The Design and its Verification of the Double Rotor Double Cage Induction Motor
NASA Astrophysics Data System (ADS)
Sinha, Sumita; Deb, Nirmal K.; Biswas, Sujit K.
2017-02-01
The concept of a double rotor motor presented earlier and its equivalent circuit has been developed, showing a non-linear parameter content. The two rotors (which are recommended to be double cage type for development of high starting torque) can run with equal or unequal speed independently, depending on their individual loading. This paper presents the elaborate design procedure, step-by-step, for the double rotor double cage motor and verifies the designed data with that obtained from three separate tests (compared to two for conventional motor) on a prototype, such that optimum performance can be obtained from the motor.
Equilibrium polymerization on the equivalent-neighbor lattice
NASA Technical Reports Server (NTRS)
Kaufman, Miron
1989-01-01
The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The Flory-Huggins (Flory, 1986) entropy of mixing is exact for this lattice. The discrete version of the n-vector model is verified when n approaches 0 is equivalent to the equal reactivity polymerization process in the whole parameter space, including the polymerized phase. The polymerization processes for polymers satisfying the Schulz (1939) distribution exhibit nonuniversal critical behavior. A close analogy is found between the polymerization problem of index the Schulz r and the Bose-Einstein ideal gas in d = -2r dimensions, with the critical polymerization corresponding to the Bose-Einstein condensation.
Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind
NASA Technical Reports Server (NTRS)
Osherovich, Vladimir A.; Fainberg, Joseph
2015-01-01
Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.
Jirousková, Zuzana; Vareková, Radka Svobodová; Vanek, Jakub; Koca, Jaroslav
2009-05-01
The electronegativity equalization method (EEM) was developed by Mortier et al. as a semiempirical method based on the density-functional theory. After parameterization, in which EEM parameters A(i), B(i), and adjusting factor kappa are obtained, this approach can be used for calculation of average electronegativity and charge distribution in a molecule. The aim of this work is to perform the EEM parameterization using the Merz-Kollman-Singh (MK) charge distribution scheme obtained from B3LYP/6-31G* and HF/6-31G* calculations. To achieve this goal, we selected a set of 380 organic molecules from the Cambridge Structural Database (CSD) and used the methodology, which was recently successfully applied to EEM parameterization to calculate the HF/STO-3G Mulliken charges on large sets of molecules. In the case of B3LYP/6-31G* MK charges, we have improved the EEM parameters for already parameterized elements, specifically C, H, N, O, and F. Moreover, EEM parameters for S, Br, Cl, and Zn, which have not as yet been parameterized for this level of theory and basis set, we also developed. In the case of HF/6-31G* MK charges, we have developed the EEM parameters for C, H, N, O, S, Br, Cl, F, and Zn that have not been parameterized for this level of theory and basis set so far. The obtained EEM parameters were verified by a previously developed validation procedure and used for the charge calculation on a different set of 116 organic molecules from the CSD. The calculated EEM charges are in a very good agreement with the quantum mechanically obtained ab initio charges. 2008 Wiley Periodicals, Inc.
Fonseca, Rochele Paz; Joanette, Yves; Côté, Hélène; Ska, Bernadette; Giroux, Francine; Fachel, Jandyra Maria Guimarães; Damasceno Ferreira, Gabriela; Parente, Maria Alice de Mattos Pimenta
2008-11-01
The lack of standardized instruments to evaluate communication disorders related to the right hemisphere was verified. A new evaluation tool was developed: Protocole Montréal d'Evaluation de la Communication--Protocole MEC, adapted to Brazilian Portuguese--Bateria Montreal de Avaliação da Comunicação--Bateria MAC (Montreal Evaluation of Communication Battery). The purpose was to present stratified normative data by age and educational level, and to verify the reliability parameters of the MEC Battery. 300 individuals, between the ages of 19 and 75 years, and levels of formal education between 2 and 35 years, participated in this study. They were divided equally into six normative groups, according to three age categories (young adults, intermediary age, and seniors) and two educational levels (low and high). Two procedures were used to check reliability: Cronbach alpha and reliability between evaluators, Results were established at the 10th percentile, and an alert point per task for each normative group. Cronbach's alpha was, in general, between .70 and .90 and the average rate of agreement between evaluators varied from .62 to .94. Standards of age and education were established. The reliability of this instrument was verified. The psychometric legitimization of the MEC Battery will contribute to the diagnostic process for communicative disorders.
Evaluating the Equal-Interval Hypothesis with Test Score Scales
ERIC Educational Resources Information Center
Domingue, Benjamin Webre
2012-01-01
In psychometrics, it is difficult to verify that measurement instruments can be used to produce numeric values with the desirable property that differences between units are equal-interval because the attributes being measured are latent. The theory of additive conjoint measurement (e.g., Krantz, Luce, Suppes, & Tversky, 1971, ACM) guarantees…
Acoustic environmental accuracy requirements for response determination
NASA Technical Reports Server (NTRS)
Pettitt, M. R.
1983-01-01
A general purpose computer program was developed for the prediction of vehicle interior noise. This program, named VIN, has both modal and statistical energy analysis capabilities for structural/acoustic interaction analysis. The analytic models and their computer implementation were verified through simple test cases with well-defined experimental results. The model was also applied in a space shuttle payload bay launch acoustics prediction study. The computer program processes large and small problems with equal efficiency because all arrays are dynamically sized by program input variables at run time. A data base is built and easily accessed for design studies. The data base significantly reduces the computational costs of such studies by allowing the reuse of the still-valid calculated parameters of previous iterations.
Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem.
Zhao, Ying; Shi, Luoyi
2017-01-01
This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.
Adaptive frequency-domain equalization in digital coherent optical receivers.
Faruk, Md Saifuddin; Kikuchi, Kazuro
2011-06-20
We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the rate of two samples per symbol; therefore, the arbitrary initial sampling phase of ADCs can be adjusted so that the best symbol-spaced sequence is produced. The equalizer can also be configured in the butterfly structure, which enables demultiplexing of polarization tributaries apart from equalization of linear transmission impairments. The performance of the proposed equalization scheme is verified by 40-Gbits/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.
Exact extreme-value statistics at mixed-order transitions.
Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David
2016-05-01
We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCune, W.; Shumsky, O.
2000-02-04
IVY is a verified theorem prover for first-order logic with equality. It is coded in ACL2, and it makes calls to the theorem prover Otter to search for proofs and to the program MACE to search for countermodels. Verifications of Otter and MACE are not practical because they are coded in C. Instead, Otter and MACE give detailed proofs and models that are checked by verified ACL2 programs. In addition, the initial conversion to clause form is done by verified ACL2 code. The verification is done with respect to finite interpretations.
Conjugate Heat Transfer Study in Hypersonic Flows
NASA Astrophysics Data System (ADS)
Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar
2018-04-01
Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.
Argenti, L E; Parmeggiani, B S; Leipnitz, G; Weber, A; Pereira, G R; Bustamante-Filho, I C
2018-02-01
Although boar semen productivity is affected by seasonality, its effects are not equal among different regions which raise concerns regarding the profitability of boar stud farms. Therefore, the goals of this study were (i) to evaluate the seasonal effect on semen production in a commercial boar stud farm located in a subtropical climate region and (ii) to verify whether the activities of superoxide dismutase and glutathione peroxidase in spermatozoa and seminal plasma were associated with seminal traits of fresh and cooled semen. Nine boars were collected twice per season, and routine seminal parameter analyses were performed together with superoxide dismutase and glutathione peroxidase activities in seminal plasma and spermatozoa. Despite a reduction in sperm concentration in spring and summer, most seminal parameters were constant year-round. Temperature-humidity index was higher in the summer compared to spring, autumn and winter (p < .05). Superoxide dismutase activity in spermatozoa was increased in summer compared to autumn and winter (p < .05). The activities of both enzymes in seminal plasma and spermatozoa glutathione peroxidase remained unaltered throughout the seasons. In conclusion, seasonality showed little influence in overall boar seminal parameters despite microclimatic differences among seasons, and spermatozoa collected during summer increased superoxide dismutase activity. © 2018 Blackwell Verlag GmbH.
A study on parameter variation effects on battery packs for electric vehicles
NASA Astrophysics Data System (ADS)
Zhou, Long; Zheng, Yuejiu; Ouyang, Minggao; Lu, Languang
2017-10-01
As one single cell cannot meet power and driving range requirement in an electric vehicle, the battery packs with hundreds of single cells connected in parallel and series should be constructed. The most significant difference between a single cell and a battery pack is cell variation. Not only does cell variation affect pack energy density and power density, but also it causes early degradation of battery and potential safety issues. The cell variation effects on battery packs are studied, which are of great significant to battery pack screening and management scheme. In this study, the description for the consistency characteristics of battery packs was first proposed and a pack model with 96 cells connected in series was established. A set of parameters are introduced to study the cell variation and their impacts on battery packs are analyzed through the battery pack capacity loss simulation and experiments. Meanwhile, the capacity loss composition of the battery pack is obtained and verified by the temperature variation experiment. The results from this research can demonstrate that the temperature, self-discharge rate and coulombic efficiency are the major affecting parameters of cell variation and indicate the dissipative cell equalization is sufficient for the battery pack.
Elastica solution for a nanotube formed by self-adhesion of a folded thin film
NASA Astrophysics Data System (ADS)
Glassmaker, N. J.; Hui, C. Y.
2004-09-01
Schmidt and Eberl demonstrated the construction of tubes with submicron diameters by the method of folding thin solid films [Nature (London) 410, 168 (2001)]. In their method, a thin film is folded 180° and brought into adhesive contact with itself. The resulting sealed loop forms a nanotube with the thickness of the tube walls equal to the thickness of the thin film. The calculation of the diameter of the tube and the shape of its cross section in equilibrium are the subjects of this study. The tube is modeled as a two-dimensional elastica when viewed in cross section, and adhesive behavior is governed by an energy release rate criterion. A numerical technique is used to find elastic equilibria for a large range of material parameters. With these solutions in hand, the problem of designing a nanotube becomes transparent. It is shown that one dimensionless parameter determines the diameter of the nanotube, while another fixes its shape. Each of these parameters is a ratio involving the material's mechanical properties and the film thickness. Before concluding, we verify our model by comparing its results with the experimental observations of Schmidt and Eberl, for their materials.
Band gaps in grid structure with periodic local resonator subsystems
NASA Astrophysics Data System (ADS)
Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong
2017-09-01
The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.
Generalized gradient algorithm for trajectory optimization
NASA Technical Reports Server (NTRS)
Zhao, Yiyuan; Bryson, A. E.; Slattery, R.
1990-01-01
The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.
Xiong, T P; Yan, L L; Zhou, F; Rehan, K; Liang, D F; Chen, L; Yang, W L; Ma, Z H; Feng, M; Vedral, V
2018-01-05
Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single ultracold ^{40}Ca^{+} ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.
Statistical Inference for Data Adaptive Target Parameters.
Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J
2016-05-01
Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
NASA Astrophysics Data System (ADS)
Susyanto, Nanang
2017-12-01
We propose a simple derivation of the Cramer-Rao Lower Bound (CRLB) of parameters under equality constraints from the CRLB without constraints in regular parametric models. When a regular parametric model and an equality constraint of the parameter are given, a parametric submodel can be defined by restricting the parameter under that constraint. The tangent space of this submodel is then computed with the help of the implicit function theorem. Finally, the score function of the restricted parameter is obtained by projecting the efficient influence function of the unrestricted parameter on the appropriate inner product spaces.
Quantum work statistics of charged Dirac particles in time-dependent fields
Deffner, Sebastian; Saxena, Avadh
2015-09-28
The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.
Using Thin-Film Thermometers as Heaters in Thermal Control Applications
NASA Technical Reports Server (NTRS)
Cho, Hyung J.; Penanen, Konstantin; Sukhatme, Kalyani G.; Holmes, Warren A.; Courts, Scott
2010-01-01
A cryogenic sensor maintains calibration at approximately equal to 4.2 K to better than 2 mK (< 0.5 percent resistance repeatability) after being heated to approximately equal 40 K with approximately equal 0.5 W power. The sensor withstands 4 W power dissipation when immersed in liquid nitrogen with verified resistance reproducibility of, at worst, 1 percent. The sensor maintains calibration to 0.1 percent after being heated with 1-W power at approximately equal 77 K for a period of 48 hours. When operated with a readout scheme that is capable of mitigating the self-heating calibration errors, this and similar sensors can be used for precision (mK stability) temperature control without the need of separate heaters and associated wiring/cabling.
Linear multivariate evaluation models for spatial perception of soundscape.
Deng, Zhiyong; Kang, Jian; Wang, Daiwei; Liu, Aili; Kang, Joe Zhengyu
2015-11-01
Soundscape is a sound environment that emphasizes the awareness of auditory perception and social or cultural understandings. The case of spatial perception is significant to soundscape. However, previous studies on the auditory spatial perception of the soundscape environment have been limited. Based on 21 native binaural-recorded soundscape samples and a set of auditory experiments for subjective spatial perception (SSP), a study of the analysis among semantic parameters, the inter-aural-cross-correlation coefficient (IACC), A-weighted-equal sound-pressure-level (L(eq)), dynamic (D), and SSP is introduced to verify the independent effect of each parameter and to re-determine some of their possible relationships. The results show that the more noisiness the audience perceived, the worse spatial awareness they received, while the closer and more directional the sound source image variations, dynamics, and numbers of sound sources in the soundscape are, the better the spatial awareness would be. Thus, the sensations of roughness, sound intensity, transient dynamic, and the values of Leq and IACC have a suitable range for better spatial perception. A better spatial awareness seems to promote the preference slightly for the audience. Finally, setting SSPs as functions of the semantic parameters and Leq-D-IACC, two linear multivariate evaluation models of subjective spatial perception are proposed.
HOLLOTRON switch for megawatt lightweight space inverters
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Goebel, D. M.; Schumacher, R. W.
1991-01-01
The feasibility of satisfying the switching requirements for a megawatt ultralight inverter system using HOLLOTRON switch technology was determined. The existing experimental switch hardware was modified to investigate a coaxial HOLLOTRON switch configuration and the results were compared with those obtained for a modified linear HOLLOTRON configuration. It was concluded that scaling the HOLLOTRON switch to the current and voltage specifications required for a megawatt converter system is indeed feasible using a modified linear configuration. The experimental HOLLOTRON switch operated at parameters comparable to the scaled coaxial HOLLOTRON. However, the linear HOLLOTRON data verified the capability for meeting all the design objectives simultaneously including current density (greater than 2 A/sq cm), voltage (5 kV), switching frequency (20 kHz), switching time (300 ns), and forward voltage drop (less than or equal to 20 V). Scaling relations were determined and a preliminary design was completed for an engineering model linear HOLLOTRON switch to meet the megawatt converter system specifications.
f (T ) gravity after GW170817 and GRB170817A
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin
2018-05-01
The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.
Basins of distinct asymptotic states in the cyclically competing mobile five species game
NASA Astrophysics Data System (ADS)
Kim, Beomseok; Park, Junpyo
2017-10-01
We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2017-01-01
Line shape parameters including the half-widths and the off-diagonal elements of the relaxation matrix have been calculated for self-broadened NH3 lines in the perpendicular v4 band. As in the pure rotational and the parallel v1 bands, the small inversion splitting in this band causes a complete failure of the isolated line approximation. As a result, one has to use formalisms not relying on this approximation. However, due to differences between parallel and perpendicular bands of NH3, the applicability of the formalism used in our previous studies of the v1 band and other parallel bands must be carefully verified. We have found that, as long as potential models only contain components with K1 equals K2 equals 0, whose matrix elements require the selection rule delta k equals 0, the formalism is applicable for the v4 band with some minor adjustments. Based on both theoretical considerations and results from numerical calculations, the non-diagonality of the relaxation matrices in all the PP, RP, PQ, RQ, PR, and RR branches is discussed. Theoretically calculated self-broadened half-widths are compared with measurements and the values listed in HITRAN 2012. With respect to line coupling effects, we have compared our calculated intra-doublet off-diagonal elements of the relaxation matrix with reliable measurements carried out in the PP branch where the spectral environment is favorable. The agreement is rather good since our results do well reproduce the observed k and j dependences of these elements, thus validating our formalism.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange's equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation.
Fang, Pan; Hou, Yongjun; Nan, Yanghai
2015-01-01
A new mechanism is proposed to implement synchronization of the two unbalanced rotors in a vibration system, which consists of a double vibro-body, two induction motors and spring foundations. The coupling relationship between the vibro-bodies is ascertained with the Laplace transformation method for the dynamics equation of the system obtained with the Lagrange’s equation. An analytical approach, the average method of modified small parameters, is employed to study the synchronization characteristics between the two unbalanced rotors, which is converted into that of existence and the stability of zero solutions for the non-dimensional differential equations of the angular velocity disturbance parameters. By assuming the disturbance parameters that infinitely approach to zero, the synchronization condition for the two rotors is obtained. It indicated that the absolute value of the residual torque between the two motors should be equal to or less than the maximum of their coupling torques. Meanwhile, the stability criterion of synchronization is derived with the Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last, computer simulations are preformed to verify the correctness of the approximate solution of the theoretical computation for the stable phase difference between the two unbalanced rotors, and the results of theoretical computation is in accordance with that of computer simulations. To sum up, only the parameters of the vibration system satisfy the synchronization condition and the stability criterion of the synchronization, the two unbalanced rotors can implement the synchronization operation. PMID:25993472
Guinement, L; Marchesi, V; Veres, A; Lacornerie, T; Buchheit, I; Peiffert, D
2013-01-01
To develop an external quality control procedure for CyberKnife(®) beams. This work conducted in Nancy, has included a test protocol initially drawn by the medical physicist of Nancy and Lille in collaboration with Equal-Estro Laboratory. A head and neck anthropomorphic phantom and a water-equivalent homogeneous cubic plastic test-object, so-called "MiniCube", have been used. Powder and solid thermoluminescent dosimeters as well as radiochromic films have been used to perform absolute and relative dose studies, respectively. The comparison between doses calculated by Multiplan treatment planning system and measured doses have been studied in absolute dose. The dose distributions measured with films and treatment planning system calculations have been compared via the gamma function, configured with different tolerance criteria. This work allowed, via solid thermoluminescent dosimeter measurements, verifying the beam reliability with a reproducibility of 1.7 %. The absolute dose measured in the phantom irradiated by the seven participating centres has shown an error inferior to the standard tolerance limits (± 5 %), for most of participating centres. The relative dose measurements performed at Nancy and by the Equal-Estro laboratory allowed defining the most adequate parameters for gamma index (5 %/2mm--with at least 95 % of pixels satisfying acceptability criteria: γ<1). These parameters should be independent of the film analysis software. This work allowed defining a dosimetric external quality control for CyberKnife(®) systems, based on a reproducible irradiation plan through measurements performed with thermoluminescent dosimeters and radiochromic films. This protocol should be validated by a new series of measurement and taking into account the lessons of this work. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Evaluating MC&A effectiveness to verify the presence of nuclear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, P. G.; Morzinski, J. A.; Ostenak, Carl A.
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
Statistical inference involving binomial and negative binomial parameters.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2009-05-01
Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.
A negentropy minimization approach to adaptive equalization for digital communication systems.
Choi, Sooyong; Lee, Te-Won
2004-07-01
In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.
41 CFR 128-1.8006 - Seismic Safety Program requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reviewer shall verify that the current level of seismic resistance of the existing building at least equals the seismic resistance level of the building before the addition. (c) The Department Seismic Safety... conduct the reviews required under this section, as appropriate. (a) New building projects. Construction...
Workplace Discrimination and the Perception of Disability
ERIC Educational Resources Information Center
Draper, William R.; Reid, Christine A.; McMahon, Brian T.
2011-01-01
This article documents the employment discrimination experienced by Americans "regarded as" disabled (but not medically verified as such), using the Integrated Mission System of the U.S. Equal Employment Opportunity Commission (EEOC). Claimants who were perceived as disabled, as contrasted with those with documented disabilities, were more likely…
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
Quantum secret information equal exchange protocol based on dense coding
NASA Astrophysics Data System (ADS)
Jiang, Ying-Hua; Zhang, Shi-Bin; Dai, Jin-Qiao; Shi, Zhi-Ping
2018-04-01
In this paper, we design a novel quantum secret information equal exchange protocol, which implements the equal exchange of secret information between the two parties with the help of semi-trusted third party (TP). In the protocol, EPR pairs prepared by the TP are, respectively, distributed to both the communication parties. Then, the two parties perform Pauli operation on each particle and return the new particles to TP, respectively. TP measures each new pair with Bell basis and announces the measurement results. Both parties deduce the secret information of each other according to the result of announcement by TP. Finally, the security analysis shows that this protocol solves the problem about equal exchange of secret information between two parties and verifies the security of semi-trusted TPs. It proves that the protocol can effectively resist glitch attacks, intercept retransmission attacks and entanglement attack.
Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.
1992-01-01
A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.
How Social Preferences Shape Incentives in (Experimental) Markets for Credence Goods.
Kerschbamer, Rudolf; Sutter, Matthias; Dulleck, Uwe
2017-03-01
Credence goods markets suffer from inefficiencies caused by superior information of sellers about the surplus-maximising quality. While standard theory predicts that equal mark-up prices solve the credence goods problem if customers can verify the quality received, experimental evidence indicates the opposite. We identify a lack of robustness with respect to heterogeneity in social preferences as a possible cause of this and conduct new experiments that allow for parsimonious identification of sellers' social preference types. Our results confirm the assumed heterogeneity in social preferences and provide strong support for our explanation of the failure of verifiability to increase efficiency.
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...
Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...
NASA Astrophysics Data System (ADS)
Saadoud, Djouher; Hassani, Mohamed; Martin Peinado, Francisco José; Guettouche, Mohamed Saïd
2018-06-01
Wind erosion is one of the most serious environmental problems in Algeria that threatens human activities and socio-economic development. The main goal of this study is to apply a fuzzy logic approach to wind erosion sensitivity mapping in the Laghouat region, Algeria. Six causative factors, obtained by applying fuzzy membership functions to each used parameter, are considered: soil, vegetation cover, wind factor, soil dryness, land topography and land cover sensitivity. Different fuzzy operators (AND, OR, SUM, PRODUCT, and GAMMA) are applied to generate wind-erosion hazard map. Success rate curves reveal that the fuzzy gamma (γ) operator, with γ equal to 0.9, gives the best prediction accuracy with an area under curve of 85.2%. The resulting wind-erosion sensitivity map delineates the area into different zones of five relative sensitivity classes: very high, high, moderate, low and very low. The estimated result was verified by field measurements and the high statistically significant value of a chi-square test.
GilPavas, E; Dobrosz-Gómez, I; Gómez-García, M Á
2011-01-01
The capacity of the electro-coagulation (EC) process for the treatment of the wastewater containing Cr3+, resulting from a leather tannery industry placed in Medellin (Colombia), was evaluated. In order to assess the effect of some parameters, such as: the electrode type (Al and/or Fe), the distance between electrodes, the current density, the stirring velocity, and the initial Cr3+ concentration on its efficiency of removal (%RCr+3), a multifactorial experimental design was used. The %RCr3+ was defined as the response variable for the statistical analysis. In order to optimise the operational values for the chosen parameters, the response surface method (RSM) was applied. Additionally, the Biological Oxygen Demand (BOD5), the Chemical Oxygen Demand (COD), and the Total Organic Carbon (TOC) were monitored during the EC process. The electrodes made of aluminium appeared to be the most effective in the chromium removal from the wastewater under study. At pH equal to 4.52 and at 28°C, the optimal conditions of Cr3+ removal using the EC process were found, as follows: the initial Cr3+ concentration=3,596 mg/L, the electrode gap=0.5 cm, the stirring velocity=382.3 rpm, and the current density=57.87 mA/cm2. At those conditions, it was possible to reach 99.76% of Cr3+ removal, and 64% and 61% of mineralisation (TOC) and COD removal, respectively. A kinetic analysis was performed in order to verify the response capacity of the EC process at optimised parameter values.
NASA Astrophysics Data System (ADS)
Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian
2009-03-01
Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.
NASA Astrophysics Data System (ADS)
Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro
2017-01-01
In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.
Feriani, Daniele Jardim; Gonçalves, Ivan de Oliveira; Asano, Ricardo Yukio; Aguiar, Samuel da Silva; Uchida, Marco Carlos
2017-01-01
Purpose. The present study aimed to investigate the impact of a 6-month multicomponent exercise program (MCEP) on physical function and cognitive parameters of normotensive (NTS) and hypertensive (HTS) older patients and verify if age can influence the adaptations in response to the exercise. Methods. A total of 218 subjects, 101 NTS and 117 HTS, were recruited and underwent functional and cognitive evaluations before and after six months of a MCEP. The program of exercise was performed twice a week, for 26 weeks. The physical exercises were thought to mimic the activities of daily living and, therefore, aggregated functional and walking exercises. Exercise sessions were performed at moderate intensity. Results. Data indicated that HTS and NST patients showed a similar increase in the performance of walking speed test and one-leg stand test after the MCEP. Regarding age, results did not show differences in the magnitude of adaptations between old and young HTS and NTS patients. Conclusions. Data of the present study indicated that a 6-month MCEP was able to increase equally balance and mobility in NTS and HTS patients. Moreover, data demonstrated that aging did not seem to impair the capacity to adapt in response to exercise in both groups. PMID:28409030
Shape space figure-8 solution of three body problem with two equal masses
NASA Astrophysics Data System (ADS)
Yu, Guowei
2017-06-01
In a preprint by Montgomery (https://people.ucsc.edu/~rmont/Nbdy.html), the author attempted to prove the existence of a shape space figure-8 solution of the Newtonian three body problem with two equal masses (it looks like a figure 8 in the shape space, which is different from the famous figure-8 solution with three equal masses (Chenciner and Montgomery 2000 Ann. Math. 152 881-901)). Unfortunately there is an error in the proof and the problem is still open. Consider the α-homogeneous Newton-type potential, 1/rα, using action minimization method, we prove the existence of this solution, for α \\in (1, 2) ; for α=1 (the Newtonian potential), an extra condition is required, which unfortunately seems hard to verify at this moment.
Achieving Gender Equity in Science Class: Shift from Competition to Cooperative Learning
ERIC Educational Resources Information Center
Esiobu, G. O.
2011-01-01
Purpose: This study aims to verify the impact of cooperative learning as an intervention strategy towards the achievement of peace, equality and equity in the science classroom as part of the democratic process necessary for sustainable development. Design/methodology/approach: The study sample comprised 56 SSS 2 students in one public…
42 CFR 457.343 - Periodic renewal of CHIP eligibility.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 4 2014-10-01 2014-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...
42 CFR 457.343 - Periodic renewal of CHIP eligibility.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...
42 CFR 457.343 - Periodic renewal of CHIP eligibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 4 2012-10-01 2012-10-01 false Periodic renewal of CHIP eligibility. 457.343... of CHIP eligibility. The renewal procedures described in § 435.916 of this chapter apply equally to the State in administering a separate CHIP, except that the State shall verify information needed to...
Tang, Fengna; Wang, Youqing
2017-11-01
Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiba, Takeshi; Dutta, Sourish; Scherrer, Robert J.
We derive slow-roll conditions for thawing k-essence with a separable Lagrangian p(X,{phi})=F(X)V({phi}). We examine the evolution of the equation of state parameter, w, as a function of the scale factor a, for the case where w is close to -1. We find two distinct cases, corresponding to X{approx_equal}0 and F{sub X}{approx_equal}0, respectively. For the case where X{approx_equal}0 the evolution of {phi} and hence w is described by only two parameters, and w(a) is model independent and coincides with similar behavior seen in thawing quintessence models. This result also extends to nonseparable Lagrangians where X{approx_equal}0. For the case F{sub X}{approx_equal}0, anmore » expression is derived for w(a), but this expression depends on the potential V({phi}), so there is no model-independent limiting behavior. For the X{approx_equal}0 case, we derive observational constraints on the two parameters of the model, w{sub 0} (the present-day value of w), and the K, which parametrizes the curvature of the potential. We find that the observations sharply constrain w{sub 0} to be close to -1, but provide very poor constraints on K.« less
Optimal Constellation Design for Maximum Continuous Coverage of Targets Against a Space Background
2012-05-31
constellation is considered with the properties shown in Table 13. The parameter hres refers to the number of equally spaced offset planes in which cross...mean anomaly 180 ◦ M0i mean anomaly of lead satellite at epoch 0 ◦ R omni-directional sensor range 5000 km m initial polygon resolution 50 PPC hres ...a Walker Star. Idealized parameters for the Iridium constellation are shown in Table 14. The parameter hres refers to the number of equally spaced
NASA Astrophysics Data System (ADS)
Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.
2017-01-01
In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.
Automatic latency equalization in VHDL-implemented complex pipelined systems
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.
2016-09-01
In the pipelined data processing systems it is very important to ensure that parallel paths delay data by the same number of clock cycles. If that condition is not met, the processing blocks receive data not properly aligned in time and produce incorrect results. Manual equalization of latencies is a tedious and error-prone work. This paper presents an automatic method of latency equalization in systems described in VHDL. The proposed method uses simulation to measure latencies and verify introduced correction. The solution is portable between different simulation and synthesis tools. The method does not increase the complexity of the synthesized design comparing to the solution based on manual latency adjustment. The example implementation of the proposed methodology together with a simple design demonstrating its use is available as an open source project under BSD license.
Differential phase-shift keying and channel equalization in free space optical communication system
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu
2018-01-01
We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.
Reducing Error Rates for Iris Image using higher Contrast in Normalization process
NASA Astrophysics Data System (ADS)
Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa
2017-08-01
Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.
NASA Astrophysics Data System (ADS)
Xu, Tianhua; Jacobsen, Gunnar; Popov, Sergei; Li, Jie; Liu, Tiegen; Zhang, Yimo
2016-10-01
The performance of long-haul high speed coherent optical fiber communication systems is significantly degraded by the laser phase noise and the equalization enhanced phase noise (EEPN). In this paper, the analysis of the one-tap normalized least-mean-square (LMS) carrier phase recovery (CPR) is carried out and the close-form expression is investigated for quadrature phase shift keying (QPSK) coherent optical fiber communication systems, in compensating both laser phase noise and equalization enhanced phase noise. Numerical simulations have also been implemented to verify the theoretical analysis. It is found that the one-tap normalized least-mean-square algorithm gives the same analytical expression for predicting CPR bit-error-rate (BER) floors as the traditional differential carrier phase recovery, when both the laser phase noise and the equalization enhanced phase noise are taken into account.
Research on Signature Verification Method Based on Discrete Fréchet Distance
NASA Astrophysics Data System (ADS)
Fang, J. L.; Wu, W.
2018-05-01
This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.
42 CFR 60.15 - Other charges to the borrower.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fails to pay all of a required installment payment or fails to provide written evidence that verifies eligibility for the deferment of the payment within 30 days after the payment's due date, the lender or holder will require that the borrower pay a late charge. A late charge must be equal to 5 percent of the...
Factors Associated with High Levels of Physical Activity among Adults with Intellectual Disability
ERIC Educational Resources Information Center
Temple, Viviene A.
2009-01-01
The aim was to identify factors associated with physical activity participation among active (i.e. more than or equal to 10 000 steps per day) individuals with intellectual disability. Staff at day program and supported employment organizations were asked to identify individuals they believed were physically active. To verify participants were…
A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)
ERIC Educational Resources Information Center
Bradford, Russell; Davenport, James H.; Sangwin, Chris
2010-01-01
A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…
Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.
You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary
2011-02-01
The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure of relative efficiency might be less than the measure in the literature under some conditions, underestimating the relative efficiency. The relative efficiency of unequal versus equal cluster sizes defined using the noncentrality parameter suggests a sample size approach that is a flexible alternative and a useful complement to existing methods.
Singh, Ashish Kumar; Ganeshkar, Sanjay V.; Mehrotra, Praveen; Bhagchandani, Jitendra
2013-01-01
Background: Commonly used parameters for anteroposterior assessment of the jaw relationship includes several analyses such as ANB, NA-Pog, AB-NPog, Wits appraisal, Harvold's unit length difference, Beta angle. Considering the fact that there are several parameters (with different range and values) which account for sagittal relation, and still the published literature for comparisons and correlation of these measurements is scarce. Therefore, the objective of this study was to correlate these values in subjects of Indian origin. Materials and Methods: The sample consisted of fifty adult individuals (age group 18-26 years) with equal number of males and females. The selection criteria included subjects with no previous history of orthodontic and/or orthognathic surgical treatment; orthognathic facial profile; Angle's Class I molar relation; clinical Frankfort Mandibular plane angle FMA of 30±5° and no gross facial asymmetry. The cephalograms were taken in natural head position (NHP). Seven sagittal skeletal parameters were measured in the cephalograms and subjected to statistical evaluation with Wits reading on the true horizontal as reference. A correlation coefficient analysis was done to assess the significance of association between these variables. Results: ANB angle showed statistically significant correlation for the total sample, though the values were insignificant for the individual groups and therefore may not be very accurate. Wits appraisal was seen to have a significant correlation only in the female sample group. Conclusions: If cephalograms cannot be recorded in a NHP, then the best indicator for recording A-P skeletal dimension would be angle AB-NPog, followed by Harvold's unit length difference. However, considering biologic variability, more than one reading should necessarily be used to verify the same. PMID:24987638
EVALUATING MC AND A EFFECTIVENESS TO VERIFY THE PRESENCE OF NUCLEAR MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. G. DAWSON; J. A MORZINSKI; ET AL
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
NASA Astrophysics Data System (ADS)
Schämann, M.; Bücker, M.; Hessel, S.; Langmann, U.
