Identification of differentially expressed genes in childhood asthma.
Zhang, Nian-Zhen; Chen, Xiu-Juan; Mu, Yu-Hua; Wang, Hewen
2018-05-01
Asthma has been the most common chronic disease in children that places a major burden for affected people and their families.An integrated analysis of microarrays studies was performed to identify differentially expressed genes (DEGs) in childhood asthma compared with normal control. We also obtained the differentially methylated genes (DMGs) in childhood asthma according to GEO. The genes that were both differentially expressed and differentially methylated were identified. Functional annotation and protein-protein interaction network construction were performed to interpret biological functions of DEGs. We performed q-RT-PCR to verify the expression of selected DEGs.One DNA methylation and 3 gene expression datasets were obtained. Four hundred forty-one DEGs and 1209 DMGs in childhood asthma were identified. Among which, 16 genes were both differentially expressed and differentially methylated in childhood asthma. Natural killer cell mediated cytotoxicity pathway, Jak-STAT signaling pathway, and Wnt signaling pathway were 3 significantly enriched pathways in childhood asthma according to our KEGG enrichment analysis. The PPI network of top 20 up- and downregulated DEGs consisted of 822 nodes and 904 edges and 2 hub proteins (UBQLN4 and MID2) were identified. The expression of 8 DEGs (GZMB, FGFBP2, CLC, TBX21, ALOX15, IL12RB2, UBQLN4) was verified by qRT-PCR and only the expression of GZMB and FGFBP2 was inconsistent with our integrated analysis.Our finding was helpful to elucidate the underlying mechanism of childhood asthma and develop new potential diagnostic biomarker and provide clues for drug design.
Mutation spectrum and differential gene expression in cystic and solid vestibular schwannoma.
Zhang, Zhihua; Wang, Zhaoyan; Sun, Lianhua; Li, Xiaohua; Huang, Qi; Yang, Tao; Wu, Hao
2014-03-01
We sought to characterize the mutation spectrum of NF2 and the differential gene expression in cystic and solid vestibular schwannomas. We collected tumor tissue and blood samples of 31 cystic vestibular schwannomas and 114 solid vestibular schwannomas. Mutation screening of NF2 was performed in both tumor and blood DNA samples of all patients. cDNA microarray was used to analyze the differential gene expression between 11 cystic vestibular schwannomas and 6 solid vestibular schwannomas. Expression levels of top candidate genes were verified by quantitative reverse transcription PCR. NF2 mutations were identified in 34.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. No significant difference was found between the mutation detection rates of cystic vestibular schwannoma (35.5%) and solid vestibular schwannoma (34.2%). cDNA microarray analysis detected a total of 46 differentially expressed genes between the cystic vestibular schwannoma and solid vestibular schwannoma samples. The significantly decreased expression of four top candidate genes, C1orf130, CNTF, COL4A3, and COL4A4, was verified by quantitative reverse transcription PCR. NF2 mutations are not directly involved in the cystic formation of vestibular schwannoma. In addition, the differential gene expression of cystic vestibular schwannoma reported in our study may provide useful insights into the molecular mechanism underlying this process.
Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo
2016-01-01
Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466
Heo, Sun Hee; Choi, Jin-Ho; Kim, Yoo-Mi; Jung, Chang-Woo; Lee, Jin; Jin, Hye Young; Kim, Gu-Hwan; Lee, Beom Hee; Shin, Choong Ho; Yoo, Han-Wook
2013-04-01
This study was undertaken to identify growth hormone (GH) responsive proteins and protein expression patterns by short-term recombinant human growth hormone (rhGH) therapy in patients with idiopathic short stature (ISS) using proteomic analysis. Seventeen children (14 males and three females) with ISS were included. They were treated with rhGH at a dose of 0.31 ± 0.078 mg/kg/week for 3 months. Immunodepletion of six highly-abundant serum proteins followed by 2D DIGE analysis, and subsequent MALDI TOF MS, were employed to generate a panel of proteins differentially expressed after short-term rhGH therapy and verify the differences in serum levels of specific proteins by rhGH therapy. Fourteen spots were differentially expressed after rhGH treatment. Among them, apo E and apo L-1 expression were consistently enhanced, whereas serum amyloid A was reduced after rhGH therapy. The differential expressions of these proteins were subsequently verified by Western blot analysis using sera of the before and after rhGH treatment. This study suggests that rhGH therapy influences lipoprotein metabolism and enhances apo L-1 protein expression in ISS patients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Ya; Zhang, Peng-Zhi; Sun, Dong; Mi, Wen-Juan; Zhang, Xin-Yi; Cui, Yong; Jiang, Xing-Wang; Mao, Xiao-Bo; Qiu, Jian-Hua
2014-04-01
Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.
Wheat differential gene expression induced by different races of Puccinia triticina.
Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P
2018-01-01
Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.
Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid
2017-02-02
Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.
Jesnowski, R; Zubakov, Dmitri; Faissner, Ralf; Ringel, Jörg; Hoheisel, Jörg D; Lösel, Ralf; Schnölzer, Martina; Löhr, Matthias
2007-01-01
Abstract Pancreatic carcinoma has an extremely bad prognosis due to lack of early diagnostic markers and lack of effective therapeutic strategies. Recently, we have established an in vitro model recapitulating the first steps in the carcinogenesis of the pancreas. SV40 large T antigen-immortalized bovine pancreatic duct cells formed intrapancreatic adenocarcinoma tumors on k-rasmut transfection after orthotopic injection in the nude mouse pancreas. Here we identified genes and proteins differentially expressed in the course of malignant transformation using reciprocal suppression subtractive hybridization and 2D gel electrophoresis and mass spectrometry, respectively. We identified 34 differentially expressed genes, expressed sequence tags, and 15 unique proteins. Differential expression was verified for some of the genes or proteins in samples from pancreatic carcinoma. Among these genes and proteins, the majority had already been described either to be influenced by a mutated ras or to be differentially expressed in pancreatic adenocarcinoma, thus proving the feasibility of our model. Other genes and proteins (e.g., BBC1, GLTSCR2, and rhoGDIα), up to now, have not been implicated in pancreatic tumor development. Thus, we were able to establish an in vitro model of pancreatic carcinogenesis, which enabled us to identify genes and proteins differentially expressed during the early steps of malignant transformation. PMID:17356710
NASA Astrophysics Data System (ADS)
Hu, Yueyuan; Lau, Patrick; Baumstark-Khan, Christa; Hellweg, Christine E.; Reitz, Günther
2012-05-01
To evaluate the effects of ionizing radiation (IR) on murine preosteoblastic cell differentiation, we directed OCT-1 cells to the osteoblastic lineage by treatment with a combination of β-glycerophosphate (β-GP), ascorbic acid (AA), and dexamethasone (Dex). In vitro mineralization was evaluated based on histochemical staining and quantification of the hydroxyapatite content of the extracellular bone matrix. Expression of mRNA encoding Runx2, transforming growth factor β1 (TGF-β1), osteocalcin (OCN), and p21CDKN1A was analyzed. Exposure to IR reduced the growth rate and diminished cell survival of OCT-1 cells under standard conditions. Notably, calcium content analysis revealed that deposition of mineralized matrix increased significantly under osteogenic conditions after X-ray exposure in a time-dependent manner. In this study, higher radiation doses exert significant overall effects on TGF-β1, OCN, and p21CDKN1A gene expression, suggesting that gene expression following X-ray treatment is affected in a dose-dependent manner. Additionally, we verified that Runx2 was suppressed within 24 h after irradiation at 2 and 4 Gy. Although further studies are required to verify the molecular mechanism, our observations strongly suggest that treatment with IR markedly alters the differentiation and mineralization process of preosteoblastic cells.
Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming
2015-09-01
Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.
Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E
2016-02-15
To investigate the intestinal functions of the NKCC1 Na(+)-K(+)-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.
Lv, Hao; Sun, Yujie; Zhang, Yuchen
2015-05-27
MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3'UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression.
Lv, Hao; Sun, Yujie; Zhang, Yuchen
2015-01-01
Background MiR-133 expression is dysregulated in postmenopausal osteoporosis. However, its role in postmenopausal osteoporosis is still not well understood. In the current study, we explore how estrogen deficiency affects miR-133 expression and how miR-133 is involved in osteogenic differentiation of mesenchymal stem cells (MSCs). Material/Methods qRT-PCR analysis was performed to assess miR-133 expression in MSCs isolated from bone marrow of an ovariectomized (OVX) animal model and postmenopausal osteoporosis patients (PMOP) and their corresponding controls. The binding between miR-133 and predicted target SLC39A1 was verified using dual luciferase assay and Western blot analysis. The effect of miR-133 and SLC39A1 on osteogenic differentiation of MSCs was assessed through measuring alkaline phosphatase (ALP), mineralization nodules, and osteoblast-specific genes Runx2 and Osterix expression. Results miR-133 expression is significantly enhanced as a result of estrogen deficiency. Its overexpression is negatively correlated to osteogenic differentiation of hMSCs. SLC39A1 showed an inverse expression trend to miR-133 during the differentiation. miR-133 can directly target 3′UTR of SLC39A1 and thereby modulate its expression in hMSCs. The miR-133-SLC39A1 axis might play an important role in osteogenic differentiation of hMSCs. SLC39A1 can promote ALP activity and formation of mineralization nodules. In addition, SLC39A1 expression level is also positively correlated with RUNX2 and Osterix. Conclusions Estrogen deficiency is associated with miR-133 overexpression. MiR-133 can induce postmenopausal osteoporosis by weakening osteogenic differentiation of hMSCs, at least partly through repressing SLC39A1 expression. PMID:26013661
Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Zügel, Stefanie; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart
2011-08-01
Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications. Copyright © 2011 John Wiley & Sons, Ltd.
2012-01-01
Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set. PMID:23122055
Estimating differential expression from multiple indicators
Ilmjärv, Sten; Hundahl, Christian Ansgar; Reimets, Riin; Niitsoo, Margus; Kolde, Raivo; Vilo, Jaak; Vasar, Eero; Luuk, Hendrik
2014-01-01
Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR. PMID:24586062
Adrenaline inhibits osteogenesis via repressing miR-21 expression.
Chen, Danying; Wang, Zuolin
2017-01-01
Sympathetic signaling is involved in bone homeostasis; however, the cellular and molecular mechanisms remain unknown. In this study, we found that the psychological stress mediator adrenaline inhibited osteogenic differentiation of human bone marrow-derived stem cells (hMSC) by reducing microRNA-21 (miR-21) expression. Briefly, adrenaline significantly inhibited the osteogenic differentiation of hMSCs, as observed with both Alizarin red staining and maker gene expression (RUNX2, OSX, OCN, and OPN). During this process, miR-21 was suppressed by adrenaline via inhibition of histone acetylation, as verified by H3K9Ac chromatin immunoprecipitation (ChIP) assay. MiR-21 was confirmed to promote hMSC osteogenic differentiation, and overexpression of miR-21 reversed the impeditive effect of adrenaline on hMSC osteogenic differentiation. Our results demonstrate that down-regulation of miR-21 is responsible for the adrenaline-mediated inhibition of hMSC osteogenic differentiation. These findings indicate a regulation of bone metabolism by psychological stress and also provide a molecular basis for psychological stress-associated bone diseases. © 2016 International Federation for Cell Biology.
Inference for High-dimensional Differential Correlation Matrices.
Cai, T Tony; Zhang, Anru
2016-01-01
Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.
Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding
2016-04-01
Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres.
Martins, Antonio H; Alves, Janaína M; Trujillo, Cleber A; Schwindt, Telma T; Barnabé, Gabriela F; Motta, Fabiana L T; Guimaraes, Alessander O; Casarini, Dulce E; Mello, Luiz E; Pesquero, João B; Ulrich, Henning
2008-04-01
Neural progenitor cells were isolated from rat fetal telencephalon and proliferate as neurospheres in the presence of EGF, FGF-2, and heparin. In the absence of these growth factors, neurospheres differentiate into neurons, astrocytes, and oligodendrocytes. Using an embryonal carcinoma cell line as in vitro differentiation model, we have already demonstrated the presence of an autocrine loop system between kinin-B2 receptor activity and secretion of its ligand bradykinin (BK) as prerequisites for final neuronal differentiation (Martins et al., J Biol Chem 2005; 280: 19576-19586). The aim of this study was to verify the activity of the kallikrein-kinin system (KKS) during neural progenitor cell differentiation. Immunofluorescence studies and flow cytometry analysis revealed increases in glial fibrillary acidic protein and beta-3 tubulin expression and decrease in the number of nestin-positive cells along neurospheres differentiation, indicating the transition of neural progenitor cells to astrocytes and neurons. Kinin-B2 receptor expression and activity, secretion of BK into the medium, and presence of high-molecular weight kininogen suggest the participation of the KKS in neurosphere differentiation. Functional kinin-B2 receptors and BK secretion indicate an autocrine loop during neurosphere differentiation to neurons, astrocytes, and oligodendrocytes, reflecting events occurring during early brain development. (c) 2008 International Society for Analytical Cytology.
Gesing, Stefan; Schindler, Daniel; Nowrousian, Minou
2013-09-01
Ascomycetes differentiate four major morphological types of fruiting bodies (apothecia, perithecia, pseudothecia and cleistothecia) that are derived from an ancestral fruiting body. Thus, fruiting body differentiation is most likely controlled by a set of common core genes. One way to identify such genes is to search for genes with evolutionary conserved expression patterns. Using suppression subtractive hybridization (SSH), we selected differentially expressed transcripts in Pyronema confluens (Pezizales) by comparing two cDNA libraries specific for sexual and for vegetative development, respectively. The expression patterns of selected genes from both libraries were verified by quantitative real time PCR. Expression of several corresponding homologous genes was found to be conserved in two members of the Sordariales (Sordaria macrospora and Neurospora crassa), a derived group of ascomycetes that is only distantly related to the Pezizales. Knockout studies with N. crassa orthologues of differentially regulated genes revealed a functional role during fruiting body development for the gene NCU05079, encoding a putative MFS peptide transporter. These data indicate conserved gene expression patterns and a functional role of the corresponding genes during fruiting body development; such genes are candidates of choice for further functional analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microarray-based identification of differentially expressed genes in extramammary Paget’s disease
Lin, Jin-Ran; Liang, Jun; Zhang, Qiao-An; Huang, Qiong; Wang, Shang-Shang; Qin, Hai-Hong; Chen, Lian-Jun; Xu, Jin-Hua
2015-01-01
Extramammary Paget’s disease (EMPD) is a rare cutaneous malignancy accounting for approximately 1-2% of vulvar cancers. The rarity of this disease has caused difficulties in characterization and the molecular mechanism underlying EMPD development remains largely unclear. Here we used microarray analysis to identify differentially expressed genes in EMPD of the scrotum comparing with normal epithelium from healthy donors. Agilent single-channel microarray was used to compare the gene expression between 6 EMPD specimens and 6 normal scrotum epithelium samples. A total of 799 up-regulated genes and 723 down-regulated genes were identified in EMPD tissues. Real-time PCR was conducted to verify the differential expression of some representative genes, including ERBB4, TCF3, PAPSS2, PIK3R3, PRLR, SULT1A1, TCF7L1, and CREB3L4. Generally, the real-time PCR results were consistent with microarray data, and the expression of ERBB4, PRLR, TCF3, PIK3R3, SULT1A1, and TCF7L1 was significantly overexpressed in EMPD (P<0.05). Moreover, the overexpression of PRLR in EMPD, a receptor for the anterior pituitary hormone prolactin (PRL), was confirmed by immunohistochemistry. These data demonstrate that the differentially expressed genes from the microarray-based identification are tightly associated with EMPD occurrence. PMID:26221264
Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao
2012-03-01
High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.
Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E
2016-01-01
AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors. PMID:26909237
Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.
Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong
2017-03-01
The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.
He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei
2011-09-01
Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.
Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A
2014-09-01
An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang
2017-01-01
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867
Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang
2017-01-01
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.
Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor
2016-01-01
Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702
Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin
2009-10-01
During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.
The Effect of Selenium Enrichment on Baker s Yeast Proteome
El-Bayoumy, Karam; Das, Arunangshu; Russell, Stephen; Wolfe, Steven; Jordan, Rick; Renganathan, Kutralanathan; Loughran, Thomas P.; Somiari, Richard
2011-01-01
The use of regular yeast (RY) and selenium-enriched yeast (SEY) as dietary supplement is of interest because the Nutritional Prevention of Cancer (NPC) trial revealed that SEY but not RY decreased the incidence of prostate cancer (PC). Using two-dimensional difference in gel electrophoresis (2D-DIGE) – tandem mass spectrometry (MS/MS) approach, we performed proteomic analysis of RY and SEY to identify proteins that are differentially expressed as a result of selenium enrichment. 2D-DIGE revealed 96 candidate protein spots that were differentially expressed (p≤0.05) between SEY and RY. The 96 spots were selected, sequenced by LC/MS/MS and 37 proteins were unequivocally identified. The 37 identified proteins were verified with ProteinProphet software and mapped to existing Gene Ontology categories. Furthermore, the expression profile of 5 of the proteins with validated or putative roles in the carcinogenesis process, and for which antibodies against human forms of the proteins are available commercially were verified by western analysis. This study provides evidence for the first time that SEY contains higher levels of Pyruvate Kinase, HSP70, and Elongation factor 2 and lower levels of Eukaryotic Translation Initiation Factor 5A-2 and Triosephosphate Isomerase than those found in RY. PMID:22067702
Inference for High-dimensional Differential Correlation Matrices *
Cai, T. Tony; Zhang, Anru
2015-01-01
Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380
MicroRNAs as a potential prognostic factor in gastric cancer
Brenner, Baruch; Hoshen, Moshe B; Purim, Ofer; David, Miriam Ben; Ashkenazi, Karin; Marshak, Gideon; Kundel, Yulia; Brenner, Ronen; Morgenstern, Sara; Halpern, Marisa; Rosenfeld, Nitzan; Chajut, Ayelet; Niv, Yaron; Kushnir, Michal
2011-01-01
AIM: To compare the microRNA (miR) profiles in the primary tumor of patients with recurrent and non-recurrent gastric cancer. METHODS: The study group included 45 patients who underwent curative gastrectomies from 1995 to 2005 without adjuvant or neoadjuvant therapy and for whom adequate tumor content was available. Total RNA was extracted from formalin-fixed paraffin-embedded tumor samples, preserving the small RNA fraction. Initial profiling using miR microarrays was performed to identify potential biomarkers of recurrence after resection. The expression of the differential miRs was later verified by quantitative real-time polymerase chain reaction (qRT-PCR). Findings were compared between patients who had a recurrence within 36 mo of surgery (bad-prognosis group, n = 14, 31%) and those who did not (good-prognosis group, n = 31, 69%). RESULTS: Three miRs, miR-451, miR-199a-3p and miR-195 were found to be differentially expressed in tumors from patients with good prognosis vs patients with bad prognosis (P < 0.0002, 0.0027 and 0.0046 respectively). High expression of each miR was associated with poorer prognosis for both recurrence and survival. Using miR-451, the positive predictive value for non-recurrence was 100% (13/13). The expression of the differential miRs was verified by qRT-PCR, showing high correlation to the microarray data and similar separation into prognosis groups. CONCLUSION: This study identified three miRs, miR-451, miR-199a-3p and miR-195 to be predictive of recurrence of gastric cancer. Of these, miR-451 had the strongest prognostic impact. PMID:22046085
Yang, Jin; Xiong, Liu-Lin; Wang, You-Cui; He, Xiang; Jiang, Ling; Fu, Song-Jun; Han, Xue-Fei; Liu, Jia; Wang, Ting-Hua
2018-01-01
It has been reported that oligodendrocyte precursor cells (OPCs) may be used to treat contusive spinal cord injury (SCC), and may alter microRNA (miRNA/miR) expression following SCC in rats. However, the association between miRNA expression and the treatment of rats with SCC with OPC transplantation remain unclear. The present study transplanted OPCs into the spinal cord of rats with SCC and subsequently used the Basso, Beattie and Bresnahan (BBB) score to assess the functional recovery and pain scores. An miRNA assay was performed to detect differentially expressed miRNAs in the spinal cord of SCC rats transplanted with OPCs, compared with SCC rats transplanted with medium. Quantitative polymerase chain reaction was used to verify significantly altered miRNA expression levels. The results demonstrated that OPC transplantation was able to improve motor recovery and relieve mechanical allodynia in rats with SCC. In addition, through a miRNA assay, 45 differentially expressed miRNAs (40 upregulated miRNAs and 5 downregulated miRNAs) were detected in the spinal cord of rats in the OPC group compared with in the Medium group. Differentially expressed miRNAs were identified according to the following criteria: Fold change >2 and P<0.05. Furthermore, quantitative polymerase chain reaction was used to verify the most highly upregulated (miR-375-3p and miR-1-3p) and downregulated (miR-363-3p, miR-449a-5p and miR-3074) spinal cord miRNAs that were identified in the miRNA assay. In addition, a bioinformatics analysis of these miRNAs indicated that miR-375 and miR-1 may act primarily to inhibit cell proliferation and apoptosis via transcriptional and translational regulation, whereas miR-363, miR-449a and miR-3074 may act primarily to inhibit cell proliferation and neuronal differentiation through transcriptional regulation. These results suggested that OPC transplantation may promote functional recovery of rats with SCC, which may be associated with the expression of various miRNAs in the spinal cord, including miR-375-3p, miR-1-3p, miR-363-3p, miR-449a-5p and miR-3074. PMID:29115639
IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE
Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.
2010-01-01
Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258
Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping
2015-10-16
Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yanxia; Department of Rehabilitation, Xi'an Children's Hospital, Xi'an 710003; Liu, Xiaoguai
Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis alsomore » showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.« less
Identification of differentially expressed proteins during human urinary bladder cancer progression.
Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J
2005-01-01
Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.
RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG
2015-01-01
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425
Jakob, F; Homann, D; Adamski, J
1995-12-01
Estradiol is active in proliferation and differentiation of sex-related tissues like ovary and breast. Glandular steroid metabolism was for a long time believed to dominate the estrogenic milieu around any cell of the organism. Recent reports verified the expression of estrogen receptors in "non-target" tissues as well as the extraglandular expression of steroid metabolizing enzymes. Extraglandular steroid metabolism proved to be important in the brain, skin and in stromal cells of hormone responsive tumors. Aromatase converts testosterone into estradiol and androstenedione into estrone, thereby activating estrogen precursors. The group of 17 beta-hydroxysteroid dehydrogenases catalyzes the oxidation and/or reduction of the forementioned compounds, e.g. estradiol/estrone, thereby either activating or inactivating estradiol. Aromatase is expressed and regulated in the human THP 1 myeloid leukemia cell line after vitamin D/GMCSF-propagated differentiation. Aromatase expression is stimulated by dexamethasone, phorbolesters and granulocyte/macrophage stimulating factor (GMCSF). Exons I.2 and I.4 are expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. Vitamin D-differentiated THP 1 cells produce a net excess of estradiol in culture supernatants, if testosterone is given as aromatase substrate. In contrast, the 17 beta-hydroxysteroid dehydrogenase type 4 (17 beta-HSD 4) is abundantly expressed in unstimulated THP 1 cells and is further stimulated by glucocorticoids (2-fold). The expression is unchanged after vitamin D/GMCSF-propagated differentiation. 17 beta-HSD 4 expression is not altered by phorbolester treatment in undifferentiated cells but is abolished after vitamin D-propagated differentiation along with downregulation of beta-actin. Protein kinase C activation therefore appears to dissociate the expression of aromatase and 17 beta-HSD 4 in this differentiation stage along the monocyte/phagocyte pathway of THP 1 myeloid cells. The expression of steroid metabolizing enzymes in myeloid cells is able to create a microenvironment which is uncoupled from dominating systemic estrogens. These findings may be relevant in the autocrine, paracrine or iuxtacrine cellular crosstalk of myeloid cells in their respective states of terminal differentiation, e.g. in bone metabolism and inflammation.
NASA Astrophysics Data System (ADS)
Meng, Xianhong; Shi, Xiaoli; Kong, Jie; Luan, Sheng; Luo, Kun; Cao, Baoxiang; Liu, Ning; Lu, Xia; Li, Xupeng; Deng, Kangyu; Cao, Jiawang; Zhang, Yingxue; Zhang, Hengheng
2017-10-01
To elucidate the molecular response of shrimp hepatopancreas to white spot syndrome virus (WSSV) infection, microarray was applied to investigate the differentially expressed genes in the hepatopancreas of `Huanghai No. 2' ( Fenneropenaeus chinensis). A total of 59137 unigenes were designed onto a custom-made 60K Agilent chip. After infection, the gene expression profiles in the hepatopancreas of the shrimp with a lower viral load at early (48-96 h), peak (168-192 h) and late (264-288 h) infection phases were analyzed. Of 18704 differentially expressed genes, 6412 were annotated. In total, 5453 differentially expressed genes (1916 annotated) expressed at all three phases, and most of the annotated were either up- or down-regulated continuously. These genes function diversely in, for example, immune response, cytoskeletal system, signal transduction, stress resistance, protein synthesis and processing, metabolism among others. Some of the immune-related genes, including antilipopolysaccharide factor, Kazal-type proteinase inhibitor, C-type lectin and serine protease encoding genes, were up-regulated after WSSV infection. These genes have been reported to be involved in the anti-WSSV responses. The expression of genes related to the cytoskeletal system, including β-actin and myosin but without tubulin genes, were down-regulated after WSSV infection. Astakine was found for the first time in the WSSV-infected F. chinensis. To further confirm the expression of differentially expressed genes, quantitative real-time PCR was performed to test the expression of eight randomly selected genes and verified the reliability and accuracy of the microarray expression analysis. The data will provide valuable information to understanding the immune mechanism of shrimp's response to WSSV.
Long non-coding RNAs regulate effects of β-crystallin B2 on mouse ovary development.
Gao, Qian; Ren, Hanxiao; Chen, Mingkun; Niu, Ziguang; Tao, Haibo; Jia, Yin; Zhang, Jianrong; Li, Wenjie
2016-11-01
β-crystallin B2 (CRYBB2) knockout mice exhibit morphological and functional abnormalities in the ovary. Long non‑coding RNAs (lncRNAs) regulate gene transcription and translation, and epigenetic modification of genomic DNA. The present study investigated the role of lncRNAs in mediating the effects of CRYBB2 in the regulation of ovary development in mice. In the current study, ovary tissues from wild‑type (WT) and CRYBB2 knockout mice were subjected to lncRNA and mRNA microarray profiling. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to group the differentially expressed lncRNAs into regulated gene pathways and functions. The correlation matrix method was used to establish a network of lncRNA and mRNA co‑expression. Quantitative reverse transcription-polymerase chain reaction (RT‑qPCR) was used to verify expression of a number of these differentially expressed lncRNAs and mRNAs. There were 157 differentially expressed lncRNAs and 1,085 differentially expressed mRNAs between ovary tissues from WT and CRYBB2 knockout mice. The GO and KEGG analyses indicated that these differentially expressed lncRNAs and mRNAs were important in Ca2+ signaling and ligand and receptor interactions. The correlation matrix method established an lncRNA and mRNA co‑expression network, consisting of 53 lncRNAs and 45 mRNAs with 98 nodes and 75 connections. RT‑qPCR confirmed downregulation of lncRNA A‑30‑P01019163 expression, which further downregulated its downstream gene purinergic receptor P2X, ligand‑gated ion channel, 7 (P2rx7) expression in ovary tissues from CRYBB2 knockout mice. In conclusion, CRYBB2 regulates expression of different lncRNAs to influence ovary development. lncRNA A‑30‑P01019163 may affect ovarian cell cycle and proliferation by regulating P2rx7 expression in the ovary.
Azetsu, Yuki; Inohaya, Keiji; Takano, Yoshiro; Kinoshita, Masato; Tasaki, Mai; Kudo, Akira
2017-11-15
Sp7 is a zinc finger transcription factor that is essential for osteoblast differentiation in mammals. To verify the characteristic features of osteoblast-lineage cells in teleosts, we established medaka sp7 mutants using a transcription activator-like effector nuclease (TALEN) genome editing system. These mutants showed severe defects in the formation of skeletal structures. In particular, the neural and the hemal arches were not formed, although the chordal centra were formed. Analysis of the transgenic medaka revealed that sp7 mutant had normal distribution of type X collagen a1 a (col10a1a)-positive osteoblast-like cells around the centrum and at the proximal region of the vertebral arch. The sp7 mutant phenotype could be rescued by exogenous sp7 expression in col10a1a-positive cells, as well as in sp7-positive osteoblast cells. Furthermore, runx2-positive osteoblast progenitors were observed on the vertebral arches, but not on the centrum, during vertebral column development. In addition, these osteoblast progenitors differentiated into the col10a1a-positive cells. In sp7 mutant, the runx2-positive cells were normally distributed at the region of unformed vertebral arch but failed to differentiate into col10a1a-positive cells. These results indicate that osteoblast-lineage cells undergo two distinct differentiation processes during development of the vertebral arch and the centrum. Nevertheless, our results verified that sp7 gene expression in osteoblast-lineage cells is required for differentiation into mature osteoblasts to form the vertebral column and other skeletal structures. Copyright © 2017 Elsevier Inc. All rights reserved.
Shen, Jie; Park, Hyeon-soo; Xia, Yong-mei; Kim, Gon-sup; Cui, Steve W
2014-03-15
Medicinal mushroom polysaccharides such as Ganoderma lucidum polysaccharides (GLPs) have been commonly hypothesized to suppress tumor cells proliferation through immune effects. To verify this hypothesis through investigating comprehensive miRNA expression in polysaccharide treated cancer cells, an anticancer mycelia GLP was employed to disclose miRNA differential expression of human hepatocarcinoma cells (HepG2), by using a miRNA microarray assay based on Sanger miR-Base Release 16. The experiment and the analysis result indicates that among the 61 differential expressed miRNAs (p ≤ 0.01), 17 of them were regulated significantly. GLP can inhibit HepG2 cells directly through regulation of hepatocarcinoma genes. A newly found miR-3131 exhibited the strongest upregulation (92-folds, Log2 = 6.53, p = 0.000016). The miRNAs responded synergistically in both hepatocarcinoma and immune-related aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu
2017-05-01
Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.
Xia, Bin; Zou, Yang; Xu, Zhiling; Lv, Yonggang
2017-11-01
Low-intensity pulsed ultrasound (LIPUS) is a noninvasive technique that has been shown to affect cell proliferation, migration, and differentiation and promote the regeneration of damaged peripheral nerve. Our previous studies had proved that LIPUS can significantly promote the neural differentiation of induced pluripotent stem cell-derived neural crest stem cells (iPSCs-NCSCs) and enhance the repair of rat-transected sciatic nerve. To further explore the underlying mechanisms of LIPUS treatment of iPSCs-NCSCs, this study reported the gene expression profiling analysis of iPSCs-NCSCs before and after LIPUS treatment using the RNA-sequencing (RNA-Seq) method. It was found that expression of 76 genes of iPSCs-NCSCs cultured in a serum-free neural induction medium and expression of 21 genes of iPSCs-NCSCs cultured in a neuronal differentiation medium were significantly changed by LIPUS treatment. The differentially expressed genes are related to angiogenesis, nervous system activity and functions, cell activities, and so on. The RNA-seq results were further verified by a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). High correlation was observed between the results obtained from qRT-PCR and RNA-Seq. This study presented new information on the global gene expression patterns of iPSCs-NCSCs after LIPUS treatment and may expand the understanding of the complex molecular mechanism of LIPUS treatment of iPSCs-NCSCs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Guo, Li-Hua; Zhao, Wei; Zhang, Jun-Jie; Zhang, Qian; Fan, Ying-Zhong; Wang, Jia-Xiang
2016-12-01
To screen and identify serum biomarkers for childhood hepatoblastoma (HB). The serum samples from 30 children with hepatoblastoma (HB), 20 children with systemic inflammatory response syndrome, and 20 normal children were treated with magnetic bead-based weak cation exchange chromatography. The platform of surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) was used to eliminate the interference of inflammatory factors and to screen out the differentially expressed proteins in serum between tumor group and normal group. After the purification and separation of target proteins were performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionization-time of flight-mass spectrometry was used to determine their amino acid sequences. The SwissProt database was searched for matched proteins. Finally, real-time PCR and ELISA were used to verify and measure the expression of target proteins. After SELDI-TOF-MS was used for screening and elimination of the interference of inflammatory factors, a differentially expression protein with a mass-to-charge ratio of 9 348 Da was found in serum between HB group and normal group, and the HB group had significantly lower expression of this protein than the normal group (p<0.05). This protein was identified as apolipoprotein A-1 (Apo A-I). Real-time PCR and ELISA verified the low mRNA and protein expression of Apo A-I in serum in the HB group and high expression in serum in the normal group. Apo A-I can be used as a non-inflammatory protein marker for HB and has a certain value in the early diagnosis of HB.
Jung, Sung-No; Rhie, Jong Won; Kwon, Ho; Jun, Young Joon; Seo, Je-Won; Yoo, Gyeol; Oh, Deuk Young; Ahn, Sang Tae; Woo, Jihyoun; Oh, Jieun
2010-03-01
Human adipose-derived mesenchymal stem cells (MSCs) were differentiated into chondrogenic MSCs, and fibrin glue was used together to explore the feasibility of whether cartilages can be generated in vivo by injecting the differentiated cells. Mesenchymal stem cells extracted from human adipose were differentiated into chondrogenic MSCs, and such differentiated cells mixed with fibrin glue were injected subcutaneously into the back of the nude mouse. In addition to visual evaluation of the tissues formed after 4, 8, and 12 weeks, hematoxylin-eosin staining, Masson trichrome staining, measurement of glycosaminoglycan concentration using dimethylmethylene blue, agreecan through reverse transcriptase-polymerase chain reaction, type II collagen, and expression of SOX-9 were verified. Moreover, the results were compared with 2 groups of controls: 1 control group that received only injection of chondrogenic-differentiated MSC and the supporting control group that received only fibrin glue injection. For the experimental group, cartilage-like tissues were formed after 4, 8, and 12 weeks. Formation of cartilage tissues was not observed in any of 4, 8, and 12 weeks of the control group. The supporting control group had only a small structure formation after 4 weeks, but the formed structure was completely decomposed by the 8th and 12th weeks. The range of staining dramatically increased with time at 4, 8, and 12 weeks in Masson trichrome staining. The concentration of glycosaminoglycan also increased with time. The increased level was statistically significant with more than 3 times more after 8 weeks compared with 4 weeks and more than 2 times more after 12 weeks compared with 8 weeks. Also, in reverse transcriptase-polymerase chain reaction at 4, 8, and 12 weeks, all results expressed a cartilage-specific gene called aggrecan, type II collagen, and SOX-9. The study verified that the chondrogenic-differentiated MSCs derived from human adipose tissues with fibrin glue can proliferate and form new cartilage. Our findings suggest that formation of cartilages in vivo is possible.
Genome-Wide Analysis of Long Noncoding RNA (lncRNA) Expression in Hepatoblastoma Tissues
Xue, Ping; Cui, Ximao; Li, Kai; Zheng, Shan; He, Xianghuo; Dong, Kuiran
2014-01-01
Long noncoding RNAs (lncRNAs) have crucial roles in cancer biology. We performed a genome-wide analysis of lncRNA expression in hepatoblastoma tissues to identify novel targets for further study of hepatoblastoma. Hepatoblastoma and normal liver tissue samples were obtained from hepatoblastoma patients. The genome-wide analysis of lncRNA expression in these tissues was performed using a 4×180 K lncRNA microarray and Sureprint G3 Human lncRNA Chips. Quantitative RT-PCR (qRT-PCR) was performed to confirm these results. The differential expressions of lncRNAs and mRNAs were identified through fold-change filtering. Gene Ontology (GO) and pathway analyses were performed using the standard enrichment computation method. Associations between lncRNAs and adjacent protein-coding genes were determined through complex transcriptional loci analysis. We found that 2736 lncRNAs were differentially expressed in hepatoblastoma tissues. Among these, 1757 lncRNAs were upregulated more than two-fold relative to normal tissues and 979 lncRNAs were downregulated. Moreover, in hepatoblastoma there were 420 matched lncRNA-mRNA pairs for 120 differentially expressed lncRNAs, and 167 differentially expressed mRNAs. The co-expression network analysis predicted 252 network nodes and 420 connections between 120 lncRNAs and 132 coding genes. Within this co-expression network, 369 pairs were positive, and 51 pairs were negative. Lastly, qRT-PCR data verified six upregulated and downregulated lncRNAs in hepatoblastoma, plus endothelial cell-specific molecule 1 (ESM1) mRNA. Our results demonstrated that expression of these aberrant lncRNAs could respond to hepatoblastoma development. Further study of these lncRNAs could provide useful insight into hepatoblastoma biology. PMID:24465615
Global expression analysis of gene regulatory pathways during endocrine pancreatic development.
Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A
2004-01-01
To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.
NURR1 Downregulation Favors Osteoblastic Differentiation of MSCs
Di Benedetto, Adriana; Cantore, Stefania; Centonze, Matteo; Grano, Maria; Cavalcanti-Adam, Elisabetta A.
2017-01-01
Mesenchymal stem cells (MSCs) have been identified in human dental tissues. Dental pulp stem cells (DPSCs) were classified within MSC family, are multipotent, can be isolated from adult teeth, and have been shown to differentiate, under particular conditions, into various cell types including osteoblasts. In this work, we investigated how the differentiation process of DPSCs toward osteoblasts is controlled. Recent literature data attributed to the nuclear receptor related 1 (NURR1), a still unclarified role in osteoblast differentiation, while NURR1 is primarily involved in dopaminergic neuron differentiation and activity. Thus, in order to verify if NURR1 had a role in DPSC osteoblastic differentiation, we silenced it during all the processes and compared the expression of the main osteoblastic markers with control cultures. Our results showed that the inhibition of NURR1 significantly increased the expression of osteoblast markers collagen I and alkaline phosphatase. Further, in long time cultures, the mineral matrix deposition was strongly enhanced in NURR1-silenced cultures. These results suggest that NURR1 plays a key role in switching DPSC differentiation toward osteoblasts rather than neuronal or even other cell lines. In conclusion, DPSCs represent a source of osteoblast-like cells and downregulation of NURR1 strongly prompted their differentiation toward the osteoblastogenesis process. PMID:28769982
Differentially expressed genes in the silk gland of silkworm (Bombyx mori) treated with TiO2 NPs.
Xue, Bin; Li, Fanchi; Hu, Jingsheng; Tian, Jianghai; Li, Jinxin; Cheng, Xiaoyu; Hu, Jiahuan; Li, Bing
2017-05-05
Silk gland is a silkworm organ where silk proteins are synthesized and secreted. Dietary supplement of TiO 2 nanoparticles (NPs) promotes silk protein synthesis in silkworms. In this study, digital gene expression (DGE) tag was used to analyze the gene expression profile of the posterior silk gland of silkworms that were fed with TiO 2 NPs. In total, 5,702,823 and 6,150,719 clean tags, 55,096 and 74,715 distinct tags were detected in TiO 2 NPs treated and control groups, respectively. Compared with the control, TiO 2 NPs treated silkworms showed 306 differentially expressed genes, including 137 upregulated genes and 169 downregulated genes. Of these differentially expressed genes, 106 genes were related to silk protein synthesis, among which 97 genes were upregulated and 9 genes were downregulated. Pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 20 pathways were significantly enriched in TiO 2 NPs treated silkworms, and the metabolic pathway-related genes were the most significantly enriched. The DGE results were verified by qRT-PCR analysis of eight differentially expressed genes. The DGE and qRT-PCR results were consistent for all three upregulated genes and three of the five downregulated genes, but the expression trends of the remaining two genes were different between qRT-PCR and DGE analysis. This study enhances our understanding of the mechanism of TiO 2 NPs promoted silk protein synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Kang, Xiaolong; Liu, Yufang; Zhang, Jibin; Xu, Qinqin; Liu, Chengkun; Fang, Meiying
2017-07-01
As an important commercial trait for sheep, curly fleece has a great economic impact on production costs and efficiency in sheep industry. To identify genes that are important for curly fleece formation in mammals, a suppression subtractive hybridization analysis was performed on the shoulder skin tissues exposed to two different growth stages of Chinese Tan sheep with different phenotypes (curly fleece and noncurling fleece). BLAST analysis identified 67 differentially expressed genes, of which 31 were expressed lower and 36 were expressed higher in lambs than in adult sheep. Differential expressions of seven randomly selected genes were verified using quantitative real-time polymerase chain reaction (qRT-PCR). KRT71 gene was selected for further study due to its high correlation with the curly hair phenotype in various mammal species. Semi-qPCR showed distinctively high expression of KRT71 in skin tissues. Moreover, qPCR result showed a significantly higher expression of KRT71 in curly fleece than noncurling Tan sheep. The luciferase assay and electrophoresis mobility shift assay showed that there were transcription factor binding sites in the promoter region of KRT71 related to the differential expression of KRT71 at the two growth stages of Tan sheep. Online bioinformation tools predicted MFZ1 as a transcriptional factor that regulates the expression of KRT71. These studies on KRT71 gene revealed some mechanisms underlying the relationship between the KRT71 gene and the curly fleece phenotype of Tan sheep.
Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas
2016-12-23
MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5 , which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.
Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas
2016-01-01
MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541
Li, Pengfei; Sun, Nan; Zeng, Jianchun; Zeng, Yirong; Fan, Yueguang; Feng, Wenjun; Li, Jie
2016-10-10
Apoptosis of osteoblasts and osteocytes is one cause of steroid-induced osteonecrosis of the femoral head; however, the molecular mechanism of steroid affecting osteoblasts at the genetic level is unclear. The aim of the present work is to examine differential expression of osteoblasts in rats after steroid intervention and to verify expression by real-time polymerase chain reaction (RT-PCR). Primary culture, passaging and identification of osteoblasts of SD neonatal rats were conducted; osteoblasts were divided into two groups, the control group, and the steroid group. Total RNA was extracted separately, and quality control was performed; by means of RNA labeling and microarray hybridization, data were collected and then standardized to ascertain differences in miRNA expression between the two groups. The gene expression spectrum was analyzed. Obvious differential expression of miR-672-5p and miR-146a-5p was verified by RT-PCR. Miranda, microcosm and mirdb bioinformatics software were used to predict target genes. Compared with the control group, morphologically, the osteoblasts in the steroid group were more irregular and showed various shapes. The number of miRNAs (fold change >2) in the steroid group was six. Four miRNAs were upregulated and two miRNAs were downregulated. In particular, upregulated miR-672-5p expression and downregulated miR-146a-5p expression were significant. RT-PCR results showed that the 2(-△△) CT value of miR-672-5p in the steroid group was 3.743-fold of that in the control group, and the 2(-△△) CT value of miR-146a-5p in the steroid group was 0.322-fold of that in the control group. Angptl4, Ccdc51, Ssbp3 and RGD1306991 were predicted as the target gene of miR-672-5p, while Hrp12 was that of miR-146a-5p. Expression profiles of miR-672-5p and miR-146a-5p had the most significant changes in the osteoblasts of rats with steroid intervention, which may provide a new viewpoint to pathogenesis of osteonecrosis of the femoral head. Copyright © 2016 Elsevier B.V. All rights reserved.
Xylella fastidiosa gene expression analysis by DNA microarrays.
Travensolo, Regiane F; Carareto-Alves, Lucia M; Costa, Maria V C G; Lopes, Tiago J S; Carrilho, Emanuel; Lemos, Eliana G M
2009-04-01
Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.
Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J
2008-01-24
Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.
Rauhala, Leena; Hämäläinen, Lasse; Dunlop, Thomas W; Pehkonen, Petri; Bart, Geneviève; Kokkonen, Maarit; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna
2015-12-25
The moisturizing and potentially protective properties of the organic osmolyte betaine (trimethylglycine) have made it an attractive component for skin care products. Its wide use despite the lack of comprehensive studies addressing its specific effects in skin led us to characterize the molecular targets of betaine in keratinocytes and to explore, whether it modifies the effects of acute UVB exposure. Genome-wide expression analysis was performed on organotypic cultures of rat epidermal keratinocytes, treated either with betaine (10mM), UVB (30 mJ/cm(2)) or their combination. Results were verified with qRT-PCR, western blotting and immunohistochemistry. Additionally, cell proliferation and differentiation were analyzed. Among the 89 genes influenced by betaine, the differentiation marker keratin 2 showed the highest upregulation, which was also confirmed at protein level. Expression of Egr1, a transcription factor, and Purkinje cell protein 4, a regulator of Ca(2+)/calmodulin metabolism, also increased, while downregulated genes included several ion-channel components, such as Fxyd2. Bioinformatics analyses suggest that genes modulated by betaine are involved in DNA replication, might counteract UV-induced processes, and include many targets of transcription factors associated with cell proliferation and differentiation. Our results indicate that betaine controls unique gene expression pathways in keratinocytes, including some involved in differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Uhl, P B; Szober, C M; Amann, B; Alge-Priglinger, C; Ueffing, M; Hauck, S M; Deeg, C A
2014-09-23
Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye and plays an important role in pathogenesis of the sight threatening disease equine recurrent uveitis (ERU). ERU is a spontaneous autoimmune mediated inflammatory disease characterised by the breakdown of the outer blood-retinal barrier and an influx of autoaggressive T-cells into the inner eye. Therefore, identification of molecular mechanisms contributing to changed function of blood-retinal barrier in ERU is important for the understanding of pathophysiology. Cell surface proteins of RPE collected from healthy horses and horses with ERU were captured by in situ biotinylation and analysed with high resolution mass spectrometry coupled to liquid chromatography (LC-MS/MS) to identify differentially expressed proteins. With label free differential proteomics, a total of 27 differently expressed cell surface proteins in diseased RPE could be detected. Significant down-regulation of three very interesting proteins, synaptotagmin 1, basigin and collectrin was verified and further characterised. We applied an innovative and successful method to detect changes in the plasma cell surface proteome of RPE cells in a spontaneous inflammatory eye disease, serving as a valuable model for human autoimmune uveitis. We were able to identify 27 differentially expressed plasma cell membrane proteins, including synaptotagmin 1, basigin and collectrin, which play important roles in cell adhesion, transport and cell communication. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yijun; Liu, Wentao; Liu, Yadong; Cui, Jianli; Zhao, Zhiwei; Cao, Hui; Fu, Zhuo; Liu, Bin
2018-04-16
The research aimed to examine the expression of lncRNA H19, miR-188, and LCoR in mouse bone marrow stromal stem cells (mBMSCs), and to investigate the regulatory mechanism of lncRNA H19/miR-188/LCoR in osteogenic and adipogenic differentiation of mBMSCs. The expression of miR-188 in mBMSCs and osteogenesis induced mBMSCs was detected by stem-loop RT-PCR, while the expression of H19 and LCoR in mBMSCs and adipogenesis induced mBMSCs was examined by qRT-PCR. Luciferase reporter assay verified the targeted relationship between miR-188 and H19 or LCoR. Cell proliferation ability was determined by MTT assay, while cell surface markers of mBMSCs were analyzed via flow cytometry. Alkaline phosphatase staining and Alizarin red staining was utilized to detect the osteogenic differentiation capability of mBMSCs, whereas Oil red O staining was applied to examine the ability of adipogenic differentiation of mBMSCs. The expression of miR-188 was lower in osteogenesis induced mBMSCs compared with normal mBMSCs, while H19 and LCoR were downregulated in adipogenic induced mBMSCs. Si-H19 could significantly increase the mRNA level of miR-188. Meanwhile, miR-188 directly regulated LCoR in mBMSCs. Overexpression of miR-188 and knockdown of LCoR suppressed osteogenic differentiation and induced adipogenic differentiation in mBMSCs. Long noncoding RNA H19 mediates LCoR to regulate the balance between osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. © 2018 Wiley Periodicals, Inc.
Hsieh, Wen-Ting; Chiang, Been-Huang
2014-07-09
Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.
2012-01-01
Background microRNAs (miRNAs) have been found to play an essential role in the modulation of numerous biological processes in eukaryotes. Chlamydomonas reinhardtii is an ideal model organism for the study of many metabolic processes including responses to sulfur-deprivation. We used a deep sequencing platform to extensively profile and identify changes in the miRNAs expression that occurred under sulfur-replete and sulfur-deprived conditions. The aim of our research was to characterize the differential expression of Chlamydomonas miRNAs under sulfur-deprived conditions, and subsequently, the target genes of miRNA involved in sulfur-deprivation were further predicted and analyzed. Results By using high-throughput sequencing, we characterized the microRNA transcriptomes under sulphur-replete and sulfur-deprived conditions in Chlamydomonas reinhardtii. We predicted a total of 310 miRNAs which included 85 known miRNAs and 225 novel miRNAs. 13 miRNAs were the specific to the sulfur-deprived conditions. 47 miRNAs showed significantly differential expressions responding to sulfur-deprivation, and most were up-regulated in the small RNA libraries with sulfur-deprivation. Using a web-based integrated system (Web MicroRNAs Designer 3) and combing the former information from a transcriptome of Chlamydomonas reinhardtii, 22 miRNAs and their targets involved in metabolism regulation with sulfur-deprivation were verified. Conclusions Our results indicate that sulfur-deprivation may have a significant influence on small RNA expression patterns, and the differential expressions of miRNAs and interactions between miRNA and its targets might further reveal the molecular mechanism responding to sulfur-deprivation in Chlamydomonas reinhardtii. PMID:22439676
Evaluating Feynman integrals by the hypergeometry
NASA Astrophysics Data System (ADS)
Feng, Tai-Fu; Chang, Chao-Hsi; Chen, Jian-Bin; Gu, Zhi-Hua; Zhang, Hai-Bin
2018-02-01
The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0 and massless C0 functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma.
Kong, Qian; Li, Wen-Jing; Huang, Hua-Rong; Zhong, Ying-Qiang; Fang, Jian-Pei
2015-05-01
Asthma is a common childhood disease with strong genetic components. This study compared whole-genome expression differences between asthmatic young children and healthy controls to identify gene signatures of childhood asthma. Total RNA extracted from peripheral blood mononuclear cells (PBMC) was subjected to microarray analysis. QRT-PCR was performed to verify the microarray results. Classification and functional characterization of differential genes were illustrated by hierarchical clustering and gene ontology analysis. Multiple logistic regression (MLR) analysis, receiver operating characteristic (ROC) curve analysis, and discriminate power were used to scan asthma-specific diagnostic markers. For fold-change>2 and p < 0.05, there were 758 named differential genes. The results of QRT-PCR confirmed successfully the array data. Hierarchical clustering divided 29 highly possible genes into seven categories and the genes in the same cluster were likely to possess similar expression patterns or functions. Gene ontology analysis presented that differential genes primarily enriched in immune response, response to stress or stimulus, and regulation of apoptosis in biological process. MLR and ROC curve analysis revealed that the combination of ADAM33, Smad7, and LIGHT possessed excellent discriminating power. The combination of ADAM33, Smad7, and LIGHT would be a reliable and useful childhood asthma model for prediction and diagnosis.
