on the normal radiation flux from the host star, we'll discuss stellar flares activities which may disturb planets located in the habitable zone through high energetic particles.*those numbers are in February 2017

  10. Ionosphere of venus: first observations of the dayside ion composition near dawn and dusk.

    PubMed

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Donahue, T M; Cloutier, P A; Michel, F C; Daniell, R E; Blackwell, B H

    1979-02-23

    The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.

  11. Sulfur dioxide in the atmosphere of Venus 1 sounding rocket observations

    NASA Technical Reports Server (NTRS)

    Mcclintock, William E.; Barth, Charles A.; Kohnert, Richard A.

    1994-01-01

    In this paper we present ultraviolet reflectance spectra obtained during two sounding rocket observations of Venus made during September 1988 and March 1991. We describe the sensitivity of the derived reflectance to instrument calibration and show that significant artifacts can appear in that spectrum as a result of using separate instruments to observe both the planetary radiance and the solar irradiance. We show that sulfur dioxide is the primary spectral absorber in the 190 - 230 nm region and that the range of altitudes probed by these wavelengths is very sensitive to incidence and emission angles. In a following paper Na et. al. (1994) show that sulfur monoxide features are also present in these data. Accurate identification and measurement of additional species require observations in which both the planetary radiance and the solar irradiance are measured with the same instrument. The instrument used for these observations is uniquely suited for obtaining large phase angle coverage and for studying transient atmospheric events on Venus because it can observe targets within 18 deg of the sun while earth orbiting instruments are restricted to solar elongation angles greater than or equal to 45 deg.

  12. Concept for A Mission to Titan, Saturn System and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Beauchamp, P.; Elliott, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its 1.5 year Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit. The next phase would utilize concurrent aerosampling and aerobraking (to a depth of 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit that initiates in the 10 AM orbit plane and would move ~ 40º towards the 8 AM orbit plane. At completion of the mission, a disposal phase would be initiated by simply letting the spacecraft decay under the influence of Saturn perturbations and Titan's atmospheric drag. The Titan Saturn System Mission is enabled by proven flight systems, launch capabilities, and wellunderstood trajectory options. The concept relies on traditional chemical propulsion (similar to Cassini and Galileo), a power source consisting of five Multi- Mission Radioisotope Thermoelectric Generators (MMRTGs) and a robust data downlink. The Titan Saturn System Mission maps well to NASA and ESA scientific objectives. This concept builds on a considerable basis of previous work and indicates that a flagship-class Titan mission is ready to enter Phase A and could be launched in the 2016-18 timeframe, requiring no new technologies. Furthermore, this mission includes accommodations to deliver and support ESA provided in situ elements (e.g., Montgolfiere balloon system and capable lander) should they be available. Alternative concepts (abiet higher cost) have been identified that provide benefits to the mission of reduced trip time to Saturn, higher delivered mass, enhanced resources for in situ accommodation and mission flexibility. These options, taken with the baseline described herein, provide NASA and ESA with a robust trade space for implementing a Titan Saturn System Mission.

  13. PVDaCS - A prototype knowledge-based expert system for certification of spacecraft data

    NASA Technical Reports Server (NTRS)

    Wharton, Cathleen; Shiroma, Patricia J.; Simmons, Karen E.

    1989-01-01

    On-line data management techniques to certify spacecraft information are mandated by increasing telemetry rates. Knowledge-based expert systems offer the ability to certify data electronically without the need for time-consuming human interaction. Issues of automatic certification are explored by designing a knowledge-based expert system to certify data from a scientific instrument, the Orbiter Ultraviolet Spectrometer, on an operating NASA planetary spacecraft, Pioneer Venus. The resulting rule-based system, called PVDaCS (Pioneer Venus Data Certification System), is a functional prototype demonstrating the concepts of a larger system design. A key element of the system design is the representation of an expert's knowledge through the usage of well ordered sequences. PVDaCS produces a certification value derived from expert knowledge and an analysis of the instrument's operation. Results of system performance are presented.

  14. Venus ionosphere: photochemical and thermal diffusion control of ion composition.

    PubMed

    Bauer, S J; Donahue, T M; Hartle, R E; Taylor, H A

    1979-07-06

    The major photochemical sources and sinks for ten of the ions measured by the ion mass spectrometer on the Pioneer Venus bus and orbiter spacecraft that are consistent with the neutral gas composition measured on the same spacecraft have been identified. The neutral gas temperature (Tn) as a function of solar zenith angle (chi) derived from measured ion distributions in photochemical equilibrium is given by Tn (K) = 323 cos(1/5)chi. Above 200 kilometers, the altitude behavior of ions is generally controlled by plasma diffusion, with important modifications for minor ions due to thermal diffusion resulting from the observed gradients of plasma temperatures. The dayside equilibrium distributions of ions are sometimes perturbed by plasma convection, while lateral transport of ions from the dayside seems to be a major source of the nightside ionosphere.