2008-05-01
High data rates combined with high mobility represent a challenge for the design of cellular devices. Advanced algorithms are required which result in higher complexity, more chip area and increased power consumption. However, this contrasts to the limited power supply of mobile devices. This presentation discusses the application of an HSDPA receiver which has been optimized regarding power consumption with the focus on the algorithmic and architectural level. On algorithmic level the Rake combiner, Prefilter-Rake equalizer and MMSE equalizer are compared regarding their BER performance. Both equalizer approaches provide a significant increase of performance for high data rates compared to the Rake combiner which is commonly used for lower data rates. For both equalizer approaches several adaptive algorithms are available which differ in complexity and convergence properties. To identify the algorithm which achieves the required performance with the lowest power consumption the algorithms have been investigated using SystemC models regarding their performance and arithmetic complexity. Additionally, for the Prefilter Rake equalizer the power estimations of a modified Griffith (LMS) and a Levinson (RLS) algorithm have been compared with the tool ORINOCO supplied by ChipVision. The accuracy of this tool has been verified with a scalable architecture of the UMTS channel estimation described both in SystemC and VHDL targeting a 130 nm CMOS standard cell library. An architecture combining all three approaches combined with an adaptive control unit is presented. The control unit monitors the current condition of the propagation channel and adjusts parameters for the receiver like filter size and oversampling ratio to minimize the power consumption while maintaining the required performance. The optimization strategies result in a reduction of the number of arithmetic operations up to 70% for single components which leads to an estimated power reduction of up to 40% while the BER performance is not affected. This work utilizes SystemC and ORINOCO for the first estimation of power consumption in an early step of the design flow. Thereby algorithms can be compared in different operating modes including the effects of control units. Here an algorithm having higher peak complexity and power consumption but providing more flexibility showed less consumption for normal operating modes compared to the algorithm which is optimized for peak performance.
Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.
Xu, Lu; Huang, Defeng David; Guo, Yingjie Jay
2015-12-01
In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization.
40 CFR 63.1447 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...
40 CFR 63.1447 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...
40 CFR 63.1447 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the adulterant found by the laboratory entered the specimen through physiological means. (2) To meet... produce or could have produced urine through physiological means, meeting the creatinine concentration criterion of less than 2 mg/dL and the specific gravity criteria of less than or equal to 1.0010 or greater...
a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms
NASA Astrophysics Data System (ADS)
Beale, D. G.; Lee, S. W.
1996-05-01
A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].
Band gap in tubular pillar phononic crystal plate.
Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui
2016-09-01
In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.
Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no
Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimentalmore » data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.« less
Agrawal, Vijay K; Gupta, Madhu; Singh, Jyoti; Khadikar, Padmakar V
2005-03-15
Attempt is made to propose yet another method of estimating lipophilicity of a heterogeneous set of 223 compounds. The method is based on the use of equalized electronegativity along with topological indices. It was observed that excellent results are obtained in multiparametric regression upon introduction of indicator parameters. The results are discussed critically on the basis various statistical parameters.
Siqueira, Larissa Thaís Donalonso; Silverio, Kelly Cristina Alves; Brasolotto, Alcione Ghedini; Guirro, Rinaldo Roberto de Jesus; Carneiro, Christiano Giácomo; Behlau, Mara
2017-05-15
To verify and compare the effect of transcutaneous electrical nerve stimulation (TENS) and laryngeal manual therapy (LMT) on laryngeal diadochokinesis (DDK) of dysphonic women. Twenty women with bilateral vocal nodules participated and were equally divided into: LMT Group - LMT application; TENS Group - TENS application; both groups received 12 sessions of treatment, twice a week, with a duration of 20 minutes each, applied by the same therapist. The women were evaluated as to laryngeal DDK at three moments: diagnostic, pre-treatment, and post-treatment, which produced three groups of measurements. The DDK recording was performed with intersected repetition of vowels /a/ and / i/. The analysis of vowels was performed by the program Motor Speech Profile Advanced (MSP)-KayPentax. The DDK parameters of the three evaluations were compared by means of the paired t-test (p≤0.05). The measurements of laryngeal DDK parameters were similar in the phase without treatment, indicating no individual variability over time. There was no change with respect to the speed of DDK after intervention, but after LMT, DDK of the vowel /i/ was more stable in terms of the duration of the emissions and intensity of emissions repeated. These results show improved coordination of vocal folds movement during phonation. There were no changes in the DDK parameters following TENS. LMT provides greater regularity of movement during laryngeal diadochokinesis in dysphonic women, which extends knowledge on the effect of rebalancing the larynx muscles during phonation, although TENS does not impact laryngeal diadochokinesis.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.
1974-01-01
An inviscid technique for designing forebodies which produce uniformly precompressed flows at the inlet entrance for bottom-mounted scramjets has been developed so that geometric constraints resulting from design trade-offs can be effectively evaluated. The flow fields resulting from several forebody designs generated in support of a hypersonic research airplane conceptual design study have been analyzed in detail with three-dimensional characteristics calculations to verify the uniform flow conditions. For the designs analyzed, uniform flow is maintained over a wide range of flight conditions (Mach number equals 4 to 10; angle of attack equals 6 deg to 10 deg) corresponding to scramjet operation flight envelope of the research airplane.
Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON
NASA Astrophysics Data System (ADS)
Xia, Junqi; Li, Zhengxuan; Li, Yingchun; Xu, Tingting; Chen, Jian; Song, Yingxiong; Wang, Min
2018-03-01
We investigate and compare the requirements of FFE/DFE based adaptive equalization techniques for NRZ and Duo-binary based 25-Gb/s transmission, which are two of the most promising schemes for 25G-EPON. A 25-Gb/s transmission system based on 10G optical transceivers is demonstrated and the performance of only FFE and combination of FFE and DFE with different number of taps are compared with two modulation formats. The FFE/DFE based Duo-binary receiver shows better performance than NRZ receiver. For Duo-binary receiver, only 13-tap FFE is needed for BtB case and the combination of 17-tap FFE and 5-tap DFE can achieve a sensitivity of -23.45 dBm in 25 km transmission case, which is ∼0.6 dB better than the best performance of NRZ equalization. In addition, the requirements of training sequence length for FFE/DFE based adaptive equalization is verified. Experimental results show that 400 symbols training length is optimal for the two modulations, which shows a small packet preamble in up-stream burst-mode transmission.
NASA Technical Reports Server (NTRS)
Breedlove, W. J., Jr.
1976-01-01
Major activities included coding and verifying equations of motion for the earth-moon system. Some attention was also given to numerical integration methods and parameter estimation methods. Existing analytical theories such as Brown's lunar theory, Eckhardt's theory for lunar rotation, and Newcomb's theory for the rotation of the earth were coded and verified. These theories serve as checks for the numerical integration. Laser ranging data for the period January 1969 - December 1975 was collected and stored on tape. The main goal of this research is the development of software to enable physical parameters of the earth-moon system to be estimated making use of data available from the Lunar Laser Ranging Experiment and the Very Long Base Interferometry experiment of project Apollo. A more specific goal is to develop software for the estimation of certain physical parameters of the moon such as inertia ratios, and the third and fourth harmonic gravity coefficients.
NASA Astrophysics Data System (ADS)
Quang Tran, Danh; Li, Jin; Xuan, Fuzhen; Xiao, Ting
2018-06-01
Dielectric elastomers (DEs) are belonged to a group of polymers which cause a time-dependence deformation due to the effect of viscoelastic. In recent years, viscoelasticity has been accounted in the modeling in order to understand the complete electromechanical behavior of dielectric elastomer actuators (DEAs). In this paper, we investigate the actuation performance of a circular DEA under different equal, un-equal biaxial pre-stretches, based on a nonlinear rheological model. The theoretical results are validated by experiments, which verify the electromechanical constitutive equation of the DEs. The viscoelastic mechanical characteristic is analyzed by modeling simulation analysis and experimental to describe the influence of frequency, voltage, pre-stretch, and waveform on the actuation response of the actuator. Our study indicates that: The DEA with different equal or un-equal biaxial pre-stretches undergoes different actuation performance when subject to high voltage. Under an un-equal biaxial pre-stretch, the DEA deforms unequally and shows different deformation abilities in two directions. The relative creep strain behavior of the DEA due to the effect of viscoelasticity can be reduced by increasing pre-stretch ratio. Higher equal biaxial pre-stretch obtains larger deformation strain, improves actuation response time, and reduces the drifting of the equilibrium position in the dynamic response of the DEA when activated by step and period voltage, while increasing the frequency will inhibit the output stretch amplitude. The results in this paper can provide theoretical guidance and application reference for design and control of the viscoelastic DEAs.
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Gyekenyesi, John P.
1988-01-01
The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter
NASA Astrophysics Data System (ADS)
Zhao, Yinjian
2018-05-01
A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.
Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388
NASA Technical Reports Server (NTRS)
Moehler, S.; Sweigart, A. V.
2006-01-01
The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction, most likely due to remaining background light in the spectra, which would affect the fainter hot blue tail stars much more strongly than the brighter cool blue tail stars. Our study of the hot blue tail stars in NGC 6388 illustrates the obstacles which are encountered when attempting to determine the atmospheric parameters of hot HB stars in very crowded fields using ground-based observations. We discuss these obstacles and offer possible solutions for future projects.
Low Cost Beam-Steering Approach for a Series-Fed Array
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex and costly. This paper presents a concept which overcomes these detrimental attributes by eliminating all of the phased array backend (including phase shifters). Instead, a propagation constant reconfigurable transmission line in a series fed array arrangement is used to allow phase shifting with one small (less than or equal to 100mil) linear mechanical motion. A novel slotted coplanar stripline design improves on previous transmission lines by demonstrating a greater control of propagation constant, thus allowing practical prototypes to be built. Also, beam steering pattern control is explored. We show that with correct choice of line impedance, pattern control is possible for all scan angles. A 20 element array scanning from -25 deg less than or equal to theta less than or equal to 21 deg. with mostly uniform gain at 13GHz is presented. Measured patterns show a reduced scan range of 12 deg. less than or equal to theta less than or equal to 25 deg. due to a correctable manufacturing error as verified by simulation. Beam squint is measured to be plus or minus 2.5 deg for a 600MHz bandwidth and cross-pol is measured to be at least -15dB.
Achieving Agreement in Three Rounds with Bounded-Byzantine Faults
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar, R.
2017-01-01
A three-round algorithm is presented that guarantees agreement in a system of K greater than or equal to 3F+1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport, Shostak, and Pease and is scalable with respect to the number of nodes in the system and applies equally to traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
Satoh, Katsuhiko
2013-03-07
Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.
Neugebauer, R; Werner, M; Voigt, C; Steinke, H; Scholz, R; Scherer, S; Quickert, M
2011-05-17
To provide a close-to-reality simulation model, such as for improved surgery planning, this model has to be experimentally verified. The present article describes the use of a 3D laser vibrometer for determining modal parameters of human pelvic bones that can be used for verifying a finite elements model. Compared to previously used sensors, such as acceleration sensors or strain gauges, the laser vibrometric procedure used here is a non-contact and non-interacting measuring method that allows a high density of measuring points and measurement in a global coordinate system. Relevant modal parameters were extracted from the measured data and provided for verifying the model. The use of the 3D laser vibrometer allowed the establishment of a process chain for experimental examination of the pelvic bones that was optimized with respect to time and effort involved. The transfer functions determined feature good signal quality. Furthermore, a comparison of the results obtained from pairs of pelvic bones showed that repeatable measurements can be obtained with the method used. Copyright © 2011 Elsevier Ltd. All rights reserved.
1975-07-01
the product , including its operational and maintenance requirements . However, there are many other program elements that are equally critical, i.e...customer needs into meaningful, practical requirements which can be met by the designer, verified in the product and used effectively by the operator. The...and government) and H- Production Verification Testing Requirements , spread over longer delivery periods, causing problems of shop load, high cash
Western Ross Sea and McMurdo Sound Ice Forecasting Guide.
1975-06-01
areal ice distribution and follow the sane historical proqression of pack disintergration . This technique assumes that environmental conditions...30-day) are based on historical ice data which cxnbine averaae disintergration rates as well as averace wind and current drift. Iong-range wind...original 2 to 3 okta area and its new cnfiguration remains the same, the products of ocnoentrations and widths at the verifying time must equal the
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
Generalized image contrast enhancement technique based on Heinemann contrast discrimination model
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1994-03-01
This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.
European Train Control System: A Case Study in Formal Verification
NASA Astrophysics Data System (ADS)
Platzer, André; Quesel, Jan-David
Complex physical systems have several degrees of freedom. They only work correctly when their control parameters obey corresponding constraints. Based on the informal specification of the European Train Control System (ETCS), we design a controller for its cooperation protocol. For its free parameters, we successively identify constraints that are required to ensure collision freedom. We formally prove the parameter constraints to be sharp by characterizing them equivalently in terms of reachability properties of the hybrid system dynamics. Using our deductive verification tool KeYmaera, we formally verify controllability, safety, liveness, and reactivity properties of the ETCS protocol that entail collision freedom. We prove that the ETCS protocol remains correct even in the presence of perturbation by disturbances in the dynamics. We verify that safety is preserved when a PI controlled speed supervision is used.
Regression to fuzziness method for estimation of remaining useful life in power plant components
NASA Astrophysics Data System (ADS)
Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.
2014-10-01
Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
Fast maximum likelihood estimation using continuous-time neural point process models.
Lepage, Kyle Q; MacDonald, Christopher J
2015-06-01
A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.
Optimum mixture proportions for concretes containing fly ash and silica fume.
DOT National Transportation Integrated Search
1991-01-01
Concretes with equal water/cement ratios and equal paste volumes of various combinations of cement, fly ash, and silica fume were tested to establish parameters for strength and chloride permeability. Comparative specimens with Type II and Type III c...
Kumar, K Vasanth; Porkodi, K
2006-12-01
Equilibrium uptake of methylne blue onto lemon peel was fitted to the 2 two-parameter isotherm models namely Freundlich and Langmuir and 3 six-parameter isotherm models namely Redlich-Peterson, Toth, Radke-Prausnitz, Fritz-Schluender, Vieth-Sladek and Sips isotherms by non-linear method. A comparison between two-parameter and three-parameter isotherms was reported. The best fitting isotherm was the Sips isotherm followed by Langmuir isotherm and Redlich-Peterson isotherm equation. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity. Radke-Prausnitz, Toth, Vieth-Sladek isotherm were the same when the Toth isotherm constant, n(T) and the Radke-Prausnitz isotherm, m(RP) are equal to unity and when the Vieth-Sladek isotherm constant, K(VS) equals zero. The sorption capacity of lemon peel for methylene blue uptake was found to be 29 mg/g.
Using Plate Finite Elements for Modeling Fillets in Design, Optimization, and Dynamic Analysis
NASA Technical Reports Server (NTRS)
Brown, A. M.; Seugling, R. M.
2003-01-01
A methodology has been developed that allows the use of plate elements instead of numerically inefficient solid elements for modeling structures with 90 degree fillets. The technique uses plate bridges with pseudo Young's modulus (Eb) and thickness (tb) values placed between the tangent points of the fillets. These parameters are obtained by solving two nonlinear simultaneous equations in terms of the independent variables rlt and twallt. These equations are generated by equating the rotation at the tangent point of a bridge system with that of a fillet, where both rotations are derived using beam theory. Accurate surface fits of the solutions are also presented to provide the user with closed-form equations for the parameters. The methodology was verified on the subcomponent level and with a representative filleted structure, where the technique yielded a plate model exhibiting a level of accuracy better than or equal to a high-fidelity solid model and with a 90-percent reduction in the number of DOFs. The application of this method for parametric design studies, optimization, and dynamic analysis should prove extremely beneficial for the finite element practitioner. Although the method does not attempt to produce accurate stresses in the filleted region, it can also be used to obtain stresses elsewhere in the structure for preliminary analysis. A future avenue of study is to extend the theory developed here to other fillet geometries, including fillet angles other than 90 and multifaceted intersections.
SLOAN DIGITAL SKY SURVEY OBSERVATIONS OF KUIPER BELT OBJECTS: COLORS AND VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofek, Eran O.
2012-04-10
Colors of trans-Neptunian objects (TNOs) are used to study the evolutionary processes of bodies in the outskirts of the solar system and to test theories regarding their origin. Here I describe a search for serendipitous Sloan Digital Sky Survey (SDSS) observations of known TNOs and Centaurs. I present a catalog of SDSS photometry, colors, and astrometry of 388 measurements of 42 outer solar system objects. I find weak evidence, at the Almost-Equal-To 2{sigma} level (per trial), for a correlation between the g - r color and inclination of scattered disk objects and hot classical Kuiper Belt objects. I find amore » correlation between the g - r color and the angular momentum in the z direction of all the objects in this sample. These findings should be verified using larger samples of TNOs. Light curves as a function of phase angle are constructed for 13 objects. The steepness of the slopes of these light curves suggests that the coherent backscatter mechanism plays a major role in the reflectivity of outer solar system small objects at small phase angles. I find weak evidence for an anticorrelation, significant at the 2{sigma} confidence level (per trial), between the g-band phase-angle slope parameter and the semimajor axis, as well as the aphelion distance, of these objects (i.e., they show a more prominent 'opposition effect' at smaller distances from the Sun). However, this plausible correlation should be verified using a larger sample. I discuss the origin of this possible correlation and argue that if this correlation is real it probably indicates that 'Sedna'-like objects have a different origin than other classes of TNOs. Finally, I identify several objects with large variability amplitudes.« less
Computer simulations of interferometric imaging with the VLT Interferometer and the AMBER instrument
NASA Astrophysics Data System (ADS)
Bloecker, Thomas; Hofmann, Karl-Heinz; Przygodda, Frank; Weigelt, Gerd
2000-07-01
We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modeling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read- out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object equals 2.4 m, r0,ref. equals 2.5 m), different residual tip- tilt error ((delta) tt,object equals 2% of the Airy disk diameter, (delta) tt,ref. equals 0.1%), and object brightness (Kobject equals 3.5 mag and 11 mag, Kref. equals 3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC + 10420 that is rapidly evolving on human timescales. We show computer simulations of VLTI interferometry of IRC + 10420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.
Maas, Anne H; Rozendaal, Yvonne J W; van Pul, Carola; Hilbers, Peter A J; Cottaar, Ward J; Haak, Harm R; van Riel, Natal A W
2015-03-01
Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. © 2014 Diabetes Technology Society.
Equal Area Logistic Estimation for Item Response Theory
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li
2009-08-01
Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.
Novel Estimation of Pilot Performance Characteristics
NASA Technical Reports Server (NTRS)
Bachelder, Edward N.; Aponso, Bimal
2017-01-01
Two mechanisms internal to the pilot that affect performance during a tracking task are: 1) Pilot equalization (i.e. lead/lag); and 2) Pilot gain (i.e. sensitivity to the error signal). For some applications McRuer's Crossover Model can be used to anticipate what equalization will be employed to control a vehicle's dynamics. McRuer also established approximate time delays associated with different types of equalization - the more cognitive processing that is required due to equalization difficulty, the larger the time delay. However, the Crossover Model does not predict what the pilot gain will be. A nonlinear pilot control technique, observed and coined by the authors as 'amplitude clipping', is shown to improve stability, performance, and reduce workload when employed with vehicle dynamics that require high lead compensation by the pilot. Combining linear and nonlinear methods a novel approach is used to measure the pilot control parameters when amplitude clipping is present, allowing precise measurement in real time of key pilot control parameters. Based on the results of an experiment which was designed to probe workload primary drivers, a method is developed that estimates pilot spare capacity from readily observable measures and is tested for generality using multi-axis flight data. This paper documents the initial steps to developing a novel, simple objective metric for assessing pilot workload and its variation over time across a wide variety of tasks. Additionally, it offers a tangible, easily implementable methodology for anticipating a pilot's operating parameters and workload, and an effective design tool. The model shows promise in being able to precisely predict the actual pilot settings and workload, and observed tolerance of pilot parameter variation over the course of operation. Finally, an approach is proposed for generating Cooper-Harper ratings based on the workload and parameter estimation methodology.
Nonparametric tests for equality of psychometric functions.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2017-12-07
Many empirical studies measure psychometric functions (curves describing how observers' performance varies with stimulus magnitude) because these functions capture the effects of experimental conditions. To assess these effects, parametric curves are often fitted to the data and comparisons are carried out by testing for equality of mean parameter estimates across conditions. This approach is parametric and, thus, vulnerable to violations of the implied assumptions. Furthermore, testing for equality of means of parameters may be misleading: Psychometric functions may vary meaningfully across conditions on an observer-by-observer basis with no effect on the mean values of the estimated parameters. Alternative approaches to assess equality of psychometric functions per se are thus needed. This paper compares three nonparametric tests that are applicable in all situations of interest: The existing generalized Mantel-Haenszel test, a generalization of the Berry-Mielke test that was developed here, and a split variant of the generalized Mantel-Haenszel test also developed here. Their statistical properties (accuracy and power) are studied via simulation and the results show that all tests are indistinguishable as to accuracy but they differ non-uniformly as to power. Empirical use of the tests is illustrated via analyses of published data sets and practical recommendations are given. The computer code in MATLAB and R to conduct these tests is available as Electronic Supplemental Material.
2007-06-01
study), so tags placed in the fuze will allow both munitions to be tagged. • Fuze modification : o Four equally spaced grooves, 0.32 inches deep...investigation. Therefore, effort must continue to verify all recommendations before implementing the modifications . The list below highlights critical...concerns that require attention and verification: • Environmental o Manufacturing modifications to attach the tag Worker safety Bio friendliness o
Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.
1987-01-01
A method has been developed to establish steady state flow of water in an unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameters. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values as low as 7.6 × 10−11 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content. For the sand at a bulk density of 1.82 Mg/m3 and 27% saturation, results were consistent with Darcy's law for K equal to 5.22 × 10−10 m/s and forces ranging from 216 to 1650 times normal gravity.
Effects of short-term plyometric training on physical fitness parameters in female futsal athletes.
Neves da Silva, Vinícius Fonseca; Aguiar, Samuel da Silva; Sousa, Caio Victor; Sotero, Rafael da Costa; Filho, José Morais Souto; Oliveira, Iransé; Mota, Márcio Rabelo; Simões, Herbert Gustavo; Sales, Marcelo Magalhães
2017-05-01
[Purpose] To verify the effects of short-term plyometric training (PM) on body composition, flexibility and muscle power output in female Futsal athletes. [Subjects and Methods] Twenty female Futsal athletes (19.5 ± 1.29 years) equally and randomly divided into control and experimental groups were submitted to a sit-and-reach flexibility test, body composition measures and horizontal jump, at baseline and one day after the final training session. Both groups retained their training routines while only the experimental group participated in an additional 25 minutes of PM 2 times a week over 4 weeks. [Results] The experimental group showed higher values of flexibility and muscle power and lower body fat after the intervention in comparison to the baseline and control group. In addition, the effect size within-group after intervention indicated a moderate, large and very large effect for body fat, flexibility and muscle power, respectively. [Conclusion] These results show that plyometric training may be effective in reducing body fat and increasing flexibility and muscle power in female Futsal athletes. Thus, it may suggest that PM can be applied in the field of preventive physical therapy.
Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator
NASA Astrophysics Data System (ADS)
Zhang, Lu; Lai, Li; Peng, Hao; Tu, Zhe; Zhong, Suchuan
2018-01-01
The dynamics of many soft condensed matter and biological systems is affected by space limitations, which produce some peculiar effects on the systems' stochastic resonance (SR) behavior. In this study, we propose a model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal driving force and is under the influence of a multiplicative white noise. The output response of the system is a periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of these confined systems and could constitute an important tool for controlling their basic properties.
Effects of short-term plyometric training on physical fitness parameters in female futsal athletes
Neves da Silva, Vinícius Fonseca; Aguiar, Samuel da Silva; Sousa, Caio Victor; Sotero, Rafael da Costa; Filho, José Morais Souto; Oliveira, Iransé; Mota, Márcio Rabelo; Simões, Herbert Gustavo; Sales, Marcelo Magalhães
2017-01-01
[Purpose] To verify the effects of short-term plyometric training (PM) on body composition, flexibility and muscle power output in female Futsal athletes. [Subjects and Methods] Twenty female Futsal athletes (19.5 ± 1.29 years) equally and randomly divided into control and experimental groups were submitted to a sit-and-reach flexibility test, body composition measures and horizontal jump, at baseline and one day after the final training session. Both groups retained their training routines while only the experimental group participated in an additional 25 minutes of PM 2 times a week over 4 weeks. [Results] The experimental group showed higher values of flexibility and muscle power and lower body fat after the intervention in comparison to the baseline and control group. In addition, the effect size within-group after intervention indicated a moderate, large and very large effect for body fat, flexibility and muscle power, respectively. [Conclusion] These results show that plyometric training may be effective in reducing body fat and increasing flexibility and muscle power in female Futsal athletes. Thus, it may suggest that PM can be applied in the field of preventive physical therapy. PMID:28603345
Measurement Sensitivity Of Liquid Droplet Parameters Using Optical Fibers
NASA Astrophysics Data System (ADS)
Das, Alok K.; Mandal, Anup K.
1990-02-01
A new clad probing technique is used to measure the size, number, refractive index and viscosity of liquid droplets sprayed from a pressure nozzle on an uncoated core-clad fiber. The probe monitors the clad mode power loss within the leaky ray zone represented as a three region fiber. Liquid droplets measured are Glycerine, commercial grade Turpentine, Linseed oil and some oil mixtures. The measurement sensitivity depends on probing conditions and clad diameter which is observed experimentally and verified analytically. A maximum sensitivity is obtained for the tapered probe-fiber diameter made equal to the clad thickness. A slowly tapered probe-fiber and a small end angle as well as separation of the sensor-fiber and the probe-fiber further improve the sensitivity. Under the best probing condition for 90-percent Glycerine droplets of - 50 micron diameter and a 50/125 micron sensor fiber with clad refractive index of 1.465 and 0.2 NA, the measured sensitivity per drop is 0.015 and 0.006 dB, respectively, for (10-20) and (100-200) droplets. Sensitivities for different systems are shown. The sensitivity is optimized by choosing proper fiber for known liquids.
A Fast Measuring Method for the Inner Diameter of Coaxial Holes
Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie
2017-01-01
A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod’s rotation angles, so all diameters of coaxial holes can be calculated by sensors’ values. While revolving, the changing angles of each sensor’s laser beams are approximately equal in the rod’s radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS’s mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use. PMID:28327499
A Fast Measuring Method for the Inner Diameter of Coaxial Holes.
Wang, Lei; Yang, Fangyun; Fu, Luhua; Wang, Zhong; Yang, Tongyu; Liu, Changjie
2017-03-22
A new method for fast diameter measurement of coaxial holes is studied. The paper describes a multi-layer measuring rod that installs a single laser displacement sensor (LDS) on each layer. This method is easy to implement by rotating the measuring rod, and immune from detecting the measuring rod's rotation angles, so all diameters of coaxial holes can be calculated by sensors' values. While revolving, the changing angles of each sensor's laser beams are approximately equal in the rod's radial direction so that the over-determined nonlinear equations of multi-layer holes for fitting circles can be established. The mathematical model of the measuring rod is established, all parameters that affect the accuracy of measurement are analyzed and simulated. In the experiment, the validity of the method is verified, the inner diameter measuring precision of 28 μm is achieved by 20 μm linearity LDS. The measuring rod has advantages of convenient operation and easy manufacture, according to the actual diameters of coaxial holes, and also the varying number of holes, LDS's mounting location can be adjusted for different parts. It is convenient for rapid diameter measurement in industrial use.
A hydrodynamic mechanism for spontaneous formation of ordered drop arrays in confined shear flow
NASA Astrophysics Data System (ADS)
Singha, Sagnik; Zurita-Gotor, Mauricio; Loewenberg, Michael; Migler, Kalman; Blawzdziewicz, Jerzy
2017-11-01
It has been experimentally demonstrated that a drop monolayer driven by a confined shear flow in a Couette device can spontaneously arrange into a flow-oriented parallel chain microstructure. However, the hydrodynamic mechanism of this puzzling self-assembly phenomenon has so far eluded explanation. In a recent publication we suggested that the observed spontaneous drop ordering may arise from hydrodynamic interparticle interactions via a far-field quadrupolar Hele-Shaw flow associated with drop deformation. To verify this conjecture we have developed a simple numerical-simulation model that includes the far-field Hele-Shaw flow quadrupoles and a near-field short-range repulsion. Our simulations show that an initially disordered particle configuration self-organizes into a system of particle chains, similar to the experimentally observed drop-chain structures. The initial stage of chain formation is fast; subsequently, microstructural defects in a partially ordered system are removed by slow annealing, leading to an array of equally spaced parallel chains with a small number of defects. The microstructure evolution is analyzed using angular and spatial order parameters and correlation functions. Supported by NSF Grants No. CBET 1603627 and CBET 1603806.
Achieving Agreement in Three Rounds With Bounded-Byzantine Faults
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2015-01-01
A three-round algorithm is presented that guarantees agreement in a system of K (nodes) greater than or equal to 3F (faults) +1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable with respect to the number of nodes in the system and applies equally to the traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.
Neighboring extremals of dynamic optimization problems with path equality constraints
NASA Technical Reports Server (NTRS)
Lee, A. Y.
1988-01-01
Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.
Van Neste, Dominique
2014-01-01
The words "hair growth" frequently encompass many aspects other than just growth. Report on a validation method for precise non-invasive measurement of thickness together with linear hair growth rates of individual hair fibres. To verify the possible correlation between thickness and linear growth rate of scalp hair in male pattern hair loss as compared with healthy male controls. To document the process of validation of hair growth measurement from in vivo image capturing and manual processing, followed by computer assisted image analysis. We analysed 179 paired images obtained with the contrast-enhanced-phototrichogram method with exogen collection (CE-PTG-EC) in 13 healthy male controls and in 87 men with male pattern hair loss (MPHL). There was a global positive correlation between thickness and growth rate (ANOVA; p<0.0001) and a statistically significantly (ANOVA; p<0.0005) slower growth rate in MPHL as compared with equally thick hairs from controls. Finally, the growth rate recorded in the more severe patterns was significantly (ANOVA; P ≤ 0.001) reduced compared with equally thick hair from less severely affected MPHL or controls subjects. Reduced growth rate, together with thinning and shortening of the anagen phase duration in MPHL might contribute together to the global impression of decreased hair volume on the top of the head. Amongst other structural and functional parameters characterizing hair follicle regression, linear hair growth rate warrants further investigation, as it may be relevant in terms of self-perception of hair coverage, quantitative diagnosis and prognostic factor of the therapeutic response.
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.
Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng
2015-01-12
A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.
The family of planar periodic orbits generated by the equal-mass four-body Schubart interplay orbit
NASA Astrophysics Data System (ADS)
Chopovda, Valerie; Sweatman, Winston L.
2018-05-01
We locate members of a one-parameter family of equal-mass four-body periodic orbits in the plane. The family begins and ends with the rectilinear four-body equal-mass Schubart interplay orbit and passes through a double choreography orbit. The first-order stability of these orbits is computed. Some members of this symmetric family are stable to symmetric perturbations; however, they are unstable when all perturbations are allowed.
1992-07-01
of J2000.0. Origin in (DE200/LE200). right ascension is set equal to the dynamical equinox of J2000.0. See Chapter S. Lunar Refer•ec Frame Retro... sets by techniques (VLBI, SLR, LLR, GPS...) or the combination of individual solutions into a unified set of data (station coordinates, Earth...AMO-2 model from J. B. Minster. This was made by modifying the earlier subroutine. The changes were made by Don Argus and verified by Alice Gripp. 21
Laser Transmitter Aims At Laser Beacon
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1993-01-01
Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.
Semantic Importance Sampling for Statistical Model Checking
2015-01-16
SMT calls while maintaining correctness. Finally, we implement SIS in a tool called osmosis and use it to verify a number of stochastic systems with...2 surveys related work. Section 3 presents background definitions and concepts. Section 4 presents SIS, and Section 5 presents our tool osmosis . In...which I∗M|=Φ(x) = 1. We do this by first randomly selecting a cube c from C∗ with uniform probability since each cube has equal probability 9 5. OSMOSIS
Specifying and Verifying Concurrent Programs.
1985-02-01
for Verification and Specification of Concurrent Systems, held in La - Colle - Sur - Loup , France in October, 1984. Work Supported in part by the National...Proc. ACM Symposium on Princi- 0 ples of Programming Languages, Las Vegas, (January 1980), 251-261. [7] J. V. Guttag and J. J. Horning. An Introduction...names in ’V(S). However, the two formulas behave differently under a renaming mapping p. In particu- lar. p(Vv :A( LA )) equals Vv :p(A(v)), so the
Online adaptation and verification of VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Defraene, Gilles; Depuydt, Tom
2015-07-15
Purpose: This work presents a method for fast volumetric modulated arc therapy (VMAT) adaptation in response to interfraction anatomical variations. Additionally, plan parameters extracted from the adapted plans are used to verify the quality of these plans. The methods were tested as a prostate class solution and compared to replanning and to their current clinical practice. Methods: The proposed VMAT adaptation is an extension of their previous intensity modulated radiotherapy (IMRT) adaptation. It follows a direct (forward) planning approach: the multileaf collimator (MLC) apertures are corrected in the beam’s eye view (BEV) and the monitor units (MUs) are corrected usingmore » point dose calculations. All MLC and MU corrections are driven by the positions of four fiducial points only, without need for a full contour set. Quality assurance (QA) of the adapted plans is performed using plan parameters that can be calculated online and that have a relation to the delivered dose or the plan quality. Five potential parameters are studied for this purpose: the number of MU, the equivalent field size (EqFS), the modulation complexity score (MCS), and the components of the MCS: the aperture area variability (AAV) and the leaf sequence variability (LSV). The full adaptation and its separate steps were evaluated in simulation experiments involving a prostate phantom subjected to various interfraction transformations. The efficacy of the current VMAT adaptation was scored by target mean dose (CTV{sub mean}), conformity (CI{sub 95%}), tumor control probability (TCP), and normal tissue complication probability (NTCP). The impact of the adaptation on the plan parameters (QA) was assessed by comparison with prediction intervals (PI) derived from a statistical model of the typical variation of these parameters in a population of VMAT prostate plans (n = 63). These prediction intervals are the adaptation equivalent of the tolerance tables for couch shifts in the current clinical practice. Results: The proposed adaptation of a two-arc VMAT plan resulted in the intended CTV{sub mean} (Δ ≤ 3%) and TCP (ΔTCP ≤ 0.001). Moreover, the method assures the intended CI{sub 95%} (Δ ≤ 11%) resulting in lowered rectal NTCP for all cases. Compared to replanning, their adaptation is faster (13 s vs 10 min) and more intuitive. Compared to the current clinical practice, it has a better protection of the healthy tissue. Compared to IMRT, VMAT is more robust to anatomical variations, but it is also less sensitive to the different correction steps. The observed variations of the plan parameters in their database included a linear dependence on the date of treatment planning and on the target radius. The MCS is not retained as QA metric due to a contrasting behavior of its components (LSV and AAV). If three out of four plan parameters (MU, EqFS, AAV, and LSV) need to lie inside a 50% prediction interval (3/4—50%PI), all adapted plans will be accepted. In contrast, all replanned plans do not meet this loose criterion, mainly because they have no connection to the initially optimized and verified plan. Conclusions: A direct (forward) VMAT adaptation performs equally well as (inverse) replanning but is faster and can be extended to real-time adaptation. The prediction intervals for the machine parameters are equivalent to the tolerance tables for couch shifts in the current clinical practice. A 3/4—50%PI QA criterion accepts all the adapted plans but rejects all the replanned plans.« less
The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio
NASA Astrophysics Data System (ADS)
Roquier, Gerard
2017-06-01
The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.
