Mattos, Diogo A; Silva, Marlon V; Gaspar, Luciane P; Castilho, Leda R
2015-08-20
In this work, changes in Vero cell cultivation methods have been employed in order to improve cell growth conditions to obtain higher viable cell densities and to increase viral titers. The propagation of the 17DD yellow fever virus (YFV) in Vero cells grown on Cytodex I microcarriers was evaluated in 3-L bioreactor vessels. Prior to the current changes, Vero cells were repeatedly displaying insufficient microcarrier colonization. A modified cultivation process with four changes has resulted in higher cell densities and higher virus titers than previously observed for 17DD YFV. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reina, J; Ballesteros, F; Mari, M; Munar, M
2001-01-01
Aims—To compare prospectively the efficacy of the Vero, LLC-MK2, MDCK, Hep-2, and MRC-5 cell lines in the isolation of the mumps virus from clinical samples by means of the shell vial method. Methods—During an epidemic outbreak of parotiditis 48 clinical samples (saliva swabs and CSF) were studied. Two vials of the Vero, LLC-MK2, MDCK, MRC-5, and Hep-2 cell lines were inoculated with 0.2 ml of the samples by the shell vial assay. The vials were incubated at 36°C for two and five days. The vials were then fixed with acetone at -20°C for 10 minutes and stained by a monoclonal antibody against mumps virus by means of an indirect immunofluorescence assay. Results—The mumps virus was isolated from 36 samples. The Vero and LLC-MK2 cell lines showed a 100% isolation capacity, MDCK showed 77.7%, MRC-5 showed 44.4%, and Hep-2 showed 22.2%. The Vero and LLC-MK2 lines were significantly different to the other cell lines (p < 0.001). The sensitivity for the Vero and LLC-MK2 lines at two and five days of incubation was identical (100%). The values obtained in the study of the quantitative isolation capacity (positive isolation with > 5 infectious foci) were 94.4% for Vero, 97.2% for LLC-MK2, 5.5% for MDCK, 5.5% for Hep-2, and 0% for MRC-5. Conclusions—The Vero and LLC-MK2 cell lines are equally efficient at two and five days incubation for the isolation of the mumps virus from clinical samples, and the use of the shell vial method considerably shortens the time of aetiological diagnosis with higher specificity. Key Words: mumps virus • Vero cell line • LLC-MK2 cell line • MDCK cell line • Hep-2 cell line • MRC-5 cell line • isolation • shell vial PMID:11729211
Mossel, Eric C.; Huang, Cheng; Narayanan, Krishna; Makino, Shinji; Tesh, Robert B.; Peters, C. J.
2005-01-01
Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression. PMID:15731278
Zhang, Rui; Wang, Yan; Song, Bo; Han, Zhi Qiang; Xu, Yu Ming
2012-01-01
To establish HSV2 VP16 targeting shRNA-expressing cell lines and investigate the antiviral effect of shRNA targeting HSV2 VP16. The cell lines Vero-shRNAs and negative-control Vero-shCON were established. Their inhibition effects on VP16 mRNA expression were tested by real-time fluorescent quantitative polymerase chain reaction (PCR) and their antiviral effects were evaluated by yield reduction assay. The influence of passage numbers on the inhibition ability of cell lines was researched. Vero-shRNA24 targeting the upper stream, Vero-shRNA642 targeting the lower stream and Vero-shCON were established. Vero-shRNA24, Vero-shRNA642 and Vero-shRNA24 + 642 could reduce the VP16 mRNA significantly. Vero-shRNA24 was the most efficient. The HSV2 titers in Vero and Vero-shCON were the highest at 72 h after infection, and started decreasing thereafter. The viral titers of the Vero-shRNA groups reached a peak after 84 h and the highest titers were lower than in the Vero group. The inhibiting effect on VP16 mRNA expression and viral replication of Vero-shRNA24 cell lines of passages 10 and 20 were not significantly different from the primary cell line. Although of no statistical significance, the passage 50 cell line showed decreased inhibiting ability. Recombinant cell lines expressing shRNA targeting HSV2 VP16 were established. They can stably inhibit HSV2 VP16 mRNA expression and viral replication within passage 50. Copyright © 2012 S. Karger AG, Basel.
Construction high-yield candidate influenza vaccine viruses in Vero cells by reassortment.
Yu, Wei; Yang, Fan; Yang, Jinghui; Ma, Lei; Cun, Yina; Song, Shaohui; Liao, Guoyang
2016-11-01
Usage of influenza vaccine is the best choice measure for preventing and conclusion of influenza virus infection. Although it has been used of chicken embryo to produce influenza vaccine, following with WHO recommended vaccine strain, there were uncontrollable factors and its deficiencies, specially, during an influenza pandemic in the world. The Vero cells are used for vaccine production of a few strains including influenza virus, because of its homology with human, recommended by WHO. However, as known most of the influenza viruses strains could not culture by Vero cells. It was used two high-yield influenza viruses adapted in Vero cells as donor viruses, such as A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B), to construct high-yield wild influenza virus in Vero cells under antibody selection pressure. After reassortment and passages, it obtained the new Vaccine strains with A/Tianjin/15/2009Va (H1N1), A/Fujian/196/2009Va (H3N2) and B/Chongqing/1384/2010Va (B), which was not only completely keeping their original antigenic (HA and NA), but also grown well in Vero cells with high-yield. All results of gene analysis and HA, HI shown that this reassortment method could be used to find new direction to product the influenza vaccine. J. Med. Virol. 88:1914-1921, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming
2016-01-01
Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation. PMID:27382277
Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production.
Montomoli, Emanuele; Khadang, Baharak; Piccirella, Simona; Trombetta, Claudia; Mennitto, Elisa; Manini, Ilaria; Stanzani, Valerio; Lapini, Giulia
2012-05-01
In the 20th century, three influenza pandemics killed approximately 100 million people. The traditional method of influenza vaccine manufacturing is based on using chicken eggs. However, the necessity of the availability of millions of fertile eggs in the event of a pandemic has led research to focus on the development of cell culture-derived vaccines, which offer shorter lead-in times and greater flexibility of production. So far, the cell substrates being evaluated and in use include Vero, Madin-Darby canine kidney, PER.C6 and insect cells. However, Vero cells are the most widely accepted among others. This review introduces briefly the concepts of advanced cell culture-derived influenza vaccine production and highlights the advantages of these vaccines in terms of efficiency, speed and immunogenicity based on the clinical data obtained from different studies.
Tzeng, Wen-Pin; Matthews, Jason D; Frey, Teryl K
2006-04-01
The rubella virus capsid protein (C) has been shown to complement a lethal deletion (termed deltaNotI) in P150 replicase protein. To investigate this phenomenon, we generated two lines of Vero cells that stably expressed either C (C-Vero cells) or C lacking the eight N-terminal residues (Cdelta8-Vero cells), a construct previously shown to be unable to complement DeltaNotI. In C-Vero cells but not Vero or Cdelta8-Vero cells, replication of a wild-type (wt) replicon expressing the green fluorescent protein (GFP) reporter gene (RUBrep/GFP) was enhanced, and replication of a replicon with deltaNotI (RUBrep/GFP-deltaNotI) was rescued. Surprisingly, replicons with deleterious mutations in the 5' and 3' cis-acting elements were also rescued in C-Vero cells. Interestingly, the Cdelta8 construct localized to the nucleus while the C construct localized in the cytoplasm, explaining the lack of enhancement and rescue in Cdelta8-Vero cells since rubella virus replication occurs in the cytoplasm. Enhancement and rescue in C-Vero cells were at a basic step in the replication cycle, resulting in a substantial increase in the accumulation of replicon-specific RNAs. There was no difference in translation of the nonstructural proteins in C-Vero and Vero cells transfected with the wt and mutant replicons, demonstrating that enhancement and rescue were not due to an increase in the efficiency of translation of the transfected replicon transcripts. In replicon-transfected C-Vero cells, C and the P150 replicase protein associated by coimmunoprecipitation, suggesting that C might play a role in RNA replication, which could explain the enhancement and rescue phenomena. A unifying model that accounts for enhancement of wt replicon replication and rescue of diverse mutations by the rubella virus C protein is proposed.
Fakri, F; Elarkam, A; Daouam, S; Tadlaoui, K; Fassi-Fihri, O; Richardson, C D; Elharrak, M
2016-02-01
Peste des Petits Ruminants virus (PPRV) is a member of the Morbillivirus subgroup of the family Paramyxoviridae, and is one of the most contagious diseases of small ruminants throughout Africa and the rest of the world. Different cell lines have previously been used to isolate PPRV but with limited success. Thus, to improve the isolation of Morbilliviruses, human, canine, and goat homologues of the lymphocyte receptor signaling lymphocyte activation molecule (SLAM) have been introduced into cells that can support virus replication. However, the amino acid sequence of SLAM varies between species, and often requires adaptation of a particular virus to different versions of the receptor. The protein sequence of Nectin-4 is highly conserved between different mammals, which eliminate the need for receptor adaptation by the virus. Cell lines expressing Nectin-4 have previously been used to propagate measles and canine distemper viruses. In this study, we compared infections in Vero cells expressing canine SLAM (VeroDogSLAM) to those in Vero cells expressing Nectin-4 (VeroNectin-4), following inoculations with wild-type strains of PPRV. Virus isolation using VeroNectin-4 cells was successful with 23% of swabbed samples obtained from live infected animals, and was 89% effective using post-mortem tissues of infected sheep. By contrast, only 4.5% efficiency was observed from swab samples and 67% efficiency was obtained in virus isolation from post-mortem tissues using VeroDogSLAM cells. The average incubation period for virus recovery from post-mortem tissues was 3.4 days using VeroNectin-4 cells, compared with 5.5 days when using VeroDogSLAM cells. The virus titers of PPRV obtained from VeroNectin-4 cells were also higher than those derived from VeroDogSLAM cells. A comparison of the growth kinetics for PPRV in the two cell lines confirmed the superiority of VeroNectin-4 cells for PPR diagnostic purposes and vaccine virus titration. Copyright © 2015 Elsevier B.V. All rights reserved.
Mendonça, Ronaldo Z; Arrózio, Sara J; Antoniazzi, Marta M; Ferreira, Jorge M C; Pereira, Carlos A
2002-07-17
The control of cell death occurring in high density cultures performed in bioreactors is an important factor in production processes. In this work, medium nutrient removal or feeding was used to determine at which extension apoptosis could be, respectively, involved or prevented in VERO cell cultures on microcarriers. Glutamine and galactose present in the VERO cell culture medium was consumed after, respectively, 6 and 12 days of culture. Kinetics studies showed that fresh medium replacement and, to some extent, galactose or glutamine depleted-fresh medium replacement provided a nutritional environment, allowing the VERO cell cultures to attain high densities. Galactose was shown to be a more critical nutrient when cultures reached a high density. In agreement with that, VERO cell cultures supplemented with galactose and/or glutamine were shown to confirm previous findings and, again at high densities, galactose was shown to be a critical nutrient for VERO cell growth. These observations also indicated that in VERO cell cultures, for feeding purposes, the glutamine could be replaced by galactose. The inverse was not true and led, at high densities, to a decrease of cell viability. In the absence of glutamine and galactose, apoptosis was observed in VERO cell cultures by cytofluorometry, Acridine orange staining or light and electron microscopy, reaching high levels when compared to cultures performed with complete medium. VERO cells apoptosis process could be prevented by the galactose and/or glutamine feeding and, at high densities, galactose was more efficient in protecting the cultures. These cultures, prevented from apoptosis, were shown to synthesize high levels of measles virus following infection. Our data show that apoptosis prevention by glutamine/galactose feeding, led to high productive and metabolic active VERO cell cultures, as indicated by the high cell density obtained and the virus multiplication leading to higher virus titers.
The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line
Osada, Naoki; Kohara, Arihiro; Yamaji, Toshiyuki; Hirayama, Noriko; Kasai, Fumio; Sekizuka, Tsuyoshi; Kuroda, Makoto; Hanada, Kentaro
2014-01-01
Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes were identified in the 2.97-Gb genome sequence. A homozygous ∼9-Mb deletion on chromosome 12 caused the loss of the type I interferon gene cluster and cyclin-dependent kinase inhibitor genes in Vero cells. In addition, an ∼59-Mb loss of heterozygosity around this deleted region suggested that the homozygosity of the deletion was established by a large-scale conversion. Moreover, a genomic analysis of Vero cells revealed a female Chlorocebus sabaeus origin and proviral variations of the endogenous simian type D retrovirus. These results revealed the genomic basis for the non-tumourigenic permanent Vero cell lineage susceptible to various pathogens and will be useful for generating new sub-lines and developing new tools in the quality control of Vero cells. PMID:25267831
Liu, Ju-Chi; Chan, Paul; Hsu, Feng-Lin; Chen, Yi-Jen; Hsieh, Ming-Hsiung; Lo, Ming-Yu; Lin, Jung-Yaw
2002-01-01
Cardiovascular disease is still the leading cause of death in Western countries. Epidemiological studies have shown that hypercholesterolemia is a major risk factor for coronary artery disease. Clinical trials of lipid lowering therapy with 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase inhibitor have been shown to decrease coronary events and mortality. Flavonoids are polyphenolic natural antioxidants occurring in natural products such as traditional Chinese herbs, fruits and beverages such as tea and wine. The aim of this study was to evaluate the effects of crude extracts from traditional Chinese herbs on HMG Co-A reductase. The methods for analysis of specific inhibitors of mevalonate biosynthesis have been well-established by using Vero cells, a cell line obtained from kidneys of African green monkeys. Crude extracts from different traditional Chinese herbs were dissolved in 1% Dulbecco's modified Eagle's medium and incubated with Vero cells with or without the addition of 1 mM mevalonate or 5 mM sodium acetate for 24 hours in order to observe cell growth. Pravastatin, a specific HMG Co-A reductase inhibitor, was used as a positive control which inhibits Vero cells growth effectively and cell growth inhibition was reversible after 1 mM mevalonate. Among 100 traditional Chinese herbs used for the study, only two herbs: Curcuma zedoaria Roscoe and Poncirus trifoliata Raf. showed significant growth inhibition of Vero cells. This study shows that some crude extracts isolated from traditional medicinal herbs were effective HMG Co-A reductase inhibitors which might be developed into new hypocholesterolemic agents.