  15. Tectonic granulation of terrestrial planets in connection with their orbital frequencies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    The comparative wave planetology states that "orbits make structures" [1, 2 & others]. Moving in elliptical keplerian orbits with periodically changing accelerations celestial bodies are subjected to a warping action of inertia-gravity waves. In rotating bodies they acquire a stationary character and go in 4 crossing ortho- and diagonal directions. Interference of these directions produces uplifting (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on lengths of warping waves. The fundamental wave 1 long 2πR produces ubiquitous tectonic dichotomy - an opposition of two segments - one (+), another (-). Well known at Earth, Mars and the Moon it is not so sharp at Venus and just discovered on Mercury (Dr. Ksanfomality's telescopic observations of a huge basin > 2000 km in diameter on unknown portion of Mercury's surface). Asteroids at the farthest end of the terrestrial planets row all show oblong and convexo-concave shape due to warping action of wave 1. The fundamental wave 1 has overtones of which the first long πR produces tectonic sectors - very prominent features. At Earth, for an example, these are continents and secondary oceans (the primary Pacific is a segment - a part of the dichotomous structure). On these common for all planets basic warpings are superimposed individual warpings or tectonic granules. Their sizes are inversely proportional to orbital frequencies: higher frequency - smaller grain and, vice versa, lower frequency - larger grain. Starting from the solar photosphere (it orbits the center of the solar system with frequency 1/1month) one has the following row of tectonic grains sizes (a half of a wavelength): photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. Photosphere grains are famous solar supergranules about 30000 km across (this size was never explained by the solar physics). Mercury's grains are typical small basins occupying 3-4° of a big circle arc. Venus' grains are 12 superstructures or "blobs" (after Herrick & Phillips, 1990) in the equator about 3000 km across. Earth's grains are represented by superstructures of the AR cratons about 5000 km across. At Mars' equator 4 giant ring superstructures are symmetrically placed: Tharsis, Xanthe, Arabia, Cimmeria. At the main asteroid belt a strong resonance 1:1 occurs between lengths of the fundamental wave 1 and the individual wave also wave 1. This could explain "destruction of Phaethon". In reality, in the asteroid zone the strong wave resonance (1:1) probably prevented an "assembly" of a planet and led to known matter deficit. Mars also is comparatively unstable (in 1:1 resonance are the first overtone wave 2 and the individual wave also wave 2): its shape in the equatorial plane is farther from circle than the Earth's one. This new conception of planet "stability" can be numerically expressed as degree of departure from a circle (a stable configuration) of an inscribed figure - polygon made by standing waves. For this a ratio is taken: denominator - a circle area; numerator - an area of inscribed in circle figure whose shape is determined by a number of waves fitted in the circle. The following row of sphericity (stability) is obtained: photosphere, 60-gon, 0.997; Mercury, 16-gon, 0.973; Venus, hexagon, 0.830; Earth, square, 0.637; Mars, rectangle or rhombus, 0.420; asteroids, line, 0 (zero stability)[3]. Earth is unique by its near to "golden section" value, most favorable position determining its basic features including appearance and existence of a steady life. References: [1] Kochemasov G.G. (1992) Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 36-37. [2] Kochemasov G.G. (2002) Mars, Earth, Venus: concerted properties of lithospheres and atmospheres connected with regular tectonic granulation of the planets // Vernadsky-Brown microsymposium 36: "Topics in Comparative Planetology", Oct. 14-16, 2002, Moscow, Russia, Abstracts, CD-ROM. [3] Kochemasov G.G. (1994) Three "melons" and four 'watermelons" in the inner Solar system: why all "melons" are in the martian orbit? // 20th Russian-American microsymposium on planetology, Abstr., Moscow, Vernadsky Inst., 44-45.

  16. The Solar Orbiter Heliospheric Imager (SoloHI) for the Solar Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Howard, R.; Colaninno, R. C.; Plunkett, S. P.; Thernisien, A. F.; Wang, D.; Rich, N.; Korendyke, C.; Socker, D. G.; Linton, M.; McMullin, D. R.; Vourlidas, A.; Liewer, P. C.; De Jong, E.; Velli, M.; Mikic, Z.; Bothmer, V.; Philippe, L.; Carter, M. T.

    2017-12-01

    The SoloHI instrument has completed its development effort and has been integrated onto the Solar Orbiter (SolO) spacecraft. The SolO mission, scheduled for launch in February 2019, will undergo gravity assist maneuvers around Venus to change both the perihelion distance as well as the plane of the orbit to ultimately achieve a minimum perihelion of 0.28 AU and an orbital inclination of about 35° relative to the ecliptic plane. The remote sensing instruments will operate for three 10-day periods out of the nominal 6-month orbit. SoloHI will observe sunlight scattered by free electrons in the corona/solar wind from 5° to 45° elongation in visible wavelengths and will provide a coupling between remote sensing and in situ observations. It is very similar to the HI-1 instrument on STEREO/SECCHI except that the FOV is twice the size at 40o. We present our efforts to prepare for the mission including our observing plans, quick-look plans and some results of the calibration activities. We gratefully acknowledge the support of the NASA Solar Orbiter Collaboration project.

  17. Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    McEnulty, Tess Rose

    2012-06-01

    The purpose of this dissertation is to expand our understanding of oxygen ion escape to space from Venus and its dependence on extreme solar wind conditions found during interplanetary coronal mass ejections (ICMEs). The solar wind dynamic pressure outside of the Venus bow shock did not exceed ˜12 nPa, during 2006-2009, while the solar wind dynamic pressure was higher than this for ˜10% of the time during the PVO mission. Oxygen ions escape Venus through multiple regions near the planet. One of these regions is the magnetosheath, where high energy pick-up ions are accelerated by the solar wind convection electric field. High energy (>1 keV) O+ pick-up ions within the Venus magnetosheath reached higher energy at lower altitude when the solar wind was disturbed by ICMEs compared to pick-up ions when the external solar wind was not disturbed, between 2006-2007. However, the count rate of O+ was not obviously affected by the ICMEs during this time period. In addition to high energy pick-up ions, VEX also detects low energy (˜10-100 eV) O+ within the ionosphere and wake of Venus. These low energy oxygen ions are difficult to interpret, because the spacecraft's relative velocity and potential can significantly affect the measured energy. If VEX ion data is not corrected for the spacecraft's relative velocity and potential, gravitationally bound O+ could be misinterpreted as escaping. These gravitationally bound oxygen ions can extend on the nightside to ˜-2 Venus radii and may even return to the planet after reaching high altitudes in the wake. Gravitationally bound ions will lower the total O+ escape estimated from Venus if total escape is calculated including these ions. However, if the return flux is low compared to the total escaping outflow, this effect is not significant. An ICME with a dynamic pressure of 17.6 nPa impacted Venus on November 11, 2011. During this ICME, the high energy pick-up O+ and the low energy O+ ions were affected. Oxygen ions in the magnetosheath, ionosphere, and tail had higher energies during the ICME, compared to O + energies when the external solar wind conditions were undisturbed. High energy ions were escaping within the dayside magnetosheath region when the ICME was passing as well as when the solar wind was undisturbed. However, during the ICME passage, these O+ ions had three orders of magnitude higher counts. The low energy O+ during the undisturbed days was gravitationally bound, while during the ICME a portion of the low energy ions were likely escaping. The most significant difference in O + during the ICME was high energy pickup ions measured in the wake on the outbound portion of the orbit. These ions had an escape flux of 2.5 X 108 O+cm-2sec-1, which is higher than the average escape flux in all regions of the wake. In addition, the interplanetary magnetic field (IMF) was in a configuration that may have rotated an even higher escape flux O+ away from the VEX orbit. This needs to be confirmed with sampling of other regions in the wake during large ICMEs. A lower bound on the total O+ escape during this event could be ˜2.8 X1026 to 6.5 X 1027 O +/sec, which is 2-3 orders of magnitude higher than the average escape flux measured by VEX. Hence, ICMEs could have played a major role in the total escape of O+ from Venus. The results presented in this dissertation can be used as a guide for future studies of O+ escape at Venus. As we move into solar maximum, Venus will likely be impacted by more large ICMEs. The ICME from the last study of this dissertation was the largest yet measured by VEX, but its 17.6 nPa dynamic pressure is lower than the largest ICMEs during the PVO time period (˜ 80 nPa). The work in this dissertation is also relevant to Mars, since Mars interacts with the solar wind in a similar manner and has analogous ion escape mechanisms. The upcoming MAVEN (Mars Atmosphere and Volatile Evolution) mission will launch at the end of 2013 to study the Martian atmosphere, escape processes, and history of volatiles. This mission will have an in-situ ion instrument and magnetometer similar to those used for the studies in this dissertation, so one could conduct similar studies of the oxygen ion escape from Mars during extreme solar wind conditions. (Abstract shortened by UMI.)