State orthogonality, boson bunching parameter and bosonic enhancement factor
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'el
2016-04-01
It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.
Gupta, Jasmine; Nunes, Cletus; Vyas, Shyam; Jonnalagadda, Sriramakamal
2011-03-10
The objectives of this study were (i) to develop a computational model based on molecular dynamics technique to predict the miscibility of indomethacin in carriers (polyethylene oxide, glucose, and sucrose) and (ii) to experimentally verify the in silico predictions by characterizing the drug-carrier mixtures using thermoanalytical techniques. Molecular dynamics (MD) simulations were performed using the COMPASS force field, and the cohesive energy density and the solubility parameters were determined for the model compounds. The magnitude of difference in the solubility parameters of drug and carrier is indicative of their miscibility. The MD simulations predicted indomethacin to be miscible with polyethylene oxide and to be borderline miscible with sucrose and immiscible with glucose. The solubility parameter values obtained using the MD simulations values were in reasonable agreement with those calculated using group contribution methods. Differential scanning calorimetry showed melting point depression of polyethylene oxide with increasing levels of indomethacin accompanied by peak broadening, confirming miscibility. In contrast, thermal analysis of blends of indomethacin with sucrose and glucose verified general immiscibility. The findings demonstrate that molecular modeling is a powerful technique for determining the solubility parameters and predicting miscibility of pharmaceutical compounds. © 2011 American Chemical Society
Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelli, D.; Imme, G.; Catalano, R.
2011-12-13
Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less
NASA Technical Reports Server (NTRS)
Schulte, Peter Z.; Moore, James W.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that flight performance requirements on parachute loads and terminal rate of descent are met. Design of Experiments (DoE) provides a systematic method for variation of simulation input parameters. When implemented and interpreted correctly, a DoE study of parachute simulation tools indicates values and combinations of parameters that may cause requirement limits to be violated. This paper describes one implementation of DoE that is currently being developed by CPAS, explains how DoE results can be interpreted, and presents the results of several preliminary studies. The potential uses of DoE to validate parachute simulation models and verify requirements are also explored.
The Hottest Horizontal-Branch Stars in Omega Centauri: Late Hot Flasher vs. Helium Enrichment
NASA Technical Reports Server (NTRS)
Moehler, S.; Dreizler, S.; Lanz, T.; Bono, G.; Sweigart, A V.; Calamida, A.; Monelli, M.; Nonino, M.
2007-01-01
UV observations of some massive globular clusters uncovered a significant population of very hot stars below the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot flasher scenario here stars experience the helium flash while on the white dwarf cooling curve or by the helium-rich sub-population recently postulated to exist in some clusters. Spectroscopic analyses of blue hook stars in omega Cen and NGC 2808 support the late hot flasher scenario, but the stars contain much less helium than expected and the predicted C, N enrichment could not be verified from existing data. We want to determine effective temperatures, surface gravities and abundances of He, C, N in blue hook and canonical extreme horizontal branch (EHB) star candidates. Moderately high resolution spectra of stars at the hot end of the blue horizontal branch in the globular cluster omega Cen were analysed for atmospheric parameters (T(sub eff), log g) and abundances using LTE and Non-LTE model atmospheres. In the temperature range 30,000 K to 50,000 K we find that 37% of our stars are helium-poor (log nHe/nH less than -2), 49% have solar helium abundance within a factor of 3 (-1.5 less than or equal to log nHe/nH less than or equal to -0.5) and 14% are helium rich (log nHe/nH greater than -0.4). We also find carbon enrichment in step with helium enrichment, with a maximum carbon enrichment of 3% by mass. At least 30% of the hottest HB stars in omega Centauri show helium abundances well above the predictions from the helium enrichment scenario (Y = 0.42 corresponding to log nHe/nH approximately equal to -0.74). In addition the most helium-rich stars show strong carbon enrichment as predicted by the late hot flasher scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence.
Sexual Harassment in the Workplace: The Equal Employment Opportunity Commission's New Guidelines.
ERIC Educational Resources Information Center
Oneglia, Stewart B.; Cornelius, Susan French
1981-01-01
The Equal Employment Opportunity Commission's new guidelines, although untested in court, are consistent with prior Title VII case law in the areas of racial harassment and employer liability and more expansive though consistent with existing sexual harassment case law. They should also establish some specificity in the parameters of sexual…
Nestler, Steffen
2014-05-01
Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Radke, Tara; Chuhta, Jesse; Hughes, Michael
2014-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics model and to verify no recontact. NASA Orion Multi-Purpose Crew Vehicle (MPCV) teams examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the Forward Bay Cover (FBC) separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute parameters, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1, but more testing is required to support human certification, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust but affordable human spacecraft capability.
Proton Straggling in Thick Silicon Detectors
NASA Technical Reports Server (NTRS)
Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.
2017-01-01
Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov k is greater than or equal to 0:3. They are verified by comparison to experimental proton data from a charged particle telescope.
de Souza Araújo, E; Pimenta, A S; Feijó, F M C; Castro, R V O; Fasciotti, M; Monteiro, T V C; de Lima, K M G
2018-01-01
This work aimed to evaluate the antibacterial and antifungal activities of two types of pyroligneous acid (PA) obtained from slow pyrolysis of wood of Mimosa tenuiflora and of a hybrid of Eucalyptus urophylla × Eucalyptus grandis. Wood wedges were carbonized on a heating rate of 1·25°C min -1 until 450°C. Pyrolysis smoke was trapped and condensed to yield liquid products. Crude pyrolysis liquids were bidistilled under 5 mmHg vacuum yielding purified PA. Multi-antibiotic-resistant strains of Escherichia coli, Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923) had their sensitivity to PA evaluated using agar diffusion test. Two yeasts were evaluated as well, Candida albicans (ATCC 10231) and Cryptococcus neoformans. GC-MS analysis of both PAs was carried out to obtain their chemical composition. Regression analysis was performed, and models were adjusted, with diameter of inhibition halos and PA concentration (100, 50 and 20%) as parameters. Identity of regression models and equality of parameters in polynomial orthogonal equations were verified. Inhibition halos were observed in the range 15-25 mm of diameter. All micro-organisms were inhibited by both types of PA even in the lowest concentration of 20%. The feasibility of the usage of PAs produced with wood species planted in large scale in Brazil was evident and the real potential as a basis to produce natural antibacterial and antifungal agents, with real possibility to be used in veterinary and zootechnical applications. © 2017 The Society for Applied Microbiology.
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi T.
1998-01-01
A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K, and Q of 7.4 x 10 (exp 8). These values compare to a turn-over of 8.821 K and Q of 1.0 x 10 (exp 9) for the first resonator. Operation of this second unit provides a capability to directly verify for the first time the short-term (1 second less than or equal to tau less than or equal to 200 seconds) stability and the phase noise of the CSO units. The RF receiver used in earlier tests was sufficient to meet Cassini requirements for tau greater than or equal to 10 seconds but had short-term stability limited to 2-4 x 10 (exp -14) at tau = 1 second, a value 10 times too high to meet our requirements. A new low-noise receiver has been designed to provide approximately equal to 10-15 performance at 1 second, and one receiver is now operational, demonstrating again short-term CSO performance with H maser-limited stability. Short-term performance was degraded in the old receiver due to insufficient tuning bandwidth in a 100MHZ quartz VCO that was frequency-locked to the cryogenic sapphire resonator. The new receivers are designed for sufficient bandwidth, loop gain and low noise to achieve the required performance.
Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size
NASA Technical Reports Server (NTRS)
Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.
2008-01-01
Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.
Flight motor set 360L008 (STS-32R). Volume 1: System overview
NASA Technical Reports Server (NTRS)
Garecht, D. M.
1990-01-01
Flight motor set 360L008 was launched as part of NASA space shuttle mission STS-32R. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. All ballistic contract end item specification parameters were verified with the exception of ignition interval and rise rates, which could not be verified due to elimination of developmental flight instrumentation. But the available low sample rate data showed nominal propulsion performance. All ballistic and mass property parameters closely matched the predicted values and were well within the required contract end item specification levels that could be assessed. All field joint heaters and igniter joint heaters performed without anomalies. Redesigned field joint heaters and the redesigned left-hand igniter heater were used on this flight. The changes to the heaters were primarily to improve durability and reducing handling damage. Evaluation of the ground environment instrumentation measurements again verified thermal mode analysis data and showed agreement with predicted environmental effects. No launch commit criteria violation occurred. Postflight inspection again verified superior performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints. Recommendations were made concerning improved thermal modeling and measurements. The rationale for these recommendations and complete result details are presented.
The Dependence of the Spring Constant in the Linear Range on Spring Parameters
ERIC Educational Resources Information Center
Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani; Khairurrijal
2011-01-01
In basic physics laboratories, springs are normally used to determine both spring constants and the Earth's gravitational acceleration. Students generally do not notice that the spring constant is not a universal constant, but depends on the spring parameters. This paper shows and verifies that the spring constant in the linear range is inversely…
Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations
NASA Astrophysics Data System (ADS)
Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.
2017-07-01
Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the smaller values in the numerical parameters variations. This is an important numerical exercise, since for instance, it is believed that galaxy structural parameters are strongly dependent on dark matter halo structural parameters.
Development and evaluation of a musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
Phenomenological characteristic of the electron component in gamma-quanta initiated showers
NASA Technical Reports Server (NTRS)
Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.
1985-01-01
The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.
Research on fuel cell and battery hybrid bus system parameters based on ADVISOR
NASA Astrophysics Data System (ADS)
Lai, Lianfeng; Lu, Youwen; Guo, Weiwei; Lin, Yuxiang; Xie, Yichun; Zheng, Liping; Chen, Wei; Liang, Boshan
2018-06-01
This paper aims at the fuel cell and battery hybrid automobile, based on one bus parameters, considers their own characteristics of fuel cell and battery and power demand when automobiles start, accelerate, climb, brake and other different working conditions, calculate the hybrid bus system parameters that match the fuel cell/battery., and ADVISOR is used is to verify simulation. The results show that the parameters of power drive system of this electric automobile are reasonable, and can meet the requirements of dynamic design indexes.
NASA Astrophysics Data System (ADS)
Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao
2013-04-01
According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.
Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T
2015-01-01
The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang
2018-02-01
Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.
Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Counter, Douglas
2011-01-01
Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements
Chemical transport in a fissured rock: Verification of a numerical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less
A criticality result for polycycles in a family of quadratic reversible centers
NASA Astrophysics Data System (ADS)
Rojas, D.; Villadelprat, J.
2018-06-01
We consider the family of dehomogenized Loud's centers Xμ = y (x - 1)∂x + (x + Dx2 + Fy2)∂y, where μ = (D , F) ∈R2, and we study the number of critical periodic orbits that emerge or disappear from the polycycle at the boundary of the period annulus. This number is defined exactly the same way as the well-known notion of cyclicity of a limit periodic set and we call it criticality. The previous results on the issue for the family {Xμ , μ ∈R2 } distinguish between parameters with criticality equal to zero (regular parameters) and those with criticality greater than zero (bifurcation parameters). A challenging problem not tackled so far is the computation of the criticality of the bifurcation parameters, which form a set ΓB of codimension 1 in R2. In the present paper we succeed in proving that a subset of ΓB has criticality equal to one.
ERIC Educational Resources Information Center
Bakir, Saad T.
2010-01-01
We propose a nonparametric (or distribution-free) procedure for testing the equality of several population variances (or scale parameters). The proposed test is a modification of Bakir's (1989, Commun. Statist., Simul-Comp., 18, 757-775) analysis of means by ranks (ANOMR) procedure for testing the equality of several population means. A proof is…
Lackner, Angelika; Duftner, Christina; Ficjan, Anja; Gretler, Judith; Hermann, Josef; Husic, Rusmir; Graninger, Winfried B; Dejaco, Christian
2016-10-01
To study the association of clinical and/or ultrasound variables with patients' (PGA) and physicians' (EGA) global assessment of disease activity in psoriatic arthritis (PsA). The correlation of these parameters with the discordance between PGA and EGA, as well as with PGA/EGA changes over 6 months was also investigated. Prospective study of 83 consecutive PsA patients with 2 visits scheduled 6 months apart. All patients underwent the following assessments: tender (TJC) and swollen joint count (SJC), PASI, dactylitis and Leeds enthesitis index. PGA, patients' level of pain (pain VAS), EGA, and HAQ were also recorded. Grey scale (GS) and power Doppler (PD) ultrasound were performed at 68 joints (evaluating synovia and tendons) and 14 entheses. Regression analyses were performed to assess the association of these variables with PGA and EGA. Two new variables "PGAminusEGA" and "PGAchange - EGAchange" were developed to explore the discrepancy between PGA and EGA and the consistency of PGA/EGA changes over time, respectively. The parameters explaining most of PGA and EGA variability were pain VAS (30.5%) and SJC (48.5%), respectively. The correlation between EGA and joint counts was stronger in patients with high vs. low levels of ultrasound verified inflammation. PGAminusEGA was mainly explained by pain and SJC. Pain was the most important predictor of PGA change whereas TJC and HAQ were more closely associated with EGA changes. "PGAchange-EGAchange" was linked to pain and SJC. Ultrasound scores were not linked with either of these variables. Pain VAS and joint counts are the most important clinical parameters explaining patients' and physicians' perception of disease activity, whereas the correlation of active inflammation as verified by sonography with these factors is limited. Copyright © 2016 Elsevier Inc. All rights reserved.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
NASA Technical Reports Server (NTRS)
Thareja, R.; Haftka, R. T.
1986-01-01
There has been recent interest in multidisciplinary multilevel optimization applied to large engineering systems. The usual approach is to divide the system into a hierarchy of subsystems with ever increasing detail in the analysis focus. Equality constraints are usually placed on various design quantities at every successive level to ensure consistency between levels. In many previous applications these equality constraints were eliminated by reducing the number of design variables. In complex systems this may not be possible and these equality constraints may have to be retained in the optimization process. In this paper the impact of such a retention is examined for a simple portal frame problem. It is shown that the equality constraints introduce numerical difficulties, and that the numerical solution becomes very sensitive to optimization parameters for a wide range of optimization algorithms.
Surface energy from order parameter profile: At the QCD phase transition
NASA Technical Reports Server (NTRS)
Frei, Z.; Patkos, A.
1989-01-01
The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, M; Schmidt, M; Knutson, N
Purpose: Physics second-checks for external beam radiation therapy are performed, in-part, to verify that the machine parameters in the Record-and-Verify (R&V) system that will ultimately be sent to the LINAC exactly match the values initially calculated by the Treatment Planning System (TPS). While performing the second-check, a large portion of the physicists’ time is spent navigating and arranging display windows to locate and compare the relevant numerical values (MLC position, collimator rotation, field size, MU, etc.). Here, we describe the development of a software tool that guides the physicist by aggregating and succinctly displaying machine parameter data relevant to themore » physics second-check process. Methods: A data retrieval software tool was developed using Python to aggregate data and generate a list of machine parameters that are commonly verified during the physics second-check process. This software tool imported values from (i) the TPS RT Plan DICOM file and (ii) the MOSAIQ (R&V) Structured Query Language (SQL) database. The machine parameters aggregated for this study included: MLC positions, X&Y jaw positions, collimator rotation, gantry rotation, MU, dose rate, wedges and accessories, cumulative dose, energy, machine name, couch angle, and more. Results: A GUI interface was developed to generate a side-by-side display of the aggregated machine parameter values for each field, and presented to the physicist for direct visual comparison. This software tool was tested for 3D conformal, static IMRT, sliding window IMRT, and VMAT treatment plans. Conclusion: This software tool facilitated the data collection process needed in order for the physicist to conduct a second-check, thus yielding an optimized second-check workflow that was both more user friendly and time-efficient. Utilizing this software tool, the physicist was able to spend less time searching through the TPS PDF plan document and the R&V system and focus the second-check efforts on assessing the patient-specific plan-quality.« less
75 FR 12811 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... verifying accuracy of the check sum and CRC values of all programmable elements used in the solid-state... software being used. This verification is done by comparing the parameters found on all programmable...
Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach
NASA Astrophysics Data System (ADS)
Wang, Li; Lu, Zhong-Rong
2017-05-01
This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.
Yen, Chih-Ta; Chen, Wen-Bin
2016-01-01
Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042
Flight Motor Set 360T010 (STS-31R). Volume 1: System Overview
NASA Technical Reports Server (NTRS)
Garecht, Diane
1990-01-01
Flight motor set 360T010 was launched at approximately 7:34 a.m. CST (090:114:12:33:50.990 GMT) on 24 Apr. 1990 after one launch attempt (attempt on 10 Apr. 1990 was scrubbed following an indication of erratic operation of the Orbiter No. 1 Auciliary Power Unit No. 1). There were no problems with the solid rocket motor launches, overall motor performance was excellent. There were no debris concerns from either motor. Nearly all ballistic contract end item specification parameters were verified with the exception of ignition interval, pressure rise rate, and ignition time thrust imbalance. These could not be verified due to elimination of developmental flight instrumentation on 360L004 (STS-30R) and subsequent, but low sample rate data that were available showed nominal propulsion performance. All ballistic and mass property parameters that could be assessed closely matched the predicted values and were well within the required contract end item specification levels. All field joint heaters and igniter joint heaters performed without anomalies. Evaluation of the ground environment instrumentation measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria violations occurred. Postflight inspection again verified nominal performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints.
Flight motor set 360L007 (STS-33R)
NASA Technical Reports Server (NTRS)
Garecht, Diane
1990-01-01
Flight motor set 360L007 was launched as part of NASA space shuttle mission STS-33R. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. There were no debris concerns for either motor. Both motors exhibited unbonds on one factory joint weatherseal. All ballistics contract end item specification parameters were verified, with the exception of ignition interval and rise rates. Ignition interval and rise rates could not be verified due to the elimination of developmental flight instrumentation from fourth flight and subsequent, but the low sample rate data that were available showed nominal propulsion performance. All ballistic and mass property parameters closely matched the predicted values and were well within the required contract end item specification levels that could be assessed. All 108 Ground Environment Instrumentation (GEI) measurements performed properly throughout the prelaunch phase. Evaluation of the GEI measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria thermal violations occurred. All joint heaters operated normally, but a high voltage reading was noted on the left hand aft heater, which was immediately determined to be a voltage sensor error and not a heater anomaly due to no current increase. Postflight inspection again verified superior performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints.
Thermal degradation of ternary blend films containing PVA/chitosan/vanillin
NASA Astrophysics Data System (ADS)
Kasai, Deepak; Chougale, Ravindra; Masti, Saraswati; Narasgoudar, Shivayogi
2018-05-01
The ternary chitosan/poly (vinyl alcohol)/vanillin blend films were prepared by solution casting method. The influence of equal weight percent of poly (vinyl alcohol) and vanillin on thermal stability of the chitosan blend films were investigated by using thermogravimetric analysis (TGA). The kinetic parameters such as enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) in the first and second decomposition steps based on the thermogravimetric data were calculated. The thermal stabilities of the blend films were confirmed by thermodynamic parameters obtained in the activation energies, which indicated that increase in the equal weight percent of PVA/vanillin decreased the thermal stability of the chitosan film.
Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee
2015-01-01
Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512
Drop impact upon micro- and nanostructured superhydrophobic surfaces.
Tsai, Peichun; Pacheco, Sergio; Pirat, Christophe; Lefferts, Leon; Lohse, Detlef
2009-10-20
We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small We, i.e., small impact velocity, the impact evolutions are similar for both types of substrates, exhibiting Fakir state, complete bouncing, partial rebouncing, trapping of an air bubble, jetting, and sticky vibrating water balls. At large We, splashing impacts emerge forming several satellite droplets, which are more pronounced for the multiscale rough carbon nanofiber jungles. The results imply that the multiscale surface roughness at nanoscale plays a minor role in the impact events for small We less than or approximately equal 120 but an important one for large We greater than or approximately equal 120. Finally, we find the effect of ambient air pressure to be negligible in the explored parameter regime We less than or approximately equal 150.
Two algorithms for neural-network design and training with application to channel equalization.
Sweatman, C Z; Mulgrew, B; Gibson, G J
1998-01-01
We describe two algorithms for designing and training neural-network classifiers. The first, the linear programming slab algorithm (LPSA), is motivated by the problem of reconstructing digital signals corrupted by passage through a dispersive channel and by additive noise. It constructs a multilayer perceptron (MLP) to separate two disjoint sets by using linear programming methods to identify network parameters. The second, the perceptron learning slab algorithm (PLSA), avoids the computational costs of linear programming by using an error-correction approach to identify parameters. Both algorithms operate in highly constrained parameter spaces and are able to exploit symmetry in the classification problem. Using these algorithms, we develop a number of procedures for the adaptive equalization of a complex linear 4-quadrature amplitude modulation (QAM) channel, and compare their performance in a simulation study. Results are given for both stationary and time-varying channels, the latter based on the COST 207 GSM propagation model.
JAN transistor and diode characterization test program, JANTX diode 1N5623
NASA Technical Reports Server (NTRS)
Takeda, H.
1977-01-01
A statistical summary of the electrical characterization of diodes and transistors is presented. Each parameter is presented with test conditions, mean, standard deviation, lowest reading, 10% point (where 10% of all readings are equal to or less than the indicated reading), 90% point (where 90% of all readings are equal to or less than indicated reading) and the highest reading.
Co-operation of digital nonlinear equalizers and soft-decision LDPC FEC in nonlinear transmission.
Tanimura, Takahito; Oda, Shoichiro; Hoshida, Takeshi; Aoki, Yasuhiko; Tao, Zhenning; Rasmussen, Jens C
2013-12-30
We experimentally and numerically investigated the characteristics of 128 Gb/s dual polarization - quadrature phase shift keying signals received with two types of nonlinear equalizers (NLEs) followed by soft-decision (SD) low-density parity-check (LDPC) forward error correction (FEC). Successful co-operation among SD-FEC and NLEs over various nonlinear transmissions were demonstrated by optimization of parameters for NLEs.
ERIC Educational Resources Information Center
Formann, Anton K.
1986-01-01
It is shown that for equal parameters explicit formulas exist, facilitating the application of the Newton-Raphson procedure to estimate the parameters in the Rasch model and related models according to the conditional maximum likelihood principle. (Author/LMO)
Detection of free liquid in containers of solidified radioactive waste
Greenhalgh, W.O.
Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.
Advanced Solid Rocket Motor case design status
NASA Technical Reports Server (NTRS)
Palmer, G. L.; Cash, S. F.; Beck, J. P.
1993-01-01
The Advanced Solid Rocket Motor (ASRM) case design aimed at achieving a safer and more reliable solid rocket motor for the Space Shuttle system is considered. The ASRM case has a 150.0 inch diameter, three equal length segment, and 9Ni-4CO-0.3C steel alloy. The major design features include bolted casebolted case joints which close during pressurization, plasma arc welded factory joints, integral stiffener for splash down and recovery, and integral External Tank attachment rings. Each mechanical joint has redundant and verifiable o-ring seals.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1972-01-01
Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1971-01-01
Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.
Applications of HCMM satellite data. [Lake Ontario, Buffalo, Syracuse, and Rochester, New York
NASA Technical Reports Server (NTRS)
1980-01-01
The thermal properties of Lake Ontario as they relate to water equality, lake hydrology and energy exchange were investigated as well as the urban heat island problem in selected areas adjacent to the lake. The HCMM thermal sensor was fully calibrated for several underflight data. Actual surface water temperature maps were generated for all of Lake Ontario using the calibration procedure developed. Major water quality changes associated with the thermal bar as located by HCMM thermal data were observed from satellite and aerial data and verified by ground truth.
Detection of free liquid in containers of solidified radioactive waste
Greenhalgh, Wilbur O.
1985-01-01
A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.
Measurement of the magneto-optical correlation length in turbid media
NASA Astrophysics Data System (ADS)
Lenke, Ralf; Eisenmann, Christoph; Reinke, Daniel; Maret, Georg
2002-11-01
In multiple light scattering media, magnetic field induced circular birefringence (Faraday effect) influences interference effects such as speckle pattern or coherent backscattering. It was predicted that in the diffusive regime the relevant correlation length with respect to the Faraday rotation l*F differs, in general, from the transport mean free path l*. We have experimentally verified the prediction that the ratio l*F/l scr>* equals 2 for Rayleigh scattering and decreases to 1 with increasing scatterer size. We also discuss the influence of the structure factor on l*F.
Data-aided adaptive weighted channel equalizer for coherent optical OFDM.
Mousa-Pasandi, Mohammad E; Plant, David V
2010-02-15
We report an adaptive weighted channel equalizer (AWCE) for orthogonal frequency division multiplexing (OFDM) and study its performance for long-haul coherent optical OFDM (CO-OFDM) transmission systems. This equalizer updates the equalization parameters on a symbol-by-symbol basis thus can track slight drifts of the optical channel. This is suitable to combat polarization mode dispersion (PMD) degradation while increasing the periodicity of pilot symbols which can be translated into a significant overhead reduction. Furthermore, AWCE can increase the precision of RF-pilot enabled phase noise estimation in the presence of noise, using data-aided phase noise estimation. Simulation results corroborate the capability of AWCE in both overhead reduction and improving the quality of the phase noise compensation (PNC).
SU-E-T-361: Energy Dependent Radiation/light-Field Misalignment On Truebeam Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, N; Tanny, S; Parsai, E
2015-06-15
Purpose: Verifying the co-incidence of the radiation and light field is recommended by TG-142 for monthly and annual checks. On a digital accelerator, it is simple to verify that beam steering settings are consistent with accepted and commissioned values. This fact should allow for physicists to verify radiation-light-field co-incidence for a single energy and accept that Result for all energies. We present a case where the radiation isocenter deviated for a single energy without any apparent modification to the beam steering parameters. Methods: The radiation isocenter was determined using multiple Methods: Gafchromic film, a BB test, and radiation profiles measuredmore » with a diode. Light-field borders were marked on Gafchromic film and then irradiated for all photon energies. Images of acceptance films were compared with films taken four months later. A phantom with a radio-opaque BB was aligned to isocenter using the light-field and imaged using the EPID for all photon energies. An unshielded diode was aligned using the crosshairs and then beam profiles of multiple field sizes were obtained. Field centers were determined using Omni-Pro v7.4 software, and compared to similar scans taken during commissioning. Beam steering parameter files were checked against backups to determine that the steering parameters were unchanged. Results: There were no differences between the configuration files from acceptance. All three tests demonstrated that a single energy had deviated from accepted values by 0.8 mm in the inline direction. The other two energies remained consistent with previous measurements. The deviated energy was re-steered to be within our clinical tolerance. Conclusions: Our study demonstrates that radiation-light-field coincidence is an energy dependent effect for modern linacs. We recommend that radiation-light-field coincidence be verified for all energies on a monthly basis, particularly for modes used to treat small fields, as these may drift without influencing results from other tests.« less
Study on degenerate coefficient and degeneration evaluation of lithium-ion battery
NASA Astrophysics Data System (ADS)
Li, Bei; Li, Xiaopeng
2017-07-01
Some characteristic parameters were epurated in this paper by analyzing internal and external factors of the degradation degree of lithium-ion battery. These characteristic parameters include open circuit voltage (OCV), state of charge (SOC) and ambient temperature. The degradation degree was evaluated by discrete degree of the array, which is composed of the above parameters. The epurated parameters were verified through adaptive neuro-fuzzy inference system (ANFIS) model building. The expression of degradation coefficient was finally determined. The simulation results show that the expression is reasonable and precise to describe the degradation degree.
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1990-01-01
A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Shoemaker, W. Barclay; Cunningham, Kevin J.; Kuniansky, Eve L.; Dixon, Joann F.
2008-01-01
A conduit flow process (CFP) for the Modular Finite Difference Ground‐Water Flow model, MODFLOW‐2005, has been created by the U.S. Geological Survey. An application of the CFP on a carbonate aquifer in southern Florida is described; this application examines (1) the potential for turbulent groundwater flow and (2) the effects of turbulent flow on hydraulic heads and parameter sensitivities. Turbulent flow components were spatially extensive in preferential groundwater flow layers, with horizontal hydraulic conductivities of about 5,000,000 m d−1, mean void diameters equal to about 3.5 cm, groundwater temperature equal to about 25°C, and critical Reynolds numbers less than or equal to 400. Turbulence either increased or decreased simulated heads from their laminar elevations. Specifically, head differences from laminar elevations ranged from about −18 to +27 cm and were explained by the magnitude of net flow to the finite difference model cell. Turbulence also affected the sensitivities of model parameters. Specifically, the composite‐scaled sensitivities of horizontal hydraulic conductivities decreased by as much as 70% when turbulence was essentially removed. These hydraulic head and sensitivity differences due to turbulent groundwater flow highlight potential errors in models based on the equivalent porous media assumption, which assumes laminar flow in uniformly distributed void spaces.
Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse
2012-05-01
Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Godoy, Juliana; Silverio, Kelly; Brasolotto, Alcione
2018-05-21
The aim of this study was to verify the effects of the method Vocal Therapy for the Elderly and the differences in treatment efficacy when it was administered intensively or in the conventional way. Twenty-seven elderly individuals were randomized into two groups and referred for 16 sessions of vocal therapy. The Intensive Group (IG) had therapy four times a week, whereas the Conventional Group had it twice a week. The effects of the therapy were assessed by auditory-perceptual analysis, the Voice-Related Quality of Life protocol, and visual-perceptive analysis of laryngoscopy examinations. The first stage consisted of evaluating the vocal quality and self-assessment of 15 subjects before and after a time period equal to that which they would undergo in vocal therapy. The second stage consisted of comparing the assessments of all participants in the week preceding the beginning of treatment, in the week following the end of treatment, and 1 month after that. There was no difference between perceptual voice parameters and self-assessment when the subjects were not undergoing therapy. When comparing the periods immediately before and after therapy, there was improvement in vocal quality and Voice-Related Quality of Life. One month later, the benefits that had been revealed through the self-assessment protocol, and some of the improvements in vocal parameters were maintained. There was no difference between the IG and Conventional Group with the exception of vocal fold bowing, which decreased in the IG group. The Vocal Therapy for the Elderly program is effective for treating voice presbyphonia. An intensive approach may be superior with regard to vocal fold bowing. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Paoloni, Angela; Alunni, Sabrina; Pelliccia, Alessandro; Pecorelli, Ivan
2016-01-01
A simple and straightforward method for simultaneous determination of residues of 13 pesticides in honey samples (acrinathrin, bifenthrin, bromopropylate, cyhalothrin-lambda, cypermethrin, chlorfenvinphos, chlorpyrifos, coumaphos, deltamethrin, fluvalinate-tau, malathion, permethrin and tetradifon) from different pesticide classes has been developed and validated. The analytical method provides dissolution of honey in water and an extraction of pesticide residues by n-Hexane followed by clean-up on a Florisil SPE column. The extract was evaporated and taken up by a solution of an injection internal standard (I-IS), ethion, and finally analyzed by capillary gas chromatography with electron capture detection (GC-µECD). Identification for qualitative purpose was conducted by gas chromatography with triple quadrupole mass spectrometer (GC-MS/MS). A matrix-matched calibration curve was performed for quantitative purposes by plotting the area ratio (analyte/I-IS) against concentration using a GC-µECD instrument. According to document No. SANCO/12571/2013, the method was validated by testing the following parameters: linearity, matrix effect, specificity, precision, trueness (bias) and measurement uncertainty. The analytical process was validated analyzing blank honey samples spiked at levels equal to and greater than 0.010 mg/kg (limit of quantification). All parameters were satisfactorily compared with the values established by document No. SANCO/12571/2013. The analytical performance was verified by participating in eight multi-residue proficiency tests organized by BIPEA, obtaining satisfactory z-scores in all 70 determinations. Measurement uncertainty was estimated according to the top-down approaches described in Appendix C of the SANCO document using the within-laboratory reproducibility relative standard deviation combined with laboratory bias using the proficiency test data.
NASA Astrophysics Data System (ADS)
Liu, Honggang; Zheng, Wenchen
2018-01-01
Electron paramagnetic resonance (EPR) is an important tool to study the complex interactions (e.g., exchange and magnetic dipole-dipole interactions) for a pair of lanthanide (Ln) ions in crystals. How to analyze these EPR spectra and obtain the strength of each interaction is a challenge for experimentalists. In this work, a general way of calculating the EPR lines for two magnetically equivalent Ln ions is given by us to solve this problem. In order to explain their EPR spectra and obtain exchange interaction parameters Ji (i = x, y, z) between them, we deduce the analytic formulas for computing the angular dependent EPR lines for such Ln pairs under the condition of weak coupling (|Ji| ≪ hv, where v is the microwave frequency in the EPR experiment) and set up the spin-Hamiltonian energy matrix that should be diagonalized to obtain these lines if intermediate (|Ji| ˜ hv) and strong (|Ji| > hv) couplings are encountered. To verify our method, the experimental EPR spectra for the Yb3+ doped BaY2F8 crystal are considered by us and the EPR lines from the isolated Yb3+ ion and Yb3+-Yb3+ pair with distance R equal to 0.371 nm are identified clearly. Moreover, exchange interaction parameters (Jx ≈ -0.04 cm-1, Jy ≈ -0.24 cm-1, and Jz ≈ -0.1 cm-1) for such a pair are also determined by our calculations. This case study demonstrates that the theoretical method given in this work would be useful and could be applied to understand interactions between Ln ions in crystals.