2012-01-01
Background Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type. PMID:22280838
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
S. CHAHAL, MANPREET; TERESA KU, H.; ZHANG, ZHIHONG; M. LEGASPI, CHRISTIAN; LUO, ANGELA; M. HOPKINS, MANDI; E. MEIER, KATHRYN
2016-01-01
Background: Previous work characterized variants of the EL4 murine lymphoma cell line. Some are non-metastatic, and others metastatic, in syngenic mice. In addition, metastatic EL4 cells were stably transfected with phospholipase D2 (PLD2), which further enhanced metastasis. Materials and Methods: Microarray analyses of mRNA expression was performed for non-metastatic, metastatic, and PLD2-expressing metastatic EL4 cells. Results: Many differences were observed between non-metastatic and metastatic cell lines. One of the most striking new findings was up-regulation of mRNA for the matricellular protein WNT1-inducible signaling pathway protein 1 (CCN4) in metastatic cells; increased protein expression was verified by immunoblotting and immunocytochemistry. Other differentially expressed genes included those for reproductive homeobox 5 (Rhox5; increased in metastatic) and cystatin 7 (Cst7; decreased in metastatic). Differences between PLD2-expressing and parental cell lines were limited but included the signaling proteins Ras guanyl releasing protein 1 (RGS18; increased with PLD2) and suppressor of cytokine signaling 2 (SOCS2; decreased with PLD2). Conclusion: The results provide insights into signaling pathways potentially involved in conferring metastatic ability on lymphoma cells. PMID:27807066
Tan, Ling; Hu, Yerong; Tao, Yongguang; Wang, Bin; Xiao, Jun; Tang, Zhenjie; Lu, Ting
2018-01-01
Background To identify whether RET is a potential target for NSCLC treatment, we examined the status of the RET gene in 631 early and mid stage NSCLC cases from south central China. Methods RET expression was identified by Western blot. RET‐positive expression samples were verified by immunohistochemistry. RET gene mutation, copy number variation, and rearrangement were analyzed by DNA Sanger sequencing, TaqMan copy number assays, and reverse transcription‐PCR. ALK and ROS1 expression levels were tested by Western blot and EGFR mutation using Sanger sequencing. Results The RET‐positive rate was 2.5% (16/631). RET‐positive expression was related to poorer tumor differentiation (P < 0.05). In the 16 RET‐positive samples, only two samples of moderately and poorly differentiated lung adenocarcinomas displayed RET rearrangement, both in RET‐KIF5B fusion partners. Neither ALK nor ROS1 translocation was found. The EGFR mutation rate in RET‐positive samples was significantly lower than in RET‐negative samples (P < 0.05). Conclusion RET‐positive expression in early and mid stage NSCLC cases from south central China is relatively low and is related to poorer tumor differentiation. RET gene alterations (copy number gain and rearrangement) exist in all RET‐positive samples. RET‐positive expression is a relatively independent factor in NSCLC patients, which indicates that the RET gene may be a novel target site for personalized treatment of NSCLC. PMID:29473341
Identification of ELF3 as an early transcriptional regulator of human urothelium.
Böck, Matthias; Hinley, Jennifer; Schmitt, Constanze; Wahlicht, Tom; Kramer, Stefan; Southgate, Jennifer
2014-02-15
Despite major advances in high-throughput and computational modelling techniques, understanding of the mechanisms regulating tissue specification and differentiation in higher eukaryotes, particularly man, remains limited. Microarray technology has been explored exhaustively in recent years and several standard approaches have been established to analyse the resultant datasets on a genome-wide scale. Gene expression time series offer a valuable opportunity to define temporal hierarchies and gain insight into the regulatory relationships of biological processes. However, unless datasets are exactly synchronous, time points cannot be compared directly. Here we present a data-driven analysis of regulatory elements from a microarray time series that tracked the differentiation of non-immortalised normal human urothelial (NHU) cells grown in culture. The datasets were obtained by harvesting differentiating and control cultures from finite bladder- and ureter-derived NHU cell lines at different time points using two previously validated, independent differentiation-inducing protocols. Due to the asynchronous nature of the data, a novel ranking analysis approach was adopted whereby we compared changes in the amplitude of experiment and control time series to identify common regulatory elements. Our approach offers a simple, fast and effective ranking method for genes that can be applied to other time series. The analysis identified ELF3 as a candidate transcriptional regulator involved in human urothelial cytodifferentiation. Differentiation-associated expression of ELF3 was confirmed in cell culture experiments and by immunohistochemical demonstration in situ. The importance of ELF3 in urothelial differentiation was verified by knockdown in NHU cells, which led to reduced expression of FOXA1 and GRHL3 transcription factors in response to PPARγ activation. The consequences of this were seen in the repressed expression of late/terminal differentiation-associated uroplakin 3a gene expression and in the compromised development and regeneration of urothelial barrier function. Copyright © 2014 Elsevier Inc. All rights reserved.
Miao, Zhijing; Wang, Jianqing; Wang, Fuqiang; Liu, Lan; Ding, Hongjuan; Shi, Zhonghua
2016-11-01
Offspring obesity is one of long-term complications of gestational diabetes mellitus (GDM). The aim of this study is to identify proteins differentially expressed in the umbilical vein blood plasma, which could become markers for early diagnosis of childhood obesity. Umbilical vein plasma samples were collected from 30 control and 30 GDM patients in 2007-2008 whose offspring were suffering from obesity at 6-7 years old. Multiplexed isobaric tandem mass tag labeling combined with LC-MS/MS was used to identify differentially expressed proteins. Ingenuity pathway analysis was performed to identify canonical pathways, biological functions, and networks of interacting proteins. Western blotting was used to verify the expression of three selected proteins. A total of 318 proteins were identified, of which 12 proteins were upregulated in GDM group while 24 downregulated. Lipid metabolism was the top category identified by ingenuity pathway analysis. Three randomly chosen proteins were validated by Western blotting, which were consistent with LC-MS. There are significant differences of protein profile in the umbilical vein blood plasma between normal and GDM patients with obese offspring. The results indicate that a variety of proteins and biological mechanisms may contribute to childhood obesity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B
2015-10-01
What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized macrophages showed enhanced phagocytic activity. They also had higher expression and activity of indoleamine 2,3-dioxygenase 1, a phenotypic marker of decidual macrophages, which inhibited proliferation of autologous T-cells via induction of G0/G1 cell cycle arrest. In addition, sHLAG5-polarized macrophages had an increased secretion of interleukin-6 and C-X-C motif ligand 1, which inhibited interferon-γ production in T-cells and induction of trophoblast invasion, respectively. Most information on the phenotypes and biological activities of human decidual macrophages are based on past literatures. A direct comparison between sHLAG5-polarized macrophages and primary decidual macrophages is required to verify the present observations. This is the first study on the role of sHLAG5 in macrophage differentiation. Further study on the mechanism that regulates the differentiation process of macrophages would enhance our understanding on the physiology of early pregnancy. This work was supported in part by the Hong Kong Research Grant Council Grant HKU774212 and the University of Hong Kong Grant 201309176126. The authors have no competing interests to declare. Nil. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei
2016-06-03
Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo
2008-06-18
To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.
Estep, J Michael; O'Reilly, Linda; Grant, Geraldine; Piper, James; Jonsson, Johann; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair M
2010-02-01
Hepatic stellate cells (HSC) are involved in hepatic fibrogenesis. Cell signaling associated with an insult to the liver affects an HSC transdifferentiation to fibrogenic myofibroblast-like cells. To investigate the transcriptional expression distinguishing HSC and myofibroblast-like cells between livers with and without cirrhosis. Tissue from ten cirrhotic livers (undergoing transplant) and four non-cirrhotic livers from the National Disease Research Interchange underwent cell separation to extract HSC and myofibroblast-like cell populations. Separated cell types as well as LI-90 cells were subjected to microarray analysis. Selected microarray results were verified by quantitative real-time PCR. Differential expression of some genes, such as IL-1beta, IL-1alpha, and IL-6, was associated with both transdifferentiation and disease. Other genes, such as fatty acid 2-hydroxylase only show differential expression in association with disease. Functional analysis supported these findings, indicating some signal transduction pathways (IL-6) are involved in disease and activation, whereas retinoid X receptor signaling in HSC from cirrhotic and non-cirrhotic livers varies in scope and quality. These findings indicate distinct phenotypes for HSC from cirrhotic and non-cirrhotic livers. Furthermore, coordinated differential expression between genes involved in the same signal transduction pathways provides some insight into the mechanisms that may control the balance between fibrogenesis and fibrolysis.
Song, Zhonghua; Zhao, Wenhua; Cao, Danfeng; Zhang, Jinqing; Chen, Shouhua
2018-01-01
Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC.
Song, Zhonghua; Zhao, Wenhua; Cao, Danfeng; Zhang, Jinqing; Chen, Shouhua
2018-01-01
Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC. PMID:29489999
DREAM Mediated Regulation of GCM1 in the Human Placental Trophoblast
Baczyk, Dora; Kibschull, Mark; Mellstrom, Britt; Levytska, Khrystyna; Rivas, Marcos; Drewlo, Sascha; Lye, Stephen J.; Naranjo, Jose R.; Kingdom, John C. P.
2013-01-01
The trophoblast transcription factor glial cell missing-1 (GCM1) regulates differentiation of placental cytotrophoblasts into the syncytiotrophoblast layer in contact with maternal blood. Reduced placental expression of GCM1 and abnormal syncytiotrophoblast structure are features of hypertensive disorder of pregnancy – preeclampsia. In-silico techniques identified the calcium-regulated transcriptional repressor – DREAM (Downstream Regulatory Element Antagonist Modulator) - as a candidate for GCM1 gene expression. Our objective was to determine if DREAM represses GCM1 regulated syncytiotrophoblast formation. EMSA and ChIP assays revealed a direct interaction between DREAM and the GCM1 promoter. siRNA-mediated DREAM silencing in cell culture and placental explant models significantly up-regulated GCM1 expression and reduced cytotrophoblast proliferation. DREAM calcium dependency was verified using ionomycin. Furthermore, the increased DREAM protein expression in preeclamptic placental villi was predominantly nuclear, coinciding with an overall increase in sumolylated DREAM and correlating inversely with GCM1 levels. In conclusion, our data reveal a calcium-regulated pathway whereby GCM1-directed villous trophoblast differentiation is repressed by DREAM. This pathway may be relevant to disease prevention via calcium-supplementation. PMID:23300953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Anamika; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078; Liu Jing
2010-10-15
Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clusteringmore » while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.« less
On the renewal risk model under a threshold strategy
NASA Astrophysics Data System (ADS)
Dong, Yinghui; Wang, Guojing; Yuen, Kam C.
2009-08-01
In this paper, we consider the renewal risk process under a threshold dividend payment strategy. For this model, the expected discounted dividend payments and the Gerber-Shiu expected discounted penalty function are investigated. Integral equations, integro-differential equations and some closed form expressions for them are derived. When the claims are exponentially distributed, it is verified that the expected penalty of the deficit at ruin is proportional to the ruin probability.
Bouraoui, L; Gutiérrez, J; Navarro, I
2008-09-01
Here, we describe optimal conditions for the culture of rainbow trout (Oncorhynchus mykiss) pre-adipocytes obtained from adipose tissue and their differentiation into mature adipocytes, in order to study the endocrine control of adipogenesis. Pre-adipocytes were isolated by collagenase digestion and cultured on laminin or 1% gelatin substrate. The expression of proliferating cell nuclear antigen was used as a marker of cell proliferation on various days of culture. Insulin growth factor-I stimulated cell proliferation especially on days 5 and 7 of culture. Tumor necrosis factor alpha (TNFalpha) slightly enhanced cell proliferation only at a low dose. We verified the differentiation of cells grown in specific medium into mature adipocytes by oil red O (ORO) staining. Quantification of ORO showed an increase in triglycerides throughout culture. Immunofluorescence staining of cells at day 11 revealed the expression of CCAAT/enhancer-binding protein and peroxisome proliferator-activator receptor gamma, suggesting that these transcriptional factors are involved in adipocyte differentiation in trout. We also examined the effect of TNFalpha on the differentiation of these adipocytes in primary culture. TNFalpha inhibited the differentiation of these cells, as indicated by a decrease in glycerol-3-phosphate dehydrogenase activity, an established marker of adipocyte differentiation. In conclusion, the culture system described here for trout pre-adipocytes is a powerful tool to study the endocrine regulation of adipogenesis in this species.
Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut
2014-01-01
Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.
Boylan, Kristin L. M.; Misemer, Benjamin; DeRycke, Melissa S.; Andersen, John D.; Harrington, Katherine M.; Kalloger, Steve E.; Gilks, C. Blake; Pambuccian, Stefan E.; Skubitz, Amy P. N.
2011-01-01
Claudin 4 is a cellular adhesion molecule that is frequently overexpressed in ovarian cancer and other epithelial cancers. In this study, we sought to determine whether the expression of claudin 4 is associated with outcome in ovarian cancer patients and may be involved in tumor progression. We examined claudin 4 expression in ovarian cancer tissues and cell lines, as well as by immunohistochemical staining of tissue microarrays (TMAs; n = 500), spheroids present in patients’ ascites, and spheroids formed in vitro. Claudin 4 was expressed in nearly 70% of the ovarian cancer tissues examined and was differentially expressed across ovarian cancer subtypes, with the lowest expression in clear cell subtype. No association was found between claudin 4 expression and disease-specific survival in any subtype. Claudin 4 expression was also observed in multicellular spheroids obtained from patients’ ascites. Using an in vitro spheroid formation assay, we found that NIH:OVCAR5 cells treated with shRNA against claudin 4 required a longer time to form compact spheroids compared to control NIH:OVCAR5 cells that expressed high levels of claudin 4. The inability of the NIH:OVCAR5 cells treated with claudin 4 shRNA to form compact spheroids was verified by FITC-dextran exclusion. These results demonstrate a role for claudin 4 and tight junctions in spheroid formation and integrity. PMID:21541062
Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna
2011-02-01
The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.
Luo, Qing; Li, Xue; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming
2018-03-01
Thousands of long noncoding RNAs (lncRNAs) have been reported and represent an important subset of pervasive genes associated with a broad range of biological functions. Abnormal expression levels of lncRNAs have been demonstrated in multiple types of human disease. However, the role of lncRNAs in systemic lupus erythematosus (SLE) remains poorly understood. In the present study, the expression patterns of lncRNAs and messenger RNAs (mRNAs) were investigated in peripheral blood mononuclear cells (PBMCs) in SLE using Human lncRNA Array v3.0 (8x60 K; Arraystar, Inc., Rockville, MD, USA). The microarray results indicated that 8,868 lncRNAs (3,657 upregulated and 5,211 downregulated) and 6,876 mRNAs (2,862 upregulated and 4,014 downregulated) were highly differentially expressed in SLE samples compared with the healthy group. Gene ontology (GO) analysis of lncRNA target prediction indicated the presence of 474 matched lncRNA‑mRNA pairs for 293 differentially expressed lncRNAs (fold change, ≥3.0) and 381 differentially expressed mRNAs (fold change, ≥3.0). The most enriched pathways were 'Transcriptional misregulation in cancer' and 'Valine, leucine and isoleucine degradation'. Furthermore, reverse transcription‑quantitative polymerase chain reaction data verified six abnormal lncRNAs and mRNAs in SLE. The results indicate that the lncRNA expression profile in SLE was significantly changed. In addition, a range of SLE‑associated lncRNAs were identified. Thus, the present results provide important insights regarding lncRNAs in the pathogenesis of SLE.
Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng
2016-06-09
Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH.
Liu, Beibei; Qin, Faliang; Liu, Wenwen; Wang, Xifeng
2016-01-01
Rice stripe virus-infected females of the small brown planthopper (SBPH, Laodelphax striatellus) usually lay fewer eggs with a longer hatch period, low hatchability, malformation and retarded or defective development compared with healthy females. To explore the molecular mechanism of those phenomena, we analyzed the differential proteomics profiling of the ova between viruliferous and healthy female insects using an isobaric tag for relative and absolute quantitation (iTRAQ) approach. We obtained 147 differentially accumulated proteins: 98 (66.7%) proteins increased, but 49 (33.3%) decreased in the ova of the viruliferous females. RT-qPCR was used to verify the 12 differential expressed proteins from iTRAQ, finding that trends in the transcriptional change for the 12 genes were consistent with those at the proteomic level. Differentially expressed proteins that were associated with meiosis (serine/threonine-protein phosphatase 2B and cyclin B3) and mitosis (cyclin B3 and dynein heavy chain) in viruliferous ova may contribute to low hatchability and defective or retarded development. Alterations in the abundance of proteins involved in the respiratory chain and nutrition metabolism may affect embryonic development. Our study begins to explain macroscopical developmental phenomena and explore the mechanisms by which Rice stripe virus impacts the development of SBPH. PMID:27277140
Ito, Yoshinori; Shibata-Watanabe, Yukiko; Ushijima, Yoko; Kawada, Jun-Ichi; Nishiyama, Yukihiro; Kojima, Seiji; Kimura, Hiroshi
2008-03-01
Chronic active Epstein-Barr virus infection (CAEBV) is characterized by recurrent infectious mononucleosis-like symptoms and has high mortality and morbidity. To clarify the mechanisms of CAEBV, the gene-expression profiles of peripheral blood obtained from patients with CAEBV were investigated. Twenty genes were differentially expressed in 4 patients with CAEBV. This microarray result was verified using a real-time reverse-transcriptase polymerase chain reaction assay in a larger group of patients with CAEBV. Eventually, 3 genes were found to be significantly upregulated: guanylate binding protein 1, tumor necrosis factor-induced protein 6, and guanylate binding protein 5. These genes may be associated with the inflammatory reaction or with cell proliferation.
Morbeck, Diogo; Tregnago, Aline C; Baiocchi, Glauco; Sacomani, Carlos; Peresi, Patricia M; Osório, Cynthia T; Schutz, Luciana; Bezerra, Stephania M; de Brot, Louise; Cunha, Isabela W
2017-02-01
GATA3 has been reported as a specific urothelial marker among organs in the pelvic region, and has been classified as highly sensitive and specific for urothelial and breast carcinomas. Our aim was to verify GATA3 expression in extramammary Paget disease, and to determine whether it can be use to differentiate primary vulvar Paget disease from pagetoid urothelial intraepithelial neoplasia (PUIN). We also analysed HER2 protein expression and HER2 gene amplification and their roles as prognostic factors in extramammary Paget disease. We analysed GATA3 and HER2 expression in 11 primary vulvar Paget disease cases and two PUIN cases. All cases showed nuclear expression of GATA3. Of 13 cases, five were equivocal for HER2 expression (score 2+) and one was positive (3+). Fluorescence in-situ hybridization results showed amplification in two of these six cases. Both HER2-amplified cases were invasive. GATA3 was positive in all extramammary Paget disease cases tested (13 cases), and it has no value for differentiating between primary and secondary vulvar Paget disease from the urological tract. HER2 amplification might confer an aggressive and invasive pattern in primary vulvar Paget disease, as both amplified cases showed an invasive pattern. © 2016 John Wiley & Sons Ltd.
Chahal, Manpreet S; Ku, H Teresa; Zhang, Zhihong; Legaspi, Christian M; Luo, Angela; Hopkins, Mandi M; Meier, Kathryn E
Previous work characterized variants of the EL4 murine lymphoma cell line. Some are non-metastatic, and others metastatic, in syngenic mice. In addition, metastatic EL4 cells were stably transfected with phospholipase D2 (PLD2), which further enhanced metastasis. Microarray analyses of mRNA expression was performed for non-metastatic, metastatic, and PLD2-expressing metastatic EL4 cells. Many differences were observed between non-metastatic and metastatic cell lines. One of the most striking new findings was up-regulation of mRNA for the matricellular protein WNT1-inducible signaling pathway protein 1 (CCN4) in metastatic cells; increased protein expression was verified by immunoblotting and immunocytochemistry. Other differentially expressed genes included those for reproductive homeobox 5 (Rhox5; increased in metastatic) and cystatin 7 (Cst7; decreased in metastatic). Differences between PLD2-expressing and parental cell lines were limited but included the signaling proteins Ras guanyl releasing protein 1 (RGS18; increased with PLD2) and suppressor of cytokine signaling 2 (SOCS2; decreased with PLD2). The results provide insights into signaling pathways potentially involved in conferring metastatic ability on lymphoma cells. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
Fu, Lu-Lu; Xu, Ying; Li, Dan-Dan; Dai, Xiao-Wei; Xu, Xin; Zhang, Jing-Shun; Ming, Hao; Zhang, Xue-Ying; Zhang, Guo-Qing; Ma, Ya-Lan; Zheng, Lian-Wen
2018-05-30
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. However, the exact pathophysiology of PCOS remains largely unclear. We performed deep sequencing to investigate the mRNA and long noncoding RNA (lncRNA) expression profiles in the ovarian tissues of letrozole-induced PCOS rat model and control rats. A total of 2147 mRNAs and 158 lncRNAs were differentially expressed between the PCOS models and control. Gene ontology analysis indicated that differentially expressed mRNAs were associated with biological adhesion, reproduction, and metabolic process. Pathway analysis results indicated that these aberrantly expressed mRNAs were related to several specific signaling pathways, including insulin resistance, steroid hormone biosynthesis, PPAR signaling pathway, cell adhesion molecules, autoimmune thyroid disease, and AMPK signaling pathway. The relative expression levels of mRNAs and lncRNAs were validated through qRT-PCR. LncRNA-miRNA-mRNA network was constructed to explore ceRNAs involved in the PCOS model and were also verified by qRTPCR experiment. These findings may provide insight into the pathogenesis of PCOS and clues to find key diagnostic and therapeutic roles of lncRNA in PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.
Lohanatha, Ferenz L.; Hahne, Martin; Strehl, Cindy; Fangradt, Monique; Tran, Cam Loan; Schönbeck, Kerstin; Hoff, Paula; Ode, Andrea; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank
2012-01-01
Background Bone fracture initiates a series of cellular and molecular events including the expression of hypoxia-inducible factor (HIF)-1. HIF-1 is known to facilitate recruitment and differentiation of multipotent human mesenchymal stromal cells (hMSC). Therefore, we analyzed the impact of hypoxia and HIF-1 on the competitive differentiation potential of hMSCs towards adipogenic and osteogenic lineages. Methodology/Principal Findings Bone marrow derived primary hMSCs cultured for 2 weeks either under normoxic (app. 18% O2) or hypoxic (less than 2% O2) conditions were analyzed for the expression of MSC surface markers and for expression of the genes HIF1A, VEGFA, LDHA, PGK1, and GLUT1. Using conditioned medium, adipogenic or osteogenic differentiation as verified by Oil-Red-O or von-Kossa staining was induced in hMSCs under either normoxic or hypoxic conditions. The expression of HIF1A and VEGFA was measured by qPCR. A knockdown of HIF-1α by lentiviral transduction was performed, and the ability of the transduced hMSCs to differentiate into adipogenic and osteogenic lineages was analyzed. Hypoxia induced HIF-1α and HIF-1 target gene expression, but did not alter MSC phenotype or surface marker expression. Hypoxia (i) suppressed adipogenesis and associated HIF1A and PPARG gene expression in hMSCs and (ii) enhanced osteogenesis and associated HIF1A and RUNX2 gene expression. shRNA-mediated knockdown of HIF-1α enhanced adipogenesis under both normoxia and hypoxia, and suppressed hypoxia-induced osteogenesis. Conclusions/Significance Hypoxia promotes osteogenesis but suppresses adipogenesis of human MSCs in a competitive and HIF-1-dependent manner. We therefore conclude that the effects of hypoxia are crucial for effective bone healing, which may potentially lead to the development of novel therapeutic approaches. PMID:23029528
Dehne, T.; Lindahl, A.; Brittberg, M.; Pruss, A.; Ringe, J.; Sittinger, M.; Karlsson, C.
2012-01-01
Objective: It is well known that expression of markers for WNT signaling is dysregulated in osteoarthritic (OA) bone. However, it is still not fully known if the expression of these markers also is affected in OA cartilage. The aim of this study was therefore to examine this issue. Methods: Human cartilage biopsies from OA and control donors were subjected to genome-wide oligonucleotide microarrays. Genes involved in WNT signaling were selected using the BioRetis database, KEGG pathway analysis was searched using DAVID software tools, and cluster analysis was performed using Genesis software. Results from the microarray analysis were verified using quantitative real-time PCR and immunohistochemistry. In order to study the impact of cytokines for the dysregulated WNT signaling, OA and control chondrocytes were stimulated with interleukin-1 and analyzed with real-time PCR for their expression of WNT-related genes. Results: Several WNT markers displayed a significantly altered expression in OA compared to normal cartilage. Interestingly, inhibitors of the canonical and planar cell polarity WNT signaling pathways displayed significantly increased expression in OA cartilage, while the Ca2+/WNT signaling pathway was activated. Both real-time PCR and immunohistochemistry verified the microarray results. Real-time PCR analysis demonstrated that interleukin-1 upregulated expression of important WNT markers. Conclusions: WNT signaling is significantly affected in OA cartilage. The result suggests that both the canonical and planar cell polarity WNT signaling pathways were partly inhibited while the Ca2+/WNT pathway was activated in OA cartilage. PMID:26069618
Differential expression profile of membrane proteins in L-02 cells exposed to trichloroethylene.
Hong, Wen-Xu; Huang, Aibo; Lin, Sheng; Yang, Xifei; Yang, Linqing; Zhou, Li; Huang, Haiyan; Wu, Desheng; Huang, Xinfeng; Xu, Hua; Liu, Jianjun
2016-10-01
Trichloroethylene (TCE), a halogenated organic solvent widely used in industries, is known to cause severe hepatotoxicity. However, the mechanisms underlying TCE hepatotoxicity are still not well understood. It is predicted that membrane proteins are responsible for key biological functions, and recent studies have revealed that TCE exposure can induce abnormal levels of membrane proteins in body fluids and cultured cells. The aim of this study is to investigate the TCE-induced alterations of membrane proteins profiles in human hepatic L-02 liver cells. A comparative membrane proteomics analysis was performed in combination with two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 15 proteins were identified as differentially expressed (4 upregulated and 11 downregulated) between TCE-treated cells and normal controls. Among this, 14 of them are suggested as membrane-associated proteins by their transmembrane domain and/or subcellular location. Furthermore, the differential expression of β subunit of adenosine triphosphate synthase (ATP5B) and prolyl 4-hydroxylase, β polypeptide (P4HB) were verified by Western blot analysis in TCE-treated L-02 cells. Our work not only reveals the association between TCE exposure and altered expression of membrane proteins but also provides a novel strategy to discover membrane biomarkers and elucidate the potential mechanisms involving with membrane proteins response to chemical-induced toxic effect. © The Author(s) 2015.
Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization
Riksen, Elisabeth Aurstad; Landin, Maria A.; Reppe, Sjur; Nakamura, Yukio; Lyngstadaas, Ståle Petter; Reseland, Janne E.
2014-01-01
Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation. PMID:24857913
Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell–Specific Genes
Sunohara, Mitsuhiro; Pouldar, Tiffany M.; Wang, Hongjun; Liu, Yixin; Rieger, Megan E.; Tran, Evelyn; Flodby, Per; Siegmund, Kimberly D.; Crandall, Edward D.; Laird-Offringa, Ite A.
2017-01-01
Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type–specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells’ roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription–polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell–specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases. PMID:27749084
Hoang, Michael; Kim, Jeffrey J.; Kim, Yiyoung; Tong, Elizabeth; Trammell, Benjamin; Liu, Yao; Shi, Songtao; Lee, Chang-Ryul; Hong, Christine; Wang, Cun-Yu; Kim, Yong
2016-01-01
Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs) to ethanol (EtOH). By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B) was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders. PMID:27286573
Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems
Taniguchi, Masatoshi; Nakamura, Moritaka; Tasaka, Masao; Morita, Miyo Terao
2014-01-01
Differential organ growth during gravitropic response is caused by differential accumulation of auxin, that is, relative higher auxin concentration in lower flanks than in upper flanks of responding organs. Auxin responsive reporter systems such as DR5::GUS and DR5::GFP have usually been used as indicators of gravitropic response in roots and hypocotyls of Arabidopsis. However, in the inflorescence stems, the reporter systems don’t work well to monitor gravitropic response. Here, we aim to certify appropriate gravitropic response indicators (GRIs) in inflorescence stems. We performed microarray analysis comparing gene expression profiles between upper and lower flanks of Arabidopsis inflorescence stems after gravistimulation. Thirty genes showed > 2-fold differentially increased expression in lower flanks at 30 min, of which 19 were auxin response genes. We focused on IAA5 and IAA2 and verified whether they are appropriate GRIs by real-time qRT-PCR analyses. Transcript levels of IAA5 and IAA2 were remarkably higher in lower flanks than in upper flanks after gravistimulation. The biased IAA5 or IAA2 expression is disappeared in sgr2–1 mutant which is defective in gravity perception, indicating that gravity perception process is essential for formation of the biased gene expression during gravitropism. IAA5 expression was remarkably increased in lower flanks at 30 min after gravistimulation, whereas IAA2 expression was gradually decreased in upper flanks in a time-dependent manner. Therefore, we conclude that IAA5 is a sensitive GRI to monitor asymmetric auxin signaling caused by gravistimulation in Arabidopsis inflorescence stems. PMID:25763694
Li, Minghui; Huo, Xia; Pan, Yukui; Cai, Haoxing; Dai, Yifeng; Xu, Xijin
2018-02-01
Parental exposure to polybrominated diphenyl ethers (PBDEs) is associated with adverse birth outcomes. This study aims to examine differentially-expressed protein profiles in umbilical cord tissue, derived from mothers exposed to PBDEs, and investigate candidate biomarkers to reveal the underlying molecular mechanisms. Umbilical cord samples were obtained from women residing in an electronic waste (e-waste) recycling area (Guiyu) and reference area (Haojiang) in China. The concentration of PBDEs in umbilical cord tissue was determined by gas chromatography and mass spectrometry (GC/MS). Isobaric tagging for relative and absolute quantification (iTRAQ)-based proteomic technology was conducted to analyze differentially-expressed protein profiles. The total PBDE concentration was approximately five-fold higher in umbilical cords from Guiyu than from Haojiang (median 71.92ng/g vs. 15.52ng/g lipid, P<0.01). Neonatal head circumference, body-mass index (BMI) and Apgar1 score were lower in Guiyu and negatively correlated with PBDE concentration (P<0.01). Proteomic analysis showed 697 proteins were differentially expressed in the e-waste-exposed group compared with the reference group. The differentially-expressed proteins were principally involved in antioxidant defense, apoptosis, cell structure and metabolism. Among them, catalase and glutathione S-transferase omega-1, were down-regulated, and cytochrome c was found to be up-regulated, changes which were further verified by enzyme-linked immunosorbent assays. These results suggest that an antioxidant imbalance and cell apoptosis in the umbilical cord following PBDE exposure is associated with neonatal birth outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Jun; An, Dong; Zhang, Peng
2011-03-01
Mechanisms related to the development of cassava storage roots and starch accumulation remain largely unknown. To evaluate genome-wide expression patterns during tuberization, a 60 mer oligonucleotide microarray representing 20 840 cassava genes was designed to identify differentially expressed transcripts in fibrous roots, developing storage roots and mature storage roots. Using a random variance model and the traditional twofold change method for statistical analysis, 912 and 3 386 upregulated and downregulated genes related to the three developmental phases were identified. Among 25 significantly changed pathways identified, glycolysis/gluconeogenesis was the most evident one. Rate-limiting enzymes were identified from each individual pathway, for example, enolase, L-lactate dehydrogenase and aldehyde dehydrogenase for glycolysis/gluconeogenesis, and ADP-glucose pyrophosphorylase, starch branching enzyme and glucan phosphorylase for sucrose and starch metabolism. This study revealed that dynamic changes in at least 16% of the total transcripts, including transcription factors, oxidoreductases/transferases/hydrolases, hormone-related genes, and effectors of homeostasis. The reliability of these differentially expressed genes was verified by quantitative real-time reverse transcription-polymerase chain reaction. These studies should facilitate our understanding of the storage root formation and cassava improvement. © 2011 Institute of Botany, Chinese Academy of Sciences.
Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei
2015-01-01
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure-aggravated memory impairment in AD.
Ullah, Mujib; Sittinger, Michael; Ringe, Jochen
2013-01-01
Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. © 2013.
Hu, Qing-bi; He, Yu; Zhou, Xun
2015-01-01
Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182
Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao
2015-01-01
Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296
Differential expression of anti-angiogenic factors and guidance genes in the developing macula.
Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M
2009-01-01
The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (p<0.01) were then identified in a second round of clustering according to molecular/reaction (KEGG) pathway. Genes of interest were verified by quantitative PCR (QRT-PCR), and 2 genes were localized by in situ hybridization. We generated two lists of differentially regulated genes: "macula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by QRT-PCR. Localization of PEDF and Eph-A6 mRNAs in sections of macaque retina shows expression of both genes concentrates in the ganglion cell layer (GCL) at the developing fovea, consistent with an involvement in definition of the foveal avascular area. Because the axons of macular ganglion cells exit the retina from around 8 WG, we suggest that the axon guidance genes highly expressed at the macula at 19-20 WG are also involved in vascular patterning, along with PEDF and NPPB. Localization of both PEDF and Eph-A6 mRNAs to the GCL of the developing fovea supports this idea. It is possible that specialization of the macular vessels, including definition of the foveal avascular area, is mediated by processes that piggyback on axon guidance mechanisms in effect earlier in development. These findings may be useful to understand the vulnerability of the macula to degeneration and to develop new therapeutic strategies to inhibit neovascularization.
Zhou, Zhibin; Du, Di; Chen, Aimin; Zhu, Lei
2018-02-20
Osteoarthritis (OA) is a widely prevalent degenerative joint disease characterized by articular cartilage degradation and joint inflammation. The pathogenesis of OA remains unclear, leading to a lack of effective treatment. Previous studies have reported that circular RNAs (circRNAs) are involved in the development of various diseases. However, the function of circRNAs and their roles in OA is largely unknown. Therefore, we aimed to investigate changes in circRNA expression and predict their functions in OA by using bioinformatics analysis. An OA model was established in mouse articular chondrocytes (MACs) treated by interleukin-1β (IL-1β), and then the circRNA profile was screened by Next Generation Sequencing. By comparing circRNA expression in IL-1β- treated MACs and normal controls, differentially expressed circRNAs were identified during OA pathogenesis, and differential expression levels of selected circRNAs were validated by qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were employed to predict the functions of these circRNAs. Because circRNAs can act as "miRNA sponges", we also constructed a circRNA-miRNA network to predict their functions. A total of 255 circRNAs were found to be differentially expressed in IL-1β-treated MACs (p≤0.05; fold-change≥2) from the expression of the normal controls. Among them, 119 circRNAs were significantly up-regulated, and the other 136 were down-regulated. Seven circRNAs were randomly selected to verify the reliability of these profiles by quantitative qRT-PCR. After obtaining the parental genes of differentially expressed circRNA, the top 30 enrichment GO entries and KEGG pathways were annotated. Then, two significantly differentially expressed circRNAs (mmu-circRNA-30365 and mmu-circRNA-36866) were identified and selected for further analysis, meanwhile a circRNA-miRNA regulation network was created and the top five most likely functional-related target miRNAs of the circRNAs were collected. Although the exact mechanisms and biological functions of these circRNAs in the development of OA need further exploration, our findings do suggest that the differentially expressed circRNAs were involved in the pathogenesis of OA. Thus, our study brings us closer to understanding the pathogenic mechanisms and finding new molecular targets for the clinical treatment of osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.
Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf
2014-01-01
Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589
SPP1 and AGER as potential prognostic biomarkers for lung adenocarcinoma.
Zhang, Weiguo; Fan, Junli; Chen, Qiang; Lei, Caipeng; Qiao, Bin; Liu, Qin
2018-05-01
Overdue treatment and prognostic evaluation lead to low survival rates in patients with lung adenocarcinoma (LUAD). To date, effective biomarkers for prognosis are still required. The aim of the present study was to screen differentially expressed genes (DEGs) as biomarkers for prognostic evaluation of LUAD. DEGs in tumor and normal samples were identified and analyzed for Kyoto Encyclopedia of Genes and Genomes/Gene Ontology functional enrichments. The common genes that are up and downregulated were selected for prognostic analysis using RNAseq data in The Cancer Genome Atlas. Differential expression analysis was performed with 164 samples in GSE10072 and GSE7670 datasets. A total of 484 DEGs that were present in GSE10072 and GSE7670 datasets were screened, including secreted phosphoprotein 1 (SPP1) that was highly expressed and DEGs ficolin 3, advanced glycosylation end-product specific receptor (AGER), transmembrane protein 100 that were lowly expressed in tumor tissues. These four key genes were subsequently verified using an independent dataset, GSE19804. The gene expression model was consistent with GSE10072 and GSE7670 datasets. The dysregulation of highly expressed SPP1 and lowly expressed AGER significantly reduced the median survival time of patients with LUAD. These findings suggest that SPP1 and AGER are risk factors for LUAD, and these two genes may be utilized in the prognostic evaluation of patients with LUAD. Additionally, the key genes and functional enrichments may provide a reference for investigating the molecular expression mechanisms underlying LUAD.
Qiu, Xing; Hu, Rui; Wu, Zhixin
2014-01-01
Normalization procedures are widely used in high-throughput genomic data analyses to remove various technological noise and variations. They are known to have profound impact to the subsequent gene differential expression analysis. Although there has been some research in evaluating different normalization procedures, few attempts have been made to systematically evaluate the gene detection performances of normalization procedures from the bias-variance trade-off point of view, especially with strong gene differentiation effects and large sample size. In this paper, we conduct a thorough study to evaluate the effects of normalization procedures combined with several commonly used statistical tests and MTPs under different configurations of effect size and sample size. We conduct theoretical evaluation based on a random effect model, as well as simulation and biological data analyses to verify the results. Based on our findings, we provide some practical guidance for selecting a suitable normalization procedure under different scenarios. PMID:24941114
Guo, Can-Jie; Xiao, Xiao; Sheng, Li; Chen, Lili; Zhong, Wei; Li, Hai; Hua, Jing; Ma, Xiong
2017-01-01
To analyze the long noncoding (lncRNA)-mRNA expression network and potential roles in rat hepatic stellate cells (HSCs) during activation. LncRNA expression was analyzed in quiescent and culture-activated HSCs by RNA sequencing, and differentially expressed lncRNAs verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) were subjected to bioinformatics analysis. In vivo analyses of differential lncRNA-mRNA expression were performed on a rat model of liver fibrosis. We identified upregulation of 12 lncRNAs and 155 mRNAs and downregulation of 12 lncRNAs and 374 mRNAs in activated HSCs. Additionally, we identified the differential expression of upregulated lncRNAs (NONRATT012636.2, NONRATT016788.2, and NONRATT021402.2) and downregulated lncRNAs (NONRATT007863.2, NONRATT019720.2, and NONRATT024061.2) in activated HSCs relative to levels observed in quiescent HSCs, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that changes in lncRNAs associated with HSC activation revealed 11 significantly enriched pathways according to their predicted targets. Moreover, based on the predicted co-expression network, the relative dynamic levels of NONRATT013819.2 and lysyl oxidase (Lox) were compared during HSC activation both in vitro and in vivo. Our results confirmed the upregulation of lncRNA NONRATT013819.2 and Lox mRNA associated with the extracellular matrix (ECM)-related signaling pathway in HSCs and fibrotic livers. Our results detailing a dysregulated lncRNA-mRNA network might provide new treatment strategies for hepatic fibrosis based on findings indicating potentially critical roles for NONRATT013819.2 and Lox in ECM remodeling during HSC activation. © 2017 The Author(s). Published by S. Karger AG, Basel.
Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles.
Niazi, Javed H; Sang, Byoung-In; Kim, Yeon Seok; Gu, Man Bock
2011-08-01
Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.
Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng
2017-03-01
Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo , further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.
Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng
2017-01-01
Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise. PMID:28359146
CCAR1 is required for Ngn3-mediated endocrine differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Chung-Kuang; Lai, Yi-Chyi; Lin, Yung-Fu
2012-02-10
Highlights: Black-Right-Pointing-Pointer We identify CCAR1 to directly interact with Ngn3. Black-Right-Pointing-Pointer CCAR1 is co-localized with Ngn3 in the nucleus. Black-Right-Pointing-Pointer CCAR1 cooperates with Ngn3 in activating NeuroD expression. Black-Right-Pointing-Pointer CCAR1 is required for Ngn3-mediated PANC-1 transdifferentiation. -- Abstract: Neurogenin3 (Ngn3) is a basic helix-loop-helix transcription factor that specifies pancreatic endocrine cell fates during pancreas development. It can also initiate a transdifferentiation program when expressed in pancreatic exocrine and ductal cells. However, how Ngn3 initiates a transcriptional cascade to achieve endocrine differentiation is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which is a transcriptionalmore » coactivator for nuclear receptors, also interacts with Ngn3. The association between Ngn3 and CCAR1 was verified by pull-down assays and co-immunoprecipitation analyses. Using gene reporter assays, we found that CCAR1 is essential for Ngn3 to activate the expression of the reporter genes containing the NeuroD promoter. Moreover, down-regulation of endogenous CCAR1 in the PANC-1 pancreatic ductal cell line inhibits the transdifferentiation program initiated by Ngn3. CCAR1 is, therefore, a novel partner of Ngn3 in mediating endocrine differentiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenny, Matthew J.; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; Aluru, Neelakanteswar
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNAmore » expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development. -- Highlights: ► Zebrafish embryos were exposed to TCDD at two different developmental timepoints. ► Compared different methods in detecting global changes in microRNA expression. ► TCDD caused significant changes in microRNA expression in zebrafish embryos. ► Differentially expressed microRNAs have roles related to TCDD-induced phenotypes.« less
Li, Chuanbiao; Zhang, Zhao; Zhou, Lizhen; Wang, Shijia; Wang, Shuqi; Zhang, Yueling; Wen, Xiaobo
2013-01-01
Background Infection of bacterial Vibrio parahaemolyticus is common in mud crab farms. However, the mechanisms of the crab’s response to pathogenic V. parahaemolyticus infection are not fully understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs that function as regulators of gene expression and play essential roles in various biological processes. To understand the underlying mechanisms of the molecular immune response of the crab to the pathogens, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs in S . paramamosain under V. parahaemolyticus infection. Methodology/Principal Findings Two mixed RNA pools of 7 tissues (intestine, heart, liver, gill, brain, muscle and blood) were obtained from V. parahaemolyticus infected crabs and the control groups, respectively. By aligning the sequencing data with known miRNAs, we characterized 421 miRNA families, and 133 conserved miRNA families in mud crab S . paramamosain were either identical or very similar to existing miRNAs in miRBase. Stem-loop qRT-PCRs were used to scan the expression levels of four randomly chosen differentially expressed miRNAs and tissue distribution. Eight novel potential miRNAs were confirmed by qRT-PCR analysis and the precursors of these novel miRNAs were verified by PCR amplification, cloning and sequencing in S . paramamosain . 161 miRNAs (106 of which up-regulated and 55 down-regulated) were significantly differentially expressed during the challenge and the potential targets of these differentially expressed miRNAs were predicted. Furthermore, we demonstrated evolutionary conservation of mud crab miRNAs in the animal evolution process. Conclusions/Significance In this study, a large number of miRNAs were identified in S . paramamosain when challenged with V. parahaemolyticus, some of which were differentially expressed. The results show that miRNAs might play some important roles in regulating gene expression in mud crab under V. parahaemolyticus infection, providing a basis for further investigation of miRNA-modulating networks in innate immunity of mud crab. PMID:24023678
NASA Astrophysics Data System (ADS)
Xu, Tianhua; Jacobsen, Gunnar; Popov, Sergei; Li, Jie; Liu, Tiegen; Zhang, Yimo
2016-10-01
The performance of long-haul high speed coherent optical fiber communication systems is significantly degraded by the laser phase noise and the equalization enhanced phase noise (EEPN). In this paper, the analysis of the one-tap normalized least-mean-square (LMS) carrier phase recovery (CPR) is carried out and the close-form expression is investigated for quadrature phase shift keying (QPSK) coherent optical fiber communication systems, in compensating both laser phase noise and equalization enhanced phase noise. Numerical simulations have also been implemented to verify the theoretical analysis. It is found that the one-tap normalized least-mean-square algorithm gives the same analytical expression for predicting CPR bit-error-rate (BER) floors as the traditional differential carrier phase recovery, when both the laser phase noise and the equalization enhanced phase noise are taken into account.
Expression profile of circular RNAs in infantile hemangioma detected by RNA-Seq.
Li, Jun; Li, Qian; Chen, Ling; Gao, Yanli; Li, Jingyun
2018-05-01
Circular RNAs (circRNAs) have emerged as a novel class of widespread non-coding RNAs, and they play crucial roles in various biological processes. However, the characterization and function of circRNAs in infantile hemangioma (IH) remain elusive. In this study, we used RNA-Seq and circRNA prediction to study and characterize the circRNAs in IH tissue and a matched normal skin control. Specific circRNAs were verified using real-time polymerase chain reaction. We found that of the 9811 identified circRNAs, 249 candidates were differentially expressed, including 124 upregulated and 125 downregulated circRNAs in the IH group compared with the matched normal skin control group. A set of differentially expressed circRNAs (in particular, hsa_circRNA001885 and hsa_circRNA006612 expression) were confirmed using qRT-PCR. Gene ontology and pathway analysis revealed that compared to matched normal skin tissues, many processes that were over-represented in IH group were related to the binding, protein binding, gap junction, and focal adhesion. Specific circRNAs were associated with several micro-RNAs (miRNAs) predicted using miRanda. Altogether, our findings highlight the potential importance of circRNAs in the biology of IH and its response to treatment.
Ye, Yaqiong; Lin, Shumao; Mu, Heping; Tang, Xiaohong; Ou, Yangdan; Chen, Jian; Ma, Yongjiang; Li, Yugu
2014-01-01
Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway). PMID:24757673
Sun, Zhengda; Wang, Chih-Yang; Lawson, Devon A; Kwek, Serena; Velozo, Hugo Gonzalez; Owyong, Mark; Lai, Ming-Derg; Fong, Lawrence; Wilson, Mark; Su, Hua; Werb, Zena; Cooke, Daniel L
2018-02-16
Tumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes. Both principal component analysis (PCA) and heat map-based hierarchical clustering separated the cancerous versus control ECs as two distinctive clusters, and MetaCore disease biomarker analysis indicated that these differentially expressed genes are highly correlated with breast neoplasm diseases. Gene Set Enrichment Analysis software (GSEA) enriched these genes to extracellular matrix (ECM) signal pathways and highlighted 127 ECM-associated genes. External validation verified some of these ECM-associated genes are not only generally overexpressed in various cancer tissues but also specifically overexpressed in colorectal cancer ECs and lymphoma ECs. In conclusion, our data demonstrated that ECM-associated genes play pivotal roles in breast cancer EC biology and some of them could serve as potential TEC biomarkers for various cancers.
Prostate cancer-associated gene expression alterations determined from needle biopsies.
Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M
2009-05-01
To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.
Prostate Cancer-Associated Gene Expression Alterations Determined from Needle Biopsies
Qian, David Z.; Huang, Chung-Ying; O'Brien, Catherine A.; Coleman, Ilsa M.; Garzotto, Mark; True, Lawrence D.; Higano, Celestia S.; Vessella, Robert; Lange, Paul H.; Nelson, Peter S.; Beer, Tomasz M.
2010-01-01
Purpose To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Experimental Design Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays comprised of 6200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative RT-PCR. Results Comparative analyses identified 954 transcript alterations associated with cancer (q value <0.01%) including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy utilization, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of AR expression changes was noted. In exploratory analyses, AR down regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Conclusions Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation. PMID:19366833
Chaves, Daniela F. S.; Carvalho, Paulo C.; Lima, Diogo B.; Nicastro, Humberto; Lorenzetti, Fábio M.; Filho, Mário S.; Hirabara, Sandro M.; Alves, Paulo H. M.; Moresco, James J.; Yates, John R.; Lancha, Antonio H.
2013-01-01
Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism, leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. Briefly, we employed tandem mass tags (TMT) to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related, involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers, and most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence (GAS), zero beta-globin, and prolargin. PMID:24001182
Chaves, Daniela F S; Carvalho, Paulo C; Lima, Diogo B; Nicastro, Humberto; Lorenzeti, Fábio M; Siqueira-Filho, Mário; Hirabara, Sandro M; Alves, Paulo H M; Moresco, James J; Yates, John R; Lancha, Antonio H
2013-10-04
Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.
Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S
2007-10-01
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.
Differential expression of anti-angiogenic factors and guidance genes in the developing macula
Kozulin, Peter; Natoli, Riccardo; O’Brien, Keely M. Bumsted; Madigan, Michele C.
2009-01-01
Purpose The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. Methods We used RNA from human fetal retinas at 19–20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip® microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek® Genomic Suite™ 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to “biological process.” The neural retina is fully differentiated at the macula at 19–20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (p<0.01) were then identified in a second round of clustering according to molecular/reaction (KEGG) pathway. Genes of interest were verified by quantitative PCR (QRT–PCR), and 2 genes were localized by in situ hybridization. Results We generated two lists of differentially regulated genes: “macula versus surround” and “macula versus nasal.” KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IVα2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by QRT–PCR. Localization of PEDF and Eph-A6 mRNAs in sections of macaque retina shows expression of both genes concentrates in the ganglion cell layer (GCL) at the developing fovea, consistent with an involvement in definition of the foveal avascular area. Conclusions Because the axons of macular ganglion cells exit the retina from around 8 WG, we suggest that the axon guidance genes highly expressed at the macula at 19–20 WG are also involved in vascular patterning, along with PEDF and NPPB. Localization of both PEDF and Eph-A6 mRNAs to the GCL of the developing fovea supports this idea. It is possible that specialization of the macular vessels, including definition of the foveal avascular area, is mediated by processes that piggyback on axon guidance mechanisms in effect earlier in development. These findings may be useful to understand the vulnerability of the macula to degeneration and to develop new therapeutic strategies to inhibit neovascularization. PMID:19145251
Bing, Feng; Zhao, Yu
2016-01-01
To screen the biomarkers having the ability to predict prognosis after chemotherapy for breast cancers. Three microarray data of breast cancer patients undergoing chemotherapy were collected from Gene Expression Omnibus database. After preprocessing, data in GSE41112 were analyzed using significance analysis of microarrays to screen the differentially expressed genes (DEGs). The DEGs were further analyzed by Differentially Coexpressed Genes and Links to construct a function module, the prognosis efficacy of which was verified by the other two datasets (GSE22226 and GSE58644) using Kaplan-Meier plots. The involved genes in function module were subjected to a univariate Cox regression analysis to confirm whether the expression of each prognostic gene was associated with survival. A total of 511 DEGs between breast cancer patients who received chemotherapy or not were obtained, consisting of 421 upregulated and 90 downregulated genes. Using the Differentially Coexpressed Genes and Links package, 1,244 differentially coexpressed genes (DCGs) were identified, among which 36 DCGs were regulated by the transcription factor complex NFY (NFYA, NFYB, NFYC). These 39 genes constructed a gene module to classify the samples in GSE22226 and GSE58644 into three subtypes and these subtypes exhibited significantly different survival rates. Furthermore, several genes of the 39 DCGs were shown to be significantly associated with good (such as CDC20) and poor (such as ARID4A) prognoses following chemotherapy. Our present study provided a serial of biomarkers for predicting the prognosis of chemotherapy or targets for development of alternative treatment (ie, CDC20 and ARID4A) in breast cancer patients.
Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman
2011-04-01
Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.
Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman
2011-01-01
Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389
Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo
2016-06-01
Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
EBF proteins participate in transcriptional regulation of Xenopus muscle development.