  18. 14 CFR 417.3 - Definitions and acronyms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...

  19. 14 CFR 417.3 - Definitions and acronyms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...

  20. 14 CFR 417.3 - Definitions and acronyms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...

  1. 14 CFR 417.3 - Definitions and acronyms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...

  2. 14 CFR 417.3 - Definitions and acronyms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... vehicle during— (i) The ascent to initial orbital insertion and through at least one complete orbit; and (ii) Each subsequent orbital maneuver or burn from initial park orbit, or direct ascent to a higher or... launch vehicle achieves orbit or can no longer reach a populated or other protected area. Command...

  3. Long-term risk analysis associated with nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Davis, D. R.

    1979-01-01

    An assessment and verification of previous analytic results on the long term risk of earth reentry for hazardous payloads is presented. The two areas were studied: (1) stability of nominal, near-circular storage orbits in the regions between Venus and earth and between earth and Mars, and (2) probability of earth reentry for off-nominal planet-crossing orbits resulting from deployment system failures. In the first area, numerical integrations of the equations of motion are compared with stability predications based on secular perturbation theory. The agreement is good in terms of the heliocentric distances covered and the general behavior of the orbital history, although certain near-resonance situations can lead to difficulty. In the second area, a Monte Carlo simulation of orbital evolution is used and the results compared with Opik's analytic theory of planetary encounters and collision statistics, with data verified to within a close order-of-magnitude.

  4. Mars Ionosphere Meteoritic Ion Distributions -A Mixture of Earth and Venus Characteristics

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Benna, M.; Collinson, G.; Mahaffy, P. R.

    2016-12-01

    The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution mission repeatedly observes metallic ions on MAVEN's traversals below 155 kilometers during special deep-dipping orbital campaigns. On such orbits which sample the topside of the main metal ion peak in the ablation region, three of the major metal ions seen at Earth (Na+, Mg+ and Fe+) are always detected. The relative composition of these species varies with the planetary locations of the deep-dip orbits as does the complexity of the altitude profiles of the metal ion concentrations. Quite frequently the decrease of the concentrations with altitude (observed on inbound or outbound legs of the orbit relative to periapsis) tracks the atmospheric density scale height, but only in the average sense. The individual concentration altitude profiles themselves typically have large coherent oscillations indicative of atmospheric gravity wave effects. The monotonically decreasing altitude trends are most characteristic of observations in the northern hemisphere, but there are orbits that encounter large concentration disturbances in the metal ion profiles. The latter are more prevalent in the southern hemisphere. The major background environment differences between the northern and southern hemispheres are the existence of large remanent magnetic fields in the southern hemisphere atmosphere, but not the north. It appears that there are two types of metal ion distributions. One type is associated with vertical diffusion profiles from the main metal ion peak arising in weak or no-magnetic field regions (like Venus). The other type exhibits the complex disturbances. The latter occur in regions where transport of the metal ions is controlled by the magnetic fields, through externally imposed electric fields and/or neutral wind-driven electrodynamic processes as at Earth. A comparison is made between the onset of the disturbed metal ion profiles with the ambient magnetic fields to isolate the underlying physics in the context of what is known of the terrestrial processes.

  5. SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Bauer, J.; Giorgini, J.

    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinationsmore » of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 μm HgCdTe detector arrays capable of operating at ∼35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth–Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.« less

  6. PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document

    NASA Technical Reports Server (NTRS)

    Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.

    1978-01-01

    The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.

  7. Gravity fields. [Jovian, Martian, Cytherean, Mercurian and lunar mass distributions

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Anderson, J. D.; Phillips, R. J.; Trask, D. W.

    1976-01-01

    Detailed results on internal mass distribution have been obtained via earth-based Doppler radio tracking of deep space probes in the case of Mars, the earth's moon, Venus, Mercury, and Jupiter. Global gravity fields show close correlation with topography in the case of the moon and Mars, as data from orbiting spacecraft indicate. Some data are available on Jovian satellites. The gravity measuring instrumentation and data reduction techniques are described. Gravity profiles referable to lunar frontside mascons, craters, and mountain chains have been acquired from low-altitude (15-20 km) orbit surveys. Theoretically based cross sections through the moon and Jupiter are presented.

  8. The case for a deep-atmospheric in situ mission to address the highest priority Decadal Survey questions for Venus (Invited)

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Garvin, J. B.; Glaze, L. S.; Campbell, B. A.; Fisher, M. E.; Flores, A.; Gilmore, M. S.; Johnson, N.; Kiefer, W. S.; Lorenz, R. D.; Mahaffy, P. R.; Ravine, M. A.; Webster, C. R.; Zolotov, M. Y.

    2013-12-01

    Current understanding of Venus lags behind that for Mars, with a major disparity of information concerning noble and trace gases and the small scale surface processes needed for comparative studies of terrestrial planet evolution. Despite global surface mapping by Magellan, discoveries by Venera landers, and ongoing atmospheric observations by the Venus Express (VEx) orbiter, significant questions about Venus remain unanswered. To place Venus into its proper context with respect to Mars and Earth, it is necessary to obtain new measurements that address top issues identified in the National Research Council (NRC) Solar System Decadal Survey: (1) evolution of the atmosphere, history of climate, and evidence of past hydrologic cycles; (2) history of volatiles and sedimentary cycles; and (3) planetary surface evolution. To answer these questions, new measurements are needed. First and foremost, in situ noble gas measurements are needed to constrain solar system formation and Venus evolution. In particular, the isotopic ratios of Xe and Kr can provide unique insights into planetary accretion. Isotopic measurements of nitrogen (15N/14N) will place important constraints on atmospheric loss processes. Current knowledge of this ratio has a substantial uncertainty of ×20%. VEx observations of hydrogen isotopes indicate the D/H ratio above the clouds is substantially greater than measured by Pioneer Venus, and varies with height. High precision measurements of the vertical distribution of the D/H isotopic ratio below the cloud layers will provide constraints on models of the climate history of water on Venus. The majority of atmospheric mass is located below the clouds. Current data suggest intense interaction among atmospheric gases down to the surface. The haze within the cloud region of unknown composition plays a central role in the radiative balance. Photochemically-derived species (H2SO4, OCS, CO, Sn) are subjected to thermochemical reactions below the clouds, especially within 30 km of the surface. Competing temperature-pressure dependent reactions and atmospheric circulation may cause vertical and latitudinal gradients of chemically-active trace gases (e.g., SO2, H2S, OCS, CO). Measurements of the chemical composition of the near-surface atmosphere can be used to evaluate the stability of primary and secondary minerals and can help to understand chemistry of atmosphere-surface interactions. However, concentrations of many trace species have never been measured below ~30 km, and multiple in situ measurements are required to evaluate chemical processes and cycles of volatiles, which can only be accomplished with deep entry probes. Current lack of understanding about Venus not only limits our understanding of evolutionary pathways Earth could experience, but also suggests that we are ill-equipped to understand the evolution of star systems with similar-sized planets.