A NEW COPPER (II)-IMIDAZOLE DERIVATIVE EFFECTIVELY INHIBITS REPLICATION OF DENV-2 IN VERO CELL
Sucipto, Teguh Hari; Churrotin, Siti; Setyawati, Harsasi; Martak, Fahimah; Mulyatno, Kris Cahyo; Amarullah, Ilham Harlan; Kotaki, Tomohiro; Kameoka, Masanori; Yotopranoto, Subagyo; Soegijanto, and Soegeng
2018-01-01
Background: Dengue is a kind of infectious disease that was distributed in the tropical and sub-tropical areas. To date, there is no clinically approved dengue vaccine or antiviral for humans, even though there have been great efforts towards this end. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the complex compounds, copper(II)-imidazole derivatives are of interest because of their biological and medicinal benefits. Materials and Methods: In the present study, antiviral activity of [Cu(2,4,5-triphenylimidazole)2]n, was evaluated against different stages of dengue virus type 2 (DENV-2) replication in Vero cell using focus forming unit reduction assay and quantitative ELISA. Results: [Cu(2,4,5-triphenylimidazole)2]n inhibited DENV-2 replication in Vero cells with IC50 = 2.3 μg/ml and SI= 19.42 when cells were treated 2 days after virus infection, whereas its CC50 for cytotoxicity to Vero cells was 44.174 μg/ml. Conclusion: The compound has high anti-DENV2 activity, less toxicity, and a high possibility to be considered a drug candidate. PMID:29619441
Zhao, Jianjun; Yan, Ruxun; Zhang, Hailing; Zhang, Lei; Hu, Bo; Bai, Xue; Shao, Xiqun; Chai, Xiuli; Yan, Xijun; Wu, Wei
2012-12-04
The signaling lymphocyte activation molecule (SLAM, also known as CD150), is used as a cellular receptor by canine distemper virus (CDV). Wild-type strains of CDVs can be isolated and propagated efficiently in non-lymphoid cells expressing this protein. Our aim is to establish a Vero cells expressing raccoon dog SLAM (rSLAM) to efficiently isolate CDV from pathological samples. A eukaryotic expression plasmid, pIRES2-EGFP-rSLAMhis, containing rSLAM gene fused with six histidine-coding sequence, EGFP gene, and neomycin resistance gene was constructed. After transfection with the plasmid, a stable cell line, Vero-rSLAM, was screened from Vero cells with the identification of EGFP reporter and G418 resistance. Three CD positive specimens from infected foxes and raccoon dogs were inoculated to Vero-rSLAM cells for CDV isolation. Foxes and raccoon dogs were inoculated subcutaneously LN (10)fl strain with 4 x 10(2.39)TCID50 dose to evaluate pathogenicity of CDV isolations. The rSLAMh fused gene was shown to transcript and express stably in Vero-rSLAM cells by RT-PCR and Immunohistochemistry assay. Three CDV strains were isolated successfully in Vero-rSLAM cells 36 -48 hours after inoculation with spleen or lung specimens from foxes and raccoon dogs with distemper. By contrast, no CDV was recovered from those CD positive specimens when Vero cells were used for virus isolation. Infected foxes and raccoon dogs with LN(10)f1 strain all showed typical CD symptoms and high mortality (2/3 for foxes and 3/3 for raccoon dogs) in 22 days post challenge. Our results indicate that Vero-rSLAM cells stably expressing raccoon dog SLAM are highly sensitive to CDV in clinical specimens and the CDV isolation can maintain high virulence to its host animals.
Sharma, Parul; Mathur, Garima; Dhakate, Sanjay R; Chand, Subhash; Goswami, Navendu; Sharma, Sanjeev K; Mathur, Ashwani
2016-02-10
The blend membranes with varying weight ratios of chitosan/poly (vinyl alcohol) (CS/PVA) (1:0, 1:1, 1:2.5, 1.5:1, 1.5: 2.5) were prepared using solvent casting method and were evaluated for their potential application in single-use membrane bioreactors (MBRs). The physicochemical properties of the prepared membranes were investigated for chemical interactions (FTIR), surface morphology (SEM), water uptake, protein sorption (qe), ammonia sorption and growth kinetics of Vero cells. CS/PVA blend membrane having weight ratio of 1.5:1 had shown enhanced membrane flexibility, reduced water uptake, less protein sorption and no ammonium sorption compared to CS membrane. This blend membrane also showed comparatively enhanced higher specific growth rate (0.82/day) of Vero cells. Improved physicochemical properties and growth kinetics obtrude CS/PVA (1.5:1) as a potential surface for adhesion and proliferation with possible application in single use membrane bioreactors. Additionally, new insight explaining correlation between water holding (%) of CS/PVA (1.5:1) blend membrane and doubling time (td) of Vero cells is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Fangye; Zhou, Jian; Ma, Lei
Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less
Yang, Jiajia; Lin, Yao; Jiang, Liming; Xi, Juemin; Wang, Xiaodan; Guan, Jiaoqiong; Chen, Junying; Pan, Yue; Luo, Jia; Ye, Chao; Sun, Qiangming
2018-05-02
To elucidate the differences in microRNAs during dengue virus infection between Vero cell-adapted strain (DENV-2-Vero) and its source, the clinical C6/36 isolated strain (DENV-2-C6/36), a comparison analysis was performed in Vero cells by high throughput sequencing. The results showed that the expression of 16 known and 3 novel miRNAs exhibited marked differences. 5 known miRNAs were up-regulated in DENV-2-C6/36 group, while 11 known microRNAs were down-regulated in DENV-2-Vero group. The GO enrichment and KEGG pathway analysis showed that there was a distinct difference in regulating viral replication between two strains. In DENV-2-Vero infection group, significantly enriched GO terms included virion attachment to host cells, viral structural protein/genome processing and packaging. Meanwhile, the regulation of cell death and apoptosis between two groups were different in the early stage of infection. KEGG enrichment analysis showed that DENV-2-C6/36 infection induced more intense regulation of immune-related pathways, including Fc gamma R-mediated phagocytosis, etc. DENV-2-Vero infection could partially alleviate the immune defense of Vero cells compared with DENV-2-C6/36. The results indicated that the distinct microRNA changes induced by two DENV-2 strains may be partly related to their infective abilities. Our data provide useful insights that help elucidate the host-pathogen interactions following DENV infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F
1994-09-01
In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.
Salman, A; Shufan, E; Zeiri, L; Huleihel, M
2014-07-01
Herpes viruses are involved in a variety of human disorders. Herpes Simplex Virus type 1 (HSV-1) is the most common among the herpes viruses and is primarily involved in human cutaneous disorders. Although the symptoms of infection by this virus are usually minimal, in some cases HSV-1 might cause serious infections in the eyes and the brain leading to blindness and even death. A drug, acyclovir, is available to counter this virus. The drug is most effective when used during the early stages of the infection, which makes early detection and identification of these viral infections highly important for successful treatment. In the present study we evaluated the potential of Raman spectroscopy as a sensitive, rapid, and reliable method for the detection and identification of HSV-1 viral infections in cell cultures. Using Raman spectroscopy followed by advanced statistical methods enabled us, with sensitivity approaching 100%, to differentiate between a control group of Vero cells and another group of Vero cells that had been infected with HSV-1. Cell sites that were "rich in membrane" gave the best results in the differentiation between the two categories. The major changes were observed in the 1195-1726 cm(-1) range of the Raman spectrum. The features in this range are attributed mainly to proteins, lipids, and nucleic acids. Copyright © 2014. Published by Elsevier Inc.
Detection of human cytomegalovirus DNA replication in non-permissive Vero and 293 cells.
Ellsmore, Victoria; Reid, G Gordon; Stow, Nigel D
2003-03-01
Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.
Huleihel, Mahmoud; Shufan, Elad; Zeiri, Leila; Salman, Ahmad
2016-01-01
Of the eight members of the herpes family of viruses, HSV1, HSV2, and varicella zoster are the most common and are mainly involved in cutaneous disorders. These viruses usually are not life-threatening, but in some cases they might cause serious infections to the eyes and the brain that can lead to blindness and possibly death. An effective drug (acyclovir and its derivatives) is available against these viruses. Therefore, early detection and identification of these viral infections is highly important for an effective treatment. Raman spectroscopy, which has been widely used in the past years in medicine and biology, was used as a powerful spectroscopic tool for the detection and identification of these viral infections in cell culture, due to its sensitivity, rapidity and reliability. Our results showed that it was possible to differentiate, with a 97% identification success rate, the uninfected Vero cells that served as a control, from the Vero cells that were infected with HSV-1, HSV-2, and VZV. For that, linear discriminant analysis (LDA) was performed on the Raman spectra after principal component analysis (PCA) with a leave one out (LOO) approach. Raman spectroscopy in tandem with PCA and LDA enable to differentiate among the different herpes viral infections of Vero cells in time span of few minutes with high accuracy rate. Understanding cell molecular changes due to herpes viral infections using Raman spectroscopy may help in early detection and effective treatment.
Busson, Laurent; Crucitti, Tania; De Foor, Marc; Van den Wijngaert, Sigi; Vandenberg, Olivier
2013-08-01
This article reports the fortuitous recovery of nine Chlamydia trachomatis serovar L strains in cell cultures (Vero and LLC-MK(2) cell line) designed for viral culture. Nine ano-genital swabs were inoculated on confluent Vero, MRC5 and LLC-MK(2) cell cultures. They were collected from HIV-positive patients who were primarily men who have sex with men (MSM) presenting ulcerations that mimicked herpes simplex infections. A cytopathogenic effect was observed on Vero and LLC-MK(2) cells on day 14. The presence of C trachomatis serovar L in the cell lines was confirmed by Real Time-PCR. C trachomatis serovar L can grow on Vero and LLC-MK(2) cell lines designed for viral cultures. Lymphogranuloma venereum must be considered as a differential diagnosis for herpes-like lesions, particularly in MSM with high-risk behaviours.
A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages.
Hu, Weibin; Zhang, Hong; Han, Qinglin; Li, Li; Chen, Yixin; Xia, Ningshao; Chen, Ze; Shu, Yuelong; Xu, Ke; Sun, Bing
2015-01-03
A cell culture-based vaccine production system is preferred for the large-scale production of influenza vaccines and has advantages for generating vaccines against highly pathogenic influenza A viruses. Vero cells have been widely used in human vaccine manufacturing, and the safety of these cells has been well demonstrated. However, the most commonly used influenza-vaccine donor virus, A/Puerto Rico/8/1934 (PR8) virus, does not grow efficiently in Vero cells. Therefore, we adapted the PR8 virus to Vero cells by continuous passaging, and a high-growth strain was obtained after 20 passages. Sequence analysis and virological assays of the adapted strain revealed that mutations in four viral internal genes (NP, PB1, PA and NS1) were sufficient for adaptation. The recombinant virus harboring these mutations (PR8-4mut) displayed accelerated viral transport into the nucleus and increased RNP activity. Importantly, the PR8-4mut could serve as a backbone donor virus to support the growth of the H7N1, H9N2 and H5N1 avian viruses and the H1N1 and H3N2 human viruses in Vero cells without changing its pathogenicity in either chicken embryos or mice. Thus, our work describes the generation of a Vero-adapted, high-yield PR8-4mut virus that may serve as a promising candidate for an influenza-vaccine donor virus. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehrig, John T., E-mail: jtr1@cdc.gov; Butrapet, Siritorn; Liss, Nathan M.
Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cellsmore » and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.« less
Beasley, David W C; Morin, Merribeth; Lamb, Ashley R; Hayman, Edward; Watts, Douglas M; Lee, Cynthia K; Trent, Dennis W; Monath, Thomas P
2013-09-01
Serial passaging of yellow fever virus 17D in Vero cells was employed to derive seed material for a novel inactivated vaccine, XRX-001. Two independent passaging series identified a novel lysine to arginine mutation at amino acid 160 of the envelope protein, a surface-exposed residue in structural domain I. A third passage series resulted in an isoleucine to methionine mutation at residue 113 of the NS4B protein, a central membrane spanning region of the protein which has previously been associated with Vero cell adaptation of other mosquito-borne flaviviruses. These studies confirm that flavivirus adaptation to growth in Vero cells can be mediated by structural or non-structural protein mutations. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Jun; Liang, Xiu; Chen, Pei-fu
2011-04-01
Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.
Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kristina B.; Hsiao, Hui-Mien; Bassit, Leda
Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectiousmore » DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.« less
Melia, Mary M; Earle, John Philip; Abdullah, Haniah; Reaney, Katherine; Tangy, Frederic; Cosby, Sara Louise
2014-01-01
Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.
The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.
Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki
2015-04-17
Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Erenler, Ramazan; Pabuccu, Koksal; Yaglioglu, Ayse Sahin; Demirtas, Ibrahim; Gul, Fatih
2016-03-01
In this study, the effect of Mougeotia nummuloides and Spirulina major on Vero cells (African green monkey kidney), C6 cells (rat brain tumor cells) and HeLa cells (human uterus carcinoma) was investigated in vitro. The antiproliferative effect of the methanol extract of M. nummuloides and S. major compared with 5-fluorourasil (5-FU) and cisplatin was tested at various concentrations using the BrdU Cell Proliferation ELISA. Both M. nummuloides and S. major extracts significantly inhibited the proliferation of Vero, HeLa and C6 cancer cell lines with IC50 and IC75 values. The M. nummuloides extract exhibited higher activity than 5-FU and cisplatin on Vero and C6 cells at high concentrations. The S. major extract revealed better antifproliferative activity than standards against Vero cells at 500 μg/mL. The compounds of methanol extracts were determined by GC-MS after the silylation process. Trehalose, monostearin and 1-monopalmitin were detected as major products in the M. nummuloides extract where as in the S. major extract; monostearin, 1-monopalmitin and hexyl alcohol were the main constituents.
Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells
Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes
2013-01-01
Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells. PMID:23431254
Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells.
Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes
2013-01-01
Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.
Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E
2009-01-01
Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. Methods The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation. PMID:19267922
Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong
2014-01-01
Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.
Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells
NASA Astrophysics Data System (ADS)
Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming
2017-02-01
Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.
Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E
2009-03-06
An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. The cytotoxicity (CC(50)) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4 degrees C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37 degrees C before the adsorption of untreated-virus. The CC(50) values were less than 100 microg/mL and the MIC values were 3.7 and 11.1 microg/mL. The CC(50)/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 microg/mL produced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at 100 microg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.
Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.
1989-03-01
An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of /sup 125/I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of /sup 125/I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry anmore » internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies.« less
Poinern, Gérrard Eddy Jai; Le, Xuan Thi; O'Dea, Mark; Becker, Thomas; Fawcett, Derek
2014-01-01
In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells.
Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Becker, Thomas; Fawcett, Derek
2014-01-01
In this preliminary study we investigate for the first time the biomedical potential of using porous anodic aluminium oxide (AAO) membranes as a cell substrate for culturing the Cercopithecus aethiops (African green monkey) Kidney (Vero) epithelial cell line. One advantage of using the inorganic AAO membrane is the presence of nanometre scale pore channels that allow the exchange of molecules and nutrients across the membrane. The size of the pore channels can be preselected by adjusting the controlling parameters of a temperature controlled two-step anodization process. The cellular interaction and response of the Vero cell line with an in-house synthesised AAO membrane, a commercially available membrane, and a glass control were assessed by investigating cell adhesion, morphology, and proliferation over a 72 h period. The number of viable cells proliferating over the respective membrane surfaces revealed that the locally produced in-house AAO membrane had cells numbers similar to the glass control. The study revealed evidence of focal adhesion sites over the surface of the nanoporous membranes and the penetration of cellular extensions into the pore structure as well. The outcome of the study has revealed that nanometre scale porous AAO membranes have the potential to become practical cell culture scaffold substrates with the capability to enhance adhesion and proliferation of Vero cells. PMID:24579077
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokumakulapalle, Madhuri; Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se
The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were asmore » capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. - Highlights: • Africa green monkey cell lines were monitored for human adenovirus 11p GFP vector infection. • Human CD46 molecules were detectable in these monkey cell lines. • Adenovirus 11p GFP vector can be propagated in Vero cells increases the safety of Ad11p-based vectors for clinical trials. • To use Vero cells for preparation of Ad11p vector avoids the potential inclusion of oncogenes from tumor cells.« less
A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis
USDA-ARS?s Scientific Manuscript database
AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...
Ranz, A I; Miguet, J G; Anaya, C; Venteo, A; Cortés, E; Vela, C; Sanz, A
1992-11-01
A panel of 32 hybridoma cell lines secreting monoclonal antibodies (MAbs) reactive with African horsesickness virus serotype 4 (AHSV-4) has been developed. Four of the MAbs recognized the major core antigen VP7, twenty recognized the outer capsid protein VP2 and eight reacted with the non-structural protein NS1. With the VP7-specific MAbs a rapid and sensitive double antibody sandwich immunoassay has been developed to detect viral antigen in infected Vero cells and in spleen tissue from AHSV-infected horses. The sensitivity of the assay is 10 ng viral antigen per 100 microliters. The NS1-specific MAbs allowed visualization by immunofluorescence of tubule-like structures in the cytoplasm of infected Vero cells. This can be very useful as a confirmatory diagnostic procedure. The antigenic map of the outer capsid VP2 protein with MAbs is also reported.
Protein phosphorylations in poliovirus infected cells.
James, L A; Tershak, D R
1981-01-01
In vivo phosphorylation of proteins that are associated with polysomes of poliovirus-infected VERO (African green monkey kidney) and HeLa (Henrietta Lacks) cells differed from phosphorylations observed with uninfected cells that were fed fresh medium. With both types of cells infection stimulated phosphorylation of proteins with molecular weights of 40 000-41 000, 39 000, 34 000, 32 000, and 24 000. Similarities of phosphorylations in VERO and HeLa cells suggest that they are a specific consequence of infection and might serve a regulatory function during protein synthesis.
Rosa, Antonella; Atzeri, Angela; Deiana, Monica; Melis, M Paola; Incani, Alessandra; Corona, Giulia; Loru, Debora; Appendino, Giovanni; Dessì, M Assunta
2008-05-28
This study investigated the effect of synthetic capsiate, a simplified analogue of capsiate, and vanillyl alcohol on the oxidative stress induced by tert-butyl hydroperoxide (TBH) in a line of fibroblasts derived from monkey kidney (Vero cells). In response to the TBH-mediated oxidative stress, a reduction of the levels of total unsaturated fatty acids and cholesterol was observed, and a rise in the concentrations of conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with both synthetic capsiate and vanillyl alcohol preserved Vero cells from oxidative damage and showed a remarkable protective effect on the reduction of the levels of total unsaturated fatty acids and cholesterol, inhibiting the increase of MDA, conjugated dienes fatty acids hydroperoxides, and 7-ketocholesterol. Both compounds were effective against peroxidation of cell membrane lipids induced by TBH, with synthetic capsiate essentially acting as a pro-drug of vanillyl alcohol, its hydrophilic hydrolytic derivative.
Antimycotic-Antibiotic Amphotericin B Promotes Influenza Virus Replication in Cell Culture ▿
Roethl, Elisabeth; Gassner, Manuela; Krenn, Brigitte M.; Romanovskaya-Romanko, Ekaterina A.; Seper, Helena; Romanova, Julia; Nakowitsch, Sabine; Sturlan, Sanda; Wolschek, Markus; Sirotkin, Alexej; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej
2011-01-01
In general, antibiotics are not rated as substances that inhibit or support influenza virus replication. We describe here the enhancing effect of the polyene antibiotic amphotericin B (AmB) on influenza virus growth in Vero cells. We show that isolation rates of influenza A and B viruses from clinical samples can be dramatically enhanced by adding AmB to the culture medium. We demonstrate that AmB promotes the viral uptake and endocytic processing of the virus particles. This effect is specific for Vero and human nasal epithelial cells and was not observed in Madin-Darby canine kidney cells. The effect of AmB was subtype specific and more prominent for human seasonal influenza strains but absent for H5N1 human viruses. The AmB-enhancing effect seemed to be solely due to the viral hemagglutinin function. Our results indicate that the use of AmB may facilitate influenza virus isolation and production in Vero cells. PMID:21849438
Cytotoxicity and antiviral activity of methanol extract from Polygonum minus
NASA Astrophysics Data System (ADS)
Wahab, Noor Zarina Abd; Bunawan, Hamidun; Ibrahim, Nazlina
2015-09-01
A study was carried out to test the cytotoxicity and antiviral effects of methanolic extracts from the leaves and stem of Polygonum minus or kesum. Cytotoxicity tests were performed on Vero cells indicates the LC50 value for leaf extract towards the Vero cells was 875 mg/L and the LC50 value for stem extract was 95 mg/L. The LC50 values indidcate the non-cytotoxic effect of the extracts and worth for further testing. Antiviral test were carried out towards herpes simplex virus infected Vero cells using three concentration of extract which were equivalent to 1.0 LC50, 0.1 LC50 and 0.01 LC50. Three different treatments to detect antiviral activity were used. Mild antiviral activity of the stem extract was detected when cells were treated for 24 hours with plant extract before viral infection. This demonstrates the capability of the test compound to protect the cells from viral attachment and of the possible prophylactic effect of the P. minus stem methanol extract.
A polymorphism of the TIM-1 IgV domain: implications for the susceptibility to filovirus infection.
Kuroda, Makoto; Fujikura, Daisuke; Noyori, Osamu; Kajihara, Masahiro; Maruyama, Junki; Miyamoto, Hiroko; Yoshida, Reiko; Takada, Ayato
2014-12-12
Filoviruses, including Ebola and Marburg viruses, cause severe hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Human T-cell immunoglobulin and mucin domain 1 (TIM-1) is one of the host proteins that have been shown to promote filovirus entry into cells. In this study, we cloned TIM-1 genes from three different African green monkey kidney cell lines (Vero E6, COS-1, and BSC-1) and found that TIM-1 of Vero E6 had a 23-amino acid deletion and 6 amino acid substitutions compared with those of COS-1 and BSC-1. Interestingly, Vero E6 TIM-1 had a greater ability to promote the infectivity of vesicular stomatitis viruses pseudotyped with filovirus glycoproteins than COS-1-derived TIM-1. We further found that the increased ability of Vero E6 TIM-1 to promote virus infectivity was most likely due to a single amino acid difference between these TIM-1s. These results suggest that a polymorphism of the TIM-1 molecules is one of the factors that influence cell susceptibility to filovirus infection, providing a new insight into the molecular basis for the filovirus host range. Copyright © 2014 Elsevier Inc. All rights reserved.
Lim, Pei Jin; Chu, Justin Jang Hann
2014-01-01
Chikungunya virus (CHIKV) has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals. PMID:24587455
Alteration of cell cycle progression by Sindbis virus infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa
We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less
Ohtsuka, J; Fukumura, M; Tsurudome, M; Hara, K; Nishio, M; Kawano, M; Nosaka, T
2014-08-01
A stable packaging cell line (Vero/BC-F) constitutively expressing fusion (F) protein of the human parainfluenza virus type 2 (hPIV2) was established for production of the F-defective and single round-infectious hPIV2 vector in a strategy for recombinant vaccine development. The F gene expression has not evoked cytostatic or cytotoxic effects on the Vero/BC-F cells and the F protein was physiologically active to induce syncytial formation with giant polykaryocytes when transfected with a plasmid expressing hPIV2 hemagglutinin-neuraminidase (HN). Transduction of the F-defective replicon RNA into the Vero/BC-F cells led to the release of the infectious particles that packaged the replicon RNA (named as hPIV2ΔF) without detectable mutations, limiting the infectivity to a single round. The maximal titer of the hPIV2ΔF was 6.0 × 10(8) median tissue culture infections dose per ml. The influenza A virus M2 gene was inserted into hPIV2ΔF, and the M2 protein was found to be highly expressed in a human lung cancer cell line after transduction. Furthermore, in vivo airway infection experiments revealed that the hPIV2ΔF was capable of delivering transgenes to hamster tracheal cells. Thus, non-transmissible or single round-infectious hPIV2 vector will be potentially applicable to human gene therapy or recombinant vaccine development.
Development and Testing of a Method for Validating Chemical Inactivation of Ebola Virus.
Alfson, Kendra J; Griffiths, Anthony
2018-03-13
Complete inactivation of infectious Ebola virus (EBOV) is required before a sample may be removed from a Biosafety Level 4 laboratory. The United States Federal Select Agent Program regulations require that procedures used to demonstrate chemical inactivation must be validated in-house to confirm complete inactivation. The objective of this study was to develop a method for validating chemical inactivation of EBOV and then demonstrate the effectiveness of several commonly-used inactivation methods. Samples containing infectious EBOV ( Zaire ebolavirus ) in different matrices were treated, and the sample was diluted to limit the cytopathic effect of the inactivant. The presence of infectious virus was determined by assessing the cytopathic effect in Vero E6 cells. Crucially, this method did not result in a loss of infectivity in control samples, and we were able to detect less than five infectious units of EBOV ( Zaire ebolavirus ). We found that TRIzol LS reagent and RNA-Bee inactivated EBOV in serum; TRIzol LS reagent inactivated EBOV in clarified cell culture media; TRIzol reagent inactivated EBOV in tissue and infected Vero E6 cells; 10% neutral buffered formalin inactivated EBOV in tissue; and osmium tetroxide vapors inactivated EBOV on transmission electron microscopy grids. The methods described herein are easily performed and can be adapted to validate inactivation of viruses in various matrices and by various chemical methods.
Jagannathan, S; Chaansha, S; Rajesh, K; Santhiya, T; Charles, C; Venkataramana, K N
2009-09-15
Vero cells are utilized for production of rabies vaccine. This study deals with the optimize quantity media require for the rabies vaccine production in the smooth roller surface. The rabies virus (Pasteur vaccine strain) is infected to monolayer of the various experimented bottles. To analyze the optimal quantity of media for the production of rabies viral harvest during the process of Vero cell derived rabies vaccine. The trials are started from 200 to 400 mL (PTARV-1, PTARV-2, PTARV-3, PTARV-4 and PTARV-5). The samples are taken in an appropriate time intervals for analysis of In Process Quality Control (IPQC) tests. The collected viral harvests are further processed to rabies vaccine in a pilot level and in addition to scale up an industrial level. Based on the evaluation the PTARV-2 (250 mL) show highly encouraging results for the Vero cell derived rabies vaccine production.