Green, Yangsook Song; Vetter, Monica L
2011-10-01
EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.
DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta
Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook
2017-01-01
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934
Zhang, Ting; Guo, Yueshuai; Guo, Xuejiang; Zhou, Tao; Chen, Daozhen; Xiang, Jingying; Zhou, Zuomin
2013-01-01
Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the third trimester and associated with increased risks in fetal complications. Currently, the exact cause of this disease is unknown. In this study we aim to investigate the potential proteins in placenta, which may participate in the molecular mechanisms of ICP-related fetal complications using iTRAQ-based proteomics approach. The iTRAQ analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to separate differentially expressed placental proteins from 4 pregnant women with ICP and 4 healthy pregnant women. Bioinformatics analysis was used to find the relative processes that these differentially expressed proteins were involved in. Three apoptosis related proteins ERp29, PRDX6 and MPO that resulted from iTRAQ-based proteomics were further verified in placenta by Western blotting and immunohistochemistry. Placental apoptosis was also detected by TUNEL assay. Proteomics results showed there were 38 differentially expressed proteins from pregnant women with ICP and healthy pregnant women, 29 were upregulated and 9 were downregulated in placenta from pregnant women with ICP. Bioinformatics analysis showed most of the identified proteins was functionally related to specific cell processes, including apoptosis, oxidative stress, lipid metabolism. The expression levels of ERp29, PRDX6 and MPO were consistent with the proteomics data. The apoptosis index in placenta from ICP patients was significantly increased. This preliminary work provides a better understanding of the proteomic alterations of placenta from pregnant women with ICP and may provide us some new insights into the pathophysiology and potential novel treatment targets for ICP.
Characterization of human myoblast cultures for tissue engineering.
Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart
2008-01-01
Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation. In this study, we obtained detailed information regarding the cultivation and differentiation of human myoblast cultures in different environments. By exploring optimal culture conditions for skeletal muscle tissue engineering, we acquired culture data for comparison with other sources of stem cells in order to find the most applicable stem cell for focussed clinical usage.
Wang, Shasha; Zhang, Yang; Xu, Qi; Yuan, Xiaoya; Dai, Wangcheng; Shen, Xiaokun; Wang, Zhixiu; Chang, Guobin; Wang, Zhiquan; Chen, Guohong
2018-01-01
Meat quality is closely related to adipose tissues in ducks, and adipogenesis is controlled by a complex network of transcription factors tightly acting at different stages of differentiation especially in ducks. The aim of this study was to establish the preadipocyte in vitro culture system and understand the biological characteristics of expansion of duck adipocyte tissue at the cellular and molecular level. We isolated pre-adipocytes from the subcutaneous fat of three breeds of duck and differentiated them into mature adipocytes using a mixture of insulin, rosiglitazone, dexamethasone, 3-isobutyl-1-methylxanthine, and oleic acid over 0,2, 4, 6, and 8 days. Successful differentiation was confirmed from the development of lipid droplets and their response to Oil Red O, and increasing numbers of lipid droplets were stained red over time. The expression of key marker genes, including peroxisome proliferator activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), adipocyte fatty acid binding protein 4 (FABP4), and fatty acid synthetase (FAS), gradually increased during pre-adipocyte differentiation. Furthermore, it was verified by interference experiments that the knockdown of PPARγ directly reduced lipid production. Meanwhile we analyzed the role of unsaturated fatty acids in the production of poultry fat using different concentrations of oleic acid and found that lipid droplet deposition was highest when the concentration of oleic acid was 300 μM. We also compared the level of differentiated pre-adipocytes that were isolated from Jianchang ducks (fatty-meat duck), Cherry Valley ducks (lean-meat duck) and White-crested ducks (egg-producing duck). The proliferation and differentiation rate of pre-adipocytes derived from Jianchang ducks was higher than that of White-crested ducks. These results provide the foundation for further research into waterfowl adipogenesis.
Nrf2 promotes neuronal cell differentiation.
Zhao, Fei; Wu, Tongde; Lau, Alexandria; Jiang, Tao; Huang, Zheping; Wang, Xiao-Jun; Chen, Weimin; Wong, Pak Kin; Zhang, Donna D
2009-09-15
The transcription factor Nrf2 has emerged as a master regulator of the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol 13-acetate, two well-studied inducers of neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 in a dose- and time-dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M and microtubule-associated protein 2. Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation, whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to those from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.
Weider, Karola; Bergmann, Martin; Giese, Sarah; Guillou, Florian; Failing, Klaus; Brehm, Ralph
2011-07-01
Histological analysis revealed that Sertoli cell specific knockout of the predominant testicular gap junction protein connexin 43 results in a spermatogenic arrest at the level of spermatogonia or Sertoli cell-only syndrome, intratubular cell clusters and still proliferating adult Sertoli cells, implying an important role for connexin 43 in the Sertoli and germ cell development. This study aimed to determine the (1) Sertoli cell maturation state, (2) time of occurrence and (3) composition, differentiation and fate of clustered cells in knockout mice. Using immunohistochemistry connexin 43 deficient Sertoli cells showed an accurate start of the mature markers androgen receptor and GATA-1 during puberty and a vimentin expression from neonatal to adult. Expression of anti-Muellerian hormone, as a marker of Sertoli cell immaturity, was finally down-regulated during puberty, but its disappearance was delayed. This observed extended anti-Müllerian hormone synthesis during puberty was confirmed by western blot and Real-Time PCR and suggests a partial alteration in the Sertoli cell differentiation program. Additionally, Sertoli cells of adult knockouts showed a permanent and uniform expression of GATA-1 at protein and mRNA level, maybe caused by the lack of maturing germ cells and missing negative feedback signals. At ultrastructural level, basally located adult Sertoli cells obtained their mature appearance, demonstrated by the tripartite nucleolus as a typical feature of differentiated Sertoli cells. Intratubular clustered cells were mainly formed by abnormal Sertoli cells and single attached apoptotic germ cells, verified by immunohistochemistry, TUNEL staining and transmission electron microscopy. Clusters first appeared during puberty and became more numerous in adulthood with increasing cell numbers per cluster suggesting an age-related process. In conclusion, adult connexin 43 deficient Sertoli cells seem to proliferate while maintaining expression of mature markers and their adult morphology, indicating a unique and abnormal intermediate phenotype with characteristics common to both undifferentiated and differentiated Sertoli cells. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Specialized mouse embryonic stem cells for studying vascular development.
Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E
2014-01-01
Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.
Liu, Nan; Li, Ying; Chen, Hui; Wei, Wei; An, Yulin; Zhu, Guangming
2015-01-01
Notch3 plays an important role in differentiation, migration and signal transduction of vascular smooth muscle cells (VSMCs). In this study, we used RNA interference (RNAi) technique to investigate the effect of knocking down the expression of the NOTCH3 gene in VSMCs on the phenotype determination under pathologic status. Real-time PCR and Western Blot experiments verified the expression levels of Notch3 mRNA and protein were reduced more than 40% and 50% in the NOTCH3 siRNA group. When the expression of Notch3 was decreased, the proliferation, apoptosis and immigration of VSMCs were enhanced compared to control groups (P < 0.01). NOTCH3 siRNA VSMCs observed using confocal microscopy showed abnormal nuclear configuration, a disorganized actin filament system, polygonal cell shapes, and decreasing cell sizes. Additionally, knocking down the expression of NOTCH3 may evoke the CASR and FAK expression. In Conclusion, interfering with the expression of NOTCH3 causes VSMCs to exhibit an intermediate phenotype. CaSR and FAK may be involved in the Notch3 signaling pathway. PMID:26550181
Liu, Nan; Li, Ying; Chen, Hui; Wei, Wei; An, Yulin; Zhu, Guangming
2015-01-01
Notch3 plays an important role in differentiation, migration and signal transduction of vascular smooth muscle cells (VSMCs). In this study, we used RNA interference (RNAi) technique to investigate the effect of knocking down the expression of the NOTCH3 gene in VSMCs on the phenotype determination under pathologic status. Real-time PCR and Western Blot experiments verified the expression levels of Notch3 mRNA and protein were reduced more than 40% and 50% in the NOTCH3 siRNA group. When the expression of Notch3 was decreased, the proliferation, apoptosis and immigration of VSMCs were enhanced compared to control groups (P < 0.01). NOTCH3 siRNA VSMCs observed using confocal microscopy showed abnormal nuclear configuration, a disorganized actin filament system, polygonal cell shapes, and decreasing cell sizes. Additionally, knocking down the expression of NOTCH3 may evoke the CASR and FAK expression. In Conclusion, interfering with the expression of NOTCH3 causes VSMCs to exhibit an intermediate phenotype. CaSR and FAK may be involved in the Notch3 signaling pathway.
Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S
2008-01-01
Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination. PMID:19114004
Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S
2008-12-29
Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1alpha and EF-2. Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.
Gwinn, Maureen R.; Whipkey, Diana L.; Tennant, Lora B.; Weston, Ainsley
2005-01-01
Organophosphate pesticides are a major source of occupational exposure in the United States. Moreover, malathion has been sprayed over major urban populations in an effort to control mosquitoes carrying West Nile virus. Previous research, reviewed by the U.S. Environmental Protection Agency, on the genotoxicity and carcinogenicity of malathion has been inconclusive, although malathion is a known endocrine disruptor. Here, interindividual variations and commonality of gene expression signatures have been studied in normal human mammary epithelial cells from four women undergoing reduction mammoplasty. The cell strains were obtained from the discarded tissues through the Cooperative Human Tissue Network (sponsors: National Cancer Institute and National Disease Research Interchange). Interindividual variation of gene expression patterns in response to malathion was observed in various clustering patterns for the four cell strains. Further clustering identified three genes with increased expression after treatment in all four cell strains. These genes were two aldo–keto reductases (AKR1C1 and AKR1C2) and an estrogen-responsive gene (EBBP). Decreased expression of six RNA species was seen at various time points in all cell strains analyzed: plasminogen activator (PLAT), centromere protein F (CPF), replication factor C (RFC3), thymidylate synthetase (TYMS), a putative mitotic checkpoint kinase (BUB1), and a gene of unknown function (GenBank accession no. AI859865). Expression changes in all these genes, detected by DNA microarrays, have been verified by real-time polymerase chain reaction. Differential changes in expression of these genes may yield biomarkers that provide insight into interindividual variation in malathion toxicity. PMID:16079077
Differential gene expression in Ndph-knockout mice in retinal development.
Schäfer, Nikolaus F; Luhmann, Ulrich F O; Feil, Silke; Berger, Wolfgang
2009-02-01
Mutations in the NDP gene impair angiogenesis in the eyes of patients diagnosed with a type of blindness belonging to the group of exudative vitreoretinopathies. This study was conducted to investigate the differential gene expression caused by the absence of Norrin (the NDP protein) in the developing mouse retina and to elucidate early pathogenic events. A comparative gene expression analysis was performed on postnatal day (p)7 retinas from a knockout mouse model for Norrie disease using gene microarrays. Subsequently, results were verified by quantitative real-time PCR analyses. Immunohistochemistry was performed for the vascular permeability marker plasmalemma vesicle associated protein (Plvap). Our study identified expression differences in Ndph(y/-) versus wild-type mice retinas at p7. Gene transcription of the neutral amino acid transporter Slc38a5, apolipoprotein D (ApoD), and angiotensin II receptor-like 1 (Agtrl1) was decreased in the knockout mouse, whereas transcript levels of adrenomedullin (Adm) and of the plasmalemma vesicle associated protein (Plvap) were increased in comparison to the wild-type. In addition, ectopic expression of Plvap was found in the developing retinal vasculature of Norrin-knockout mice on the protein level. These data provide molecular evidence for a role of Norrin in the development of the retinal vasculature. Expression of two genes, Plvap and Slc38a5, is considerably altered in retinal development of Norrin-knockout mice and may reflect or contribute to the pathogenesis of the disease. In particular, ectopic expression of Plvap is consistent with hallmark disease symptoms in mice and humans.
Ullah, Mujib; Hamouda, Houda; Stich, Stefan; Sittinger, Michael; Ringe, Jochen
2012-12-01
Administration of chondrogenically differentiated mesenchymal stem cells (MSC) is discussed as a promising approach for the regenerative treatment of injured or diseased cartilage. The high-density pellet culture is the standard culture for chondrogenic differentiation, but cells in pellets secrete extracellular matrix (ECM) that they become entrapped in. Protocols for cell isolation from pellets often result in cell damage and dedifferentiation towards less differentiated MSC. Therefore, our aim was to develop a reliable protocol for the isolation of viable, chondrogenically differentiated MSC from high-density pellet cultures. Human bone marrow MSC were chondrogenically stimulated with transforming growth factor-β3, and the cartilaginous structure of the pellets was verified by alcian blue staining of cartilage proteoglycans, antibody staining of cartilage collagen type II, and quantitative real-time reverse-transcription polymerase chain reaction of the marker genes COL2A1 and SOX9. Trypsin and collagenases II and P were tested alone or in combination, and for different concentrations and times, to find a protocol for optimized pellet digestion. Whereas trypsin was not able to release viable cells, 90-min digestion with 300 U of collagenase II, 20 U of collagenase P, and 2 mM CaCl2 worked quite well and resulted in about 2.5×10(5) cells/pellet. The protocol was further optimized for the separation of released cells and ECM from each other. Cells were alcian blue and collagen type II positive and expressed COL2A1 and SOX9, verifying a chondrogenic character. However, they had different morphological shapes. The ECM was also uniformly alcian blue and collagen type II positive but showed different organizational and structural forms. To conclude, our protocol allows the reliable isolation of a defined number of viable, chondrogenically differentiated MSC from high-density pellet cultures. Such cells, as well as the ECM components, are of interest as research tools and for cartilage tissue engineering.
Gao, Haiyan; Yang, Mei; Zhang, Xiaolan
2018-04-01
The present study aimed to investigate potential recurrence-risk biomarkers based on significant pathways for Luminal A breast cancer through gene expression profile analysis. Initially, the gene expression profiles of Luminal A breast cancer patients were downloaded from The Cancer Genome Atlas database. The differentially expressed genes (DEGs) were identified using a Limma package and the hierarchical clustering analysis was conducted for the DEGs. In addition, the functional pathways were screened using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and rank ratio calculation. The multigene prognostic assay was exploited based on the statistically significant pathways and its prognostic function was tested using train set and verified using the gene expression data and survival data of Luminal A breast cancer patients downloaded from the Gene Expression Omnibus. A total of 300 DEGs were identified between good and poor outcome groups, including 176 upregulated genes and 124 downregulated genes. The DEGs may be used to effectively distinguish Luminal A samples with different prognoses verified by hierarchical clustering analysis. There were 9 pathways screened as significant pathways and a total of 18 DEGs involved in these 9 pathways were identified as prognostic biomarkers. According to the survival analysis and receiver operating characteristic curve, the obtained 18-gene prognostic assay exhibited good prognostic function with high sensitivity and specificity to both the train and test samples. In conclusion the 18-gene prognostic assay including the key genes, transcription factor 7-like 2, anterior parietal cortex and lymphocyte enhancer factor-1 may provide a new method for predicting outcomes and may be conducive to the promotion of precision medicine for Luminal A breast cancer.
2014-01-01
Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832
Blesson, Chellakkan Selvanesan; Sahlin, Lena
2012-09-25
Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Self-similar solutions to isothermal shock problems
NASA Astrophysics Data System (ADS)
Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.
We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.
2010-01-01
Background The amygdala-kindled rat is a model for human temporal lobe epilepsy and activity-dependent synaptic plasticity. Hippocampal RNA isolated from amygdala-kindled rats at different kindling stages was analyzed to identify kindling-induced genes. Furthermore, effects of the anti-epileptic drug levetiracetam on kindling-induced gene expression were examined. Results Cyclooxygenase-2 (Cox-2), Protocadherin-8 (Pcdh8) and TGF-beta-inducible early response gene-1 (TIEG1) were identified and verified as differentially expressed transcripts in the hippocampus of kindled rats by in situ hybridization and quantitative RT-PCR. In addition, we identified a panel of 16 additional transcripts which included Arc, Egr3/Pilot, Homer1a, Ania-3, MMP9, Narp, c-fos, NGF, BDNF, NT-3, Synaptopodin, Pim1 kinase, TNF-α, RGS2, Egr2/krox-20 and β-A activin that were differentially expressed in the hippocampus of amygdala-kindled rats. The list consists of many synaptic plasticity-related immediate early genes (IEGs) as well as some late response genes encoding transcription factors, neurotrophic factors and proteins that are known to regulate synaptic remodelling. In the hippocampus, induction of IEG expression was dependent on the afterdischarge (AD) duration. Levetiracetam, 40 mg/kg, suppressed the development of kindling measured as severity of seizures and AD duration. In addition, single animal profiling also showed that levetiracetam attenuated the observed kindling-induced IEG expression; an effect that paralleled the anti-epileptic effect of the drug on AD duration. Conclusions The present study provides mRNA expression data that suggest that levetiracetam attenuates expression of genes known to regulate synaptic remodelling. In the kindled rat, levetiracetam does so by shortening the AD duration thereby reducing the seizure-induced changes in mRNA expression in the hippocampus. PMID:20105316
Zhang, Dapeng; Xiong, Huiling; Mennigen, Jan A; Popesku, Jason T; Marlatt, Vicki L; Martyniuk, Christopher J; Crump, Kate; Cossins, Andrew R; Xia, Xuhua; Trudeau, Vance L
2009-06-05
Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A) gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.
Mennigen, Jan A.; Popesku, Jason T.; Marlatt, Vicki L.; Martyniuk, Christopher J.; Crump, Kate; Cossins, Andrew R.; Xia, Xuhua; Trudeau, Vance L.
2009-01-01
Background Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. Methodology/Principal Findings In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABAA gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Conclusions/Significance Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development. PMID:19503831
Jang, Sumin; Choubey, Sandeep; Furchtgott, Leon; Zou, Ling-Nan; Doyle, Adele; Menon, Vilas; Loew, Ethan B; Krostag, Anne-Rachel; Martinez, Refugio A; Madisen, Linda; Levi, Boaz P; Ramanathan, Sharad
2017-01-01
The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI: http://dx.doi.org/10.7554/eLife.20487.001 PMID:28296635
Ko, Ching-Huai; Cheng, Chieh-Fang; Lai, Chin-Pen; Tzu, Te-Hui; Chiu, Chih-Wei; Lin, Mei-Wei; Wu, Si-Yuan; Sun, Chung-Yuan; Tseng, Hsiang-Wen; Wang, Chun-Chung; Kuo, Zong-Keng; Wang, Ling-Mei; Chen, Sung-Fang
2013-08-02
Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.
Chen, Chien-Lun; Lin, Tsung-Shih; Tsai, Cheng-Han; Wu, Chih-Ching; Chung, Ting; Chien, Kun-Yi; Wu, Maureen; Chang, Yu-Sun; Yu, Jau-Song; Chen, Yi-Ting
2013-06-24
In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. Six apolipoproteins (APOA1, APOA2, APOB, APOC2, APOC3, and APOE) were able to differentiate bladder cancer from hernia. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity (AUC=0.80 and p<0.001) in discriminating bladder cancer from hernia than either marker alone. Using MetaCore software to interpret global changes of the urine proteome caused by bladder cancer, we found that the most notable alterations were in immune-response/alternative complement and blood-coagulation pathways. This study confirmed the clinical significance of the urine proteome in the development of non-invasive biomarkers for the detection of bladder cancer. In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity in discriminating bladder cancer from hernia than either marker alone. A marker panel composed by two novel biomarker candidates, SAA4 and proEGF, was first discovered and verified successfully using Western blotting. To the best of our knowledge, the associations of urinary SAA4 and proEGF with bladder tumor and kidney cancer have not been mentioned before. In the present study, we discovered and verified SAA4 and proEGF as potential bladder cancer biomarker for the first time. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Paraboschi, Elvezia Maria; Cardamone, Giulia; Rimoldi, Valeria; Gemmati, Donato; Spreafico, Marta; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna
2015-09-30
Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p=0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.
Graham, A R; Payne, C M; Nagle, R B; Angel, E
1987-02-01
We studied four mixed carcinoma-neuroendocrine neoplasms from gastrointestinal tract and pancreas by routine light microscopy (LM), immunohistochemistry (IH), electron microscopy (EM), and ultrastructural cytochemistry (UC). By LM, the individual tumors showed fairly pure neuroendocrine (carcinoid) or epithelial (papillary) patterns, mixed neuroendocrine-carcinoma features and poorly-differentiated tumor in sheets and nests which did not lend itself to morphologic characterization. IH demonstrated mixed expression, within different areas of the same neoplasm, of epithelial antigens (keratins and carcinoembryonic antigen [CEA]) and neuroendocrine markers (neuron-specific enolase [NSE], bombesin and neurohormonal peptides). By EM, each tumor showed ultrastructural features of epithelial and neuroendocrine differentiation which varied substantially in terms of number of cells involved and their distribution; two of the neoplasms showed biphasic differentiation within single cells. The nature of the neurosecretory granules was verified with the uranaffin reaction (UR). This study illustrates the value of combining LM, IH, EM and UC for the identification of mixed carcinoma-neuroendocrine lesions.
Yang, Xinan Holly; Tang, Fangming; Shin, Jisu; Cunningham, John M
2017-10-03
Previous studies suggested that cancer cells possess traits reminiscent of the biological mechanisms ascribed to normal embryonic stem cells (ESCs) regulated by MYC and Polycomb repressive complex 2 (PRC2). Several poorly differentiated adult tumors showed preferentially high expression levels in targets of MYC, coincident with low expression levels in targets of PRC2. This paper will reveal this ESC-like cancer signature in high-risk neuroblastoma (HR-NB), the most common extracranial solid tumor in children. We systematically assembled genomic variants, gene expression changes, priori knowledge of gene functions, and clinical outcomes to identify prognostic multigene signatures. First, we assigned a new, individualized prognostic index using the relative expressions between the poor- and good-outcome signature genes. We then characterized HR-NB aggressiveness beyond these prognostic multigene signatures through the imbalanced effects of MYC and PRC2 signaling. We further analyzed Retinoic acid (RA)-induced HR-NB cells to model tumor cell differentiation. Finally, we performed in vitro validation on ZFHX3, a cell differentiation marker silenced by PRC2, and compared cell morphology changes before and after blocking PRC2 in HR-NB cells. A significant concurrence existed between exons with verified variants and genes showing MYCN-dependent expression in HR-NB. From these biomarker candidates, we identified two novel prognostic gene-set pairs with multi-scale oncogenic defects. Intriguingly, MYC targets over-represented an unfavorable component of the identified prognostic signatures while PRC2 targets over-represented a favorable component. The cell cycle arrest and neuronal differentiation marker ZFHX3 was identified as one of PRC2-silenced tumor suppressor candidates. Blocking PRC2 reduced tumor cell growth and increased the mRNA expression levels of ZFHX3 in an early treatment stage. This hypothesis-driven systems bioinformatics work offered novel insights into the PRC2-mediated tumor cell growth and differentiation in neuroblastoma, which may exert oncogenic effects together with MYC regulation. Our results propose a prognostic effect of imbalanced MYC and PRC2 moderations in pediatric HR-NB for the first time. This study demonstrates an incorporation of genomic landscapes and transcriptomic profiles into the hypothesis-driven precision prognosis and biomarker discovery. The application of this approach to neuroblastoma, as well as other cancer more broadly, could contribute to reduced relapse and mortality rates in the long term.
Development of Nomarski microscopy for quantitative determination of surface topography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, J. S.; Gordon, R. L.; Lessor, D. L.
1979-01-01
The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.
Liu, Kuei-Chun; Yo, Yi-Te; Huang, Rui-Lan; Wang, Yu-Chi; Liao, Yu-Ping; Huang, Tien-Shuo; Chao, Tai-Kuang; Lin, Chi-Kang; Weng, Shao-Ju; Ma, Kuo-Hsing; Chang, Cheng-Chang; Yu, Mu-Hsien; Lai, Hung-Cheng
2013-01-01
Spheroid formation is one property of stem cells—such as embryo-derived or neural stem cells—that has been used for the enrichment of cancer stem-like cells (CSLCs). However, it is unclear whether CSLC-derived spheroids are heterogeneous or whether they share common embryonic stemness properties. Understanding these features might lead to novel therapeutic approaches. Ovarian carcinoma is a deadly disease of women. We identified two types of spheroids (SR1 and SR2) from ovarian cancer cell lines and patients' specimens according to their morphology. Both types expressed stemness markers and could self-renew and initiate tumors when a low number of cells were used. Only SR1 could differentiate into multiple-lineage cell types under specific induction conditions. SR1 spheroids could differentiate to SR2 spheroids through epithelial–mesenchymal transition. Alkaline phosphatase (ALP) was highly expressed in SR1 spheroids, decreased in SR2 spheroids, and was absent in differentiated progenies in accordance with the loss of stemness properties. We verified that ALP can be a marker for ovarian CSLCs, and patients with greater ALP expression is related to advanced clinical stages and have a higher risk of recurrence and lower survival rate. The ALP inhibitor, levamisole, disrupted the self-renewal of ovarian CSLCs in vitro and tumor growth in vivo. In summary, this research provides a plastic ovarian cancer stem cell model and a new understanding of the cross-link between stem cells and cancers. This results show that ovarian CSLCs can be suppressed by levamisole. Our findings demonstrated that some ovarian CSLCs may restore ALP activity, and this suggests that inhibition of ALP activity may present a new opportunity for treatment of ovarian cancer. PMID:24280306
Bing, Feng; Zhao, Yu
2016-01-01
Objective To screen the biomarkers having the ability to predict prognosis after chemotherapy for breast cancers. Methods Three microarray data of breast cancer patients undergoing chemotherapy were collected from Gene Expression Omnibus database. After preprocessing, data in GSE41112 were analyzed using significance analysis of microarrays to screen the differentially expressed genes (DEGs). The DEGs were further analyzed by Differentially Coexpressed Genes and Links to construct a function module, the prognosis efficacy of which was verified by the other two datasets (GSE22226 and GSE58644) using Kaplan–Meier plots. The involved genes in function module were subjected to a univariate Cox regression analysis to confirm whether the expression of each prognostic gene was associated with survival. Results A total of 511 DEGs between breast cancer patients who received chemotherapy or not were obtained, consisting of 421 upregulated and 90 downregulated genes. Using the Differentially Coexpressed Genes and Links package, 1,244 differentially coexpressed genes (DCGs) were identified, among which 36 DCGs were regulated by the transcription factor complex NFY (NFYA, NFYB, NFYC). These 39 genes constructed a gene module to classify the samples in GSE22226 and GSE58644 into three subtypes and these subtypes exhibited significantly different survival rates. Furthermore, several genes of the 39 DCGs were shown to be significantly associated with good (such as CDC20) and poor (such as ARID4A) prognoses following chemotherapy. Conclusion Our present study provided a serial of biomarkers for predicting the prognosis of chemotherapy or targets for development of alternative treatment (ie, CDC20 and ARID4A) in breast cancer patients. PMID:27217777
NASA Astrophysics Data System (ADS)
Hofmann, A.; Ritz, U.; Rompe, J.-D.; Tresch, A.; Rommens, P. M.
2015-01-01
Shock wave therapy has been increasingly evaluated as a non-invasive alternative for the treatment of delayed fracture healing and non-unions. Although several clinical studies showed a beneficial effect especially for the hypertrophic type of non-union, little is known about the biological mechanism of its osteogenic effect. To identify the molecular background for the positive effect of shock waves on healing of fracture non-unions, we have analyzed the changes of the global gene expression in human osteoblasts after exposure to shock waves of different energy flux densities. Human osteoblasts were isolated from five patients at non-union sites, treated with 500 impulses of energy flux densities of 0.06 and , and cultured for 96 h. HG-U133A microarrays were used for the analysis of the shock wave-regulated mRNA-transcripts. Differential gene expression was verified by reverse transcriptase polymerase chain reactions. We identified 47 transcripts that showed differential expression after and 45 transcripts after energy treatment. Most intriguing was the up-regulation of neprilysin, calmegin, osteoglycin, asporin, and interleukin-13 receptor-. Eighteen identified genes were previously described to fulfill an important function in bone growth and metabolism. Our study provides the first molecular profile of shock wave-induced gene expression changes in human osteoblasts from patients with hypertrophic fracture non-unions, and it offers a possible molecular explanation for the positive effects of shock waves in patients ridden with this disease.
Differential phase-shift keying and channel equalization in free space optical communication system
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu
2018-01-01
We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.
Zhang, Yu; He, Rong-Quan; Dang, Yi-Wu; Zhang, Xiu-Ling; Wang, Xiao; Huang, Su-Ning; Huang, Wen-Ting; Jiang, Meng-Tong; Gan, Xiao-Ning; Xie, You; Li, Ping; Luo, Dian-Zhong; Chen, Gang; Gan, Ting-Qing
2016-01-01
Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown. HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve. Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663-0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906-0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = -0.124, P = 0.048) and lung adenocarcinoma (r = -0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA. Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.
Gong, Weiyu; Huang, Zhiwei; Dong, Yanmei; Gan, Yehua; Li, Shenglin; Gao, Xuejun; Chen, Xiaofeng
2014-01-01
This study aimed to investigate the effects of a novel nano-sized 58S bioactive glass (nano-58S BG) on the odontogenic differentiation and mineralization of human dental pulp cells (hDPCs) in vitro. Extractions were prepared by incubating nano-58S BG, 45S5 BG, or 58S BG particulates in Dulbecco modified Eagle medium at 1% w/v for 24 hours and were filtrated through 0.22-μm filters. The supernatants were used as BG extractions. The hDPCs were cultured in nano-58S BG, 45S5 BG, and 58S BG extractions. The proliferation of hDPCs was evaluated using the methylthiazol tetrazolium assay. Odontogenic differentiation was evaluated based on the real-time polymerase chain reaction of differentiation- and mineralization-related genes, namely, alkaline phosphatase (ALP), collagen type I, dentin sialophosphoprotein (DSPP), and dentin matrix protein 1. The gene expressions were verified using ALP activity assessment, immunocytochemistry staining of osteocalcin and DSPP, and mineralization assay using alizarin red S stain. All BG extractions up-regulated the expression of odontogenic genes, and the most significant enhancement was in the nano-58S BG group. All BG extractions, especially nano-58S, increased ALP activity, osteocalcin and DSPP protein production, and mineralized nodules formation. Compared with regular BG, the novel nano-58S BG can induce the differentiation and mineralization of hDPCs more efficiently and might be a better potential candidate for dentin-pulp complex regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wagamitsu, Shunsuke; Takase, Dan; Aoki, Fugaku; Suzuki, Masataka G
2017-02-01
Normal sexual differentiation in the genital organs is essential for the animal species that use sexual reproduction. Although it is known that doublesex (dsx) is required for the sexual development of the genitalia in various insect species, the direct target genes responsible for the sexual differentiation of the genitalia have not been identified. The lozenge (lz) gene is expressed in the female genital disc and is essential for developments of spermathecae and accessory glands in Drosophila melanogaster. The female-specific isoform of DSX (DSXF) is required for activating lz expression in the female genital disc. However, it still remains unclear whether the DSXF directly activates the transcription of lz in the female genital disc. In this study, we found two sequences (lz-DBS1 and lz-DBS2) within lz locus that showed high homoloty to the DSX binding motif identified previously. Competition assays using recombinant DSX DNA-binding domain (DSX-DBD) protein verified that the DSX-DBD protein bound to lz-DBS1 and lz-DBS2 in a sequence-specific manner with lower affinity than to the known DSX binding site in the bric-à-brac 1 (bab1) gene. Reporter gene analyses revealed that a 2.5-kbp lz genomic fragment containing lz-DBS1 and lz-DBS2 drove reporter gene (EGFP) expression in a manner similar to endogenous lz expression in the female genital disc. Mutations in lz-DBS1 alone significantly reduced the area of EGFP-expressing region, while EGFP expression in the female genital disc was abolished when both sites were mutated. These results demonstrated that DSX directly activates female-specific lz expression in the genital disc through lz-DBS1 and lz-DBS2. Copyright © 2017 Elsevier B.V. All rights reserved.
Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu
2016-05-10
The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Y; Ehringer, M; Yang, F; Sikela, J M
2001-06-01
Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and efficient way to discover potential genes and pathways involved in alcoholism and alcohol-related physiologic processes.
Sakaguchi, Shohei; Shono, Jun-ichi; Suzuki, Takahiro; Sawano, Shoko; Anderson, Judy E; Do, Mai-Khoi Q; Ohtsubo, Hideaki; Mizunoya, Wataru; Sato, Yusuke; Nakamura, Mako; Furuse, Mitsuhiro; Yamada, Koji; Ikeuchi, Yoshihide; Tatsumi, Ryuichi
2014-09-01
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3-5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury. Copyright © 2014 Elsevier Ltd. All rights reserved.
2013-01-01
Arthrospira (Spirulina) platensis as a representative species of cyanobacteria has been recognized and used worldwide as a source of protein in the food, which possesses some unusual and valuable physiological characteristics, such as alkali and salt tolerance. Based on complete genome sequencing of Arthrospira (Spirulina) plantensis-YZ, we compared the protein expression profiles of this organism under different salt-stress conditions (i.e. 0.02 M, 0.5 M and 1.0 M NaCl, respectively), using 2-D electrophoresis and peptide mass fingerprinting, and retrieved 141 proteins showing significantly differential expression in response to salt-stress. Of the 141 proteins, 114 Arthrospira (Spirulina) plantensis-YZ proteins were found with significant homology to those found in Arthrospira (76 proteins in Arthrospira platensis str. Paraca and 38 in Arthrospira maxima CS-328). The remaining 27 proteins belong to other bacteria. Subsequently, we determined the transcriptional level of 29 genes in vivo in response to NaCl treatments and verified them by qRT-PCR. We found that 12 genes keep consistency at both transcription and protein levels, and transcription of all of them but one were up-regulated. We classified the 141 differentially expressed proteins into 18 types of function categories using COG database, and linked them to their respective KEGG metabolism pathways. These proteins are involved in 31 metabolism pathways, such as photosynthesis, glucose metabolism, cysteine and methionine metabolism, lysine synthesis, fatty acid metabolism, glutathione metabolism. Additionally, the SRPs, heat shock protein and ABC transporter proteins were identified, which probably render Arthrospira (Spirulina) plantensis’s resistance against high salt stress. PMID:23363438
P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury
Yao, Changping; Williams, Anthony J.; Ottens, Andrew K.; Lu, X.-C. May; Liu, Ming Cheng; Hayes, Ronald L.; Wang, Kevin K.; Tortella, Frank C.
2009-01-01
Abstract To gain additional insights into the pathogenic cellular and molecular mechanisms underlying different types of brain injury (e.g., trauma versus ischemia), recently attention has focused on the discovery and study of protein biomarkers. In previous studies, using a high-throughput immunoblotting (HTPI) technique, we reported changes in 29 out of 998 proteins following acute injuries to the rat brain (penetrating traumatic versus focal ischemic). Importantly, we discovered that one protein, endothelial monocyte-activating polypeptide II precursor (p43/pro-EMAPII), was differentially expressed between these two types of brain injury. Among other functions, p43/pro-EMAPII is a known pro-inflammatory cytokine involved in the progression of apoptotic cell death. Our current objective was to verify the changes in p43/pro-EMAPII expression, and to evaluate the potentially important implications that the differential regulation of this protein has on injury development. At multiple time points following either a penetrating ballistic-like brain injury (PBBI), or a transient middle cerebral artery occlusion (MCAo) brain injury, tissue samples (6–72 h), CSF samples (24 h), and blood samples (24 h) were collected from rats for analysis. Changes in protein expression were assessed by Western blot analysis and immunohistochemistry. Our results indicated that p43/pro-EMAPII was significantly increased in brain tissues, CSF, and plasma following PBBI, but decreased after MCAo injury compared to their respective sham control samples. This differential expression of p43/pro-EMAPII may be a useful injury-specific biomarker associated with the underlying pathologies of traumatic versus ischemic brain injury, and provide valuable information for directing injury-specific therapeutics. PMID:19317603
Pan, Feng; You, Jinwei; Liu, Yuan; Qiu, Xuefeng; Yu, Wen; Ma, Jiehua; Pan, Lianjun; Zhang, Aixia; Zhang, Qipeng
2016-12-01
To better understand the molecular aetiology of type 2 diabetes mellitus-associated erectile dysfunction (T2DMED) and to provide candidates for further study of its diagnosis and treatment, this study was designed to investigate differentially expressed microRNAs (miRNAs) in the corpus cavernosum (CC) of mice with T2DMED using GeneChip array techniques (Affymetrix miRNA 4.0 Array) and to predict target genes and signalling pathways regulated by these miRNAs based on bioinformatic analysis using TargetScan, the DAIAN web platform and DAVID. In the initial screening, 21 miRNAs appeared distinctly expressed in the T2DMED group (fold change ≥3, p ≤ 0.01). Among them, the differential expression of miR-18a, miR-206, miR-122, and miR-133 were confirmed by qRT-PCR (p < 0.05 and FDR <5 %). According to bioinformatic analysis, the four miRNAs were speculated to play potential roles in the mechanisms of T2DMED via regulating 28 different genes and several pathways, including apoptosis, fibrosis, eNOS/cGMP/PKG, and vascular smooth muscle contraction processes, which mainly focused on influencing the functions of the endothelium and smooth muscle in the CC. IGF-1, as one of the target genes, was verified to decrease in the CCs of T2DMED animals via ELISA and was confirmed as the target of miR-18a or miR-206 via luciferase assay. Finally, these four miRNAs deserve further confirmation as biomarkers of T2DMED in larger studies. Additionally, miR-18a and/or miR-206 may provide new preventive/therapeutic targets for ED management by targeting IGF-1.
Maeda, Yukihide; Fukushima, Kunihiro; Kariya, Shin; Orita, Yorihisa; Nishizaki, Kazunori
2015-08-01
Using proteomics, we aimed to identify the proteins differentially regulated by dexamethasone in the mouse cochlea based on mass-spectrometry data. Glucocorticoid therapy is widely used for many forms of sensorineural hearing loss; however, the molecular mechanism of its action in the cochlea remains poorly understood. Dexamethasone or control saline was intratympanically applied to the cochleae of mice. Twelve hours after application, proteins differentially regulated by dexamethasone in the cochlea were analyzed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-mass spectrometry. Next, dexamethasone-dependent regulation of these proteins was verified in the cochleae of mice with noise-induced hearing loss (NIHL) and systemic administration of dexamethasone by western blotting. Immunolocalizations of these proteins were examined in cochleae with NIHL. A total of 247 proteins with a greater than 95% confidence interval of protein identification were found, and 11 differentially expressed proteins by dexamethasone were identified by the iTRAQ-mass spectrometry. One protein, myelin protein zero (Mpz), was upregulated (1.870 ± 0.201-fold change, p < 0.01) at 6 hours post-systemic dexamethasone and noise exposure in a mouse model of NIHL. Heat shock protein 70 (Hsp70) was downregulated (0.511 ± 0.274-fold change, p < 0.05) at 12 hours post-systemic dexamethasone. Immunohistochemistry confirmed Mpz localization to the efferent and afferent processes of the spiral neurons, whereas Hsp70 showed a more ubiquitous expression pattern in the cochlea. Both Mpz and Hsp70 have been reported to be closely associated with sensorineural hearing loss in humans. Dexamethasone significantly modulated the expression levels of these proteins in the cochleae of mice.
Recombinant mouse periostin ameliorates coronal sutures fusion in Twist1+/- mice.
Bai, Shanshan; Li, Dong; Xu, Liang; Duan, Huichuan; Yuan, Jie; Wei, Min
2018-04-17
Saethre-Chotzen syndrome is an autosomal dominantly inherited disorder caused by mutations in the twist family basic helix-loop-helix transcription factor 1 (TWIST1) gene. Surgical procedures are frequently required to reduce morphological and functional defects in patients with Saethre-Chotzen syndrome. Therefore, the development of noninvasive procedures to treat Saethre-Chotzen syndrome is critical. We identified that periostin, which is an extracellular matrix protein that plays an important role in both bone and connective tissues, is downregulated in craniosynostosis patients. We aimed to verify the effects of different concentrations (0, 50, 100, and 200 μg/l) of recombinant mouse periostin in Twist1 +/- mice (a mouse model of Saethre-Chotzen syndrome) coronal suture cells in vitro and in vivo. Cell proliferation, migration, and osteogenic differentiation were observed and detected. Twist1 +/- mice were also injected with recombinant mouse periostin to verify the treatment effects. Cell Counting Kit-8 results showed that recombinant mouse periostin inhibited the proliferation of suture-derived cells in a time- and concentration-dependent manner. Cell migration was also suppressed when treated with recombinant mouse periostin. Real-time quantitative PCR and Western blotting results suggested that messenger ribonucleic acid and protein expression of alkaline phosphatase, bone sialoprotein, collagen type I, and osteocalcin were all downregulated after treatment with recombinant mouse periostin. However, the expression of Wnt-3a, Wnt-1, and β-catenin were upregulated. The in vivo results demonstrated that periostin-treated Twist1 +/- mice showed patent coronal sutures in comparison with non-treated Twist1 +/- mice which have coronal craniosynostosis. Our results suggest that recombinant mouse periostin can inhibit coronal suture cell proliferation and migration and suppress osteogenic differentiation of suture-derived cells via Wnt canonical signaling, as well as ameliorate coronal suture fusion in Twist1 +/- mice.
Transcriptome Profiling of Pediatric Core Binding Factor AML
Hsu, Chih-Hao; Nguyen, Cu; Yan, Chunhua; Ries, Rhonda E.; Chen, Qing-Rong; Hu, Ying; Ostronoff, Fabiana; Stirewalt, Derek L.; Komatsoulis, George; Levy, Shawn
2015-01-01
The t(8;21) and Inv(16) translocations disrupt the normal function of core binding factors alpha (CBFA) and beta (CBFB), respectively. These translocations represent two of the most common genomic abnormalities in acute myeloid leukemia (AML) patients, occurring in approximately 25% pediatric and 15% of adult with this malignancy. Both translocations are associated with favorable clinical outcomes after intensive chemotherapy, and given the perceived mechanistic similarities, patients with these translocations are frequently referred to as having CBF-AML. It remains uncertain as to whether, collectively, these translocations are mechanistically the same or impact different pathways in subtle ways that have both biological and clinical significance. Therefore, we used transcriptome sequencing (RNA-seq) to investigate the similarities and differences in genes and pathways between these subtypes of pediatric AMLs. Diagnostic RNA from patients with t(8;21) (N = 17), Inv(16) (N = 14), and normal karyotype (NK, N = 33) were subjected to RNA-seq. Analyses compared the transcriptomes across these three cytogenetic subtypes, using the NK cohort as the control. A total of 1291 genes in t(8;21) and 474 genes in Inv(16) were differentially expressed relative to the NK controls, with 198 genes differentially expressed in both subtypes. The majority of these genes (175/198; binomial test p-value < 10−30) are consistent in expression changes among the two subtypes suggesting the expression profiles are more similar between the CBF cohorts than in the NK cohort. Our analysis also revealed alternative splicing events (ASEs) differentially expressed across subtypes, with 337 t(8;21)-specific and 407 Inv(16)-specific ASEs detected, the majority of which were acetylated proteins (p = 1.5x10-51 and p = 1.8x10-54 for the two subsets). In addition to known fusions, we identified and verified 16 de novo fusions in 43 patients, including three fusions involving NUP98 in six patients. Clustering of differentially expressed genes indicated that the homeobox (HOX) gene family, including two transcription factors (MEIS1 and NKX2-3) were down-regulated in CBF compared to NK samples. This finding supports existing data that the dysregulation of HOX genes play a central role in biology CBF-AML hematopoiesis. These data provide comprehensive transcriptome profiling of CBF-AML and delineate genes and pathways that are differentially expressed, providing insights into the shared biology as well as differences in the two CBF subsets. PMID:26397705
Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension
Edgar, Alasdair J; Chacón, Matilde R; Bishop, Anne E; Yacoub, Magdi H; Polak, Julia M
2006-01-01
Background To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). Methods Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. Results We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. Conclusion Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively. PMID:16390543
IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.
Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana
2016-11-07
The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.
Dong, Yongcheng; Desneux, Nicolas; Lei, Chaoliang; Niu, Changying
2014-01-01
Bactrocera minax is a major citrus pest distributed in China, Bhutan and India. The long pupal diapause duration of this fly is a major bottleneck for artificial rearing and underlying mechanisms remain unknown. Genetic information on B. minax transcriptome and gene expression profiles are needed to understand its pupal diapause. High-throughput RNA-seq technology was used to characterize the B. minax transcriptome and to identify differentially expressed genes during pupal diapause development. A total number of 52,519,948 reads were generated and assembled into 47,217 unigenes. 26,843 unigenes matched to proteins in the NCBI database using the BLAST search. Four digital gene expression (DGE) libraries were constructed for pupae at early diapause, late diapause, post-diapause and diapause terminated developmental status. 4,355 unigenes showing the differences expressed across four libraries revealed major shifts in cellular functions of cell proliferation, protein processing and export, metabolism and stress response in pupal diapause. When diapause was terminated by 20-hydroxyecdysone (20E), many genes involved in ribosome and metabolism were differentially expressed which may mediate diapause transition. The gene sets involved in protein and energy metabolisms varied throughout early-, late- and post-diapause. A total of 15 genes were selected to verify the DGE results through quantitative real-time PCR (qRT-PCR); qRT-PCR expression levels strongly correlated with the DGE data. The results provided the extensive sequence resources available for B. minax and increased our knowledge on its pupal diapause development and they shed new light on the possible mechanisms involved in pupal diapause in this species. PMID:25285037
Liu, Ting-Yun; Chen, Shee-Uan; Kuo, Sung-Hsin; Cheng, Ann-Lii; Lin, Chung-Wu
2010-11-01
Extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue of the stomach (gastric MALT lymphoma) is derived from memory B cells of the marginal zone. Normal memory B cells do not express markers of germinal-center B cells, such as E2A (immunoglobulin enhancer-binding factor E12/E47), B-cell chronic lymphocytic leukemia/lymphoma 6 (BCL6), or activation-induced cytidine deaminase (AID). E2A is a transcription factor that induces somatic hypermutations and blocks plasma cell differentiation. In 50 stage-I(E)/II(E1) gastric MALT lymphomas, we confirmed that all cases were BCL6(-)/AID(-), but a subset (50%, 25/50) was E2A(+). As E2A(-) and E2A(+) gastric MALT lymphomas had similar numbers of somatic hypermutations without intraclonal variations, which implied an origin from memory B cells, the expression of E2A was best regarded as a marker of aberrant follicular differentiation. Although the status of somatic hypermutation was not affected by E2A, E2A(+) gastric MALT lymphoma showed less plasmacytoid infiltrates and higher expressions of miRNA-223, a microRNA associated with memory B cells. Clinically, E2A(+) gastric MALT lymphomas were more likely to spread to perigastric lymph nodes and were less responsive to Helicobacter eradication therapy than were E2A(-) gastric MALT lymphomas. Taken together, aberrant E2A expression is a diagnostic feature of a subtype of gastric MALT lymphoma with weaker plasmacytoid infiltrates and stronger miR-223 expression. A prospective study would be necessary to verify the association between E2A expression and a poor response to Helicobacter eradication therapy.
IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells
Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana
2016-01-01
The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994
Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells.
Wang, Dan; Xiang, Tong; Zhao, Zhongquan; Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo
2016-11-15
Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer.
Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping
2017-06-27
Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.
Revising the embryonic origin of thyroid C cells in mice and humans
Johansson, Ellen; Andersson, Louise; Örnros, Jessica; Carlsson, Therese; Ingeson-Carlsson, Camilla; Liang, Shawn; Dahlberg, Jakob; Jansson, Svante; Parrillo, Luca; Zoppoli, Pietro; Barila, Guillermo O.; Altschuler, Daniel L.; Padula, Daniela; Lickert, Heiko; Fagman, Henrik; Nilsson, Mikael
2015-01-01
Current understanding infers a neural crest origin of thyroid C cells, the major source of calcitonin in mammals and ancestors to neuroendocrine thyroid tumors. The concept is primarily based on investigations in quail–chick chimeras involving fate mapping of neural crest cells to the ultimobranchial glands that regulate Ca2+ homeostasis in birds, reptiles, amphibians and fishes, but whether mammalian C cell development involves a homologous ontogenetic trajectory has not been experimentally verified. With lineage tracing, we now provide direct evidence that Sox17+ anterior endoderm is the only source of differentiated C cells and their progenitors in mice. Like many gut endoderm derivatives, embryonic C cells were found to coexpress pioneer factors forkhead box (Fox) a1 and Foxa2 before neuroendocrine differentiation takes place. In the ultimobranchial body epithelium emerging from pharyngeal pouch endoderm in early organogenesis, differential Foxa1/Foxa2 expression distinguished two spatially separated pools of C cell precursors with different growth properties. A similar expression pattern was recapitulated in medullary thyroid carcinoma cells in vivo, consistent with a growth-promoting role of Foxa1. In contrast to embryonic precursor cells, C cell-derived tumor cells invading the stromal compartment downregulated Foxa2, foregoing epithelial-to-mesenchymal transition designated by loss of E-cadherin; both Foxa2 and E-cadherin were re-expressed at metastatic sites. These findings revise mammalian C cell ontogeny, expand the neuroendocrine repertoire of endoderm and redefine the boundaries of neural crest diversification. The data further underpin distinct functions of Foxa1 and Foxa2 in both embryonic and tumor development. PMID:26395490
Recursive-operator method in vibration problems for rod systems
NASA Astrophysics Data System (ADS)
Rozhkova, E. V.
2009-12-01
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448-449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.
Li, Xuejie; Zhao, Zhenzhou; Jian, Dongdong; Li, Wentao; Tang, Haiyu; Li, Muwei
2017-11-01
The purpose of this study was to identify the expression characteristics of circular RNAs in the peripheral blood of coronary artery disease patients and type 2 diabetes mellitus patients. Circular RNA in the peripheral blood from 6 control individuals, 6 coronary artery disease patients, 6 type 2 diabetes mellitus patients and 6 coronary artery disease combined with type 2 diabetes mellitus patients was collected for microarray analysis, and a further independent cohort consisting of 20 normal individuals, 20 type 2 diabetes mellitus subjects and 20 coronary artery disease subjects was used to verify the expression of five circular RNAs chosen for further analysis. The findings were then tested in a third cohort using quantitative real-time polymerase chain reaction. In total, 40 circular RNAs differentially expressed between the three experimental groups and the control group were identified by microarray analysis: 13 were upregulated in the experimental groups, while 27 were downregulated. Of the five circular RNAs chosen for further analysis, three were significantly downregulated in the experimental groups. The crude odds ratios and adjusted odds ratios of hsa-circRNA11783-2 showed significant differences in both the coronary artery disease group and type 2 diabetes mellitus group. We then verified hsa-circRNA11783-2 in the third cohort, and it remained closely related to both coronary artery disease and type 2 diabetes mellitus. Hsa-circRNA11783-2 is closely related to both coronary artery disease and type 2 diabetes mellitus.
Yadav, Amita; Khan, Yusuf; Prasad, Manoj
2016-03-01
A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.