  9. Energetic particle diffusion and the A ring: Revisiting noise from Cassini's orbital insertion

    NASA Astrophysics Data System (ADS)

    Crary, Frank; Kollmann, Peter

    2016-04-01

    Immediately following Cassini's orbital insertion on July 1, 2004 the Cassini spacecraft passed over the Saturn's main rings. In anticipation of the final phase of the Cassini mission, with orbits inside and over the main rings, we have re-examined data from the CAPS instrument taken during the orbital insertion period. One previously-neglected feature is the detector noise in the ELS sensor. This has proven to be a sensitive, relative measure of omni-directional energetic (>5 MeV) electron flux. The data are obtained at 31.25 ms time resolution, corresponding to 0.46 km spatial resolution. Over the A ring, the energetic electron flux was essentially zero (~3 counts per sample.) At the edge of the A ring, this dramatically increased to approximately 2500 counts per sample in the space of 17.5 km. We use these results to derive the energetic particle diffusion rate and the absorption (optical depth) of the ring.

  10. Solar Orbiter Status Report

    NASA Astrophysics Data System (ADS)

    Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco

    2017-08-01

    With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).

  11. Orbital evolution studies of planet-crossing asteroids.

    NASA Astrophysics Data System (ADS)

    Hahn, Gerhard; Lagerkvist, Claes-Ingvar

    1987-03-01

    Numerical integrations of 26 orbits of planet-crossing astetoids of Apollo-Amor type have been performed, in a solar system model including the perturbations by the planets from Venus to Neptune. The 15:th order RADAU integrator (Everhart, 1985) has been used. Orbits for the asteroids 433 Eros, 887 Alinda, 1036 Ganymed, 1221 Amor, 1580 Betulia, 1627 Ivar, 1685 Toro, 1862 Apollo, 1863 Antinous, 1864 Daedalus, 1865 Cerberus, 1915 Quetzalcoatl and 1916 Boreas have been integrated over 100 000 years forward in time and for 1866 Sisyphus, 2102 Tantalus, 2201 Oljato, 2329 Orthos, 3360 1981 VA, 3552 1983 SA, 1981 EJ30, 1985 PA, 1985 WA, 1986 DA 1986 JK and 1986 RA a period of about 33 000 years has been covered. The orbital evolutions of these asteroids are discussed. This work is part of a larger study of the long-term orbital evolution of planet-crossing asteroids and will be continued within the project SPACEGUARD (Milani et al., 1987).

  12. Transit Observations of Venus's Atmosphere in 2012 from Terrestrial and Space Telescopes as Exoplanet Analogs

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Penn, M. J.; Jaeggli, S. A.; Galayda, E.; Reardon, K. P.; Widemann, T.; Tanga, P.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Dantowitz, R.

    2013-06-01

    We extensively observed the 8 June 2012 transit of Venus from several sites on Earth; we provide this interim status report about this and about two subsequent ToVs observed from space. From Haleakala Obs., we observed the entire June transit over almost 7 h with a coronagraph of the Venus Twilight Experiment B filter) and with a RED Epic camera to compare with simultaneous data from ESA's Venus Express, to study the Cytherean mesosphere; from Kitt Peak, we have near-IR spectropolarimetry at 1.6 µm from the aureole and during the disk crossing that compare well with carbon dioxide spectral models; from Sac Peak/IBIS we have high-resolution imaging of the Cytherean aureole for 22 min, starting even before 1st contact; from Big Bear, we have high-resolution imaging of Venus's atmosphere and the black-drop effect through 2nd contact; and we had 8 other coronagraphs around the world. For the Sept 21 ToV as seen from Jupiter, we had 14 orbits of HST to use Jupiter's clouds as a reflecting surface to search for an 0.01% diminution in light and a differential drop that would result from Venus's atmosphere by observing in both IR/UV, for which we have 170 HST exposures. As of this writing, preliminary data reduction indicates that variations in Jovian clouds and the two periods of Jupiter's rotation will be too great to allow extraction of the transit signal. For the December 20 ToV as seen from Saturn, we had 22 hours of observing time with VIMS on Cassini, for which we are looking for a signal of the 10-hr transit in total solar irradiance and of Venus's atmosphere in IR as an exoplanet-transit analog. Our Maui & Sac Peak expedition was sponsored by National Geographic Society's Committee for Research and Exploration; HST data reduction by NASA: HST-GO-13067. Some of the funds for the carbon dioxide filter for Sac Peak provided by NASA through AAS's Small Research Grant Program. We thank Rob Ratkowski of Haleakala Amateur Astronomers; Rob Lucas, Aram Friedman, Eric Pilger, Stan Truitt, and Steve Bisque/Software Bisque for Haleakala support/operations; Vasyl Yurchyshyn and Joseph Gangestad '06 of The Aerospace Corp. at Big Bear Solar Obs; LMSAL and Hinode science/operations team.