Pless-Petig, Gesine; Metzenmacher, Martin; Türk, Tobias R; Rauen, Ursula
2012-10-10
In modern biotechnology, there is a need for pausing cell lines by cold storage to adapt large-scale cell cultures to the variable demand for their products. We compared various cell culture media/solutions for cold storage of Vero-B4 kidney cells, a cell line widely used in biotechnology. Cold storage in RPMI 1640 medium, a recommended cell culture medium for Vero-B4 cells, surprisingly, strongly enhanced cold-induced cell injury in these cells in comparison to cold storage in Krebs-Henseleit buffer or other cell culture media (DMEM, L-15 and M199). Manufacturer, batch, medium supplements and the most likely components with concentrations outside the range of the other media/solutions (vitamin B12, inositol, biotin, p-aminobenzoic acid) did not cause this aggravation of cold-induced injury in RPMI 1640. However, a modified Krebs-Henseleit buffer with a low calcium concentration (0.42 mM), a high concentration of inorganic phosphate (5.6 mM), and glucose (11.1 mM; i.e. concentrations as in RPMI 1640) evoked a cell injury and loss of metabolic function corresponding to that observed in RPMI 1640. Deferoxamine improved cell survival and preserved metabolic function in modified Krebs-Henseleit buffer as well as in RPMI 1640. Similar Ca2+ and phosphate concentrations did not increase cold-induced cell injury in the kidney cell line LLC-PK1, porcine aortic endothelial cells or rat hepatocytes. However, more extreme conditions (Ca2+ was nominally absent and phosphate concentration raised to 25 mM as in the organ preservation solution University of Wisconsin solution) also increased cold-induced injury in rat hepatocytes and porcine aortic endothelial cells. These data suggest that the combination of low calcium and high phosphate concentrations in the presence of glucose enhances cold-induced, iron-dependent injury drastically in Vero-B4 cells, and that a tendency for this pathomechanism also exists in other cell types.
Sinvaraphan, Naruephan; Chaipak, Ploypailin; Luxsananuwong, Atita; Voravuthikunchai, Supayang Piyawan
2014-01-01
Abstract Aim: Household ancient remedies reported here are described in the National List of Essential Medicines and have traditionally been used in Thailand to treat infection-related ailments. However, the safety and effectiveness of these remedies have been poorly evaluated. The aim of this study was to evaluate the antibacterial properties of these remedies against seven gram-positive and gram-negative multidrug-resistant bacteria species. Phytochemical constituents and cytotoxicity of these remedies were also determined. Methods: Seven remedies, consisting of Um-Ma-Luk-Ka-Wa-Tee, Chan-Ta-Lee-La, Kheaw-Hom, Learng-Pid-Sa-Mud, Pra-Sa-Chan-Dang, Dhart-Ban-Chob, and Tree-Hom, were prepared by a licensed traditional medical doctor using a mixture of medicinal plants. Antibacterial activity of ethanol extracts of the remedies was determined by using a broth microdilution method. Qualitative phytochemical screening analysis was carried out to identify the presence of major components. Cytotoxicity activities of the extracts against Vero cells were assessed by green fluorescent protein–based assay. Results: With the exception of Dhart-Ban-Chob extract, significant minimum inhibitory concentrations (MICs) of <16 to 32 μg/mL were observed for the remedy extracts depending on the bacterial strains. The Um-Ma-Luk-Ka-Wa-Tee extract was noncytotoxic against Vero cells and possessed the highest activity, with MICs of <16 to 31 μg/mL against all methicillin-resistant Staphylococcus aureus isolates. Conclusions: Remarkable antibacterial activities against multidrug-resistant pathogens, as well as low toxicity on Vero cells, of Um-Ma-Luk-Ka-Wa-Tee support the use of this remedy in traditional medicine. Further investigation on other biological activities related to traditional applications, appropriate biomarkers, and treatment mechanisms of the household remedy are required. PMID:25415453
McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.
1998-01-01
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000
2011-01-01
Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production. PMID:21835017
Liang, Chao; Tong, Wu; Zheng, Hao; Liu, Fei; Wu, Jiqiang; Li, Guoxin; Zhou, En-Min; Tong, Guangzhi
2017-06-01
Emerging variant of pseudorabies virus (PRV) have evaded the antiviral immunity of commercially available PRV vaccine and have led to PRV outbreaks in Chinese pig farms. Here, we attenuated a PRV variant strain by serial passages in vitro and evaluate the protective efficacy of the attenuated strain as a vaccine candidate. The virulent PRV variant strain JS-2012 was continuously passaged in Vero cells at 40°C and attenuated rapidly. After 90 passages in Vero cells, the passaged virus lost its ability to cause death in 2-week-old piglets. The 120th passage virus was avirulent in the sucking piglets. An attenuated strain, JS-2012-F120 derived from the 120th passage virus by three rounds of plaque cloning grew better than its parent strain JS-2012 in Vero cells and showed notably different cytopathic effects and plaque morphology from JS-2012. PCR combined with sequence analysis showed that JS-2012-F120 contained a 2307-bp deletion covering nucleotide 487 of gE gene to 531 of US2 gene. After inoculation with JS-2012-F120, young piglets were completely protected from challenge with the classical and emerging virulent PRVs. Moreover, the piglets did not develop specific gE antibodies. Thus, JS-2012-F120 appears to be a promising marker vaccine to control PRV variant circulating in Chinese pig farms, and the high-temperature passaging in vitro was an efficient method to attenuated alphaherpesvirus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rjiba-Touati, Karima; Ayed-Boussema, Imen; Soualeh, Nidhal; Achour, Abdellatif; Bacha, Hassen; Abid, Salwa
2013-08-01
Cisplatin (CDDP) and mitomycin C (MMC), two alkylating agents used against various solid tumours, are a common source of acute kidney injury. Thus, strategies for minimizing CDDP and MMC toxicity are of a clinical interest. In this study, we aimed to investigate the protective role of recombinant human erythropoietin (rhEPO) against oxidative stress and genotoxicity induced by CDDP and MMC in cultured Vero cells. Three types of treatments were performed: (i) cells were treated with rhEPO 24 h before exposure to CDDP/MMC (pre-treatment), (ii) cells were treated with rhEPO and CDDP/MMC simultaneously (co-treatment), (iii) cells were treated with rhEPO 24 h after exposure to CDDP/MMC (post-treatment). Our results showed that rhEPO decreased the reactive oxygen species levels, the malondialdehyde levels and ameliorated glutathione (reduced and oxidized glutathione) modulation induced by CDDP and MMC in cultured Vero cells. Furthermore, rhEPO administration prevented alkylating agents-induced DNA damage accessed by comet test. Altogether, our results suggested a protective role of rhEPO, against CDDP- and MMC-induced oxidative stress and genotoxicity, especially in pre-treatment condition.
Comín, Romina; Cid, Mariana P; Grinschpun, Luciano; Oldani, Carlos; Salvatierra, Nancy A
2017-04-26
In clinical orthopedics, a critical problem is the bone tissue loss produced by a disease or injury. The use of composites from titanium and hydroxyapatite for biomedical applications has increased due to the resulting advantageous combination of hydroxyapatite bioactivity and favorable mechanical properties of titanium. Powder metallurgy is a simple and lower-cost method that uses powder from titanium and hydroxyapatite to obtain composites having hydroxyapatite phases in a metallic matrix. However, this method has certain limitations arising from thermal decomposition of hydroxyapatite in the titanium-hydroxyapatite system above 800°C. We obtained a composite from titanium and bovine hydroxyapatite powders sintered at 800°C and evaluated its bioactivity and cytocompatibility according to the ISO 10993 standard. Surface analysis and bioactivity of the composite was evaluated by X-ray diffraction and SEM. MTT assay was carried out to assess cytotoxicity on Vero and NIH3T3 cells. Cell morphology and cell adhesion on the composite surface were analyzed using fluorescence and SEM. We obtained a porous composite with hydroxyapatite particles well integrated in titanium matrix which presented excellent bioactivity. Our data did not reveal any toxicity of titanium-hydroxyapatite composite on Vero or NIH3T3 cells. Moreover, extracts from composite did not affect cell morphology or density. Finally, NIH3T3 cells were capable of adhering to and proliferating on the composite surface. The composite obtained displayed promising biomedical applications through the simple method of powder metallurgy. Additionally, these findings provide an in vitro proof for adequate biocompatibility of titanium-hydroxyapatite composite sintered at 800°C.
[Cytotonic and cytotoxic effect of cholera toxin on Vero cells and its relation to PCR].
Rodríguez-Angeles, M G; Giono-Cerezo, S; Valdespino-Gómez, J L
1994-01-01
We studied 40 Vibrio cholerae strains: 16 from stool, 16 from sewage and 8 from food. The serotypes were Inaba in 21 strains, 8 Ogawa strains and 11 V. cholerae non-O1. PCR was made with ctx2 and ctx3 primers with 25 cycles of temperature: 1 min at 94 degrees C, 1 min at 60 degrees C and 1 min at 72 degrees C. 24 V. cholerae strains were positive: 18/24 Inaba y 6/24 Ogawa. PCR was negative for 16 strains: 3 Inaba serotype, 2 Ogawa y 11 V. cholerae non-O1. In Vero culture cells 18 strains were cytotonic, 21 cytotoxic and 1 strain was negative. ELISA was positive for 11 strains with PCR positive. The PCR sensitivity was 95.83% compared with culture cells. V. cholerae O1 produced cytotoxic effect on Vero culture cells, maybe related to ACE factor. Colony blot was made with a specific probe labeled with digoxigenin and it could detect 4 Vibrio cholerae toxigenic strains with PCR negative. All V. cholerae Non O1 strains were PCR negative.
Redrejo-Rodríguez, Modesto; Rodríguez, Javier M.; Suárez, Cristina; Salas, José
2013-01-01
The function of the African swine fever virus (ASFV) reparative DNA polymerase, Pol X, was investigated in the context of virus infection. Pol X is a late structural protein that localizes at cytoplasmic viral factories during DNA replication. Using an ASFV deletion mutant lacking the Pol X gene, we have shown that Pol X is not required for virus growth in Vero cells or swine macrophages under one-step growth conditions. However, at a low multiplicity of infection, when multiple rounds of replication occur, the growth of the mutant virus is impaired in swine macrophages but not in Vero cells, suggesting that Pol X is needed to repair the accumulated DNA damage. The replication of the mutant virus in Vero cells presents sensitivity to oxidative damage, and mutational analysis of viral DNA shows that deletion of Pol X results in an increase in the mutation frequency in macrophages. Therefore, our data reveal a biological role for ASFV Pol X in the context of the infected cell in the preservation of viral genetic information. PMID:23824796
Colnot, F; Sureau, P; Alexandre, J L; Arnaudo, J P; Hesse, J Y; Jeanmaire, H
1994-11-12
An abbreviated 2-1-1 schedule for post-exposure rabies vaccination would theoretically lead to more rapid production of specific antibodies than the classical schedule. We measured early serological response to the 2-1-1 schedule. Patients consulting the antirabies centre of the Epinal hospital from June 1992 to June 1993 who had never been vaccinated and whose exposure history justified antirabies vaccination were included in this study. Fifty subjects were vaccinated with PVRV (purified vero rabies vaccine, Pasteur Institute) cultured on VERO (vervet monkey origin) cells using the abbreviated 2-1-1 schedule of 2 doses (0.5 ml = 2.5 IU/dose) on day 0 and 1 dose on days 7 and 21. Antirabies antibodies were assayed using the Platelia Rage immunoenzyme method (Diagnostic Pasteur) on day 21. Titres above 0.5 IU were considered to give protection and non-protected subjects were seen again on day 28 for a supplementary dose. Only 34 subjects (68%) had protective antibody titres on day 21, but by day 28, 48 (96%) had acquired immunity. In this study population, the age range was from 1 to 83 years and age over 30 years appeared to delay antibody formation. These findings emphasize the importance of initial antirabies immunoglobulins if short incubation in suspected and the need for serological follow-up if delayed antibody formation is suspected (subjects over 30).
Ma, Benjiang; Hang, Changshou; Zhao, Yun; Wang, Shiwen; Xie, Yanxiang
2002-09-01
To construct a novel baculovirus vector which is capable of promoting the high-yield expression of foreign gene in mammalian cells and to express by this vector the nucleoprotein (NP) gene of Crimean-Congo hemorrhagic fever virus (CCHFV) Chinese isolate (Xinjiang hemorrhagic fever virus, XHFV) BA88166 in insect and Vero cells. Human cytomegalovirus (CMV) immediate early (IE) promoter was ligated to the baculovirus vector pFastBac1 downstream of the polyhedrin promoter to give rise to the novel vector pCB1. XHFV NP gene was cloned to this vector and was well expressed in COS-7 cells and Vero cells by means of recombinant plasmid transfection and baculovirus infection. The XHFV NP gene in vector pCB1 could be well expressed in mammalian cells. Vero cells infected with recombinant baculovirus harboring NP gene could be employed as antigens to detect XHF serum specimens whose results were in good correlation with those of ELISA and in parallel with clinical diagnoses. This novel baculovirus vector is able to express the foreign gene efficiently in both insect and mammalian cells, which provides not only the convenient diagnostic antigens but also the potential for developing recombinant virus vaccines and gene therapies.