Halene, Stephanie; Gaines, Peter; Sun, Hong; Zibello, Theresa; Lin, Sharon; Khanna-Gupta, Arati; Williams, Simon C.; Perkins, Archibald; Krause, Diane; Berliner, Nancy
2010-01-01
Objective Mutations in the C/EBPε gene have been identified in the cells of patients with neutrophil specific granule deficiency (SGD), a rare congenital disorder marked by recurrent bacterial infections. Their neutrophils, in addition to lacking specific granules required for normal respiratory burst activity, also lack normal phagocytosis and chemotaxis. Although the SGD phenotype has been replicated in C/EBPε−/− (KO) mice, the mechanisms by which C/EBPε mutations act to decrease neutrophil function are not entirely clear. Methods In order to determine the role of C/EBPε in neutrophil differentiation and migration, we generated immortalized progenitor cell lines from C/EBPε KO and wild type (WT) mice and performed expression and flow cytometric analysis and functional studies. Results Expression of lineage specific cell surface antigens on our in vitro differentiated cell lines revealed persistent expression of monocytic markers on KO granulocytes. We verified this in primary murine peripheral blood and bone marrow cells. In addition, KO BM had an increase in immature myeloid precursors at the common myeloid progenitor (CMP) and granulocyte monocyte progenitor (GMP) level suggesting a critical role for C/EBPε not only in granulocyte maturation beyond the promyelocyte stage, but also in the monocyte/granulocyte lineage decision. We found that restoration of Hlx (H2.0-like homeo box 1) expression, which was decreased in C/EBPε KO cells, rescued chemotaxis, but not the other defects of C/EBPε KO neutrophils. Summary We show two new regulatory functions of C/EBPε in myelopoiesis: in the absence of C/EBPε, there is not only incomplete differentiation of granulocytes, but myelopoiesis is disrupted with the appearance of an intermediate cell type with monocyte and granulocyte features, and the neutrophils have abnormal chemotaxis. Restoration of expression of Hlx provides partial recovery of function; it has no effect on neutrophil maturation, but can completely ameliorate the chemotaxis defect in C/EBPe KO cells. PMID:19925846
Serum PEDF levels are decreased in a spontaneous animal model for human autoimmune uveitis.
Zipplies, Johanna K; Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A
2009-02-01
Identification of biomarkers is of critical relevance toward improving diagnosis and therapy of autoimmune disorders. Serum markers are a desirable choice as sera are easily accessible and the development of assays for routine clinical detection prompts feasible. Autoimmune uveitis, a recurrent disease affecting the eye, is characterized by returning inflammatory attacks of the inner eye followed by variable periods of quiescent stages. Spontaneous equine recurrent uveitis (ERU) is the equine equivalent and serves as a model for the human disease. To identify potential biomarker candidates, we first systematically compared the proteomes of individual ERU cases with healthy controls by proteomic profiling using 2-D difference-gel-electrophoresis (2-D DIGE) followed by tandem mass spectrometry. A total of seven differentially expressed proteins were identified. Besides the upregulation of IgG and the significant lower expression of albumin, Antithrombin III, and Vitamin D binding protein, we found complement components C1q and C4, to be downregulated in uveitic state. Interestingly, Pigment epithelium-derived factor (PEDF), a marker already detected by 2DE differential proteome analysis in ERU target tissues, vitreous and retina, was found to be also significantly downregulated in sera. The lower expression of PEDF in sera of horses with uveitis could be verified in a cohort of 116 ERU cases and 115 healthy controls. Our findings of a significant lower PEDF expression in ERU cases also in the periphery of the eye proves PEDF as a promising uveitis biomarker.
Karim, Ahmad Faisal; Chandra, Pallavi; Chopra, Aanchal; Siddiqui, Zaved; Bhaskar, Ashima; Singh, Amit; Kumar, Dhiraj
2011-11-18
Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.
Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.
Lind, Thomas; Hu, Lijuan; Lind, P Monica; Sugars, Rachael; Andersson, Göran; Jacobson, Annica; Melhus, Håkan
2012-03-01
Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young male rats high doses of vitamin A and performed microarray analysis of diaphyseal bone with and without marrow after 1 week, i.e., just before the first fractures appeared. Of the differentially expressed genes in cortical bone, including marrow, 98% were upregulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene ontology (GO) analysis revealed that only samples containing bone marrow were associated with a GO term, which principally represented extracellular matrix. This is consistent with the histological findings of increased endosteal/marrow osteoblast number. Fourteen genes, including Cyp26b1, which is known to be upregulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule osteoadherin was upregulated. Further analysis of the major gene-expression changes revealed apparent augmented Wnt signaling in the sample containing bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was found only in samples containing bone marrow. Together, these results highlight the importance of compartment-specific analysis of bone and corroborate previous observations of compartment-specific effects of vitamin A, with reduced activity in cortical bone but increased activity in the endosteal/marrow compartment. We specifically identify potential key osteoblast-, Wnt signaling-, and hypoxia-associated genes in the processes leading to spontaneous fractures.
Liu, Zhi-Wei; Li, Hui; Wang, Wen-Li; Wu, Zhi-Jun; Cui, Xin; Zhuang, Jing
2017-11-08
We analyzed the changes of theanine content in postharvest tea leaves under high temperature (38 °C), low temperature (4 °C), and shading spreadings by using ultrahigh-performance liquid chromatography. The differentially expressed proteins (DEPs), CsFd-GOGAT and CsNADH-GOGAT, which are involved in theanine biosynthesis pathway, were identified from the corresponding proteome data. The protein-protein interactions of CsFd-GOGAT and CsNADH-GOGAT, CsTS1, or CsNiR were verified by yeast two-hybrid technology. The expression profiles of 17 genes in theanine metabolism, including CsFd-GOGAT and CsNADH-GOGAT, were analyzed by quantitative real-time polymerase chain reaction. The correlations between the dynamic changes of theanine content and expression profiles of related genes and DEPs were analyzed. This study preliminarily proved the importance of CsGOGAT in dynamic changes of theanine content in postharvest tea leaves during spreading.
Leckel, Kerstin; Strey, Christoph; Bechstein, Wolf O; Boost, Kim A; Auth, Marcus K H; El Makhfi, Amal; Juengel, Eva; Wedel, Steffen; Jones, Jon; Jonas, Dietger; Blaheta, Roman A
2008-05-01
Isolated human hepatocytes are of great value in investigating cell transplantation, liver physiology, pathology, and drug metabolism. Though hepatocytes possess a tremendous proliferative capacity in vivo, their ability to grow in culture is severely limited. We postulated that repeated medium change, common to most in vitro systems, may prevent long-term maintenance of hepato-specific functions and growth capacity. To verify our hypotheses we compared the DNA synthesis and differentiation status of isolated human hepatocytes, cultured in medium which was renewed every day or was not changed for 3 weeks ('autocrine' setting). Daily medium change led to rapid hepatocellular de-differentiation without any signs of DNA replication. In contrast, the autocrine setting allowed hepatocytes to become highly differentiated, demonstrated by an elevated ASGPr expression level, and increased albumin and fibrinogen synthesis and release. Cytokeratin 18 filaments were stably expressed, whereas cytokeratin 19 remained undetectable. Hepatocytes growing in an autocrine fashion were activated in the presence of hepatocyte growth factor (HGF), evidenced by c-Met phosphorylation. However, HGF response was not achieved when the culture medium was renewed daily. Furthermore, the autocrine setting evoked a late but strong interleukin 6 release into the culture supernatant, reaching maximum values after a 10-day cultivation period, and intense BrdU incorporation after a further 5-day period. Our data suggest that preservation of the same medium creates environmental conditions which allow hepatocytes to control their differentiation status and DNA synthesis in an autocrine fashion. Further studies are necessary to identify the key mediators involved in autocrine communication and to design the optimal culture configuration for clinical application.
Guo, Shaokun; Zhao, Zihua; Liu, Lijun; Li, Zhihong; Shen, Jie
2018-01-30
Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta . RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor ( EGFR ), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects.
Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis.
Kamita, Masahiro; Mori, Taiki; Sakai, Yoshihito; Ito, Sadayuki; Gomi, Masahiro; Miyamoto, Yuko; Harada, Atsushi; Niida, Shumpei; Yamada, Tesshi; Watanabe, Ken; Ono, Masaya
2015-05-01
Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age-related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Zihua; Liu, Lijun; Li, Zhihong; Shen, Jie
2018-01-01
Flight capacity is important for invasive pests during entry, establishment and spreading. Both Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi are invasive fruit flies but their flight capacities differ. Here, a tethered flight mill test demonstrated that B. dorsalis exhibits a greater flight capacity than B. correcta. RNA-Seq was used to determine the transcriptomic differences associated with the flight capacity of two Bactrocera species. Transcriptome data showed that 6392 unigenes were differentially expressed between the two species in the larval stage, whereas in the adult stage, 4104 differentially expressed genes (DEGs) were identified in females, and 3445 DEGs were observed in males. The flight capacity appeared to be correlated with changes in the transcriptional levels of genes involved in wing formation, flight muscle structure, energy metabolism, and hormonal control. Using RNA interference (RNAi) to verify the function of one DEG, the epidermal growth factor receptor (EGFR), we confirmed the role of this gene in regulating wing development, and thereby flight capacity, in both species. This work reveals the flight mechanism of fruit flies and provides insight into fundamental transcriptomics for further studies on the flight performance of insects. PMID:29385681
Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui
2016-01-01
Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice.
NASA Astrophysics Data System (ADS)
Li, Bing; Tian, Xiaofang; Wang, Chunlan; Zeng, Xu; Xing, Yongmei; Ling, Hong; Yin, Wanqiang; Tian, Lixia; Meng, Zhixia; Zhang, Jihui; Guo, Shunxing
2017-01-01
Understanding the initiation and maturing mechanisms is important for rational manipulating sclerotia differentiation and growth from hypha of Polyporus umbellatus. Proteomes in P. umbellatus sclerotia and hyphae at initial, developmental and mature phases were studied. 1391 proteins were identified by nano-liquid chromatograph-mass spectrometry (LC-MS) in Data Dependant Acquisition mode, and 1234 proteins were quantified successfully by Sequential Window Acquisition of all THeoretical fragment ion spectra-MS (SWATH-MS) technology. There were 347 differentially expressed proteins (DEPs) in sclerotia at initial phase compared with those in hypha, and the DEP profiles were dynamically changing with sclerotia growth. Oxidative stress (OS) in sclerotia at initial phase was indicated by the repressed proteins of respiratory chain, tricarboxylic acid cycle and the activation of glycolysis/gluconeogenesis pathways were determined based on DEPs. The impact of glycolysis/gluconeogenesis on sclerotium induction was further verified by glycerol addition assays, in which 5% glycerol significantly increased sclerotial differentiation rate and biomass. It can be speculated that OS played essential roles in triggering sclerotia differentiation from hypha of P. umbellatus, whereas antioxidant activity associated with glycolysis is critical for sclerotia growth. These findings reveal a mechanism for sclerotial differentiation in P. umbellatus, which may also be applicable for other fungi.
miR-137 downregulates c-kit expression in acute myeloid leukemia.
Hu, Yanping; Dong, Xiaolong; Chu, Guoming; Lai, Guangrui; Zhang, Bijun; Wang, Leitong; Zhao, Yanyan
2017-06-01
The oncogene c-kit plays a vital role in the pathogenesis of acute myeloid leukemia (AML). However, the mechanism of microRNAs targeting c-kit in AML has not been determined in detail. Moreover, the role miR-137 in tumor cell proliferation remains controversial. The aim of this work was to verify whether miR-137 targets c-kit and to research the biological effects of restoring miR-137 expression in leukemia cells. We found that miR-137 binds specifically to the 3'-UTR of c-kit and suppresses the expression and activities of c-kit. There is a negative correlation between miR-137 and c-kit expression in both patients and cell lines determined by screening large clinical samples. We found that miR-137 can inhibit proliferation, promote apoptosis, and induce differentiation of c-kit+ AML cells. We determined that miR-137 can participate in the leukemogenesis by regulating c-kit, which could be used as a therapeutic target for acute myeloid leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Haiying; Murthi, Padma; Qin, Sharon; Kusuma, Gina D.; Borg, Anthony J.; Knöfler, Martin; Haslinger, Peter; Manuelpillai, Ursula; Pertile, Mark D.; Abumaree, Mohamed
2014-01-01
Human chorionic mesenchymal stem/stromal cells (CMSCs) derived from the placenta are similar to adult tissue-derived MSCs. The aim of this study was to investigate the role of these cells in normal placental development. Transcription factors, particularly members of the homeobox gene family, play crucial roles in maintaining stem cell proliferation and lineage specification in embryonic tissues. In adult tissues and organs, stem cells proliferate at low levels in their niche until they receive cues from the microenvironment to differentiate. The homeobox genes that are expressed in the CMSC niche in placental tissues have not been identified. We used the novel strategy of laser capture microdissection to isolate the stromal component of first trimester villi and excluded the cytotrophoblast and syncytiotrophoblast layers that comprise the outer layer of the chorionic villi. Microarray analysis was then used to screen for homeobox genes in the microdissected tissue. Candidate homeobox genes were selected for further RNA analysis. Immunohistochemistry of candidate genes in first trimester placental villous stromal tissue revealed homeobox genes Meis1, myeloid ectropic viral integration site 1 homolog 2 (MEIS2), H2.0-like Drosophila (HLX), transforming growth factor β-induced factor (TGIF), and distal-less homeobox 5 (DLX5) were expressed in the vascular niche where CMSCs have been shown to reside. Expression of MEIS2, HLX, TGIF, and DLX5 was also detected in scattered stromal cells. Real-time polymerase chain reaction and immunocytochemistry verified expression of MEIS2, HLX, TGIF, and DLX5 homeobox genes in first trimester and term CMSCs. These data suggest a combination of regulatory homeobox genes is expressed in CMSCs from early placental development to term, which may be required for stem cell proliferation and differentiation. PMID:24692208
Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines
Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J
2016-01-01
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes. PMID:29263807
Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.
Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J
2016-01-01
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.
A pertinent approach to solve nonlinear fuzzy integro-differential equations.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour
2014-10-04
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.
[The effect of Foxc2 overexpression on the osteogenic properties of C3H10T1/2 cells].
Wang, Min-Jiao; Si, Jia-Wen; Li, Hong-Liang; Ouyang, Ning-Juan; Shen, Guo-Fang
2016-08-01
To investigate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation of C3H10T1/2 cells. C3H10T1/2 cells were transfected with plenti-Foxc2 and selected with puromycin for stable clones. The expression of Foxc2 was determined by real-time PCR and Western blot. Cell proliferation was detected by CCK-8 kit. Cell cycle and apoptosis were detected by flow cytometry. The level of osteogenic biomarkers Runx2, OPN, OCN and adipogenic biomarker PPARγ were quantified by real-time PCR and Western blot. Alkaline phosphatase (ALP) staining and oil red staining were conducted to evaluate the effect of Foxc2 overexpression on osteogenic and adipogenic differentiation. Statistical analysis was performed using SPSS 17.0 software package. C3H10T1/2-Foxc2 cell line was successfully constructed and verified by direct sequencing and Foxc2 overexpression in vitro. Cell proliferation was reduced and cell cycle was blocked in G1/G0 phase. Enhanced ALP staining and reduced oil red staining were observed in C3H10T1/2-Foxc2 cells as compared with the control. Foxc2 overexpression up-regulated Runx2, OPN, OCN during osteogenic differentiation and down-regulated PPARγduring adipogenic differentiation. C3H10T1/2 cell line stably expressing Foxc2 gene was successfully established, cell proliferation was reduced, osteogenesis biomarkers were up-regulated during the osteogenesis by overexpression Foxc2, PPARγwas down-regulated during adipogenesis.
Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary
2016-01-01
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180
Bennett, John A.; Singh, Kameshwar P.; Unnisa, Zeenath; Welle, Stephen L.; Gasiewicz, Thomas A.
2015-01-01
Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice. PMID:26208102
Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions
Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa
2007-01-01
Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological insight. The demonstration of the efficacy of this approach in endo16 is a promising step for further application of the proposed method. PMID:17712424
Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R
2015-11-09
Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.
Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.
2015-01-01
Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293
Zhang, Lei; Ma, Shiyun; Wang, Huailiang; Su, Hang; Su, Ke; Li, Longjie
2017-11-15
The purpose of our study was to identify new pathogenic genes used for exploring the pathogenesis of rheumatoid arthritis (RA). To screen pathogenic genes of RA, an integrated analysis was performed by using the microarray datasets in RA derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Afterwards, the integrated analysis of DNA methylation and gene expression profiling was used to screen crucial genes. In addition, we used RT-PCR and MSP to verify the expression levels and methylation status of these crucial genes in 20 synovial biopsy samples obtained from 10 RA model mice and 10 normal mice. BCL11B, CCDC88C, FCRLA and APOL6 were both up-regulated and hypomethylated in RA according to integrated analysis, RT-PCR and MSP verification. Four crucial genes (BCL11B, CCDC88C, FCRLA and APOL6) identified and analyzed in this study might be closely connected with the pathogenesis of RA. Copyright © 2017. Published by Elsevier B.V.
Nucleotide, cytogenetic and expression impact of the human chromosome 8p23.1 inversion polymorphism.
Bosch, Nina; Morell, Marta; Ponsa, Immaculada; Mercader, Josep Maria; Armengol, Lluís; Estivill, Xavier
2009-12-14
The human chromosome 8p23.1 region contains a 3.8-4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.
Chondrocyte channel transcriptomics
Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard
2013-01-01
To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703
Daytime soybean transcriptome fluctuations during water deficit stress.
Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima
2015-07-07
Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.
Fan, Qing-Jie; Yan, Feng-Xia; Qiao, Guang; Zhang, Bing-Xue; Wen, Xiao-Peng
2014-01-01
Drought is one of the most severe threats to the growth, development and yield of plant. In order to unravel the molecular basis underlying the high tolerance of pitaya (Hylocereus undatus) to drought stress, suppression subtractive hybridization (SSH) and cDNA microarray approaches were firstly combined to identify the potential important or novel genes involved in the plant responses to drought stress. The forward (drought over drought-free) and reverse (drought-free over drought) suppression subtractive cDNA libraries were constructed using in vitro shoots of cultivar 'Zihonglong' exposed to drought stress and drought-free (control). A total of 2112 clones, among which half were from either forward or reverse SSH library, were randomly picked up to construct a pitaya cDNA microarray. Microarray analysis was carried out to verify the expression fluctuations of this set of clones upon drought treatment compared with the controls. A total of 309 expressed sequence tags (ESTs), 153 from forward library and 156 from reverse library, were obtained, and 138 unique ESTs were identified after sequencing by clustering and blast analyses, which included genes that had been previously reported as responsive to water stress as well as some functionally unknown genes. Thirty six genes were mapped to 47 KEGG pathways, including carbohydrate metabolism, lipid metabolism, energy metabolism, nucleotide metabolism, and amino acid metabolism of pitaya. Expression analysis of the selected ESTs by reverse transcriptase polymerase chain reaction (RT-PCR) corroborated the results of differential screening. Moreover, time-course expression patterns of these selected ESTs further confirmed that they were closely responsive to drought treatment. Among the differentially expressed genes (DEGs), many are related to stress tolerances including drought tolerance. Thereby, the mechanism of drought tolerance of this pitaya genotype is a very complex physiological and biochemical process, in which multiple metabolism pathways and many genes were implicated. The data gained herein provide an insight into the mechanism underlying the drought stress tolerance of pitaya, as well as may facilitate the screening of candidate genes for drought tolerance. © 2013 Elsevier B.V. All rights reserved.
Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq.
Shen, Yan Hong; Lu, Bing Guo; Feng, Li; Yang, Fei Ying; Geng, Jiao Jiao; Ming, Ray; Chen, Xiao Jing
2017-08-31
Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya fruit. Comparing the differential gene expression in ETH/1-MCP-treated papaya using RNA-seq is a sound approach to isolate ripening-related genes. The results of this study can improve our understanding of papaya fruit ripening molecular mechanism and reveal candidate fruit ripening-related genes for further research.
Investigation of serum biomarkers in primary gout patients using iTRAQ-based screening.
Ying, Ying; Chen, Yong; Zhang, Shun; Huang, Haiyan; Zou, Rouxin; Li, Xiaoke; Chu, Zanbo; Huang, Xianqian; Peng, Yong; Gan, Minzhi; Geng, Baoqing; Zhu, Mengya; Ying, Yinyan; Huang, Zuoan
2018-03-21
Primary gout is a major disease that affects human health; however, its pathogenesis is not well known. The purpose of this study was to identify biomarkers to explore the underlying mechanisms of primary gout. We used the isobaric tags for relative and absolute quantitation (iTRAQ) technique combined with liquid chromatography-tandem mass spectrometry to screen differentially expressed proteins between gout patients and controls. We also identified proteins potentially involved in gout pathogenesis by analysing biological processes, cellular components, molecular functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interactions. We further verified some samples using enzyme-linked immunosorbent assay (ELISA). Statistical analyses were carried out using SPSS v. 20.0 and ROC (receiver operating characterstic) curve analyses were carried out using Medcalc software. Two-sided p-values <0.05 were deemed to be statistically significant for all analyses. We identified 95 differentially expressed proteins (50 up-regulated and 45 down-regulated), and selected nine proteins (α-enolase (ENOA), glyceraldehyde-3-phosphate dehydrogenase (G3P), complement component C9 (CO9), profilin-1 (PROF1), lipopolysaccharide-binding protein (LBP), tubulin beta-4A chain (TBB4A), phosphoglycerate kinase (PGK1), glucose-6-phosphate isomerase (G6PI), and transketolase (TKT)) for verification. This showed that the level of TBB4A was significantly higher in primary gout than in controls (p=0.023). iTRAQ technology was useful in the selection of differentially expressed proteins from proteomes, and provides a strong theoretical basis for the study of biomarkers and mechanisms in primary gout. In addition, TBB4A protein may be associated with primary gout.
Will, Thorsten; Helms, Volkhard
2017-04-04
Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .
Yoon, Byung Sun; Yoo, Seung Jun; Lee, Jeoung Eun; You, Seungkwon; Lee, Hoon Taek; Yoon, Hyun Soo
2006-04-01
Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.
Comparative Proteomic Analysis of Two Uveitis Models in Lewis Rats.
Pepple, Kathryn L; Rotkis, Lauren; Wilson, Leslie; Sandt, Angela; Van Gelder, Russell N
2015-12-01
Inflammation generates changes in the protein constituents of the aqueous humor. Proteins that change in multiple models of uveitis may be good biomarkers of disease or targets for therapeutic intervention. The present study was conducted to identify differentially-expressed proteins in the inflamed aqueous humor. Two models of uveitis were induced in Lewis rats: experimental autoimmune uveitis (EAU) and primed mycobacterial uveitis (PMU). Differential gel electrophoresis was used to compare naïve and inflamed aqueous humor. Differentially-expressed proteins were separated by using 2-D gel electrophoresis and excised for identification with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Expression of select proteins was verified by Western blot analysis in both the aqueous and vitreous. The inflamed aqueous from both models demonstrated an increase in total protein concentration when compared to naïve aqueous. Calprotectin, a heterodimer of S100A8 and S100A9, was increased in the aqueous in both PMU and EAU. In the vitreous, S100A8 and S100A9 were preferentially elevated in PMU. Apolipoprotein E was elevated in the aqueous of both uveitis models but was preferentially elevated in EAU. Beta-B2-crystallin levels decreased in the aqueous and vitreous of EAU but not PMU. The proinflammatory molecules S100A8 and S100A9 were elevated in both models of uveitis but may play a more significant role in PMU than EAU. The neuroprotective protein β-B2-crystallin was found to decline in EAU. Therapies to modulate these proteins in vivo may be good targets in the treatment of ocular inflammation.
Comparative Proteomic Analysis of Two Uveitis Models in Lewis Rats
Pepple, Kathryn L.; Rotkis, Lauren; Wilson, Leslie; Sandt, Angela; Van Gelder, Russell N.
2015-01-01
Purpose Inflammation generates changes in the protein constituents of the aqueous humor. Proteins that change in multiple models of uveitis may be good biomarkers of disease or targets for therapeutic intervention. The present study was conducted to identify differentially-expressed proteins in the inflamed aqueous humor. Methods Two models of uveitis were induced in Lewis rats: experimental autoimmune uveitis (EAU) and primed mycobacterial uveitis (PMU). Differential gel electrophoresis was used to compare naïve and inflamed aqueous humor. Differentially-expressed proteins were separated by using 2-D gel electrophoresis and excised for identification with matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF). Expression of select proteins was verified by Western blot analysis in both the aqueous and vitreous. Results The inflamed aqueous from both models demonstrated an increase in total protein concentration when compared to naïve aqueous. Calprotectin, a heterodimer of S100A8 and S100A9, was increased in the aqueous in both PMU and EAU. In the vitreous, S100A8 and S100A9 were preferentially elevated in PMU. Apolipoprotein E was elevated in the aqueous of both uveitis models but was preferentially elevated in EAU. Beta-B2–crystallin levels decreased in the aqueous and vitreous of EAU but not PMU. Conclusions The proinflammatory molecules S100A8 and S100A9 were elevated in both models of uveitis but may play a more significant role in PMU than EAU. The neuroprotective protein β-B2–crystallin was found to decline in EAU. Therapies to modulate these proteins in vivo may be good targets in the treatment of ocular inflammation. PMID:26747776
Identifying key genes associated with acute myocardial infarction.
Cheng, Ming; An, Shoukuan; Li, Junquan
2017-10-01
This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21-5p and hsa-miR-30c-5p were obviously decreased in AMI. A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs.
Identifying key genes associated with acute myocardial infarction
Cheng, Ming; An, Shoukuan; Li, Junquan
2017-01-01
Abstract Background: This study aimed to identify key genes associated with acute myocardial infarction (AMI) by reanalyzing microarray data. Methods: Three gene expression profile datasets GSE66360, GSE34198, and GSE48060 were downloaded from GEO database. After data preprocessing, genes without heterogeneity across different platforms were subjected to differential expression analysis between the AMI group and the control group using metaDE package. P < .05 was used as the cutoff for a differentially expressed gene (DEG). The expression data matrices of DEGs were imported in ReactomeFIViz to construct a gene functional interaction (FI) network. Then, DEGs in each module were subjected to pathway enrichment analysis using DAVID. MiRNAs and transcription factors predicted to regulate target DEGs were identified. Quantitative real-time polymerase chain reaction (RT-PCR) was applied to verify the expression of genes. Result: A total of 913 upregulated genes and 1060 downregulated genes were identified in the AMI group. A FI network consists of 21 modules and DEGs in 12 modules were significantly enriched in pathways. The transcription factor-miRNA-gene network contains 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p. RT-PCR validations showed that expression levels of FOXO3 and MYBL2 were significantly increased in AMI, and expression levels of hsa-miR-21–5p and hsa-miR-30c-5p were obviously decreased in AMI. Conclusion: A total of 41 DEGs, such as SOCS3, VAPA, and COL5A2, are speculated to have roles in the pathogenesis of AMI; 2 transcription factors FOXO3 and MYBL2, and 2 miRNAs hsa-miR-21-5p and hsa-miR-30c-5p may be involved in the regulation of the expression of these DEGs. PMID:29049183
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yin; Wang, Jianshe
Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. Among its potential health hazards, testicular toxicity is of major concern. To explore the potential effect of miRNA on post-translational regulation after PFOA exposure, changes in miRNAs were detected via miRNA array. Seventeen miRNAs were differentially expressed (eight upregulated, nine downregulated) in male mouse testes after exposure to 5 mg/kg/d of PFOA for 28 d (> 1.5-fold and P < 0.05 compared with the control). Eight of these miRNAs were further selected for TaqMan qPCR analysis. Proteomic profile analysis indicated that many changed proteins aftermore » PFOA treatment, including intersectin 1 (ITSN1), serine protease inhibitor A3K (Serpina3k), and apolipoprotein a1 (APOA1), were involved in endocytosis and blood-testis barrier (BTB) processes. These changes were further verified by immunohistochemical and Western blot analyses. Endocytosis-related genes were selected for qPCR analysis, with many found to be significantly changed after PFOA treatment, including epidermal growth factor receptor pathway substrate 8 (Eps8), Eps15, cortactin, cofilin, espin, vinculin, and zyxin. We further predicted the potential interaction between changed miRNAs and proteins, which indicated that miRNAs might play a role in the post-translational regulation of gene expression after PFOA treatment in mouse testes. Among them, miR-133b-3p/clathrin light chain A (CLTA) was selected and verified in vitro by transfection and luciferase activity assay. Results showed that PFOA exposure affects endocytosis in mouse testes and that CLTA is a potential target of miR-133b-3p. - Highlights: • Endocytosis and blood-testis barrier proteins were changed after PFOA exposure. • Seventeen miRNAs were differentially expressed in testes after PFOA exposure. • MiRNAs might play a role in gene regulation in testes after PFOA exposure.CLTA is a potential target of miR-133b-3p.« less
Zhang, Fang; Gao, Chao; Ma, Xiao-Feng; Peng, Xiao-Lin; Zhang, Rong-Xin; Kong, De-Xin; Simard, Alain R; Hao, Jun-Wei
2016-04-01
Long noncoding RNAs (lncRNAs) play a key role in regulating immunological functions. Their impact on the chronic inflammatory disease multiple sclerosis (MS), however, remains unknown. We investigated the expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) of patients with MS and attempt to explain their possible role in the process of MS. For this study, we recruited 26 patients with MS according to the revised McDonald criteria. Then, we randomly chose 6 patients for microarray analysis. Microarray assays identified outstanding differences in lncRNA expression, which were verified through real-time PCR. LncRNA functions were annotated for target genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and regulatory relationships between lncRNAs and target genes were analyzed using the "cis" and "trans" model. There were 2353 upregulated lncRNAs, 389 downregulated lncRNAs, 1037 upregulated mRNAs, and 279 downregulated mRNAs in patients with MS compared to healthy control subjects (fold change >2.0). Real-time PCR results of six aberrant lncRNAs were consistent with the microarray data. The coexpression network comprised 864 lncRNAs and 628 mRNAs. Among differentially expressed lncRNAs, 10 lncRNAs were predicted to have 10 cis-regulated target genes, and 33 lncRNAs might regulate their trans target genes. We identified a subset of dysregulated lncRNAs and mRNAs. The differentially expressed lncRNAs may be important in the process of MS. However, the specific molecular mechanisms and biological functions of these lncRNAs in the pathogenesis of MS need further study. © 2016 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.
Abasi, M; Massumi, M; Riazi, G; Amini, H
2012-10-11
Parkinson's disease (PD) is a neurodegenerative disorder in which the nigro-striatal dopaminergic (DAergic) neurons have been selectively lost. Due to side effects of levodopa, a dopamine precursor drug, recently cell replacement therapy for PD has been considered. Lack of sufficient amounts of, embryos and ethical problems regarding the use of dopamine-rich embryonic neural cells have limited the application of these cells for PD cell therapy. Therefore, many investigators have focused on using the pluripotent stem cells to generate DAergic neurons. This study is aimed first to establish a mouse embryonic stem (mES) cell line that can stably co-express Nurr1 (Nuclear receptor subfamily 4, group A, member 2) transcription factor in order to efficiently generate DAergic neurons, and glutathione peroxidase-1 (GPX-1) to protect the differentiated DAergic-like cells against oxidative stress. In addition to genetic engineering of ES cells, the effect of Beta-boswellic acid (BBA) on DAergic differentiation course of mES cells was sought in the present study. To that end, the feeder-independent CGR8 mouse embryonic stem cells were transduced by Nurr1- and GPX-1-harboring Lentiviruses and the generated Nurr1/GPX-1-expresssing ES clones were characterized and verified. Gene expression analyses demonstrated that BBA treatment and overexpression of Nurr1 has a synergistic effect on derivation of DAergic neurons from Nurr1/GPX-1-expressing ES cells. The differentiated cells could exclusively synthesize and secrete dopamine in response to stimuli. Overexpression of GPX-1 in genetically engineered Nurr1/GPX-1-ES cells increased the viability of these cells during their differentiation into CNS stem cells. In conclusion, the results demonstrated that Nurr1-overexpressing feeder-independent ES cells like the feeder-dependent ES cells, can be efficiently programmed into functional DAergic neurons and additional treatment of cells by BBA can even augment this efficiency. GPX-1 overexpression in Nurr1/GPX-1-ES cells increases the viability of differentiated CNS stem-like cells. The result of this study may have impact on future stem cell therapy of PD. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Sousa, Lisete; Pais, Maria Salomé; Kopka, Joachim; Fortes, Ana Margarida
2013-01-01
Background Grapes (Vitis species) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to ripening of berries as well as how aroma is developed are not fully understood. Methodology/Principal Findings In an attempt to identify the common mechanisms associated with the onset of ripening independently of the cultivar, grapes of Portuguese elite cultivars, Trincadeira, Aragonês, and Touriga Nacional, were studied. The mRNA expression profiles corresponding to veraison (EL35) and mature berries (EL36) were compared. Across the three varieties, 9,8% (2255) probesets corresponding to 1915 unigenes were robustly differentially expressed at EL 36 compared to EL 35. Eleven functional categories were represented in this differential gene set. Information on gene expression related to primary and secondary metabolism was verified by RT-qPCR analysis of selected candidate genes at four developmental stages (EL32, EL35, EL36 and EL 38). Gene expression data were integrated with metabolic profiling data from GC-EI-TOF/MS and headspace GC-EI-MS platforms. Conclusions/Significance Putative molecular and metabolic markers of grape pre-ripening and ripening related to primary and secondary metabolism were established and revealed a substantial developmental reprogramming of cellular metabolism. Altogether the results provide valuable new information on the main metabolic events leading to grape ripening. Furthermore, we provide first hints about how the development of a cultivar specific aroma is controlled at transcriptional level. PMID:23565246
Screening and identification of lncRNAs as potential biomarkers for pulmonary tuberculosis.
Chen, Zhong-Liang; Wei, Li-Liang; Shi, Li-Ying; Li, Meng; Jiang, Ting-Ting; Chen, Jing; Liu, Chang-Ming; Yang, Su; Tu, Hui-Hui; Hu, Yu-Ting; Gan, Lin; Mao, Lian-Gen; Wang, Chong; Li, Ji-Cheng
2017-12-01
Pulmonary tuberculosis (TB) is among the diseases with the highest morbidity and mortality worldwide. Effective diagnostic methods for TB are lacking. In this study, we investigated long non-coding RNAs (lncRNAs) in plasma using microarray and the potential diagnostic value of lncRNAs for TB. We found a total of 163 up-regulated lncRNAs and 348 down-regulated lncRNAs. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and coding-noncoding co-expression (CNC) analyses showed that functions of differentially expressed lncRNAs were mainly enriched in the regulation of alpha-beta T cell activation and the T cell receptor signalling pathway. Four differentially expressed lncRNAs, NR_038221 (fold change = 3.79, P < 0.01), NR_003142 (fold change = 1.69, P < 0.05), ENST00000570366 (fold change = 3.04, P < 0.05), and ENST00000422183 (fold change = 2.11, P < 0.001), were verified using RT-qPCR. Among those, NR_038221, NR_003142, and ENST00000570366 were found to be up-regulated, while ENST00000422183 was down-regulated. The value of the area under the curve (AUC) for the diagnostic model consisting of the four lncRNAs was 0.845 (sensitivity = 79.2%, specificity = 75%). We further predicted 85 mRNAs and 404 miRNAs that potentially interact with these lncRNAs. Our study revealed the potential value of lncRNAs as biomarkers for early diagnosis of TB and the underlying mechanisms of these abnormally expressed lncRNAs in the pathogenesis of TB.
He, Zhongshi; Sun, Min; Ke, Yuan; Lin, Rongjie; Xiao, Youde; Zhou, Shuliang; Zhao, Hong; Wang, Yan; Zhou, Fuxiang; Zhou, Yunfeng
2017-04-25
Although papillary renal cell carcinoma (PRCC) accounts for 10%-15% of renal cell carcinoma (RCC), no predictive molecular biomarker is currently applicable to guiding disease stage of PRCC patients. The mRNASeq data of PRCC and adjacent normal tissue in The Cancer Genome Atlas was analyzed to identify 1148 differentially expressed genes, on which weighted gene co-expression network analysis was performed. Then 11 co-expressed gene modules were identified. The highest association was found between blue module and pathological stage (r = 0.45) by Pearson's correlation analysis. Functional enrichment analysis revealed that biological processes of blue module focused on nuclear division, cell cycle phase, and spindle (all P < 1e-10). All 40 hub genes in blue module can distinguish localized (pathological stage I, II) from non-localized (pathological stage III, IV) PRCC (P < 0.01). A good molecular biomarker for pathological stage of RCC must be a prognostic gene in clinical practice. Survival analysis was performed to reversely validate if hub genes were associated with pathological stage. Survival analysis unveiled that all hub genes were associated with patient prognosis (P < 0.01).The validation cohort GSE2748 verified that 30 hub genes can differentiate localized from non-localized PRCC (P < 0.01), and 18 hub genes are prognosis-associated (P < 0.01).ROC curve indicated that the 17 hub genes exhibited excellent diagnostic efficiency for localized and non-localized PRCC (AUC > 0.7). These hub genes may serve as a biomarker and help to distinguish different pathological stages for PRCC patients.
Lee, Arum; Lee, Man Ryul; Lee, Hae-Hyeog; Kim, Yeon-Suk; Kim, Jun-Mo; Enkhbold, Temuulee; Kim, Tae-Hee
2017-01-01
Postmenopausal atrophic vagina (PAV) is the thinning of the walls of the vagina and decreased lugae of the vagina. PAV is caused by decreased estrogen levels in postmenopausal women. However, the harmful effects of hormone replacement therapy (HRT) have resulted in considerable caution in its use. Various estrogen agonist treatment options are available. Vitamin D is influences the regulation of differentiation and proliferation of various cells, especially tissues lining stratified squamous epithelium, such as the vaginal epithelium. In this study, we hypothesized that vitamin D could provide an alternative and a safe treatment option for PAV by promoting the proliferation and differentiation of the vaginal epithelium. Thirty six patients were enrolled in this case-control study. Vitamin D associated proteins in a vitamin D and sex hormone treated vaginal epithelial cell line as well as normal and PAV tissues were measured. To confirm of cell-to-cell junction protein expression, cell line and tissue studies included RT-PCR, immunohistochemistry staining, and immunoblot analyses. The expression of cell-to-cell junction proteins was higher in women with symptoms of atrophic vagina tissue compared to women without the symptoms. Vitamin D stimulated the proliferation of the vaginal epithelium by activating p-RhoA and Erzin through the vitamin D receptor (VDR). The results suggest that vitamin D positively regulates cell-to-cell junction by increasing the VDR/p-RhoA/p-Ezrin pathway. This is the first study to verify the relationship of the expression of RhoA and Ezrin proteins in vaginal tissue of PAV. PMID:28843271
Lee, Arum; Lee, Man Ryul; Lee, Hae-Hyeog; Kim, Yeon-Suk; Kim, Jun-Mo; Enkhbold, Temuulee; Kim, Tae-Hee
2017-09-30
Postmenopausal atrophic vagina (PAV) is the thinning of the walls of the vagina and decreased lugae of the vagina. PAV is caused by decreased estrogen levels in postmenopausal women. However, the harmful effects of hormone replacement therapy (HRT) have resulted in considerable caution in its use. Various estrogen agonist treatment options are available. Vitamin D is influences the regulation of differentiation and proliferation of various cells, especially tissues lining stratified squamous epithelium, such as the vaginal epithelium. In this study, we hypothesized that vitamin D could provide an alternative and a safe treatment option for PAV by promoting the proliferation and differentiation of the vaginal epithelium. Thirty six patients were enrolled in this case-control study. Vitamin D associated proteins in a vitamin D and sex hormone treated vaginal epithelial cell line as well as normal and PAV tissues were measured. To confirm of cell-to-cell junction protein expression, cell line and tissue studies included RT-PCR, immunohistochemistry staining, and immunoblot analyses. The expression of cell-to-cell junction proteins was higher in women with symptoms of atrophic vagina tissue compared to women without the symptoms. Vitamin D stimulated the proliferation of the vaginal epithelium by activating p-RhoA and Erzin through the vitamin D receptor (VDR). The results suggest that vitamin D positively regulates cell-to-cell junction by increasing the VDR/p-RhoA/p-Ezrin pathway. This is the first study to verify the relationship of the expression of RhoA and Ezrin proteins in vaginal tissue of PAV.
Shirmohammadi, Khadije; Sohrabi, Sareh; Jafarzadeh Samani, Zahra; Effatpanah, Hosein; Yadegarazari, Reza; Saidijam, Massoud
2018-02-01
The role of microRNAs (miRNAs) in cellular processes such as growth, apoptosis, differentiation and proliferation verifies the importance of miRNAs in carcinogenesis. Moreover, levels of miRNAs are dysregulated in cancer cells, so they could be used as novel classes of biomarkers for diagnosing cancer. The oncogenic role of miR-106a and its increased expression have been demonstrated in some cancers. In contrast, there is no consensus for miR-9 expression rate in different cancers. Therefore, this study was done to investigate the role of miR-106a and miR-9 in gastric cancer (GC). The current study was performed on 31 GC tissues as case, and 31 healthy adjacent tissues as a control group. Quantitative reverse transcriptase (q-RT) PCR was used for studying the expression rate of both miR-106a and miR-9 . The expression rate of both miRNAs in cancerous tissues was significantly higher than healthy adjacent tissues (≈10 folds) (P<0.05). The results showed that the expression rate of both markers was significantly increased in cancerous tissues. Therefore, they can be suggested as potential biomarkers for cancer diagnosis and prognosis as well as targets for therapy.
Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S
2017-05-01
The JAK-STAT signaling pathway plays a key role in cytokine and growth factor activation and is involved in several cellular functions and diseases. The main objective of this study was to investigate the expression of candidate JAK-STAT pathway genes and their regulators and interactors in the intestinal mucosal layer of two genetically disparate chicken lines [Marek's disease (MD)-resistant line 6.3 and MD-susceptible line 7.2] induced with necrotic enteritis (NE). Through RNA-sequencing, we investigated 116 JAK-STAT signaling pathway-related genes that were significant and differentially expressed between the intestinal mucosa of the two lines compared with respective uninfected controls. About 15 JAK-STAT pathway genes were further verified by qRT-PCR, and the results were in agreement with our sequencing data. All the identified 116 genes were annotated through Gene Ontology and mapped to the KEGG chicken JAK-STAT signaling pathway. To the best of our knowledge, this is the first study to represent the transcriptional analysis of a large number of candidate genes, regulators, and potential interactors in the JAK-STAT pathway of the two chicken lines induced with NE. Several key genes of the interactome, namely, STAT1/3/4, STAT5B, JAK1-3, TYK2, AKT1/3, SOCS1-5, PIAS1/2/4, PTPN6/11, and PIK3, were determined to be differentially expressed in the two lines. Moreover, we detected 68 known miRNAs variably targeting JAK-STAT pathway genes and differentially expressed in the two lines induced with NE. The RNA-sequencing and bioinformatics analyses in this study provided an abundance of data that will be useful for future studies on JAK-STAT pathways associated with the functions of two genetically disparate chicken lines induced with NE. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Selig, Michael J.; Knoshaug, Eric P.; Decker, Stephen R.; Baker, John O.; Himmel, Michael E.; Adney, William S.
The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/ TOF) mass spectroscopy of tryptic digests. The T max was determined using differential scanning microcalorimetry (DSC) to be 78.2 °C; the K m and k cat were found to be 255 μM and 13.7 s-1, respectively, using pNP-β-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K i for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.
Selig, Michael J; Knoshaug, Eric P; Decker, Stephen R; Baker, John O; Himmel, Michael E; Adney, William S
2008-03-01
The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T (max) was determined using differential scanning microcalorimetry (DSC) to be 78.2 degrees C; the K (m) and k (cat) were found to be 255 microM and 13.7 s(-1), respectively, using pNP-beta-D-xylopyranoside as substrate. End-product inhibition by D-xylose was also verified and shown to be competitive; the K (i) for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selig, M. J.; Knoshaug, E. P.; Decker, S. R.
2008-01-01
The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T{sub max} was determined using differential scanning microcalorimetry (DSC) to be 78.2 C; the K{sub m} and k{sub cat} were found to be 255 {micro}M and 13.7 s{sup -1}, respectively, using {rho}NP-{Beta}-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K{sub i} formore » this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.« less
Mustafa, Mehnaz G.; Petersen, John R.; Ju, Hyunsu; Cicalese, Luca; Snyder, Ned; Haidacher, Sigmund J.; Denner, Larry; Elferink, Cornelis
2013-01-01
Chronic hepatic disease damages the liver, and the resulting wound-healing process leads to liver fibrosis and the subsequent development of cirrhosis. The leading cause of hepatic fibrosis and cirrhosis is infection with hepatitis C virus (HCV), and of the patients with HCV-induced cirrhosis, 2% to 5% develop hepatocellular carcinoma (HCC), with a survival rate of 7%. HCC is one of the leading causes of cancer-related death worldwide, and the poor survival rate is largely due to late-stage diagnosis, which makes successful intervention difficult, if not impossible. The lack of sensitive and specific diagnostic tools and the urgent need for early-stage diagnosis prompted us to discover new candidate biomarkers for HCV and HCC. We used aptamer-based fractionation technology to reduce serum complexity, differentially labeled samples (six HCV and six HCC) with fluorescent dyes, and resolved proteins in pairwise two-dimensional difference gel electrophoresis. DeCyder software was used to identify differentially expressed proteins and spots picked, and MALDI-MS/MS was used to determine that ApoA1 was down-regulated by 22% (p < 0.004) in HCC relative to HCV. Differential expression quantified via two-dimensional difference gel electrophoresis was confirmed by means of 18O/16O stable isotope differential labeling with LC-MS/MS zoom scans. Technically independent confirmation was demonstrated by triple quadrupole LC-MS/MS selected reaction monitoring (SRM) assays with three peptides specific to human ApoA1 (DLATVYVDVLK, WQEEMELYR, and VSFLSALEEYTK) using 18O/16O-labeled samples and further verified with AQUA peptides as internal standards for quantification. In 50 patient samples (24 HCV and 26 HCC), all three SRM assays yielded highly similar differential expression of ApoA1 in HCC and HCV patients. These results validated the SRM assays, which were independently confirmed by Western blotting. Thus, ApoA1 is a candidate member of an SRM biomarker panel for early diagnosis, prognosis, and monitoring of HCC. Future multiplexing of SRM assays for other candidate biomarkers is envisioned to develop a biomarker panel for subsequent verification and validation studies. PMID:24008390
Unraveling the proteomic profile of mice testis during the initiation of meiosis.
Shao, Binbin; Guo, Yueshuai; Wang, Lei; Zhou, Quan; Gao, Tingting; Zheng, Bo; Zheng, Haoyu; Zhou, Tao; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan; Sha, Jiahao
2015-04-29
In mice, once primordial germ cells (PGCs) are generated, they continue to proliferate and migrate to eventually reach the future gonads. They initiate sexual differentiation after their colonization of the gonads. During this process, retinoic acid (RA) induces meiosis in the female germ cells, which proceeds to the diplotene stage of meiotic prophase I, whereas the male germ cells initiate growth arrest. After birth, meiosis is initiated in mice spermatogonia by their conversion to preleptotene spermatocytes. There are evidences showing the roles of RA in the regulation of spermatogonial differentiation and meiosis initiation. However, it is still not well known on what responds to RA and how RA signaling engages meiosis. Thus, we constructed a proteomic profile of proteins associated with meiosis onset during testis development in mouse and identified 104 differentially expressed proteins (≥1.5 folds). Bioinformatic analysis showed proteins functioning in specific cell processes. The expression patterns of five selected proteins were verified via Western blot, of which we found that Tfrc gene was RA responsive, with a RA responsive element, and could be up regulated by RA in spermatogonial stem cell (SSC) line. Taken together, the results provide an important reference profile for further functional study of meiosis initiation. Spermatogenesis involves mitosis of spermatogonia, meiosis of spermatocytes and spermiogenesis, in which meiosis is a unique event to germ cells, and not in the somatic cells. Till now, the detailed molecular mechanisms of the transition from mitosis to meiosis are still not elucidated. With high-throughput proteomic technology, it is now possible to systemically identify proteins possibly involved. With TMT-6plex based quantification, we identified 104 proteins differentially between testes without meiosis (day 8.5) and those that were meiosis initiated (day 10.5). And a well-known protein essential for meiosis initiation, stra8, was identified to be differentially expressed in the study. And bioinformatic analysis and functional studies revealed several proteins regulated by retinoic acid, a chemical known to regulate the meiosis initiation. Thus, this quantitative proteomic approach can identify meiosis initiation regulating proteins, and further functional studies of these proteins will help elucidate the mechanisms of meiosis initiation. Copyright © 2015. Published by Elsevier B.V.
Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin
This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin synergistically promoted osteoblastic differentiation of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic bone.
MicroRNA-200a regulates adipocyte differentiation in the domestic yak Bos grunniens.
Zhang, Yongfeng; Wu, Xiaoyun; Liang, Chunnian; Bao, Pengjia; Ding, Xuezhi; Chu, Min; Jia, Congjun; Guo, Xian; Yan, Ping
2018-04-15
The domestic yak (Bos grunniens) is a culturally important animal that lives at high altitude and is farmed by Tibetan herders for its meat, milk, and other animal by-products. Within the animal, adipose tissue is an important store and source of energy and is used to maintain adequate body temperature during the extended cold seasons. Exploring the biomolecular role of microRNAs (miRNAs) in the regulation of growth, development, and metabolism of yak adipocytes may provide valuable insights into the physiology of adipogenesis in the yak. This study investigated whether and how miR-200a (a miRNA recently reported to promote adipogenesis in ST2 bone marrow stromal cells) regulates adipocyte differentiation in the yak. Expression levels of miR-200a gradually increased during day 0 to day 8 of adipocyte differentiation, and transfection of adipocytes with miR-200a enhanced lipid accumulation and triglyceride content compared to control (un-transfected) adipocytes. We additionally verified (using qRT-PCR analysis) that miR-200a increased the expression of adipocyte-specific genes involved in lipogenic transcription (PPARγ, ELVOL, and C/EBPα), fatty acid synthesis (ACC, ACS, SCD, and FAS), and fatty acid transport (DGAT, LPL, and FABP4). We also found that transfection of adipocytes with miR-200a resulted in suppression of the levels of noncanonical Wnt signaling transcription factors (Wnt5a, TAK1, and NLK). These results indicate that miRNA-200a plays an important role in promoting yak adipocyte differentiation that may operate via the suppression of noncanonical Wnt signaling. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Lina; Yang, Hongsheng; Chen, Muyan; Ma, Deyou; Lin, Chenggang
2013-01-01
Background Sea cucumbers (Holothuroidea; Echinodermata) have the capacity to regenerate lost tissues and organs. Although the histological and cytological aspects of intestine regeneration have been extensively studied, little is known of the genetic mechanisms involved. There has, however, been a renewed effort to develop a database of Expressed Sequence Tags (ESTs) in Apostichopus japonicus, an economically-important species that occurs in China. This is important for studies on genetic breeding, molecular markers and special physiological phenomena. We have also constructed a library of ESTs obtained from the regenerative body wall and intestine of A. japonicus. The database has increased to ∼30000 ESTs. Results We used RNA-Seq to determine gene expression profiles associated with intestinal regeneration in A. japonicus at 3, 7, 14 and 21 days post evisceration (dpe). This was compared to profiles obtained from a normally-functioning intestine. Approximately 5 million (M) reads were sequenced in every library. Over 2400 up-regulated genes (>10%) and over 1000 down-regulated genes (∼5%) were observed at 3 and 7dpe (log2Ratio≥1, FDR≤0.001). Specific “Go terms” revealed that the DEGs (Differentially Expressed Genes) performed an important function at every regeneration stage. Besides some expected pathways (for example, Ribosome and Spliceosome pathway term), the “Notch signaling pathway,” the “ECM-receptor interaction” and the “Cytokine-cytokine receptor interaction” were significantly enriched. We also investigated the expression profiles of developmental genes, ECM-associated genes and Cytoskeletal genes. Twenty of the most important differentially expressed genes (DEGs) were verified by Real-time PCR, which resulted in a trend concordance of almost 100% between the two techniques. Conclusion Our studies demonstrated dynamic changes in global gene expression during intestine regeneration and presented a series of candidate genes and enriched pathways that contribute to intestine regeneration in sea cucumbers. This provides a foundation for future studies on the genetics/molecular mechanisms associated with intestine regeneration. PMID:23936330
Cardiac transcriptional response to acute and chronic angiotensin II treatments.