  13. Print, Web, And Podcast Tov Public Outreach

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2012-10-01

    As part of alerting the general public to the subtly spectacular transit of Venus as an intellectual marvel not available to us from Earth until AD 2117/2125, in addition to our scientific plans (Pasachoff et al., this meeting), I provided: (1) an article in the children's magazine Odyssey (May/June 2011); (2) a discussion in National Geographic Society's BreakingOrbit blog (March 1, 2011); (3) and a year's advance notice as "June 5: Transit of Venus," 365daysofastronomy.org. (4) Nantes DPS: I participated in "Transits of Venus in Public Education and Contemporary Research" (http://transitofvenus.nl/wp/2011/10/16/four-giants-talk-about-transits). (5) 22-minute lecture on the Phi Beta Kappa website: http://www.pbk.org/home/playpodcast.aspx?id=772. (6) E/PO summary at Historical Astronomy Division News, #79, October. Closer to the event, I had a (7) Comment in Nature ("Transit of Venus: Last Chance to See," Nature 485, 303-304) and (8, 9) articles in Physics World, 25, 36-41; and Scientific American, http://www.scientificamerican.com/article.cfm?id=transit-venus-june-5). The day before the transit, (10) I had a radio/podcast Academic Minute (http://www.wamc.org/post/dr-jay-pasachoff-williams-college). (11) On transit day, I had an Op-Ed piece in The New York Times ("Learning from Celestial Beauty," http://www.nytimes.com/2012/06/05/opinion/learning-from-celestial-beauty.html) that was seen by largely a non-scientific audience. Subsequently, (12) I gave a Keck-Observatory-sponsored Waimea general-public lecture (http://keckobservatory.org/news/video_venus_transits_past_present_future), and (13) an invited public lecture at the AAS meeting in Anchorage (http://aas.org/meetings/aas220/video_session_127). I had a podcast on (14) 365daysofastronomy.org (June 29). (15) My article for Sky & Telescope appeared in its October issue. (16) My editorial "Syzygy x 3" will be in RASC Observer's Handbook 2013. (16) These efforts as well as links to history and science of transits of Mercury and Venus are at http://sites.williams.edu/transitofvenus2012/links/ as part of my website http://www.transitofvenus.info. Acknowledgments: My expeditions to the 2004 and 2012 transits of were supported by grants from the Committee for Research and Exploration of the National Geographic Society.

  14. Treatment of congenital anophthalmos with self-inflating polymer expanders: a new method.

    PubMed

    Wiese, K G; Vogel, M; Guthoff, R; Gundlach, K K

    1999-04-01

    Congenital anophthalmos is a rare malformation in which the optic vesicle fails to develop. This leads to a small bony orbit, a constricted mucosal socket, short eyelids, reduced palpebral fissure and malar hypoplasia. The treatment includes both aesthetic and functional aspects. Therefore, a two-step procedure is described using a new self-inflating hydrogel expander. A lens-shaped expander with a diameter of 8 mm expands the lids and the mucosal socket to allow insertion of an eye prosthesis. As a second step, orbital expansion is performed with a spherical device. The expanders absorb lacrimal fluid from the mucosal socket or tissue fluid and start swelling when implanted in the orbital tissue. The insertion of an expander into the orbit as well as into the conjunctival pocket including its fixation by a single suture took only a few minutes and was an easy procedure. The expansion of the small conjunctival sockets was successfully completed in all cases within a period of 2-4 weeks. The weight (= volume in ml) of devices increased from 0.15-1.5 g (lens-shaped expander; weight in grams = volume in ml) respectively, 0.3-3.5 g (spherical device). The expanders inserted in orbital tissue increased from 0.4-4.4 g. This is equivalent to a 10 to 11 fold increase in their water-free volumes. Orbital expansion with spherical devices in combination with the inserted eye prosthesis enlarges the lid and palpebral fissures also. In contrast to conventional silicon balloon expanders, the procedure using self-inflating hydrogel expanders is simple and highly efficient.

  15. Compartmental Innervation of the Superior Oblique Muscle in Mammals.

    PubMed

    Le, Alan; Poukens, Vadims; Ying, Howard; Rootman, Daniel; Goldberg, Robert A; Demer, Joseph L

    2015-10-01

    Intramuscular innervation of mammalian horizontal rectus extraocular muscles (EOMs) is compartmental. We sought evidence of similar compartmental innervation of the superior oblique (SO) muscle. Three fresh bovine orbits and one human orbit were dissected to trace continuity of SO muscle and tendon fibers to the scleral insertions. Whole orbits were also obtained from four humans (two adults, a 17-month-old child, and a 33-week stillborn fetus), two rhesus monkeys, one rabbit, and one cow. Orbits were formalin fixed, embedded whole in paraffin, serially sectioned in the coronal plane at 10-μm thickness, and stained with Masson trichrome. Extraocular muscle fibers and branches of the trochlear nerve (CN4) were traced in serial sections and reconstructed in three dimensions. In the human, the lateral SO belly is in continuity with tendon fibers inserting more posteriorly on the sclera for infraducting mechanical advantage, while the medial belly is continuous with anteriorly inserting fibers having mechanical advantage for incycloduction. Fibers in the monkey superior SO insert more posteriorly on the sclera to favor infraduction, while the inferior portion inserts more anteriorly to favor incycloduction. In all species, CN4 bifurcates prior to penetrating the SO belly. Each branch innervates a nonoverlapping compartment of EOM fibers, consisting of medial and lateral compartments in humans and monkeys, and superior and inferior compartments in cows and rabbits. The SO muscle of humans and other mammals is compartmentally innervated in a manner that could permit separate CN4 branches to selectively influence vertical versus torsional action.

  16. Two Activities with a Simple Model of the Solar System: Discovering Kepler's 3rd Law and Investigating Apparent Motion of Venus

    ERIC Educational Resources Information Center

    Rovšek, Barbara; Guštin, Andrej

    2018-01-01

    An astronomy "experiment" composed of three parts is described in the article. Being given necessary data a simple model of inner planets of the solar system is made in the first part with planets' circular orbits using appropriate scale. In the second part revolution of the figurines used as model representations of the planets along…

  17. Line drawing of the Galileo spacecraft's encounters on its way to Jupiter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Line drawing charts the Galileo spacecraft's launch from low Earth orbit and its three planetary and two asteroid encounters in the course of its gravity-assisted flight to Jupiter. These encounters include Venus (February 1990), two Earth passes (December 1990 and December 1992), and the asteroids Gaspra and Ida in the asteroid belt. Galileo will release a probe and will arrive at Jupiter, 12-07-95.

  18. Bringing life to space exploration.

    PubMed

    Noor, A K; Doyle, R J; Venneri, S L

    1999-11-01

    Characteristics of 21st century space exploration are examined. Characteristics discussed include autonomy, evolvability, robotic outposts, and an overview of future missions. Sidebar articles examine the application of lessons from biological systems to engineered systems and mission concepts taking shape at NASA. Those mission concepts include plans for Mars missions, sample return missions for Venus and a comet nucleus, Europa orbiter and lander missions, a Titan organics explorer, and a terrestrial planet finder.

  19. Line drawing of the Galileo spacecraft's encounters on its way to Jupiter

    NASA Image and Video Library

    1989-09-11

    Line drawing charts the Galileo spacecraft's launch from low Earth orbit and its three planetary and two asteroid encounters in the course of its gravity-assisted flight to Jupiter. These encounters include Venus (February 1990), two Earth passes (December 1990 and December 1992), and the asteroids Gaspra and Ida in the asteroid belt. Galileo will release a probe and will arrive at Jupiter, 12-07-95.

  20. Three 2012 Transits of Venus: From Earth, Jupiter, and Saturn

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Edelman, E.; Reardon, K.; Widemann, T.; Tanga, P.; Dantowitz, R.; Silverstone, M. D.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Willson, R. C.; Kopp, G. A.; Yurchyshyn, V. B.; Sterling, A. C.; Scherrer, P. H.; Schou, J.; Golub, L.; McCauley, P.; Reeves, K.