Yu, Pengcheng; Huang, Ying; Zhang, Yibin; Tang, Qing; Liang, Guodong
2012-01-01
China is a high population country with millions of animal bite cases every year; thus, it is necessary to explore and develop more effective and productive rabies vaccines for human use. To establish a safe, effective, inexpensive and high-yield rabies vaccine, a non-adjuvant purified Vero cell rabies vaccine produced in the SPEEDA PVRV microcarrier bioreactor was developed by Liaoning Chengda Biology Co. Ltd. in China. This vaccine was produced using Vero cells that were cultured in a microcarrier bioreactor. A microcarrier bioreactor containing 25 g/L of Cytodex-1 was used for perfusion culture. The Vero cell culture density was up to 1.2–1.5 × 107 cells/ml, viruses could be constantly harvested for 18–22 days, and the resulting vaccine immunizing potency was ≥ 4.5 IU/ml. Vaccine safety and immunogenicity post-immunization were also assessed. A total of 602 volunteers were enrolled and divided into two groups that were vaccinated with either SPEEDA PVRV or VERORAB PVRV on days 0, 3, 7, 14 and 28. All subjects vaccinated with SPEEDA PVRV showed no serious local or systemic adverse effects. The positive conversion rate of serum neutralizing antibodies against the rabies virus reached 100% in both the test and control groups (inoculated with VERORAB PVRV) at 14 days and 45 days after vaccination, and no significant difference was found between the neutralizing antibody geometric mean titers (GMTs) of the two groups. SPEEDA PVRV is appropriate for mass production and shows satisfactory clinical safety and immunogenicity for human post-exposure prophylaxis of rabies. PMID:22894963
Identification of various cell culture models for the study of Zika virus
Himmelsbach, Kiyoshi; Hildt, Eberhard
2018-01-01
AIM To identify cell culture models supportive for Zika virus (ZIKV) replication. METHODS Various human and non-human cell lines were infected with a defined amount of ZIKV Polynesia strain. Cells were analyzed 48 h post infection for the amount of intracellular and extracellular viral genomes and infectious viral particles by quantitative real-time PCR and virus titration assay. The extent of replication was monitored by immunofluorescence and western blot analysis by using Env and NS1 specific antibodies. Innate immunity was assayed by luciferase reporter assay and immunofluorescence analysis. RESULTS All investigated cell lines except CHO cells supported infection, replication and release of ZIKV. While in infected A549 and Vero cells a pronounced cytopathic effect was observed COS7, 293T and Huh7.5 cells were most resistant. Although the analyzed cell lines released comparable amounts of viral genomes to the supernatant significant differences were found for the number of infectious viral particles. The neuronal cell lines N29.1 and SH-SY5Y released 100 times less infectious viral particles than Vero-, A549- or 293T-cells. However there is no strict correlation between the amount of produced viral particles and the induction of an interferon response in the analyzed cell lines. CONCLUSION The investigated cell lines with their different tissue origins and diverging ZIKV susceptibility display a toolbox for ZIKV research. PMID:29468137
Lithium as a prooxidant? A possible protective role of selenium - in vitro study.
Musik, Irena; Kiełczykowska, Małgorzata; Rajtar, Barbara; Świątek, Łukasz; Polz-Dacewicz, Małgorzata; Kocot, Joanna
2017-09-21
Lithium is used in medicine but its application may cause diverse side effects. Selenium has been found to show protective properties against negative influence of different harmful factors. This study was aimed at evaluating the influence of non-toxic dose of lithium on antioxidant parameters in FaDu (ATCC HTB-43) and Vero (ECACC No. 84113001) cell lines as well as the possible protective effect of non-toxic concentration of sodium selenite. The cells were subjected to 0.17 mmol/L of Li2CO3 and/or 2.9 µmol/L of Na2SeO3 · 5H2O for Vero as well as 0.47 mmol/L of Li2CO3 and/or 3.0 µmol/L of Na2SeO3 · 5H2O for FaDu cells. The incubation was continued for the subsequent 72 h. In the cells total antioxidant status (TAS) values, activities of antioxidant enzymes - superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as the reduced glutathione concentration (GSH) were determined. In Vero cells lithium decreased all studied parameters, particularly GPx. Selenium co-treatment showed a distinct protective effect. In FaDu cells the similar effect was observed only in case of GSH. The results point to differences in action of lithium and selenium in physiological and pathological state. As long-term lithium therapy is applied in psychiatric patients the results regarding Vero line let suggest that selenium might be considered as an adjuvant alleviating side effects of Li-treatment.
Zuffa, T
1987-10-01
The growth characteristics were studied in the attenuated strains of canine parvovirus CPVA-BN 80/82, mink enteritis virus MEVA-BN 63/82 and feline panleucopenia virus FPVA-BN 110/83 on the stable feline kidney cell line FE, and in the attenuated canine distemper virus CDV-F-BN 10/83 on chicken embryo cell cultures (KEB) and cultures of the stable cell line VERO. When the FE cultures were infected with different parvoviruses in cell suspension at MOI 2-4 TKID50 per cell, the first multiplication of the intracellular virus was recorded 20 hours p. i. In the canine parvovirus, the content of intracellular and extracellular virus continued increasing parallelly until the fourth day; then, from the fourth to the sixth day, the content of extracellular virus still increased whereas that of intracellular virus fell rapidly. In the case of the mink enteritis virus the release of the virus into the culture medium continued parallelly with the production of the cellular virus until the sixth day. In the case of the feline panleucopenia virus the values concerning free virus and virus bound to cells were lower, starting from the second day p. i. When KEB or VERO cultures were infected in cell suspension with the canine distemper virus at MOI about 0.004 per 1 cell, the replicated intracellular virus was first recorded in the KEB cultures five hours after infection but in the VERO cultures only 20 hours after infection, with a timely release of the virus into the culture medium in both kinds of tissue. In the KEB and VERO cultures the highest values of infection titres were recorded on the fourth day p. i., the course of virus multiplication on the cells being parallel with its release into the culture medium.
UPLC-PDA-ESI-qTOF-MS profiling and potent anti-HSV-II activity of Eucalyptus sideroxylon leaves.
Okba, Mona M; El Gedaily, Rania A; Ashour, Rehab M
2017-11-15
Eucalyptus is one of the most important and highly exploited genus in family Myrtaceae. An UPLC/PDA/ESI-qTOF-MS method was adopted to identify Eucalyptus sideroxylon Cunn. ex Woolls leaves phytoconstituents. Cytotoxicity of E. sideroxylon leaves phloroglucinol-rich extract (PGRE) on VERO cells was determined. The antiviral effect of PGRE against hepatitis A (HAV), herpes simplex type 1 (HSV-I), herpes simplex type 2 (HSV-II), coxsackie (CoxB4), and adenoviruses was in vitro evaluated using MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide). UPLC-MS analysis allowed the identification of 70 metabolites including: 26 triterpenes, 13 phloroglucinols, 8 fatty acids, 5 flavonoids, 5 oleuropeic acid glucosides, 3 gallic acid derivatives, and 10 miscellaneous. Twenty four metabolites identified in the leaves of E. sideroxylon and four in the genus Eucalyptus are reported herein for the first time. PGRE was found to be non-cytotoxic; the concentration that reduced the cell viability by 50% (CC 50 ) was 0.808mg/mL. Maximum non-toxic concentration (MNTC) of PGRE on Vero cells was 0.312mg/mL. The best antiviral activity was observed against HSV-II. Its mechanism was through decreasing the viral replication (IC 50 189.36μg/mL, 87.65% inhibition) and attachment on Vero cells (IC 50 199.34μg/mL, 83.13% inhibition) rather than virucidal effect (IC 50 293.1μg/mL, 50.68% inhibition). This study provides a complete map for E. sideroxylon leaves composition. It also suggests the plant as a source of new antiviral agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells
2014-01-01
Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758
Various heterologous cells exhibit interferon induced transfer of viral resistance.
Hughes, T K; Blalock, J E; Baron, S
1978-01-01
Previously it was shown that cocultivation of mouse L and human WISH or baby hamster kidney cells in the presence of mouse interferon resulted in decreased viral yield from both cell species. We now show that this phenomenon also occurs when rabbit kidney and human WISH cells, with their corresponding interferons, are cocultivated with human WISH and baby hamster kidney cells, respectively. This finding increases the number of donor cell types to three. The related finding that monkey VERO and chick embryo cells can be recipients of transferred resistance expands the number of heterologous recipient cell species capable of receiving transferred resistence to five. Not all cell types tested have been shown to function in this transfer system. The fact that VERO cells, which do not produce interferon, are capable of receiving transferred resistence is significant because it indicates that the mechanism of transfer does not involve production or interferon by the recipient cells.
Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips
NASA Astrophysics Data System (ADS)
Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.
2017-12-01
Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only 22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.
Moussa, Hassan I; Logan, Megan; Siow, Geoffrey C; Phann, Darron L; Rao, Zheng; Aucoin, Marc G; Tsui, Ting Y
2017-01-01
Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.
Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips
Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.
2017-01-01
Abstract Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability. PMID:29152017
Authentication of the R06E Fruit Bat Cell Line
Jordan, Ingo; Munster, Vincent J.; Sandig, Volker
2012-01-01
Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery. PMID:22754654
Authentication of the R06E fruit bat cell line.
Jordan, Ingo; Munster, Vincent J; Sandig, Volker
2012-05-01
Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Y; Medin, P; Yordy, J
2014-06-01
Purpose: To present a strategy to integrate the imaging database of a VERO unit with a treatment management system (TMS) to improve clinical workflow and consolidate image data to facilitate clinical quality control and documentation. Methods: A VERO unit is equipped with both kV and MV imaging capabilities for IGRT treatments. It has its own imaging database behind a firewall. It has been a challenge to transfer images on this unit to a TMS in a radiation therapy clinic so that registered images can be reviewed remotely with an approval or rejection record. In this study, a software system, iPump-VERO,more » was developed to connect VERO and a TMS in our clinic. The patient database folder on the VERO unit was mapped to a read-only folder on a file server outside VERO firewall. The application runs on a regular computer with the read access to the patient database folder. It finds the latest registered images and fuses them in one of six predefined patterns before sends them via DICOM connection to the TMS. The residual image registration errors will be overlaid on the fused image to facilitate image review. Results: The fused images of either registered kV planar images or CBCT images are fully DICOM compatible. A sentinel module is built to sense new registered images with negligible computing resources from the VERO ExacTrac imaging computer. It takes a few seconds to fuse registered images and send them to the TMS. The whole process is automated without any human intervention. Conclusion: Transferring images in DICOM connection is the easiest way to consolidate images of various sources in your TMS. Technically the attending does not have to go to the VERO treatment console to review image registration prior delivery. It is a useful tool for a busy clinic with a VERO unit.« less
Petiot, Emma; Fournier, Frantz; Gény, Cécile; Pinton, Hervé; Marc, Annie
2010-03-01
The paper proposes a rapid screening method for a first step improvement of an animal component-free medium dedicated to the growth of the anchorage-dependent Vero cell line. A new, rapid, and non-invasive technique is presented to specifically monitor cultures of adherent cells in 96-well plates. The operating conditions of an image analyzer are adapted to take into account the decrease of cell size when the attached cell density increases. An experimental design is carried out to assess the influence of ten component groups in the original medium. Two groups including protein extracts, growth factor, insulin, glucose, and pyruvate show significant positive effects. The groups with vitamins and molecules related to nitrogenous bases display a less pronounced influence. The mixture of amino acids, B(1) vitamin, magnesium sulfate, and sodium phosphate as well as the couple sodium citrate and ferric chloride lead to a downward trend. The screening results are proved to be scalable in stirred cultures with cells on microcarriers. An improved serum-free medium, with some component groups being removed or added, can be rapidly formulated to reach respectively similar or 1.6 times higher cell density than in the original medium. The results from this global approach could be helpful to further focus experiments on identified medium components.
Zhang, Jialin; Liu, Wenxing; Chen, Weiye; Li, Cuicui; Xie, Meimei; Bu, Zhigao
2016-01-01
From 2013 to 2015, peste des petits ruminants (PPR) broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA) was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM) cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP) (rPPRV-GFP), an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT). Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field.