Larkin, Jennie E; Frank, Bryan C; Gaspard, Renee M; Duka, Irena; Gavras, Haralambos; Quackenbush, John
2004-07-08
Exposure of experimental animals to increased angiotensin II (ANG II) induces hypertension associated with cardiac hypertrophy, inflammation, and myocardial necrosis and fibrosis. Some of the most effective antihypertensive treatments are those that antagonize ANG II. We investigated cardiac gene expression in response to acute (24 h) and chronic (14 day) infusion of ANG II in mice; 24-h treatment induces hypertension, and 14-day treatment induces hypertension and extensive cardiac hypertrophy and necrosis. For genes differentially expressed in response to ANG II treatment, we tested for significant regulation of pathways, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Microarray Pathway Profiler (GenMAPP) databases, as well as functional classes based on Gene Ontology (GO) terms. Both acute and chronic ANG II treatments resulted in decreased expression of mitochondrial metabolic genes, notably those for the electron transport chain and Krebs-TCA cycle; chronic ANG II treatment also resulted in decreased expression of genes involved in fatty acid metabolism. In contrast, genes involved in protein translation and ribosomal activity increased expression following both acute and chronic ANG II treatments. Some classes of genes showed differential response between acute and chronic ANG II treatments. Acute treatment increased expression of genes involved in oxidative stress and amino acid metabolism, whereas chronic treatments increased cytoskeletal and extracellular matrix genes, second messenger cascades responsive to ANG II, and amyloidosis genes. Although a functional linkage between Alzheimer disease, hypertension, and high cholesterol has been previously documented in studies of brain tissue, this is the first demonstration of induction of Alzheimer disease pathways by hypertension in heart tissue. This study provides the most comprehensive available survey of gene expression changes in response to acute and chronic ANG II treatment, verifying results from disparate studies, and suggests mechanisms that provide novel insight into the etiology of hypertensive heart disease and possible therapeutic interventions that may help to mitigate its effects.
Construction and analysis of circular RNA molecular regulatory networks in liver cancer.
Ren, Shuangchun; Xin, Zhuoyuan; Xu, Yinyan; Xu, Jianting; Wang, Guoqing
2017-01-01
Liver cancer is the sixth most prevalent cancer, and the third most frequent cause of cancer-related deaths. Circular RNAs (circRNAs), a kind of special endogenous ncRNAs, have been coming back to the forefront of cancer genomics research. In this study, we used a systems biology approach to construct and analyze the circRNA molecular regulatory networks in the context of liver cancer. We detected a total of 127 differentially expressed circRNAs and 3,235 differentially expressed mRNAs. We selected the top-5 upregulated circRNAs to construct a circRNA-miRNA-mRNA network. We enriched the pathways and gene ontology items and determined their participation in cancer-related pathways such as p53 signaling pathway and pathways involved in angiogenesis and cell cycle. Quantitative real-time PCR was performed to verify the top-five circRNAs. ROC analysis showed circZFR, circFUT8, circIPO11 could significantly distinguish the cancer samples, with an AUC of 0.7069, 0.7575, and 0.7103, respectively. Our results suggest the circRNA-miRNA-mRNA network may help us further understand the molecular mechanisms of tumor progression in liver cancer, and reveal novel biomarkers and therapeutic targets.
Applications of automatic differentiation in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Carle, A.; Bischof, C.; Haigler, Kara J.; Newman, Perry A.
1994-01-01
Automatic differentiation (AD) is a powerful computational method that provides for computing exact sensitivity derivatives (SD) from existing computer programs for multidisciplinary design optimization (MDO) or in sensitivity analysis. A pre-compiler AD tool for FORTRAN programs called ADIFOR has been developed. The ADIFOR tool has been easily and quickly applied by NASA Langley researchers to assess the feasibility and computational impact of AD in MDO with several different FORTRAN programs. These include a state-of-the-art three dimensional multigrid Navier-Stokes flow solver for wings or aircraft configurations in transonic turbulent flow. With ADIFOR the user specifies sets of independent and dependent variables with an existing computer code. ADIFOR then traces the dependency path throughout the code, applies the chain rule to formulate derivative expressions, and generates new code to compute the required SD matrix. The resulting codes have been verified to compute exact non-geometric and geometric SD for a variety of cases. in less time than is required to compute the SD matrix using centered divided differences.
Yun, Ye-Rang; Kim, Hae-Won; Kang, Wonmo; Jeon, Eunyi; Lee, Sujin; Lee, Hye-Young; Kim, Cheol-Hwan; Jang, Jun-Hyeog
2012-05-01
Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type І (Col І), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
Fukunaga, Shohei; Yamanaka, Shuichiro; Fujimoto, Toshinari; Tajiri, Susumu; Uchiyama, Taketo; Matsumoto, Kei; Ito, Takafumi; Tanabe, Kazuaki; Yokoo, Takashi
2018-02-19
To address the lack of organs for transplantation, we previously developed a method for organ regeneration in which nephron progenitor cell (NPC) replacement is performed via the diphtheria toxin receptor (DTR) system. In transgenic mice with NPC-specific expression of DTR, NPCs were eliminated by DT and replaced with NPCs lacking the DTR with the ability to differentiate into nephrons. However, this method has only been verified in vitro. For applications to natural models, such as animal fetuses, it is necessary to determine the optimal administration route and dose of DT. In this study, two DT administration routes (intra-peritoneal and intra-amniotic injection) were evaluated in fetal mice. The fetus was delivered by caesarean section at E18.5, and the fetal mouse kidney and RNA expression were evaluated. Additionally, the effect of the DT dose (25, 5, 0.5, and 0.05 ng/fetus-body) was studied. Intra-amniotic injection of DT led to a reduction in kidney volume, loss of glomeruli, and decreased differentiation marker expression. The intra-peritoneal route was not sufficient for NPC elimination. By establishing that intra-amniotic injection is the optimal administration route for DT, these results will facilitate studies of kidney regeneration in vivo. In addition, this method might be useful for analysis of kidney development at various time points by deleting NPCs during development. Copyright © 2018 Elsevier Inc. All rights reserved.
DNA methylation markers for diagnosis and prognosis of common cancers
Hao, Xiaoke; Luo, Huiyan; Krawczyk, Michal; Wei, Wei; Wang, Wenqiu; Wang, Juan; Flagg, Ken; Hou, Jiayi; Zhang, Heng; Yi, Shaohua; Jafari, Maryam; Lin, Danni; Chung, Christopher; Caughey, Bennett A.; Li, Gen; Dhar, Debanjan; Shi, William; Zheng, Lianghong; Hou, Rui; Zhu, Jie; Zhao, Liang; Fu, Xin; Zhang, Edward; Zhang, Charlotte; Zhu, Jian-Kang; Karin, Michael; Xu, Rui-Hua; Zhang, Kang
2017-01-01
The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis. PMID:28652331
Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua
2018-01-01
Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura , but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae.
Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua
2018-01-01
Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura, but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae. PMID:29535638
Identification of a protein associated with the activity of cytokine-induced killer cells
Cao, Jingsong; Chen, Cong; Gao, Yongqiang; Hu, Li; Liang, Yu; Xiao, Jianhua
2017-01-01
Cytokine-induced killer cells (CIKs) adoptive immunotherapy for efficient antitumor ability is used clinically, but details regarding the proteins associated with CIK activity remain unclear. In the current study, the cytotoxicity of CIKs on hepatoma was identified to be significantly downregulated by 1.61-fold following gentamincin treatment. Further research revealed that a differentially expressed protein (P43) was significantly downregulated by 1.22-fold using one-dimensional gel electrophoresis analysis. Of these, the P43 was identified as human haptoglobin using liquid chromatography-mass spectrometry. Western blotting demonstrated that the haptoglobin specifically reacted with rabbit anti-human-haptoglobin. Furthermore, western blotting results verified that the haptoglobin was significantly downregulated by 1.17-fold compared with the control group. In addition, the expression of haptoglobin mRNA was significantly downregulated by 1.73-fold following gentamincin treatment. Taken together, the results of the present study demonstrated that the expression of haptoglobin protein was associated with the activity of CIKs, and the results will be beneficial to the further investigation of CIK activity-enhancement mechanism. PMID:29163711
Expression and localization of tubulin cofactors TBCD and TBCE in human gametes.
Jiménez-Moreno, Victoria; Agirregoitia, Ekaitz
2017-06-01
The tubulin cofactors TBCD and TBCE play an essential role in regulation of the microtubule dynamics in a wide variety of somatic cells, but little information is known about the expression of these cofactors in human sperm and oocytes. In this study, we focused on the investigation of the presence of, and the differential distribution of, the tubulin cofactors TBCD and TBCE in human sperm and during human oocyte maturation. We performed expression assays for TBCD and TBCE by reverse transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescence and verified the presence of both cofactors in human gametes. TBCD and TBCE were located mainly in the middle region and in the tail of the sperm while in the oocyte the localization was cytosolic. The mRNA of both tubulin cofactors were present in the human oocytes but not in sperm cells. This finding gives a first insight into where TBCD and TBCE could carry out their function in the continuous changes that the cytoskeleton experiences during gametogenesis and also prior to fertilization.
Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin
2007-01-24
An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.
Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zhang, Dasheng; Zheng, Jingui
2016-01-01
Background Black rice (Oryza sativa L.), whose pericarp is rich in anthocyanins (ACNs), is considered as a healthier alternative to white rice. Molecular species of ACNs in black rice have been well documented in previous studies; however, information about the metabolic mechanisms underlying ACN biosynthesis during black rice grain development is unclear. Results The aim of the present study was to determine changes in the metabolic pathways that are involved in the dynamic grain proteome during the development of black rice indica cultivar, (Oryza sativa L. indica var. SSP). Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were employed to identify statistically significant alterations in the grain proteome. Approximately 928 proteins were detected, of which 230 were differentially expressed throughout 5 successive developmental stages, starting from 3 to 20 days after flowering (DAF). The greatest number of differentially expressed proteins was observed on 7 and 10 DAF, including 76 proteins that were upregulated and 39 that were downregulated. The biological process analysis of gene ontology revealed that the 230 differentially expressed proteins could be sorted into 14 functional groups. Proteins in the largest group were related to metabolic process, which could be integrated into multiple biochemical pathways. Specifically, proteins with a role in ACN biosynthesis, sugar synthesis, and the regulation of gene expression were upregulated, particularly from the onset of black rice grain development and during development. In contrast, the expression of proteins related to signal transduction, redox homeostasis, photosynthesis and N-metabolism decreased during grain maturation. Finally, 8 representative genes encoding different metabolic proteins were verified via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, these genes had differed in transcriptional and translational expression during grain development. Conclusions Expression analyses of metabolism-related protein groups belonging to different functional categories and subcategories indicated that significantly upregulated proteins were related to flavonoid and starch synthesis. On the other hand, the downregulated proteins were determined to be related to nitrogen metabolism, as well as other functional categories and subcategories, including photosynthesis, redox homeostasis, tocopherol biosynthetic, and signal transduction. The results provide valuable new insights into the characterization and understanding of ACN pigment production in black rice. PMID:27415428
Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.
2012-01-01
It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418
Halene, Stephanie; Gaines, Peter; Sun, Hong; Zibello, Theresa; Lin, Sharon; Khanna-Gupta, Arati; Williams, Simon C; Perkins, Archibald; Krause, Diane; Berliner, Nancy
2010-02-01
Mutations in the CCAAT enhancer binding protein epsilon (C/EBPepsilon) gene have been identified in the cells of patients with neutrophil specific granule deficiency, a rare congenital disorder marked by recurrent bacterial infections. Their neutrophils, in addition to lacking specific granules required for normal respiratory burst activity, also lack normal phagocytosis and chemotaxis. Although the specific granule deficiency phenotype has been replicated in C/EBPepsilon(-/-) (knockout [KO]) mice, the mechanisms by which C/EBPepsilon mutations act to decrease neutrophil function are not entirely clear. In order to determine the role of C/EBPepsilon in neutrophil differentiation and migration, we generated immortalized progenitor cell lines from C/EBPepsilon KO and wild-type mice and performed expression and flow cytometric analysis and functional studies. Expression of lineage-specific cell surface antigens on our in vitro differentiated cell lines revealed persistent expression of monocytic markers on KO granulocytes. We verified this in primary murine peripheral blood and bone marrow cells. In addition, KO bone marrow had an increase in immature myeloid precursors at the common myeloid progenitor and granulocyte/monocyte progenitor levels, suggesting a critical role for C/EBPepsilon not only in granulocyte maturation beyond the promyelocyte stage, but also in the monocyte/granulocyte lineage decision. We found that restoration of Hlx (H2.0-like homeo box 1) expression, which was decreased in C/EBPepsilon KO cells, rescued chemotaxis, but not the other defects of C/EBPepsilon KO neutrophils. We show two new regulatory functions of C/EBPepsilon in myelopoiesis: in the absence of C/EBPepsilon, there is not only incomplete differentiation of granulocytes, but myelopoiesis is disrupted with the appearance of an intermediate cell type with monocyte and granulocyte features, and the neutrophils have abnormal chemotaxis. Restoration of expression of Hlx provides partial recovery of function; it has no effect on neutrophil maturation, but can completely ameliorate the chemotaxis defect in C/EBPepsilon KO cells. Copyright 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Kettunen, Eeva; Anttila, Sisko; Seppänen, Jouni K; Karjalainen, Antti; Edgren, Henrik; Lindström, Irmeli; Salovaara, Reijo; Nissén, Anna-Maria; Salo, Jarmo; Mattson, Karin; Hollmén, Jaakko; Knuutila, Sakari; Wikman, Harriet
2004-03-01
The expression patterns of cancer-related genes in 13 cases of squamous cell lung cancer (SCC) were characterized and compared with those in normal lung tissue and 13 adenocarcinomas (AC), the other major type of nonsmall cell lung cancer (NSCLC). cDNA array was used to screen the gene expression levels and the array results were verified using a real-time reverse-transcriptase-polymerase chain reaction (RT-PCR). Thirty-nine percent of the 25 most upregulated and the 25 most downregulated genes were common to SCC and AC. Of these genes, DSP, HMGA1 (alias HMGIY), TIMP1, MIF, CCNB1, TN, MMP11, and MMP12 were upregulated and COPEB (alias CPBP), TYROBP, BENE, BMPR2, SOCS3, TIMP3, CAV1, and CAV2 were downregulated. The expression levels of several genes from distinct protein families (cytokeratins and hemidesmosomal proteins) were markedly increased in SCC compared with AC and normal lung. In addition, several genes, overexpressed in SCC, such as HMGA1, CDK4, IGFBP3, MMP9, MMP11, MMP12, and MMP14, fell into distinct chromosomal loci, which we have detected as gained regions on the basis of comparative genomic hybridization data. Our study revealed new candidate genes involved in NSCLC.
TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES
Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn
2017-01-01
Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene “relationship” matrices that are of practical interest, such as the weighted adjacency matrices. PMID:29081874
Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn
2017-09-01
Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene "relationship" matrices that are of practical interest, such as the weighted adjacency matrices.
Panda, N; Bissoyi, A; Pramanik, K; Biswas, A
2014-01-01
Stimulating stem cell differentiation without growth factor supplement offers a potent and cost-effective scaffold for tissue regeneration. We hypothesise that surface precipitation of nano-hydroxyapatite (nHAp) over blends of non-mulberry silk fibroin with better hydrophilicity and RGD amino acid sequences can direct the stem cell towards osteogenesis. This report focuses on the fabrication of a blended eri-tasar silk fibroin nanofibrous scaffold (ET) followed by nHAp deposition by a surface precipitation (alternate soaking in calcium and phosphate solution) method. Morphology, hydrophilicity, composition, and the thermal and mechanical properties of ET/nHAp were examined by field emission scanning electron microscopy, TEM, FT-IR, X-ray diffraction, TGA and contact angle measurement and compared with ET. The composite scaffold demonstrated improved thermal stability and surface hydrophilicity with an increase in stiffness and elastic modulus (778 ± 2.4 N/m and 13.1 ± 0.36 MPa) as compared to ET (160.6 ± 1.34 N/m and 8.3 ± 0.4 MPa). Mineralisation studies revealed an enhanced and more uniform surface deposition of HAp-like crystals, while significant differences in cellular viability and attachment were observed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and confocal microscopy study. The cell viability and expression of adhesion molecules (CD 44 and CD 29) are found to be optimum for subsequent stages of growth proliferation and differentiation. The rates of proliferation have been observed to decrease owing to the transition of MSC from a state of proliferation to a state of differentiation. The confirmation of improved osteogenic differentiation was finally verified through the alkaline phosphatase assay, pattern of gene expression related to osteogenic differentiation and morphological observations of differentiated cord blood human mesenchymal stem cells under fluorescence microscope. The results obtained showed the improved physicochemical and biological properties of the ET/nHAp scaffold for osteogenic differentiation without the addition of any growth factors.
Description and performance of the Langley differential maneuvering simulator
NASA Technical Reports Server (NTRS)
Ashworth, B. R.; Kahlbaum, W. M., Jr.
1973-01-01
The differential maneuvering simulator for simulating two aircraft or spacecraft operating in a differential mode is described. Tests made to verify that the system could provide the required simulated aircraft motions are given. The mathematical model which converts computed aircraft motions into the required motions of the various projector gimbals is described.
Liu, Xiaoni; Wang, Shuang; Xu, Jianji; Kou, Buxin; Chen, Dexi; Wang, Yajie; Zhu, Xiaoxin
2018-03-20
MicroRNAs(miRNAs)are involved in the initiation and progression of hepatocellular carcinoma. ESC, an extract of Stellerachamaejasme L, had been confirmed as a potential anti-tumor extract of Traditional Chinese Medicine. In light of the important role of miRNAs in hepatocellular carcinoma, we questioned whether the inhibitory effects of ESC on hepatocellular carcinoma (HCC) were associated with miRNAs. The proliferation inhibition of ESC on HCC cells was measured with MTT assay. The migration inhibition of ESC on HCC cells was measured with transwell assay. The influences of ESC on growth and metastasis inhibition were evaluated with xenograft tumor model of HCC. Protein expressions were measured with western blot and immunofluorescence methods and miRNA profiles were detected with miRNA array. Differential miRNA and target mRNAs were verified with real-time PCR. The results showed that ESC could inhibit proliferation and epithelial mesenchymal transition (EMT) in HCC cells in vitro and tumor growth and metastasis in xenograft models in vivo. miRNA array results showed that 69 differential miRNAs in total of 429 ones were obtained in MHCC97H cells treated by ESC. hsa-miR-107, hsa-miR-638, hsa-miR-106b-5p were selected to be validated with real-time PCR method in HepG2 and MHCC97H cells. Expressions of hsa-miR-107 and hsa-miR-638 increased obviously in HCC cells treated by ESC. Target genes of three miRNAs were also validated with real-time PCR. Interestingly, only target genes of hsa-miR-107 changed greatly. ESC downregulated the MCL1, SALL4 and BCL2 gene expressions significantly but did not influence the expression of CACNA2D1. The findings suggested ESC regressed growth and metastasis of human hepatocellular carcinoma via regulating microRNAs expression and their corresponding target genes.
MicroRNA profile of silk gland reveals different silk yields of three silkworm strains.
Qin, Sheng; Danso, Blessing; Zhang, Jing; Li, Juan; Liu, Na; Sun, Xia; Hou, Chengxiang; Luo, Heng; Chen, Keping; Zhang, Guozheng; Li, Muwang
2018-05-05
Silk proteins are synthesized and secreted by the silk gland. The differential gene expression in it leads to different silk yield among various silkworm strains. As crucial factors, microRNAs (miRNAs) regulate protein synthesis at post-transcriptional level in silk gland. MiRNAs expression level in the silk gland of three silkworm strains (Jingsong, Lan10 and Dazao) was analyzed and 33 differentially expressed miRNAs (DEMs) were discovered between JingSong (JS) and Lan10 (L10), 60 DEMs between JS and Dazao, 54 DEMs between L10 and Dazao respectively. The DEMs target genes were predicted combing with two different methods and their functions were annotated according to gene ontology. Our previous studies showed that a batch of genes related to silk yield were identified in JS and L10 strains by comparative transcriptome and quantitative trait loci (QTL) method. Thirteen DEMs whose target genes are related to protein biosynthesis processes were screened by combining with these researches. Twelve DEMs potentially regulate nineteen genes which exist in our QTL results. Six common DEMs potentially regulate the genes in both of previous results. Finally, five DEMs were selected to verify their expression levels between JS and L10 by qRT-PCR, which showed similar difference as the results of small RNA-sequencing. MiRNAs in the silk gland may directly affect silk protein biosynthesis in different silkworm strains. In current work, we identified a batch of DEMs which potentially regulate the genes related to silk yield. Further functionally study of these miRNAs will contribute to improve varieties and boost the silk yield. Our research provides a basis for studying these miRNAs and their functions in silk production. Copyright © 2018 Elsevier B.V. All rights reserved.
Ecto-5’-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model
Cappellari, Angélica R.; Pillat, Micheli M.; Souza, Hellio D. N.; Dietrich, Fabrícia; Oliveira, Francine H.; Figueiró, Fabrício; Abujamra, Ana L.; Roesler, Rafael; Lecka, Joanna; Sévigny, Jean; Battastini, Ana Maria O.; Ulrich, Henning
2015-01-01
Background Ecto-5’-nucleotidase/CD73 (ecto-5’-NT) participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP) into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5’-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB) is the most common brain tumor of the cerebellum and affects mainly children. Materials and Methods The effects of ecto-5’-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude) 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified. Results The human MB cell line D283, transfected with ecto-5’-NT (D283hCD73), revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5’-NT. Conclusion This work suggests that ecto-5’-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5’-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy. PMID:26491983
Mousavi, Sadegh; Alisoltani, Arghavan; Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah
2014-01-01
Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond's transcriptome under the cold stress conditions. In the current research, we used RNA-seq technique to study the response of the reproductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomly selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant.
Jiménez, Sergio; Li, Zhigang; Reighard, Gregory L; Bielenberg, Douglas G
2010-02-09
In many tree species the perception of short days (SD) can trigger growth cessation, dormancy entrance, and the establishment of a chilling requirement for bud break. The molecular mechanisms connecting photoperiod perception, growth cessation and dormancy entrance in perennials are not clearly understood. The peach [Prunus persica (L.) Batsch] evergrowing (evg) mutant fails to cease growth and therefore cannot enter dormancy under SD. We used the evg mutant to filter gene expression associated with growth cessation after exposure to SD. Wild-type and evg plants were grown under controlled conditions of long days (16 h/8 h) followed by transfer to SD (8 h/16 h) for eight weeks. Apical tissues were sampled at zero, one, two, four, and eight weeks of SD and suppression subtractive hybridization was performed between genotypes at the same time points. We identified 23 up-regulated genes in the wild-type with respect to the mutant during SD exposure. We used quantitative real-time PCR to verify the expression of the differentially expressed genes in wild-type tissues following the transition to SD treatment. Three general expression patterns were evident: one group of genes decreased at the time of growth cessation (after 2 weeks in SD), another that increased immediately after the SD exposure and then remained steady, and another that increased throughout SD exposure. The use of the dormancy-incapable mutant evg has allowed us to reduce the number of genes typically detected by differential display techniques for SD experiments. These genes are candidates for involvement in the signalling pathway leading from photoperiod perception to growth cessation and dormancy entrance and will be the target of future investigations.
Li, Shicheng; Sun, Xiao; Miao, Shuncheng; Liu, Jia; Jiao, Wenjie
2017-11-01
Cigarette smoking is one of the greatest preventable risk factors for developing cancer, and most cases of lung squamous cell carcinoma (lung SCC) are associated with smoking. The pathogenesis mechanism of tumor progress is unclear. This study aimed to identify biomarkers in smoking-related lung cancer, including protein-coding gene, long noncoding RNA, and transcription factors. We selected and obtained messenger RNA microarray datasets and clinical data from the Gene Expression Omnibus database to identify gene expression altered by cigarette smoking. Integrated bioinformatic analysis was used to clarify biological functions of the identified genes, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the construction of a protein-protein interaction network, transcription factor, and statistical analyses. Subsequent quantitative real-time PCR was utilized to verify these bioinformatic analyses. Five hundred and ninety-eight differentially expressed genes and 21 long noncoding RNA were identified in smoking-related lung SCC. GO and KEGG pathway analysis showed that identified genes were enriched in the cancer-related functions and pathways. The protein-protein interaction network revealed seven hub genes identified in lung SCC. Several transcription factors and their binding sites were predicted. The results of real-time quantitative PCR revealed that AURKA and BIRC5 were significantly upregulated and LINC00094 was downregulated in the tumor tissues of smoking patients. Further statistical analysis indicated that dysregulation of AURKA, BIRC5, and LINC00094 indicated poor prognosis in lung SCC. Protein-coding genes AURKA, BIRC5, and LINC00094 could be biomarkers or therapeutic targets for smoking-related lung SCC. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Adeola, Henry A.; Smith, Muneerah; Kaestner, Lisa; Blackburn, Jonathan M.; Zerbini, Luiz F.
2016-01-01
There is a growing need for high throughput diagnostic tools for early diagnosis and treatment monitoring of prostate cancer (PCa) in Africa. The role of cancer-testis antigens (CTAs) in PCa in men of African descent is poorly researched. Hence, we aimed to elucidate the role of 123 Tumour Associated Antigens (TAAs) using antigen microarray platform in blood samples (N = 67) from a South African PCa, Benign prostatic hyperplasia (BPH) and disease control (DC) cohort. Linear (fold-over-cutoff) and differential expression quantitation of autoantibody signal intensities were performed. Molecular signatures of candidate PCa antigen biomarkers were identified and analyzed for ethnic group variation. Potential cancer diagnostic and immunotherapeutic inferences were drawn. We identified a total of 41 potential diagnostic/therapeutic antigen biomarkers for PCa. By linear quantitation, four antigens, GAGE1, ROPN1, SPANXA1 and PRKCZ were found to have higher autoantibody titres in PCa serum as compared with BPH where MAGEB1 and PRKCZ were highly expressed. Also, p53 S15A and p53 S46A were found highly expressed in the disease control group. Statistical analysis by differential expression revealed twenty-four antigens as upregulated in PCa samples, while 11 were downregulated in comparison to BPH and DC (FDR = 0.01). FGFR2, COL6A1and CALM1 were verifiable biomarkers of PCa analysis using urinary shotgun proteomics. Functional pathway annotation of identified biomarkers revealed similar enrichment both at genomic and proteomic level and ethnic variations were observed. Cancer antigen arrays are emerging useful in potential diagnostic and immunotherapeutic antigen biomarker discovery. PMID:26885621
Shiran, Behrouz; Fallahi, Hossein; Ebrahimie, Esameil; Imani, Ali; Houshmand, Saadollah
2014-01-01
Almond (Prunus dulcis Mill.), one of the most important nut crops, requires chilling during winter to develop fruiting buds. However, early spring chilling and late spring frost may damage the reproductive tissues leading to reduction in the rate of productivity. Despite the importance of transcriptional changes and regulation, little is known about the almond’s transcriptome under the cold stress conditions. In the current reserch, we used RNA-seq technique to study the response of the reporuductive tissues of almond (anther and ovary) to frost stress. RNA sequencing resulted in more than 20 million reads from anther and ovary tissues of almond, individually. About 40,000 contigs were assembled and annotated de novo in each tissue. Profile of gene expression in ovary showed significant alterations in 5,112 genes, whereas in anther 6,926 genes were affected by freezing stress. Around two thousands of these genes were common altered genes in both ovary and anther libraries. Gene ontology indicated the involvement of differentially expressed (DE) genes, responding to freezing stress, in metabolic and cellular processes. qRT-PCR analysis verified the expression pattern of eight genes randomley selected from the DE genes. In conclusion, the almond gene index assembled in this study and the reported DE genes can provide great insights on responses of almond and other Prunus species to abiotic stresses. The obtained results from current research would add to the limited available information on almond and Rosaceae. Besides, the findings would be very useful for comparative studies as the number of DE genes reported here is much higher than that of any previous reports in this plant. PMID:25122458
Differentially delayed root proteome responses to salt stress in sugar cane varieties.
Pacheco, Cinthya Mirella; Pestana-Calsa, Maria Clara; Gozzo, Fabio Cesar; Mansur Custodio Nogueira, Rejane Jurema; Menossi, Marcelo; Calsa, Tercilio
2013-12-06
Soil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress. For that, a greenhouse experiment was established with four sugar cane varieties and two salt conditions, 0 mM (control) and 200 mM NaCl. Physiological and proteomics analyses were performed after 2 and 72 h of stress induction by salt. Distinct physiological responses to salinity stress were observed in the varieties and linked to tolerance mechanisms. In proteomic analysis, the roots soluble protein fraction was extracted, quantified, and analyzed through bidimensional electrophoresis. Gel images analyses were done computationally, where in each contrast only one variable was considered (salinity condition or variety). Differential spots were excised, digested by trypsin, and identified via mass spectrometry. The tolerant variety RB867515 showed the highest accumulation of proteins involved in growth, development, carbohydrate and energy metabolism, reactive oxygen species metabolization, protein protection, and membrane stabilization after 2 h of stress. On the other hand, the presence of these proteins in the sensitive variety was verified only in stress treatment after 72 h. These data indicate that these stress responses pathways play a role in the tolerance to salinity in sugar cane, and their effectiveness for phenotypical tolerance depends on early stress detection and activation of the coding genes expression.
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.
Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I
2011-03-01
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.
Gene expression changes during short day induced terminal bud formation in Norway spruce.
Asante, Daniel K A; Yakovlev, Igor A; Fossdal, Carl Gunnar; Holefors, Anna; Opseth, Lars; Olsen, Jorunn E; Junttila, Olavi; Johnsen, Øystein
2011-02-01
The molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries. Many genes with putative roles in protection against stress appeared differentially regulated under SD and LD, and also differed in transcript levels between 6 and 20 SDs. Of these, PaTFL1(TERMINAL FLOWER LIKE 1) showed strongly increased transcript levels at 6 SDs. PaCCCH(CCCH-TYPE ZINC FINGER) and PaCBF2&3(C-REPEAT BINDING FACTOR 2&3) showed a later response at 20 SDs, with increased and decreased transcript levels, respectively. For rhythmically expressed genes such as CBFs, such differences might represent a phase shift in peak expression, but might also suggest a putative role in response to SD. Multivariate analyses revealed strong differences in gene expression between LD, 6 SD and 20 SD. The robustness of the gene expression patterns was verified in 6 families differing in bud-set timing under natural light with gradually decreasing photoperiod. © 2010 Blackwell Publishing Ltd.
Locatelli, C; Fabbri, D; Torsi, G
2001-01-01
An empirical criterion for a possible classification of sea water quality is proposed. It is based on the knowledge of metal content in algae (Ulva Rigida) and clams (Tapes Philippinarum), two species present in marine ecosystems. The elements considered are Hg, Cu, Pb, Cd, Zn. The analytical technique employed is Differential Pulse Anodic Stripping Voltammetry (DPASV) in the case of Cu, Pb, Cd, Zn, while the determination of mercury is obtained by the Cold Vapour Atomic Absorption Spectroscopy (CV-AAS) technique with SnCl2 as reducing agent. The analytical procedure has been verified on three standard reference materials: Sea Water BCR-CRM 403, Ulva Lactuca BCR-CRM 279 and Mussel Tissue BCR-CRM 278. For all the elements, in addition to detection limits, accuracy and precision are given: the former, expressed as relative error (e), and the latter, expressed as relative standard deviation (Sr), were in all cases lower than 6%.
Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki
2014-01-01
Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.
Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury.
Kang, Soo-Kyung; Shin, Myung-Joo; Jung, Jin Sup; Kim, Yong Geun; Kim, Cheul-Hong
2006-08-01
Isolated rat adipose tissue-derived stromal cells (rATSCs) contain pluripotent cells that can be differentiated into a variety of cell lineages, including neural cells. Recent work has shown that ATSCs can make neurosphere-like clumps and differentiate into neuron-like cells expressing neuronal markers, but their therapeutic effect is unclear. Here we report that intravenous infusion of oligodendrocyte precursor cells (OPCs) derived from rATSC autograft cells sources improve motor function in rat models of spinal cord injury (SCI). After 4-5 weeks, transplanted rATSC-OPC cells survived and migrated into the injured region of SCI very efficiently (30-35%) and migrated cells were partially differentiated into neurons and oligodendrocyte. Also, we found some of the engrafted OPCs migrated and integrated in the kidney, brain, lung, and liver through the intravenous system. Behavioral analysis revealed the locomotor functions of OPC-autografted SCI rats were significantly restored. Efficient migration of intravenously engrafted rATSC-OPCs cells into SCI lesion suggests that SCI-induced chemotaxic factors facilitate migration of rATSC-OPCs. Here, we verified that engrafted rATSCs and SCI-induced chemotaxic factors indeed play an important role in proliferation, migration, and differentiation of endogeneous spinal cord-derived neural progenitor cells in the injured region. In transplantation paradigms, the interaction between engrafted rATSC-OPCs and endogeneous spinal cord-derived neuronal progenitor cells will be important in promoting healing through fate decisions, resulting in coordinated induction of cell migration and differentiation.
Verifying the Hanging Chain Model
ERIC Educational Resources Information Center
Karls, Michael A.
2013-01-01
The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…
Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo
2011-01-01
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257
Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.
Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae
2017-09-01
Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brunjes, Peter C.; Osterberg, Stephen K.
2015-01-01
Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex: they differ from each other and each is formed from a variable mosaic of neurons. The results suggest that the olfactory cortices are not merely a remnant architype of the primordial forebrain but varied and independent regions. PMID:26407299
Tsagmo Ngoune, Jean M.; Njiokou, Flobert; Loriod, Béatrice; Kame-Ngasse, Ginette; Fernandez-Nunez, Nicolas; Rioualen, Claire; van Helden, Jacques; Geiger, Anne
2017-01-01
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples. PMID:28804485
Lo Furno, Debora; Avola, Rosanna; Bonina, Francesco; Mannino, Giuliana
2016-01-01
The aim of this research was to assess the impact of a well-characterized extract from Citrus bergamia juice on adipogenesis and/or lipolysis using mesenchymal stem cells from human adipose tissue as a cell model. To evaluate the effects on adipogenesis, some cell cultures were treated with adipogenic medium plus 10 or 100 μg/mL of extract. To determine the properties on lipolysis, additional mesenchymal stem cells were cultured with adipogenic medium for 14 days and after this time added with Citrus bergamia for further 14 days. To verify adipogenic differentiation, oil red O staining at 7, 14, 21, and 28 days was performed. Moreover, the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), adipocytes fatty acid-binding protein (A-FABP), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL), 5′-adenosine monophosphate-activated protein kinase (AMPK)α1/2, and pAMPKα1/2 was evaluated by Western blot analysis and the release of glycerol by colorimetric assay. Citrus bergamia extract suppressed the accumulation of intracellular lipids in mesenchymal stem cells during adipogenic differentiation and promoted lipolysis by repressing the expression of adipogenic genes and activating lipolytic genes. Citrus bergamia extract could be a useful natural product for improving adipose mobilization in obesity-related disorders. PMID:27403151
Kopp, Christina; Hosseini, Afshin; Singh, Shiva P; Regenhard, Petra; Khalilvandi-Behroozyar, Hamed; Sauerwein, Helga; Mielenz, Manfred
2014-11-18
The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.
Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi
2012-11-01
Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.
Singh, Narendra P.; Singh, Udai P.; Nagarkatti, Prakash S.
2012-01-01
Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions. PMID:22888145
miR-146b-5p promotes the neural conversion of pluripotent stem cells by targeting Smad4
Zhang, Nianping; Lyu, Ying; Pan, Xuebing; Xu, Liping; Xuan, Aiguo; He, Xiaosong; Huang, Wandan; Long, Dahong
2017-01-01
Pluripotent stem cells (PSCs) are regarded as potential sources that provide specific neural cells for cell therapy in some nervous system diseases. However, the mechanisms underlying the neural differentiation of PSCs remain largely unknown. MicroRNAs (miRNAs or miRs) are a class of small non-protein-coding RNAs that act as critical regulatory molecules in many cellular processes. In this study, we found that miR-146b-5p expression was markedly increased following the neural induction of mouse embryonic stem cells (ESCs) or induced PSCs (iPSCs). In this study, to further identify the role of miR-146b-5p, we generated stable miR-146b-5p- overexpressing ESC and iPSC cell lines, and induced the differentiation of these cells by the adherent monolayer culture method. In the miR-146b-5p-overexpressing ESC- or iPSC- derived cultures, RT-qPCR analysis revealed that the mRNA expression levels of neuroectoderm markers, such as Sox1, Nestin and Pax6, were markedly increased, and flow cytometric analysis verified that the number of Nestin-positive cells was higher in the miR-146b-5p-overexpressing compared with the control cells. Mechanistically, the miR-146b-5p-overexpressing ESCs or iPSCs exhibited a significant reduction in Oct4 expression, which may be an explanation for these cells having a tendency to differentiate towards the neural lineage. Moreover, we confirmed that miR-146b-5p directly targeted Smad4 and negatively regulated the transforming growth factor (TGF)-β signaling pathway, which contributed to the neural commitment of PSCs. Collectively, our findings uncover the essential role of miR-146b-5p in the neural conversion of PSCs. PMID:28713933
Huang, Lei; Niu, Chenguang; Willard, Belinda; Zhao, Weimin; Liu, Lan; He, Wei; Wu, Tianwen; Yang, Shulin; Feng, Shutang; Mu, Yulian; Zheng, Lemin; Li, Kui
2015-04-15
Mesenchymal stem cells (MSCs) have the ability to proliferate in vivo with a large variety of differentiation potentials and therefore are widely used as an ideal material for cell therapy. MSCs derived from pig and human sources are similar in many aspects, such as cell immunophenotype and functional characteristics. However, differences in proteomics and the molecular mechanisms of cell functions between porcine bone marrow MSCs (BM-MSCs) and umbilical cord MSCs (UC-MSCs) are largely unknown. To the best of our knowledge, MSCs collected from different tissue have specific phenotype and differentiation ability in response to microenvironment, known as a niche. Porcine BM-MSCs and UC-MSCs were evaluated with flow cytometric and adipogenic and osteogenic differentiation analyses. We used isobaric tagging for relative and absolute quantitation (iTRAQ), combined with liquid chromatography-tandem mass spectrometry, to identify differentially expressed proteins (DEPs) between these two types of MSCs. Kyoto Encyclopedia of Genes and Genomes pathway and phenotype analyses were used to understand the links between cell migration ability and DEPs. Two separate iTRAQ experiments were conducted, identifying 95 DEPs (95% confidence interval). Five of these proteins were verified by Western blotting. These 95 DEPs were classified in terms of biological regulation, metabolic process, developmental process, immune system process, reproduction, death, growth, signaling, localization, response to stimulus, biological adhesion, and cellular component organization. Our study is the first to show results indicating that porcine BM-MSCs have a higher migration capability than UC-MSCs. Finally, one of the DEPs, Vimentin, was verified to have a positive role in MSC migration. These results represent the first attempt to use proteomics specifically targeted to porcine MSCs of different tissues. The identified components should help reveal a variety of tissue-specific functions in tissue-derived MSC populations and could serve as important tools for the regeneration of particular tissues in future stem cell-based tissue engineering studies using animal models.
Identification of the Key Genes and Pathways in Esophageal Carcinoma.
Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang
2016-01-01
Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.
The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16
Adamski, Vivian; Mentlein, Rolf; Lucius, Ralph; Synowitz, Michael; Held-Feindt, Janka; Hattermann, Kirsten
2017-01-01
Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo. PMID:28698473
The Chemokine Receptor CXCR6 Evokes Reverse Signaling via the Transmembrane Chemokine CXCL16.
Adamski, Vivian; Mentlein, Rolf; Lucius, Ralph; Synowitz, Michael; Held-Feindt, Janka; Hattermann, Kirsten
2017-07-08
Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo.
Differentiating Impacts of Watershed Development from Superfund Sites on Stream Macroinvertebrates
Urbanization effect models were developed and verified at whole watershed scales to predict and differentiate between effects on aquatic life from diffuse, non-point source (NPS) urbanization in the watershed and effects of known local, site-specific origin point sources, contami...
Kim, Sung-Eun; Choo, Jinsil; Yoon, Joon; Chu, Jae Ryang; Bae, Yun Jung; Lee, Seungyeoun; Park, Taesung; Sung, Mi-Kyung
2017-01-01
Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn's disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P < 0.001) and insulin (P < 0.01) than those in the ND group, whereas serum IGF-1 and adiponectin concentrations did not differ between the two dietary groups. Among differentially expressed genes affected by HFD, 135, 128, 110, and 341 genes were associated with serum levels of leptin, insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed for the prevention, early detection, and treatment of colon diseases.
Yoon, Joon; Chu, Jae Ryang; Bae, Yun Jung; Lee, Seungyeoun; Park, Taesung; Sung, Mi-Kyung
2017-01-01
Obesity-induced chronic inflammation is known to increase the risk of ulcerative colitis, Crohn’s disease, and colorectal cancer. Accumulating evidence suggests that leptin and insulin are key molecules linking obesity with diseases of the lower intestine. Here, we identified serum phenotype-associated genes in the colon of diet-induced obese mice as early biomarkers of obesity-associated colonic diseases. C57BL/6J mice were fed with either normal diet (ND, 15% of fat calories) or high-fat diet (HFD, 45% of fat calories) for 8 weeks. Serum concentrations of insulin, insulin-like growth factor-1 (IGF-1), leptin, and adiponectin were measured as obesity-related phenotypic markers. Genome-wide gene expression profiles of colon tissue were determined, followed by statistical analyses to detect differentially expressed and serum phenotype-associated genes. HFD-fed mice showed higher serum concentrations of leptin (P < 0.001) and insulin (P < 0.01) than those in the ND group, whereas serum IGF-1 and adiponectin concentrations did not differ between the two dietary groups. Among differentially expressed genes affected by HFD, 135, 128, 110, and 341 genes were associated with serum levels of leptin, insulin, IGF-1, and adiponectin, respectively. We identified 17 leptin-associated genes and 4 insulin-associated genes that inversely responded to HFD and ND. Among these, leptin-associated Peli3 (Pellino E3 ubiquitin protein ligase family member 3), Creb1 (cAMP responsive element binding protein 1), and Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2, autotaxin) and insulin-associated Centg1 (AGAP2, ArfGAP with GTPase domain) are reported to play a role either in obesity or colonic diseases. mRNA expression of these genes was validated by RT-qPCR. Our data suggest Peli3, Creb1, Enpp2, and Centg1 as potential early biomarker candidates for obesity-induced pathophysiological changes in the colon. Future studies verifying the function of these candidates are needed for the prevention, early detection, and treatment of colon diseases. PMID:28170448
Seale, Lucia A.; Gilman, Christy L.; Moorman, Benjamin P.; Berry, Marla J.; Grau, E. Gordon; Seale, Andre P.
2014-01-01
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity. PMID:24854764
Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells
Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong
2016-01-01
Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event associated with alcohol-related peripheral neuropathy of an enhanced nociceptive response. PMID:27682028
NASA Astrophysics Data System (ADS)
Lesiuk, Michał; Moszynski, Robert
2014-12-01
In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
He, Ying-Ying; Wang, Yi-Bin; Zheng, Zhou; Liu, Fang-Ming; An, Mei-Ling; He, Xiao-Dong; Qu, Chang-Feng; Li, Lu-Lu; Miao, Jin-Lai
2017-08-01
Calmodulin (CaM) is a Ca 2+ -binding protein that plays a role in several Ca 2+ signaling pathways, which dynamically regulates the activities of hundreds of proteins. The ice alga Chlamydomonas sp. ICE-L, which has the ability to adapt to extreme polar conditions, is a crucial primary producer in Antarctic ecosystem. This study hypothesized that Cam helps the ICE-L to adapt to the fluctuating conditions in the polar environment. It first verified the overall length of Cam, through RT-PCR and RACE-PCR, based on partial Cam transcriptome library of ICE-L. Then, the nucleotide and predicted amino acid sequences were, respectively, analyzed by various bioinformatics approaches to gain more insights into the computed physicochemical properties of the CaM. Potential involvements of Cam in responding to certain stimuli (i.e., UVB radiation, high salinity, and temperature) were investigated by differential expression, measuring its transcription levels by means of quantitative RT-PCR. Results showed that CaM was indeed inducible and regulated by high UVB radiation, high salinity, and nonoptimal temperature conditions. Different conditions had different expression tendencies, which provided an important basis for investigating the adaptation mechanism of Cam in ICE-L.
Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy
NASA Astrophysics Data System (ADS)
Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.
2017-02-01
A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.
Metabonomics reveals metabolite changes in biliary atresia infants.
Zhou, Kejun; Xie, Guoxiang; Wang, Jun; Zhao, Aihua; Liu, Jiajian; Su, Mingming; Ni, Yan; Zhou, Ying; Pan, Weihua; Che, Yanran; Zhang, Ting; Xiao, Yongtao; Wang, Yang; Wen, Jie; Jia, Wei; Cai, Wei
2015-06-05
Biliary atresia (BA) is a rare neonatal cholestatic disorder caused by obstruction of extra- and intra-hepatic bile ducts. If untreated, progressive liver cirrhosis will lead to death within 2 years. Early diagnosis and operation improve the outcome significantly. Infants with neonatal hepatitis syndrome (NHS) present similar symptoms, confounding the early diagnosis of BA. The lack of noninvasive diagnostic methods to differentiate BA from NHS greatly delays the surgery of BA infants, thus deteriorating the outcome. Here we performed a metabolomics study in plasma of BA, NHS, and healthy infants using gas chromatography-time-of-flight mass spectrometry. Scores plots of orthogonal partial least-squares discriminant analysis clearly separated BA from NHS and healthy infants. Eighteen metabolites were found to be differentially expressed between BA and NHS, among which seven (l-glutamic acid, l-ornithine, l-isoleucine, l-lysine, l-valine, l-tryptophan, and l-serine) were amino acids. The altered amino acids were quantitatively verified using ultraperformance liquid chromatography-tandem mass spectrometry. Ingenuity pathway analysis revealed the network of "Cellular Function and Maintenance, Hepatic System Development and Function, Neurological Disease" was altered most significantly. This study suggests that plasma metabolic profiling has great potential in differentiating BA from NHS, and amino acid metabolism is significantly different between the two diseases.
Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset
2012-01-01
Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071
Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann
2015-01-01
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
Kim, Sangsung; Park, Hun-Jun; Byun, Jaemin; Cho, Kyu-Won; Saafir, Talib; Song, Ming-Ke; Yu, Shan Ping; Wagner, Mary; Bao, Gang; Yoon, Young-Sup
2013-01-01
Background While methods for generating cardiomyocytes (CMs) from pluripotent stem cells (PSCs) have been reported, current methods produce heterogeneous mixtures of CMs and non-CM cells. Here, we report an entirely novel system in which PSC-derived CMs are purified by CM-specific molecular beacons (MBs). MBs are nano-scale probes that emit a fluorescence signal when hybridized to target mRNAs. Method and Results Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among five MBs, a MB targeting myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 CMs, a mouse CM cell line, but < 3% of four non-CM cell types in flow cytometry analysis, indicating that MHC1-MB is specific for identifying CMs. We delivered MHC1-MB into cardiomyogenically differentiated PSCs through nucleofection. The detection rate of CMs was similar to the percentages of cardiac troponin T (TNNT2) or cardiac troponin I (TNNI3)-positive CMs, supporting the specificity of MBs. Finally, MHC1-MB-positive cells were FACS-sorted from mouse and human PSC differentiating cultures and ~97% cells expressed TNNT2- or TNNI3 determined by flow cytometry. These MB-based sorted cells maintained their CM characteristics verified by spontaneous beating, electrophysiologic studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified CMs improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. Conclusions We developed a novel CM selection system that allows production of highly purified CMs. These purified CMs and this system can be valuable for cell therapy and drug discovery. PMID:23995537
Ban, Kiwon; Wile, Brian; Kim, Sangsung; Park, Hun-Jun; Byun, Jaemin; Cho, Kyu-Won; Saafir, Talib; Song, Ming-Ke; Yu, Shan Ping; Wagner, Mary; Bao, Gang; Yoon, Young-Sup
2013-10-22
Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.
Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S
2014-09-01
Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.
Zhu, Hong; Xia, Wei; Mo, Xing-Bo; Lin, Xiang; Qiu, Ying-Hua; Yi, Neng-Jun; Zhang, Yong-Hong; Deng, Fei-Yan; Lei, Shu-Feng
2016-01-01
Rheumatoid arthritis (RA) is a complex autoimmune disease. Using a gene-based association research strategy, the present study aims to detect unknown susceptibility to RA and to address the ethnic differences in genetic susceptibility to RA between European and Asian populations. Gene-based association analyses were performed with KGG 2.5 by using publicly available large RA datasets (14,361 RA cases and 43,923 controls of European subjects, 4,873 RA cases and 17,642 controls of Asian Subjects). For the newly identified RA-associated genes, gene set enrichment analyses and protein-protein interactions analyses were carried out with DAVID and STRING version 10.0, respectively. Differential expression verification was conducted using 4 GEO datasets. The expression levels of three selected 'highly verified' genes were measured by ELISA among our in-house RA cases and controls. A total of 221 RA-associated genes were newly identified by gene-based association study, including 71'overlapped', 76 'European-specific' and 74 'Asian-specific' genes. Among them, 105 genes had significant differential expressions between RA patients and health controls at least in one dataset, especially for 20 genes including 11 'overlapped' (ABCF1, FLOT1, HLA-F, IER3, TUBB, ZKSCAN4, BTN3A3, HSP90AB1, CUTA, BRD2, HLA-DMA), 5 'European-specific' (PHTF1, RPS18, BAK1, TNFRSF14, SUOX) and 4 'Asian-specific' (RNASET2, HFE, BTN2A2, MAPK13) genes whose differential expressions were significant at least in three datasets. The protein expressions of two selected genes FLOT1 (P value = 1.70E-02) and HLA-DMA (P value = 4.70E-02) in plasma were significantly different in our in-house samples. Our study identified 221 novel RA-associated genes and especially highlighted the importance of 20 candidate genes on RA. The results addressed ethnic genetic background differences for RA susceptibility between European and Asian populations and detected a long list of overlapped or ethnic specific RA genes. The study not only greatly increases our understanding of genetic susceptibility to RA, but also provides important insights into the ethno-genetic homogeneity and heterogeneity of RA in both ethnicities.
MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1.
Hou, Qiuke; Huang, Yongquan; Zhu, Shuilian; Li, Peiwu; Chen, Xinlin; Hou, Zhengkun; Liu, Fengbin
2017-01-01
Irritable bowel syndrome with diarrhoea (IBS-D) is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs) are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i) identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii) verify in vitro whether occludin (OCLN) and zonula occludens 1 (ZO1/TJP1) were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii) determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs) and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further studies confirmed that OCLN and ZO1 were direct targets of miR-144. Additionally, intestinal hyperpermeability was enhanced by miR-144 up-regulation and attenuated by miR-144 down-regulation in IBS-D rat colonic epithelial cells. Moreover, rescue experiments showed that overexpression of OCLN and ZO1 significantly eliminated the inhibitory effect of miR-144, which showed a stronger effect on the attenuation of intestinal hyperpermeability. Up-regulation of miR-144 could promote intestinal hyperpermeability and impair the protective effect of the epithelial barrier by directly targeting OCLN and ZO1. miR-144 is likely a key regulator of intestinal hyperpermeability and could be a potential therapeutic target for IBS-D. © 2017 The Author(s). Published by S. Karger AG, Basel.
Morsczeck, C
2006-02-01
Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.
Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko
2015-01-01
Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610
Altered expression of CD45 isoforms in differentiation of acute myeloid leukemia.
Miyachi, H; Tanaka, Y; Gondo, K; Kawada, T; Kato, S; Sasao, T; Hotta, T; Oshima, S; Ando, Y
1999-11-01
Specific expression of different CD45 isoforms can be seen in various stages of differentiation of normal nucleated hematopoietic cells. Association of membrane expression of CD45 isoforms and differential levels of leukemia cells was studied in 91 cases with de novo acute myeloid leukemia (AML). Membrane expression of CD45RA and CD45RO was analyzed by flow cytometry and their expression patterns were compared with AML subtypes classified according to the French-American-British (FAB) classification. CD45RA was essentially expressed in all of the FAB myelocytic subtypes (M0-M3). Its expression in percentage was lower in the most differentiated subtype of AML (M3) when compared with other myelocytic subtypes. CD45RO expression was rarely observed in cases with myelocytic subtypes (1/56 cases of M0, M1, M2, and M3) except for the minimally differentiated myelocytic subtype (M0) or those with potential for differentiation to T-cell lineage where three of 12 cases showed CD45RO expression. When leukemia cells of an M3 case were differentiated to mature granulocytes by treatment of all-trans-retinoic acid, they showed increasing expression of CD45RO. In subtypes with a monocytic component (M4 and M5), both of CD45RA and CD45RO expression were observed and mutually exclusive. When 10 cases of M5 were subdivided by the differential level into undifferentiated (M5a) and differentiated monocytic leukemia (M5b), expression of CD45RA and CD45RO was strictly restricted to cases with M5a and M5b, respectively. These results suggest that CD45 isoform expression in AML characterizes differential levels both in myelocytic and monocytic lineages and specifically disturbed in each subtype. The assessment of CD45 isoform expression appears to provide an insight on biological characteristics and a useful supplementary test for differential diagnosis of AML subtypes. Copyright 1999 Wiley-Liss, Inc.
Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui
2016-01-01
Objectives To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Methods Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). Results DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05) higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. Conclusions The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions. PMID:27846214
Li, Li; Zhang, Jiangyu; Deng, Qingshan; Li, Jieming; Li, Zhengfen; Xiao, Yao; Hu, Shuiwang; Li, Tiantian; Tan, Qiuxiao; Li, Xiaofang; Luo, Bingshu; Mo, Hui
2016-01-01
To identify differential protein expression pattern associated with polycystic ovary syndrome (PCOS). Twenty women were recruited for the study, ten with PCOS as a test group and ten without PCOS as a control group. Differential in-gel electrophoresis (DIGE) analysis and mass spectroscopy were employed to identify proteins that were differentially expressed between the PCOS and normal ovaries. The differentially expressed proteins were further validated by western blot (WB) and immunohistochemistry (IHC). DIGE analysis revealed eighteen differentially expressed proteins in the PCOS ovaries of which thirteen were upregulated, and five downregulated. WB and IHC confirmed the differential expression of membrane-associated progesterone receptor component 1 (PGRMC1), retinol-binding protein 1 (RBP1), heat shock protein 90B1, calmodulin 1, annexin A6, and tropomyosin 2. Also, WB analysis revealed significantly (P<0.05) higher expression of PGRMC1 and RBP1 in PCOS ovaries as compared to the normal ovaries. The differential expression of the proteins was also validated by IHC. The present study identified novel differentially expressed proteins in the ovarian tissues of women with PCOS that can serve as potential biomarkers for the diagnosis and development of novel therapeutics for the treatment of PCOS using molecular interventions.
Solving constant-coefficient differential equations with dielectric metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Weixuan; Qu, Che; Zhang, Xiangdong
2016-07-01
Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160-3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.
Cloning of zebrafish Mustn1 orthologs and their expression during early development.
Camarata, Troy; Vasilyev, Aleksandr; Hadjiargyrou, Michael
2016-11-15
Mustn1 is a small nuclear protein that is involved in the development and regeneration of the musculoskeletal system. Previous work established a role for Mustn1 in myogenic and chondrogenic differentiation. In addition, recent evidence suggests a potential role for Mustn1 in cilia function in zebrafish. A detailed study of Mustn1 expression has yet to be conducted in zebrafish. As such, we report herein the cloning of the zebrafish Mustn1 orthologs, mustn1a and mustn1b, and their expression during zebrafish embryonic and larval development. Results indicate a 44% nucleotide identity between the two paralogs. Phylogenetic analysis further confirmed that the Mustn1a and 1b predicted proteins were highly related to other vertebrate members of the Mustn1 protein family. Whole mount in situ hybridization revealed expression of both mustn1a and 1b at the 7-somite stage through 72hpf in structures such as Kupffer's vesicle, segmental mesoderm, head structures, and otic vesicle. Additionally, in 5day old larva, mustn1a and 1b expression is detected in the neurocranium, otic capsule, and the gut. Although both were expressed in the neurocranium, mustn1a was localized in the hypophyseal fenestra whereas mustn1b was found near the posterior basicapsular commissure. mustn1b also displayed expression in the ceratohyal and ceratobranchial elements of the pharyngeal skeleton. These expression patterns were verified temporally by q-PCR analysis. Taken together, we conclude that Mustn1 expression is conserved in vertebrates and that the variations in expression of the two zebrafish paralogs suggest different modes of molecular regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Wen, Jing; Luo, Kongjia; Liu, Hui; Liu, Shiliang; Lin, Guangrong; Hu, Yi; Zhang, Xu; Wang, Geng; Chen, Yuping; Chen, Zhijian; Li, Yi; Lin, Ting; Xie, Xiuying; Liu, Mengzhong; Wang, Huiyun; Yang, Hong; Fu, Jianhua
2016-05-01
To identify miRNA markers useful for esophageal squamous cell carcinoma (ESCC) neoadjuvant chemoradiotherapy (neo-CRT) response prediction. Neo-CRT followed by surgery improves ESCC patients' survival compared with surgery alone. However, CRT outcomes are heterogeneous, and no current methods can predict CRT responses. Differentially expressed miRNAs between ESCC pathological responders and nonresponders after neo-CRT were identified by miRNA profiling and verified by real-time quantitative polymerase chain reaction (qPCR) of 27 ESCCs in the training set. Several class prediction algorithms were used to build the response-classifying models with the qPCR data. Predictive powers of the models were further assessed with a second set of 79 ESCCs. Ten miRNAs with greater than a 1.5-fold change between pathological responders and nonresponders were identified and verified, respectively. A support vector machine (SVM) prediction model, composed of 4 miRNAs (miR-145-5p, miR-152, miR-193b-3p, and miR-376a-3p), were developed. It provided overall accuracies of 100% and 87.3% for discriminating pathological responders and nonresponders in the training and external validation sets, respectively. In multivariate analysis, the subgroup determined by the SVM model was the only independent factor significantly associated with neo-CRT response in the external validation sets. Combined qPCR of the 4 miRNAs provides the possibility of ESCC neo-CRT response prediction, which may facilitate individualized ESCC treatment. Further prospective validation in larger independent cohorts is necessary to fully assess its predictive power.
Wang, Anping; Zhang, Guibin
2017-11-01
The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in 'protein processing in endoplasmic reticulum', which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.
Colorectal tumor molecular phenotype and miRNA: expression profiles and prognosis.
Slattery, Martha L; Herrick, Jennifer S; Mullany, Lila E; Wolff, Erica; Hoffman, Michael D; Pellatt, Daniel F; Stevens, John R; Wolff, Roger K
2016-08-01
MiRNAs regulate gene expression by post-transcriptionally suppressing mRNA translation or by causing mRNA degradation. It has been proposed that unique miRNAs influence specific tumor molecular phenotype. In this paper, we test the hypotheses that miRNA expression differs by tumor molecular phenotype and that those differences may influence prognosis. Data come from population-based studies of colorectal cancer conducted in Utah and the Northern California Kaiser Permanente Medical Care Program. A total of 1893 carcinoma samples were run on the Agilent Human miRNA Microarray V19.0 containing 2006 miRNAs. We assessed differences in miRNA expression between TP53-mutated and non-mutated, KRAS-mutated and non-mutated, BRAF-mutated and non-mutated, CpG island methylator phenotype (CIMP) high and CIMP low, and microsatellite instability (MSI) and microsatellite stable (MSS) colon and rectal tumors. Using a Cox proportional hazard model we evaluated if those miRNAs differentially expressed by tumor phenotype influenced survival after adjusting for age, sex, and AJCC stage. There were 22 differentially expressed miRNAs for TP53-mutated colon tumors and 5 for TP53-mutated rectal tumors with a fold change of >1.49 (or <0.67). Additionally, 13 miRNAS were differentially expressed for KRAS-mutated rectal tumors, 8 differentially expressed miRNAs for colon CIMP high tumors, and 2 differentially expressed miRNAs for BRAF-mutated colon tumors. The majority of differentially expressed miRNAS were observed between MSI and MSS tumors (94 differentially expressed miRNAs for colon; 41 differentially expressed miRNAs for rectal tumors). Of these miRNAs differentially expressed between MSI and MSS tumors, the majority were downregulated. Ten of the differentially expressed miRNAs were associated with survival; after adjustment for MSI status, five miRNAS, miR-196b-5p, miR-31-5p, miR-99b-5p, miR-636, and miR-192-3p, were significantly associated with survival. In summary, it appears that the majority of miRNAs that are differentially expressed by tumor molecular phenotype are MSI tumors. However, these miRNAs appear to have minimal effect on prognosis.
Liu, Xiaoxiang; Shen, Bimiao; Du, Peng; Wang, Nan; Wang, Jiaxue; Li, Jianrong
2017-01-01
Epigallocatechin gallate (EGCG) is a main constituent of green tea polyphenols that are widely used as food preservatives and are considered to be safe for consumption. However, the underlying antimicrobial mechanism of EGCG and the bacterial response to EGCG are not clearly understood. In the present study, a genome-wide transcriptional analysis of a typical spoilage bacterium, Pseudomonas fluorescens that responded to EGCG was performed using RNA-seq technology. A total of 26,365,414 and 23,287,092 clean reads were generated from P. fluorescens treated with or without 1 mM EGCG and the clean reads were aligned to the reference genome. Differential expression analysis revealed 291 upregulated genes and 134 downregulated genes and the differentially expressed genes (DEGs) were verified using RT-qPCR. Most of the DGEs involved in iron uptake, antioxidation, DNA repair, efflux system, cell envelope and cell-surface component synthesis were significantly upregulated by EGCG treatment, while most genes associated with energy production were downregulated. These transcriptomic changes are likely to be adaptive responses of P. fluorescens to iron limitation and oxidative stress, as well as DNA and envelope damage caused by EGCG. The expression of specific genes encoding the extra-cytoplasmic function sigma factor (PvdS, RpoE and AlgU) and the two-component sensor histidine kinase (BaeS and RpfG) were markedly changed by EGCG treatment, which may play important roles in regulating the stress responses of P. fluorescens to EGCG. The present data provides important insights into the molecular action of EGCG and the possible cross-resistance mediated by EGCG on P. fluorescens, which may ultimately contribute to the optimal application of green tea polyphenols in food preservation. PMID:28545064
Martínez-Martínez, Ernesto; Ibarrola, Jaime; Lachén-Montes, Mercedes; Fernández-Celis, Amaya; Jaisser, Frederic; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; López-Andrés, Natalia
2017-08-23
Aldosterone (Aldo) could induce cardiac fibrosis, a hallmark of heart disease. Aldo direct effects on collagen production in cardiac fibroblasts remain controversial. Our aim is to characterize changes in the proteome of adult human cardiac fibroblasts treated with Aldo to identify new proteins altered that might be new therapeutic targets in cardiovascular diseases. Aldo increased collagens expressions in human cardiac fibroblasts. Complementary, using a quantitative proteomic approach, 30 proteins were found differentially expressed between control and Aldo-treated cardiac fibroblasts. Among these proteins, 7 were up-regulated and 23 were down-regulated by Aldo. From the up-regulated proteins, collagen type I, collagen type III, collagen type VI and S100-A11 were verified by Western blot. Moreover, protein interaction networks revealed a functional link between a third of Aldo-modulated proteome and specific survival routes. S100-A11 was identified as a possible link between Aldo and collagen. Interestingly, CRISPR/Cas9-mediated knock-down of S100-A11 blocked Aldo-induced collagen production in human cardiac fibroblasts. In adult human cardiac fibroblasts treated with Aldo, proteomic analyses revealed an increase in collagen production. S100-A11 was identified as a new regulator of Aldo-induced collagen production in human cardiac fibroblasts. These data could identify new candidate proteins for the treatment of cardiac fibrosis in cardiovascular diseases. S100-A11 is identified by a proteomic approach as a novel regulator of Aldosterone-induced collagen production in human cardiac fibroblasts. Our data could identify new candidate proteins of interest for the treatment of cardiac fibrosis in cardiovascular diseases. Copyright © 2017. Published by Elsevier B.V.
Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani
2018-05-07
Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.
Du, Yang; Campbell, Janee L; Nalbant, Demet; Youn, Hyewon; Bass, Ann C Hughes; Cobos, Everardo; Tsai, Schickwann; Keller, Jonathan R; Williams, Simon C
2002-07-01
The detailed examination of the molecular events that control the early stages of myeloid differentiation has been hampered by the relative scarcity of hematopoietic stem cells and the lack of suitable cell line models. In this study, we examined the expression of several myeloid and nonmyeloid genes in the murine EML hematopoietic stem cell line. Expression patterns for 19 different genes were examined by Northern blotting and RT-PCR in RNA samples from EML, a variety of other immortalized cell lines, and purified murine hematopoietic stem cells. Representational difference analysis (RDA) was performed to identify differentially expressed genes in EML. Expression patterns of genes encoding transcription factors (four members of the C/EBP family, GATA-1, GATA-2, PU.1, CBFbeta, SCL, and c-myb) in EML were examined and were consistent with the proposed functions of these proteins in hematopoietic differentiation. Expression levels of three markers of terminal myeloid differentiation (neutrophil elastase, proteinase 3, and Mac-1) were highest in EML cells at the later stages of differentiation. In a search for genes that were differentially expressed in EML cells during myeloid differentiation, six cDNAs were isolated. These included three known genes (lysozyme, histidine decarboxylase, and tryptophan hydroxylase) and three novel genes. Expression patterns of known genes in differentiating EML cells accurately reflected their expected expression patterns based on previous studies. The identification of three novel genes, two of which encode proteins that may act as regulators of hematopoietic differentiation, suggests that EML is a useful model system for the molecular analysis of hematopoietic differentiation.
Xu, Hua-Li; Xu, Shi-Yuan; Mo, Kai
2017-12-20
To investigate the changes in the transcription of protein arginine methylation enzyme family genes in the dorsal root ganglia (DRG) following peripheral nerve injury in mice. C57BL6 mouse models of neuropathic pain induced by peripheral nerve injury were established by bilateral L4 spinal nerve ligation (SNL). At 7 days after SNL or sham operation, the DRG tissue was collected for transcriptional analysis of 9 protein arginine methylation enzyme genes (Prmt1?3, Carm1, and Prmt5?9) using RNA?Seq to identify the differentially expressed genes in the injured DRGs. We also established mouse models of lateral L4 SNL and models of chronic constriction injury (CCI) of the sciatic nerve and tested the paw withdrawal frequency (PWF) in response to mechanical stimulation and paw withdrawal latency (PWL) in response to thermal stimulation on 0, 3, 7 and 14 days after SNL or CCI; the expressions of the differentially expressed genes in the injured DRGs were verified in the two models using RT?qPCR. Among the 9 protein arginine methylation enzyme family genes that were tissue?specifically expressed in the DRG, Prmt2 and Prmt3 showed the highest and Prmt6 showed the lowest basal expression. Compared with the sham?operated mice group, the mice receiving SNL exhibited upregulated Carm1 gene transcription (by 1.7 folds) but downregulated Prmt5, Prmt8 and Prmt9 transcription in the injured DRG (Prmt8 gene showed the most significant down?regulation by 16.3 folds). In mouse models of SNL and CCI, Carm1 gene expression increased progressively with time while Prmt8 transcription was obviously lowered on days 3, 7 and 14 after the injury; the transcription levels of Prmt1, Prmt5 and Prmt9 presented with no significant changes following the injuries. Both SNL and CCI induced mechanical allodynia and thermal hypersensitivities in the mice shown by increased PWF and decreased PWL on days 3, 7 and 14 after the injuries. Periphery nerve injury induces Carm1 upregulation and Prmt8 downregulation in the injured DRG in mice, which sheds light on new targets for treatment of neuropathic pain.
Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying
2015-02-01
In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.
Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses.
Khayal, Layal Abo; Grünhagen, Johannes; Provazník, Ivo; Mundlos, Stefan; Kornak, Uwe; Robinson, Peter N; Ott, Claus-Eric
2018-04-11
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro
2009-02-20
Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein {delta} expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activatormore » of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor {gamma} expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-{alpha} did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.« less
Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney
Walsh, Joanne; Jenkins, Rosalind E.; Wong, Michael H. L.; Rowe, Cliff; Ricci, Emanuele; Ressel, Lorenzo; Fang, Yongxiang; Demougin, Philippe; Vukojevic, Vanja; O’Neill, Paul M.; Goldring, Christopher E.; Kitteringham, Neil R.; Park, B. Kevin; Odermatt, Alex; Copple, Ian M.
2015-01-01
The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 hours, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared to wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared to vehicle control. In light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target. PMID:26422507
Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Aigner, Bernhard; Kemter, Elisabeth
2014-01-01
Uromodulin-associated kidney disease (UAKD) is a hereditary progressive renal disease which can lead to renal failure and requires renal replacement therapy. UAKD belongs to the endoplasmic reticulum storage diseases due to maturation defect of mutant uromodulin and its retention in the enlarged endoplasmic reticulum in the cells of the thick ascending limb of Henle's loop (TALH). Dysfunction of TALH represents the key pathogenic mechanism of UAKD causing the clinical symptoms of this disease. However, the molecular alterations underlying UAKD are not well understood. In this study, transcriptome profiling of whole kidneys of two mouse models of UAKD, UmodA227T and UmodC93F, was performed. Genes differentially abundant in UAKD affected kidneys of both Umod mutant lines at different disease stages were identified and verified by RT-qPCR. Additionally, differential protein abundances of SCD1 and ANGPTL7 were validated by immunohistochemistry and Western blot analysis. ANGPTL7 expression was down-regulated in TALH cells of Umod mutant mice which is the site of the mutant uromodulin maturation defect. SCD1 was expressed selectively in the S3 segment of proximal tubule cells, and SCD1 abundance was increased in UAKD affected kidneys. This finding demonstrates that a cross talk between two functionally distinct tubular segments of the kidney, the TALH segment and the S3 segment of proximal tubule, exists.
Kopp, Christina; Hosseini, Afshin; Singh, Shiva P.; Regenhard, Petra; Khalilvandi-Behroozyar, Hamed; Sauerwein, Helga; Mielenz, Manfred
2014-01-01
The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows. PMID:25411802
NASA Astrophysics Data System (ADS)
Li, Wei-Yi; Zhang, Qi-Chang; Wang, Wei
2010-06-01
Based on the Silnikov criterion, this paper studies a chaotic system of cubic polynomial ordinary differential equations in three dimensions. Using the Cardano formula, it obtains the exact range of the value of the parameter corresponding to chaos by means of the centre manifold theory and the method of multiple scales combined with Floque theory. By calculating the manifold near the equilibrium point, the series expression of the homoclinic orbit is also obtained. The space trajectory and Lyapunov exponent are investigated via numerical simulation, which shows that there is a route to chaos through period-doubling bifurcation and that chaotic attractors exist in the system. The results obtained here mean that chaos occurred in the exact range given in this paper. Numerical simulations also verify the analytical results.
Explicitly represented polygon wall boundary model for the explicit MPS method
NASA Astrophysics Data System (ADS)
Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori
2015-05-01
This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.
Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.
2010-01-01
Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855
Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai
2011-07-15
Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less
A Survey for Novel Imprinted Genes in the Mouse Placenta by mRNA-seq
Wang, Xu; Soloway, Paul D.; Clark, Andrew G.
2011-01-01
Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared. PMID:21705755
Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma
Navarro, Antonia; Yin, Ping; Monsivais, Diana; Lin, Simon M.; Du, Pan; Wei, Jian-Jun; Bulun, Serdar E.
2012-01-01
Background Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown. Principal Findings We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels. Conclusions These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women. PMID:22428009
hsa-miR-135a-1 inhibits prostate cancer cell growth and migration by targeting EGFR.
Xu, Bin; Tao, Tao; Wang, Yiduo; Fang, Fang; Huang, Yeqing; Chen, Shuqiu; Zhu, Weidong; Chen, Ming
2016-10-01
Prostate cancer is one of the leading causes of death in men worldwide. Differentially expressed microRNAs (miRNAs) are associated with metastatic prostate cancer. However, their potential roles for affecting prostate cancer initiation and progression remain largely unknown. Here, we examined the aberrant expression profiles of miRNAs in human metastatic prostate cancer tissues. We further validated our miRNA expression data using two large, independent clinical prostate cancer datasets from the Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA). Our data support a model in which hsa-miR-135-1 acts as a potential tumor suppressor in metastatic prostate cancer. First, its downregulation was positively correlated with late TNM stage, high Gleason score, and adverse prognosis. Second, cell growth, cell cycle progression, cell migration and invasion, and xenograft tumor formation were dramatically inhibited by miR-135a overexpression. Third, in the microarray gene expression data analysis using Gene Set Enrichment Analysis (GSEA), Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis, Ingenuity Pathway Analysis (IPA), and Oncomine concept analysis, we showed that miR-135a targets multiple oncogenic pathways including epidermal growth factor receptor (EGFR), which we verified using functional experimental assays. These results help advance our understanding of the function of miRNAs in metastatic prostate cancer and provide a basis for further clinical investigation.
Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium.
Wade, James B; Fang, Liang; Coleman, Richard A; Liu, Jie; Grimm, P Richard; Wang, Tong; Welling, Paul A
2011-06-01
ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verified to be highly specific, using ROMK knockout mice as a control. Characterization with segmental markers revealed a more extensive pattern of ROMK expression along the entire distal nephron than previously thought, localizing to distal convoluted tubule regions, DCT1 and DCT2; the connecting tubule (CNT); and cortical collecting duct (CD). ROMK was diffusely distributed in intracellular compartments and at the apical membrane of each tubular region. Apical labeling was significantly increased by high-K diet in DCT2, CNT1, CNT2, and CD (P < 0.05) but not in DCT1. Consistent with the large increase in apical ROMK, dramatically increased mature glycosylation was observed following dietary potassium augmentation. We conclude 1) our new antibody provides a unique tool to characterize ROMK channel localization and expression and 2) high-K diet causes a large increase in apical expression of ROMK in DCT2, CNT, and CD but not in DCT1, indicating that different regulatory mechanisms are involved in K diet-regulated ROMK channel functions in the distal nephron.
Zhang, Guo-Liang; Song, Jun-Lin; Zhou, Yi; Zhang, Rui-Qian; Cheng, Shun-Feng; Sun, Xiao-Feng; Qin, Guo-Qing; Shen, Wei; Li, Lan
2018-07-01
Zearalenone (ZEA), a natural contaminant found in feed, has been shown to have a negative impact on domestic animal reproduction, particularly in pigs. There are species-specific differences in the ZEA-induced toxicity pattern. Here, we investigated the different biological effects of ZEA exposure on porcine and mouse granulosa cells, using RNA-seq analysis. We treated murine and porcine granulosa cells with 10 μM and 30 μM ZEA during 72 h of culturing, in vitro. The results showed that 10 μM ZEA exposure significantly altered mitosis associated genes in porcine granulosa cells, while the same treatment significantly altered the steroidogenesis associated genes in mouse granulosa cells. Exposure to 30 μM ZEA resulted in significantly up-regulated expression of inflammatory related genes in porcine granulosa cells as well as the cancer related genes in mouse granulosa cells. Similarly, 30 μM ZEA exposure significantly decreased the expression of tumor suppressor factors in the mouse granulosa cells. Furthermore, immunofluorescence, RT-qPCR as well as western-blot analysis verified the different expression of related genes in ZEA exposed porcine and mouse granulosa cells. Collectively, these results illustrate the presence of species differences with regards to ZEA effects between porcine and mouse ovarian granulosa cells, in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of ECM2 expression on bovine skeletal muscle-derived satellite cell differentiation.
Liu, Chang; Tong, Huili; Li, Shufeng; Yan, Yunqin
2018-05-01
Extracellular matrix components have important regulatory functions during cell proliferation and differentiation. In recent study, extracellular matrix were shown to have a strong effect on skeletal muscle differentiation. Here, we aimed to elucidate the effects of extracellular matrix protein 2 (ECM2), an extracellular matrix component, on the differentiation of bovine skeletal muscle-derived satellite cells (MDSCs). Western blot and immunofluorescence analyses were used to elucidate the ECM2 expression pattern in bovine MDSCs during differentiation in vitro. CRISPR/Cas9 technology was used to activate or inhibit ECM2 expression to study its effects on the in vitro differentiation of bovine MDSCs. ECM2 expression was shown to increase gradually during bovine MDSC differentiation, and the levels of this protein were higher in more highly differentiated myotubes. ECM2 activation promoted MDSC differentiation, whereas its suppression inhibited the differentiation of these cells. Here, for the first time, we demonstrated the importance of ECM2 expression during bovine MDSC differentiation; these results could lead to treatments that help to increase beef cattle muscularity. © 2018 International Federation for Cell Biology.
Russell, L; Naora, H; Naora, H
2000-04-01
The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.
Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo
2017-06-01
Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.
Kim, Yunee; Ignatchenko, Vladimir; Yao, Cindy Q.; Kalatskaya, Irina; Nyalwidhe, Julius O.; Lance, Raymond S.; Gramolini, Anthony O.; Troyer, Dean A.; Stein, Lincoln D.; Boutros, Paul C.; Medin, Jeffrey A.; Semmes, O. John; Drake, Richard R.; Kislinger, Thomas
2012-01-01
Current protocols for the screening of prostate cancer cannot accurately discriminate clinically indolent tumors from more aggressive ones. One reliable indicator of outcome has been the determination of organ-confined versus nonorgan-confined disease but even this determination is often only made following prostatectomy. This underscores the need to explore alternate avenues to enhance outcome prediction of prostate cancer patients. Fluids that are proximal to the prostate, such as expressed prostatic secretions (EPS), are attractive sources of potential prostate cancer biomarkers as these fluids likely bathe the tumor. Direct-EPS samples from 16 individuals with extracapsular (n = 8) or organ-confined (n = 8) prostate cancer were used as a discovery cohort, and were analyzed in duplicate by a nine-step MudPIT on a LTQ-Orbitrap XL mass spectrometer. A total of 624 unique proteins were identified by at least two unique peptides with a 0.2% false discovery rate. A semiquantitative spectral counting algorithm identified 133 significantly differentially expressed proteins in the discovery cohort. Integrative data mining prioritized 14 candidates, including two known prostate cancer biomarkers: prostate-specific antigen and prostatic acid phosphatase, which were significantly elevated in the direct-EPS from the organ-confined cancer group. These and five other candidates (SFN, MME, PARK7, TIMP1, and TGM4) were verified by Western blotting in an independent set of direct-EPS from patients with biochemically recurrent disease (n = 5) versus patients with no evidence of recurrence upon follow-up (n = 10). Lastly, we performed proof-of-concept SRM-MS-based relative quantification of the five candidates using unpurified heavy isotope-labeled synthetic peptides spiked into pools of EPS-urines from men with extracapsular and organ-confined prostate tumors. This study represents the first efforts to define the direct-EPS proteome from two major subclasses of prostate cancer using shotgun proteomics and verification in EPS-urine by SRM-MS. PMID:22986220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, Suhas; Abril, Alejandra; Dhanapal, Arun P.
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. Our study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18more » and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Furthermore experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve water logging tolerance in sorghum.« less
Kadam, Suhas; Abril, Alejandra; Dhanapal, Arun P.; ...
2017-05-30
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. Our study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18more » and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Furthermore experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve water logging tolerance in sorghum.« less
Han, Chia-Li; Chen, Jinn-Shiun; Chan, Err-Cheng; Wu, Chien-Peng; Yu, Kun-Hsing; Chen, Kuei-Tien; Tsou, Chih-Chiang; Tsai, Chia-Feng; Chien, Chih-Wei; Kuo, Yung-Bin; Lin, Pei-Yi; Yu, Jau-Song; Hsueh, Chuen; Chen, Min-Chi; Chan, Chung-Chuan; Chang, Yu-Sun; Chen, Yu-Ju
2011-01-01
We developed a multiplexed label-free quantification strategy, which integrates an efficient gel-assisted digestion protocol, high-performance liquid chromatography tandem MS analysis, and a bioinformatics alignment method to determine personalized proteomic profiles for membrane proteins in human tissues. This strategy provided accurate (6% error) and reproducible (34% relative S.D.) quantification of three independently purified membrane fractions from the same human colorectal cancer (CRC) tissue. Using CRC as a model, we constructed the personalized membrane protein atlas of paired tumor and adjacent normal tissues from 28 patients with different stages of CRC. Without fractionation, this strategy confidently quantified 856 proteins (≥2 unique peptides) across different patients, including the first and robust detection (Mascot score: 22,074) of the well-documented CRC marker, carcinoembryonic antigen 5 by a discovery-type proteomics approach. Further validation of a panel of proteins, annexin A4, neutrophils defensin A1, and claudin 3, confirmed differential expression levels and high occurrences (48–70%) in 60 CRC patients. The most significant discovery is the overexpression of stomatin-like 2 (STOML2) for early diagnostic and prognostic potential. Increased expression of STOML2 was associated with decreased CRC-related survival; the mean survival period was 34.77 ± 2.03 months in patients with high STOML2 expression, whereas 53.67 ± 3.46 months was obtained for patients with low STOML2 expression. Further analysis by ELISA verified that plasma concentrations of STOML2 in early-stage CRC patients were elevated as compared with those of healthy individuals (p < 0.001), suggesting that STOML2 may be a noninvasive serological biomarker for early CRC diagnosis. The overall sensitivity of STOML2 for CRC detection was 71%, which increased to 87% when combined with CEA measurements. This study demonstrated a sensitive, label-free strategy for differential analysis of tissue membrane proteome, which may provide a roadmap for the subsequent identification of molecular target candidates of multiple cancer types. PMID:21209152
Comparative Expression Profiling of Distinct T Cell Subsets Undergoing Oxidative Stress
Lichtenfels, Rudolf; Mougiakakos, Dimitrios; Johansson, C. Christian; Dressler, Sven P.; Recktenwald, Christian V.; Kiessling, Rolf; Seliger, Barbara
2012-01-01
The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them more resistant to tumor micromilieu-induced oxidative stress. PMID:22911781
Liu, Jie; Fu, Ruiqi; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Cui, Huanxian; Li, Qinghe; Song, Jiao; Wang, Jie; Wen, Jie
2016-01-01
Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56-98), pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein-protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56). This study improves our understanding of the molecular mechanisms underlying muscle development and IMF deposition in chickens.
Sethi, Isha; Romano, Rose-Anne; Gluck, Christian; Smalley, Kirsten; Vojtesek, Borivoj; Buck, Michael J; Sinha, Satrajit
2015-08-07
The transcription factor p63 belongs to the p53/p63/p73 family and plays key functional roles during normal epithelial development and differentiation and in pathological states such as squamous cell carcinomas. The human TP63 gene, located on chromosome 3q28 is driven by two promoters that generate the full-length transactivating (TA) and N-terminal truncated (ΔN) isoforms. Furthermore alternative splicing at the C-terminus gives rise to additional α, β, γ and likely several other minor variants. Teasing out the expression and biological function of each p63 variant has been both the focus of, and a cause for contention in the p63 field. Here we have taken advantage of a burgeoning RNA-Seq based genomic data-sets to examine the global expression profiles of p63 isoforms across commonly utilized human cell-lines and major tissues and organs. Consistent with earlier studies, we find ΔNp63 transcripts, primarily that of the ΔNp63α isoforms, to be expressed in most cells of epithelial origin such as those of skin and oral tissues, mammary glands and squamous cell carcinomas. In contrast, TAp63 is not expressed in the majority of normal cell-types and tissues; rather it is selectively expressed at moderate to high levels in a subset of Burkitt's and diffuse large B-cell lymphoma cell lines. We verify this differential expression pattern of p63 isoforms by Western blot analysis, using newly developed ΔN and TA specific antibodies. Furthermore using unsupervised clustering of human cell lines, tissues and organs, we show that ΔNp63 and TAp63 driven transcriptional networks involve very distinct sets of molecular players, which may underlie their different biological functions. In this study we report comprehensive and global expression profiles of p63 isoforms and their relationship to p53/p73 and other potential transcriptional co-regulators. We curate publicly available data generated in part by consortiums such as ENCODE, FANTOM and Human Protein Atlas to delineate the vastly different transcriptomic landscapes of ΔNp63 and TAp63. Our studies help not only in dispelling prevailing myths and controversies on p63 expression in commonly used human cell lines but also augur new isoform- and cell type-specific activities of p63.
Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won
2018-01-01
Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.
Regulatory network involving miRNAs and genes in serous ovarian carcinoma
Zhao, Haiyan; Xu, Hao; Xue, Luchen
2017-01-01
Serous ovarian carcinoma (SOC) is one of the most life-threatening types of gynecological malignancy, but the pathogenesis of SOC remains unknown. Previous studies have indicated that differentially expressed genes and microRNAs (miRNAs) serve important functions in SOC. However, genes and miRNAs are identified in a disperse form, and limited information is known about the regulatory association between miRNAs and genes in SOC. In the present study, three regulatory networks were hierarchically constructed, including a differentially-expressed network, a related network and a global network to reveal associations between each factor. In each network, there were three types of factors, which were genes, miRNAs and transcription factors that interact with each other. Focus was placed on the differentially-expressed network, in which all genes and miRNAs were differentially expressed and therefore may have affected the development of SOC. Following the comparison and analysis between the three networks, a number of signaling pathways which demonstrated differentially expressed elements were highlighted. Subsequently, the upstream and downstream elements of differentially expressed miRNAs and genes were listed, and a number of key elements (differentially expressed miRNAs, genes and TFs predicted using the P-match method) were analyzed. The differentially expressed network partially illuminated the pathogenesis of SOC. It was hypothesized that if there was no differential expression of miRNAs and genes, SOC may be prevented and treatment may be identified. The present study provided a theoretical foundation for gene therapy for SOC. PMID:29113276
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping
2006-01-01
To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257
Zhuang, Junjun; Lin, Suya; Dong, Lingqing; Cheng, Kui; Weng, Wenjian
2018-04-15
Mechanical stimuli at the bone-implant interface are considered to activate the mechanotransduction pathway of the cell to improve the initial osseointegration establishment and to guarantee clinical success of the implant. However, control of the mechanical stimuli at the bone-implant interface still remains a challenge. In this study, we have designed a strategy of a magnetically responsive coating on which the mechanical stimuli is controlled because of coating deformation under static magnetic field (SMF). The iron oxide nanoparticle/mineralized collagen (IOP-MC) coatings were electrochemically codeposited on titanium substrates in different quantities of IOPs and distributions; the resulting coatings were verified to possess swelling behavior with flexibility same as that of hydrogel. The relative quantity of IOP to collagen and the IOP distribution in the coatings were demonstrated to play a critical role in mediating cell behavior. The cells present on the outer layer of the distributed IOP-MC (O-IOP-MC) coating with a mass ratio of 0.67 revealed the most distinct osteogenic differentiation activity being promoted, which could be attributed to the maximized mechanical stimuli with exposure to SMF. Furthermore, the enhanced osteogenic differentiation of the stimulated MC3T3-E1 cells originated from magnetically actuated mechanotransduction signaling pathway, embodying the upregulated expression of osteogenic-related and mechanotransduction-related genes. This work therefore provides a promising strategy for implementing mechanical stimuli to activate mechanotransduction on the bone-implant interface and thus to promote osseointegration. The magnetically actuated coating is designed to produce mechanical stimuli to cells for promoting osteogenic differentiation based on the coating deformation. Iron oxide nanoparticles (IOPs) were incorporated into the mineralized collagen coatings (MC) forming the composite coatings (IOP-MC) with spatially distributed IOPs, and the IOP-MC coatings with outer distributed IOPs (O-IOPs-MC) shows the maximized mechanical stimuli to cells with enhanced osteogenic differentiation under static magnetic field. The upregulated expression of the associated genes reveals that the enabled mechanotransduction signaling pathway is responsible for the promoted cellular osteogenic differentiation. This work therefore provides a promising strategy for implementing mechanical stimuli to activate mechanotransduction on the bone-implant interface to promote osseointegration. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Biochemical and genetic analysis of the yeast proteome with a movable ORF collection
Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.
2005-01-01
Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557
Differential expression of caveolin-1 in human myometrial and uterine leiomyoma smooth muscle.
Zhou, Yu; Ren, Yuanyuan; Cui, Lihua; Li, Zongjin; Zhu, Yingjun; Lin, Wanjun; Wang, Yuebing
2014-11-01
Uterine leiomyomas, the most common neoplasms of the female genital tract, are benign tumors of the uterus arising from the smooth muscle cells (SMCs) of the myometrium with an involvement of estrogen. Caveolin-1 (Cav-1), a major protein component in caveolae membrane lipid rafts, is down-regulated in several estrogen-related cancer cells, and overexpression of Cav-1 inhibits proliferation of cancer cells and vascular SMCs as well. Therefore, we hypothesize that Cav-1 is down-regulated in human uterine leiomyoma. Western blot using tissues from clinical patients showed that Cav-1 expression was significantly lower or undetectable in uterine leiomyoma compared with their matched myometrium (P < .001). This finding was confirmed by immunohistochemistry and confocal microscopy. The cav-1 mRNA level in uterine leiomyomas was also significantly lower as detected by reverse transcription-quantitative polymerase chain reaction analysis (P = .001). To further study the underlying mechanism, we performed primary cell culture, and found that the expression of Cav-1 remained low in cultured leiomyoma SMCs (P = .009). Serum withdrawal did not change Cav-1 expression in leiomyoma SMCs, but increased expression in myometrial SMCs (P = .006). 17-β estradiol inhibited the expression of Cav-1 protein (P = .047) and mRNA (P = .007) in leiomyoma SMCs, whereas it stimulated expression in myometrial SMCs (P = .043). 17-β estradiol, although activating the mitogen-activated protein kinase pathway in both SMCs, did not stimulate their proliferation. We conclude that human uterine leiomyomas in vitro express low levels of Cav-1, which may result from estrogen inhibition. This effect of estrogen may contribute to the pathogenesis of uterine leiomyoma. Further studies in vivo are needed to verify these results. Copyright © 2014 Elsevier Inc. All rights reserved.
Fanti, Kostas A; Kyranides, Melina Nicole; Panayiotou, Georgia
2017-02-01
The current study adds to prior research by investigating specific (happiness, sadness, surprise, disgust, anger and fear) and general (corrugator and zygomatic muscle activity) facial reactions to violent and comedy films among individuals with varying levels of callous-unemotional (CU) traits and impulsive aggression (IA). Participants at differential risk of CU traits and IA were selected from a sample of 1225 young adults. In Experiment 1, participants (N = 82) facial expressions were recorded while they watched violent and comedy films. Video footage of participants' facial expressions was analysed using FaceReader, a facial coding software that classifies facial reactions. Findings suggested that individuals with elevated CU traits showed reduced facial reactions of sadness and disgust to violent films, indicating low empathic concern in response to victims' distress. In contrast, impulsive aggressors produced specifically more angry facial expressions when viewing violent and comedy films. In Experiment 2 (N = 86), facial reactions were measured by monitoring facial electromyography activity. FaceReader findings were verified by the reduced facial electromyography at the corrugator, but not the zygomatic, muscle in response to violent films shown by individuals high in CU traits. Additional analysis suggested that sympathy to victims explained the association between CU traits and reduced facial reactions to violent films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamo, Naoki; Hashiba, Tsuyoshi; Kikukawa, Takashi
2006-03-10
A gene encoding putative retinal protein was cloned from Haloterrigena turkmenica (JCM9743). The deduced amino acid sequence was most closely related to that of deltarhodopsin, which functions as a light-driven H{sup +} pump and was identified in a novel strain Haloterrigena sp. arg-4 (K. Ihara, T. Uemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, Y. Mukohata, Evolution of the archaeal rhodopsins: Evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol. 285 (1999) 163-174. GenBank Accession No. AB009620). Thus, we called the present protein H. turkmenica deltarhodopsin (HtdR) in this report. Differing from the Halobacterium salinarum bacteriorhodopsinmore » (bR), functional expression of HtdR was achieved in Escherichia coli membrane with a high yield of 10-15mg protein/L culture. The photocycle of purified HtdR was similar to that of bR. The photo-induced electrogenic proton pumping activity of HtdR was verified. We co-expressed both HtdR and EmrE, a proton-coupled multi-drug efflux transporter in E. coli, and the cells successfully extruded ethidium, a substrate of EmrE, on illumination.« less
A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection.
Bai, Jane P F; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G
2017-03-10
Developing drugs to treat the toxic effects of lethal toxin (LT) and edema toxin (ET) produced by B. anthracis is of global interest . We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound's mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection.
A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection
Bai, Jane P. F.; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G.
2017-01-01
Developing drugs to treat the toxic effects of lethal toxin (LT) and edema toxin (ET) produced by B. anthracis is of global interest. We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound’s mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection. PMID:28287432
Miranda, Cláudia C; Fernandes, Tiago G; Pinto, Sandra N; Prieto, Manuel; Diogo, M Margarida; Cabral, Joaquim M S
2018-05-21
Stem cell's unique properties confer them a multitude of potential applications in the fields of cellular therapy, disease modelling and drug screening fields. In particular, the ability to differentiate neural progenitors (NP) from human induced pluripotent stem cells (hiPSCs) using chemically-defined conditions provides an opportunity to create a simple and straightforward culture platform for application in these fields. Here, we demonstrated that hiPSCs are capable of undergoing neural commitment inside microwells, forming characteristic neural structures resembling neural rosettes and further give rise to glial and neuronal cells. Furthermore, this platform can be applied towards the study of the effect of neurotoxic molecules that impair normal embryonic development. As a proof of concept, the neural teratogenic potential of the antiepileptic drug valproic acid (VPA) was analyzed. It was verified that exposure to VPA, close to typical dosage values (0.3 to 0.75 mM), led to a prevalence of NP structures over neuronal differentiation, as confirmed by analysis of the expression of neural cell adhesion molecule, as well as neural rosette number and morphology assessment. The methodology proposed herein for the generation and neural differentiation of hiPSC aggregates can potentially complement current toxicity tests such as the humanized embryonic stem cell test for the detection of teratogenic compounds that can interfere with normal embryonic development. Copyright © 2018 Elsevier B.V. All rights reserved.
Variable expression of podocyte-related markers in the glomeruloid bodies in Wilms tumor.
Kanemoto, Katsuyoshi; Takahashi, Shori; Shu, Yujing; Usui, Joichi; Tomari, Shinsuke; Yan, Kunimasa; Hamazaki, Yutaka; Nagata, Michio
2003-09-01
Several podocyte-related markers are organized to express in glomerular differentiation. However, whether expression of them is virtually synchronized and a reliable indicator of the state of differentiation is unknown. The present study investigated, by immunohistochemistry, the divergent expression of several podocyte markers in the improperly differentiated glomeruloid bodies from four cases of Wilms tumors. The glomeruloid bodies were classified into immature (IGB) or mature forms (MGB) based on morphology and epithelial features. Podocytes in IGB expressed WT1, synaptopodin, podocalyxin, and nephrin, and their expression was stronger in MGB. In contrast, Pax2 was strong in IGB and diminished in MGB. p27 was first expressed in MGB. The expression pattern in each molecule mimics normal glomerulogenesis. Podocytes in MGB showed persistent expression of bcl-2 and cytokeratin with synaptopodin, podocalyxin, and nephrin by serial section, a finding unusual for normal glomerulogenesis. Moreover, parietal cells in MGB also occasionally expressed these podocyte markers. The ultrastructure revealed that podocytes in MGB showed tight junctions without foot process formations, which indicated incomplete differentiation. These results suggest that a set of podocyte differentiation markers are occasionally diversely expressed, and raise the possibility that expression of these markers is insufficient to determine the state of terminal differentiation in podocytes.
NASA Astrophysics Data System (ADS)
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.
Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan
2013-01-01
Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.
Jia, Changkai; Zhu, Wei; Ren, Shengwei; Xi, Haijie; Li, Siyuan
2011-01-01
Purpose Suture placement and alkali burn to the cornea are often used to induce inflammatory corneal neovascularization (CorNV) models in animals. This study compares the changes in genome-wide gene expression under these two CorNV conditions in mice. Methods CorNV were induced in Balb/c mice by three interrupted 10–0 sutures placed at sites about 1 mm from the corneal apex, or by alkali burns that were 2 mm in size in the central area of the cornea. At the points in time when neovascularization progressed most quickly, some eyeballs were subjected to histological staining to examine CorNV and inflammatory cells infiltration, and some corneas were harvested to extract mRNA for microarray assay. After normalization and filtering, the microarray data were subject to statistical analysis using Significance Analysis of Microarray software, and interested genes were annotated using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) program. The expression change of classical proangiogenic molecule like vascular endothelial growth factor (VEGF) and antiangiogenic molecule like pigment epithelium-derived factor (PEDF) was further verified using western blotting. Results Suture placement induced CorNV in the areas between the suture and limbus, but did not affect the transparency of the yet unvasuclarized areas of the corneas. In contrast, alkali burn caused edema and total loss of transparency of the whole cornea. Histology showed that sutures only caused localized epithelial loss and inflammatory infiltration between the suture and limbus, but chemical burn depleted the whole epithelial layer of the central cornea and caused heavy cellular infiltration of the whole cornea. At day 5 after suture placement, 1,055 differentially expressed probes were identified, out of which 586 probes were upregulated and 469 probes were downregulated. At a comparable time point, namely on day 6 after the alkali burn to the corneas, 472 probes were upregulated and 389 probes were downregulated. Among these differentially expressed probes, a significant portion (530 probes in total, including 286 upregulated and 244 downregulated probes) showed a similar pattern of change in both models. Annotation (using DAVID) of the overlapping differential genes revealed that the significant enrichment gene ontology terms were “chemotaxis” and “immune response” for the upregulated genes, and “oxidation reduction” and “programmed cell death” for the downregulated genes. Some genes or gene families (e.g., S100A family or α-, β-, or γ-crystallin family) that had not been related to corneal pathogenesis or neovascularization were also revealed to be involved in CorNV. VEGF was upregulated and PEDF was stable as shown with western blotting. Conclusions Sutures and alkali burn to the corneas produced types of damage that affected transparency differentially, but gene profiling revealed similar patterns of changes in gene expression in these two CorNV models. Further studies of the primary genes found to be involved in CorNV will supplement current understanding about the pathogenesis of neovascularization diseases. PMID:21921991
NASA Technical Reports Server (NTRS)
D'Alonzo, Richard C.; Kowalski, Aaron J.; Denhardt, David T.; Nickols, G. Allen; Partridge, Nicola C.
2002-01-01
Both collagenase-3 and osteocalcin mRNAs are expressed maximally during the later stages of osteoblast differentiation. Here, we demonstrate that collagenase-3 mRNA expression in differentiating MC3T3-E1 cells is dependent upon the presence of ascorbic acid, is inhibited in the presence of the collagen synthesis inhibitor, 3,4-dehydroproline, and is stimulated by growth on collagen in the absence of ascorbic acid. Transient transfection studies show that collagenase-3 promoter activity increases during cell differentiation and requires the presence of ascorbic acid. Additionally, we show that, in differentiating MC3T3-E1 cells, collagenase-3 gene expression increases in the presence of an anti-osteopontin monoclonal antibody that binds near the RGD motif of this protein, whereas osteocalcin expression is inhibited. Furthermore, an RGD peptidomimetic compound, designed to block interaction of ligands to the alpha(v) integrin subunit, increases osteocalcin expression and inhibits collagenase-3 expression, suggesting that the RGD peptidomimetic initiates certain alpha(v) integrin signaling in osteoblastic cells. Overall, these studies demonstrate that stimulation of collagenase-3 expression during osteoblast differentiation requires synthesis of a collagenous matrix and that osteopontin and alpha(v) integrins exert divergent regulation of collagenase-3 and osteocalcin expression during osteoblast differentiation.
Luo, Jun; Zhou, Linlin; Wang, Hongren; Qin, Zhen; Xiang, Li; Zhu, Jie; Huang, Xiaojun; Yang, Yuan; Li, Wanyi; Wang, Baoning; Li, Mingyuan
2017-12-22
Influenza A virus (IAV) and Streptococcus pneumoniae (SP) are two major upper respiratory tract pathogens that can also cause infection in polarized bronchial epithelial cells to exacerbate disease in coinfected individuals which may result in significant morbidity. However, the underlying molecular mechanism is poorly understood. Here, we employed BALB/c ByJ mice inflected with SP, IAV, IAV followed by SP (IAV+SP) and PBS (Control) as models to survey the global gene expression using digital gene expression (DGE) profiling. We attempt to gain insights into the underlying genetic basis of this synergy at the expression level. Gene expression profiles were obtain using the Illimina/Hisseq sequencing technique, and further analyzed by enrichment analysis of Gene Ontology (GO) and Pathway function. The hematoxylin-eosin (HE) staining revealed different tissue changes in groups during which IAV+SP group showed the most severe cell apoptosis. Compared with Control, a total of 2731, 3221 and 3946 differentially expressed genes (DEGs) were detected in SP, IAV and IAV+SP respectively. Besides, sixty-two GO terms were identified by Gene Ontology functional enrichment analysis, such as cell killing, biological regulation, response to stimulus, signaling, biological adhesion, enzyme regulator activity, receptor regulator activity and translation regulator activity. Pathway significant enrichment analysis indicated the dysregulation of multiple pathways, including apoptosis pathway. Among these, five selected genes were further verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). This study shows that infection with SP, IAV or IAV+SP induces apoptosis with different degrees which might provide insights into the molecular mechanisms to facilitate further research.
Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure.
Yu, Ning; Tong, Yun; Zhang, Danni; Zhao, Shanshan; Fan, Xinli; Wu, Lihui; Ji, Hua
2018-07-02
Glyphosate is the active ingredient in numerous herbicide formulations. The roles of glyphosate in embryo-toxicity and neurotoxicity have been reported in human and animal models. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. However, the role of glyphosate in neuronal development is still not fully understood. Our previous study found that perinatal glyphosate exposure resulted in differential microRNA expression in the prefrontal cortex of mouse offspring. However, the mechanism of glyphosate-induced neurotoxicity in the developing brain is still not fully understood. Considering the pivotal role of Circular RNAs (circRNAs) in the regulation of gene expression, a circRNA microarray method was used in this study to investigate circRNA expression changes in the hippocampus of mice with perinatal glyphosate exposure. The circRNA microarrays revealed that 663 circRNAs were significantly altered in the perinatal glyphosate exposure group compared with the control group. Among them, 330 were significantly upregulated, and the other 333 were downregulated. Furthermore, the relative expression levels of mmu-circRNA-014015, mmu-circRNA-28128 and mmu-circRNA-29837 were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that stress-associated steroid metabolism pathways, such as aldosterone synthesis and secretion pathways, may be involved in the neurotoxicity of glyphosate. These results showed that circRNAs are aberrantly expressed in the hippocampus of mice with perinatal glyphosate exposure and play potential roles in glyphosate-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.
Induction of synapse associated protein 102 expression in cyclosporin A-stimulated hair growth.
Kim, Chang Deok; Lee, Min-Ho; Sohn, Kyung-Cheol; Kim, Jin-Man; Li, Sheng Jin; Rang, Moon-Jeong; Roh, Seok-Seon; Oh, Young-Seon; Yoon, Tae-Jin; Im, Myung; Seo, Young-Joon; Lee, Jeung-Hoon; Park, Jang-Kyu
2008-08-01
Cyclosporin A (CsA) has been used as a potent immunosuppressive agent for inhibiting the graft rejection after organ transplantation. However, CsA provokes lots of side effects including hirsutism, the phenomenon of abnormal hair growth in the body. In the present study, we investigated the hair growth stimulating effect of CsA using in vivo and in vitro test models. When topically applied on the back skin of mice, CsA induced fast telogen to anagen transition. In contrast, CsA had no effect on the growth of human hair follicle tissues cultured in vitro, indicating that it might not have the mitogenic effect on hair follicles. To identify the genes related with CsA-induced hair growth, we performed differential display RT-PCR. Among the genes obtained, the expression of synapse associated protein 102 (SAP102) was verified using competitive RT-PCR. The result showed that the expression of SAP102 was significantly induced by CsA treatment in the back skin of C57BL/6 mice. However, the increase of SAP102 mRNA was also seen in spontaneous anagen mice, suggesting that induction of SAP102 is one event of the anagen hair growth response regardless of how the growth state was induced. SAP102 was not expressed in cultured human hair outer root sheath and dermal papilla cells. Immunohistochemistry analysis showed that CsA induced the expression of SAP102 in perifollicular region of mouse anagen hair. Together, these results suggest that SAP102 is one of hair-cycle-dependent genes, whose expression is related with the anagen progression.
Mostafavi-Pour, Zohreh; Ashrafi, Mohammad Reza; Talaei-Khozani, Tahereh
2018-06-01
Human Wharton's jelly mesenchymal stem cells (hWJSCs) are multipotent stem cells that could be aggregated into 3D spherules. ITGA4 and ITGA5 genes encode α4 and α5 subunits of integrins, respectively. In this study, we analyzed expression levels of ITGA4 and ITGA5 gene mRNAs in undifferentiated and 3D spherules forming hWJSCs in order to determine their expression pattern for possible future treatment of cancer cells in a co-culture fashion. For the purpose of obtaining hWJSCs, umbilical cords were collected from patients with caesarian section at full term delivery. The cells were then characterized according to cell surface markers using flow cytometry. Furthermore pluripotency of the obtained cells was verified. Subsequently the cells were aggregated in 3D spherules using hanging drop cultures. Expression levels of ITGA4 and ITGA5 gene mRNAs were determined by RT-PCR and Real time PCR, both in the initial undifferentiated cells and those aggregated in the spherules. The obtained hWJSCs demonstrated pluripotency, differentiating to adipogenic and osteogenic cells. They also expressed mesenchymal stem cell surface markers. Following the aggregation of these cells and formation of 3D spherules, mRNA expression levels of both genes were significantly reduced (P < 0.05) compared with the initial undifferentiated state. The results of this study demonstrated that aggregation of hWJSCs into spherules alters their expression of ITGA4 and ITGA5. The implications of such an alteration would require further research.
Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Kyeongah; Nam, Sorim; Kim, Bomi
N-Myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family of differentiation-related genes, has been characterized as a regulator of dendritic cell differentiation from monocytes, CD34{sup +} progenitor cells, and myelomonocytic leukemic cells. In this study, we show that NDRG2 overexpression inhibits the differentiation of U937 cells into osteoclasts in response to stimulation with a combination of macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (RANKL). U937 cells stably expressing NDRG2 are unable to differentiate into multinucleated osteoclast-like cells and display reduced tartrate-resistant acid phosphatase (TRAP) activity and resorption pit formation. Furthermore, NDRG2 expression significantly suppressesmore » the expression of genes that are crucial for the proliferation, survival, differentiation, and function of osteoclasts, including c-Fos, Atp6v0d2, RANK, and OSCAR. The activation of ERK1/2 and p38 is also inhibited by NDRG2 expression during osteoclastogenesis, and the inhibition of osteoclastogenesis by NDRG2 correlates with the down-regulation of the expression of the transcription factor PU.1. Taken together, our results suggest that the expression of NDRG2 potentially inhibits osteoclast differentiation and plays a role in modulating the signal transduction pathway responsible for osteoclastogenesis. - Highlights: • The expression of NDRG2 significantly impairs osteoclast differentiation. • PU.1 and p38 MAPK inhibitions by NDRG2 are critical for the inhibition of osteoclastogenesis. • Knockdown of NDRG2 rescues the ability of monocytes to differentiate into osteoclasts. • NDRG2 expression in BM and primary macrophages also impairs osteoclast differentiation. • This study implies the potential of NDRG2 expression in the inhibition of osteoclastogenesis.« less
Morosetti, Roberta; Gidaro, Teresa; Broccolini, Aldobrando; Gliubizzi, Carla; Sancricca, Cristina; Tonali, Pietro Attilio; Ricci, Enzo; Mirabella, Massimiliano
2011-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is the third most frequent inherited myopathy. We previously demonstrated that mesoangioblasts can be efficiently isolated from FSHD muscles, although their differentiation ability into skeletal muscle was variably impaired. This correlates with overall disease severity and degree of histopathologic abnormalities, since mesoangioblasts from morphologically normal muscles did not show any myogenic differentiation block. The aim of our present study was to verify whether mesoangioblasts from differentially affected FSHD muscles reproduce in vivo the same differentiation ability shown in vitro by studying their capability to form new muscle fibers during muscle regeneration of experimentally damaged muscles. We show that a diverse ability of FSHD mesoangioblasts to engraft and differentiate into skeletal muscle of SCID mice is strictly related to the characteristics of the muscle of origin, closely replicating in vivo what was previously observed in vitro. Moreover, we demonstrate that mesoangioblasts obtained from severely affected muscles scarcely integrate into muscle fibers, remaining mainly localized in the connective tissue. This suggests a defective migration in response to chemoattractants released by damaged fibers, as indicated by cell migration assays in response to HMGB1 and very low levels of RAGE expression, along with a decreased ability to fuse or to appropriately trigger the myogenic program. Our study indicates that FSHD mesoangioblasts from unaffected muscles can be used as selective treatment to halt muscle degeneration in severely affected muscles, and suggests that pharmacological and molecular interventions aimed to ameliorate homing and engraftment of transplanted autologous mesoangioblasts may open the way to cell therapy for FSHD patients, without requiring immunosuppression or genetic correction in vitro.
Erin, Nuray; Ogan, Nur; Yerlikaya, Azmi
2018-03-20
Metastatic breast cancer is resistant to many conventional treatments and novel therapeutic targets are needed. We previously isolated subsets of 4T1 murine breast cancer cells which metastasized to liver (4TLM), brain (4TBM), and heart (4THM). Among these cells, 4TLM is the most aggressive one, demonstrating mesenchymal phenotype. Here we compared secreted proteins from 4TLM, 4TBM, and 4THM cells and compared with that of hardly metastatic 67NR cells to detect differentially secreted factors involved in organ-specific metastasis. Label-free LC-MS/MS proteomic technique was used to detect the differentially secreted proteins. Eighty-five of over 500 secreted proteins were significantly altered in metastatic breast cancer cells. Differential expression of several proteins such as fibulin-4, Bone Morphogenetic Protein 1, TGF-β1 MMP-3, MMP-9, and Thymic Stromal Lymphopoietin were further verified using ELISA or Western blotting. Many of these identified proteins were also present in human metastatic breast carcinomas. Annexin A1 and A5, laminin beta 1, Neutral alpha-glucosidase AB were commonly found at least in three out of six studies examined here. Ingenuity Pathway Analysis showed that proteins differentially secreted from metastatic cells are involved primarily in carcinogenesis and TGF-β1 is the top upstream regulator in all metastatic cells. Cells metastasized to different organs displayed significant differences in several of secreted proteins. Proteins differentially altered were fibronectin, insulin-like growth factor-binding protein 7, and Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1. On the other hand, many exosomal proteins were also common to all metastatic cells, demonstrating involvement of key universal factors in distant metastatic process.
NASA Astrophysics Data System (ADS)
Sravanthi, C. S.; Gorla, R. S. R.
2018-02-01
The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD (magnetohydrodynamic) two-dimensional mixed convective boundary layer flow of a Maxwell nanofluid over a porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used to convert the governing partial differential equations into non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are developed in series form. Convergence of the constructed solution is verified. A comparison is made with the available results in the literature and our results are in very good agreement with the known results. The obtained results are presented through graphs for several sets of values of the parameters and salient features of the solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood number are computed and analyzed.
Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki
2008-01-01
Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.
Zhang, Qingbin; Chen, Li; Cui, Shiman; Li, Yan; Zhao, Qi; Cao, Wei; Lai, Shixiang; Yin, Sanjun; Zuo, Zhixiang; Ren, Jian
2017-10-25
Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.
Zanini, Cristina; Bruno, Stefania; Mandili, Giorgia; Baci, Denisa; Cerutti, Francesco; Cenacchi, Giovanna; Izzi, Leo; Camussi, Giovanni; Forni, Marco
2011-01-01
Background Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. Methodology/Principal Findings In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. Conclusions/Significance Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes. PMID:22194812
Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh
2012-04-13
Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellularmore » matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining, and by day 8 in the case of WFA. This study demonstrated neuronal cell surface glycosylation changes in an inhibitory environment and indicated a return to normal glycosylation after treatment with ChABC, which may be promising for identifying potential therapies for neuronal regeneration strategies.« less
Liu, Tao; Zhang, Shichang; Xiang, Dedong; Wang, Yingjie
2013-11-01
Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a, or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs. © 2013 Wiley Periodicals, Inc.
Verkoczy, L K; Berinstein, N L
1998-10-01
Differential display PCR (DD RT-PCR) has been extensively used for analysis of differential gene expression, but continues to be hampered by technical limitations that impair its effectiveness. In order to isolate novel genes co-expressing with human RAG1, we have developed an effective, multi-tiered screening/purification approach which effectively complements the standard DD RT-PCR methodology. In 'primary' screens, standard DD RT-PCR was used, detecting 22 reproducible differentially expressed amplicons between clonally related cell variants with differential constitutive expression of RAG mRNAs. 'Secondary' screens used differential display (DD) amplicons as probes in low and high stringency northern blotting. Eight of 22 independent DD amplicons detected nine independent differentially expressed transcripts. 'Tertiary' screens used reconfirmed amplicons as probes in northern analysis of multiple RAG-and RAG+sources. Reconfirmed DD amplicons detected six independent RAG co-expressing transcripts. All DD amplicons reconfirmed by northern blot were a heterogeneous mixture of cDNAs, necessitating further purification to isolate single cDNAs prior to subcloning and sequencing. To effectively select the appropriate cDNAs from DD amplicons, we excised and eluted the cDNA(s) directly from regions of prior northern blots in which differentially expressed transcripts were detected. Sequences of six purified cDNA clones specifically detecting RAG co-expressing transcripts included matches to portions of the human RAG2 and BSAP regions and to four novel partial cDNAs (three with homologies to human ESTs). Overall, our results also suggest that even when using clonally related variants from the same cell line in addition to all appropriate internal controls previously reported, further screening and purification steps are still required in order to efficiently and specifically isolate differentially expressed genes by DD RT-PCR.
Differential gene expression in queen–worker caste determination in bumble-bees
Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G
2005-01-01
Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376
Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells.
Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui
2015-01-01
To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group and blank group (P<0.05), demonstrating that after the down-regulation of Tiam1 gene expression, the speed of cell proliferation was inhibited. MTT assay results showed that the total growth speed in experimental group was significantly lower than that in control group and blank group (P<0.05), indicating that the proliferation activity of cholangiocarcinoma cells was inhibited after targeted inhibition of Tiam1 gene expression. Transwell detection results showed that the metastasis rate in experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that targeted inhibition of Tiam1 gene expression could significantly inhibit migration ability of RBE cells. Tiam1 expression significantly increased in cholangiocarcinoma tissues, and increased along with the degree of malignancy of cholangiocarcinoma. Targeted silencing Tiam1 expression could inhibit proliferation and migration activity of cholangiocarcinoma cells.
Biological effects of RNAi targeted inhibiting Tiam1 gene expression on cholangiocarcinoma cells
Cheng, Wei; Liu, Yaling; Zuo, Zhi; Yin, Xinmin; Jiang, Bo; Chen, Daojin; Peng, Chuang; Yang, Jianhui
2015-01-01
Objective: To investigate the characteristics of Tiam1 gene expression in human cholangiocarcinoma tissues and benign bile duct tissues, and to analyze the correlations between Tiam1 gene expression and the degree of tumor differentiation, invasive and metastatic abilities. To explore the effect of targeted inhibiting Tiam1 gene expression on proliferation and migration activity of human cholangiocarcinoma cells. Methods: Expression of Tiam1 in 83 cases of cholangiocarcinoma tissues and 25 cases of benign bile tissues was detected using immunohistochemistry. The clinical data of patients with cholangiocarcinoma were collected. The correlations between Tiam1 gene expression and the clinicopathologic features in patients with cholangiocarcinoma were analyzed. The human cholangiocarcinoma RBE cells were divided into 3 groups. Cells in experimental group and control group were respectively transfected with Tiam1 shRNA lentiviral vectors and negative shRNA lentiviral control vectors. Cells in blank group received no treatment. Real-time PCR endogenesis was used to verify Tiam1 gene expression. Cell cycle experiments and MTT assay were used to measure cell proliferation activity. Transwell test was used to detect cell migration activity. Results: The negative rate Tiam1 protein expression in cholangiocarcinoma tissues was significantly higher than that in benign bile tissues (P<0.001). Tiam1 protein expression in cholangiocarcinoma tissues had correlations with cholangiocarcinoma differentiation degree, TNM stage and lymph node metastasis (P<0.05), and had no significant correlations with gender, age and distant metastasis (P>0.05). Real-time PCR detection indicated that Tiam1 expression of experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that Tiam1 shRNA was effective on Tiam1 gene silencing in RBE cells. Cell cycle experiment showed that the percentage of S phase in cell cycle in experimental group was lower than that in control group and blank group (P<0.05), demonstrating that after the down-regulation of Tiam1 gene expression, the speed of cell proliferation was inhibited. MTT assay results showed that the total growth speed in experimental group was significantly lower than that in control group and blank group (P<0.05), indicating that the proliferation activity of cholangiocarcinoma cells was inhibited after targeted inhibition of Tiam1 gene expression. Transwell detection results showed that the metastasis rate in experimental group was significantly lower than that in control group and blank group (P<0.05), demonstrating that targeted inhibition of Tiam1 gene expression could significantly inhibit migration ability of RBE cells. Conclusion: Tiam1 expression significantly increased in cholangiocarcinoma tissues, and increased along with the degree of malignancy of cholangiocarcinoma. Targeted silencing Tiam1 expression could inhibit proliferation and migration activity of cholangiocarcinoma cells. PMID:26884821
Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García
2013-01-01
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734
Lu, Yin; Wang, Jianshe; Guo, Xuejiang; Yan, Shengmin; Dai, Jiayin
2017-03-01
Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. Among its potential health hazards, testicular toxicity is of major concern. To explore the potential effect of miRNA on post-translational regulation after PFOA exposure, changes in miRNAs were detected via miRNA array. Seventeen miRNAs were differentially expressed (eight upregulated, nine downregulated) in male mouse testes after exposure to 5mg/kg/d of PFOA for 28d (>1.5-fold and P<0.05 compared with the control). Eight of these miRNAs were further selected for TaqMan qPCR analysis. Proteomic profile analysis indicated that many changed proteins after PFOA treatment, including intersectin 1 (ITSN1), serine protease inhibitor A3K (Serpina3k), and apolipoprotein a1 (APOA1), were involved in endocytosis and blood-testis barrier (BTB) processes. These changes were further verified by immunohistochemical and Western blot analyses. Endocytosis-related genes were selected for qPCR analysis, with many found to be significantly changed after PFOA treatment, including epidermal growth factor receptor pathway substrate 8 (Eps8), Eps15, cortactin, cofilin, espin, vinculin, and zyxin. We further predicted the potential interaction between changed miRNAs and proteins, which indicated that miRNAs might play a role in the post-translational regulation of gene expression after PFOA treatment in mouse testes. Among them, miR-133b-3p/clathrin light chain A (CLTA) was selected and verified in vitro by transfection and luciferase activity assay. Results showed that PFOA exposure affects endocytosis in mouse testes and that CLTA is a potential target of miR-133b-3p. Copyright © 2017 Elsevier Inc. All rights reserved.
Relationship of calcitonin mRNA expression to the differentiation state of HL 60 cells.
Kiefer, P; Bacher, M; Pflüger, K H
1994-05-01
Raised plasma levels of immunoreactive human calcitonin (ihCT) can be found in patients with myeloid leukemia and seem to indicate a poor prognosis. High levels were found in acute undifferentiated and acute myeloblastic leukemia. To test whether CT expression could be a marker of myeloid differentiation, we used the promyelocytic leukemia cell line HL 60 which also expresses ihCT as a model system for myeloid differentiation. Exponentially growing HL 60 cells as well as differentiation induced HL 60 cells expressed a single 1.0 Kb CT transcript. The induction of HL 60 cell differentiation along the granulocytic lineage by DMSO or HMBA had no effect on the level of CT transcripts. Induction of monocytic/macrophagic differentiation by TPA resulted in a transient, about 10-fold elevated expression of CT steady state mRNA after 24 h. In contrast to TPA, induction of HL 60 cell differentiation along the monocytic pathway by Vit D3 had no detectable effect on the level of the CT in RNA expression at corresponding time points. These findings suggest that the transient induction of CT steady state mRNA expression by TPA is rather a direct effect of the phorbol ester than commitment along the monocytic line of differentiation.
Methamphetamine and HIV-Tat alter murine cardiac DNA methylation and gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koczor, Christopher A., E-mail: ckoczor@emory.edu; Fields, Earl; Jedrzejczak, Mark J.
This study addresses the individual and combined effects of HIV-1 and methamphetamine (N-methyl-1-phenylpropan-2-amine, METH) on cardiac dysfunction in a transgenic mouse model of HIV/AIDS. METH is abused epidemically and is frequently associated with acquisition of HIV-1 infection or AIDS. We employed microarrays to identify mRNA differences in cardiac left ventricle (LV) gene expression following METH administration (10 d, 3 mg/kg/d, subcutaneously) in C57Bl/6 wild-type littermates (WT) and Tat-expressing transgenic (TG) mice. Arrays identified 880 differentially expressed genes (expression fold change > 1.5, p < 0.05) following METH exposure, Tat expression, or both. Using pathway enrichment analysis, mRNAs encoding polypeptides formore » calcium signaling and contractility were altered in the LV samples. Correlative DNA methylation analysis revealed significant LV DNA methylation changes following METH exposure and Tat expression. By combining these data sets, 38 gene promoters (27 related to METH, 11 related to Tat) exhibited differences by both methods of analysis. Among those, only the promoter for CACNA1C that encodes L-type calcium channel Cav1.2 displayed DNA methylation changes concordant with its gene expression change. Quantitative PCR verified that Cav1.2 LV mRNA abundance doubled following METH. Correlative immunoblots specific for Cav1.2 revealed a 3.5-fold increase in protein abundance in METH LVs. Data implicate Cav1.2 in calcium dysregulation and hypercontractility in the murine LV exposed to METH. They suggest a pathogenetic role for METH exposure to promote LV dysfunction that outweighs Tat-induced effects. - Highlights: • HIV-1 Tat and methamphetamine (METH) alter cardiac gene expression and epigenetics. • METH impacts gene expression or epigenetics more significantly than Tat expression. • METH alters cardiac mitochondrial function and calcium signaling independent of Tat. • METH alters DNA methylation, expression, and protein abundance of CACNA1C (Cav1.2).« less
Wang, J F; Mao, X Y; Zhao, C
2014-01-01
The experiment were performed to investigate the poisoning-related proteins and main pathological changes after mouse suffered from injection of botulinum toxin serotype E. Dose of 0.75 LD50 botulinum toxin serotype E per mice were administrated by intraperitoneal injection. Survival mouse were picked as experimental group. The blood were collected from orbital blood and serum sample was separated by centrifugation. The heart, liver, spleen, lung, kidney were fixed in 10 % neutral buffered formalin and then developed paraffin sections. Serum protein components were analyzed by SDS-PAGE gel electrophoresis coupled with 2-DE SDS-PAGE gel electrophoresis. Differentially expressed proteins were analyzed by PDQUest8.0 software and subjected to ion trap mass spectrometry equipped with a high performance liquid chromatography system. The observation of pathological section showed that heart, liver, spleen, lung, kidney exhibited pathological changes in different degree, especially in heart, liver and lung tissues. Heart muscle tissue display serious inflammatory response, heart muscle fiber compulsively expanded and filled with erythrocyte and inflammatory exudates, some heart muscle fiber ruptured, even necrosis; hepatic cell in edge of liver occur apoptosis and some hepatic cell have disintegrated, and even died; pulmonary alveoli broken and partial vein filled with blood. Serum proteins component present a significant changes between control serum and botulism in 24 h by SDS-PAGE gel electrophoresis and 2-DE-SDS-PAGE gel electrophoresis. Twenty differentially expressed protein spots were observed in 2-DE profiles, in which 14 protein spots were undetectable in serum proteome under botulism, 3 protein spots exclusively expressed in state of botulism, 3 protein spots were low-expressed in serum proteome under botulism. Fourteen proteins have been identified among 20 spots elected on two-dimensional electrophoresis gels. Crystal proteins family exclusively expressed in control group serum. Haptoglobin were low-expressed under botulism in serum protein components, however, serum amyloid A only expressed in serum sample under botulism in 24 h, which were verified by Western-blot. Identified proteins involved in energy metabolism, cellular stress response, transcription, body defense and cell proliferation. These findings represent the first report of BoNT-induced changes in serum proteome and histopathology, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and botulism.
Duruksu, Gokhan; Karaoz, Erdal
2018-01-01
Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs. Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH. Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation. Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines. PMID:29656620
Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong
2015-01-01
The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation. PMID:25690421
Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong
2015-02-16
The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation.
Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting
2015-01-01
A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.
Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang
2002-09-01
Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.
The role of miR-370 in fibrosis after myocardial infarction
Yuan, Hui; Gao, Jie
2017-01-01
In the present study, we investigated the expression of miR-370 in the border area of infarction after myocardial infarction and its role in the process of post-infarction fibrosis. A myocardial infarction model in Sprague-Dawley rats was established. After two weeks, the mRNA levels of transforming growth factor-β1 (TGFβ1), TGFβRII, ColIa1, ColIIIa1 and miR-370 and the expression of TGFβ1, TGFβRII and α-smooth muscle actin (α-SMA) proteins in the border area of infarction were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot analysis. Cardiac fibroblasts in neonatal rat were isolated and cultured, and the changes in the above indicators were detected after AngII and miR-370 intervention. Luciferase reporter gene assay was conducted to verify whether TGFβRII was a target gene of miR-370. In the border area after myocardial infarction, the expression of miR-370 decreased, while mRNA levels of TGFβ1, TGFβRII, ColIa1 and ColIIIa1 and levels of TGFβ1, TGFβRII and α-SMA proteins were all increased. Luciferase reporter gene assay confirmed that TGFβRII was the target gene of miR-370. miR-370 reduced the expression of TGFβRII and inhibited the increased expression of TGFβRII and collagen protein caused by AngII. As well, its inhibited the differentiation effect of muscle fibroblasts while it did not inhibit the expression of TGFβ1. miR-370 inhibited the expression of TGFβRII protein by combining with TGFβRII mRNA. miR-370 also partially blocked TGFβ1-TGFβRII and induced the downstream signal transduction pathways, thus exerting anti-fibrotic effects. PMID:28350072
Kicic, Anthony; Hallstrand, Teal S.; Sutanto, Erika N.; Stevens, Paul T.; Kobor, Michael S.; Taplin, Christopher; Paré, Peter D.; Beyer, Richard P.; Stick, Stephen M.; Knight, Darryl A.
2010-01-01
Rationale: Damage to airway epithelium is followed by deposition of extracellular matrix (ECM) and migration of adjacent epithelial cells. We have shown that epithelial cells from children with asthma fail to heal a wound in vitro. Objectives: To determine whether dysregulated ECM production by the epithelium plays a role in aberrant repair in asthma. Methods: Airway epithelial cells (AEC) from children with asthma (n = 36), healthy atopic control subjects (n = 23), and healthy nonatopic control subjects (n = 53) were investigated by microarray, gene expression and silencing, transcript regulation analysis, and ability to close mechanical wounds. Measurements and Main Results: Time to repair a mechanical wound in vitro by AEC from healthy and atopic children was not significantly different and both were faster than AEC from children with asthma. Microarray analysis revealed differential expression of multiple gene sets associated with repair and remodeling in asthmatic AEC. Fibronectin (FN) was the only ECM component whose expression was significantly lower in asthmatic AEC. Expression differences were verified by quantitative polymerase chain reaction and ELISA, and reduced FN expression persisted in asthmatic cells over passage. Silencing of FN expression in nonasthmatic AEC inhibited wound repair, whereas addition of FN to asthmatic AEC restored reparative capacity. Asthmatic AEC failed to synthesize FN in response to wounding or cytokine/growth factor stimulation. Exposure to 5′, 2′deoxyazacytidine had no effect on FN expression and subsequent analysis of the FN promoter did not show evidence of DNA methylation. Conclusions: These data show that the reduced capacity of asthmatic epithelial cells to secrete FN is an important contributor to the dysregulated AEC repair observed in these cells. PMID:20110557
Differential global gene expression in red and white skeletal muscle
NASA Technical Reports Server (NTRS)
Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.
2001-01-01
The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.
Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J
2007-09-01
This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.
Shi, Yu; Liu, Wenguang; He, Maoxian
2018-04-01
Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.
Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela
2017-06-26
Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.
Integrator complex plays an essential role in adipose differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki
2013-05-03
Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reducedmore » to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps.« less
YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang
2012-09-10
Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model tomore » study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap-overexpression phenotype in cortical progenitors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Li-An; Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an; Yuan, Guohua
Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show thatmore » transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.« less
Ritthaphai, Alisa; Wattanapanitch, Methichit; Pithukpakorn, Manop; Heepchantree, Worapa; Soi-Ampornkul, Rungtip; Mahaisavariya, Panchalee; Triwongwaranat, Daranporn; Pattanapanyasat, Kovit; Vatanashevanopakorn, Chinnavuth
2018-05-21
Dermal fibroblasts were obtained from a 48-year-old female patient with spinocerebellar ataxia type 3 (SCA3). Fibroblasts were reprogrammed by nucleofection with episomal plasmids, carrying L-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1 and shRNA against p53. The SCA3 patient-specific iPSC line, MUSIi004-A, was characterized by immunofluorescence staining to verify the expression of pluripotent markers. The iPSC line exhibited an ability to differentiate into three germ layers by embryoid body (EB) formation. Karyotypic analysis of the MUSIi004-A line was normal. The mutant allele was still present in the iPSC line. This iPSC line represents a useful tool for studying neurodegeneration in SCA3. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Caste- and development-associated gene expression in a lower termite
Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W
2003-01-01
Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197
Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G
2001-01-01
Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.
Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.
Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo
2003-02-13
Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.
Polyester: simulating RNA-seq datasets with differential transcript expression.
Frazee, Alyssa C; Jaffe, Andrew E; Langmead, Ben; Leek, Jeffrey T
2015-09-01
Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Polyester is freely available from Bioconductor (http://bioconductor.org/). jtleek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen
2006-03-01
Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.
Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu
2012-01-01
Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.
Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M
2018-02-07
Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.
Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui
2016-01-01
Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459
Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.
Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F
2005-01-01
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Kähkönen, T E; Ivaska, K K; Jiang, M; Büki, K G; Väänänen, H K; Härkönen, P L
2018-02-05
Fibroblast growth factors (FGF) and their receptors (FGFRs) regulate many developmental processes including differentiation of mesenchymal stromal cells (MSC). We developed two MSC lines capable of differentiating to osteoblasts and adipocytes and studied the role of FGFRs in this process. We identified FGFR2 and fibroblast growth factor receptor like-1 (FGFRL1) as possible actors in MSC differentiation with gene microarray and qRT-PCR. FGFR2 and FGFRL1 mRNA expression strongly increased during MSC differentiation to osteoblasts. FGF2 treatment, resulting in downregulation of FGFR2, or silencing FGFR2 expression with siRNAs inhibited osteoblast differentiation. During adipocyte differentiation expression of FGFR1 and FGFRL1 increased and was down-regulated by FGF2. FGFR1 knockdown inhibited adipocyte differentiation. Silencing FGFR2 and FGFR1 in MSCs was associated with decreased FGFRL1 expression in osteoblasts and adipocytes, respectively. Our results suggest that FGFR1 and FGFR2 regulate FGFRL1 expression. FGFRL1 may mediate or modulate FGFR regulation of MSC differentiation together with FGFR2 in osteoblastic and FGFR1 in adipocytic lineage. Copyright © 2017 Elsevier B.V. All rights reserved.
UNUSUAL MANIFESTATION OF NEUROBORELIOSIS (CASE REPORT).
Beridze, M; Khizanishvili, N; Mdivani, M; Samushia, O; Gogokhia, N
2017-03-01
The paper reported the verified case of neuroboreliosis with unusual clinical presentation of Parkinsonism. Study aimed at establishing the significance of a precise differential diagnosis with substantial analysis of the symptoms of several diseases to avoid the false diagnosis and to conduct the opportune and adequate therapeutic management. We described the case of the diagnosed neuroboreliosis with clinical expression of Multiple Sclerosis (MS) and Parkinsonism. A 44 years old man was diagnosed as MS according to the McDonald's Criteria, who within two years developed typical clinical signs of Parkinsonism. Patient investigated neurologically, Brain contrast MRI (1.5 Tesla) was performed; Cerebrospinal fluid was researched for oligoclonal bands. Blood IgM and IgG were researched against Chlamidia pneumonie, Micoplasma pneumonie, Borrelia Burgdorferi, Herpes simplex 1/2, Cytomegalovirus by ELISA method. Clinically the patient expressed amimic face, oligobradikinesia, extrapiramidal rigidity in all limbs, resting tremor in upper limb fingers, horizontal nystagmus. Brain MRI showed multiple gadolinium enhanced demyelization lesions in periventricular and sub-cortical white matter. CSF oligoclonal bands were positive without dysfunction of blood-brain barrier. Blood IgM, IgG detected to be negative against Chlamidia pneumonie, Micoplasma pneumonie, cytomegalovirus, Herpes simplex ½, while the blood IgG was strongly positive against Borrelia burgdorferi, confirmed by followed Western blot test. Patient was stabilized by puls-therapy with 1 gr/intravenous Solumedrol (5 days) along with Rocephin treatment (2 gr /iv) for 21 days followed by long term treatment with Antiparkin (Carbidopa 250 mg, Levodopa 25 mg). MS and even Parkinsonism in suspicious cases should thoroughly be investigated for differentiation from chronic Neuroboreliosis.
Xu, Dongbin; Yuan, Huwei; Tong, Yafei; Zhao, Liang; Qiu, Lingling; Guo, Wenbin; Shen, Chenjia; Liu, Hongjia; Yan, Daoliang; Zheng, Bingsong
2017-01-01
Hickory (Carya cathayensis), a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs) were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the ‘Flavonoid biosynthesis’ pathway and ‘starch and sucrose metabolism’ were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory. PMID:28496455
The chemokine receptor CCR1 is identified in mast cell-derived exosomes.
Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li
2018-01-01
Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.
Melanosome uptake is associated with the proliferation and differentiation of keratinocytes.
Choi, Hye-In; Sohn, Kyung-Cheol; Hong, Dong-Kyun; Lee, Young; Kim, Chang Deok; Yoon, Tae-Jin; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Lee, Young Ho
2014-01-01
Melanosomes are synthesized in melanocytes and transferred to neighboring keratinocytes. However, the associations of melanosome uptake with the proliferation and differentiation of keratinocytes are not fully understood. We examined the associations of melanosome uptake with keratinocyte differentiation and proliferation. SV40T-transformed human epidermal keratinocytes (SV-HEKs) were treated with isolated melanosomes. The effects of melanosome uptake on the proliferation and differentiation of the keratinocytes were analyzed by Western blotting and flow cytometry. The relationship between melanosome uptake and keratinocyte differentiation status was verified by determining the melanin content in the cells. Melanosomes reduced the proliferation of SV-HEKs in a dose-dependent manner, but did not induce differentiation. Melanosome uptake was higher in differentiating keratinocytes compared to non-differentiating keratinocytes, and inhibited significantly by PAR-2 inhibitor. Melanosomes inhibit keratinocyte proliferation. Moreover, melanosome uptake is influenced by keratinocyte differentiation status, being highest in mid-stage differentiating keratinocytes in a PAR-2 dependent manner.
Sela, M; Tirza, G; Ravid, O; Volovitz, I; Solodeev, I; Friedman, O; Zipori, D; Gur, E; Krelin, Y; Shani, N
2015-01-01
Mesenchymal stromal cells (MSCs) are multipotent and can be derived from different adult tissues including fat. Our repeated attempts to produce long-term proliferative cultures of rat abdominal adipose stem cells (aASCs) under normal oxygen concentration (21%) were unsuccessful. We set to examine the events controlling this cytostasis of aASCs and found that it resulted from overproduction of reactive oxygen species (ROS) that led to apoptosis. ROS overproduction in aASCs was accompanied by increased expression of NOX1 but not of NOX2 or NOX4. NOX family members are an important source of intracellular ROS pointing to NOX1 involvement in ROS accumulation. This was verified when aASCs that were grown under 3% oxygen conditions expanded long term, displaying reduced NOX1 expression and decreased ROS accumulation. NOX1 involvement in aASC cytostasis was reaffirmed when cells that were expanded under normoxic conditions in the presence of a specific NOX1 inhibitor, ML171, demonstrated reduced ROS accumulation, reduced apoptosis and long-term expansion. aASC expansion arrest was accompanied also by a weak fat differentiation and migratory potential, which was enhanced by NOX1 inhibition. This suggests an inhibitory role for NOX1-induced ROS overproduction on aASCs, their fat differentiation and migratory potential. In contrast to aASCs, similar cells produced from subcutaneous fat were easily expanded in normoxic cultures, exhibiting low ROS concentrations, a low number of apoptotic cells and improved fat differentiation and migration. Taken together, our results show, for the first time, that NOX1-induced ROS accumulation halts ASC expansion and reduces their differentiation and migratory potential under normoxic conditions. Importantly, this phenotype comprises a tissue-specific signature as it was evident in aASCs but not in subcutaneous ASCs. NOX-induced ROS accumulation and cytokine production by fat are part of the metabolic syndrome. The similarity of this phenomenon to aASC phenotype may indicate that they arise from similar molecular mechanisms. PMID:25880095
Romorini, Leonardo; Riva, Diego Ariel; Blüguermann, Carolina; Videla Richardson, Guillermo Agustin; Scassa, Maria Elida; Sevlever, Gustavo Emilio; Miriuka, Santiago Gabriel
2013-01-01
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal. PMID:23936178
Xie, Qiang; Wang, Hongbei; Heilman, Edward R; Walsh, Michael G; Haseeb, M A; Gupta, Raavi
2014-01-01
Enhancer of Zeste Homolog 2 (EZH2) is a polycomb group protein that has been shown to be involved in the progression of multiple human cancers including melanoma. The expression of EZH2 in normal skin and in pre-malignant and malignant cutaneous squamous cell carcinoma (SCC) has not been studied. We examined the expression of EZH2 in normal skin, actinic keratosis (AK), SCC in situ, well-differentiated (SCC-WD), moderately-differentiated (SCC-MD) and poorly-differentiated SCC (SCC-PD) to ascertain whether EZH2 expression differentiates these conditions. Immunohistochemical staining for EZH2 was performed on formalin-fixed paraffin-embedded biopsies and a tissue microarray containing normal skin, AK, SCC in situ, and SCC of different grades. In comparison to the normal skin, EZH2 expression in actinic keratosis was increased (p=0.03). Similarly, EZH2 expression in all of the neoplastic conditions studied (SCC in situ, SCC-WD, SCC-MD and SCC-PD) was greatly increased in comparison to both the normal skin and actinic keratosis (p≤0.001). EZH2 expression increases incrementally from normal skin to AK and further to SCC, suggesting a role for EZH2 in the progression and differentiation of SCC. EZH2 expression may be used as a diagnostic marker for differentiating SCC from AK or normal skin.
Ahlborn, Gene J; Nelson, Gail M; Ward, William O; Knapp, Geremy; Allen, James W; Ouyang, Ming; Roop, Barbara C; Chen, Yan; O'Brien, Thomas; Kitchin, Kirk T; Delker, Don A
2008-03-15
Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips, and pathway analysis was conducted with DAVID (NIH), Ingenuity Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers.
Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun
2016-01-01
Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.
Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun
2016-01-01
Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri. PMID:27644092
Chand, Subodh K; Nanda, Satyabrata; Joshi, Raj K
2016-01-01
MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.
Chen, Kevin; Cases, Olivier; Rebrin, Igor; Wu, Weihua; Gallaher, Timothy K; Seif, Isabelle; Shih, Jean Chen
2007-01-05
Previous studies have established that abrogation of monoamine oxidase (MAO) A expression leads to a neurochemical, morphological, and behavioral specific phenotype with increased levels of serotonin (5-HT), norepinephrine, and dopamine, loss of barrel field structure in mouse somatosensory cortex, and an association with increased aggression in adults. Forebrain-specific MAO A transgenic mice were generated from MAO A knock-out (KO) mice by using the promoter of calcium-dependent kinase IIalpha (CaMKIIalpha). The presence of human MAO A transgene and its expression were verified by PCR of genomic DNA and reverse transcription-PCR of mRNA and Western blot, respectively. Significant MAO A catalytic activity, autoradiographic labeling of 5-HT, and immunocytochemistry of MAO A were found in the frontal cortex, striatum, and hippocampus but not in the cerebellum of the forebrain transgenic mice. Also, compared with MAO A KO mice, lower levels of 5-HT, norepinephrine, and DA and higher levels of MAO A metabolite 5-hydroxyindoleacetic acid were found in the forebrain regions but not in the cerebellum of the transgenic mice. These results suggest that MAO A is specifically expressed in the forebrain regions of transgenic mice. This forebrain-specific differential expression resulted in abrogation of the aggressive phenotype. Furthermore, the disorganization of the somatosensory cortex barrel field structure associated with MAO A KO mice was restored and became morphologically similar to wild type. Thus, the lack of MAO A in the forebrain of MAO A KO mice may underlie their phenotypes.
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo
2016-01-01
Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875
Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.
Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun
2016-11-01
Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.
Zhou, X; Song, C; Grzymala, T L; Oi, F M; Scharf, M E
2006-12-01
In lower termites, the worker caste is a totipotent immature stage that is capable of differentiating into other adult caste phenotypes. We investigated the diversity of family 4 cytochrome P450 (CYP4) genes in Reticulitermes flavipes workers, with the specific goal of identifying P450s potentially involved in regulating caste differentiation. Seven novel CYP4 genes were identified. Quantitative real-time PCR revealed the tissue distribution of expression for the seven CYP4s, as well as temporal expression changes in workers in association with a release from colony influences and during juvenile hormone (JH)-induced soldier caste differentiation. Several fat-body-related CYP4 genes were differentially expressed after JH treatment. Still other genes changed expression in association with removal from colony influences, suggesting that primer pheromones and/or other colony influences impact their expression. These findings add to a growing database of candidate termite caste-regulatory genes, and provide explicit evidence that colony factors influence termite gene expression.
Goppelt-Struebe, M; Reiser, C O; Schneider, N; Grell, M
1996-10-01
Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.
Cheng, Zhi-An; Han, Ling; Wei, Jian-An; Sun, Jing; Duan, Xiao-Dong
2013-02-01
To study the effects of Chinese medical recipes for invigorating Shen on rat bone marrow mesenchymal stem cells (BMSCs)-derived preadipocytes' differentiation to osteoblasts. The BMSCs were cultured using whole bone marrow adherence wall method. The BMSCs were induced to preadipocytes by classic chemical method. The osteogenic differentiation process of preadipocytes was intervened by Liuwei Dihuang Pill (LDP), Jingui Shenqi Pill (JSP), or Jiangu Erxian Pill (JEP)-containing serums (with the concentRation of 10%, on behalf of tonifying Shen yin, tonifying Shen yang, and tonifying Shen essence). Reverse transcription-real time fluorescent quantitative-PCR (RT real time qPCR) was used to detect RUNX2, ALP, BGP, BMP2, BMP4, SPP1, and IGF1 mRNA expressions of osteogenic differentiation-related genes, mRNA expressions of LPL, FABP4, and PPARgamma of adipogenic differentiation-related genes on the 6th, the 12th, and the 18th day. As for the osteogenic differentiation-related gene, when compared with the control group, there was no statistical difference in the gene expression level in the experimental groups on the 6th day (2.0 > Ratio > 0.5). On the 12th day, the mRNA expressions of IGF1 and Runx2 increased more significantly in the JSP group, with their relative quantification (Ratio) being 2.97 and 1.81 respectively. On the 18th day the IGF1 mRNA expression significantly increased, being the Ratio value of 3.74, 12.60, and 8.35, respectively, in the LDP group, the JSP group, and the JEP group. The SPP1 mRNA expression also significantly increased, with the Ratio value of 2.94, 3.18, and 2.62, respectively, in the LDP group, the JSP group, and the JEP group. As for adipogenic differentiation-related genes, on the 6th day, when compared with the control group, FABP4 mRNA expression significantly decreased in the LDP group and the JSP group (with the Ratio value of 0.47 and 0.40 respectively). The expression levels of other genes were all down-regulated, but not significantly. On the 12th day and 18th day, there was no statistical change in the adipogenic differentiation-related genes expressions (2.0 > Ratio > 0.5). Up-regulation of osteogenic differentiation-related genes expression occurred in later time, while down-regulation of adipogenic differentiation-related genes expression occurred in earlier time after treatment by Chinese medical recipes for invigorating Shen. In general, above data indicated that tonifying Shen yang was more effective in promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs.
Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.
2009-01-01
Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893
2012-01-01
Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019
Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M
2012-09-17
RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.
Valenti, Maria Teresa; Garbin, Ulisse; Pasini, Andrea; Zanatta, Mirko; Stranieri, Chiara; Manfro, Stefania; Zucal, Chiara; Dalle Carbonare, Luca
2011-01-01
Background Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and adipocytes and conditions causing bone loss may induce a switch from the osteoblast to adipocyte lineage. In addition, the expression of Runx2 and the PPARγ2 transcription factor genes is essential for cellular commitment to an osteogenic and adipogenic differentiation, respectively. Modified lipoproteins derived from the oxidation of arachidonate-containing phospholipids (ox-PAPCs: POVPC, PGPC and PEIPC) are considered important factors in atherogenesis. Methodology We investigated the effect of ox-PAPCs on osteogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). In particular, we analyzed the transcription factor Runx2 and the PPARγ2 gene expression during osteogenic and adipogenic differentiation in absence and in presence of ox-PAPCs. We also analyzed gene expression level in a panel of osteoblastic and adipogenic differentiation markers. In addition, as circulating blood cells can be used as a “sentinel” that responds to changes in the macro- or micro-environment, we analyzed the Runx2 and the PPARγ2 gene expression in MSCs-like and ox-PAPC levels in serum of osteoporotic patients (OPs). Finally, we examined the effects of sera obtained from OPs in hMSCs comparing the results with age-matched normal donors (NDs). Principal findings Quantitative RT-PCR demonstrated that ox-PAPCs enhanced PPARγ2 and adipogenic gene expression and reduced Runx2 and osteoblast differentiation marker gene expression in differentiating hMSCs. In OPs, ox-PAPC levels and PPARγ2 expression were higher than in NDs, whereas Runx2 was lower than in ND circulant MSCs-like. Conclusions Ox-PAPCs affect the osteogenic differentiation by promoting adipogenic differentiation and this effect may appear involved in bone loss in OPs. PMID:21674037
Sakimura, Shotaro; Sugimachi, Keishi; Kurashige, Junji; Ueda, Masami; Hirata, Hidenari; Nambara, Sho; Komatsu, Hisateru; Saito, Tomoko; Takano, Yuki; Uchi, Ryutaro; Sakimura, Etsuko; Shinden, Yoshiaki; Iguchi, Tomohiro; Eguchi, Hidetoshi; Oba, Yugo; Hoka, Sumio; Mimori, Koshi
2015-12-01
MicroRNAs have roles in the regulation of the epithelial-mesenchymal transition (EMT). Findings have shown that miR-506 inhibits the expression of SNAI2 and that low expression of miR-506 is associated with poor prognoses in ovarian and breast cancers. This study investigated the role of miR-506 in survival and the EMT in patients with gastric cancer. In this study, miR-506 and SNAI2 mRNA levels were measured in 141 cases of gastric cancer by quantitative reverse transcription polymerase chain reaction, and the protein expressions of SNAI2 and E-cadherin in 39 cases were validated by immunohistochemical analysis. Next, the associations between their expression levels and clinicopathologic factors were evaluated. In addition, cell proliferation, migration, and luciferase activity of the 3' untranslated region (UTR) of SNAI2 were analyzed using pre-miR-506 precursor in two human gastric cancer cell lines. Low expression of miR-506 was significantly correlated with poor overall survival in both the univariate analysis (P = 0.016) and the multivariate analysis (P < 0.05). Low miR-506 expression was significantly correlated with high SNAI2 expression (P = 0.009) and poorly differentiated type (P = 0.015). In vitro, miR-506 suppressed SNAI2 expression by binding to its 3'UTR, resulting in increased expression of E-cadherin (P < 0.05), verified by immunohistochemical analysis. Pre-miR-506 transfected cells showed significantly suppressed cell proliferation and migration (P < 0.05) compared with the control cells. The EMT was directly suppressed by miR-506, and its low expression was an independent prognostic factor in gastric cancer patients. The data indicated that miR-506 may act as a tumor suppressor and could be a novel therapeutic agent.
Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo
2012-01-01
Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960
27-Hydroxycholesterol upregulates the production of heat shock protein 60 of monocytic cells.
Kim, Bo-Young; Son, Yonghae; Choi, Jeongyoon; Eo, Seong-Kug; Park, Young Chul; Kim, Koanhoi
2017-09-01
Investigating differentially expressed proteins in a milieu rich in cholesterol oxidation products, we found via mass spectrometry-based proteomics that surface levels of heat shock protein 60 (HSP60) were upregulated on monocytic cells in the presence of 27-hydroxycholesterol (27OHChol). The elevated levels of cytoplasmic membrane HSP60 were verified via Western blot analysis and visualized by confocal microscopy. Treatment with 27OHChol also resulted in increased levels of cellular HSP60 without altering its transcription. Cholesterol, however, did not affect cell-surface levels and cellular amount of HSP60. GSK 2033, an LXR antagonist, inhibited expression of live X receptor α, but not of HSP60, induced by 27OHChol. Treatment with 27OHChol also resulted in increased release of HSP60 from monocytic cells, but the release was significantly reduced by inhibitors of endoplasmic reticulum-Golgi protein trafficking, brefeldin A and monensin. Results of the current study indicate that 27OHChol upregulates not only cell-surface and cellular levels of HSP60 but also its release from monocytic cells, thereby contributing to activation of the immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan
2015-06-01
Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Yuesheng; Ji, Yuqiang; Li, Min; Wang, Min; Yi, Xiaoqing; Yin, Chunyan; Wang, Sisi; Zhang, Meizhen; Zhao, Zhao; Xiao, Yanfeng
2018-06-08
Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.
Davidson, Ben; Stavnes, Helene Tuft; Holth, Arild; Chen, Xu; Yang, Yanqin; Shih, Ie-Ming; Wang, Tian-Li
2011-01-01
Abstract Ovarian/primary peritoneal carcinoma and breast carcinoma are the gynaecological cancers that most frequently involve the serosal cavities. With the objective of improving on the limited diagnostic panel currently available for the differential diagnosis of these two malignancies, as well as to define tumour-specific biological targets, we compared their global gene expression patterns. Gene expression profiles of 10 serous ovarian/peritoneal and eight ductal breast carcinoma effusions were analysed using the HumanRef-8 BeadChip from Illumina. Differentially expressed candidate genes were validated using quantitative real-time PCR and immunohistochemistry. Unsupervised hierarchical clustering using all 54,675 genes in the array separated ovarian from breast carcinoma samples. We identified 288 unique probes that were significantly differentially expressed in the two cancers by greater than 3.5-fold, of which 81 and 207 were overexpressed in breast and ovarian/peritoneal carcinoma, respectively. SAM analysis identified 1078 differentially expressed probes with false discovery rate less than 0.05. Genes overexpressed in breast carcinoma included TFF1, TFF3, FOXA1, CA12, GATA3, SDC1, PITX1, TH, EHFD1, EFEMP1, TOB1 and KLF2. Genes overexpressed in ovarian/peritoneal carcinoma included SPON1, RBP1, MFGE8, TM4SF12, MMP7, KLK5/6/7, FOLR1/3, PAX8, APOL2 and NRCAM. The differential expression of 14 genes was validated by quantitative real-time PCR, and differences in 5 gene products were confirmed by immunohistochemistry. Expression profiling distinguishes ovarian/peritoneal carcinoma from breast carcinoma and identifies genes that are differentially expressed in these two tumour types. The molecular signatures unique to these cancers may facilitate their differential diagnosis and may provide a molecular basis for therapeutic target discovery. PMID:20132413
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes
Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong
2015-01-01
In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.
Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong
2015-01-01
In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.
Brca1 regulates in vitro differentiation of mammary epithelial cells.
Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus
2002-07-18
Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.
Gao, Yuan; Xiao, Fei; Wang, Chenglong; Wang, Chuandong; Cui, Penglei; Zhang, Xiaoling; Chen, Xiaodong
2018-05-09
Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for the human bone formation, and emerging evidence shows that long non-coding RNAs (lncRNAs) play important roles in hBMSC osteogenic differentiation. MALAT1 is often regarded as a tumor-related lncRNA, but its function in mesenchymal stem cell differentiation remains to be defined. In this study, we aimed to investigate whether MALAT1 regulates Osterix (Osx) expression by sponging miR-143 to promote hBMSC osteogenic differentiation. Firstly, we found that the expression of MALAT1 was much lower in hBMSCs from osteoporosis patients and miR-143 was contrarily higher. In addition, MALAT1 expression increased, and miR-143 decreased when hBMSCs were treated with osteogenic induction. Then, we used short hairpin RNAs to knockdown MALAT1, and the results showed that hBMSC osteogenic differentiation decreased significantly, indicating that MALAT1 is a positive regulator of osteogenic differentiation in hBMSCs. Furthermore, by luciferase assays, we found that MALAT1 could directly bind to miR-143 and negatively regulate its expression. Similarly, miR-143 could directly bind to the target site on the Osx 3'-UTR and then inhibit Osx expression. Knockdown of MALAT1 decreased Osx expression, and co-transfection of miR-143 inhibitor could rescue Osx mRNA expression. While Osx expression was increased in MALAT1-overexpressing hBMSCs, it was reversed by the miR-143 mimics. Moreover, Osx silencing decreased ALP, OCN, and OPN mRNA expression induced by the miR-143 inhibitor. Altogether, our findings suggest that MALAT1 acts to regulate Osx expression through targeting miR-143; thus, it is considered as a positive regulator in hBMSC osteogenic differentiation. © 2018 Wiley Periodicals, Inc.
ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma.
Pieraccioli, Marco; Nicolai, Sara; Pitolli, Consuelo; Agostini, Massimiliano; Antonov, Alexey; Malewicz, Michal; Knight, Richard A; Raschellà, Giuseppe; Melino, Gerry
2018-06-25
Derangement of cellular differentiation because of mutation or inappropriate expression of specific genes is a common feature in tumors. Here, we show that the expression of ZNF281, a zinc finger factor involved in several cellular processes, decreases during terminal differentiation of murine cortical neurons and in retinoic acid-induced differentiation of neuroblastoma (NB) cells. The ectopic expression of ZNF281 inhibits the neuronal differentiation of murine cortical neurons and NB cells, whereas its silencing causes the opposite effect. Furthermore, TAp73 inhibits the expression of ZNF281 through miR34a. Conversely, MYCN promotes the expression of ZNF281 at least in part by inhibiting miR34a. These findings imply a functional network that includes p73, MYCN, and ZNF281 in NB cells, where ZNF281 acts by negatively affecting neuronal differentiation. Array analysis of NB cells silenced for ZNF281 expression identified GDNF and NRP2 as two transcriptional targets inhibited by ZNF281. Binding of ZNF281 to the promoters of these genes suggests a direct mechanism of repression. Bioinformatic analysis of NB datasets indicates that ZNF281 expression is higher in aggressive, undifferentiated stage 4 than in localized stage 1 tumors supporting a central role of ZNF281 in affecting the differentiation of NB. Furthermore, patients with NB with high expression of ZNF281 have a poor clinical outcome compared with low-expressors. These observations suggest that ZNF281 is a controller of neuronal differentiation that should be evaluated as a prognostic marker in NB. Copyright © 2018 the Author(s). Published by PNAS.
Ramos-Mejía, Verónica; Montes, Rosa; Bueno, Clara; Ayllón, Verónica; Real, Pedro J.; Rodríguez, René; Menendez, Pablo
2012-01-01
Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation. PMID:22545141
Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki
2016-01-01
Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343
Lee, Kkot-Nim; Jang, Won-Gu; Kim, Eun-Jung; Oh, Sin-Hye; Son, Hye-Ju; Kim, Sun-Hun; Franceschi, Renny; Zhang, Xiao-Kun; Lee, Shee-Eun; Koh, Jeong-Tae
2012-06-01
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.
Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun
2013-01-01
There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription–polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level. PMID:23593441
Song, Je Seon; Hwang, Dong Hwan; Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun
2013-01-01
There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.
Li, Haixia; Huang, Yuguang; Ma, Chao; Yu, Xuerong; Zhang, Zhiyong; Shen, Le
2015-01-01
Although microRNAs (miRNAs) have been shown to play a role in numerous biological processes, their function in neuropathic pain is not clear. The rat bilateral sciatic nerve chronic constriction injury (bCCI) is an established model of neuropathic pain, so we examined miRNA expression and function in the spinal dorsal horn in bCCI rats. Microarray and real-time polymerase chain reaction were used to examine the expression of miRNA in nerve system of bCCI rats, and the targets of miRNA were predicted by bioinformatic approaches. The function of specific miRNA was estimated through the methods of gene engineering. This study revealed substantially (∼10-fold) decreased miR-203 expression in the spinal dorsal horns but not the dorsal root ganglions, hippocampus, or anterior cingulate cortexes of bCCI rats. Rap1a protein expression was upregulated in bCCI rat spinal dorsal horns. We further verified that miR-203 directly targeted the 3'-untranslated region of the rap1a gene, thereby decreasing rap1a protein expression in neuron-like cells. Rap1a has diverse neuronal functions and their perturbation is responsible for several mental disorders. For example, Rap1a/MEK/ERK is involved in peripheral sensitization. These data suggest a potential role for miR-203 in regulating neuropathic pain development, and Rap1a is a validated target gene in vitro. Results from our study and others indicate the possibility that Rap1a may be involved in pain. We hope that these results can provide support for future research into miR-203 in gene therapy for neuropathic pain.
Wang, Li-Xin; Li, Yang; Chen, Guan-Zhi
2018-01-01
Metastatic melanoma is an aggressive skin cancer and is one of the global malignancies with high mortality and morbidity. It is essential to identify and verify diagnostic biomarkers of early metastatic melanoma. Previous studies have systematically assessed protein biomarkers and mRNA-based expression characteristics. However, molecular markers for the early diagnosis of metastatic melanoma have not been identified. To explore potential regulatory targets, we have analyzed the gene microarray expression profiles of malignant melanoma samples by co-expression analysis based on the network approach. The differentially expressed genes (DEGs) were screened by the EdgeR package of R software. A weighted gene co-expression network analysis (WGCNA) was used for the identification of DEGs in the special gene modules and hub genes. Subsequently, a protein-protein interaction network was constructed to extract hub genes associated with gene modules. Finally, twenty-four important hub genes (RASGRP2, IKZF1, CXCR5, LTB, BLK, LINGO3, CCR6, P2RY10, RHOH, JUP, KRT14, PLA2G3, SPRR1A, KRT78, SFN, CLDN4, IL1RN, PKP3, CBLC, KRT16, TMEM79, KLK8, LYPD3 and LYPD5) were treated as valuable factors involved in the immune response and tumor cell development in tumorigenesis. In addition, a transcriptional regulatory network was constructed for these specific modules or hub genes, and a few core transcriptional regulators were found to be mostly associated with our hub genes, including GATA1, STAT1, SP1, and PSG1. In summary, our findings enhance our understanding of the biological process of malignant melanoma metastasis, enabling us to identify specific genes to use for diagnostic and prognostic markers and possibly for targeted therapy.
Martins, Fabiane Ferreira; Bargut, Thereza Cristina Lonzetti; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto
2017-03-01
Brown adipose tissue (BAT) is specialized in heat production, but its metabolism in ob/ob mice is still a matter of debate. We aimed to verify ob/ob mice BAT using C57Bl/6 male mice (as the wild-type, WT) and leptin-deficient ob/ob mice (on the C57Bl/6 background strain), at three months of age (n=10/group). At euthanasia, animals had their interscapular BAT weighed, and prepared for analysis (Western blot, and RT-qPCR). In comparison with the WT group, the ob/ob group showed reduced thermogenic signaling markers (gene expression of beta 3-adrenergic receptor, beta3-AR; PPARgamma coactivator 1 alpha, PGC1alpha, and uncoupling protein 1, UCP1). The ob/ob group also showed impaired gene expression for lipid utilization (perilipin was increased, while other markers were diminished: carnitine palmitoyltransferase-1b, CPT-1b; cluster of differentiation 36, CD36; fatty acid binding protein 4, FABP4; fatty acid synthase, FAS, and sterol regulatory element-binding protein 1c, SREBP1c), and altered protein expression of insulin signaling (diminished pAKT, TC10, and GLUT-4). Lastly, the ob/ob group showed increased gene expression of markers of inflammation (interleukin 1 beta, IL-1beta; IL-6, tumor necrosis factor alpha, TNFalpha; and monocyte chemotactic protein-1, MCP-1). In conclusion, the ob/ob mice have decreased thermogenic markers associated with reduced gene expression related to fatty acid synthesis, mobilization, and oxidation. There were also alterations in insulin signaling and protein and gene expressions of inflammation. The findings suggest that the lack of substrate for thermogenesis and the local inflammation negatively regulated thermogenic signaling in the ob/ob mice. Copyright © 2016 Elsevier GmbH. All rights reserved.
Siegfried, Jill M; Farooqui, Mariya; Rothenberger, Natalie J; Dacic, Sanja; Stabile, Laura P
2017-04-11
The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered β-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. β-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERβ, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERβ expressing tumors. The top differentially expressed genes in high ERβ tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.
Prognostic significance of metabolic enzyme pyruvate kinase M2 in breast cancer: A meta-analysis.
Yang, Yiming; Wu, Ke; Liu, Yulin; Shi, Liang; Tao, Kaixiong; Wang, Guobin
2017-11-01
Numerous studies have reported that aberrant pyruvate kinase M2 isoform (PKM2) expressed in cancer, indicating that PKM2 plays a critical role in tumor initiation and progression. Nevertheless, its prognostic value in breast cancer tumor is yet contentious. Therefore, we performed this meta-analysis to evaluate the prognostic significance of PKM2 in breast cancer. Eligible relevant literatures were retrieved by searching PubMed, the Cochrane Library, Embase through December 2016. Articles that comparing different PKM2 expression levels in human breast cancer tissues and prognostic significance were included. Software RevMan 5.3 and STATA (Review Manager (RevMan): [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014. StataCorp. 2011. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP) were applied to analyze the outcomes. Pooled results were presented in hazardous ratios (HRs) of 5-year overall survival (OS), progression-free survival (PFS), and odds ratios (ORs) of clinicopathological features with 95% confidence intervals. Data from 6 involved studies with 895 patients were summarized. Breast cancer patients with high PKM2 had a worse OS (pooled HR = 1.65, 95% CI = 1.31-2.08, P < .001) and PFS (pooled HR = 2.49, 95% CI = 1.84-3.36, P < .00001). High PKM2 expression is related to lymph node metastasis (N1+N2+N3 vs N0, OR = 1.97, 95%CI = 1.39-2.80, P = .0001). The outcome stability was verified via sensitivity analysis. But elevated PKM2 expression was not correlated to tumor stage (T2+T3 vs T1, pooled OR = 0.80, 95% CI = 0.36-1.77, P = .58) and differential grade (G2+G3 vs G1, OR = 2.74, 95%CI = 0.76-9.84, P = .12). No publication bias was found in the included studies for OS (Begg test, P = .260; Egger test, P = .747). High PKM2 expression denotes worse OS and PFS in breast cancer patients, and correlate with the lymph node metastasis. However, there is no evidence for the impact of PKM2 expression on T stage and tumor differentiation.
The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells.
Alizadeh, Effat; Zarghami, Nosratollah; Eslaminejad, Mohamadreza Baghaban; Akbarzadeh, Abolfazl; Barzegar, Abolfazl; Mohammadi, Seyed Abolghasem
2016-01-01
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are suitable choices in autologous stem cell treatment of liver-associated diseases due to their hepatic differentiation potential. Dimethyl sulfoxide (DMSO) is an amphipathic molecule with potential of delivering both lipophilic and hydrophilic agents into cells, also a common cryoprotectant for freezing of the cells. DMSO was used in some protocols for induction of AT-MSCs towards hepatocyte like cells. However, the effect of DMSO on hepatogenic differentiation of AT-MSCs were not surveyed, previously. In the present study, we aimed at evaluation of the effect of DMSO on differentiation of AT-MSCs into hepatic lineage. We isolated mesenchymal stem cells (MSCs) from adipose tissue, and then verifies multi-potency and surface markers of AT-MSCs . Isolated AT-MSCs randomly dispensed in four groups including Group 1: HGF treated, 2: HGF+ DMSO treated, 3: HGF+ DMSO+ OSM treated, and group control for a period of 3 weeks in the expansion medium without serum; EGF and bFGF were also included in the first days of inductions. The morphologic changes during induction period was observed with microscopy. The secretion of albumin (ALB) of the differentiating MSCs was investigated using ELISA, and urea production was evaluated using colorimetric assay. The qRT-PCR was performed for quantitation of hepatocyte marker genes including AFP, ALB, CK18, HNF4a, and HNF6. The glycogen storage of differentiated cells was visualized by periodic-acid Schiff‘s staining. The results demonstrate that DMSO speeds up hepatic differentiation of AT-MSCs characterized by rapid changes in morphology; higher expression of hepatic marker gene (ALB) in both mRNA and protein level (P < 0.05); also increased transcriptional levels of other liver genes including CK18, HNF4a, and HNF6 (P < 0.01); and moreover, greater percentage of glycogen storage(p < 0.05) in DMSO-treated groups. DMSO catalyzes hepatic differentiation; therefore, using DMSO for acceleration of the hepatogenic protocols of AT-MSCs appears advantageous.
Badenes, Sara M.; Fernandes, Tiago G.; Cordeiro, Cláudia S. M.; Boucher, Shayne; Kuninger, David; Vemuri, Mohan C.; Diogo, Maria Margarida; Cabral, Joaquim M. S.
2016-01-01
Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells. PMID:26999816
In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways
Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel
2013-01-01
It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101
Msx homeobox genes inhibit differentiation through upregulation of cyclin D1.
Hu, G; Lee, H; Price, S M; Shen, M M; Abate-Shen, C
2001-06-01
During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.
Variability Analysis of MOS Differential Amplifier
NASA Astrophysics Data System (ADS)
Aoki, Masakazu; Seto, Kenji; Yamawaki, Taizo; Tanaka, Satoshi
Variation characteristics in MOS differential amplifier are evaluated by using the concise statistical model parameters for SPICE simulation. We find that the variation in the differential-mode gain, Adm, induced by the current factor variation, Δβ0, in the Id-variation of the differential MOS transistors is more than one order of magnitude larger than that induced by the threshold voltage variation, ΔVth, which has been regarded as a major factor for circuit variations in SoC's (2). The results obtained by the Monte Carlo simulations are verified by the theoretical analysis combined with the sensitivity analysis which clarifies the specific device parameter dependences of the variation in Adm.
Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis
2015-01-01
The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515
de Bittencourt Pasquali, Matheus Augusto; de Ramos, Vitor Miranda; Albanus, Ricardo D Oliveira; Kunzler, Alice; de Souza, Luis Henrinque Trentin; Dalmolin, Rodrigo Juliani Siqueira; Gelain, Daniel Pens; Ribeiro, Leila; Carro, Luigi; Moreira, José Cláudio Fonseca
2016-01-01
SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.
Sjögren, Rasmus J. O.; Egan, Brendan; Katayama, Mutsumi; Zierath, Juleen R.
2014-01-01
microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from human skeletal muscle satellite cells, we performed microarray profiling of miRNA expression during differentiation of myoblasts (day 0) into myotubes at 48 h intervals (day 2, 4, 6, 8, and 10). Based on a time-course analysis, we identified 44 miRNAs with altered expression [false discovery rate (FDR) < 5%, fold change > ±1.2] during differentiation, including the marked upregulation of the canonical myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206. Microarray profiling of mRNA expression at day 0, 4, and 10 identified 842 and 949 genes differentially expressed (FDR < 10%) at day 4 and 10, respectively. At day 10, 42% of altered transcripts demonstrated reciprocal expression patterns in relation to the directional change of their in silico predicted regulatory miRNAs based on analysis using Ingenuity Pathway Analysis microRNA Target Filter. Bioinformatic analysis predicted networks of regulation during differentiation including myomiRs miR-1/206 and miR-133a/b, miRNAs previously established in differentiation including miR-26 and miR-30, and novel miRNAs regulated during differentiation of human skeletal muscle cells such as miR-138-5p and miR-20a. These reciprocal expression patterns may represent new regulatory nodes in human skeletal muscle cell differentiation. This analysis serves as a reference point for future studies of human skeletal muscle differentiation and development in healthy and disease states. PMID:25547110
Bit-1 is an essential regulator of myogenic differentiation
Griffiths, Genevieve S.; Doe, Jinger; Jijiwa, Mayumi; Van Ry, Pam; Cruz, Vivian; de la Vega, Michelle; Ramos, Joe W.; Burkin, Dean J.; Matter, Michelle L.
2015-01-01
Muscle differentiation requires a complex signaling cascade that leads to the production of multinucleated myofibers. Genes regulating the intrinsic mitochondrial apoptotic pathway also function in controlling cell differentiation. How such signaling pathways are regulated during differentiation is not fully understood. Bit-1 (also known as PTRH2) mutations in humans cause infantile-onset multisystem disease with muscle weakness. We demonstrate here that Bit-1 controls skeletal myogenesis through a caspase-mediated signaling pathway. Bit-1-null mice exhibit a myopathy with hypotrophic myofibers. Bit-1-null myoblasts prematurely express muscle-specific proteins. Similarly, knockdown of Bit-1 expression in C2C12 myoblasts promotes early differentiation, whereas overexpression delays differentiation. In wild-type mice, Bit-1 levels increase during differentiation. Bit-1-null myoblasts exhibited increased levels of caspase 9 and caspase 3 without increased apoptosis. Bit-1 re-expression partially rescued differentiation. In Bit-1-null muscle, Bcl-2 levels are reduced, suggesting that Bcl-2-mediated inhibition of caspase 9 and caspase 3 is decreased. Bcl-2 re-expression rescued Bit-1-mediated early differentiation in Bit-1-null myoblasts and C2C12 cells with knockdown of Bit-1 expression. These results support an unanticipated yet essential role for Bit-1 in controlling myogenesis through regulation of Bcl-2. PMID:25770104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Zhengliang; Deblis, Ryan; Glenn, Honor
2007-11-15
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less
Sterle, Igor; Zupančič, Daša; Romih, Rok
2014-01-01
Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns. PMID:24868547
Sterle, Igor; Zupančič, Daša; Romih, Rok
2014-01-01
Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.
Interconnected network motifs control podocyte morphology and kidney function.
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi
2014-02-04
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.
Interconnected Network Motifs Control Podocyte Morphology and Kidney Function
Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi
2014-01-01
Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609
Analytical time-domain Green’s functions for power-law media
Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.
2008-01-01
Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774
Luz, Maria Cláudia de B; Perez, Matheus M; Azzalis, Ligia A; Sousa, Luiz Vinícius de A; Adami, Fernando; Fonseca, Fernando L A; Alves, Beatriz da C A
2017-03-23
Patients with breast cancer-the deadliest cancer among women-are at constant risk of developing metastasis. Oxidative stress and hypoxia are common feature of tumor cells that can proliferate even in a resultant metabolic acidosis. Despite the low extracellular pH, intracellular pH of tumor cells remains relatively normal, or even more alkaline due to the action of a membrane protein family known as monocarboxylate transporters (MCTs). The objective of this study was to verify the diagnostic and prognostic value of MCT1 , MCT4 and CD147 in tumor and peripheral blood samples of patients with breast cancer undergoing chemotherapic treatment. Differential expression of MCT1 , MCT4 and CD147 obtained by qPCR was determined by 2 -ΔΔ C q method between biological samples (tumor and serial samples of peripheral) of patients ( n = 125) and healthy women ( n = 25). tumor samples with higher histological grades have shown higher expression of these markers; this higher expression was also observed in blood samples obtained at diagnosis of patients when compared to healthy women and in patients with positive progression of the disease (metastasis development). markers studied here could be a promising strategy in routine laboratory evaluations as breast cancer diagnosis and prognosis.
Kim, Bo Ra; Jeon, Young Keul; Nam, Myeong Jin
2011-07-01
Apigenin (APG) has been shown to have a strong anti-cancer effect on various cancer models via a programmed cell death, apoptosis. However, the fundamental mechanisms of these effects are still unclear. In the present study, we examined the question of whether or not APG can inhibit proliferation of hepatocellular carcinoma (HCC), huh-7 cells, resulting in apoptosis. In APG-treated cells, we observed typical features of apoptosis. To identify the proteins related to APG-induced apoptosis, we performed two-dimensional electrophoresis analysis and identified differentially expressed proteins. Among these proteins, we focused on vimentin, which plays a physiological role, such as cell migration and adhesion. We validated expression of vimentin in both mRNA and protein levels, verifying its decrease. In addition, we observed that APG down-regulated the expression levels of type I collagen, which collaborated with vimentin in cell migration and decreased the releasing amounts of VEGF and MMP-8, which are closely relevant to angiogenic activity. Finally, we confirmed the decreased capacity of cell migration due to down-regulation of vimentin, type I collagen, VEGF, and MMP-8 induced by APG. Based on the overall results, we suggested that vimentin was potentially associated with APG-induced apoptosis, as a key regulator in angiogenesis and migration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lin, Hong Reng; Heish, Chao-Wen; Liu, Cheng-Hui; Muduli, Saradaprasan; Li, Hsing-Fen; Higuchi, Akon; Kumar, S. Suresh; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Chen, Da-Chung; Benelli, Giovanni; Murugan, Kadarkarai; Cheng, Nai-Chen; Wang, Han-Chow; Wu, Gwo-Jang
2017-01-01
Human adipose-derived stem cells (hADSCs) are easily isolated from fat tissue without ethical concerns, but differ in purity, pluripotency, differentiation ability, and stem cell marker expression, depending on the isolation method. We isolated hADSCs from a primary fat tissue solution using: (1) conventional culture, (2) a membrane filtration method, (3) a membrane migration method where the primary cell solution was permeated through membranes, adhered hADSCs were cultured, and hADSCs migrated out from the membranes. Expression of mesenchymal stem cell markers and pluripotency genes, and osteogenic differentiation were compared for hADSCs isolated by different methods using nylon mesh filter membranes with pore sizes ranging from 11 to 80 μm. hADSCs isolated by the membrane migration method had the highest MSC surface marker expression and efficient differentiation into osteoblasts. Osteogenic differentiation ability of hADSCs and MSC surface marker expression were correlated, but osteogenic differentiation ability and pluripotent gene expression were not. PMID:28071738
Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang
2007-02-01
To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.
Xing, Yanfen; Chen, Xiaojie; Cao, Yanwen; Huang, Jianyun; Xie, Xuhong; Wei, Yaming
2015-05-22
The purpose of this study was to investigate the expression of Wnt and Notch signaling pathway-related genes in inflammatory bowel disease (IBD) treated with mesenchymal stem cell transplantation (MSCT). TNBS (2,4,6-trinitrobenzene sulfonic acid) was used to establish IBD in a rat model. Mesenchymal stem cells (MSCs) were transplanted via tail vein transfusion. Saline water was used in a control group. The expression of Wnt and Notch main signaling molecules was screened by gene chips and verified by quantitative reverse transcription-polymerase chain reaction in the IBD rat model on day 14 and day 28 after transplantation. The IBD rat models were successfully established and MSCs were transplanted into those models. Genome-wide expression profile chips identified a total of 388 differentially expressive genes, of which 191 were upregulated and 197 were downregulated in the MSC-transplanted group in comparison with the IBD control group. Real-time quantitative polymerase chain reaction results showed that the level of Olfm4 mRNA expression in the IBD group (2.54±0.20) was significantly increased compared with the MSCT group (1.39±0.54) and the normal group (1.62±0.25) (P <0.05). The Wnt3a mRNA was more highly expressed in IBD rats (2.92±0.94) and decreased in MSCT rats (0.17±0.63, P <0.05). The expression of GSK-3β mRNA was decreased in the setting of inflammation (0.65±0.04 versus 1.00±0.01 in normal group, P <0.05) but returned to normal levels after MSCT (0.81±0.17). The expression of β-catenin was observed to increase in IBD tissues (1.76±0.44) compared with normal tissues (1.00±0.01, P <0.05), but no difference was found in the MSCT group (1.12±0.36). Wnt11 declined at 14 days and returned to normal levels at 28 days in the IBD group; in comparison, a significantly lower expression was found in MSCT rats. There were no differences in the expression of Fzd3, c-myc, TCF4, and Wnt5a in inflammation, but all of those genes declined after MSCT treatment. The canonical Wnt and Notch signaling pathways are activated in IBD and may be suppressed by stem cell transplantation to differentiate into intestinal epithelium after MSCT. Moreover, the non-canonical Wnt signaling may be inhibited by canonical Wnt signaling in the setting of inflammation and may also be suppressed by MSCT.
Mercado, Augustus T; Yeh, Jui-Ming; Chin, Ting Yu; Chen, Wen Shuo; Chen-Yang, Yui Whei; Chen, Chung-Yung
2016-11-01
A detailed genomic and epigenomic analyses of neural stem cells (NSCs) differentiation in synthetic microenvironments is essential for the advancement of regenerative medicine and therapeutic treatment of diseases. This study identified the changes in mRNA and miRNA expression profile during NSC differentiation on an artificial matrix. NSCs were grown on a surface-modified, electrospun tetraethyl-orthosilicate nanofiber (designated as SNF-AP) by providing a 3D-environment for cell growth and differentiation. Differentially expressed mRNAs and miRNAs of NSC differentiated in this microenvironment were identified through microarray analysis. The genes and miRNA targets responsible for the differentiation fate of NSCs and neuron development process were determined using Ingenuity Pathway Analysis (IPA). SNF-AP enhanced the expression of genes that activates the proliferation, development, and outgrowth of neurons, differentiation and generation of cells, neuritogenesis, outgrowth of neurites, microtubule dynamics, formation of cellular protrusions, and long-term potentiation during NSC differentiation. On the other hand, PDL inhibited neuritogenesis, microtubule dynamics, and proliferation and differentiation of cells and activated the apoptosis function. Moreover, the nanomaterial promoted the expression of more let-7 miRNAs, which have vital roles in NSC differentiation. Overall, SNF-AP is biocompatible and applicable scaffold for NSC differentiation in the development of neural tissue engineering. These findings are useful in enhancing in vitro NSC differentiation potential for preclinical studies and future clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2730-2743, 2016. © 2016 Wiley Periodicals, Inc.
Kawai, R; Ozeki, N; Yamaguchi, H; Tanaka, T; Nakata, K; Mogi, M; Nakamura, H
2014-05-01
We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shu, Sai-Nan; Wei, Lai; Wang, Jiang-Hua; Zhan, Yu-Tao; Chen, Hong-Song; Wang, Yu
2004-10-01
To investigate the different effects of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) on hepatic differentiation. MSCs from rat bone marrow were isolated and cultured by standard methods. HSCs from rat bone marrow were isolated and purified by magnetic activated cell sorting. Both cell subsets were induced. Morphology, RT-PCR and immunocytochemistry were used to identify the hepatic differentiation grade. MSCs exhibited round in shape after differentiation, instead of fibroblast-like morphology before differentiation. Albumin mRNA and protein were expressed positively in MSCs, without detection of alpha-fetoprotein (AFP). HSCs were polygonal in shape after differentiation. The expression of albumin signal decreased and AFP signal increased. The expression of CK18 was continuous in MSCs and HSCs both before and after induction. Both MSCs and HSCs have hepatic differentiation capabilities. However, their capabilities are not the same. MSCs can differentiate into mature hepatocyte-like cells, never expressing early hepatic specific genes, while Thy-1.1(+) cells are inclined to differentiate into hepatic stem cell-like cells, with an increasing AFP expression and a decreasing albumin signal. CK18 mRNA is positive in Thy-1.1(+) cells and MSCs, negative in Thy-1.1(-) cells. It seems that CK18 has some relationship with Thy-1.1 antigen, and CK18 may be a predictive marker of hepatic differentiation capability.
Kim, Hee Jin; Hinchliffe, Doug J.; Triplett, Barbara A.; Chen, Z. Jeffrey; Stelly, David M.; Yeater, Kathleen M.; Moon, Hong S.; Gilbert, Matthew K.; Thyssen, Gregory N.; Turley, Rickie B.; Fang, David D.
2015-01-01
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta. PMID:25927364
Hinfray, Nathalie; Sohm, Frédéric; Caulier, Morgane; Chadili, Edith; Piccini, Benjamin; Torchy, Camille; Porcher, Jean-Marc; Guiguen, Yann; Brion, François
2018-05-15
In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Hongpeng; Guo, Yue; Wang, Dawei; Yang, Xiaofei; Ha, Chengzhi
2018-01-02
Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.
Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli
2016-01-01
Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138
Spice, Erin K; Whyard, Steven; Docker, Margaret F
2014-11-01
Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long
2012-10-25
The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.
Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu
2007-09-01
To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.
Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.
Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B
1991-04-01
Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.
2013-01-01
Background The goal of this study was to determine a predominant cell type expressing fractalkine receptor (CX3CR1) in mature ovarian teratomas and to establish functional significance of its expression in cell differentiation. Methods Specimens of ovarian teratoma and human fetal tissues were analyzed by immunohistochemistry for CX3CR1expression. Ovarian teratocarcinoma cell line PA-1 was used as a model for cell differentiation. Results We found that the majority of the specimens contained CX3CR1-positive cells of epidermal lineage. Skin keratinocytes in fetal tissues were also CX3CR1- positive. PA-1 cells with downregulated CX3CR1 failed to express a skin keratinocyte marker cytokeratin 14 when cultured on Matrigel in the presence of a morphogen, bone morphogenic protein 4 (BMP-4), as compared to those expressing scrambled shRNA. Conclusions Here we demonstrate that CX3CR1 is expressed in both normally (fetal skin) and abnormally (ovarian teratoma) differentiated keratinocytes and is required for cell differentiation into epidermal lineage. PMID:23958497
Hayashi, Tetsutaro; Sentani, Kazuhiro; Oue, Naohide; Anami, Katsuhiro; Sakamoto, Naoya; Ohara, Shinya; Teishima, Jun; Noguchi, Tsuyoshi; Nakayama, Hirofumi; Taniyama, Kiyomi; Matsubara, Akio; Yasui, Wataru
2011-10-01
Urothelial carcinoma (UC) with squamous differentiation tends to present at higher stages than pure UC. To distinguish UC with squamous differentiation from pure UC, a sensitive and specific marker is needed. Desmocollin 2 (DSC2) is a protein localized in desmosomal junctions of stratified epithelium, but little is known about its biological significance in bladder cancer. We examined the utility of DSC2 as a diagnostic marker. We analysed the immunohistochemical characteristics of DSC2, and studied the relationship of DSC2 expression with the expression of the known markers uroplakin III (UPIII), cytokeratin (CK)7, CK20, epidermal growth factor receptor (EGFR), and p53. DSC2 staining was detected in 24 of 25 (96%) cases of UC with squamous differentiation, but in none of 85 (0%) cases of pure UC. DSC2 staining was detected only in areas of squamous differentiation. DSC2 expression was mutually exclusive of UPIII expression, and was correlated with EGFR expression. Furthermore, DSC2 expression was correlated with higher stage (P = 0.0314) and poor prognosis (P = 0.0477). DSC2 staining offers high sensitivity (96%) and high specificity (100%) for the detection of squamous differentiation in UC. DSC2 is a useful immunohistochemical marker for separation of UC with squamous differentiation from pure UC. 2011 Blackwell Publishing Limited.
Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C
2017-10-15
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
Setd7 and its contribution to Boron-induced bone regeneration in B-MBG scaffolds.
Yin, Chengcheng; Jia, Xiaoshi; Miron, Richard J; Long, Qiaoyun; Xu, Hudi; Wei, Yan; Wu, Min; Zhang, Yufeng; Li, Zubing
2018-04-20
Boron (B), a trace element found in the human body, plays an important role for health of bone by promoting the proliferation and differentiation of osteoblasts. Our research group previously fabricated B-mesoporous bioactive glass (MBG) scaffolds, which successfully promoted osteogenic differentiation of osteoblasts when compared to pure MBG scaffolds without boron. However, the mechanisms of the positive effect of B-MBG scaffolds on osteogenesis remain unknown. Therefore, we performed in-vivo experiments in OVX rat models with pure MBG scaffolds and compared them to B-MBG scaffold. As a result, we found that B-MBG scaffold induced more new bone regeneration compared to pure MBG scaffold and examined genes related to bone regeneration induced by B-MBG scaffold through RNA-seq to obtain target genes and epigenetic mechanisms. The results demonstrated an increased expression and affiliation of Setd7 in the B-MBG group when compared to the MBG group. Immunofluorescent staining from our in vivo samples further demonstrated a higher localization of Setd7 and H3K4me3 in Runx2-positive cells in defects treated with B-MBG scaffolds. KEGG results suggested that specifically Wnt/β-catenin signaling pathway was highly activated in new bone area associated with B-MBG scaffolds. Thereafter, in vitro studies with human bone marrow stem cells (hBMSCs) stimulated by extracted liquid of B-MBG scaffolds was associated with significantly elevated levels of Setd7, as well as H3K4me3 when compared to MBG scaffolds alone. To verify the role of Setd7 in new bone formation in the presence of Boron, Setd7 was knocked down in hBMSCs with stimulation of the extracted liquids of B-MBG or MBG scaffolds. The result showed that osteoblast differentiation of hBMSCs was inhibited when Setd7 was knocked down, which could not be rescued by the extracted liquids of B-MBG scaffolds confirming its role in osteoblast differentiation and bone regeneration. As a histone methylase, Setd7 may be expected to be a potential epigenetic target for new treatment schemes of osteoporosis. Boron-containing MBG scaffold has already been proved to promote bone regeneration in femoral defects of OVX rats by our research group, however, the epigenetic mechanism of Boron's positive effects on bone generation remains ill-informed. In our present study, we found an increased expression and affiliation of Setd7 and H3K4me3 in Runx2-positive osteoblasts in vivo. And in vitro, the higher expression of Setd7 enhanced osteogenic differentiation of human BMSCs stimulated by extracted liquids of B-MBG scaffold compared to MBG scaffold, which was associated with the activation of Wnt/β-catenin signaling pathway. Above all, it suggests that Setd7 plays an positive role in osteogenic differentiation and it may become a potential epigenetic target for new schemes for osteoporosis. Copyright © 2018. Published by Elsevier Ltd.
Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).
Li, Zhenyi; Xu, Hongyu; Li, Yue; Wan, Xiufu; Ma, Zhao; Cao, Jing; Li, Zhensong; He, Feng; Wang, Yufei; Wan, Liqiang; Tong, Zongyong; Li, Xianglin
2018-03-01
The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.
Lee, Jen-Chieh; Jeng, Yung-Ming; Liau, Jau-Yu; Tsai, Jia-Huei; Hsu, Hung-Han; Yang, Ching-Yao
2015-08-01
Telomerase activation and alternative lengthening of telomeres are two major mechanisms of telomere length maintenance. Soft tissue sarcomas appear to use the alternative lengthening of telomeres more frequently. Loss of α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated protein 6 (DAXX) expression has been implicated in the pathogenesis of alternative telomere lengthening in pancreatic endocrine neoplasm and glioma. The mechanism leading to the alternative lengthening of telomeres in liposarcoma remains unknown. Whereas alternative telomere lengthening was determined to be an indicator of poor prognosis in liposarcomas as a whole, its prognostic power has not been verified in any subtype of liposarcoma. In this study, we characterized the status of alternative telomere lengthening and expression of ATRX and DAXX in 111 liposarcomas (28 well-differentiated, 52 dedifferentiated, 20 myxoid or round cell, and 11 pleomorphic liposarcomas) by telomere fluorescence in situ hybridization and immunohistochemistry, respectively. Alternative lengthening of telomere was observed in 0% (0/16) of well-differentiated, 30% (14/46) of dedifferentiated, 5% (1/19) of myxoid or round cell, and 80% (8/10) of pleomorphic liposarcomas. Eighteen (16%) and one (1%) tumors were negative for ATRX and DAXX immunostaining, respectively. Remarkably, all cases with loss of either ATRX or DAXX expression had alternative lengthening of telomeres, and 83% (19/23) of tumors that had alternative lengthening of telomeres showed loss of either protein. The correlation between loss of either ATRX or DAXX and alternative telomere lengthening was 100% in dedifferentiated liposarcoma. The presence of alternative telomere lengthening in dedifferentiated liposarcoma suggested poor overall survival (hazard ratio=1.954, P=0.077) and was the most significant indicator of short progression-free survival (hazard ratio=3.119, P=0.003). In conclusion, we found that ATRX loss was the most likely mechanism of alternative telomere lengthening in liposarcoma and alternative telomere lengthening was a prognostic factor of poor outcome in dedifferentiated liposarcoma.
Zhang, Jing; Blessing, Danso; Wu, Chenyu; Liu, Na; Li, Juan; Qin, Sheng
2017-01-01
Wings of Bombyx mori (B. mori) develop from the primordium, and different B. mori strains have different wing types. In order to identify the key factors influencing B. mori wing development, we chose strains P50 and U11, which are typical for normal wing and minute wing phenotypes, respectively. We dissected the wing disc on the 1st-day of wandering stage (P50D1 and U11D1), 2nd-day of wandering stage (P50D2 and U11D2), and 3rd-day of wandering stage (P50D3 and U11D3). Subsequently, RNA-sequencing (RNA-Seq) was performed on both strains in order to construct their gene expression profiles. P50 exhibited 628 genes differentially expressed to U11, 324 up-regulated genes, and 304 down-regulated genes. Five enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these differentially expressed genes (DEGs). KEGG enrichment analysis results showed that the DEGs were enriched in five pathways; of these, we identified three pathways related to the development of wings. The three pathways include amino sugar and nucleotide sugar metabolism pathway, proteasome signaling pathway, and the Hippo signaling pathway. The representative genes in the enrichment pathways were further verified by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNA-Seq and qRT-PCR results were largely consistent with each other. Our results also revealed that the significantly different genes obtained in our study might be involved in the development of the size of B. mori wings. In addition, several KEGG enriched pathways might be involved in the regulation of the pathways of wing formation. These results provide a basis for further research of wing development in B. mori. PMID:28617839
Experimental model for ELF-EMF exposure: Concern for human health
D’Angelo, C.; Costantini, E.; Kamal, M.A.; Reale, M.
2014-01-01
Low frequency (LF) electromagnetic fields (EMFs) are abundantly present in modern society and in the last 20 years the interest about the possible effect of extremely low frequency (ELF) EMFs on human health has increased progressively. Epidemiological studies, designed to verify whether EMF exposure may be a potential risk factor for health, have led to controversial results. The possible association between EMFs and an increased incidence of childhood leukemia, brain tumors or neurodegenerative diseases was not fully elucidated. On the other hand, EMFs are widely used, in neurology, psychiatry, rheumatology, orthopedics and dermatology, both in diagnosis and in therapy. In vitro studies may help to evaluate the mechanism by which LF-EMFs affect biological systems. Invitro model of wound healing used keratinocytes (HaCaT), neuroblastoma cell line (SH-SY5Y) as a model for analysis of differentiation, metabolism and functions related to neurodegenerative processes, and monocytic cell line (THP-1) was used as a model for inflammation and cytokines production, while leukemic cell line (K562) was used as a model for hematopoietic differentiation. MCP-1, a chemokine that regulates the migration and infiltration of memory T cells, natural killer (NK), monocytes and epithelial cells, has been demonstrated to be induced and involved in various diseases. Since, varying the parameters of EMFs different effects may be observed, we have studied MCP-1 expression in HaCaT, SH-SY5Y, THP-1 and K562 exposed to a sinusoidal EMF at 50 Hz frequency with a flux density of 1 mT (rms). Our preliminary results showed that EMF-exposure differently modifies the expression of MCP-1 in different cell types. Thus, the MCP-1 expression needs to be better determined, with additional studies, with different parameters and times of exposure to ELF-EMF. PMID:25561888
Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia.
Stokowska, Anna; Atkins, Alison L; Morán, Javier; Pekny, Tulen; Bulmer, Linda; Pascoe, Michaela C; Barnum, Scott R; Wetsel, Rick A; Nilsson, Jonas A; Dragunow, Mike; Pekna, Marcela
2017-02-01
Ischaemic stroke induces endogenous repair processes that include proliferation and differentiation of neural stem cells and extensive rewiring of the remaining neural connections, yet about 50% of stroke survivors live with severe long-term disability. There is an unmet need for drug therapies to improve recovery by promoting brain plasticity in the subacute to chronic phase after ischaemic stroke. We previously showed that complement-derived peptide C3a regulates neural progenitor cell migration and differentiation in vitro and that C3a receptor signalling stimulates neurogenesis in unchallenged adult mice. To determine the role of C3a-C3a receptor signalling in ischaemia-induced neural plasticity, we subjected C3a receptor-deficient mice, GFAP-C3a transgenic mice expressing biologically active C3a in the central nervous system, and their respective wild-type controls to photothrombotic stroke. We found that C3a overexpression increased, whereas C3a receptor deficiency decreased post-stroke expression of GAP43 (P < 0.01), a marker of axonal sprouting and plasticity, in the peri-infarct cortex. To verify the translational potential of these findings, we used a pharmacological approach. Daily intranasal treatment of wild-type mice with C3a beginning 7 days after stroke induction robustly increased synaptic density (P < 0.01) and expression of GAP43 in peri-infarct cortex (P < 0.05). Importantly, the C3a treatment led to faster and more complete recovery of forepaw motor function (P < 0.05). We conclude that C3a-C3a receptor signalling stimulates post-ischaemic neural plasticity and intranasal treatment with C3a receptor agonists is an attractive approach to improve functional recovery after ischaemic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Park, Su-Hyun; Chung, Pil Joong; Juntawong, Piyada; Bailey-Serres, Julia; Kim, Youn Shic; Jung, Harin; Bang, Seung Woon; Kim, Yeon-Ki; Do Choi, Yang; Kim, Ju-Kon
2012-01-01
Abiotic stress, including drought, salinity, and temperature extremes, regulates gene expression at the transcriptional and posttranscriptional levels. Expression profiling of total messenger RNAs (mRNAs) from rice (Oryza sativa) leaves grown under stress conditions revealed that the transcript levels of photosynthetic genes are reduced more rapidly than others, a phenomenon referred to as stress-induced mRNA decay (SMD). By comparing RNA polymerase II engagement with the steady-state mRNA level, we show here that SMD is a posttranscriptional event. The SMD of photosynthetic genes was further verified by measuring the half-lives of the small subunit of Rubisco (RbcS1) and Chlorophyll a/b-Binding Protein1 (Cab1) mRNAs during stress conditions in the presence of the transcription inhibitor cordycepin. To discern any correlation between SMD and the process of translation, changes in total and polysome-associated mRNA levels after stress were measured. Total and polysome-associated mRNA levels of two photosynthetic (RbcS1 and Cab1) and two stress-inducible (Dehydration Stress-Inducible Protein1 and Salt-Induced Protein) genes were found to be markedly similar. This demonstrated the importance of polysome association for transcript stability under stress conditions. Microarray experiments performed on total and polysomal mRNAs indicate that approximately half of all mRNAs that undergo SMD remain polysome associated during stress treatments. To delineate the functional determinant(s) of mRNAs responsible for SMD, the RbcS1 and Cab1 transcripts were dissected into several components. The expressions of different combinations of the mRNA components were analyzed under stress conditions, revealing that both 3′ and 5′ untranslated regions are necessary for SMD. Our results, therefore, suggest that the posttranscriptional control of photosynthetic mRNA decay under stress conditions requires both 3′ and 5′ untranslated regions and correlates with differential polysome association. PMID:22566494
Effect of TCEA3 on the differentiation of bovine skeletal muscle satellite cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yue; Tong, Hui-Li; Li, Shu-Feng
Bovine muscle-derived satellite cells (MDSCs) are important for animal growth. In this study, the effect of transcription elongation factor A3 (TCEA3) on bovine MDSC differentiation was investigated. Western blotting, immunofluorescence assays, and cytoplasmic and nuclear protein isolation and purification techniques were used to determine the expression pattern and protein localization of TCEA3 in bovine MDSCs during in vitro differentiation. TCEA3 expression was upregulated using the CRISPR/Cas9 technique to study its effects on MDSC differentiation in vitro. TCEA3 expression gradually increased during the in vitro differentiation of bovine MDSCs and peaked on the 5th day of differentiation. TCEA3 was mainly localized in the cytoplasmmore » of bovine MDSCs, and its expression was not detected in the nucleus. The level of TCEA3 was relatively higher in myotubes at a higher degree of differentiation than during early differentiation. After transfection with a TCEA3-activating plasmid vector (TCEA3 overexpression) for 24 h, the myotube fusion rate, number of myotubes, and expression levels of the muscle differentiation-related loci myogenin (MYOG) and myosin heavy chain 3 (MYH3) increased significantly during the in vitro differentiation of bovine MDSCs. After transfection with a TCEA3-inhibiting plasmid vector for 24 h, the myotube fusion rate, number of myotubes, and expression levels of MYOG and MYH3 decreased significantly. Our results indicated, for the first time, that TCEA3 promotes the differentiation of bovine MDSCs and have implications for meat production and animal rearing. - Highlights: • Muscle-derived satellite cell differentiation is promoted by TCEA3. • TCEA3 protein was localized in the cytoplasm, but not nuclei of bovine MDSCs. • TCEA3 levels increased as myotube differentiation increased. • TCEA3 affected myotube fusion, myotube counts, and MYOG and MYH3 levels.« less
Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J.
2015-01-01
Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3’ UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes. PMID:25950438
Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J
2015-05-01
Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.
Zhang, Qingyang
2018-05-16
Differential co-expression analysis, as a complement of differential expression analysis, offers significant insights into the changes in molecular mechanism of different phenotypes. A prevailing approach to detecting differentially co-expressed genes is to compare Pearson's correlation coefficients in two phenotypes. However, due to the limitations of Pearson's correlation measure, this approach lacks the power to detect nonlinear changes in gene co-expression which is common in gene regulatory networks. In this work, a new nonparametric procedure is proposed to search differentially co-expressed gene pairs in different phenotypes from large-scale data. Our computational pipeline consisted of two main steps, a screening step and a testing step. The screening step is to reduce the search space by filtering out all the independent gene pairs using distance correlation measure. In the testing step, we compare the gene co-expression patterns in different phenotypes by a recently developed edge-count test. Both steps are distribution-free and targeting nonlinear relations. We illustrate the promise of the new approach by analyzing the Cancer Genome Atlas data and the METABRIC data for breast cancer subtypes. Compared with some existing methods, the new method is more powerful in detecting nonlinear type of differential co-expressions. The distance correlation screening can greatly improve computational efficiency, facilitating its application to large data sets.
Khurana, Satish; Jaiswal, Amit K; Mukhopadhyay, Asok
2010-02-12
Hematopoietic stem cells can directly transdifferentiate into hepatocytes because of cellular plasticity, but the molecular basis of transdifferentiation is not known. Here, we show the molecular basis using lineage-depleted oncostatin M receptor beta-expressing (Lin(-)OSMRbeta(+)) mouse bone marrow cells in a hepatic differentiation culture system. Differentiation of the cells was marked by the expression of albumin. Hepatocyte nuclear factor (HNF)-4alpha was expressed and translocated into the nuclei of the differentiating cells. Suppression of its activation in OSM-neutralized culture medium inhibited cellular differentiation. Ectopic expression of full-length HNF4alpha in 32D myeloid cells resulted in decreased myeloid colony-forming potential and increased expression of hepatocyte-specific genes and proteins. Nevertheless, the neohepatocytes produced in culture expressed active P450 enzyme. The obligatory role of HNF4alpha in hepatic differentiation was confirmed by transfecting Lin(-)OSMRbeta(+) cells with dominant negative HNF4alpha in the differentiation culture because its expression inhibited the transcription of the albumin and tyrosine aminotransferase genes. The loss and gain of functional activities strongly suggested that HNF4alpha plays a central role in the transdifferentiation process. For the first time, this report demonstrates the mechanism of transdifferentiation of hematopoietic cells into hepatocytes, in which HNF4alpha serves as a molecular switch.
Niu, Xiaohua; He, Wenyin; Song, Bing; Ou, Zhanhui; Fan, Di; Chen, Yuchang; Fan, Yong; Sun, Xiaofang
2016-08-05
β-Thalassemia (β-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific β-Thal-induced pluripotent stem cells (iPSCs), correction of the disease-causing mutations in those cells, and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here, we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin β (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in β-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction, we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally, whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore, the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in β-Thal iPSCs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Teo, Ailing; Lim, Mayasari; Weihs, Daphne
2015-07-16
Embryonic stem cells (ESCs) grow into three-dimensional (3D) spheroid structures en-route to tissue growth. In vitro spheroids can be controllably induced on a two-dimensional (2D) substrate with high viability. Here we use a method for inducing pluripotent embryoid body (EB) formation on flat polyacrylamide gels while simultaneously evaluating the dynamic changes in the mechano-biology of the growing 3D spheroids. During colony growth in 3D, pluripotency is conserved while the spheroid-substrate interactions change significantly. We correlate colony-size, cell-applied traction-forces, and expressions of cell-surface molecules indicating cell-cell and cell-substrate interactions, while verifying pluripotency. We show that as the colony size increases with time, the stresses applied by the spheroid to the gel decrease in the 3D growing EBs; control cells growing in 2D-monolayers maintain unvarying forces. Concurrently, focal-adhesion mediated cell-substrate interactions give way to E-cadherin cell-cell connections, while pluripotency. The mechano-biological changes occurring in the growing embryoid body are required for stabilization of the growing pluripotent 3D-structure, and can affect its potential uses including differentiation. This could enable development of more effective expansion, differentiation, and separation approaches for clinical purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Musilli, S.; Nicolas, N.; El Ali, Z.; Orellana-Moreno, P.; Grand, C.; Tack, K.; Kerdine-Römer, S.; Bertho, J. M.
2017-01-01
90Sr is one of the radionuclides released after nuclear accidents that can significantly impact human health in the long term. 90Sr accumulates mostly in the bones of exposed populations. Previous research has shown that exposure induces changes in bone physiology both in humans and in mice. We hypothesize that, due to its close location with bone marrow stromal cells (BMSCs), 90Sr could induce functional damage to stromal cells that may explain these biological effects due to chronic exposure to 90Sr. The aim of this work was to verify this hypothesis through the use of an in vitro model of MS5 stromal cell lines exposed to 1 and 10 kBq.mL−1 of 90Sr. Results indicated that a 30-minute exposure to 90Sr induced double strand breaks in DNA, followed by DNA repair, senescence and differentiation. After 7 days of exposure, MS5 cells showed a decreased ability to proliferate, changes in cytokine expression, and changes in their ability to support hematopoietic progenitor proliferation and differentiation. These results demonstrate that chronic exposure to a low concentration of 90Sr can induce functional changes in BMSCs that in turn may explain the health effects observed in following chronic 90Sr exposure. PMID:28134299