    2013-01-01

    We observed the 2012 June 6/5 transit seen from Earth (E/ToV), simultaneously with Venus Express and several other spacecraft not only to study the Cytherean atmosphere but also to provide an exoplanet-transit analog. From Haleakala, the whole transit was visible in coronal skies; among our instruments was one of the world-wide Venus Twilight Experiment's nine coronagraphs. Venus's atmosphere became visible before first contact. SacPeak/IBIS provided high-resolution images at Hα/carbon-dioxide. Big Bear's NST also provided high-resolution observations of the Cytherean atmosphere and black-drop evolution. Our liaison with UH's Mees Solar Observatory scientists provided magneto-optical imaging at calcium and potassium. Solar Dynamics Observatory's AIA and HMI, and the Solar Optical Telescope (SOT) and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance measurements with ACRIMSAT and SORCE/TIM, were used to observe the event as an exoplanet-transit analog. On September 20, we imaged Jupiter for 14 Hubble Space Telescope orbits, centered on a 10-hour ToV visible from Jupiter (J/ToV), as an exoplanet-transit analog in our own solar system, using Jupiter as an integrating sphere. Imaging was good, although much work remains to determine if we can detect the expected 0.01% solar irradiance decrease at Jupiter and the even slighter differential effect between our violet and near-infrared filters caused by Venus's atmosphere. We also give a first report on our currently planned December 21 Cassini UVIS observations of a transit of Venus from Saturn (S/ToV). Our E/ToV expedition was sponsored by the Committee for Research and Exploration/National Geographic Society; supplemented: NASA/AAS's Small Research Grant Program. We thank Rob Ratkowski, Stan Truitt, Rob Lucas, Aram Friedman, and Eric Pilger '82 at Haleakala, and Joseph Gangestad '06 at Big Bear for assistance, and Lockheed Martin Solar and Astrophysics Lab and Hinode science and operations teams for support for coordinated observations with NASA satellites. Our J/ToV observations were based on observations made with HST, operated by AURA, Inc., under NASA contract NAS 5-26555; these observations are associated with program #13067.

  1. A strategy for developing a launch vehicle system for orbit insertion: Methodological aspects

    NASA Astrophysics Data System (ADS)

    Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2014-12-01

    The article addresses methodological aspects of a development strategy to design a launch vehicle system for orbit insertion. The development and implementation of the strategy are broadly outlined. An analysis is provided of the criterial base and input data needed to define the main requirements for the launch vehicle system. Approaches are suggested for solving individual problems in working out the launch vehicle system development strategy.

  2. The Orbital Evolution of Near-Earth Asteroid 3753

    NASA Astrophysics Data System (ADS)

    Wiegert, Paul A.; Innanen, Kimmo A.; Mikkola, Seppo

    1998-06-01

    Asteroid 3753 (1986 TO) is in a 1:1 mean motion resonance with Earth, on a complex horseshoe-type orbit. Numerical experiments are performed to determine its medium-term stability and the means by which it may have entered its current orbit. Though 3753 moves primarily under the influence of the Sun and Earth, the giant planets (and Jupiter especially) play an important role by influencing, through torque-induced precession, the position of the asteroid's nodes. Variations in the nodal distance strongly affect the interaction of 3753 with Earth and may change or destroy the horseshoe-like behavior currently seen. This precession of the nodes provides a mechanism for placing minor planets into, or removing them from, a variety of horseshoe-type orbits. The chaotic nature of this asteroid's orbit makes predictions difficult on timescales longer than its Lyapunov time (~150 yr); therefore, ensembles of particles on orbits near that of 3753 are considered. The asteroid has a high probability of passing close to Venus and/or Mars on 10^4 yr timescales, pointing to a dynamical age much shorter than that of the solar system.

  3. Dependence of wind speed and UV albedo at Venus top cloud layer on topography and local time revealed from VMC images

    NASA Astrophysics Data System (ADS)

    Patsaeva, Marina; Khatuntsev, Igor; Turin, Alexander; Zasova, Ludmila; Bertaux, Jean-loup

    2017-04-01

    A set of UV (365 nm) and IR (965 nm) images obtained by the Venus Monitoring Camera (VMC) was used to study the circulation of the mesosphere at two altitude levels. Displacement vectors were obtained by wind tracking in automated mode for observation period from 2006 to 2014 for UV images [1,2] and from 2006 to 2012 for IR images. The long observation period and good longitude-latitude coverage by single measurements allowed us to focus on the study of the slow-periodic component. The influence of the underlying surface topography on the change of speed of the average zonal wind at UV level at low latitudes, discovered by visual methods has been described in [3]. Analysis of the longitude-latitude distribution of the zonal and meridional components for 172000 (257 orbits) digital individual wind measurements at UV level and for 32,000 (150 orbits) digital individual wind measurements at IR level allows us to compare the influence of Venus topography on the change of the zonal and meridional components at both cloud levels. At the UV level (67±2 km) longitudinal profiles of the zonal speed for different latitude bins in low latitudes correlate with surface profiles. These correlations are most noticeable in the region of Aphrodite Terra. The correlation shift depends on the surface height. Albedo profiles correlate with surface profiles also at high latitudes. Zonal speed profiles at low latitude (5-15°S) depend not only on altitude, but also on local time. Minimum of the zonal speed is observed over Aphrodite Terra (90-100°E) at about 12 LT. A diurnal harmonic with an extremum over Aphrodite Terra was found. It can be considered as a superposition of a solar-synchronous tide and a stationary wave caused by interaction of the windstream with the surface. At the IR level (55±4 km) a correlation between surface topography and meridional speed was found in the region 10-30°S. The average meridional flow is equatorward at the IR level, but in the region Aphrodite Terra it is poleward. Acknowledgements: M.V. Patsaeva, I.V. Khatuntsev and J.-L. Bertaux were supported by the Ministry of Education and Science of Russian Federation grant 14.W03.31.0017. References: [1] Khatuntsev, I.V., M.V. Patsaeva, D.V. Titov, N.I. Ignatiev, A.V. Turin, S.S. Limaye, W.J. Markiewicz, M. Almeida, T. Roatsch and R. Moissl (2013), Cloud level winds from the Venus Express Monitoring Camera imaging., Icarus, 226, 140-158. [2] Patsaeva, M.V., I.V. Khatuntsev, D.V. Patsaev, D.V. Titov, N.I. Ignatiev, W.J. Markiewicz, A.V. Rodin (2015), The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express, Planet. Space Sci. 113(08), 100-108, doi:10.1016/j.pss.2015.01.013. [3] Bertaux, J.-L., I. V. Khatuntsev, A. Hauchecorne, W. J. Markiewicz, E. Marcq, S. Lebonnois, M. Patsaeva, A. Turin, and A. Fedorova (2016), Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves, J. Geophys. Res. Planets, 121, 1087-1101, doi:10.1002/2015JE004958.