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.
1982-01-01
A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.
1996-01-01
multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX
Feature Extraction for Pose Estimation. A Comparison Between Synthetic and Real IR Imagery
1991-12-01
determine the orientation of the sensor relative to the target ....... ........................ 33 4. Effects of changing sensor and target parameters...Reference object is a T-62 tank facing the viewer (sensor/target parameters set equal to zero). NOTE: Changing the target parameters produces...anomalous results. For these images, the field of view (FOV) was not changed .......................... 35 5. Image anomalies from changing the target
Vařeková, Radka Svobodová; Jiroušková, Zuzana; Vaněk, Jakub; Suchomel, Šimon; Koča, Jaroslav
2007-01-01
The Electronegativity Equalization Method (EEM) is a fast approach for charge calculation. A challenging part of the EEM is the parameterization, which is performed using ab initio charges obtained for a set of molecules. The goal of our work was to perform the EEM parameterization for selected sets of organic, organohalogen and organometal molecules. We have performed the most robust parameterization published so far. The EEM parameterization was based on 12 training sets selected from a database of predicted 3D structures (NCI DIS) and from a database of crystallographic structures (CSD). Each set contained from 2000 to 6000 molecules. We have shown that the number of molecules in the training set is very important for quality of the parameters. We have improved EEM parameters (STO-3G MPA charges) for elements that were already parameterized, specifically: C, O, N, H, S, F and Cl. The new parameters provide more accurate charges than those published previously. We have also developed new parameters for elements that were not parameterized yet, specifically for Br, I, Fe and Zn. We have also performed crossover validation of all obtained parameters using all training sets that included relevant elements and confirmed that calculated parameters provide accurate charges.
NASA Technical Reports Server (NTRS)
Rowlands, D. D.; Luthcke, S. B.; McCarthy J. J.; Klosko, S. M.; Chinn, D. S.; Lemoine, F. G.; Boy, J.-P.; Sabaka, T. J.
2010-01-01
The differences between mass concentration (mas con) parameters and standard Stokes coefficient parameters in the recovery of gravity infonnation from gravity recovery and climate experiment (GRACE) intersatellite K-band range rate data are investigated. First, mascons are decomposed into their Stokes coefficient representations to gauge the range of solutions available using each of the two types of parameters. Next, a direct comparison is made between two time series of unconstrained gravity solutions, one based on a set of global equal area mascon parameters (equivalent to 4deg x 4deg at the equator), and the other based on standard Stokes coefficients with each time series using the same fundamental processing of the GRACE tracking data. It is shown that in unconstrained solutions, the type of gravity parameter being estimated does not qualitatively affect the estimated gravity field. It is also shown that many of the differences in mass flux derivations from GRACE gravity solutions arise from the type of smoothing being used and that the type of smoothing that can be embedded in mas con solutions has distinct advantages over postsolution smoothing. Finally, a 1 year time series based on global 2deg equal area mascons estimated every 10 days is presented.
1982-11-01
algorithm for turning-region boundary value problem -70- d. Program control parameters: ALPHA (Qq) max’ maximum value of Qq in present coding. BETA, BLOSS...Parameters available for either system descrip- tion or program control . (These parameters are currently unused, so they are set equal to zero.) IGUESS...Parameter that controls the initial choices of first-shoot values along y = 0. IGUESS = 1: Discretized versions of P(r, 0), T(r, 0), and u(r, 0) must
Enraf Series 854 advanced technology gauge (ATG) acceptance test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, J.H.
1996-09-11
This Acceptance Test Procedure was written to test the Enraf Series 854 Advanced Technology Gauge (ATG) prior to installation in the Tank Farms. The procedure sets various parameters and verifies that the gauge is functional.
Numerical simulation on behaviour of timber-concrete composite beams in fire
NASA Astrophysics Data System (ADS)
Du, Hao; Hu, Xiamin; Zhang, Bing; Minli, Yao
2017-08-01
This paper established sequentially coupled thermal-mechanical models of timber--concrete composite (TCC) beams by finite element software ANSYS to investigate the fire resistance of TCC beam. Existing experimental results were used to verify the coupled thermal-mechanical model. The influencing parameters consisted of the width of timber beam, the thickness of the concrete slab and the timber board. Based on the numerical results, the effects of these parameters on fire resistance of TCC beams were investigated in detail. The results showed that modeling results agreed well with test results, and verified the reliability of the finite element model. The width of the timber beam had a significant influence on the fire resistance of TCC beams. The fire resistance of TCC beams would be enhanced by increasing the width of timber beam, the thickness of concrete slab and the timber board.
[Quality assurance of the renal applications software].
del Real Núñez, R; Contreras Puertas, P I; Moreno Ortega, E; Mena Bares, L M; Maza Muret, F R; Latre Romero, J M
2007-01-01
The need for quality assurance of all technical aspects of nuclear medicine studies is widely recognised. However, little attention has been paid to the quality assurance of the applications software. Our work reported here aims at verifying the analysis software for processing of renal nuclear medicine studies (renograms). The software tools were used to build a synthetic dynamic model of renal system. The model consists of two phases: perfusion and function. The organs of interest (kidneys, bladder and aortic artery) were simple geometric forms. The uptake of the renal structures was described by mathematic functions. Curves corresponding to normal or pathological conditions were simulated for kidneys, bladder and aortic artery by appropriate selection of parameters. There was no difference between the parameters of the mathematic curves and the quantitative data produced by the renal analysis program. Our test procedure is simple to apply, reliable, reproducible and rapid to verify the renal applications software.
Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gyrometer
Sun, Bing; Wang, Yang; Banda, Jacob
2014-01-01
Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer, and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed for gait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects. PMID:25222034
Hirsh, C Elizabeth; Kornrich, Sabino
2008-03-01
This article explores the organizational conditions under which discrimination charges occur. Drawing on structural and organizational theories of the workplace, the authors demonstrate how organizational conditions affect workers' and regulatory agents' understandings of unlawful discrimination. Using a national sample of work establishments, matched to discrimination-charge data obtained from the Equal Employment Opportunity Commission (EEOC), the authors examine how characteristics of the workplace and institutional environment affect variation in the incidence of workers' charges of sex and race discrimination and in the subset of discrimination claims that are verified by EEOC investigators. The findings indicate that workplace conditions, including size, composition, and minority management, affect workers' charges as well as verified claims; the latter are also affected by institutional factors, such as affirmative action requirements, subsidiary status, and industrial sector. These results suggest that internal workplace conditions affect both workers' and regulatory agents' interpretations of potentially discriminatory experiences, while institutional conditions matter only for regulatory agents' interpretations of those events.
Using Least Squares to Solve Systems of Equations
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2016-01-01
The method of least squares (LS) yields exact solutions for the adjustable parameters when the number of data values n equals the number of parameters "p". This holds also when the fit model consists of "m" different equations and "m = p", which means that LS algorithms can be used to obtain solutions to systems of…
USDA-ARS?s Scientific Manuscript database
This study was conducted to evaluate the inclusion of Mexican oregano oil (MOO) Lippia berlandieri Schauer in broiler diets during grow-out on performance, blood parameters, and meat yield. One hundred and sixty-two one-day-old broilers, randomly divided into three equal groups (treatments): CON =...
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1996-07-01
This paper presents a generalized image contrast enhancement technique, which equalizes the perceived brightness distribution based on the Heinemann contrast discrimination model. It is based on the mathematically proven existence of a unique solution to a nonlinear equation, and is formulated with easily tunable parameters. The model uses a two-step log-log representation of luminance contrast between targets and surround in a luminous background setting. The algorithm consists of two nonlinear gray scale mapping functions that have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of the gray-level distribution of the given image, and can be uniquely determined once the previous three are set. Tests have been carried out to demonstrate the effectiveness of the algorithm for increasing the overall contrast of radiology images. The traditional histogram equalization can be reinterpreted as an image enhancement technique based on the knowledge of human contrast perception. In fact, it is a special case of the proposed algorithm.
Finite density two color chiral perturbation theory revisited
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo
2018-06-01
We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.
The Diagnostics of the External Plasma for the Plasma Rocket
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1997-01-01
The plasma rocket is located at NASA Johnson Space Center. To produce a thrust in space. an inert gas is ionized into a plasma and heated in the linear section of a tokamak fusion device to 1 x 10(exp 4) - 1.16 x 10(exp 6)K(p= 10(exp 10) - 10(exp 14)/cu cm ). The magnetic field used to contain the plasma has a magnitude of 2 - 10k Gauss. The plasma plume has a variable thrust and specific impulse. A high temperature retarding potential analyzer (RPA) is being developed to characterize the plasma in the plume and at the edge of the magnetically contained plasma. The RPA measures the energy and density of ions or electrons entering into its solid angle of collection. An oscilloscope displays the ion flux versus the collected current. All measurements are made relative to the facility ground. A RPA is being developed in a process which involves the investigation of several prototypes. The first prototype has been tested on a thermal plasma. The knowledge gained from its development and testing were applied to the development of a RPA for collimated plasma. The prototypes consist of four equally spaced grids and an ion collector. The outermost grid is a ground. The second grid acts as a bias to repel electrons. The third is a variable v voltage ion suppressor. Grid four (inner grid) acts to repel secondary electrons, being biased equal to the first. Knowledge gained during these two stages are being applied to the development of a high temperature RPA Testing of this device involves the determination of its output parameters. sensitivity, and responses to a wide range of energies and densities. Each grid will be tested individually by changing only its voltage and observing the output from the RPA. To verify that the RPA is providing proper output. it is compared to the output from a Langmuir or Faraday probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.R.; Ahrens, J.S.; Lowe, D.L.
Throughout the years, Sandia National Laboratories (SNL) has performed various laboratory evaluations of entry control devices, including biometric identity verifiers. The reports which resulted from this testing have been very well received by the physical security community. This same community now requires equally informative field study data. To meet this need we have conducted a field study in an effort to develop the tools and methods which our customers can use to translate laboratory data into operational field performance. The field testing described in this report was based on the Recognition Systems Inc.`s (RSI) model ID3D HandKey biometric verifier. Thismore » device was selected because it is referenced in DOE documents such as the Guide for Implementation of the DOE Standard Badge and is the de facto biometric standard for the DOE. The ID3D HandKey is currently being used at several DOE sites such as Hanford, Rocky Flats, Pantex, Savannah River, and Idaho Nuclear Engineering Laboratory. The ID3D HandKey was laboratory tested at SNL. It performed very well during this test, exhibiting an equal error point of 0.2 percent. The goals of the field test were to identify operational characteristics and design guidelines to help system engineers translate laboratory data into field performance. A secondary goal was to develop tools which could be used by others to evaluate system effectiveness or improve the performance of their systems. Operational characteristics were determined by installing a working system and studying its operation over a five month period. Throughout this test we developed tools which could be used by others to similarly gauge system effectiveness.« less
NASA Astrophysics Data System (ADS)
Xia, Li; Li, Xuhui; Chen, Xiangfei; Xie, Shizhong
2003-11-01
A novel fiber grating structure is proposed for the purpose of dispersion compensation. This kind of grating can be produced with a large chirp parameter and period sampled distribution along the grating length. There are multiple channels in the wide bandwidth and each channel has totally different dispersion and bandwidth. The dispersion compensation effect of this special designed grating is verified through system simulation.
The New Absolute Parameters of OU Gem - The Star of BY Dra Type
NASA Astrophysics Data System (ADS)
Mishenina, T. V.; Glazunova, L. V.; Soubiran, C.; Kovtyukh, V. V.
2010-12-01
The spectra of OU Gem were obtained with the fiber-fed echelle spectrograph SOPHIE at the 1.93-m telescope of the Observatoire de Haute- Provence (France). The temperatures of components of the system were defined and are equal to 5013 ± 15 K and 4486±50 K for primary (A) and secondary (B) components, accordingly. The rotation velocity of components are measured: for primary component it is equal to 5.1±1 km/s and 6.2 ± km/s for the secondary one. The definition of radial velocities of components by LSD profile method and redetermination of spectral orbital elements were carried out. New absolute parameters of components were obtained too.
On the structure of existence regions for sinks of the Hénon map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galias, Zbigniew, E-mail: galias@agh.edu.pl; Tucker, Warwick, E-mail: warwick@math.uu.se
2014-03-15
An extensive search for stable periodic orbits (sinks) for the Hénon map in a small neighborhood of the classical parameter values is carried out. Several parameter values which generate a sink are found and verified by rigorous numerical computations. Each found parameter value is extended to a larger region of existence using a simplex continuation method. The structure of these regions of existence is investigated. This study shows that for the Hénon map, there exist sinks close to the classical case.
Quantum 1/f Noise in Solid State Devices in Particular Hg(1-x)Cd(x)Te N(+)-P Diodes
1989-05-15
1 / f noise in pentodes. 3. A. van der Ziel, P. H. Handel, X. C. Zhu, and K. H. Duh, "A theory of the Hooge parameters of solid-state...the progress reports 12. P. H. Hardel and A. van der Ziel, "Relativistic correction of the Hooge parameter for Umklapp 1 / f noise ," Physica, vol. 141B... Hooge parameter and of fundamental 1 / f noise sources. As a side result many quantum 1 / f noise formulas are verified
Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test.
Munir, Mohammad
2018-06-01
Generalized sensitivity functions characterize the sensitivity of the parameter estimates with respect to the nominal parameters. We observe from the generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test that the measurements of insulin, 62 min after the administration of the glucose bolus into the experimental subject's body, possess no information about the parameter estimates. The glucose measurements possess the information about the parameter estimates up to three hours. These observations have been verified by the parameter estimation of the minimal model. The standard errors of the estimates and crude Monte Carlo process also confirm this observation. Copyright © 2018 Elsevier Inc. All rights reserved.
Flight motor set 360L006 (STS-34). Volume 1: System overview
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
Flight motor set 360L006 was launched at approximately 11:54 a.m. Central Daylight Time (CDT) on 18 October 1989 as part of NASA space shuttle mission STS-34. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. All ballistic contract end item (CEI) specification parameters were verified with the exceptions of ignition interval and rise rates. Ignition interval and rise rates could not be verified due to the elimination of developmental flight instrumentation from fourth flight and subsequent, but the low sample rate data that were available showed nominal propulsion performance. All ballistic and mass property parameters closely matched the predicted values and were well within the required CEI specification levels that could be assessed, with the exception of the RH-motor vacuum-delivered specific impulse. It exceeds the upper-limit CEI specification due to a bias imposed on the raw data by the OPT/Taber gage measurement differences. Evaluation of the ground environment instrumentation measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria thermal violations occurred. Postflight inspection again verified superior performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated both nozzles performed as expected during flight, although splashdown loads tore the left-hand, 45-deg actuator bracket from the nozzle. All combustion gas was contained by insulation in the field and nozzle-to-case joints. Recommendations were made concerning improved thermal modeling and measurements. The rationale for these recommendations, the disposition of all anomalies, and complete result details are contained.
NASA Astrophysics Data System (ADS)
Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao
2018-06-01
This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.
Special cascade LMS equalization scheme suitable for 60-GHz RoF transmission system.
Liu, Siming; Shen, Guansheng; Kou, Yanbin; Tian, Huiping
2016-05-16
We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10-3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10-3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively.
NASA Astrophysics Data System (ADS)
Frazer, Gordon J.; Anderson, Stuart J.
1997-10-01
The radar returns from some classes of time-varying point targets can be represented by the discrete-time signal plus noise model: xt equals st plus [vt plus (eta) t] equals (summation)i equals o P minus 1 Aiej2(pi f(i)/f(s)t) plus vt plus (eta) t, t (epsilon) 0, . . ., N minus 1, fi equals kfI plus fo where the received signal xt corresponds to the radar return from the target of interest from one azimuth-range cell. The signal has an unknown number of components, P, unknown complex amplitudes Ai and frequencies fi. The frequency parameters fo and fI are unknown, although constrained such that fo less than fI/2 and parameter k (epsilon) {minus u, . . ., minus 2, minus 1, 0, 1, 2, . . ., v} is constrained such that the component frequencies fi are bound by (minus fs/2, fs/2). The noise term vt, is typically colored, and represents clutter, interference and various noise sources. It is unknown, except that (summation)tvt2 less than infinity; in general, vt is not well modelled as an auto-regressive process of known order. The additional noise term (eta) t represents time-invariant point targets in the same azimuth-range cell. An important characteristic of the target is the unknown parameter, fI, representing the frequency interval between harmonic lines. It is desired to determine an estimate of fI from N samples of xt. We propose an algorithm to estimate fI based on Thomson's harmonic line F-Test, which is part of the multi-window spectrum estimation method and demonstrate the proposed estimator applied to target echo time series collected using an experimental HF skywave radar.
A new approach to the extraction of single exponential diode model parameters
NASA Astrophysics Data System (ADS)
Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.
2018-06-01
A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.
Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee
2016-06-01
Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.
Geometric Mechanics for Continuous Swimmers on Granular Material
NASA Astrophysics Data System (ADS)
Dai, Jin; Faraji, Hossein; Schiebel, Perrin; Gong, Chaohui; Travers, Matthew; Hatton, Ross; Goldman, Daniel; Choset, Howie; Biorobotics Lab Collaboration; LaboratoryRobotics; Applied Mechanics (LRAM) Collaboration; Complex Rheology; Biomechanics Lab Collaboration
Animal experiments have shown that Chionactis occipitalis(N =10) effectively undulating on granular substrates exhibits a particular set of waveforms which can be approximated by a sinusoidal variation in curvature, i.e., a serpenoid wave. Furthermore, all snakes tested used a narrow subset of all available waveform parameters, measured as the relative curvature equal to 5.0+/-0.3, and number of waves on the body equal to1.8+/-0.1. We hypothesize that the serpenoid wave of a particular choice of parameters offers distinct benefit for locomotion on granular material. To test this hypothesis, we used a physical model (snake robot) to empirically explore the space of serpenoid motions, which is linearly spanned with two independent continuous serpenoid basis functions. The empirically derived height function map, which is a geometric mechanics tool for analyzing movements of cyclic gaits, showed that displacement per gait cycle increases with amplitude at small amplitudes, but reaches a peak value of 0.55 body-lengths at relative curvature equal to 6.0. This work signifies that with shape basis functions, geometric mechanics tools can be extended for continuous swimmers.
Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models
ERIC Educational Resources Information Center
Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai
2011-01-01
Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…
The quantum measurement of time
NASA Technical Reports Server (NTRS)
Shepard, Scott R.
1994-01-01
Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a parameter, rather than an observable quantity like space. In relativistic Quantum Field Theory, space and time are treated equally by reducing space to also be a parameter. Herein, after a brief review of other measurements, we describe a third possibility, which is to treat time as a directly observable quantity.
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji
A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
NASA Astrophysics Data System (ADS)
Yang, Fanlin; Zhao, Chunxia; Zhang, Kai; Feng, Chengkai; Ma, Yue
2017-07-01
Acoustic seafloor classification with multibeam backscatter measurements is an attractive approach for mapping seafloor properties over a large area. However, artifacts in the multibeam backscatter measurements prevent accurate characterization of the seafloor. In particular, the backscatter level is extremely strong and highly variable in the near-nadir region due to the specular echo phenomenon. Consequently, striped artifacts emerge in the backscatter image, which can degrade the classification accuracy. This study focuses on the striped artifacts in multibeam backscatter images. To this end, a calibration algorithm based on equal mean-variance fitting is developed. By fitting the local shape of the angular response curve, the striped artifacts are compressed and moved according to the relations between the mean and variance in the near-nadir and off-nadir region. The algorithm utilized the measured data of near-nadir region and retained the basic shape of the response curve. The experimental results verify the high performance of the proposed method.
Adaptive Filter Design Using Type-2 Fuzzy Cerebellar Model Articulation Controller.
Lin, Chih-Min; Yang, Ming-Shu; Chao, Fei; Hu, Xiao-Min; Zhang, Jun
2016-10-01
This paper aims to propose an efficient network and applies it as an adaptive filter for the signal processing problems. An adaptive filter is proposed using a novel interval type-2 fuzzy cerebellar model articulation controller (T2FCMAC). The T2FCMAC realizes an interval type-2 fuzzy logic system based on the structure of the CMAC. Due to the better ability of handling uncertainties, type-2 fuzzy sets can solve some complicated problems with outstanding effectiveness than type-1 fuzzy sets. In addition, the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so that the convergence of the filtering error can be guaranteed. In order to demonstrate the performance of the proposed adaptive T2FCMAC filter, it is tested in signal processing applications, including a nonlinear channel equalization system, a time-varying channel equalization system, and an adaptive noise cancellation system. The advantages of the proposed filter over the other adaptive filters are verified through simulations.
Self-consistent frequencies of the electron-photon system
NASA Astrophysics Data System (ADS)
Hawton, Margaret
1993-09-01
The Heisenberg equations describing the dynamics of coupled Fermion photon operators are solved self-consistently. Photon modes, for which ω~=kc, and particlelike Bohr modes with frequencies ωnI~=(En-EI)/ħ are both approximate solutions to the system of equations that results if the current density is the source in the operator Maxwell equations. Current fluctuations associated with the Bohr modes and required by a fluctuation-dissipation theorem are attributed to the point nature of the particle. The interaction energy is given by the Casimir-force-like expression ΔE=1/2ħtsum(ΔωnI+Δωkc) or by the expectation value of 1/2(qcphi-qp^.A^/mc+q2A2/mc2). It is verified that the equal-time momentum-density and vector-potential operators commute if the contributions of both the Bohr modes and vacuum fluctuations are included. Both electromagnetic and Bohr or radiation-reaction modes are found to contribute equally to spontaneous emission and to the Lamb shift.
Sodium Sulfur Technology Program Nastec
NASA Technical Reports Server (NTRS)
Highley, Bob; Somerville, W. Andrew
1992-01-01
The NaSTEC program focuses on developing currently available sodium sulfur cells for use in space applications and investigating the operational parameters of the cells. The specific goals of the program are to determine the operational parameters and verify safety limits of Na/S technology battery cells; test long term zero-g operation; and create a life test database. The program approach and ground and flight test objectives are described in textual and graphic form.
Effects of Space Missions on the Human Immune System: A Meta-Analysis
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Barger, L. K.; Baldini, F.; Huff, D.
1995-01-01
Future spaceflight will require travelers to spend ever-increasing periods of time in microgravity. Optimal functioning of the immune system is of paramount importance for the health and performance of these travelers. A meta-analysis statistical procedure was used to analyze immune system data from crew members in United States and Soviet space missions from 8.5 to 140 days duration between 1968 and 1985. Ten immunological parameters (immunoglobulins A, G, M, D, white blood cell (WBC) count, number of lymphocytes, percent total lymphocytes, percent B lymphocytes, percent T lymphocytes, and lymphocyte reactivity to mitogen) were investigated using multifactorial, repeated measure analysis of variance. With the preflight level set at 100, WBC count increased to 154 +/- 14% (mean +/- SE; p less than or equal to 0.05) immediately after flight; there was a decrease in lymphocyte count (83 +/- 4%; p less than or equal to 0.05) and percent of total lymphocytes (69 +/- 1%; p less than or equal to 0.05) immediately after flight, with reduction in RNA synthesis to phytohemagglutinin (PHA) to 51 +/- 21% (p less than or equal to 0.05) and DNA synthesis to PHA to 61 +/- 8% (p less than or equal to 0.05) at the first postflight measurement. Thus, some cellular immunological functions are decreased significantly following spaceflight. More data are needed on astronauts' age, aerobic power output, and parameters of their exercise training program to determine if these immune system responses are due solely to microgravity exposure or perhaps to some other aspect of spaceflight.
Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Deng, Dongmei; Guo, Qi
2011-10-01
The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.
The enhancement mechanism of thin plasma layer on antenna radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai
A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.
Generalized epidemic process on modular networks.
Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong
2014-05-01
Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.
Minimally doubled fermions at one loop
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Weber, Johannes; Wittig, Hartmut
2009-10-01
Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roedel, S.
1979-06-01
The purpose of the receptacle test program was to test various types of hermetically sealed electrical receptacles and to select one model as the spaceflight hardware item for SIG/Galileo thermoelectric generators. The design goal of the program was to qualify a hermetic seal integrity of less than or equal to 1 x 10/sup -9/ std cc He/sec -atm at 400/sup 0/F (204/sup 0/C) and verify a reliability of 0.95 at a 50% confidence level for a flight mission in excess of 7 years.
Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.
2006-01-01
Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Bettner, James L.
1990-01-01
The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.
Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Wang, Dien; Chen, Shih-Chi
2016-04-01
In this Letter, we present an ultrafast nonmechanical axial scanning method for two-photon excitation (TPE) microscopy based on binary holography using a digital micromirror device (DMD), achieving a scanning rate of 4.2 kHz, scanning range of ∼180 μm, and scanning resolution (minimum step size) of ∼270 nm. Axial scanning is achieved by projecting the femtosecond laser to a DMD programmed with binary holograms of spherical wavefronts of increasing/decreasing radii. To guide the scanner design, we have derived the parametric relationships between the DMD parameters (i.e., aperture and pixel size), and the axial scanning characteristics, including (1) maximum optical power, (2) minimum step size, and (3) scan range. To verify the results, the DMD scanner is integrated with a custom-built TPE microscope that operates at 60 frames per second. In the experiment, we scanned a pollen sample via both the DMD scanner and a precision z-stage. The results show the DMD scanner generates images of equal quality throughout the scanning range. The overall efficiency of the TPE system was measured to be ∼3%. With the high scanning rate, the DMD scanner may find important applications in random-access imaging or high-speed volumetric imaging that enables visualization of highly dynamic biological processes in 3D with submillisecond temporal resolution.
Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius
2012-01-01
Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries.
Deformation of compound shells under action of internal shock wave loading
NASA Astrophysics Data System (ADS)
Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin
2015-09-01
The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.
An enhancement to the NA4 gear vibration diagnostic parameter
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.
1994-01-01
A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, A.C.; Hardis, J.E.; Southworth, S.H.
1988-01-15
Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less
Mousa-Pasandi, Mohammad E; Plant, David V
2010-09-27
We report and investigate the feasibility of zero-overhead laser phase noise compensation (PNC) for long-haul coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission systems, using the decision-directed phase equalizer (DDPE). DDPE updates the equalization parameters on a symbol-by-symbol basis after an initial decision making stage and retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Subsequently, a second equalization is performed by using the estimated phase noise value which is followed by a final decision making stage. We numerically compare the performance of DDPE and the CO-OFDM conventional equalizer (CE) for different laser linewidth values after transmission over 2000 km of uncompensated single-mode fiber (SMF) at 40 Gb/s and investigate the effect of fiber nonlinearity and amplified spontaneous emission (ASE) noise on the received signal quality. Furthermore, we analytically analyze the complexity of DDPE versus CE in terms of the number of required complex multiplications per bit.
Can the electronegativity equalization method predict spectroscopic properties?
Verstraelen, T; Bultinck, P
2015-02-05
The electronegativity equalization method is classically used as a method allowing the fast generation of atomic charges using a set of calibrated parameters and provided knowledge of the molecular structure. Recently, it has started being used for the calculation of other reactivity descriptors and for the development of polarizable and reactive force fields. For such applications, it is of interest to know whether the method, through the inclusion of the molecular geometry in the Taylor expansion of the energy, would also allow sufficiently accurate predictions of spectroscopic data. In this work, relevant quantities for IR spectroscopy are considered, namely the dipole derivatives and the Cartesian Hessian. Despite careful calibration of parameters for this specific task, it is shown that the current models yield insufficiently accurate results. Copyright © 2013 Elsevier B.V. All rights reserved.
Slow-roll approximation in loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl
The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less
VizieR Online Data Catalog: Comparison of evolutionary tracks (Martins+, 2013)
NASA Astrophysics Data System (ADS)
Martins, F.; Palacios, A.
2013-11-01
Tables of evolutionary models for massive stars. The files m*_stol.dat correspond to models computed with the code STAREVOL. The files m*_mesa.dat correspond to models computed with the code MESA. For each code, models with initial masses equal to 7, 9, 15, 20, 25, 40 and 60M⊙ are provided. No rotation is included. The overshooting parameter f is equal to 0.01. The metallicity is solar. (14 data files).
A tight Cramér-Rao bound for joint parameter estimation with a pure two-mode squeezed probe
NASA Astrophysics Data System (ADS)
Bradshaw, Mark; Assad, Syed M.; Lam, Ping Koy
2017-08-01
We calculate the Holevo Cramér-Rao bound for estimation of the displacement experienced by one mode of an two-mode squeezed vacuum state with squeezing r and find that it is equal to 4 exp (- 2 r). This equals the sum of the mean squared error obtained from a dual homodyne measurement, indicating that the bound is tight and that the dual homodyne measurement is optimal.
Sams, J. I.; Witt, E. C.
1995-01-01
The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.
Posterior propriety for hierarchical models with log-likelihoods that have norm bounds
Michalak, Sarah E.; Morris, Carl N.
2015-07-17
Statisticians often use improper priors to express ignorance or to provide good frequency properties, requiring that posterior propriety be verified. Our paper addresses generalized linear mixed models, GLMMs, when Level I parameters have Normal distributions, with many commonly-used hyperpriors. It provides easy-to-verify sufficient posterior propriety conditions based on dimensions, matrix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since many familiar likelihoods have ENBs, which is often verifiable via log-concavity and MLE finiteness, our novel use of ENBs permits unification of posterior propriety results and posterior MGF/moment results for many useful Level I distributions, including those commonlymore » used with multilevel generalized linear models, e.g., GLMMs and hierarchical generalized linear models, HGLMs. Furthermore, those who need to verify existence of posterior distributions or of posterior MGFs/moments for a multilevel generalized linear model given a proper or improper multivariate F prior as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3 (GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, I.-G.; Yee, J. C.; Jung, Y. K.
The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, itmore » is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.« less
NASA Astrophysics Data System (ADS)
Shin, I.-G.; Udalski, A.; Yee, J. C.; Calchi Novati, S.; Han, C.; Skowron, J.; Mróz, P.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Albrow, M. D.; Gould, A.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, C.-U.; Lee, Y.; Park, B.-G.; Pogge, R. W.; KMTNet Group; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Shvartzvald, Y.; Spitzer Team
2017-11-01
The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.
Optimal critic learning for robot control in time-varying environments.
Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng
2015-10-01
In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.
Infrared thermal imaging figures of merit
NASA Technical Reports Server (NTRS)
Kaplan, Herbert
1989-01-01
Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.
SU-E-J-199: A Software Tool for Quality Assurance of Online Replanning with MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Ahunbay, E; Li, X
2015-06-15
Purpose: To develop a quality assurance software tool, ArtQA, capable of automatically checking radiation treatment plan parameters, verifying plan data transfer from treatment planning system (TPS) to record and verify (R&V) system, performing a secondary MU calculation considering the effect of magnetic field from MR-Linac, and verifying the delivery and plan consistency, for online replanning. Methods: ArtQA was developed by creating interfaces to TPS (e.g., Monaco, Elekta), R&V system (Mosaiq, Elekta), and secondary MU calculation system. The tool obtains plan parameters from the TPS via direct file reading, and retrieves plan data both transferred from TPS and recorded during themore » actual delivery in the R&V system database via open database connectivity and structured query language. By comparing beam/plan datasets in different systems, ArtQA detects and outputs discrepancies between TPS, R&V system and secondary MU calculation system, and delivery. To consider the effect of 1.5T transverse magnetic field from MR-Linac in the secondary MU calculation, a method based on modified Clarkson integration algorithm was developed and tested for a series of clinical situations. Results: ArtQA is capable of automatically checking plan integrity and logic consistency, detecting plan data transfer errors, performing secondary MU calculations with or without a transverse magnetic field, and verifying treatment delivery. The tool is efficient and effective for pre- and post-treatment QA checks of all available treatment parameters that may be impractical with the commonly-used visual inspection. Conclusion: The software tool ArtQA can be used for quick and automatic pre- and post-treatment QA check, eliminating human error associated with visual inspection. While this tool is developed for online replanning to be used on MR-Linac, where the QA needs to be performed rapidly as the patient is lying on the table waiting for the treatment, ArtQA can be used as a general QA tool in radiation oncology practice. This work is partially supported by Elekta Inc.« less
Automated survey of 8000 plan checks at eight facilities.
Halabi, Tarek; Lu, Hsiao-Ming; Bernard, Damian A; Chu, James C H; Kirk, Michael C; Hamilton, Russell J; Lei, Yu; Driewer, Joseph
2016-09-01
To identify policy and system related weaknesses in treatment planning and plan check work-flows. The authors' web deployed plan check automation solution, PlanCheck, which works with all major planning and record and verify systems (demonstrated here for mosaiq only), allows them to compute violation rates for a large number of plan checks across many facilities without requiring the manual data entry involved with incident filings. Workflows and failure modes are heavily influenced by the type of record and verify system used. Rather than tackle multiple record and verify systems at once, the authors restricted the present survey to mosaiq facilities. Violations were investigated by sending inquiries to physicists running the program. Frequent violations included inadequate tracking in the record and verify system of total and prescription doses. Infrequent violations included incorrect setting of patient orientation in the record and verify system. Peaks in the distribution, over facilities, of violation frequencies pointed to suboptimal policies at some of these facilities. Correspondence with physicists often revealed incomplete knowledge of settings at their facility necessary to perform thorough plan checks. The survey leads to the identification of specific and important policy and system deficiencies that include: suboptimal timing of initial plan checks, lack of communication or agreement on conventions surrounding prescription definitions, and lack of automation in the transfer of some parameters.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.
2015-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.
Unconditionally verifiable blind quantum computation
NASA Astrophysics Data System (ADS)
Fitzsimons, Joseph F.; Kashefi, Elham
2017-07-01
Blind quantum computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output, and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. We previously proposed [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science, Atlanta, 2009 (IEEE, Piscataway, 2009), p. 517] a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with additional functionality allowing blind computational basis measurements, which we use to construct another verifiable BQC protocol based on a different class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. This resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest-neighbor form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.
Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Wang, Likun; Qin, Lei
2018-06-01
A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigor'ev, A M
2011-05-31
The increase in the absorption of light by a semiconductor (when the light photon energy is somewhat smaller than the semiconductor bandgap or equals it) in the presence of a strong light wave (for which the semiconductor is transparent) has been investigated. The possibility of designing novel light detectors for measuring the energy parameters and spatial and temporal characteristics of high-power IR laser radiation is demonstrated. (measurement of laser radiation parameters)
Investigation of Oil Fluorescence as a Technique for the Remote Sensing of Oil Spills
DOT National Transportation Integrated Search
1971-06-01
The flexibility of remote sensing of oil spills by laser-excited oil fluorescence is investigated. The required parameters are fed into a physical model to predict signal and background levels; and the predictions are verified by field experiments. A...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Chris C.; Flaska, Marek; Pozzi, Sara A.
2016-08-14
Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrixmore » condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.« less
NASA Astrophysics Data System (ADS)
Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.
2016-08-01
Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.
Influence of Constraint in Parameter Space on Quantum Games
NASA Astrophysics Data System (ADS)
Zhao, Hai-Jun; Fang, Xi-Ming
2004-04-01
We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.
Modeling of magnitude distributions by the generalized truncated exponential distribution
NASA Astrophysics Data System (ADS)
Raschke, Mathias
2015-01-01
The probability distribution of the magnitude can be modeled by an exponential distribution according to the Gutenberg-Richter relation. Two alternatives are the truncated exponential distribution (TED) and the cutoff exponential distribution (CED). The TED is frequently used in seismic hazard analysis although it has a weak point: when two TEDs with equal parameters except the upper bound magnitude are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. We overcome it by the generalization of the abovementioned exponential distributions: the generalized truncated exponential distribution (GTED). Therein, identical exponential distributions are mixed by the probability distribution of the correct cutoff points. This distribution model is flexible in the vicinity of the upper bound magnitude and is equal to the exponential distribution for smaller magnitudes. Additionally, the exponential distributions TED and CED are special cases of the GTED. We discuss the possible ways of estimating its parameters and introduce the normalized spacing for this purpose. Furthermore, we present methods for geographic aggregation and differentiation of the GTED and demonstrate the potential and universality of our simple approach by applying it to empirical data. The considerable improvement by the GTED in contrast to the TED is indicated by a large difference between the corresponding values of the Akaike information criterion.
Study of Simple MPPT Converter Topologies for Grid Integration of Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Zakis, Janis; Vinnikov, Dmitri
2011-01-01
This paper presents a study of two simple MPPT converter topologies for grid integration of photovoltaic (PV) systems. A general description and a steady state analysis of the discussed converters are presented. Main operating modes of the converters are explained. Calculations of main circuit element parameters are provided. Experimental setups of the MPPT converters with the power of 800 W were developed and verified by means of main operation waveforms. Also, experimental and theoretical boost properties of the studied topologies are compared. Finally, the integration possibilities of the presented MPPT converters with a grid side inverter are discussed and verified by simulations.
ERIC Educational Resources Information Center
Hollingsworth, Holly H.
This study shows that the test statistic for Analysis of Covariance (ANCOVA) has a noncentral F-districution with noncentrality parameter equal to zero if and only if the regression planes are homogeneous and/or the vector of overall covariate means is the null vector. The effect of heterogeneous regression slope parameters is to either increase…
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data
NASA Technical Reports Server (NTRS)
Hess, R. A.
1986-01-01
A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.
Identification and management of filament-wound case stiffness parameters
NASA Technical Reports Server (NTRS)
Verderaime, V.; Rheinfurth, M.
1983-01-01
The high specific strength and the high specific modules made graphite epoxy laminate an expedient material substitute for the Shuttle Solid Rocket Motor steel case to substantially increase the payload performance without increasing the composite case axial growth during thrust build up which was constrained to minimize liftoff excitation effects on existing structural elements and interfaces. Parameters associated with axial growth were identified for quality and manufacturing controls. Included is an innovative method for experimentally verifying extensional elastic properties on a laminate pressurized test bottle.
Three-dimensional time domain model of lightning including corona effects
NASA Technical Reports Server (NTRS)
Podgorski, Andrew S.
1991-01-01
A new 3-D lightning model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain Lightning (TWTDL) Code developed previously. The TWTDL Code was verified during the 1985 and 1986 lightning seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the lightning current parameters and the associated electric field parameters.
40 CFR 80.92 - Baseline auditor requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Baseline auditor requirements. 80.92... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Anti-Dumping § 80.92 Baseline auditor requirements. (a... determination methodology, resulting baseline fuel parameter, volume and emissions values verified by an auditor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMITH, S.G.
1999-10-21
The following Acceptance Test Procedure was written to test the ENRAF series 854 ATG with SPU II card prior to installation in the Tank Farms. The procedure sets various parameters and verifies the gauge and alarms functionality.
40 CFR 85.2120 - Maintenance and submittal of records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... testing program, including all production part sampling techniques used to verify compliance of the... subsequent analyses of that data; (7) A description of all the methodology, analysis, testing and/or sampling techniques used to ascertain the emission critical parameter specifications of the originial equipment part...
DOT National Transportation Integrated Search
2014-09-01
The primary objectives of this research are to monitor the : short-term and long-term behavior and performance of inservice : GRS-IBS abutments in the state of Louisiana, and to : verify important design factors and parameters for GRS-IBS : abutment,...
Fabrication of photonic crystal microprisms based on artificial opals
NASA Astrophysics Data System (ADS)
Fenollosa, Roberto; Ibisate, Marta; Rubio, Silvia; Lopez, Ceferino; Meseguer, Francisco; Sanchez-Dehesa, Jose
2002-04-01
This paper reports a new method for faceting artificial opals based on micromanipulation techniques. By this means it was possible to fabricate an opal prism in a single domain with different faces: (111), (110) and (100), which were characterized by Scanning Electron Microscopy and Optical Reflectance Spectroscopy. Their spectra exhibit different characteristics depending on the orientation of the facet. While (111)-oriented face gives rise to a high Bragg reflection peak at about a/(lambda) equals 0.66 (where a is the lattice parameter), (110) and (100) faces show much less intense peaks corresponding to features in the band structure at a/(lambda) equals 1.12 and a/(lambda) equals 1.07 respectively. Peaks at higher energies have less obvious explanation.
Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong
2018-01-01
We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.
Pawelczyk, E; Marciniec, B; Matlak, B
1975-01-01
Thermal degradation of aqueous and buffered solutions of perazine, prochlorperazine, trifluoperazine, thioproperazine, thiethylperazine and butaperazine salts was examined by kinetic method using an accelerated testing of pharmaceutical preparations. The order, rate constants and activation parameters (Q100, E, delta H not equal to, delta S not equal to, delta G not equal to ) of the reaction given were discussed. The predicted stability of the examined derivatives was compared on the grounds of a calculated time t10% and K293 kappa. A dependence between the stability and kind of substituent in the C2 positions was discussed in terms of the Hammett equation.
An improved value of the lunar moment of inertia
NASA Technical Reports Server (NTRS)
Blackshear, W. T.; Gapcynski, J. P.
1977-01-01
The lunar gravitational research reported on by Gapcynski et al., (1975) has been extended to include an additional 600 days of the time variation of ascending node for the Explorer 49 spacecraft. Analysis of these additional data resulted in an improved value of the second-degree zonal harmonic coefficient C(20) = (-2.0219 equal to 0.0091) times 10 to the minus 4. This value of C(20) used in conjunction with the parameters beta equal to libration (631.27 + or - 0.03) times 10 to the minus 6 and gamma to (227.7 + or - 0.7) times 10 to the minus 6 yields a more accurate definition of the lunar moment of inertia ratio equal to 0.391 + or - 0.002.
NASA Technical Reports Server (NTRS)
Panontin, Tina L.; Sheppard, Sheri D.
1994-01-01
The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.
A new template matching method based on contour information
NASA Astrophysics Data System (ADS)
Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong
2014-11-01
Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.
Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization.
Manos, Thanos; Zeitler, Magteld; Tass, Peter A
2018-01-01
In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies.
Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization
Manos, Thanos; Zeitler, Magteld; Tass, Peter A.
2018-01-01
In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies. PMID:29706900
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Tang, Yeteng; Chen, Dalei
2016-08-10
We propose and experimentally demonstrate an optical stealth transmission system over a 200 GHz-grid wavelength-division multiplexing (WDM) network. The stealth signal is processed by spectral broadening, temporal spreading, and power equalizing. The public signal is suppressed by multiband notch filtering at the stealth channel receiver. The interaction between the public and stealth channels is investigated in terms of public-signal-to-stealth-signal ratio, data rate, notch-filter bandwidth, and public channel number. The stealth signal can transmit over 80 km single-mode fiber with no error. Our experimental results verify the feasibility of optical steganography used over the existing WDM-based optical network.
A time series model: First-order integer-valued autoregressive (INAR(1))
NASA Astrophysics Data System (ADS)
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my
This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.
A modal parameter extraction procedure applicable to linear time-invariant dynamic systems
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Craig, R. R., Jr.
1985-01-01
Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.
Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.
Zaitsev, M; Steinhoff, S; Shah, N J
2003-06-01
A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Analytical time-domain Green’s functions for power-law media
Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.
2008-01-01
Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774
Characterization of hot dense plasma with plasma parameters
NASA Astrophysics Data System (ADS)
Singh, Narendra; Goyal, Arun; Chaurasia, S.
2018-05-01
Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.
Artificial intelligence in process control: Knowledge base for the shuttle ECS model
NASA Technical Reports Server (NTRS)
Stiffler, A. Kent
1989-01-01
The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.
Advancing the Surveillance Capabilities of the Air Force’s Large-Aperature Telescopes
2014-03-06
frozen flow screens. Lastly, use of the FFM has the added benefit of requiring the estimation of significantly fewer parameters than a... FFM in the restoration process provides the decoding. This remains to be verified. Figure 14. Left: The mean diffraction-limited image for the
Voice Quality and Gender Stereotypes: A Study of Lebanese Women With Reinke's Edema.
Matar, Nayla; Portes, Cristel; Lancia, Leonardo; Legou, Thierry; Baider, Fabienne
2016-12-01
Women with Reinke's edema (RW) report being mistaken for men during telephone conversations. For this reason, their masculine-sounding voices are interesting for the study of gender stereotypes. The study's objective is to verify their complaint and to understand the cues used in gender identification. Using a self-evaluation study, we verified RW's perception of their own voices. We compared the acoustic parameters of vowels produced by 10 RW to those produced by 10 men and 10 women with healthy voices (hereafter referred to as NW) in Lebanese Arabic. We conducted a perception study for the evaluation of RW, healthy men's, and NW voices by naïve listeners. RW self-evaluated their voices as masculine and their gender identities as feminine. The acoustic parameters that distinguish RW from NW voices concern fundamental frequency, spectral slope, harmonicity of the voicing signal, and complexity of the spectral envelope. Naïve listeners very often rate RW as surely masculine. Listeners may rate RW's gender incorrectly. These incorrect gender ratings are correlated with acoustic measures of fundamental frequency and voice quality. Further investigations will reveal the contribution of each of these parameters to gender perception and guide the treatment plan of patients complaining of a gender ambiguous voice.
A neural network based methodology to predict site-specific spectral acceleration values
NASA Astrophysics Data System (ADS)
Kamatchi, P.; Rajasankar, J.; Ramana, G. V.; Nagpal, A. K.
2010-12-01
A general neural network based methodology that has the potential to replace the computationally-intensive site-specific seismic analysis of structures is proposed in this paper. The basic framework of the methodology consists of a feed forward back propagation neural network algorithm with one hidden layer to represent the seismic potential of a region and soil amplification effects. The methodology is implemented and verified with parameters corresponding to Delhi city in India. For this purpose, strong ground motions are generated at bedrock level for a chosen site in Delhi due to earthquakes considered to originate from the central seismic gap of the Himalayan belt using necessary geological as well as geotechnical data. Surface level ground motions and corresponding site-specific response spectra are obtained by using a one-dimensional equivalent linear wave propagation model. Spectral acceleration values are considered as a target parameter to verify the performance of the methodology. Numerical studies carried out to validate the proposed methodology show that the errors in predicted spectral acceleration values are within acceptable limits for design purposes. The methodology is general in the sense that it can be applied to other seismically vulnerable regions and also can be updated by including more parameters depending on the state-of-the-art in the subject.
Parameter identification of material constants in a composite shell structure
NASA Technical Reports Server (NTRS)
Martinez, David R.; Carne, Thomas G.
1988-01-01
One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.
VizieR Online Data Catalog: Activity cycles in 3203 Kepler stars (Reinhold+, 2017)
NASA Astrophysics Data System (ADS)
Reinhold, T.; Cameron, R. H.; Gizon, L.
2017-05-01
Rvar time series, sine fit parameters, mean rotation periods, and false alarm probabilities of all 3203 Kepler stars are presented. For simplicity, the KIC number and the fit parameters of a certain star are repeated in each line. The fit function to the Rvar(t) time series equals y_fit=Acyc*sin(2*pi/(Pcyc*365)*(t-t0))+Offset. (2 data files).
A technique for automatically extracting useful field of view and central field of view images.
Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar
2016-01-01
It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints.
Optimal hemodynamic response model for functional near-infrared spectroscopy
Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668
Optimal hemodynamic response model for functional near-infrared spectroscopy.
Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).
NASA Astrophysics Data System (ADS)
Yu, Wenwu; Cao, Jinde
2007-09-01
Parameter identification of dynamical systems from time series has received increasing interest due to its wide applications in secure communication, pattern recognition, neural networks, and so on. Given the driving system, parameters can be estimated from the time series by using an adaptive control algorithm. Recently, it has been reported that for some stable systems, in which parameters are difficult to be identified [Li et al., Phys Lett. A 333, 269-270 (2004); Remark 5 in Yu and Cao, Physica A 375, 467-482 (2007); and Li et al., Chaos 17, 038101 (2007)], and in this paper, a brief discussion about whether parameters can be identified from time series is investigated. From some detailed analyses, the problem of why parameters of stable systems can be hardly estimated is discussed. Some interesting examples are drawn to verify the proposed analysis.
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-09-01
Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
Spoof Surface Plasmon Polaritons Power Divider with large Isolation.
Zhou, Shiyan; Lin, Jing-Yu; Wong, Sai-Wai; Deng, Fei; Zhu, Lei; Yang, Yang; He, Yejun; Tu, Zhi-Hong
2018-04-13
Periodic corrugated metal structure is designed to support and propagate spoof surface plasmon polaritons (SSPPs) wave in the microwave frequencies. In this paper, firstly a plasmonic waveguide consisting of oval-ring shaped cells is proposed with the performance of high transmission efficiency in a wide frequency range. The coplanar waveguides (CPWs) with 50 Ω impedance are adopted to feed the energies or extract signals at both ends of the plasmonic waveguide. Then a well-isolated power divider is constructed based on the SSPPs waveguides aiming to equally split the energy of the SSPPs wave into two equal parts. The stepped-impedances are co-designed with the three input/output ports of the power divider to achieve the impedance-matching between the SSPPs waveguides and the coplanar waveguides. Besides, a single resistor is placed in the middle of two symmetrical half oval-rings to realize the isolation between the two output ports over the spectrum of 4.5-7.5 GHz. Finally, both plasmonic waveguide and the power divider are fabricated and tested to verify the predicted characteristics.
NASA Astrophysics Data System (ADS)
Youn, Sung-Won; Suzuki, Kenta; Hiroshima, Hiroshi
2018-06-01
A software program for modifying a mold design to obtain a uniform residual layer thickness (RLT) distribution has been developed and its validity was verified by UV-nanoimprint lithography (UV-NIL) simulation. First, the effects of granularity (G) on both residual layer uniformity and filling characteristics were characterized. For a constant complementary pattern depth and a granularity that was sufficiently larger than the minimum pattern width, filling time decreased with the decrease in granularity. For a pattern design with a wide density range and an irregular distribution, the choice of a small granularity was not always a good strategy since the etching depth required for a complementary pattern occasionally exceptionally increased with the decrease in granularity. On basis of the results obtained, the automated method was applied to a chip-scale pattern modification. Simulation results showed a marked improvement in residual layer thickness uniformity for a capacity-equalized (CE) mold. For the given conditions, the standard deviation of RLT decreased in the range from 1/3 to 1/5 in accordance with pattern designs.
Linear monogamy of entanglement in three-qubit systems
NASA Astrophysics Data System (ADS)
Liu, Feng; Gao, Fei; Wen, Qiao-Yan
2015-11-01
For any three-qubit quantum systems ABC, Oliveira et al. numerically found that both the concurrence and the entanglement of formation (EoF) obey the linear monogamy relations in pure states. They also conjectured that the linear monogamy relations can be saturated when the focus qubit A is maximally entangled with the joint qubits BC. In this work, we prove analytically that both the concurrence and EoF obey linear monogamy relations in an arbitrary three-qubit state. Furthermore, we verify that all three-qubit pure states are maximally entangled in the bipartition A|BC when they saturate the linear monogamy relations. We also study the distribution of the concurrence and EoF. More specifically, when the amount of entanglement between A and B equals to that of A and C, we show that the sum of EoF itself saturates the linear monogamy relation, while the sum of the squared EoF is minimum. Different from EoF, the concurrence and the squared concurrence both saturate the linear monogamy relations when the entanglement between A and B equals to that of A and C.
Linear monogamy of entanglement in three-qubit systems.
Liu, Feng; Gao, Fei; Wen, Qiao-Yan
2015-11-16
For any three-qubit quantum systems ABC, Oliveira et al. numerically found that both the concurrence and the entanglement of formation (EoF) obey the linear monogamy relations in pure states. They also conjectured that the linear monogamy relations can be saturated when the focus qubit A is maximally entangled with the joint qubits BC. In this work, we prove analytically that both the concurrence and EoF obey linear monogamy relations in an arbitrary three-qubit state. Furthermore, we verify that all three-qubit pure states are maximally entangled in the bipartition A|BC when they saturate the linear monogamy relations. We also study the distribution of the concurrence and EoF. More specifically, when the amount of entanglement between A and B equals to that of A and C, we show that the sum of EoF itself saturates the linear monogamy relation, while the sum of the squared EoF is minimum. Different from EoF, the concurrence and the squared concurrence both saturate the linear monogamy relations when the entanglement between A and B equals to that of A and C.
Linear monogamy of entanglement in three-qubit systems
Liu, Feng; Gao, Fei; Wen, Qiao-Yan
2015-01-01
For any three-qubit quantum systems ABC, Oliveira et al. numerically found that both the concurrence and the entanglement of formation (EoF) obey the linear monogamy relations in pure states. They also conjectured that the linear monogamy relations can be saturated when the focus qubit A is maximally entangled with the joint qubits BC. In this work, we prove analytically that both the concurrence and EoF obey linear monogamy relations in an arbitrary three-qubit state. Furthermore, we verify that all three-qubit pure states are maximally entangled in the bipartition A|BC when they saturate the linear monogamy relations. We also study the distribution of the concurrence and EoF. More specifically, when the amount of entanglement between A and B equals to that of A and C, we show that the sum of EoF itself saturates the linear monogamy relation, while the sum of the squared EoF is minimum. Different from EoF, the concurrence and the squared concurrence both saturate the linear monogamy relations when the entanglement between A and B equals to that of A and C. PMID:26568265
The luminosity function of the CfA Redshift Survey
NASA Technical Reports Server (NTRS)
Marzke, R. O.; Huchra, J. P.; Geller, M. J.
1994-01-01
We use the CfA Reshift Survey of galaxies with m(sub z) less than or equal to 15.5 to calculate the galaxy luminosity function over the range -13 less than or equal to M(sub z) less than or equal to -22. The sample includes 9063 galaxies distributed over 2.1 sr. For galaxies with velocities cz greater or equal to 2500 km per sec, where the effects of peculiar velocities are small, the luminosity function is well represented by a Schechter function with parameters phi(sub star) = 0.04 +/- 0.01 per cu Mpc, M(sub star) = -18.8 +/- 0.3, and alpha = -1.0 +/- 0.2. When we include all galaxies with cz greater or equal to 500 km per sec, the number of galaxies in the range -16 less than or equal to M(sub z) less than or equal to -13 exceeds the extrapolation of the Schechter function by a factor of 3.1 +/- 0.5. This faint-end excess is not caused by the local peculiar velocity field but may be partially explained by small scale errors in the Zwicky magnitudes. Even with a scale error as large as 0.2 mag per mag, which is unlikely, the excess is still a factor of 1.8 +/- 0.3. If real, this excess affects the interpretation of deep counts of field galaxies.
Some heat transfer and hydrodynamic problems associated with superconducting cables (SPTL)
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Daney, D. E.; Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevckenko, O. A.
1978-01-01
To study some effects of thermogravitation on (CIIK-SPTL) systems, a heated tube experiment was set up at Krzhizhanovsky Power Engineering Institute Moscow, U.S.S.R. Heat transfer data were taken with fluid helium flowing through a 2.85 m, 19 mm diameter uniformly heated horizontal tube. Temperatures were measured on the top and bottom of the tube at six axial locations with three other circumferential measurements made at (X/L) =57. Typical temperature profiles show significant variations both axially and circumferentially. The data are grouped using reduced Nusselt number (NuR) and the bulk expansion parameter for each axial location. The average data for 0.26 less than or equal to X/L less than or equal to 0.76 follow a power law relation with the average expansion parameter. System instabilities are noted and discussed. Future work including heat transfer in coaxial cylinders is discussed.
Hampson, Lisa V; Fisch, Roland; Van, Linh M; Jaki, Thomas
2017-02-10
Extrapolating from information available on one patient group to support conclusions about another is common in clinical research. For example, the findings of clinical trials, often conducted in highly selective patient cohorts, are routinely extrapolated to wider populations by policy makers. Meanwhile, the results of adult trials may be used to support conclusions about the effects of a medicine in children. For example, if the effective concentration of a drug can be assumed to be similar in adults and children, an appropriate paediatric dosing rule may be found by 'bridging', that is, by matching the adult effective concentration. However, this strategy may result in children receiving an ineffective or hazardous dose if, in fact, effective concentrations differ between adults and children. When there is uncertainty about the equality of effective concentrations, some pharmacokinetic-pharmacodynamic data may be needed in children to verify that differences are small. In this paper, we derive optimal group sequential tests that can be used to verify this assumption efficiently. Asymmetric inner wedge tests are constructed that permit early stopping to accept or reject an assumption of similar effective drug concentrations in adults and children. Asymmetry arises because the consequences of under- and over-dosing may differ. We show how confidence intervals can be obtained on termination of these tests and illustrate the small sample operating characteristics of designs using simulation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
Chaves, J; Barroso, J M; Bultinck, P; Carbó-Dorca, R
2006-01-01
This study presents an alternative of the Electronegativity Equalization Method (EEM), where the usual Coulomb kernel has been transformed into a smooth function. The new framework, as the classical EEM, permits fast calculations of atomic charges in a given molecule for a small computational cost. The original EEM procedure needs to previously calibrate the different implied atomic hardness and electronegativity, using a chosen set of molecules. In the new EEM algorithm half the number of parameters needs to be calibrated, since a relationship between electronegativities and hardnesses has been found.
Robust stabilization of the Space Station in the presence of inertia matrix uncertainty
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang; Sunkel, John
1993-01-01
This paper presents a robust H-infinity full-state feedback control synthesis method for uncertain systems with D11 not equal to 0. The method is applied to the robust stabilization problem of the Space Station in the face of inertia matrix uncertainty. The control design objective is to find a robust controller that yields the largest stable hypercube in uncertain parameter space, while satisfying the nominal performance requirements. The significance of employing an uncertain plant model with D11 not equal 0 is demonstrated.
da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G
2016-07-08
Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.
Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.
NASA Astrophysics Data System (ADS)
Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats
2012-01-01
Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.
NASA Technical Reports Server (NTRS)
Yuan, Lu; LeBlanc, James
1998-01-01
This thesis investigates the effects of the High Power Amplifier (HPA) and the filters over a satellite or telemetry channel. The Volterra series expression is presented for the nonlinear channel with memory, and the algorithm is based on the finite-state machine model. A RAM-based algorithm operating on the receiver side, Pre-cursor Enhanced RAM-FSE Canceler (PERC) is developed. A high order modulation scheme , 16-QAM is used for simulation, the results show that PERC provides an efficient and reliable method to transmit data on the bandlimited nonlinear channel. The contribution of PERC algorithm is that it includes both pre-cursors and post-cursors as the RAM address lines, and suggests a new way to make decision on the pre-addresses. Compared with the RAM-DFE structure that only includes post- addresses, the BER versus Eb/NO performance of PERC is substantially enhanced. Experiments are performed for PERC algorithms with different parameters on AWGN channels, and the results are compared and analyzed. The investigation of this thesis includes software simulation and hardware verification. Hardware is setup to collect actual TWT data. Simulation on both the software-generated data and the real-world data are performed. Practical limitations are considered for the hardware collected data. Simulation results verified the reliability of the PERC algorithm. This work was conducted at NMSU in the Center for Space Telemetering and Telecommunications Systems in the Klipsch School of Electrical and Computer Engineering Department.
NASA Astrophysics Data System (ADS)
Zou, Zongxing; Tang, Huiming; Xiong, Chengren; Su, Aijun; Criss, Robert E.
2017-10-01
The Jiweishan rockslide of June 5, 2009 in China provides an important opportunity to elucidate the kinetic characteristics of high-speed, long-runout debris flows. A 2D discrete element model whose mechanical parameters were calibrated using basic field data was used to simulate the kinetic behavior of this catastrophic landslide. The model output shows that the Jiweishan debris flow lasted about 3 min, released a gravitational potential energy of about 6 × 10^13 J with collisions and friction dissipating approximately equal amounts of energy, and had a maximum fragment velocity of 60-70 m/s, almost twice the highest velocity of the overall slide mass (35 m/s). Notable simulated characteristics include the high velocity and energy of the slide material, the preservation of the original positional order of the slide blocks, the inverse vertical grading of blocks, and the downslope sorting of the slide deposits. Field observations that verify these features include uprooted trees in the frontal collision area of the air-blast wave, downslope reduction of average clast size, and undamaged plants atop huge blocks that prove their lack of downslope tumbling. The secondary acceleration effect and force chains derived from the numerical model help explain these deposit features and the long-distance transport. Our back-analyzed frictions of the motion path in the PFC model provide a reference for analyzing and predicting the motion of similar geological hazards.
Datsyuk, Vitaly V; Pavlyniuk, Oleg R
2017-12-01
The common definition of the spatially dispersive permittivity is revised. The response of the degenerate electron gas on an electric field satisfying the vector Helmholtz equation is found with a solution to the Boltzmann equation. The calculated longitudinal dielectric function coincides with that obtained by Klimontovich and Silin in 1952 and Lindhard in 1954. However, it depends on the square of the wavenumber, a parameter of the vector Helmholtz equation, but not the wave vector of a plane electromagnetic wave. This new concept simplifies simulation of the nonlocal effects, for example, with a generalized Lorents-Mie theory, since no Fourier transforms should be made. The Fresnel coefficients are generalized allowing for excitation of the longitudinal electromagnetic waves. To verify the theory, the extinction spectra for silver and gold nanometer-sized spheres are calculated. For these particles, the generalized Lorents-Mie theory gives the blue shift and broadening of the plasmon resonance which are in excellent agreement with experimental data. In addition, the nonlocal theory explains vanishing of the plasmon resonance observed for gold spheres with diameters less than or equal to 2 nm. The calculations using the Klimontovich-Silin-Lindhard and hydrodynamic dielectric functions for silver are found to give close results at photon energies from 3 to 4 eV. We show that the absolute values of the wavenumbers of the longitudinal waves in solids are much higher than those of the transverse waves.
NASA Astrophysics Data System (ADS)
Datsyuk, Vitaly V.; Pavlyniuk, Oleg R.
2017-08-01
The common definition of the spatially dispersive permittivity is revised. The response of the degenerate electron gas on an electric field satisfying the vector Helmholtz equation is found with a solution to the Boltzmann equation. The calculated longitudinal dielectric function coincides with that obtained by Klimontovich and Silin in 1952 and Lindhard in 1954. However, it depends on the square of the wavenumber, a parameter of the vector Helmholtz equation, but not the wave vector of a plane electromagnetic wave. This new concept simplifies simulation of the nonlocal effects, for example, with a generalized Lorents-Mie theory, since no Fourier transforms should be made. The Fresnel coefficients are generalized allowing for excitation of the longitudinal electromagnetic waves. To verify the theory, the extinction spectra for silver and gold nanometer-sized spheres are calculated. For these particles, the generalized Lorents-Mie theory gives the blue shift and broadening of the plasmon resonance which are in excellent agreement with experimental data. In addition, the nonlocal theory explains vanishing of the plasmon resonance observed for gold spheres with diameters less than or equal to 2 nm. The calculations using the Klimontovich-Silin-Lindhard and hydrodynamic dielectric functions for silver are found to give close results at photon energies from 3 to 4 eV. We show that the absolute values of the wavenumbers of the longitudinal waves in solids are much higher than those of the transverse waves.
Zajac, M
1977-01-01
General first-order rate constants for autoxidation of sulfadiazine, sulfamerazine, sulfadimidine, sulfaperine and sulfamethoxydiazine in the air oxygen atmosphere, in solutions of pH 4-7, at 403, 411 and 418 K were determined from the absorbance measurements in 0-1 mole/dm3 HCl at 243 or 333 nm, using the so-called "subtraction technique". The thermodynamic parameters of this reaction were determined (deltaHa, deltaH not equal to, deltaS not equal to, deltaG not equal to and logA). The effect of the substituents in positions 4, 5 and 6 of the pyrimidine ring on the rate of autoxidation was interpreted in terms of the Hammett equation.
Characteristics of plasma-puff trigger for a inverse-pinch plasma switch
NASA Technical Reports Server (NTRS)
Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.
The best-fit universe. [cosmological models
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1991-01-01
Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.
Meyer, Rüdiger; Freitag-Wolf, Sandra; Blindow, Silke; Büning, Jürgen; Habermann, Jens K
2017-02-01
Cancer risk assessment for ulcerative colitis patients by evaluating histological changes through colonoscopy surveillance is still challenging. Thus, additional parameters of high prognostic impact for the development of colitis-associated carcinoma are necessary. This meta-analysis was conducted to clarify the value of aneuploidy as predictor for individual cancer risk compared with current surveillance parameters. A systematic web-based search identified studies published in English that addressed the relevance of the ploidy status for individual cancer risk during surveillance in comparison to neoplastic mucosal changes. The resulting data were included into a meta-analysis, and odds ratios (OR) were calculated for aneuploidy or dysplasia or aneuploidy plus dysplasia. Twelve studies addressing the relevance of aneuploidy compared to dyplasia were comprehensively evaluated and further used for meta-analysis. The meta-analysis revealed that aneuploidy (OR 5.31 [95 % CI 2.03, 13.93]) is an equally effective parameter for cancer risk assessment in ulcerative colitis patients as dysplasia (OR 4.93 [1.61, 15.11]). Strikingly, the combined assessment of dysplasia and aneuploidy is superior compared to applying each parameter alone (OR 8.99 [3.08, 26.26]). This meta-analysis reveals that aneuploidy is an equally effective parameter for individual cancer risk assessment in ulcerative colitis as the detection of dysplasia. More important, the combined assessment of dysplasia and aneuploidy outperforms the use of each parameter alone. We suggest image cytometry for ploidy assessment to become an additional feature of consensus criteria to individually assess cancer risk in UC.
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Roman-nieves, J. I.; Woods, M. T.
2013-12-01
Source parameters of nuclear and chemical explosions are often estimated by matching either the corner frequency and spectral level of a single event or the spectral ratio when spectra from two events are available with known source parameters for one. In this study, we propose an alternative method in which waveforms from two or more events can be simultaneously equalized by setting the differential of the processed seismograms at one station from any two individual events to zero. The method involves convolving the equivalent Mueller-Murphy displacement source time function (MMDSTF) of one event with the seismogram of the second event and vice-versa, and then computing their difference seismogram. MMDSTF is computed at the elastic radius including both near and far-field terms. For this method to yield accurate source parameters, an inherent assumption is that green's functions for the any paired events from the source to a receiver are same. In the frequency limit of the seismic data, this is a reasonable assumption and is concluded based on the comparison of green's functions computed for flat-earth models at various source depths ranging from 100m to 1Km. Frequency domain analysis of the initial P wave is, however, sensitive to the depth phase interaction, and if tracked meticulously can help estimating the event depth. We applied this method to the local waveforms recorded from the three SPE shots and precisely determined their yields. These high-frequency seismograms exhibit significant lateral path effects in spectrogram analysis and 3D numerical computations, but the source equalization technique is independent of any variation as long as their instrument characteristics are well preserved. We are currently estimating the uncertainty in the derived source parameters assuming the yields of the SPE shots as unknown. We also collected regional waveforms from 95 NTS explosions at regional stations ALQ, ANMO, CMB, COR, JAS LON, PAS, PFO and RSSD. We are currently employing a station based analysis using the equalization technique to estimate depth and yields of many relative to those of the announced explosions; and to develop their relationship with the Mw and Mo for the NTS explosions.
A programmable CCD driver circuit for multiphase CCD operation
NASA Technical Reports Server (NTRS)
Ewin, Audrey J.; Reed, Kenneth V.
1989-01-01
A programmable CCD (charge-coupled device) driver circuit was designed to drive CCDs in multiphased modes. The purpose of the drive electronics is to operate developmental CCD imaging arrays for NASA's tiltable moderate resolution imaging spectrometer (MODIS-T). Five objectives for the driver were considered during its design: (1) the circuit drives CCD electrode voltages between 0 V and +30 V to produce reasonable potential wells, (2) the driving sequence is started with one input signal, (3) the driving sequence is started with one input signal, (4) the circuit allows programming of frame sequences required by arrays of any size, (5) it produces interfacing signals for the CCD and the DTF (detector test facility). Simulation of the driver verified its function with the master clock running up to 10 MHz. This suggests a maximum rate of 400,000 pixels/s. Timing and packaging parameters were verified. The design uses 54 TTL (transistor-transistor logic) chips. Two versions of hardware were fabricated: wirewrap and printed circuit board. Both were verified functionally with a logic analyzer.