Husain, Ishrat; Ahmad, Rumana; Chandra, Anu; Raza, Syed Tasleem; Shukla, Yogeshwer; Mahdi, Farzana
2018-06-12
India being a multicultural nation, every region of the country offers a distinct culinary flavor and taste. These flavors are attributed to spices and condiments which form the mainstay of Indian cuisine. Most of these spices and condiments are derived from various biodiversity hotspots in India and form the crux of India's multidiverse and multicultural cuisine. Apart from their varying aromas, flavors and tastes, these spices and condiments are known to possess several medicinal properties also. Most of these spices find considerable mention in Ayurveda, the indigenous system of medicine, as panaceas for several aliments. Cinnamomum zeylanicum (CZ), belonging to family Lauraceae and commonly known as cinnamon is one such spice known to have diverse medicinal properties since time immemorial. In the present study, apoptotic and anti-microbial activity of ethanolic extract of CZ was evaluated against human breast cancer cell line MDA-MB-231 and compared for its effect on normal kidney epithelial cell line Vero. Ethanolic extract of tree bark of CZ was used to determine the cytotoxic effect on MDA-MB-231 using Trypan blue dye exclusion method and cytometry. The tested dose of the extract was 10-100 µg/mL. Antibacterial activity was determined using disc diffusion method against Staphylococcus aureus and Escherichia coli in the range 2-10 mg/mL. Apoptotic activity was determined using DNA fragmentation assay. Ethanolic extract of CZ was found to have an IC 50 value of 25 µg/mL against MDA cell line. On the other hand, CZ extract did not have any significant effect on Vero cells even at 100 µg/mL (IC 50 > 100 µg/mL). The ethanolic extract of CZ bark showed significant antibacterial activity against S. aureus at 10 mg/mL while no appreciable activity was detected against E. coli. DNA isolated from extract treated cancer cells showed a fragmentation pattern characteristic of apoptosis. However, no DNA fragmentation was observed in DNA isolated from extract treated Vero cells. Ethanolic bark extract of CZ could be potentially beneficial in treating breast cancer and may be of interest for future studies in developing integrative cancer therapy against proliferation, metastasis, and migration of breast cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study
Rezazadeh, Fahimeh; Moshaverinia, Maryam; Motamedifar, Mohammad; Alyaseri, Montazer
2016-01-01
Statement of the Problem Herpes simplex virus (HSV) infection is one of the most common and debilitating oral diseases; yet, there is no standard topical treatment to control it. The extract of Aloe vera leaves has been previously reported to have anti-inflammatory, antibacterial, and also antiviral effects. There is no data on anti-Herpes simplex virus type 1 (HSV-1) activity of Aloe vera gel. Purpose This study aimed to evaluate the anti-HSV-1 activity of Aloe vera gel in Vero cell line. Materials and Method In this study, gel extraction and cytotoxicity of various increasing concentrations of Aloe vera gel (0.2, 0.5, 1, 2, and 5%) was evaluated in Dulbecco’s Modified Eagle Medium (DMEM) containing 2% fetal bovine serum (FBS). Having been washed with phosphate buffered saline, 50 plaque-forming units (PFU) of HSV-1 was added to each well. After 1 hour of incubation at 37°C, cell monolayers in 24 well plates were exposed to different increasing concentrations of Aloe vera gel. The anti-HSV-1 activity of Aloe vera gel in different concentrations was assessed by plaque reduction assays. Data were analyzed by using One-way ANOVA. Results The cytotoxicity assay showed that Aloe vera in prearranged concentrations was cell-compatible. The inhibitory effect of various concentrations of Aloe vera was observed one hour after the Vero cell was infected with HSV-1. However, there was no significant difference between two serial concentrations (p> 0.05). One-way ANOVA also revealed no significant difference between the groups. The findings indicated a dose-dependent antiviral effect of Aloe vera. Conclusion The findings showed significant inhibitory effect of 0.2-5% Aloe vera gel on HSV-1 growth in Vero cell line. Therefore, this gel could be a useful topical treatment for oral HSV-1 infections without any significant toxicity. PMID:26966709
Lara-Díaz, Víctor Javier; Gaytán-Ramos, Angel A; Dávalos-Balderas, Alfredo José; Santos-Guzmán, Jesús; Mata-Cárdenas, Benito David; Vargas-Villarreal, Javier; Barbosa-Quintana, Alvaro; Sanson, Misu; López-Reyes, Alberto Gabriel; Moreno-Cuevas, Jorge E
2009-02-01
We investigated the microbiological and toxicological effects of three Perla black bean extracts on the growth and culture of selected pathogenic microorganisms, the toxicity over Vero cell lines and an in vivo rat model. Three different solvents were used to obtain Perla black bean extracts. All three Perla black bean extracts were tested for antibacterial and antiparasitic activity and further analysed for intrinsic cytotoxicity (IC(50)). Methanol Perla black bean extract was used for acute toxicity test in rats, with the up-and-down doping method. All Perla black bean extracts inhibited bacterial growth. Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella oxytoca, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis and Listeria monocytogenes showed inhibition, while Escherichia coli and Enterobacter aerogenes did not. Acidified water and acetic acid Perla black bean extract were tested in parasites. The best IC(50) was observed for Giardia lamblia, while higher concentrations were active against Entamoeba histolytica and Trichomonas vaginalis. The Vero cells toxicity levels (IC(50)) for methanol, acidified water and acetic acid Perla black bean extract were [mean +/- S.D. (95% CI)]: 275 +/- 6.2 (267.9-282.0), 390 +/- 4.6 (384.8-395.2) and 209 +/- 3.39 (205.6-212.4) microg/ml, respectively. In vivo acute toxicity assays did not show changes in absolute organ weights, gross and histological examinations of selected tissues or functional tests. The acetic acid and methanol Perla black bean extract proved to exhibit strong antibacterial activity and the acidified water Perla black bean extract exerted parasiticidal effects against Giardia lamblia, Entamoeba hystolitica and Trichomonas vaginalis. The three Perla black bean extracts assayed over Vero cells showed very low toxicity and the methanol Perla black bean extract in vivo did not cause toxicity.
Chusri, Sasitorn; Sinvaraphan, Naruephan; Chaipak, Ploypailin; Luxsananuwong, Atita; Voravuthikunchai, Supayang Piyawan
2014-12-01
Household ancient remedies reported here are described in the National List of Essential Medicines and have traditionally been used in Thailand to treat infection-related ailments. However, the safety and effectiveness of these remedies have been poorly evaluated. The aim of this study was to evaluate the antibacterial properties of these remedies against seven gram-positive and gram-negative multidrug-resistant bacteria species. Phytochemical constituents and cytotoxicity of these remedies were also determined. Seven remedies, consisting of Um-Ma-Luk-Ka-Wa-Tee, Chan-Ta-Lee-La, Kheaw-Hom, Learng-Pid-Sa-Mud, Pra-Sa-Chan-Dang, Dhart-Ban-Chob, and Tree-Hom, were prepared by a licensed traditional medical doctor using a mixture of medicinal plants. Antibacterial activity of ethanol extracts of the remedies was determined by using a broth microdilution method. Qualitative phytochemical screening analysis was carried out to identify the presence of major components. Cytotoxicity activities of the extracts against Vero cells were assessed by green fluorescent protein-based assay. With the exception of Dhart-Ban-Chob extract, significant minimum inhibitory concentrations (MICs) of <16 to 32 μg/mL were observed for the remedy extracts depending on the bacterial strains. The Um-Ma-Luk-Ka-Wa-Tee extract was noncytotoxic against Vero cells and possessed the highest activity, with MICs of <16 to 31 μg/mL against all methicillin-resistant Staphylococcus aureus isolates. Remarkable antibacterial activities against multidrug-resistant pathogens, as well as low toxicity on Vero cells, of Um-Ma-Luk-Ka-Wa-Tee support the use of this remedy in traditional medicine. Further investigation on other biological activities related to traditional applications, appropriate biomarkers, and treatment mechanisms of the household remedy are required.
Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana
2013-11-01
Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M.; Rahman, Noorsaadah Abd; Yusof, Rohana
2013-01-01
Abstract Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03±0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection. PMID:24044366
2016-05-20
ANDV strain Chile -9717869 (27) was propagated in Vero E6 cells 122 (Vero C1008, ATCC CRL 1586). Preparation of twice-plaque-purified ANDV stock has...Research and Material Command, Military 537 Infectious Disease Research Program , Program Area T. Research reported in this publication 538 was also...prior to kidney, involvement, and diagnosed by viral 684 inclusions in lung macrophages. European journal of clinical microbiology & infectious
Amézquita-López, Bianca A; Quiñones, Beatriz; Lee, Bertram G; Chaidez, Cristóbal
2014-01-01
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic enteric pathogen that causes human gastrointestinal illnesses. The present study characterized the virulence profiles of O157 and non-O157 STEC strains, recovered from domestic animals in small rural farms within the agricultural Culiacan Valley in Mexico. Virulence genes coding for adhesins, cytotoxins, proteases, subtypes of Shiga toxin (Stx), and other effectors were identified in the STEC strains by PCR. The genotyping analysis revealed the presence of the effectors nleA, nleB, nleE, and nleH1-2, espK, and espN in the O157:H7 and O111:H8 STEC strains. Furthermore, the genes encoding the autoagglutinating adhesin (Saa) and subtilase (SubA) were exclusively identified in the O8:H19 eae-negative strains. The adhesin (iha) and the silent hemolysin (sheA) genes were detected in 79% of the O157 and non-O157 strains. To examine the relative toxicities of the STEC strains, a fluorescent Vero cell line, Vero-d2EGFPs, was employed to measure the inhibition of protein synthesis by Stx. Analysis of culture supernatants from serotype O8:H19 strains with the stx gene profile stx 1a, stx 2a, and stx 2c and serotypes O75:H8 and O146:H8 strains with the stx gene profile stx 1a, stx 1c, and stx 2b, resulted in a significant reduction in the Vero-d2EGFP fluorescent signal. These observations suggest that these non-O157 strains may have an enhanced ability to inhibit protein synthesis in Vero cells. Interestingly, analysis of the stx 2c-positive O157:H7 strains resulted in a high fluorescent signal, indicating a reduced toxicity in the Vero-d2EGFP cells. These findings indicate that the O157 and non-O157 STEC strains, recovered in the Culiacan Valley, display distinct virulence profiles and relative toxicities in mammalian cells and have provided information for evaluating risks associated with zoonotic STEC in this agricultural region in Mexico.
Petrovic, Biljana; Leoni, Valerio; Gatta, Valentina; Zaghini, Anna; Vannini, Andrea; Campadelli-Fiume, Gabriella
2018-03-15
Oncolytic viruses gain cancer specificity in several ways. Like the majority of viruses, they grow better in cancer cells that are defective in mounting the host response to viruses. Often, they are attenuated by deletion or mutation of virulence genes that counteract the host response or are naturally occurring oncolytic mutants. In contrast, retargeted viruses are not attenuated or deleted; their cancer specificity rests on a modified, specific tropism for cancer receptors. For herpes simplex virus (HSV)-based oncolytics, the detargeting-retargeting strategies employed so far were based on genetic modifications of gD. Recently, we showed that even gH or gB can serve as retargeting tools. To enable the growth of retargeted HSVs in cells that can be used for clinical-grade virus production, a double-retargeting strategy has been developed. Here we show that several sites in the N terminus of gB are suitable to harbor the 20-amino-acid (aa)-long GCN4 peptide, which readdresses HSV tropism to Vero cells expressing the artificial GCN4 receptor and thus enables virus cultivation in the producer noncancer Vero-GCN4R cell line. The gB modifications can be combined with a minimal detargeting modification in gD, consisting in the deletion of two residues, aa 30 and 38, and replacement of aa 38 with the scFv to human epidermal growth factor receptor 2 (HER2), for retargeting to the cancer receptor. The panel of recombinants was analyzed comparatively in terms of virus growth, cell-to-cell spread, cytotoxicity, and in vivo antitumor efficacy to define the best double-retargeting strategy. IMPORTANCE There is increasing interest in oncolytic viruses, following FDA and the European Medicines Agency (EMA) approval of HSV Oncovex GM-CSF , and, mainly, because they greatly boost the immune response to the tumor and can be combined with immunotherapeutic agents, particularly checkpoint inhibitors. A strategy to gain cancer specificity and avoid virus attenuation is to retarget the virus tropism to cancer-specific receptors of choice. Cultivation of fully retargeted viruses is challenging, since they require cells that express the cancer receptor. We devised a strategy for their cultivation in producer noncancer Vero cell derivatives. Here, we developed a double-retargeting strategy, based on insertion of one ligand in gB for retargeting to a Vero cell derivative and of anti-HER2 ligand in gD for cancer retargeting. These modifications were combined with a minimally destructive detargeting strategy. This study and its companion paper explain the clinical-grade cultivation of retargeted oncolytic HSVs and promote their translation to the clinic. Copyright © 2018 Petrovic et al.
Delpeut, Sebastien; Sisson, Gary; Black, Karen M.
2017-01-01
ABSTRACT Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy. IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells. PMID:28250131
Wang, Shi-Yuan; Cheng, Xiao-Hua; Li, Jing-Xin; Li, Xi-Yan; Zhu, Feng-Cai; Liu, Pei
2015-01-01
Japanese encephalitis virus (JEV), a leading cause of Japanese encephalitis (JE) in children and adults, is a major public health problem in Asian countries. This study reports a meta-analysis of the immunogenicity and safety of vaccines used to protect infants or children from JE. Three types of JE vaccine were examined, namely, Japanese encephalitis live-attenuated vaccine (JEV-L), Japanese encephalitis inactivated vaccine (Vero cell) (JEV-I(Vero)), and Japanese encephalitis inactivated vaccine (primary hamster kidney cell) (JEV-I(PHK)). These vaccines are used to induce fundamental immunity against JE; however, few studies have compared their immunogenicity and safety in infants and young children less than 2 years of age. Data were obtained by searching 5 databases: Web of Science, PubMed, China National Knowledge Infrastructure, the China Wanfang database, and the Cochrane database. Fifteen articles were identified and scored using the Jadad score for inclusion in the meta-analysis. Random effect models were used to calculate the pooled seroconversion rate and adverse reaction rate when tests for heterogeneity were significant. The results showed that the pooled seroconversion rate for JEV-I(PHK) (62.23%) was lower than that for JEV-I(Vero) (86.49%) and JEV-L (83.52%), and that the pooled adverse reaction rate for JEV-L (18.09%) was higher than that for JEV-I(PHK) (10.08%) and JEV-I(Vero) (12.49%). The pooled relative risk was then calculated to compare the seroconversion and adverse reaction rates. The results showed that JEV-I(Vero) and JEV-L were more suitable than JEV-I(PHK) for inducing fundamental immunity to JE in infants and children less than 2 years of age.