  4. Venus Express Bistatic Radar Over Maxwell Montes

    NASA Astrophysics Data System (ADS)

    Simpson, R. A.; Tyler, G. L.; Haeusler, B.; Paetzold, M.

    2006-12-01

    Toward the end of the Magellan mission, several bistatic radar experiments were conducted using the spacecraft's linearly polarized transmissions at 13 cm wavelength. Ground reception was in right- and left- circular polarizations (RCP and LCP, respectively). Echoes from Maxwell Montes showed unusual polarization properties, which were interpreted as coming from a surface with a complex dielectric constant (Pettengill et al., Science, 272, 1628-1631, 1996). On early orbits of Venus Express (VEX) similar experiments were carried out, albeit with VEX's more conventional RCP transmissions and at lower signal-to-noise ratio than for Magellan. As expected, dielectric constants from VEX are generally higher than for other bodies (such as the Moon and Mars), based on echo power ratios (RCP/LCP). At the time of this writing, however, the expected change in polarization from preliminary coherent processing of RCP and LCP over Maxwell has not been detected.

  5. Suprathermal electron energy distribution within the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Miller, K. L.; Spenner, K.; Novak, V.; Michelson, P. F.; Whitten, R. C.

    1980-01-01

    The suprathermal electron energy distribution for the dayside ionosphere has been derived from data returned by the Pioneer-Venus orbiter retarding potential analyzer. The shape and magnitude of the spectrum are consistent with the assumption that solar EUV radiation is the only significant source. The magnitude of the spectrum and its variation with altitude suggest that significant vertical transport occurs, with the electrons being lost through the ionopause. In turn, significant vertical transport suggests that the effective vertical electron heat conductivity may be comparable to the field-free value. The heat input to the thermal electron gas from the measured suprathermal electron flux is too small by a factor of at least five to maintain the observed electron temperature profile if the electron thermal conductivity is assumed to be close to the field-free value. It is thus inferred that most of the heat is supplied by the solar wind.

  6. Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.

    1978-01-01

    Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.

  7. The structure of the inner heliosphere from Pioneer Venus and IMP observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.

    1992-01-01

    The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.

  8. Thermal Structure and Energy Influx to the Day-and Nightside Venus Ionosphere.

    PubMed

    Knudsen, W C; Spenner, K; Whitten, R C; Spreiter, J R; Miller, K L; Novak, V

    1979-07-06

    Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.

  9. Ionosphere of venus: first observations of day-night variations of the ion composition.

    PubMed

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Daniell, R E; Donahue, T M

    1979-07-06

    The Bennett radio-frequency ion mass spectrometer on the Pioneer Venus orbiter is returning the first direct composition evidence of the processes responsible for the formation and maintenance of the nightside ionosphere. Early results from predusk through the nightside in the solar zenith angle range 63 degrees (dusk) to 120 degrees (dawn) reveal that, as on the dayside, the lower nightside ionosphere consists of F(1)and F(2) layers dominated by O(2)(+) and O(+), respectively. Also like the dayside, the nightside composition includes distributions of NO(+), C(+), N(+), H(+), He(+), CO(2)(+), and 28(+) (a combination of CO(+) and N(2)(+)). The surprising abundance of the nightside ionosphere appears to be maintained by the transport of O(+) from the dayside, leading also to the formation of O(2)(+) through charge exchange with CO(2). Above the exobase, the upper nightside ionosphere exhibits dramatic variability in apparent response to variations in the solar wind and interplanetary magnetic field, with the ionopause extending to several thousand kilometers on one orbit, followed by the complete rertnoval of thermal ions to altitudes below 200 kilometers on the succeeding orbit, 24 hours later. In the upper ionosphere, considerable structure is evident in many of the nightside ion profiles. Also evident are horizontal ion drifts with velocities up to the order of 1 kilometer per second. Whereas the duskside ionopause is dominated by O(+) H(+) dominates the topside on the dawnside of the antisolar point, indicating two separate regions for ion depletion in the magnetic tail regions.

  10. Empirical evidence for stability of the 405-kiloyear Jupiter-Venus eccentricity cycle over hundreds of millions of years.

    PubMed

    Kent, Dennis V; Olsen, Paul E; Rasmussen, Cornelia; Lepre, Christopher; Mundil, Roland; Irmis, Randall B; Gehrels, George E; Giesler, Dominique; Geissman, John W; Parker, William G

    2018-06-12

    The Newark-Hartford astrochronostratigraphic polarity timescale (APTS) was developed using a theoretically constant 405-kiloyear eccentricity cycle linked to gravitational interactions with Jupiter-Venus as a tuning target and provides a major timing calibration for about 30 million years of Late Triassic and earliest Jurassic time. While the 405-ky cycle is both unimodal and the most metronomic of the major orbital cycles thought to pace Earth's climate in numerical solutions, there has been little empirical confirmation of that behavior, especially back before the limits of orbital solutions at about 50 million years before present. Moreover, the APTS is anchored only at its younger end by U-Pb zircon dates at 201.6 million years before present and could even be missing a number of 405-ky cycles. To test the validity of the dangling APTS and orbital periodicities, we recovered a diagnostic magnetic polarity sequence in the volcaniclastic-bearing Chinle Formation in a scientific drill core from Petrified Forest National Park (Arizona) that provides an unambiguous correlation to the APTS. New high precision U-Pb detrital zircon dates from the core are indistinguishable from ages predicted by the APTS back to 215 million years before present. The agreement shows that the APTS is continuous and supports a stable 405-kiloyear cycle well beyond theoretical solutions. The validated Newark-Hartford APTS can be used as a robust framework to help differentiate provinciality from global temporal patterns in the ecological rise of early dinosaurs in the Late Triassic, amongst other problems.

  11. Abort Options for Human Missions to Earth-Moon Halo Orbits

    NASA Technical Reports Server (NTRS)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  12. Impact craters on Venus: An overview from Magellan observations

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Strom, R. G.; Moore, H. J.; Soderblom, L. A.; Kirk, R. L.; Chadwick, D. J.; Dawson, D. D.; Gaddis, L. R.; Boyce, J. M.; Russell, J.

    1992-01-01

    Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta.

  13. Local time dependence of the thermal structure in the Venusian equatorial region revealed by Akatsuki radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.

    2017-12-01

    The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.