Apfelbaum, Henry L.; Ross, Nicole C.; Bowers, Alex R.; Peli, Eli
2013-01-01
Purpose: While prisms are commonly prescribed for homonymous hemianopia to extend or expand the visual field, they cause potentially troubling visual side effects, including nonveridical location of perceived images, diplopia, and visual confusion. In addition, the field behind a prism at its apex is lost to an apical scotoma equal in magnitude to the amount of prism shift. The perceptual consequences of apical scotomas and the other effects of various designs were examined to consider parameters and designs that can mitigate the impact of these effects. Methods: Various configurations of sector and peripheral prisms were analyzed, in various directions of gaze, and their visual effects were illustrated using simulated perimetry. A novel “percept” diagram was developed that yielded insights into the patient's view through the prisms. The predictions were verified perimetrically with patients. Results: The diagrams distinguish between potentially beneficial field expansion via visual confusion and the pericentrally disturbing and useless effect of diplopia, and their relationship to prism power and gaze direction. They also illustrate the nonexpanding substitution of field segments of some popular prism designs. Conclusions: Yoked sector prisms have no effect at primary gaze or when gaze is directed toward the seeing hemifield, and they introduce pericentral field loss when gaze is shifted into them. When fitted unilaterally, sector prisms also have an effect only when the gaze is directed into the prism and may cause a pericentral scotoma and/or central diplopia. Peripheral prisms are effective at essentially all gaze angles. Since gaze is not directed into them, they avoid problematic pericentral effects. We derive useful recommendations for prism power and position parameters, including novel ways of fitting prisms asymmetrically. Translational Relevance: Clinicians will find these novel diagrams, diagramming techniques, and analyses valuable when prescribing prismatic aids for hemianopia and when designing new prism devices for patients with various types of field loss. PMID:24049719
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Bras, R. L.; Tucker, G. E.
2003-04-01
An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial networks.
Last-position elimination-based learning automata.
Zhang, Junqi; Wang, Cheng; Zhou, MengChu
2014-12-01
An update scheme of the state probability vector of actions is critical for learning automata (LA). The most popular is the pursuit scheme that pursues the estimated optimal action and penalizes others. This paper proposes a reverse philosophy that leads to last-position elimination-based learning automata (LELA). The action graded last in terms of the estimated performance is penalized by decreasing its state probability and is eliminated when its state probability becomes zero. All active actions, that is, actions with nonzero state probability, equally share the penalized state probability from the last-position action at each iteration. The proposed LELA is characterized by the relaxed convergence condition for the optimal action, the accelerated step size of the state probability update scheme for the estimated optimal action, and the enriched sampling for the estimated nonoptimal actions. The proof of the ϵ-optimal property for the proposed algorithm is presented. Last-position elimination is a widespread philosophy in the real world and has proved to be also helpful for the update scheme of the learning automaton via the simulations of well-known benchmark environments. In the simulations, two versions of the LELA, using different selection strategies of the last action, are compared with the classical pursuit algorithms Discretized Pursuit Reward-Inaction (DP(RI)) and Discretized Generalized Pursuit Algorithm (DGPA). Simulation results show that the proposed schemes achieve significantly faster convergence and higher accuracy than the classical ones. Specifically, the proposed schemes reduce the interval to find the best parameter for a specific environment in the classical pursuit algorithms. Thus, they can have their parameter tuning easier to perform and can save much more time when applied to a practical case. Furthermore, the convergence curves and the corresponding variance coefficient curves of the contenders are illustrated to characterize their essential differences and verify the analysis results of the proposed algorithms.
Cost-Effectiveness of Surgical Versus Conservative Treatment for Thoracolumbar Burst Fractures.
Aras, Efe Levent; Bunger, Cody; Hansen, Ebbe Stender; Søgaard, Rikke
2016-02-01
Historical, register-based cohort study following 85 patients in the course of a time frame extending from 2 years before to 2 years after trauma occurrence. To investigate the cost-effectiveness of surgery versus conservative management for thoracolumbar burst fractures. Despite the prevalence of thoracolumbar burst fractures, consensus has still not been reached in terms of their clinical management and whereas from a health policy point of view, efficient use of resources is equally important, literature pertaining to this aspect is limited. Consecutive patients who were admitted to a university clinic between 2004 and 2008 because of CT-verified AO type A3 fractures (T11-L2), age 18 to 65 years Patients with neurological compromise, osteoporosis, or malignancy were not included. The cost parameter defined primary and secondary health-care use (2010 &OV0556;) and the effect parameter was based on three alternative measures of pain medication: morphine milligram and defined daily doses (DDD) of narcotic and nonnarcotic analgesics. For cost-effectiveness analysis, we employed a difference-in-difference approach, including control for treatment selection (age, sex, and fracture type). Nonparametric bootstrapping was used to estimate conventional 95% confidence intervals of mean estimates. When taking into consideration all health-care consumption, surgical management was observed to cost an additional &OV0556;10,734 (4215; 15,144) as compared with conservative management. The differences on morphine at 527(-3031; 6,016) milligram, narcotic analgesics at -8(-176; 127) DDD, and nonnarcotic analgesics at -3(-72; 58) DDD were all insignificant The probability for surgery being cost-effective did not exceed 50% for any value of willingness to pay for effect. Surgical management does not seem to be a cost-effective strategy as compared with conservative management for traumatic thoracolumbar burst fractures without neurological deficits. In addition, higher-volume studies examining the clinical effect of alternative management strategies would be valuable. 3.
A review of ADM1 extensions, applications, and analysis: 2002-2005.
Batstone, D J; Keller, J; Steyer, J P
2006-01-01
Since publication of the Scientific and Technical Report (STR) describing the ADM1, the model has been extensively used, and analysed in both academic and practical applications. Adoption of the ADM1 in popular systems analysis tools such as the new wastewater benchmark (BSM2), and its use as a virtual industrial system can stimulate modelling of anaerobic processes by researchers and practitioners outside the core expertise of anaerobic processes. It has been used as a default structural element that allows researchers to concentrate on new extensions such as sulfate reduction, and new applications such as distributed parameter modelling of biofilms. The key limitations for anaerobic modelling originally identified in the STR were: (i) regulation of products from glucose fermentation, (ii) parameter values, and variability, and (iii) specific extensions. Parameter analysis has been widespread, and some detailed extensions have been developed (e.g., sulfate reduction). A verified extension that describes regulation of products from glucose fermentation is still limited, though there are promising fundamental approaches. This is a critical issue, given the current interest in renewable hydrogen production from carbohydrate-type waste. Critical analysis of the model has mainly focused on model structure reduction, hydrogen inhibition functions, and the default parameter set recommended in the STR. This default parameter set has largely been verified as a reasonable compromise, especially for wastewater sludge digestion. One criticism of note is that the ADM1 stoichiometry focuses on catabolism rather than anabolism. This means that inorganic carbon can be used unrealistically as a carbon source during some anabolic reactions. Advances and novel applications have also been made in the present issue, which focuses on the ADM1. These papers also explore a number of novel areas not originally envisaged in this review.
NASA Astrophysics Data System (ADS)
Merdan, Ziya; Karakuş, Özlem
2016-11-01
The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.
Structural dynamic analysis of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.
1981-01-01
This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.
F-8C adaptive control law refinement and software development
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Stein, G.
1981-01-01
An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.
Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty
NASA Astrophysics Data System (ADS)
Zhu, Yi-Chen; Au, Siu-Kui
2018-01-01
A Bayesian modal identification method has been proposed in the companion paper that allows the most probable values of modal parameters to be determined using asynchronous ambient vibration data. This paper investigates the identification uncertainty of modal parameters in terms of their posterior covariance matrix. Computational issues are addressed. Analytical expressions are derived to allow the posterior covariance matrix to be evaluated accurately and efficiently. Synthetic, laboratory and field data examples are presented to verify the consistency, investigate potential modelling error and demonstrate practical applications.
Mechanism of force mode dip-pen nanolithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn; Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800; Xie, Hui
In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.
A novel compact model for on-chip stacked transformers in RF-CMOS technology
NASA Astrophysics Data System (ADS)
Jun, Liu; Jincai, Wen; Qian, Zhao; Lingling, Sun
2013-08-01
A novel compact model for on-chip stacked transformers is presented. The proposed model topology gives a clear distinction to the eddy current, resistive and capacitive losses of the primary and secondary coils in the substrate. A method to analytically determine the non-ideal parasitics between the primary coil and substrate is provided. The model is further verified by the excellent match between the measured and simulated S -parameters on the extracted parameters for a 1 : 1 stacked transformer manufactured in a commercial RF-CMOS technology.
JPRS Report, Science & Technology, Japan.
1988-05-04
360 tons of HAP ( hydroxyapatite ) for medical applications, as food additives, and for use in tooth pastes is imported. There are plenty of raw...pressure ratio (qr = PjUj 2/pmum 2, equal to about 1.5) of the jet to the mainflow are chosen for the operating parameters of the jet. Quartz glass for...intermediate flow. The parameters which affect self-ignition and flame maintenance in an actual supersonic burner are the size of the recirculation
Dynamic modeling of porous heterogeneous micro/nanobeams
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Jafari, Ali; Reza Barati, Mohammad
2017-12-01
In the present paper, the thermo-mechanical vibration characteristics of a functionally graded (FG) porous microbeam subjected to various types of thermal loadings are investigated based on modified couple stress theory and exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which the shear deformation effect is verified without the shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of the FG micro/nanobeam. The temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.
AE characteristic for monitoring of fatigue crack in steel bridge members
NASA Astrophysics Data System (ADS)
Yoon, Dong-Jin; Jung, Juong-Chae; Park, Philip; Lee, Seung-Seok
2000-06-01
Acoustic emission technique was employed for the monitoring of crack activity in both steel bridge members and laboratory specimen. Laboratory experiment was carried out to identify AE characteristics of fatigue cracks for compact tension specimen. The relationship between a stress intensity factor and AE signals activity as well as conventional AE parameter analysis was discussed. A field test was also conducted on a railway bridge, which contain several fatigue cracks. Crack activities were investigated while in service with strain measurement. From the results, in the laboratory tests, the features of three parameters such as the length of crack growth, the AE energy, and the cumulative AE events, showed the almost same trend in their increase as the number of fatigue cycle increased. From the comparisons of peak amplitude and AE energy with stress intensity factor, it was verified that the higher stress intensity factors generated AE signals with higher peak amplitude and a large number of AE counts. In the field test, real crack propagation signals were captured and the crack activity was verified in two cases.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yun, E-mail: ygao@yorku.ca; Hu, Naihong, E-mail: nhhu@math.ecnu.edu.cn; Zhang, Honglian, E-mail: hlzhangmath@shu.edu.cn
In this paper, we define the two-parameter quantum affine algebra for type G{sub 2}{sup (1)} and give the (r, s)-Drinfeld realization of U{sub r,s}(G{sub 2}{sup (1)}), as well as establish and prove its Drinfeld isomorphism. We construct and verify explicitly the level-one vertex representation of two-parameter quantum affine algebra U{sub r,s}(G{sub 2}{sup (1)}), which also supports an evidence in nontwisted type G{sub 2}{sup (1)} for the uniform defining approach via the two-parameter τ-invariant generating functions proposed in Hu and Zhang [Generating functions with τ-invariance and vertex representations of two-parameter quantum affine algebras U{sub r,s}(g{sup ^}): Simply laced cases e-print http://arxiv.org/abs/1401.4925more » ].« less
Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav
2015-11-12
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.
[Biomechanics study during march with different military equipment of equal carrying load].
Lang, Y Y
1992-03-01
The purpose of the study is to select the best military equipment of equal carrying load by the index of biomechanics. Six healthy young men whose age varied between 19 and 25 years were volunteered, in the experiment. They were required to march 1.5 h, carried with different military equipment of equal weight, 25 kg, at a speed of 5 km/h. The centre of gravity of the body and its kinesic parameters were measured before and after the march. The frequency and length of pace were measured during the march. The results of the study indicated that the displacement of the body's centre of gravity carrying equipment I was the most evident, whereas the least displacement of centre of gravity of the body was that carrying equipment II. The frequency of pace during the march was reduced in all three carrying different kinds of equipment, the most evident being that carrying equipment I; the length of pace became bigger with those carrying equipment II and III; the speed of pace was decelerated using equipment I, but it was quickened with equipment II. The change of kinesic parameters have no significant difference among the three. In summary; equipment II conforms best to biomechanical principles, whereas equipment I is the worst.
Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav
2015-01-01
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667
Liu, Jingxia; Colditz, Graham A
2018-05-01
There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hannam, Mark; Husa, Sascha; Ohme, Frank; Müller, Doreen; Brügmann, Bernd
2010-12-01
We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein’s equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each black hole is χi=Si/Mi2∈[-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M2/M1∈[1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged black hole, and compare the last 8-10 gravitational-wave cycles up to Mω=0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins χi>-0.75. When high-order amplitude corrections are included, the PN amplitude of the (ℓ=2,m=±2) modes is larger than the numerical relativity amplitude by between 2-4%.
Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels
NASA Astrophysics Data System (ADS)
Chen, Duan
The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical challenges in simulations are addressed: the matched interface and boundary (MIB) method, the Dirichlet-to-Neumann mapping (DNM) technique, and the Krylov subspace and preconditioner theory are introduced to improve the computational efficiency of the Poisson-type equation. The quantum transport theory is employed to solve the Kohn-Sham equation. The Gummel iteration and relaxation technique are utilized for overall self-consistent iterations. Finally, applications are considered and model validations are verified by realistic nano-transistors and transmembrane proteins. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our threedimensional numerical simulations. For these devices, the current uctuation and voltage threshold lowering effect induced by discrete dopants are explored. For proton transport, a realistic channel protein, the Gramicidin A (GA) is used to demonstrate the performance of the proposed proton channel model and validate the efficiency of the proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. Proton channel conductances are studied over a number of applied voltages and reference concentrations. Comparisons with experimental data are utilized to verify our model predictions.
Joint inversion of regional and teleseismic earthquake waveforms
NASA Astrophysics Data System (ADS)
Baker, Mark R.; Doser, Diane I.
1988-03-01
A least squares joint inversion technique for regional and teleseismic waveforms is presented. The mean square error between seismograms and synthetics is minimized using true amplitudes. Matching true amplitudes in modeling requires meaningful estimates of modeling uncertainties and of seismogram signal-to-noise ratios. This also permits calculating linearized uncertainties on the solution based on accuracy and resolution. We use a priori estimates of earthquake parameters to stabilize unresolved parameters, and for comparison with a posteriori uncertainties. We verify the technique on synthetic data, and on the 1983 Borah Peak, Idaho (M = 7.3), earthquake. We demonstrate the inversion on the August 1954 Rainbow Mountain, Nevada (M = 6.8), earthquake and find parameters consistent with previous studies.
NASA Astrophysics Data System (ADS)
Li, Y. K.; Chen, Y. W.; Cheng, X. W.; Wu, C.; Cheng, B.
2018-05-01
In this paper, the valence electron structure parameters of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys were calculated based on the empirical electron theory of solids and molecules (EET), and their performance through these parameters were predicted. Subsequently, the alloys with special valence electron structure parameters were prepared byarc melting. The hardness and high-temperature mechanical properties were analyzed to verify the prediction. Research shows that the influence of shared electron number nA on the strongest bond determines the strength of these alloys and the experiments are consistent with the theoretical prediction.
A method for cone fitting based on certain sampling strategy in CMM metrology
NASA Astrophysics Data System (ADS)
Zhang, Li; Guo, Chaopeng
2018-04-01
A method of cone fitting in engineering is explored and implemented to overcome shortcomings of current fitting method. In the current method, the calculations of the initial geometric parameters are imprecise which cause poor accuracy in surface fitting. A geometric distance function of cone is constructed firstly, then certain sampling strategy is defined to calculate the initial geometric parameters, afterwards nonlinear least-squares method is used to fit the surface. The experiment is designed to verify accuracy of the method. The experiment data prove that the proposed method can get initial geometric parameters simply and efficiently, also fit the surface precisely, and provide a new accurate way to cone fitting in the coordinate measurement.
NASA Astrophysics Data System (ADS)
Latifi, Koorosh; Kaviani, Ayoub; Rümpker, Georg; Mahmoodabadi, Meysam; Ghassemi, Mohammad R.; Sadidkhouy, Ahmad
2018-05-01
The contribution of crustal anisotropy to the observation of SKS splitting parameters is often assumed to be negligible. Based on synthetic models, we show that the impact of crustal anisotropy on the SKS splitting parameters can be significant even in the case of moderate to weak anisotropy within the crust. In addition, real-data examples reveal that significant azimuthal variations in SKS splitting parameters can be caused by crustal anisotropy. Ps-splitting analysis of receiver functions (RF) can be used to infer the anisotropic parameters of the crust. These crustal splitting parameters may then be used to constrain the inversion of SKS apparent splitting parameters to infer the anisotropy of the mantle. The observation of SKS splitting for different azimuths is indispensable to verify the presence or absence of multiple layers of anisotropy beneath a seismic station. By combining SKS and RF observations in different azimuths at a station, we are able to uniquely decipher the anisotropic parameters of crust and upper mantle.
NASA Astrophysics Data System (ADS)
Werwiński, Mirosław; Marciniak, Wojciech
2017-12-01
We present results of ab initio calculations of several L10 FeNi characteristics, such as the summary of the magnetocrystalline anisotropy energies (MAEs), the full potential calculations of the anisotropy constant K 3, and the combined analysis of the Fermi surface and 3D {k} -resolved MAE. Other calculated parameters are the spin and orbital magnetic moments, the magnetostrictive coefficient λ0 0 1 , the bulk modulus B 0, and the lattice parameters. The MAEs summary shows rather big discrepancies among the experimental MAEs from the literature and also among the calculated MAE’s. The MAEs calculated in this work with the full potential and generalized gradient approximation (GGA) are equal to 0.47 MJ m-3 from WIEN2k, 0.34 MJ m-3 from FPLO, and 0.23 MJ m-3 from FP-SPR-KKR code. These results suggest that the MAE in GGA is below 0.5 MJ m-3 . It is expected that due to the limitations of the GGA, this value is underestimated. The L10 FeNi has further potential to improve its MAE by modifications, like e.g. tetragonal strain or alloying. The presented 3D {k} -resolved map of the MAE combined with the Fermi surface gives a complete picture of the MAE contributions in the Brillouin zone. The obtained, from the full potential FP-SPR-KKR method, magnetocrystalline anisotropy constants K 2 and K 3 are several orders of magnitude smaller than the MAE/K 1 and equal to -2.0 kJ m-3 and 110 J m-3 , respectively. The calculated spin and orbital magnetic moments of the L10 FeNi are equal to 2.72 and 0.054 μB for Fe and 0.53 and 0.039 μB for Ni atoms, respectively. The calculations of geometry optimization lead to a c/a ratio equal to 1.0036, B 0 equal to 194 GPa, and λ0 0 1 equal to 9.4 × 10-6.
Laser prostatectomy using a right angle delivery system
NASA Astrophysics Data System (ADS)
Rocha, Flavio T.; Mitre, Anuar I.; Chavantes, Maria C.; Arap, Sami
1995-05-01
Benign prostate hyperplasia (BPH) represents a major health problem in old men. In the present transurethral resection of the prostate (TURP) is the gold standard treatment for BPH. Although TURP is related to low mortality rates its mobidity is quite high. To evaluate the efficacy and safety of a new surgical treatment for BPH we undertook 30 patients with symptomatic BPH. All of them were submitted to a laser prostatectomy using a lateral delivery system (non contact) connected to a Nd-YAG laser font. The preoperative evaluation showed a prostate weight ranging from 30,5 to 86 grams (mean equals 42,5). The preoperative prostatic specific antigen (PSA) ranged from 0,9 to 10,2 ng/dl (mean equals 4.3). The International prostate symptom score (I-PSS) ranged from 16 to 35 points (means equals 23,58). The flow rate ranged from 0 to m 12.8 ml/sec (mean equals 4,65) and the postvoid residual urine from 20 to 400 ml (mean equals 100). We obtained follow-up in 20 patients. After three months after the procedure the parameters were: I-PSS from 4 to 20 points (mean equals 7,0) p < 0.05. Flow rate from 6,5 to m 19.4 ml/sec (mean equals 12,95) p < 0.05 and the postvoid residual urine from 17 to 70 ml (mean equals 30 ml) p < 0.05. No blood transfusion was required. The complications were persistent disuria in two patients, bladder neck contracture in one patient and urethral stenosis in one patient. We concluded that laser prostatectomy is a safe and effective treatment for BPH.
NASA Astrophysics Data System (ADS)
Bekkouche, S.; Chouarfia, A.
2011-06-01
Image watermarking can be defined as a technique that allows insertion of imperceptible and indelible digital data into an image. In addition to its initial application which is the copyright, watermarking can be used in other fields, particularly in the medical field in order to contribute to secure images shared on the network for telemedicine applications. In this report we study some watermarking methods and the comparison result of their combination, the first one is based on the CDMA (Code Division Multiple Access) in DWT and spatial domain and its aim is to verify the image authenticity whereas the second one is the reversible watermarking (the least significant bits LSB and cryptography tools) and the reversible contrast mapping RCM its objective is to check the integrity of the image and to keep the Confidentiality of the patient data. A new scheme of watermarking is the combination of the reversible watermarking method based on LSB and cryptography tools and the method of CDMA in spatial and DWT domain to verify the three security properties Integrity, Authenticity and confidentiality of medical data and patient information .In the end ,we made a comparison between these methods within the parameters of quality of medical images. Initially, an in-depth study on the characteristics of medical images would contribute to improve these methods to mitigate their limits and to optimize the results. Tests were done on IRM kind of medical images and the quality measurements have been done on the watermarked image to verify that this technique does not lead to a wrong diagnostic. The robustness of the watermarked images against attacks has been verified on the parameters of PSNR, SNR, MSE and MAE which the experimental result demonstrated that the proposed algorithm is good and robust in DWT than in spatial domain.
High pressure processing's potential to inactivate norovirus and other fooodborne viruses
USDA-ARS?s Scientific Manuscript database
High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...
Efficient sidelobe ASK based dual-function radar-communications
NASA Astrophysics Data System (ADS)
Hassanien, Aboulnasr; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia
2016-05-01
Recently, dual-function radar-communications (DFRC) has been proposed as means to mitigate the spectrum congestion problem. Existing amplitude-shift keying (ASK) methods for information embedding do not take full advantage of the highest permissable sidelobe level. In this paper, a new ASK-based signaling strategy for enhancing the signal-to-noise ratio (SNR) at the communication receiver is proposed. The proposed method employs one reference waveform and simultaneously transmits a number of orthogonal waveforms equals to the number of 1's in the binary sequence being embedded. 3 dB SNR gain is achieved using the proposed method as compared to existing sidelobe ASK methods. The effectiveness of the proposed information embedding strategy is verified using simulations examples.
NASA Technical Reports Server (NTRS)
Payne, M. H.
1973-01-01
The bounds for the normalized associated Legendre functions P sub nm were studied to provide a rational basis for the truncation of the geopotential series in spherical harmonics in various orbital analyses. The conjecture is made that the largest maximum of the normalized associated Legendre function lies in the interval which indicates the greatest integer function. A procedure is developed for verifying this conjecture. An on-line algebraic manipulator, IAM, is used to implement the procedure and the verification is carried out for all n equal to or less than 2m, for m = 1 through 6. A rigorous proof of the conjecture is not available.
Speckle suppression by doubly scattering systems.
Li, Dayan; Kelly, Damien P; Sheridan, John T
2013-12-10
Speckle suppression in a two-diffuser system is examined. An analytical expression for the speckle space-time correlation function is derived, so that the speckle suppression mechanism can be investigated statistically. The grain size of the speckle field illuminating the second diffuser has a major impact on the speckle contrast after temporal averaging. It is shown that, when both the diffusers are rotating, the one with the lower rotating speed determines the period of the speckle correlation function. The coherent length of the averaged speckle intensity is shown to equal the mean speckle size of the individual speckle pattern before averaging. Numerical and experimental results are presented to verify our analysis in the context of speckle reduction.
Camouflage in thermal IR: spectral design
NASA Astrophysics Data System (ADS)
Pohl, Anna; Fagerström, Jan; Kariis, Hans; Lindell, Roland; Hallberg, Tomas; Högström, Herman
2016-10-01
In this work a spectral designed coating from SPECTROGON is evaluated. Spectral design in this case means that the coating has a reflectivity equal to one at 3-5 and 8-12 microns were sensors operate and a much lower reflectivity in the other wave length regions. Three boxes are evaluated: one metallic, one black-body and one with a spectral designed surface, all with a 15 W radiator inside the box. It is shown that the box with the spectral designed surface can combine the two good characteristics of the other boxes: low signature from the metallic box and reasonable inside temperature from the black-body box. The measurements were verified with calculations using RadThermIR.
Design of Cancelable Palmprint Templates Based on Look Up Table
NASA Astrophysics Data System (ADS)
Qiu, Jian; Li, Hengjian; Dong, Jiwen
2018-03-01
A novel cancelable palmprint templates generation scheme is proposed in this paper. Firstly, the Gabor filter and chaotic matrix are used to extract palmprint features. It is then arranged into a row vector and divided into equal size blocks. These blocks are converted to corresponding decimals and mapped to look up tables, forming final cancelable palmprint features based on the selected check bits. Finally, collaborative representation based classification with regularized least square is used for classification. Experimental results on the Hong Kong PolyU Palmprint Database verify that the proposed cancelable templates can achieve very high performance and security levels. Meanwhile, it can also satisfy the needs of real-time applications.
SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector.
Youn, Jin-Sung; Lee, Myung-Jae; Park, Kang-Yeob; Rücker, Holger; Choi, Woo-Young
2014-01-13
We investigate signal-to-noise ratio (SNR) characteristics of an 850-nm optoelectronic integrated circuit (OEIC) receiver fabricated with standard 0.25-µm SiGe bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. The OEIC receiver is composed of a Si avalanche photodetector (APD) and BiCMOS analog circuits including a transimpedance amplifier with DC-balanced buffer, a tunable equalizer, a limiting amplifier, and an output buffer with 50-Ω loads. We measure APD SNR characteristics dependence on the reverse bias voltage as well as BiCMOS circuit noise characteristics. From these, we determine the SNR characteristics of the entire OEIC receiver, and finally, the results are verified with bit-error rate measurement.
Aerosol spectral optical depths - Jet fuel and forest fire smokes
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Livingston, J. M.
1990-01-01
The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.
Robust matching for voice recognition
NASA Astrophysics Data System (ADS)
Higgins, Alan; Bahler, L.; Porter, J.; Blais, P.
1994-10-01
This paper describes an automated method of comparing a voice sample of an unknown individual with samples from known speakers in order to establish or verify the individual's identity. The method is based on a statistical pattern matching approach that employs a simple training procedure, requires no human intervention (transcription, work or phonetic marketing, etc.), and makes no assumptions regarding the expected form of the statistical distributions of the observations. The content of the speech material (vocabulary, grammar, etc.) is not assumed to be constrained in any way. An algorithm is described which incorporates frame pruning and channel equalization processes designed to achieve robust performance with reasonable computational resources. An experimental implementation demonstrating the feasibility of the concept is described.
Efflorescence relative humidity for ammonium sulfate particles.
Gao, Yonggang; Chen, Shing Bor; Yu, Liya E
2006-06-22
The classical homogeneous nucleation theory was employed to calculate the efflorescence relative humidity (ERH) of airborne ammonium sulfate particles with a wide size range (8 nm to 17 microm) at room temperature. The theoretical predictions are in good agreement with the experimentally measured values. When the ammonium sulfate particle is decreased in size, the ERH first decreases, reaches a minimum around 30% for particle diameter equal to about 30 nm, and then increases. It is for the first time that the Kelvin effect is theoretically verified to substantially affect the ERH of ammonium sulfate particles smaller than 30 nm, while the aerosol size is the dominant factor affecting the efflorescent behavior of ammonium sulfate particles larger than 50 nm.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Rashidi, Mahnaz; Khasheie, Vajieh
2006-08-01
Photonic crystal fibers (PCFs) with a stepped raised-core profile and one layer equally spaced holes in the cladding are analyzed. Using effective index method and considering a raised step refractive index difference between the index of the core and the effective index of the cladding, we improve the characteristic parameters such as numerical aperture and V-parameter, and reduce its bending loss to about one tenth of a conventional PCF. Implementing such a structure in PCFs may be one step forward to achieve low loss PCFs for communication applications.
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed; Karami-Mollaee, Ali
2018-06-01
Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.
Parameter identification for structural dynamics based on interval analysis algorithm
NASA Astrophysics Data System (ADS)
Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke
2018-04-01
A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
NASA Astrophysics Data System (ADS)
Gasparyan, Levon V.
2001-04-01
The purpose of the given research is the comparison of efficiency of conventional treatment of myofascial pain syndromes of patients with osteoarthritis (OA) of hip and knee joints and therapy with additional application of low level laser therapy (LLLT) under dynamic control of clinical picture, rheovasographic, electromyographic examinations, and parameters of peroxide lipid oxidation. The investigation was made on 143 patients with OA of hip and knee joints. Patients were randomized in 2 groups: basic group included 91 patients, receiving conventional therapy with a course of LLLT, control group included 52 patients, receiving conventional treatment only. Transcutaneous ((lambda) equals 890 nm, output peak power 5 W, frequency 80 - 3000 Hz) and intravenous ((lambda) equals 633 nm, output 2 mW in the vein) laser irradiation were used for LLLT. Studied showed, that clinical efficiency of LLLT in the complex with conventional treatment of myofascial pain syndromes at the patients with OA is connected with attenuation of pain syndrome, normalization of parameters of myofascial syndrome, normalization of the vascular tension and parameters of rheographic curves, as well as with activation of antioxidant protection system.
Specific heat of FeSe: Two gaps with different anisotropy in superconducting state
NASA Astrophysics Data System (ADS)
Muratov, A. V.; Sadakov, A. V.; Gavrilkin, S. Yu.; Prishchepa, A. R.; Epifanova, G. S.; Chareev, D. A.; Pudalov, V. M.
2018-05-01
We present detailed study of specific heat of FeSe single crystals with critical temperature Tc = 8.45 K at 0.4 - 200 K in magnetic fields 0 - 9 T. Analysis of the electronic specific heat at low temperatures shows the coexistence of isotropic s-wave gap and strongly anisotropic extended s-wave gap without nodes. It was found two possibilities of superconducting gap parameters which give equally description of experimental data: (i) two gaps with approximately equal amplitudes and weight contribution to specific heat: isotropic Δ1 = 1.7 meV (2Δ1 /kBTc =4.7) and anisotropic gap with the amplitude Δ2max = 1.8 meV (2 Δ2max /kBTc =4.9 and anisotropy parameter m = 0.85); (ii) two gaps with substantially different values: isotropic large gap Δ1 = 1.65 meV (2Δ1 /kBTc = 4.52) and anisotropic small gap Δ2max = 0.75 meV (2Δ2max /kBTc = 2) with anisotropy parameter m = 0.71 . These results are confirmed by the field behavior of the residual electronic specific heat γr.
Interpretation of Nonlinear Well Loss Coefficients for Rorabaugh (1953) Method.
NASA Astrophysics Data System (ADS)
Kurtulus, B.; Yaylım, T. N.; Avşar
2016-12-01
Step drawdown test (SDT) are essential for hydrogeologist to determine aquifer loss and well loss parameters. In a SDT, different series of constant-discharges with incremental rates are conducted to obtain incremental drawdown into the pumping well. Pumping well efficiency (if the well is properly developed and designed), aquifer characteristics (transmissivity, storativity) and discharge-drawdown relationship can be derived from SDT. The well loss parameter directly associate with the well efficiency. The main problem is to determine the correct well loss parameter in order to estimate aquifer characteristics. Walton (1962) stated that the interpretation of the well efficiency is possible to determine the nonlinear head loss coefficient (C) with p equals to 2 and Walton (1962) presented a criteria that suggested the following terms: If C is less than 1800 m2/s5, the is properly developed and designed, If C is ranged from 1800 m2/s5 to 3600 m2/s5, the well has a mild deterioration, If C is greater than 3600 m2/s5, the well has a severe clogging. Until now, several well-known computer techniques such as Aqutesolv, AquiferWin32 , AquifertestPro can be found in the literature to evaluate well efficiency when exponential parameter (p) equals to 2. However, there exist a lack of information to evaluate well efficiency for different number of exponential parameter (p). Strategic Water Storage & Recovery (SWSR) Project in Liwa, Abu Dhabi is the leading and unique hydrogeology project in the world because of its both financial and scientific dimension. A total of 315 recovery wells have been drilled in pursuance of the scope of the SWSR project. A Universal Well Efficiency Criteria (UWEC) is developed using 315 Step Drawdown Test (SDT). UWEC is defined for different number of head loss equation coefficients. The results reveal that there is a strong correlation between non-linear well loss coefficient (C) and exponential parameter (p) up to a coefficient of determination (R2) equal to 0.97 using Rorabaugh method. According to the calculated results, p and C value are calculated between 1 to 9 and 100 sp/m3p-1 to 2.3 x 1011 sp/m3p-1 respectively. We are very grateful for financial support and providing us the data to ZETAS-Dubai Inc.
Periodontal disease in research beagle dogs--an epidemiological study.
Kortegaard, H E; Eriksen, T; Baelum, V
2008-12-01
To estimate the prevalence and describe the extent and severity of periodontal disease and associated periodontal parameters in beagle dogs. A full-mouth, site-specific examination was performed in 98 beagle dogs. Focus was placed on clinical attachment loss, pocket depth and bleeding on probing. The prevalence of clinical attachment loss greater than equal to 1 mm was 20 per cent in the one-year-old dogs, increasing to 84 per cent of the dogs aged more than three years. The number of sites affected with clinical attachment loss greater than equal to 1 mm showed a skewed distribution. The prevalence of clinical attachment loss greater than equal to 4 mm was only seven per cent. A probing pocket depth of 4+ mm was observed in 44 to 81 per cent of the dogs, depending on age. Also, the distribution of the number of deepened pockets/dog was skewed. The teeth most prone to clinical attachment loss greater than equal to 1 mm were the P2, the P3 and the P4 of the maxilla. The teeth most prone to pocket depth greater than equal to 4 mm were the maxillary canines. Periodontal disease in terms of clinical attachment loss greater than equal to 1 mm and pocket depth greater than equal to 4 mm is common in beagle dogs, but the major disease burden is carried by only a few dogs. The prevalence increases with increased age but is high already at the age of two years.