Wang, Kening; Kappel, Justin D; Canders, Caleb; Davila, Wilmer F; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I
2012-12-01
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.
Kappel, Justin D.; Canders, Caleb; Davila, Wilmer F.; Sayre, Dean; Chavez, Mayra; Pesnicak, Lesley; Cohen, Jeffrey I.
2012-01-01
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine. PMID:22993162
Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham
2009-01-01
The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p <0.025) and 0.37 (r =- 0.90 p <0.05 ) for HT-29; 0.87 (r =-0.98 p <0.01) and 1.01 (r =-0.95 p <0.025) for PC-3; 0.02 (r =-0.98 p <0.01) and 0.03 (r =-0.98 p <0.01) for K-562; 4.9 (r =-0.95 p <0.025) and 6.2 (r =-0.98 p <0.01) for VERO. The IC50 for antineoplastic were: for cisplatin: 4.2 (r =-0.96 p <0.025), 10.3 (r =-0.97 p <0.025), 0.15 (r =-0.98 p = 0.01) and 1.1 (r =- 0.98 p = 0.01); for 5-FU: 2.3 (r =-0.97 p <0.025), 17.9 (r =-0.95 p <0.025), 0.15 (r =-0.98 p = 0.01) and 1.1 (r =-0.94 p = 0.05) for HT-29, PC-3, K562 and VERO respectively. The leaves and stems extracts selectivity index were between 5.6 and 245 for tumor cell lines evaluated, by contrast, cisplatin and 5-FU, only showed values between 0.11 and 7.3. The P. peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.
Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003
Vega, Vinsensius B; Ruan, Yijun; Liu, Jianjun; Lee, Wah Heng; Wei, Chia Lin; Se-Thoe, Su Yun; Tang, Kin Fai; Zhang, Tao; Kolatkar, Prasanna R; Ooi, Eng Eong; Ling, Ai Ee; Stanton, Lawrence W; Long, Philip M; Liu, Edison T
2004-01-01
Background The SARS coronavirus is the etiologic agent for the epidemic of the Severe Acute Respiratory Syndrome. The recent emergence of this new pathogen, the careful tracing of its transmission patterns, and the ability to propagate in culture allows the exploration of the mutational dynamics of the SARS-CoV in human populations. Methods We sequenced complete SARS-CoV genomes taken from primary human tissues (SIN3408, SIN3725V, SIN3765V), cultured isolates (SIN848, SIN846, SIN842, SIN845, SIN847, SIN849, SIN850, SIN852, SIN3408L), and five consecutive Vero cell passages (SIN2774_P1, SIN2774_P2, SIN2774_P3, SIN2774_P4, SIN2774_P5) arising from SIN2774 isolate. These represented individual patient samples, serial in vitro passages in cell culture, and paired human and cell culture isolates. Employing a refined mutation filtering scheme and constant mutation rate model, the mutation rates were estimated and the possible date of emergence was calculated. Phylogenetic analysis was used to uncover molecular relationships between the isolates. Results Close examination of whole genome sequence of 54 SARS-CoV isolates identified before 14th October 2003, including 22 from patients in Singapore, revealed the mutations engendered during human-to-Vero and Vero-to-human transmission as well as in multiple Vero cell passages in order to refine our analysis of human-to-human transmission. Though co-infection by different quasipecies in individual tissue samples is observed, the in vitro mutation rate of the SARS-CoV in Vero cell passage is negligible. The in vivo mutation rate, however, is consistent with estimates of other RNA viruses at approximately 5.7 × 10-6 nucleotide substitutions per site per day (0.17 mutations per genome per day), or two mutations per human passage (adjusted R-square = 0.4014). Using the immediate Hotel M contact isolates as roots, we observed that the SARS epidemic has generated four major genetic groups that are geographically associated: two Singapore isolates, one Taiwan isolate, and one North China isolate which appears most closely related to the putative SARS-CoV isolated from a palm civet. Non-synonymous mutations are centered in non-essential ORFs especially in structural and antigenic genes such as the S and M proteins, but these mutations did not distinguish the geographical groupings. However, no non-synonymous mutations were found in the 3CLpro and the polymerase genes. Conclusions Our results show that the SARS-CoV is well adapted to growth in culture and did not appear to undergo specific selection in human populations. We further assessed that the putative origin of the SARS epidemic was in late October 2002 which is consistent with a recent estimate using cases from China. The greater sequence divergence in the structural and antigenic proteins and consistent deletions in the 3' – most portion of the viral genome suggest that certain selection pressures are interacting with the functional nature of these validated and putative ORFs. PMID:15347429
Aeromonas hydrophila exotoxin induces cytoplasmic vacuolation and cell death in VERO cells.
Di Pietro, Angela; Picerno, Isa; Visalli, Giuseppa; Chirico, Cristina; Spataro, Pasquale; Cannavò, Giuseppe; Scoglio, Maria E
2005-07-01
Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.
Laboratory Aspects of Biological Warfare Agents
2016-01-01
Embryonated chicken egg yolk sacs have typically been the method of choice for culture. They are inoculated when the embryos are 5-7 days old. The... chicken or mouse embryo fibroblasts, J774.16 mouse macrophages, L929 murine fibroblasts, HEL (human embryonic lung) or vero cells are more commonly...the family, Poxviridae, is a legacy of the original grouping of viruses associated with diseases that produced poxes in the skin, however, if
Krug, Peter W; Holinka, Lauren G; O'Donnell, Vivian; Reese, Bo; Sanford, Brenton; Fernandez-Sainz, Ignacio; Gladue, Douglas P; Arzt, Jonathan; Rodriguez, Luis; Risatti, Guillermo R; Borca, Manuel V
2015-02-01
African swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified, or cell culture-adapted ASFV have been evaluated, but no commercial vaccine is available to control African swine fever (ASF). We report here the genotypic and phenotypic analysis of viruses obtained at different passages during the process of adaptation of a virulent ASFV field isolate from the Republic of Georgia (ASFV-G) to grow in cultured cell lines. ASFV-G was successively passaged 110 times in Vero cells. Viruses obtained at passages 30, 60, 80, and 110 were evaluated in vitro for the ability to replicate in Vero cells and primary swine macrophages cultures and in vivo for assessing virulence in swine. Replication of ASFV-G in Vero cells increased with successive passages, corresponding to a decreased replication in primary swine macrophages cultures. In vivo, progressive loss of virus virulence was observed with increased passages in Vero cells, and complete attenuation of ASFV-G was observed at passage 110. Infection of swine with the fully attenuated virus did not confer protection against challenge with virulent parental ASFV-G. Full-length sequence analysis of each of these viruses revealed significant deletions that gradually accumulated in specific areas at the right and left variable ends of the genome. Mutations that result in amino acid substitutions and frameshift mutations were also observed, though in a rather limited number of genes. The potential importance of these genetic changes in virus adaptation/attenuation is discussed. The main problem in controlling ASF is the lack of vaccines. Attempts to produce vaccines by adaptation of ASFV to cultured cell lines have been made. These attempts led to the production of attenuated viruses that conferred only homologous protection. Specifics regarding adaptation of these isolates to cell cultures have been insufficiently described. Details like the numbers of passages required to obtain attenuated viruses, genetic modifications introduced into the virus genomes along passages, and the extent of attenuation and induced protective efficacy are not readily available. In this study, we assessed the changes that lead to decreased growth in swine macrophages and to attenuation in swine. Loss of virulence, probably associated with limited replication in vivo, may lead to the lack of protective immunity in swine observed after challenge. This report provides valuable information that can be used to further the understanding of ASFV gene function, virus attenuation, and protection against infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Krug, Peter W.; Holinka, Lauren G.; O'Donnell, Vivian; Reese, Bo; Sanford, Brenton; Fernandez-Sainz, Ignacio; Gladue, Douglas P.; Arzt, Jonathan; Rodriguez, Luis; Risatti, Guillermo R.
2014-01-01
ABSTRACT African swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified, or cell culture-adapted ASFV have been evaluated, but no commercial vaccine is available to control African swine fever (ASF). We report here the genotypic and phenotypic analysis of viruses obtained at different passages during the process of adaptation of a virulent ASFV field isolate from the Republic of Georgia (ASFV-G) to grow in cultured cell lines. ASFV-G was successively passaged 110 times in Vero cells. Viruses obtained at passages 30, 60, 80, and 110 were evaluated in vitro for the ability to replicate in Vero cells and primary swine macrophages cultures and in vivo for assessing virulence in swine. Replication of ASFV-G in Vero cells increased with successive passages, corresponding to a decreased replication in primary swine macrophages cultures. In vivo, progressive loss of virus virulence was observed with increased passages in Vero cells, and complete attenuation of ASFV-G was observed at passage 110. Infection of swine with the fully attenuated virus did not confer protection against challenge with virulent parental ASFV-G. Full-length sequence analysis of each of these viruses revealed significant deletions that gradually accumulated in specific areas at the right and left variable ends of the genome. Mutations that result in amino acid substitutions and frameshift mutations were also observed, though in a rather limited number of genes. The potential importance of these genetic changes in virus adaptation/attenuation is discussed. IMPORTANCE The main problem in controlling ASF is the lack of vaccines. Attempts to produce vaccines by adaptation of ASFV to cultured cell lines have been made. These attempts led to the production of attenuated viruses that conferred only homologous protection. Specifics regarding adaptation of these isolates to cell cultures have been insufficiently described. Details like the numbers of passages required to obtain attenuated viruses, genetic modifications introduced into the virus genomes along passages, and the extent of attenuation and induced protective efficacy are not readily available. In this study, we assessed the changes that lead to decreased growth in swine macrophages and to attenuation in swine. Loss of virulence, probably associated with limited replication in vivo, may lead to the lack of protective immunity in swine observed after challenge. This report provides valuable information that can be used to further the understanding of ASFV gene function, virus attenuation, and protection against infection. PMID:25505073
Phytochemical properties and cytotoxicity evaluation of the aqueous extracts from Rafflesia cantleyi
NASA Astrophysics Data System (ADS)
Bakoush, Sumaia Mohamed Mohamed; Yaacob, Wan Ahmad; Adam, Jumaat; Ibrahim, Nazlina
2015-09-01
In the present study, phytochemical properties and cytotoxic evaluation of aqueous extract of Rafflesia cantleyi bud parts were done. Three bud parts including disk, bract and perigone tube were extracted in water to produce crude aqueous extract. Cytotoxic activity of R. cantleyi bud parts was assessed by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against normal cells Vero, 3T3 cell lines and mice peripheral blood mononuclear cells PBMC. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and alkaloids. The CC50 value against Vero, 3T3 and PBMC cells were equal or more than 125 µg/ml indicating the non-cytotoxic effect of the bud parts extracts. The finding revealed that crude extracts of all the tested bud parts contained potential bioactive compounds which can be used for various biological activities and have no cytotoxicity to selected normal cells.
Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph
2015-11-01
The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.
Analysis of porcine circovirus type 1 detected in Rotarix vaccine.
Baylis, Sally A; Finsterbusch, Tim; Bannert, Norbert; Blümel, Johannes; Mankertz, Annette
2011-01-17
A metagenomic analysis of live human vaccines has recently demonstrated the presence of porcine circovirus type 1 (PCV1) DNA in the paediatric vaccine Rotarix used in the prevention of acute gastroenteritis. Using real-time PCR for PCV1, titres of PCV1 DNA in several batches of Rotarix were found to be in the order of 6-7 log(10) copies per dose. Pre-treatment of the reconstituted vaccine with the nuclease Benzonase, followed by extraction of nucleic acid and quantification of PCV1 DNA by real-time PCR, revealed that there was no loss of PCV1 DNA titre compared to untreated controls, suggesting that the porcine viral DNA was present in the vaccine in an encapsidated form. PCV1 permissive PS cells, human HEK293 and Vero cells, used for vaccine production, were infected with Rotarix or PCV1, respectively, and subjected to immune fluorescence and RT-PCR. Viral genomes were present in Rotarix-incubated as well as PCV1-infected cells, while viral transcription was seen only in PCV1-infected cells. Similarly, PCV1-specific protein expression was observed in PCV1-infected cells, but not in cells treated with Rotarix. Passaging of the supernatant indicated productive infection in PCV1-infected PS cells, but not in HEK293 and Vero cells or in any cell line incubated with Rotarix. PCV1 DNA present in Rotarix was protected from Benzonase digestion; however, PCV1 was not recognized in immune electron microscopy and unable to infect PS, HEK293 or Vero cells, suggesting that the high amount of PCV1 DNA present in Rotarix does not reflect a corresponding proportion of biologically active virus particles. Copyright © 2010 Elsevier Ltd. All rights reserved.
The effect of Houttuynia cordata injection on pseudorabies herpesvirus (PrV) infection in vitro.