  14. Carl Sagan and the Exploration of Mars and Venus

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1997-01-01

    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  15. Radio occultation experiments with INAF-IRA radiotelescopes.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.

    The Radio Occultation research program performed at the Medicina and Noto Radioastronomical Stations of the Istituto Nazionale di Astrofisica (INAF) - Istituto di Radioastronomia (IRA) includes observations of spacecraft by satellite and satellite by satellite events. The Lunar Radio Occultation (LRO) part of the program consists in collecting data of the lunar Total Electron Content (TEC), at different limb longitudes and at different time, in order to study long term variation of the Moon's ionosphere. The LRO program started at Medicina in September 2006 with the observation of the European probe SMART-1 during its impact on the lunar soil. It proceeded in 2007 with the observation of the lunar occultations of Saturn and Venus, and with the observation of Mars in 2008. On this occasion the probes Cassini, Venus Express, Mars Express, Mars Reconaissance Orbiter and Mars Odissey were respectively occulted by the moon. On Dec 1st 2008 a Venus lunar occultation occurred. On that occasion we performed the first Italian-VLBI (I-VLBI) tracking experiment by detecting the carrier signals coming from the Venus Express (VEX) spacecraft with both the IRA radiotelescopes together with the Matera antenna of the Italian Space Agency. The second part of the radio occultation program includes the observation of satellite by satellite occultation events, as well as mutual occultations of Jupiter satellites. These events are referred to as mutual phenomena (PHEMU). These observations are aimed to measure the radio flux variation during the occultation and to derive surface spatial characteristics such as Io's hot spots. In this work preliminary results of the Radio Occultation program will be presented.

  16. Earth recovery mode analysis for a Martian sample return mission

    NASA Technical Reports Server (NTRS)

    Green, J. P.

    1978-01-01

    The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.

  17. Project APEX: Advanced manned exploration of the Martian moon Phobos

    NASA Technical Reports Server (NTRS)

    Eisley, Joe G.; Akers, Jim

    1992-01-01

    A preliminary design has been developed for a manned mission to the Martian moon Phobos. The spacecraft is to carry a crew of five and will be launched from Low Earth Orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swingby of Venus and takes eight months to complete. The stay at Phobos is scheduled for 60 days. During this time, the crew will be busily engaged in setting up a prototype fuel processing facility. The vehicle will then return to Earth orbit after a total mission duration of 656 days. The spacecraft is powered by three nuclear thermal rockets which also provide the primary electrical power via dual mode operation. The overall spacecraft length is 110 m, and the total mass departing from Low Earth Orbit is 900 metric tons.

  18. JunoCam: Approach and Orbit 1 Imaging

    NASA Astrophysics Data System (ADS)

    Ravine, M. A.; Caplinger, M. A.; Hansen, C. J.; Ingersoll, A. P.; Bolton, S. J.

    2016-10-01

    Juno went into orbit around Jupiter on 4 July 2016. Junocam took images of Jupiter and its satellites in the weeks before Jupiter Orbit Insertion (JOI) and the weeks after. Much higher resolution data will be acquired in late August 2016.

  19. Cosmogonic curve and positions on it of Earth, asteroids, and the outer planets

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The main point of the comparative wave planetology [1 & others] is the statement: "Orbits make structures". All so different celestial bodies (various sizes, masses, densities, chemichal compositions, physical states, positions in the Universe and so on) have two fundamental properties: movement and rotation. Movements in non-circular (keplerian elliptical, parabolic) orbits with changing accelerations induce in bodies wave warpings (standing waves) which in rotating bodies have 4 orthogonal and diagonal directions. An interference of these directions produces uprising, subsiding and neutral tectonic blocks size of which depends on warping wavelengths. The fundamental wave1 long 2πR (R - a body radius) gives ubiquitous tectonic dichotomy (two hemispheres - segments), the first overtone wave2 long πR produces sectoring. Along with these warpings (wave1 with harmonics) exist tectonic granulations. Granule size depends on orbital frequency: higher frequency - smaller granule, lower frequency - larger granule. Terrestrial planets have the following individual granule sizes (a half of a wavelength): Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (Fig. 1, bottom). These granule producing warpings tend to bring planetary spheres to polyhedrons which, for simplicity, are represented by the following figures inscribed in the planetary circles: Mercury- 16-gon, Venus- hexagon, Earth- square, Mars- rectangle, asteroids - line (Fig. 2). Obviously, nearer a figure to circle more it is stable, and this is expressed by the ratio of a figure area to the circle area. Mercury has 0.973, Venus 0.830, Earth 0.637, Mars 0.420, asteroids 0. The line for asteroids means the zero ratio, thus zero stability and no planet in the asteroid zone. Earth is unique by its near to the "golden section" value. In Fig. 1 both axes are logarithmic: the abscissa - solar distances of the planets, the ordinate - relative granule sizes (ratio of an individual wave to the fundamental wave). Before the asteroid belt individual waves are shorter than the fundamental wave, after the belt - an opposite relation occurs. Thus the asteroid belt crosses the ordinate 1 what means that there is the very strong 1 : 1 resonance between the fundamental and the individual waves prohibiting a planet (Phaethon) formation. Available material is scattered leading to a known matter deficit. The constructed cosmogonic curve is a curve with a bending point. Earth occurs at this peculiar place what determines Earth uniqueness. The heliocentric distance is then mathematically the abscissa of the bending point (Fig. 1). In the outer planets zone regularly increasing warping wavelengths begin to exceed the fundamental wavelength. The giant planets resist to destructive high amplitude oscillations thanks to their large gravitational compression and elasticity. Nevertheless they also lose a part of their matter ejecting it into near planet space where it gathers up as systems of satellites and rings. Such ejections could explain appearance of non-regular satellites, arcs in rings and other "anomalous" phenomena. Pluto bears vivid marks of destructive oscillations. It has large bulge or is torn in two parts (second core or large satellite) and "chaotically" moves in orbit. The chaos is most probably caused by a distortion of its orbit by its own high amplitude oscillations. Approaching the 100 : 1 resonance (Fig. 1) tells on significant matter deficit in the Pluto's orbit and its increased density. Decimal resonances (1:1,10:1, 100:1) are marked by a matter deficit. Planetary masses relative to the Earth's mass are as follows: Mercury 0.06; Venus 0.82; Earth 1.00; Mars 0.11; Asteroids 0.001(mass deficit); Jupiter 318; Saturn 95.1; (mass deficit) Uranus 14.5; Neptune 17.3; Pluto 0.002 (mass deficit). References: [1]Kochemasov G.G. (1992)16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 36-37.

  20. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki

    NASA Astrophysics Data System (ADS)

    Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.

    2017-09-01

    The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m s-1 at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m s-1 using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venus's atmospheric superrotation.

Top