Feeding and Feedback in the Powerful Radio Galaxy 3C 120
NASA Technical Reports Server (NTRS)
Tombesi, F.; Mushotzky, R. F.; Reynolds, C. S.; Kallman, T.; Reeves, J. N.; Braito, V.; Ueda, Y.; Leutenegger, M. A.; Williams, B. J.; Stawarz, L.;
2017-01-01
We present a spectral analysis of a 200-kilosecond observation of the broad-line radio galaxy 3C 120, performed with the high-energy transmission grating spectrometer on board the Chandra X-Ray Observatory. We find (i) a neutral absorption component intrinsic to the source with a column density of log N (sub H) equals 20.67 plus or minus 0.05 square centimeters; (ii) no evidence for a warm absorber (WA) with an upper limit on the column density of just log N (sub H) less than 19.7 square centimeters, assuming the typical ionization parameter log xi approximately equal to 2.5 ergs per second per centimeter; the WA may instead be replaced by (iii) a hot emitting gas with a temperature kT approximately equal to 0.7 kiloelectronvolts observed as soft X-ray emission from ionized Fe L-shell lines, which may originate from a kiloparsec-scale shocked bubble inflated by the active galactic nucleus (AGN) wind or jet with a shock velocity of about 1000 kilometers per second determined by the emission line width; (iv) a neutral Fe K alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with a low reflection fraction R approximately equal to 0.2, suggesting a large opening angle of the torus; (v) a highly ionized Fe XXV emission feature indicative of photoionized gas with an ionization parameter log xi equal to 3.75 (sup plus 0.38) (sub minus 0.27) ergs per second per centimeter and a column density of log N (sub H) greater than 22 square centimeters localized within approximately 2 pc from the X-ray source; and (vi) possible signatures of a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C 120 is likely a late-state merger undergoing strong AGN feedback.
Significant wave heights from Sentinel-1 SAR: Validation and applications
NASA Astrophysics Data System (ADS)
Stopa, J. E.; Mouche, A.
2017-03-01
Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.
Côco, Monique; Baba, Natalia Tamie; Sallum, Juliana Maria Ferraz
2007-01-01
To define characteristics of the fundus autofluorescence examination, verifying usefulness in the diagnosis and care of hereditary retinal diseases. 28 patients, adults, divided equally into four groups with diagnoses of Stargardt macular dystrophy, cone dystrophy, retinitis pigmentosa and healthy volunteers for the establishment of the normality pattern. An average of nine images with the filter for fluorescein angiography was obtained for the formation of the image autofluorescence using Heidelberg Retina Angiograph2. The images of each group of patients were analyzed to verify common characteristics. The fundus autofluorescence of healthy volunteers showed the foveal area darker than the surrounding retina. The images of Stargardt macular dystrophy, in general, presented an oval central lesion, with reduced autofluorescence. The main alterations of the autofluorescence in patients with cone dystrophy were reduced foveal autofluorescence with a parafoveal ring of increased autofluorescence. In general, the images of retinitis pigmentosa showed outlying pigments with reduced autofluorescence, and of the foveal area, in some cases disorganization or reduced autofluorescence. The study showed the existence of patterns of fundus autofluorescence in the hereditary retinal diseases that allow the diagnosis and better interpretation of the pathogenesis of these diseases.
Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.
Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman
2014-01-01
Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.
Development of Pulsating Twin Jets Mechanism for Mixing Flow Heat Transfer Analysis
Abdullah, Shahrir
2014-01-01
Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency. PMID:24672370
Gravimetric antigen detection utilizing antibody-modified lipid bilayers.
Larsson, Charlotte; Bramfeldt, Hanna; Wingren, Christer; Borrebaeck, Carl; Höök, Fredrik
2005-10-01
Lipid bilayers containing 5% nitrilotriacetic acid (NTA) lipids supported on SiO2 have been used as a template for immobilization of oligohistidine-tagged single-chained antibody fragments (scFvs) directed against cholera toxin. It was demonstrated that histidine-tagged scFvs could be equally efficiently coupled to an NTA-Ni2+-containing lipid bilayer from a purified sample as from an expression supernatant, thereby providing a coupling method that eliminates time-consuming protein prepurification steps. Irrespective of whether the coupling was made from the unpurified or purified antibody preparation, the template proved to be efficient for antigen (cholera toxin) detection, verified using quartz crystal microbalance with dissipation monitoring. In addition, via a secondary amplification step using lipid vesicles containing GM1 (the natural membrane receptor for cholera toxin), the detection limit of cholera toxin was less than 750 pM. To further strengthen the coupling of scFvs to the lipid bilayer, scFvs containing two histidine tags, instead of just one tag, were also evaluated. The increased coupling strength provided via the bivalent anchoring significantly reduced scFv displacement in complex solutions containing large amounts of histidine-containing proteins, verified via cholera toxin detection in serum.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; Harvill, William E.
1988-01-01
Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.
1992-01-01
Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.
Bubley, W J; Kneebone, J; Sulikowski, J A; Tsang, P C W
2012-04-01
Male and female spiny dogfish Squalus acanthias were collected in the western North Atlantic Ocean in the Gulf of Maine between July 2006 and June 2009. Squalus acanthias ranged from 25 to 102 cm stretch total length and were caught during all months of the year except January. Age estimates derived from banding patterns visible in both the vertebrae and second dorsal-fin spines were compared. Vertebral growth increments were visualized using a modified histological staining technique, which was verified as appropriate for obtaining age estimates. Marginal increment analysis of vertebrae verified the increment periodicity, suggesting annual band deposition. Based on increased precision and accuracy of age estimates, as well as more biologically realistic parameters generated in growth models, the current study found that vertebrae provided a more reliable and accurate means of estimating age in S. acanthias than the second dorsal-fin spine. Age estimates obtained from vertebrae ranged from <1 year-old to 17 years for male and 24 years for female S. acanthias. The two-parameter von Bertalanffy growth model fit to vertebrae-derived age estimates produced parameters of L∞ = 94·23 cm and k = 0·11 for males and L∞ = 100·76 cm and k = 0·12 for females. While these growth parameters differed from those previously reported for S. acanthias in the western North Atlantic Ocean, the causes of such differences were beyond the scope of the current study and remain to be determined. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Verifying the functional ability of microstructured surfaces by model-based testing
NASA Astrophysics Data System (ADS)
Hartmann, Wito; Weckenmann, Albert
2014-09-01
Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.
Evaluation of ride quality measurement procedures by subjective experiments using simulators
NASA Technical Reports Server (NTRS)
Klauder, L. T., Jr.; Clevenson, S. A.
1975-01-01
Since ride quality is, by definition, a matter of passenger response, there is need for a qualification procedure (QP) for establishing the degree to which any particular ride quality measurement procedure (RQMP) does correlate with passenger responses. Once established, such a QP will provide very useful guidance for optimal adjustment of the various parameters which any given RQMP contains. A QP is proposed based on use of a ride motion simulator and on test subject responses to recordings of actual vehicle motions. Test subject responses are used to determine simulator gain settings for the individual recordings such as to make all of the simulated rides equally uncomfortable to the test subjects. Simulator platform accelerations vs. time are recorded with each ride at its equal discomfort gain setting. The equal discomfort platform acceleration recordings are then digitzed.
A Polymer-Dispersed Liquid Crystal-Based Dynamic Gain Equalizer
NASA Astrophysics Data System (ADS)
Barge, M.; Battarel, D.; de Bougrenet de La Tocnaye, J. L.
2005-08-01
This paper presents results obtained with a spatial light modulator (SLM) using a polymer-dispersed liquid-crystal (LC) material to provide dynamic gain equalization (DGE) for wavelength-division multiplexing (WDM) networks. We show the benefit of using a nonchannelized approach to adjust some physical parameters such as the ripple and the maximum obtainable attenuation slope for the spectra to be equalized. Particular attention is paid here to polarization dependence that can result from parasitic anisotropic multiple path interferences as well as induced anisotropy due to a planar transverse field when using a free-space SLM structure. In this frame, we demonstrate an original approach using a depolarizing prism that is only appropriate to such choice of material and that mitigates these effects. Finally, material engineering to widen the operating temperature range is also shortly presented in this paper.
Optimal design of a touch trigger probe
NASA Astrophysics Data System (ADS)
Li, Rui-Jun; Xiang, Meng; Fan, Kuang-Chao; Zhou, Hao; Feng, Jian
2015-02-01
A tungsten stylus with a ruby ball tip was screwed into a floating plate, which was supported by four leaf springs. The displacement of the tip caused by the contact force in 3D could be transferred into the tilt or vertical displacement of a plane mirror mounted on the floating plate. A quadrant photo detector (QPD) based two dimensional angle sensor was used to detect the tilt or the vertical displacement of the plane mirror. The structural parameters of the probe are optimized for equal sensitivity and equal stiffness in a displacement range of +/-5 μm, and a restricted horizontal size of less than 40 mm. Simulation results indicated that the stiffness was less than 0.6 mN/μm and equal in 3D. Experimental results indicated that the probe could be used to achieve a resolution of 1 nm.
Dark Energy and Key Physical Parameters of Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.
We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.
Elastohydrodynamic lubrication theory
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1982-01-01
The isothermal elastohydrodynamic lubrication (EHL) of a point contact was analyzed numerically by simultaneously solving the elasticity and Reynolds equations. In the elasticity analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure was applied over each area. In the numerical analysis of the Reynolds equation, a phi analysis (where phi is equal to the pressure times the film thickness to the 3/2 power) was used to help the relaxation process. The EHL point contact analysis is applicable for the entire range of elliptical parameters and is valid for any combination of rolling and sliding within the contact.
2016-01-27
bias of the estimator U, bias(U), the difference between this estimator’s expected value and the true value of the parameter being estimated, i.e...biasðUÞ ¼ EðU yÞ ¼ EðUÞ y ð9Þ Based on the above definition, an unbiased estimator is one whose expected value is equal to the true value being...equal to 0.94 (p- value < 0.05), if we con- sider the pure ER network model as our baseline, and 0.31 (p- value < 0.05), if we control for the home
Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart
Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen
1992-01-01
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.
VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras
NASA Technical Reports Server (NTRS)
Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike
2015-01-01
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.
Thin film conductors for self-equalizing cables
NASA Astrophysics Data System (ADS)
Owen, G.; Trutna, W. R.; Orsley, T. J.; Lucia, F.; Daly, C. B.
2017-10-01
Self-equalizing cables using hollow conductors with wall thickness less than the skin depth were proposed in 1929. However, they do not appear ever to have been widely used, although the idea has resurfaced and been refined from time to time. In the early 2000's, self-equalizing conductors consisting of solid magnetic steel cores coated with silver were developed by W.L. Gore, and used in their 2.5 Gb/s "Eye-Opener" cables, although higher speed versions never appeared. We have revived the original 1929 idea, proposing to use glass as a solid insulating core. This technology can potentially work at frequencies of many 10's of GHz. Possible uses include short range GHz links such as USB and Thunderbolt, and intra-rack interconnections in data centers. Our feasibility experiments have validated the principle. Copper coated glass fibers can, in principle, be manufactured, but in these tests, the conductors were capillaries internally coated with silver as these are easily obtainable, relatively inexpensive and serve to test the concept. The performance of these experimental twin lead cables corresponds to calculations, confirming the general principle. By calculation, we have compared the performance of cables made from copper-on-insulator conductors to that of similar cables made with solid copper conductors, and verified that copper-on-insulator cables have significantly less frequency dependent loss. We have also made and tested cables with copper on PEEK conductors as surrogates for copper on glass fiber.
Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative
NASA Astrophysics Data System (ADS)
Owolabi, Kolade M.
2018-01-01
In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter.
Simulation of periodically focused, adiabatic thermal beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Akylas, T. R.; Barton, T. J.
2012-12-21
Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam ismore » found be stable in the parameter regime where the simulations are performed.« less
X-33 LH2 Tank Failure Investigation Findings
NASA Technical Reports Server (NTRS)
Niedermeyer, Mindy; Clinton, R. G., Jr. (Technical Monitor)
2000-01-01
This presentation focuses on the tank history, test objectives, failure description, investigation and conclusions. The test objectives include verify structural integrity at 105% expected flight load limit varying the following parameters: cryogenic temperature; internal pressure; and mechanical loading. The Failure description includes structural component of the aft body, quad-lobe design, and sandwich - honeycomb graphite epoxy construction.
A general multiscroll Lorenz system family and its realization via digital signal processors.
Yu, Simin; Lü, Jinhu; Tang, Wallace K S; Chen, Guanrong
2006-09-01
This paper proposes a general multiscroll Lorenz system family by introducing a novel parameterized nth-order polynomial transformation. Some basic dynamical behaviors of this general multiscroll Lorenz system family are then investigated, including bifurcations, maximum Lyapunov exponents, and parameters regions. Furthermore, the general multiscroll Lorenz attractors are physically verified by using digital signal processors.
NASA Technical Reports Server (NTRS)
Sidney, T.; Aylott, B.; Christensen, N.; Farr, B.; Farr, W.; Feroz, F.; Gair, J.; Grover, K.; Graff, P.; Hanna, C.;
2014-01-01
The problem of reconstructing the sky position of compact binary coalescences detected via gravitational waves is a central one for future observations with the ground-based network of gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for sky localization have been independently developed. They can be divided in two broad categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all the parameters of a source, including sky position, and "triangulation-based" techniques, which exploit the data products from the search stage of the analysis to provide an almost real-time approximation of the posterior probability density function of the sky location of a detection candidate. These techniques have previously been applied to data collected during the last science runs of gravitational-wave detectors operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self consistency of parameter estimation methods and carrying out fair comparisons between different algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied to parameter estimation problems other than sky localization. We apply these methods to two existing sky localization techniques representing the two above-mentioned categories, using a set of simulated inspiralonly signals from compact binary systems with a total mass of equal to or less than 20M solar mass and nonspinning components. We compare the relative advantages and costs of the two techniques and show that sky location uncertainties are on average a factor approx. equals 20 smaller for fully coherent techniques than for the specific variant of the triangulation-based technique used during the last science runs, at the expense of a factor approx. equals 1000 longer processing time.
Hamzian, Nima; Hashemi, Maryam; Ghorbani, Mahdi; Bahreyni Toosi, Mohammad Hossein; Ramezani, Mohammad
2017-01-01
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA ± PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were simultaneously synthesized and encapsulated with Gemcitabine (Gem) in PLGA ± PEG copolymers via W/O/W double emulsification method. Optimum size and encapsulation efficiency for radiosensitization, hyperthermia and diagnostic applications were considered and the preparation parameters systematically were investigated and physicochemical characteristics of optimized nanoparticle were studied. Then SPION-PLGA and PLGA-Gem nanoparticles were prepared with the same optimized parameters and the toxicity of these nanoparticles was compared with Gemcitabine in human breast cancer cell line (MCF-7). The optimum preparation parameters were obtained with Gem/polymer equal to 0.04, SPION/polymer equal to 0.8 and 1% sucrose per 20 mg of polymer. The hydrodynamic diameters of all nanoparticles were under 200 nm. Encapsulation efficiency was adjusted between 13.2% to 16.1% for Gemcitabine and 48.2% to 50.1% for SPION. In-vitro Gemcitabine release kinetics had controlled behavior. Enhancement ratios for PLGA-Gem and SPION-PLGA-Gem at concentration of nanoparticles equal to IC50 of Gemcitabine were 1.53 and 1.89 respectively. The statistical difference was significant ( p -value = 0.006 for SPION-PLGA-Gem and p -value = 0.015 for PLGA-Gem compared with Gemcitabine). In conclusion, we have successfully developed a Gemcitabine loaded super paramagnetic PLGA-Iron Oxide multifunctional drag delivery system. Future work includes in-vitro and in-vivo investigation of radiosensitization and other application of these nanoparticles.
Wang, X; Liebau, F
2007-04-01
In the present bond-valence model (BVM), the bond-valence parameters r(0) and b are, in general, supposed to be constant for each A-X pair and equal to 0.37 A for all A-X pairs, respectively. For [A(i)(X(j))(n)] coordination polyhedra that do not deviate strongly from regularity, these suppositions are well fulfilled and calculated values for the bond-valence sums (BVS)(i) are nearly equal to the whole-number values of the stoichiometric valence. However, application of the BVM to 2591 [L(i)(X(j))(n)] polyhedra, where L are p-block cations, i.e. cations of the 13th to 17th group of the periodic system of elements, with one lone electron pair and X = O(-II), S(-II) and Se(-II), shows that r(0i) values of individual [LX(n)] polyhedra are correlated with the absolute value /Phi(i)/ of an eccentricity parameter, Phi(i), which is higher for more distorted [LX(n)] polyhedra. As a consequence, calculated (BVS)(i) values for these polyhedra are also correlated with /Phi(i)/, rather than being numerically equal to the stoichiometric valence of L. This is interpreted as the stereochemical influence of the lone electron pair of L. It is shown that the values of the correlation parameters and the R(2) values of the correlation equations depend on the position of the L cation in the periodic system of elements, if the correlations are assumed to be linear. This observation suggests that (BVS)(L) describes a chemical quantity that is different from the stoichiometric valence of L.
Pascotini, Fernanda dos Santos; Ribeiro, Vanessa Veis; Christmann, Mara Keli; Tomasi, Lidia Lis; Dellazzana, Amanda Alves; Haeffner, Leris Salete Bonfanti; Cielo, Carla Aparecida
2016-01-01
Relate respiratory muscle strength (RMS), sound pressure (SP) level, and vocal acoustic parameters to the abdominal circumference (AC) and nutritional status of children. This is a cross-sectional study. Eighty-two school children aged between 8 and 10 years, grouped by nutritional states (eutrophic, overweight, or obese) and AC percentile (≤25, 25-75, and ≥75), were included in the study. Evaluations of maximal inspiratory pressure (IPmax) and maximal expiratory pressure (EPmax) were conducted using the manometer and SP and acoustic parameters through the Multi-Dimensional Voice Program Advanced (KayPENTAX, Montvale, New Jersey). There were significant differences (P < 0.05) in the EPmax of children with AC between the 25th and 75th percentiles (72.4) and those less than or equal to the 25th percentile (61.9) and in the SP of those greater than or equal to the 75th percentile (73.4) and less than or equal to the 25th percentile (66.6). The IPmax, EPmax, SP levels, and acoustic variables were not different in relation to the nutritional states of the children. There was a strong and positive correlation between the coefficient of amplitude perturbations (shimmer), the harmonics-to-noise ratio and the variation of the fundamental frequency, respectively, 0.79 and 0.71. RMS and acoustic voice characteristics in children do not appear to be influenced by nutritional states, and respiratory pressure does not interfere with acoustic voice characteristics. However, localized fat, represented by the AC, alters the EPmax and the SP, each of which increases as the AC increases. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li
2015-05-01
In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.
New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise
NASA Astrophysics Data System (ADS)
Pal'a, Jozef; Ušák, Elemír
2016-03-01
A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable.
NASA Technical Reports Server (NTRS)
Shantaram, S. Pai; Gyekenyesi, John P.
1989-01-01
The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Innovation and the future of advanced dosimetry: 2D to 5D
NASA Astrophysics Data System (ADS)
Oldham, Mark
2017-05-01
Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.
Materials Safety - Not just Flammability and Toxic Offgassing
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2007-01-01
For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.
Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen
2017-12-01
A method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined. It consists of the mutual information value between the acquired TEM images of the sample and the Radon projections of the segmented volumes. In this work, it has been proved that this new mutual information parameter and the Jaccard coefficient between the segmented volume and the ideal one are correlated. In addition, the results of the new parameter are compared to the results obtained from another validated method to select the optimum segmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles
NASA Astrophysics Data System (ADS)
Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.
2018-03-01
A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.
[Study on solubility of Chinese herbal compound by solubility parameter].
Wu, Dezhi; Chen, Lihua; Wang, Sen; Zhu, Weifeng; Guan, Yongmei
2010-02-01
To demonstrate the solubility of Chinese herbal compound with solubility parameters. The solubility parameters of Liangfu effective components and Liangfu compound were determined by inverse gas chromatograph (IGC) and group contribution. Hansen ball was plotting by HSPiP, which could be used to investigate the solubility of Liangfu effective components and Liangfu compound in different solvents. And the results were verified by approximate solubility. Liangfu effective components and Liangfu compound could be dissolved in chloroform, ethyl acetate, acetone, octanol and ether, and were slightly soluble in glycerol, methanol, ethanol and propanediol, but could not be dissolved in water. They were all liposoluble, and the results were the same as the test results of the approximate solubility. The solubility of Chinese herbal compound can be expressed by solubility parameters, and it is accurate, convenient and visual.
Dark energy and key physical parameters of clusters of galaxies
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Chernin, A. D.
2012-04-01
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.
Calculation of near optimum design of InP/In(0.53)Ga(0.47)As monolithic tandem solar cells
NASA Technical Reports Server (NTRS)
Renaud, P.; Vilela, M. F.; Freundlich, A.; Medelci, N.; Bensaoula, A.
1994-01-01
An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.
Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field
NASA Technical Reports Server (NTRS)
Konkov, L. E.; Prants, S. V.
1996-01-01
Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.
Robust stability for stochastic bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Shu, H. S.; Lv, Z. W.; Wei, G. L.
2008-02-01
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural network is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. By employing a Lyapunov-Krasovskii functional and conducting the stochastic analysis, a linear matrix inequality matrix inequality (LMI) approach is developed to derive the stability criteria. The proposed criteria can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn
With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaoticmore » complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.« less
NASA Astrophysics Data System (ADS)
Ji, Liang-Bo; Chen, Fang
2017-07-01
Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.
Structural optimization of the Halbach array PM rim thrust motor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.
NASA Astrophysics Data System (ADS)
Naseem, Anum; Shafiq, Anum; Zhao, Lifeng; Farooq, M. U.
2018-06-01
This article addresses third grade nanofluidic flow instigated by riga plate and Cattaneo-Christov theory is adopted to investigate thermal and mass diffusions with the incorporation of newly eminent zero nanoparticles mass flux condition. The governing system of equations is nondimensionalized through relevant similarity transformations and significatory findings are attained by using optimal homotopy analysis method. The behaviors of affecting parameters for velocity, temperature and concentration profiles are depicted graphically and also verified through three dimensional patterns for some parameters. Values of skin friction coefficient and Nusselt number with the apposite discussion have been recorded. The current results reveal that temperature and concentration profiles experience decline when thermal and concentration relaxation parameters are augmented respectively.
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
Erosion in radial inflow turbines. Volume 1: Erosive particle trajectory similarity
NASA Technical Reports Server (NTRS)
Clevenger, W. B., Jr.; Tabakoff, W.
1974-01-01
Similarity parameters from the equations of motion of particles immersed in a gas flow are derived. These parameters relate the particles which follow a certain trajectory in an equivalent cold gas turbine to particles that will follow the same trajectory in a real hot gas turbine. Numerical solutions of the trajectories that particles follow in the vortex and rotor regions of a radial inflow turbine are used to verify the range of Reynolds numbers in which the derived similarity parameters are applicable. In addition, an example is presented of typical particle sizes that can be observed in high speed photographic data collection and at the same time simulate the trajectories of particles in a real hot gas turbine.
A system study for the application of microcomputers to research flight test techniques
NASA Technical Reports Server (NTRS)
Smyth, R. K.
1983-01-01
The onboard simulator is a three degree of freedom aircraft behavior simulator which provides parameters used by the interception procedure. These parameters can be used for verifying closed loop performance before flight. The air to air intercept mode is a software package integrated in the simulation process that generates a target motion and performs a tracking procedure that predicts the most likely next target position, for a defined time step. This procedure also updates relative position parameters and gives adequate fire commands. A microcomputer based on an aircraft spin warning system periodically samples the assymetric thrust and yaw rate of an airplane and then issues voice synthesized warnings and /or suggests to the ilot how to respond to the situation.
Reference dosimetry study for 3 MEV electron beam accelerator in malaysia
NASA Astrophysics Data System (ADS)
Ali, Noriah Mod; Sunaga, Hiromi; Tanaka, Ryuichi
1995-09-01
An effective quality assurance programme is initiated for the use of the electron beam with energies up to 3 MeV. The key element of the programme is the establishment of a relationship between the standardised beam to the routine technique which is employed to verify the beam parameter. A total absorbing calorimeter was adopted as a suitable reference system and when used in combination with the electron current densitymeter (ECD) will enable to determine the mean energy for electron with energies between 1 to 3 MeV. An appropriate method of transfering the standard parameter is studied and the work that is expected to optimise the accuracy attainable with routine check-up of the irradiation parameter are presented.
On adaptive modified projective synchronization of a supply chain management system
NASA Astrophysics Data System (ADS)
Tirandaz, Hamed
2017-12-01
In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.
Lang, Jun
2012-01-30
In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.
Cycle 24 HST+COS Target Acquisition Monitor Summary
NASA Astrophysics Data System (ADS)
Penton, Steven V.; White, James
2018-06-01
HST/COS calibration program 14847 (P14857) was designed to verify that all three COS Target Acquisition (TA) modes were performing nominally during Cycle 24. The program was designed not only to determine if any of the COS TA flight software (FSW) patchable constants need updating but also to determine the values of any required parameter updates. All TA modes were determined to be performing nominally during the Cycle 24 calendar period of October 1, 2016 - October 1, 2017. No COS SIAF, TA subarray, or FSW parameter updates were required as a result of this program.
A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth
NASA Astrophysics Data System (ADS)
Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.
2018-04-01
A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).
Bifurcation analysis of dengue transmission model in Baguio City, Philippines
NASA Astrophysics Data System (ADS)
Libatique, Criselda P.; Pajimola, Aprimelle Kris J.; Addawe, Joel M.
2017-11-01
In this study, we formulate a deterministic model for the transmission dynamics of dengue fever in Baguio City, Philippines. We analyzed the existence of the equilibria of the dengue model. We computed and obtained conditions for the existence of the equilibrium states. Stability analysis for the system is carried out for disease free equilibrium. We showed that the system becomes stable under certain conditions of the parameters. A particular parameter is taken and with the use of the Theory of Centre Manifold, the proposed model demonstrates a bifurcation phenomenon. We performed numerical simulation to verify the analytical results.
Multifacet structure of observed reconstructed integral images.
Martínez-Corral, Manuel; Javidi, Bahram; Martínez-Cuenca, Raúl; Saavedra, Genaro
2005-04-01
Three-dimensional images generated by an integral imaging system suffer from degradations in the form of grid of multiple facets. This multifacet structure breaks the continuity of the observed image and therefore reduces its visual quality. We perform an analysis of this effect and present the guidelines in the design of lenslet imaging parameters for optimization of viewing conditions with respect to the multifacet degradation. We consider the optimization of the system in terms of field of view, observer position and pupil function, lenslet parameters, and type of reconstruction. Numerical tests are presented to verify the theoretical analysis.
Borges, F S; Protachevicz, P R; Lameu, E L; Bonetti, R C; Iarosz, K C; Caldas, I L; Baptista, M S; Batista, A M
2017-06-01
We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-fire neurons. We study how spiking or bursting synchronous behaviour appears as a function of the coupling strength and the probability of connections, by constructing parameter spaces that identify these synchronous behaviours from measurements of the inter-spike interval and the calculation of the order parameter. Moreover, we verify the robustness of synchronisation by applying an external perturbation to each neuron. The simulations show that bursting synchronisation is more robust than spike synchronisation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannam, Mark; School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA; Husa, Sascha
We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each black hole is {chi}{sub i}=S{sub i}/M{sub i}{sup 2}(set-membership sign)[-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M{sub 2}/M{sub 1}(set-membership sign)[1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties ofmore » the final merged black hole, and compare the last 8-10 gravitational-wave cycles up to M{omega}=0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins {chi}{sub i}>-0.75. When high-order amplitude corrections are included, the PN amplitude of the (l=2, m={+-}2) modes is larger than the numerical relativity amplitude by between 2-4%.« less
Kinetics of azathioprine metabolism in fresh human blood.
Chrzanowska, M; Hermann, T; Gapińska, M
1985-01-01
Azathioprine (AZA) is transformed in the whole fresh human blood in vitro to 6-mercaptopurine (6-MP). The rate of the above reaction was followed as a function of time at 25, 30 and 37 degrees C. Pseudo-first-order rate constants and thermodynamic parameters were calculated. The statistical evaluation of the parameters calculated was provided. Half-life time of 6-MP formation in blood from AZA at e.g. 37 degrees C was equal to 28.9 +/- 2.8 min.
Isotopic Ratio, Isotonic Ratio, Isobaric Ratio and Shannon Information Uncertainty
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Wei, Hui-Ling
2014-11-01
The isoscaling and the isobaric yield ratio difference (IBD) probes, both of which are constructed by yield ratio of fragment, provide cancelation of parameters. The information entropy theory is introduced to explain the physical meaning of the isoscaling and IBD probes. The similarity between the isoscaling and IBD results is found, i.e., the information uncertainty determined by the IBD method equals to β - α determined by the isoscaling (α (β) is the parameter fitted from the isotopic (isotonic) yield ratio).
Automated Structural Optimization System (ASTROS). Volume 1. Theoretical Manual
1988-12-01
corresponding frequency list are given by Equation C-9. The second set of parameters is the frequency list used in solving Equation C-3 to obtain the response...vector (u(w)). This frequency list is: w - 2*fo, 2wfi, 2wf2, 2wfn (C-20) The frequency lists (^ and w are not necessarily equal. While setting...alternative methods are used to input the frequency list u. For the first method, the frequency list u is input via two parameters: Aff (C-21
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept
NASA Technical Reports Server (NTRS)
Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David
2015-01-01
In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.
Assessment scale of risk for surgical positioning injuries 1
Lopes, Camila Mendonça de Moraes; Haas, Vanderlei José; Dantas, Rosana Aparecida Spadoti; de Oliveira, Cheila Gonçalves; Galvão, Cristina Maria
2016-01-01
ABSTRACT Objective: to build and validate a scale to assess the risk of surgical positioning injuries in adult patients. Method: methodological research, conducted in two phases: construction and face and content validation of the scale and field research, involving 115 patients. Results: the Risk Assessment Scale for the Development of Injuries due to Surgical Positioning contains seven items, each of which presents five subitems. The scale score ranges between seven and 35 points in which, the higher the score, the higher the patient's risk. The Content Validity Index of the scale corresponded to 0.88. The application of Student's t-test for equality of means revealed the concurrent criterion validity between the scores on the Braden scale and the constructed scale. To assess the predictive criterion validity, the association was tested between the presence of pain deriving from surgical positioning and the development of pressure ulcer, using the score on the Risk Assessment Scale for the Development of Injuries due to Surgical Positioning (p<0.001). The interrater reliability was verified using the intraclass correlation coefficient, equal to 0.99 (p<0.001). Conclusion: the scale is a valid and reliable tool, but further research is needed to assess its use in clinical practice. PMID:27579925
Enforcing realizability in explicit multi-component species transport
McDermott, Randall J.; Floyd, Jason E.
2015-01-01
We propose a strategy to guarantee realizability of species mass fractions in explicit time integration of the partial differential equations governing fire dynamics, which is a multi-component transport problem (realizability requires all mass fractions are greater than or equal to zero and that the sum equals unity). For a mixture of n species, the conventional strategy is to solve for n − 1 species mass fractions and to obtain the nth (or “background”) species mass fraction from one minus the sum of the others. The numerical difficulties inherent in the background species approach are discussed and the potential for realizability violations is illustrated. The new strategy solves all n species transport equations and obtains density from the sum of the species mass densities. To guarantee realizability the species mass densities must remain positive (semidefinite). A scalar boundedness correction is proposed that is based on a minimal diffusion operator. The overall scheme is implemented in a publicly available large-eddy simulation code called the Fire Dynamics Simulator. A set of test cases is presented to verify that the new strategy enforces realizability, does not generate spurious mass, and maintains second-order accuracy for transport. PMID:26692634
Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave
NASA Astrophysics Data System (ADS)
Wen, Biyang; Li, Ke
2016-08-01
Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.
Equal-area criterion in power systems revisited
NASA Astrophysics Data System (ADS)
Sun, Yong; Ma, Jinpeng; Kurths, Jürgen; Zhan, Meng
2018-02-01
The classic equal-area criterion (EAC) is of key importance in power system analysis, and provides a powerful, pictorial and quantitative means of analysing transient stability (i.e. the system's ability to maintain stable operation when subjected to a large disturbance). Based on the traditional EAC, it is common sense in engineering that there is a critical cleaning time (CCT); namely, a power system is stable (unstable) if a fault is cleared before (after) this CCT. We regard this form of CCT as bipartite. In this paper, we revisit the EAC theory and, surprisingly, find different kinds of transient stability behaviour. Based on these analyses, we discover that the bipartite CCT is only one type among four major types, and, actually, the forms of CCT can be diversified. In particular, under some circumstances, a system may have no CCT or show a periodic CCT. Our theoretical analysis is verified by numerical simulations in a single-machine-infinite-bus system and also in multi-machine systems. Thus, our study provides a panoramic framework for diverse transient stability behaviour in power systems and also may have a significant impact on applications of multi-stability in various other systems, such as neuroscience, climatology or photonics.
The evolution of Zipf's law indicative of city development
NASA Astrophysics Data System (ADS)
Chen, Yanguang
2016-02-01
Zipf's law of city-size distributions can be expressed by three types of mathematical models: one-parameter form, two-parameter form, and three-parameter form. The one-parameter and one of the two-parameter models are familiar to urban scientists. However, the three-parameter model and another type of two-parameter model have not attracted attention. This paper is devoted to exploring the conditions and scopes of application of these Zipf models. By mathematical reasoning and empirical analysis, new discoveries are made as follows. First, if the size distribution of cities in a geographical region cannot be described with the one- or two-parameter model, maybe it can be characterized by the three-parameter model with a scaling factor and a scale-translational factor. Second, all these Zipf models can be unified by hierarchical scaling laws based on cascade structure. Third, the patterns of city-size distributions seem to evolve from three-parameter mode to two-parameter mode, and then to one-parameter mode. Four-year census data of Chinese cities are employed to verify the three-parameter Zipf's law and the corresponding hierarchical structure of rank-size distributions. This study is revealing for people to understand the scientific laws of social systems and the property of urban development.
Software for computerised analysis of cardiotocographic traces.
Romano, M; Bifulco, P; Ruffo, M; Improta, G; Clemente, F; Cesarelli, M
2016-02-01
Despite the widespread use of cardiotocography in foetal monitoring, the evaluation of foetal status suffers from a considerable inter and intra-observer variability. In order to overcome the main limitations of visual cardiotocographic assessment, computerised methods to analyse cardiotocographic recordings have been recently developed. In this study, a new software for automated analysis of foetal heart rate is presented. It allows an automatic procedure for measuring the most relevant parameters derivable from cardiotocographic traces. Simulated and real cardiotocographic traces were analysed to test software reliability. In artificial traces, we simulated a set number of events (accelerations, decelerations and contractions) to be recognised. In the case of real signals, instead, results of the computerised analysis were compared with the visual assessment performed by 18 expert clinicians and three performance indexes were computed to gain information about performances of the proposed software. The software showed preliminary performance we judged satisfactory in that the results matched completely the requirements, as proved by tests on artificial signals in which all simulated events were detected from the software. Performance indexes computed in comparison with obstetricians' evaluations are, on the contrary, not so satisfactory; in fact they led to obtain the following values of the statistical parameters: sensitivity equal to 93%, positive predictive value equal to 82% and accuracy equal to 77%. Very probably this arises from the high variability of trace annotation carried out by clinicians. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
On the Statistical Analysis of X-ray Polarization Measurements
NASA Technical Reports Server (NTRS)
Strohmayer, T. E.; Kallman, T. R.
2013-01-01
In many polarimetry applications, including observations in the X-ray band, the measurement of a polarization signal can be reduced to the detection and quantification of a deviation from uniformity of a distribution of measured angles of the form alpha plus beta cosine (exp 2)(phi - phi(sub 0) (0 (is) less than phi is less than pi). We explore the statistics of such polarization measurements using both Monte Carlo simulations as well as analytic calculations based on the appropriate probability distributions. We derive relations for the number of counts required to reach a given detection level (parameterized by beta the "number of sigma's" of the measurement) appropriate for measuring the modulation amplitude alpha by itself (single interesting parameter case) or jointly with the position angle phi (two interesting parameters case). We show that for the former case when the intrinsic amplitude is equal to the well known minimum detectable polarization (MDP) it is, on average, detected at the 3sigma level. For the latter case, when one requires a joint measurement at the same confidence level, then more counts are needed, by a factor of approximately equal to 2.2, than that required to achieve the MDP level. We find that the position angle uncertainty at 1sigma confidence is well described by the relation sigma(sub pi) equals 28.5(degrees) divided by beta.
Superslow relaxation in identical phase oscillators with random and frustrated interactions
NASA Astrophysics Data System (ADS)
Daido, H.
2018-04-01
This paper is concerned with the relaxation dynamics of a large population of identical phase oscillators, each of which interacts with all the others through random couplings whose parameters obey the same Gaussian distribution with the average equal to zero and are mutually independent. The results obtained by numerical simulation suggest that for the infinite-size system, the absolute value of Kuramoto's order parameter exhibits superslow relaxation, i.e., 1/ln t as time t increases. Moreover, the statistics on both the transient time T for the system to reach a fixed point and the absolute value of Kuramoto's order parameter at t = T are also presented together with their distribution densities over many realizations of the coupling parameters.
Wu, Shuang-Qing
2008-03-28
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.
Noniterative estimation of a nonlinear parameter
NASA Technical Reports Server (NTRS)
Bergstroem, A.
1973-01-01
An algorithm is described which solves the parameters X = (x1,x2,...,xm) and p in an approximation problem Ax nearly equal to y(p), where the parameter p occurs nonlinearly in y. Instead of linearization methods, which require an approximate value of p to be supplied as a priori information, and which may lead to the finding of local minima, the proposed algorithm finds the global minimum by permitting the use of series expansions of arbitrary order, exploiting an a priori knowledge that the addition of a particular function, corresponding to a new column in A, will not improve the goodness of the approximation.
Investigations of large area electron beam diodes for excimer lasers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals asmore » a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.« less
Maxwell's equal area law for black holes in power Maxwell invariant
NASA Astrophysics Data System (ADS)
Li, Huai-Fan; Guo, Xiong-ying; Zhao, Hui-Hua; Zhao, Ren
2017-08-01
In this paper, we consider the phase transition of black hole in power Maxwell invariant by means of Maxwell's equal area law. First, we review and study the analogy of nonlinear charged black hole solutions with the Van der Waals gas-liquid system in the extended phase space, and obtain isothermal P- v diagram. Then, using the Maxwell's equal area law we study the phase transition of AdS black hole with different temperatures. Finally, we extend the method to the black hole in the canonical (grand canonical) ensemble in which charge (potential) is fixed at infinity. Interestingly, we find the phase transition occurs in the both ensembles. We also study the effect of the parameters of the black hole on the two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.
NASA Astrophysics Data System (ADS)
Oyarbide, E.; Bernal, C.; Molina, P.; Jiménez, L. A.; Gálvez, R.; Martínez, A.
2016-01-01
Ultracapacitors are low voltage devices and therefore, for practical applications, they need to be used in modules of series-connected cells. Because of the inherent manufacturing tolerance of the capacitance parameter of each cell, and as the maximum voltage value cannot be exceeded, the module requires inter-cell voltage equalization. If the intended application suffers repeated fast charging/discharging cycles, active equalization circuits must be rated to full power, and thus the module becomes expensive. Previous work shows that a series connection of several sets of paralleled ultracapacitors minimizes the dispersion of equivalent capacitance values, and also the voltage differences between capacitors. Thus the overall life expectancy is improved. This paper proposes a method to distribute ultracapacitors with a number partitioning-based strategy to reduce the dispersion between equivalent submodule capacitances. Thereafter, the total amount of stored energy and/or the life expectancy of the device can be considerably improved.
A successive overrelaxation iterative technique for an adaptive equalizer
NASA Technical Reports Server (NTRS)
Kosovych, O. S.
1973-01-01
An adaptive strategy for the equalization of pulse-amplitude-modulated signals in the presence of intersymbol interference and additive noise is reported. The successive overrelaxation iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficents during a training period for the minimization of the mean square error. With 2-cyclic and nonnegative Jacobi matrices substantial improvement is demonstrated in the rate of convergence over the commonly used gradient techniques. The Jacobi theorems are also extended to nonpositive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained for the special cases are possible for general channel characteristics. The technique is analytically demonstrated to decrease the mean square error at each iteration for a large range of parameter values for light or moderate intersymbol interference and for small intervals for general channels. Analytically, convergence of the relaxation algorithm was proven in a noisy environment and the coefficient variance was demonstrated to be bounded.
Adaptive image contrast enhancement using generalizations of histogram equalization.
Stark, J A
2000-01-01
This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.
Zajac, M
1977-01-01
General, k, and specific, k1 and k2, first-order rate constants for the parallel reaction of hydrolysis catalized by H+ ions were estimated for sulfadiazine (I), sulfamerazine (II), sulfadimidine (III), sulfaperine (IV) and sulfamethoxydiazine (V), hydrolyzed in 1 mole/dm3 HCl at 333, 343, 355 and 363 K. General first-order rate constants for the spontaneous hydrolysis of I--V in borate buffer pH 9.20 at 403, 411 and 418 K were also determined. Thermodynamic parameters of the reaction (delta Ha, deltaH not equal to, deltaS not equal to, deltaG not equal to and log A) were calculated. The effect of substituents in positions 4, 5 and 6 of the pyrimidine ring on the rate of hydrolysis was interpreted in terms of Hammett equation.
Cost Sharing in Public Universities: A Kenyan Case Study.
ERIC Educational Resources Information Center
Rodrigues, Anthony J.; Wandiga, Shem O.
1997-01-01
Presents an analysis of government policy on higher education finance in Kenya, outlines parameters of an appropriate tuition policy (cost recovery, equity, equal access, affordability, student loan program objectives), and provides a model for simulating loan program outcomes. Suggests several proposed policy and administrative reforms concerning…
Liwarska-Bizukojc, Ewa; Biernacki, Rafal
2010-10-01
In order to simulate biological wastewater treatment processes, data concerning wastewater and sludge composition, process kinetics and stoichiometry are required. Selection of the most sensitive parameters is an important step of model calibration. The aim of this work is to verify the predictability of the activated sludge model, which is implemented in BioWin software, and select its most influential kinetic and stoichiometric parameters with the help of sensitivity analysis approach. Two different measures of sensitivity are applied: the normalised sensitivity coefficient (S(i,j)) and the mean square sensitivity measure (delta(j)(msqr)). It occurs that 17 kinetic and stoichiometric parameters of the BioWin activated sludge (AS) model can be regarded as influential on the basis of S(i,j) calculations. Half of the influential parameters are associated with growth and decay of phosphorus accumulating organisms (PAOs). The identification of the set of the most sensitive parameters should support the users of this model and initiate the elaboration of determination procedures for the parameters, for which it has not been done yet. Copyright 2010 Elsevier Ltd. All rights reserved.
Preliminary tests of the electrostatic plasma accelerator
NASA Technical Reports Server (NTRS)
Aston, G.; Acker, T.
1990-01-01
This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.
Seasonal thermal energy storage in aquifers: Mathematical modeling studies in 1979
NASA Technical Reports Server (NTRS)
Tsang, C. F.
1980-01-01
A numerical model of water and heat flow in geologic media was developed, verified, and tested. The hydraulic parameters (transmittivity and storativity) and the location of a linear hydrologic barrier were simulated and compared with results from field experiments involving two injection-storage-recovery cycles. For both cycles, the initial simulated and observed temperatures agree (55c).
The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to measure environmental quality. The ETV p...
Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?
Gizak, Agnieszka; Rakus, Dariusz
2016-01-11
Molecular and cellular biology methodology is traditionally based on the reasoning called "the mechanistic explanation". In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems' complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.
ACPYPE - AnteChamber PYthon Parser interfacE.
Sousa da Silva, Alan W; Vranken, Wim F
2012-07-23
ACPYPE (or AnteChamber PYthon Parser interfacE) is a wrapper script around the ANTECHAMBER software that simplifies the generation of small molecule topologies and parameters for a variety of molecular dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3, and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at http://webapps.ccpn.ac.uk/acpype. We verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB; and by recalculating the structures for 5 protein-ligand complexes from the PDB. ACPYPE is a tool that simplifies the automatic generation of topology and parameters in different formats for different molecular mechanics programmes, including calculation of partial charges, while being object oriented for integration with other applications.
Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; ...
2016-05-23
The alloy Cu 25 Au 30 Zn 45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. We discovered this alloy by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructuresmore » are those predicted by the cofactor conditions. In order to verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolski, Jeffrey S.; Barlow, David B.; Macek, Robert J.
2011-01-01
Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improvedmore » model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.« less
Information and complexity measures in the interface of a metal and a superconductor
NASA Astrophysics Data System (ADS)
Moustakidis, Ch. C.; Panos, C. P.
2018-06-01
Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter Ψ (r) derived from the Ginzburg-Landau theory is used as an input together with experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter q ≃ 1, in agreement with previous work using a different model, where q ≃ 1.005.
A Semianalytical Analysis of Compressible Electrophoretic Cake Formation
NASA Astrophysics Data System (ADS)
Kambham, Kiran K. R.; Tuncay, Kagan; Corapcioglu, M. Yavuz
1995-05-01
Leaks in geomembrane liners of waste landfills and liquid impoundments cause chemical contaminants to leak into the subsurface environment. A mathematical model is presented to simulate electrophoretic sealing of impoundment leaks. The model describes the formation of a compressible clay cake because of electrical and gravitational forces. The model includes mass balance equations for the solid particles and liquid phase, modified Darcy's law in an electrical field, and Terzaghi's definition of effective stress. The formulation is presented in the Eulerian coordinates. The resulting second-order, nonlinear partial differential equation and the lower boundary condition are linearized to obtain an analytical solution for time-dependent settlement. After discretizing in time the analytical solution is applied to simulate compression of an accreting sediment. In the simulation of an accreting sediment, solid fluxes on either side of suspension/sediment interface are coupled using a no-jump condition. The velocity of a discrete particle in the suspension zone is assumed to be equal to the algebraic sum of electrophoretic and Stoke's settling velocities. An empirical relationship available in the literature is used to account for the effect of concentration on the velocity of solid particles in the suspension zone. The validity of the semianalytical approach is partially verified using an exact steady state solution for self-weight consolidation. The simulation results obtained for a set of material parameters are presented graphically. It is noted that the electrokinetic consolidation of sediment continues even after the completion of electrophoretic settling of all clay particles. An analysis reveals that the electrophoretic cake formation process is quite sensitive to voltage gradient and the coefficient of compressibility.
Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data
NASA Astrophysics Data System (ADS)
Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.
2018-02-01
Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.
For whom will the Bayesian agents vote?
NASA Astrophysics Data System (ADS)
Caticha, Nestor; Cesar, Jonatas; Vicente, Renato
2015-04-01
Within an agent-based model where moral classifications are socially learned, we ask if a population of agents behaves in a way that may be compared with conservative or liberal positions in the real political spectrum. We assume that agents first experience a formative period, in which they adjust their learning style acting as supervised Bayesian adaptive learners. The formative phase is followed by a period of social influence by reinforcement learning. By comparing data generated by the agents with data from a sample of 15000 Moral Foundation questionnaires we found the following. 1. The number of information exchanges in the formative phase correlates positively with statistics identifying liberals in the social influence phase. This is consistent with recent evidence that connects the dopamine receptor D4-7R gene, political orientation and early age social clique size. 2. The learning algorithms that result from the formative phase vary in the way they treat novelty and corroborative information with more conservative-like agents treating it more equally than liberal-like agents. This is consistent with the correlation between political affiliation and the Openness personality trait reported in the literature. 3. Under the increase of a model parameter interpreted as an external pressure, the statistics of liberal agents resemble more those of conservative agents, consistent with reports on the consequences of external threats on measures of conservatism. We also show that in the social influence phase liberal-like agents readapt much faster than conservative-like agents when subjected to changes on the relevant set of moral issues. This suggests a verifiable dynamical criterium for attaching liberal or conservative labels to groups.
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing
Vanommeslaeghe, K.; MacKerell, A. D.
2012-01-01
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.
Vanommeslaeghe, K; MacKerell, A D
2012-12-21
Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .
Adaptive multiregression in reproducing kernel Hilbert spaces: the multiaccess MIMO channel case.
Slavakis, Konstantinos; Bouboulis, Pantelis; Theodoridis, Sergios
2012-02-01
This paper introduces a wide framework for online, i.e., time-adaptive, supervised multiregression tasks. The problem is formulated in a general infinite-dimensional reproducing kernel Hilbert space (RKHS). In this context, a fairly large number of nonlinear multiregression models fall as special cases, including the linear case. Any convex, continuous, and not necessarily differentiable function can be used as a loss function in order to quantify the disagreement between the output of the system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. To this end, we demonstrate a way to calculate the subgradients of robust loss functions, suitable for the multiregression task. As it is by now well documented, when dealing with online schemes in RKHS, the memory keeps increasing with each iteration step. To attack this problem, a simple sparsification strategy is utilized, which leads to an algorithmic scheme of linear complexity with respect to the number of unknown parameters. A convergence analysis of the technique, based on arguments of convex analysis, is also provided. To demonstrate the capacity of the proposed method, the multiregressor is applied to the multiaccess multiple-input multiple-output channel equalization task for a setting with poor resources and nonavailable channel information. Numerical results verify the potential of the method, when its performance is compared with those of the state-of-the-art linear techniques, which, in contrast, use space-time coding, more antenna elements, as well as full channel information.
A method for fast automated microscope image stitching.
Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong
2013-05-01
Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.
Negative refraction in metamaterials based on dielectric spherical particles
NASA Astrophysics Data System (ADS)
Huang, T. C.; Wang, B. X.; Zhao, C. Y.
2018-07-01
Negative refraction (NR) metamaterials are featured with unique physical properties and potential to realize full control of electromagnetic waves, which have attracted much attention since the last decade. However, few researches focus on the realization of three-dimensional dielectric NR metamaterials in optic frequency, and the current design methods need further development. In this paper, a three-dimensional all-dielectric NR metamaterial with two NR bands has been realized based on proper excitation of electric and magnetic multipoles. It is also predicted that the coupling of magnetic dipole and electric dipole can lead to the NR bands in near-infrared frequencies, and NR in the visible frequencies can be achieved by the coupling of magnetic quadrupole and electric dipole. Band structures and equal-frequency surfaces of proposed metamaterial arranged in the periodic cubic lattice are solved by adopting the plane wave expansion method, and then the results verify the existence of these two NR frequency bands in periodic metamaterials. In this way, the characteristic parameters such as transmission and absorption of light in two NR bands are also analyzed. In the meantime, the finite-deference time-domain method is used to intuitively display the phenomenon of NR and investigate the effects of disorder in particle arrangement. Besides, it is found that the proposed metamaterials have fine robustness to the disorder in particle arrangement, and these two NR bands can be tuned by adjusting volume fraction. In brief, this work provides means for preliminary designing, profound analysis and intuitively exhibition of NR metamaterials based on dielectric particles.
Studying Stratospheric Temperature Variation with Cosmic Ray Measurements
NASA Astrophysics Data System (ADS)
Zhang, Xiaohang; He, Xiaochun
2015-04-01
The long term stratospheric cooling in recent decades is believed to be equally important as surface warming as evidence of influences of human activities on the climate system. Un- fortunatly, there are some discrepancies among different measurements of stratospheric tem- peratures, which could be partially caused by the limitations of the measurement techniques. It has been known for decades that cosmic ray muon flux is sensitive to stratospheric temperature change. Dorman proposed that this effect could be used to probe the tempera- ture variations in the stratophere. In this talk, a method for reconstructing stratospheric temperature will be discussed. We verify this method by comparing the stratospheric tem- perature measured by radiosonde with the ones derived from cosmic ray measurement at multiple locations around the globe.
Effective High-Frequency Permeability of Compacted Metal Powders
NASA Astrophysics Data System (ADS)
Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.
2018-03-01
We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.
Projection matrix acquisition for cone-beam computed tomography iterative reconstruction
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Shi, Wenlong; Zhang, Caixin; Gao, Zongzhao
2017-02-01
Projection matrix is an essential and time-consuming part in computed tomography (CT) iterative reconstruction. In this article a novel calculation algorithm of three-dimensional (3D) projection matrix is proposed to quickly acquire the matrix for cone-beam CT (CBCT). The CT data needed to be reconstructed is considered as consisting of the three orthogonal sets of equally spaced and parallel planes, rather than the individual voxels. After getting the intersections the rays with the surfaces of the voxels, the coordinate points and vertex is compared to obtain the index value that the ray traversed. Without considering ray-slope to voxel, it just need comparing the position of two points. Finally, the computer simulation is used to verify the effectiveness of the algorithm.
Main rotor six degree-of-freedom isolation system analysis
NASA Technical Reports Server (NTRS)
Eastman, L. B.
1981-01-01
The design requirements of the system have been defined and an isolator concept satisfies these requirements identified. Primary design objectives for the isolation system are 90% attenuation of all NP main rotor shaft loads at a weight penalty less than or equal to 1% of design gross weight. The configuration is sized for a UH-60A BLACK HAWK helicopter and its performance, risk, and system integration were evaluated through a series of parametric studies. Preliminary design was carried forward to insure that the design is practical and that the details of the integration of the isolator into the helicopter system are considered. Alternate ground and flight test demonstration programs necessary to verify the proposed isolator design are defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaver, Mark W.; Lanning, Donald D.
2010-02-01
The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum ofmore » the individual components equaling the measured values.« less
Multiparticle instability in a spin-imbalanced Fermi gas
NASA Astrophysics Data System (ADS)
Whitehead, T. M.; Conduit, G. J.
2018-01-01
Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.
Designing berthing mechanisms for international compatibility
NASA Technical Reports Server (NTRS)
Winch, John; Gonzalez-Vallejo, Juan J.
1991-01-01
The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.
Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P
2015-03-15
Recent studies have shown that it should be possible to control lipid bioavailability through food structural approaches. Nevertheless, the gastrointestinal-tract physiological conditions must also be considered. To get a better understanding of this phenomenon, we evaluated the effect of emulsification, as well as the use of sodium caseinate or chitosan, on the postprandial bioavailability of interesterified-lipids in O/W emulsions after oral gastric feeding Sprague-Dawley rats. We verified that emulsification may increase lipid absorption, as determined after feeding sodium-caseinate emulsions. However, this result could not be generalised. Interesterified-lipids that were emulsified with chitosan were equally absorbed as those contained in non-emulsified interesterified-lipids/distilled-water blends. Copyright © 2014. Published by Elsevier Ltd.
Information granules in image histogram analysis.
Wieclawek, Wojciech
2018-04-01
A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.
Venusian k(sub 2) Tidal Love Number from Magellan and PVO Tracking Data
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Yoder, C. F.
1996-01-01
The k(sub 2) potential ove number which scales the tidal deformation of Venus by the Sun has been estimated from Doppler tracking of Magellan and Pioneer Venus Orbiter (PVO) spacecraft data. The nominal range for k(sub 2) from theoretical models is 0.23(less than or equal to)k(sub 2)(less than or equal to)0.29 for a liquid iron core and about 0.17 if the iron core has solidified. Our best estimate of this parameter is k(sub 2) = 0.295 +/- 0.662 (2X formal {delta}) and supports the hypothesis that Venus core is solid.
Simple graph models of information spread in finite populations
Voorhees, Burton; Ryder, Bergerud
2015-01-01
We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call ‘single-link’ graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs. PMID:26064661
Calculation method for laser radar cross sections of rotationally symmetric targets.
Cao, Yunhua; Du, Yongzhi; Bai, Lu; Wu, Zhensen; Li, Haiying; Li, Yanhui
2017-07-01
The laser radar cross section (LRCS) is a key parameter in the study of target scattering characteristics. In this paper, a practical method for calculating LRCSs of rotationally symmetric targets is presented. Monostatic LRCSs for four kinds of rotationally symmetric targets (cone, rotating ellipsoid, super ellipsoid, and blunt cone) are calculated, and the results verify the feasibility of the method. Compared with the results for the triangular patch method, the correctness of the method is verified, and several advantages of the method are highlighted. For instance, the method does not require geometric modeling and patch discretization. The method uses a generatrix model and double integral, and its calculation is concise and accurate. This work provides a theory analysis for the rapid calculation of LRCS for common basic targets.
Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eigenbrodt, Julia; Menlove, Howard Olsen
2016-03-29
The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improvemore » the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.« less
Comparison of JET AVDE disruption data with M3D simulations and implications for ITER
Strauss, H.; Joffrin, E.; Riccardo, V.; ...
2017-10-02
Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less
Comparison of JET AVDE disruption data with M3D simulations and implications for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, H.; Joffrin, E.; Riccardo, V.
Nonlinear 3D MHD asymmetric vertical displacement disruption simulations have been performed using JET equilibrium reconstruction initial data. There were several experimentally measured quantities compared with the simulation. These include vertical displacement, halo current, toroidal current asymmetry, and toroidal rotation. The experimental data and the simulations are in reasonable agreement. Also compared was the correlation of the toroidal current asymmetry and the vertical displacement asymmetry. The Noll relation between asymmetric wall force and vertical current moment is verified in the simulations. Also verified is the toroidal flux asymmetry. Though, JET is a good predictor of ITER disruption behavior, JET and ITERmore » can be in different parameter regimes, and extrapolating from JET data can overestimate the ITER wall force.« less
Effects of consensus training on the reliability of auditory perceptual ratings of voice quality.
Iwarsson, Jenny; Reinholt Petersen, Niels
2012-05-01
This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held in memory common and more robust, which is of great importance to reduce the variability of auditory perceptual ratings. A prospective design with testing before and after training. Thirteen students of audiologopedics served as listening subjects. The ratings were made using a multidimensional protocol with four-point equal-appearing interval scales. The stimuli consisted of text reading by authentic dysphonic patients. The consensus training for each perceptual voice parameter included (1) definition, (2) underlying physiology, (3) presentation of carefully selected sound examples representing the parameter in three different grades followed by group discussions of perceived characteristics, and (4) practical exercises including imitation to make use of the listeners' proprioception. Intrarater reliability and agreement showed a marked improvement for intermittent aphonia but not for vocal fry. Interrater reliability was high for most parameters before training with a slight increase after training. Interrater agreement showed marked increases for most voice quality parameters as a result of the training. The results support the recommendation of specific consensus training, including use of a reference voice sample material, to calibrate, equalize, and stabilize the internal standards held in memory by the listeners. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
Dust particle radial confinement in a dc glow discharge.
Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E
2013-01-01
A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.
Inverse optimal self-tuning PID control design for an autonomous underwater vehicle
NASA Astrophysics Data System (ADS)
Rout, Raja; Subudhi, Bidyadhar
2017-01-01
This paper presents a new approach to path following control design for an autonomous underwater vehicle (AUV). A NARMAX model of the AUV is derived first and then its parameters are adapted online using the recursive extended least square algorithm. An adaptive Propotional-Integral-Derivative (PID) controller is developed using the derived parameters to accomplish the path following task of an AUV. The gain parameters of the PID controller are tuned using an inverse optimal control technique, which alleviates the problem of solving Hamilton-Jacobian equation and also satisfies an error cost function. Simulation studies were pursued to verify the efficacy of the proposed control algorithm. From the obtained results, it is envisaged that the proposed NARMAX model-based self-tuning adaptive PID control provides good path following performance even in the presence of uncertainty arising due to ocean current or hydrodynamic parameter.
Modal parameter identification using the log decrement method and band-pass filters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Wells, Valana
2011-10-01
This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.
Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.
2018-06-01
In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Arvind; Steed, Chad A; Pullum, Laura L
Compartmental models in epidemiology are widely used as a means to model disease spread mechanisms and understand how one can best control the disease in case an outbreak of a widespread epidemic occurs. However, a significant challenge within the community is in the development of approaches that can be used to rigorously verify and validate these models. In this paper, we present an approach to rigorously examine and verify the behavioral properties of compartmen- tal epidemiological models under several common modeling scenarios including birth/death rates and multi-host/pathogen species. Using metamorphic testing, a novel visualization tool and model checking, we buildmore » a workflow that provides insights into the functionality of compartmental epidemiological models. Our initial results indicate that metamorphic testing can be used to verify the implementation of these models and provide insights into special conditions where these mathematical models may fail. The visualization front-end allows the end-user to scan through a variety of parameters commonly used in these models to elucidate the conditions under which an epidemic can occur. Further, specifying these models using a process algebra allows one to automatically construct behavioral properties that can be rigorously verified using model checking. Taken together, our approach allows for detecting implementation errors as well as handling conditions under which compartmental epidemiological models may fail to provide insights into disease spread dynamics.« less
NASA Astrophysics Data System (ADS)
Liu, Lei; Li, Yaning
2018-07-01
A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.
Improving substructure identification accuracy of shear structures using virtual control system
NASA Astrophysics Data System (ADS)
Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui
2018-02-01
Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.
COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION FOR BANDED PROBABILITY DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gjerløw, E.; Mikkelsen, K.; Eriksen, H. K.
We investigate sets of random variables that can be arranged sequentially such that a given variable only depends conditionally on its immediate predecessor. For such sets, we show that the full joint probability distribution may be expressed exclusively in terms of uni- and bivariate marginals. Under the assumption that the cosmic microwave background (CMB) power spectrum likelihood only exhibits correlations within a banded multipole range, Δl{sub C}, we apply this expression to two outstanding problems in CMB likelihood analysis. First, we derive a statistically well-defined hybrid likelihood estimator, merging two independent (e.g., low- and high-l) likelihoods into a single expressionmore » that properly accounts for correlations between the two. Applying this expression to the Wilkinson Microwave Anisotropy Probe (WMAP) likelihood, we verify that the effect of correlations on cosmological parameters in the transition region is negligible in terms of cosmological parameters for WMAP; the largest relative shift seen for any parameter is 0.06σ. However, because this may not hold for other experimental setups (e.g., for different instrumental noise properties or analysis masks), but must rather be verified on a case-by-case basis, we recommend our new hybridization scheme for future experiments for statistical self-consistency reasons. Second, we use the same expression to improve the convergence rate of the Blackwell-Rao likelihood estimator, reducing the required number of Monte Carlo samples by several orders of magnitude, and thereby extend it to high-l applications.« less
Hand-Eye Calibration in Visually-Guided Robot Grinding.
Li, Wen-Long; Xie, He; Zhang, Gang; Yan, Si-Jie; Yin, Zhou-Ping
2016-11-01
Visually-guided robot grinding is a novel and promising automation technique for blade manufacturing. One common problem encountered in robot grinding is hand-eye calibration, which establishes the pose relationship between the end effector (hand) and the scanning sensor (eye). This paper proposes a new calibration approach for robot belt grinding. The main contribution of this paper is its consideration of both joint parameter errors and pose parameter errors in a hand-eye calibration equation. The objective function of the hand-eye calibration is built and solved, from which 30 compensated values (corresponding to 24 joint parameters and six pose parameters) are easily calculated in a closed solution. The proposed approach is economic and simple because only a criterion sphere is used to calculate the calibration parameters, avoiding the need for an expensive and complicated tracking process using a laser tracker. The effectiveness of this method is verified using a calibration experiment and a blade grinding experiment. The code used in this approach is attached in the Appendix.
[Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].
Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin
2017-07-01
In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.
A new chaotic communication scheme based on adaptive synchronization.
Xiang-Jun, Wu
2006-12-01
A new chaotic communication scheme using adaptive synchronization technique of two unified chaotic systems is proposed. Different from the existing secure communication methods, the transmitted signal is modulated into the parameter of chaotic systems. The adaptive synchronization technique is used to synchronize two identical chaotic systems embedded in the transmitter and the receiver. It is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical unified chaotic systems with unknown system parameters asymptotically synchronized; thus the parameter of the receiver system is identified. Then the recovery of the original information signal in the receiver is successfully achieved on the basis of the estimated parameter. It is noticed that the time required for recovering the information signal and the accuracy of the recovered signal very sensitively depends on the frequency of the information signal. Numerical results have verified the effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, H.; Liu, D.; Miu, Y.
2018-05-01
Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.
SU-E-T-473: A Patient-Specific QC Paradigm Based On Trajectory Log Files and DICOM Plan Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMarco, J; McCloskey, S; Low, D
Purpose: To evaluate a remote QC tool for monitoring treatment machine parameters and treatment workflow. Methods: The Varian TrueBeamTM linear accelerator is a digital machine that records machine axis parameters and MLC leaf positions as a function of delivered monitor unit or control point. This information is saved to a binary trajectory log file for every treatment or imaging field in the patient treatment session. A MATLAB analysis routine was developed to parse the trajectory log files for a given patient, compare the expected versus actual machine and MLC positions as well as perform a cross-comparison with the DICOM-RT planmore » file exported from the treatment planning system. The parsing routine sorts the trajectory log files based on the time and date stamp and generates a sequential report file listing treatment parameters and provides a match relative to the DICOM-RT plan file. Results: The trajectory log parsing-routine was compared against a standard record and verify listing for patients undergoing initial IMRT dosimetry verification and weekly and final chart QC. The complete treatment course was independently verified for 10 patients of varying treatment site and a total of 1267 treatment fields were evaluated including pre-treatment imaging fields where applicable. In the context of IMRT plan verification, eight prostate SBRT plans with 4-arcs per plan were evaluated based on expected versus actual machine axis parameters. The average value for the maximum RMS MLC error was 0.067±0.001mm and 0.066±0.002mm for leaf bank A and B respectively. Conclusion: A real-time QC analysis program was tested using trajectory log files and DICOM-RT plan files. The parsing routine is efficient and able to evaluate all relevant machine axis parameters during a patient treatment course including MLC leaf positions and table positions at time of image acquisition and during treatment.« less
Box codes of lengths 48 and 72
NASA Technical Reports Server (NTRS)
Solomon, G.; Jin, Y.
1993-01-01
A self-dual code length 48, dimension 24, with Hamming distance essentially equal to 12 is constructed here. There are only six code words of weight eight. All the other code words have weights that are multiples of four and have a minimum weight equal to 12. This code may be encoded systematically and arises from a strict binary representation of the (8,4;5) Reed-Solomon (RS) code over GF (64). The code may be considered as six interrelated (8,7;2) codes. The Mattson-Solomon representation of the cyclic decomposition of these codes and their parity sums are used to detect an odd number of errors in any of the six codes. These may then be used in a correction algorithm for hard or soft decision decoding. A (72,36;15) box code was constructed from a (63,35;8) cyclic code. The theoretical justification is presented herein. A second (72,36;15) code is constructed from an inner (63,27;16) Bose Chaudhuri Hocquenghem (BCH) code and expanded to length 72 using box code algorithms for extension. This code was simulated and verified to have a minimum distance of 15 with even weight words congruent to zero modulo four. The decoding for hard and soft decision is still more complex than the first code constructed above. Finally, an (8,4;5) RS code over GF (512) in the binary representation of the (72,36;15) box code gives rise to a (72,36;16*) code with nine words of weight eight, and all the rest have weights greater than or equal to 16.
NASA Astrophysics Data System (ADS)
Sreekala, P. S.; Honey, John; Aanandan, C. K.
2018-05-01
In this communication, the broadband artificial dielectric plasma behavior of Camphor Sulphonic acid doped Polyaniline (PANI-CSA) film at microwave frequencies is experimentally verified. The fabricated PANI-CSA films have been experimentally characterized by rectangular wave guide measurements for a broad range of frequencies within the X band and the effective material parameters, skin depth and conductivity have been extracted from the scattering parameters. Since most of the artificial materials available today are set up by consolidating two structured materials which independently demonstrates negative permittivity and negative permeability, this open another strategy for creation of compact single negative materials for microwave applications. The proposed doping can shift the double positive material parameter of the sample to single negative in nature.