Ren, Xiaofeng; Sui, Xiuwen; Yin, Jiechao
2011-02-01
Pseudorabies herpesvirus (PrV) belongs to the Alphaherpesvirinae. Piglets infected with PrV die within a few days. Development of effective antiviral agents is one alternative or complementary method to prevent PrV infection. Houttuynia cordata Thunb. (Saururaceae), H. cordata, a traditional Chinese medicine, is often used to relieve lung abnormal symptoms, infectious disease, refractory hemoptysis and malignant pleural effusion in China. The present study aimed to investigate the effect of H. cordata injection on cell infection by PrV using Vero cells (a monkey kidney cell line) and swine testis cells (ST) as models. The infectivity of PrV was determined by plaque assays when H. cordata was applied to the virus, to the virus infected cells, and to the cells prior to infection. The genomic DNA copies post-drug treatment were confirmed by PCR and reverse transcription PCR. The cell apoptosis caused by the virus was analyzed. H. cordata efficiently inhibited cell infection after incubating the drug with PrV. Nevertheless, H. cordata was more efficient in Vero cells than in ST cells in terms of its inhibitory effect. Low-dosage drug inhibited cell apoptosis induced by PrV; nevertheless, high-dosage drug alone resulted in cell apoptosis. H. cordata has a direct inhibitory activity against PrV in vitro. H. cordata may be used as an anti-PrV agent or combined with other anti-PrV agents. PrV infection induces cell apoptosis and H. cordata inhibits cell infection. The optimal administration dosage of H. cordata should be taken into account in the future, because high-dosage H. cordata alone causes cell apoptosis.
[Cytotoxic effect of Vibrio cholerae non-O1 on Vero cells].
Figueroa-Arredondo, P; García-Lozano, H; Gutiérrez-Cogco, L; Valdespino-Gómez, J L
1994-01-01
At the present time there is still in Mexico a diarrhoeal outbreak due to Vibrio cholerae O1. In INDRE we have isolated from the same outbreak last year (jan-apr), 70 strains of Vibrio cholerae Non-O1. These were isolated from patients with a diarrhoeal illness different from cholera. Patients were of different ages and sex, and from various geographic areas. The isolated strains were confirmed by serological agglutination test with polyclonal antisera, and they neither belong to O1 serogroup or O139. We assayed all the 70 strains in Vero cells, searching for cytotoxic effect, probably attributed to cholera toxin, or any other toxin. The strains were screened by PCR for cholera toxin gene detection, and negative results were obtained. We have found only one CT-producer strain, but it was a rough one so, we are not able to affirm that is not a V. cholerae O1 serotype. Vibrio cholerae Non-O1 strains, tested in Vero cells assay, produced cytotoxic effect within 24 h. It was found that 48/70 strains (66.6%), had cytotoxic activity, showing rounding and then lysis of cells. From our results we concluded that this cytotoxic effect, is not cholera toxin related, instead we propose it could be due to an unknown virulence factor, probably a different toxin in mexican Vibrio cholerae Non-O1 strains.
Buthionine Sulfoximine Increases the Toxicity of Nifurtimox and Benznidazole to Trypanosoma cruzi
Faundez, Mario; Pino, Laura; Letelier, Paula; Ortiz, Carla; López, Rodrigo; Seguel, Claudia; Ferreira, Jorge; Pavani, Mario; Morello, Antonio; Maya, Juan Diego
2005-01-01
l-Buthionine (S,R)-sulfoximine (BSO) increased the toxicity of nifurtimox and benznidazole toward the epimastigote, trypomastigote, and amastigote forms of Trypanosoma cruzi. BSO at 500 μM decreased total glutathione-derived thiols by 70 to 80% in 48 h. In epimastigotes, 500 μM BSO decreased the concentration of nifurtimox needed to inhibit constant growth of the parasites by 50%, from 14.0 to 9.0 μM, and decreased that of benznidazole from 43.6 to 24.1 μM. The survival of epimastigotes or trypomastigotes treated with nifurtimox or benznidazole, as measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) reduction, was significantly decreased by 500 μM BSO. In Vero cells infected with amastigotes, 25 μM BSO was able to potentiate the effect of nifurtimox and benznidazole as measured by the percentage of infected Vero cells multiplied by the average number of intracellular amastigotes (endocytic index). At 0.5 μM nifurtimox, the proportion of Vero cells infected decreased from 27 to 20% and the endocytic index decreased from 2,500 to 980 when 25 μM BSO was added. Similar results were obtained with benznidazole- and BSO-benznidazole-treated cells. This study indicates that potentiation of nifurtimox or benznidazole by BSO could decrease the clinical dose of both drugs and diminish the side effects or the length of therapy. PMID:15616285
Maktedar, Shrikant S; Avashthi, Gopal; Singh, Man
2017-01-01
The new sonochemical approach for simultaneous reduction and direct functionalization of graphene oxide (GrO) has been developed. The GrO was functionalized with 2-Aminobenzoxazole (2-ABOZ) in twenty min with complete deletion of hazardous steps. The significance of ultrasound was exemplified with the comparative conventional methods. The newly prepared f-(2-ABOZ)GrO was extensively characterized with near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 13 C solid state NMR, XPS, XRD, HRTEM, SAED, AFM, Raman, UV-vis, FTIR and TGA. The thermal stability of f-(2-ABOZ)GrO was confirmed with total percentage weight loss in TGA. The biological activity of f-(2-ABOZ)GrO was explored with MCF-7 and Vero cell lines. The inherent cytotoxicity was evaluated with SRB assay at 10, 20, 40 and 80μgmL -1 . The estimated cell viabilities were >78% with f-(2-ABOZ) GrO. A high cytocompatibility of f-(2-ABOZ)GrO was ensured with in vitro evaluation on living cell lines, and low toxicity of f-(2-ABOZ)GrO was confirmed its excellent biocompatibility. The morphological effect on Vero cell line evidently supports the formation of biocompatible f-(2-ABOZ)GrO. Therefore, f-(2-ABOZ)GrO was emerged as an advanced functional material for thermally stable biocompatible coatings. Copyright © 2016 Elsevier B.V. All rights reserved.
Uc-Cachón, Andrés Humberto; Borges-Argáez, Rocío; Said-Fernández, Salvador; Vargas-Villarreal, Javier; González-Salazar, Francisco; Méndez-González, Martha; Cáceres-Farfán, Mirbella; Molina-Salinas, Gloria María
2014-02-01
The recent emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) Mycobacterium tuberculosis (MTB) strains have further complicated the control of tuberculosis (TB). There is an urgent need of new molecules candidates to be developed as novel, active, and less toxic anti-tuberculosis (anti-TB) drugs. Medicinal plants have been an excellent source of leads for the development of drugs, particularly as anti-infective agents. In previous studies, the non-polar extract of Diospyros anisandra showed potent anti-TB activity, and three monomeric and five dimeric naphthoquinones have been obtained. In this study, we performed bioguided chemical fractionation and the isolation of eight naphthoquinones from D. anisandra and their evaluation of anti-TB and cytotoxic activities against mammalian cells. The n-hexane crude extract from the stem bark of the plant was obtained by maceration and liquid-liquid fractionation. The isolation of naphthoquinones was carried out by chromatographic methods and identified by gas chromatography and mass spectroscopy data analysis. Anti-TB activity was evaluated against two strains of MTB (H37Rv) susceptible to all five first-line anti-TB drugs and a clinical isolate that is resistant to these medications (pan-resistant, CIBIN 99) by measuring the minimal inhibitory concentration (MIC). Cytotoxicity of naphthoquinones was estimated against two mammalian cells, Vero line and primary cultures of human peripheral blood mononuclear (PBMC) cells, and their selectivity index (SI) was determined. Plumbagin and its dimers maritinone and 3,3'-biplumbagin showed the strongest activity against both MTB strains (MIC = 1.56-3.33 μg/mL). The bioactivity of maritinone and 3,3'-biplumbagin were 32 times more potent than rifampicin against the pan-resistant strain, and both dimers showed to be non-toxic against PBMC and Vero cells. The SI of maritinone and 3,3'-biplumbagin on Vero cells was 74.34 and 194.11 against sensitive and pan-resistant MTB strains, respectively. Maritinone and 3,3'-biplumbagin possess a very interesting potential for development as new drugs against M. tuberculosis, mainly resistant profile strains. Copyright © 2013 Elsevier Ltd. All rights reserved.
SU-F-T-268: A Feasibility Study of Independent Dose Verification for Vero4DRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, M; Kokubo, M; Institute of Biomedical Research and Innovation, Kobe, Hyogo
2016-06-15
Purpose: Vero4DRT (Mitsubishi Heavy Industries Ltd.) has been released for a few years. The treatment planning system (TPS) of Vero4DRT is dedicated, so the measurement is the only method of dose verification. There have been no reports of independent dose verification using Clarksonbased algorithm for Vero4DRT. An independent dose verification software program of the general-purpose linac using a modified Clarkson-based algorithm was modified for Vero4DRT. In this study, we evaluated the accuracy of independent dose verification program and the feasibility of the secondary check for Vero4DRT. Methods: iPlan (Brainlab AG) was used as the TPS. PencilBeam Convolution was used formore » dose calculation algorithm of IMRT and X-ray Voxel Monte Carlo was used for the others. Simple MU Analysis (SMU, Triangle Products, Japan) was used as the independent dose verification software program in which CT-based dose calculation was performed using a modified Clarkson-based algorithm. In this study, 120 patients’ treatment plans were collected in our institute. The treatments were performed using the conventional irradiation for lung and prostate, SBRT for lung and Step and shoot IMRT for prostate. Comparison in dose between the TPS and the SMU was done and confidence limits (CLs, Mean ± 2SD %) were compared to those from the general-purpose linac. Results: As the results of the CLs, the conventional irradiation (lung, prostate), SBRT (lung) and IMRT (prostate) show 2.2 ± 3.5% (CL of the general-purpose linac: 2.4 ± 5.3%), 1.1 ± 1.7% (−0.3 ± 2.0%), 4.8 ± 3.7% (5.4 ± 5.3%) and −0.5 ± 2.5% (−0.1 ± 3.6%), respectively. The CLs for Vero4DRT show similar results to that for the general-purpose linac. Conclusion: The independent dose verification for the new linac is clinically available as a secondary check and we performed the check with the similar tolerance level of the general-purpose linac. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less
Heggendorn, Fabiano Luiz; Silva, Gabriela Cristina de Carvalho; Cardoso, Elisama Azevedo; Castro, Helena Carla; Gonçalves, Lúcio Souza; Dias, Eliane Pedra; Lione, Viviane de Oliveira Freitas; Lutterbach, Márcia Teresa Soares
2016-01-01
This study assessed the cell viability of the inoculation vehicle of BACCOR (a combination of sulfate-reducing bacteria plus a culture media for bacteria), a biopharmaceutical product under development for dental use as aid in fractured endodontic file removal from the root canal. Different culture media for bacteria were evaluated: modified Postgate E (MCP-E mod), Modified Postgate E without Agar-agar (MCP-E w/Ag), Postgate C with Agar-agar (MCP-C Ag) and Postgate C without Agar-agar (MCP-C w/Ag). Cytotoxicity was quantified by the MTT test, exposing L929 and Vero cell lines to the vehicles over 24 h. The exposure of L929 cell line to MCP-E w/Ag resulted in biocompatibility (52% cell viability), while the exposure of the Vero kidney line revealed only MCP-E mod as cytotoxic. When diluted, all the vehicles showed biocompatibility with both cell lines. MCP-E w/Ag was the vehicle chosen for BACCOR, because of its biocompatibility with the cells used.
Zapata, Bibiana; Durán, Camilo; Stashenko, Elena; Betancur-Galvis, Liliana; Mesa-Arango, Ana Cecilia
2010-06-30
The plants of the Asteraceae family have been used for medicinal purposes,in traditional Colombian medicine. To evaluate the antifungal activity and the cytotoxic effects of 15 essential oils from plants of the Asteraceae family. Antifungal activity was evaluated against Candida parapsilosis ATCC 22019, Candida krusei ATCC 6258, Aspergillus flavus ATCC 204304 and Aspergillus fumigatus ATCC 204305 following EUCAST and CLSI M38-A standard methods, for yeast and filamentous fungi, respectively. Cytotoxic effect was evaluated on Vero cell line by MTT assay. The oils from the plants Achyrocline alata and Baccharislatifolia were the only ones active against A. fumigatus (GM-MIC=78.7 and 157.4 microg/ml, respectively). In contrast, there was no evidence of oils active against Candida species. In addition, these oils were not cytotoxic on Vero cells. The oils of A. alata and Baccharis latifolia could be candidates for disinfecting hospital environments and for inhibiting biofilm formation by A. fumigatus The oils of A. alata and B. latifolia could be candidates for disinfecting hospital environments and for inhibiting biofilm formation by A. fumigatus. Copyright 2009 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Rimington, Rowan P; Capel, Andrew J; Player, Darren J; Bibb, Richard J; Christie, Steven D R; Lewis, Mark P
2018-06-13
The integration of additive manufacturing (AM) technology within biological systems holds significant potential, specifically when refining the methods utilized for the creation of in vitro models. Therefore, examination of cellular interaction with the physical/physicochemical properties of 3D-printed polymers is critically important. In this work, skeletal muscle (C 2 C 12 ), neuronal (SH-SY5Y) and hepatic (HepG2) cell lines are utilized to ascertain critical evidence of cellular behavior in response to 3D-printed candidate polymers: Clear-FL (stereolithography, SL), PA-12 (laser sintering, LS), and VeroClear (PolyJet). This research outlines initial critical evidence for a framework of polymer/AM process selection when 3D printing biologically receptive scaffolds, derived from industry standard, commercially available AM instrumentation. C 2 C 12 , SH-SY5Y, and HepG2 cells favor LS polymer PA-12 for applications in which cellular adherence is necessitated. However, cell type specific responses are evident when cultured in the chemical leachate of photopolymers (Clear-FL and VeroClear). With the increasing prevalence of 3D-printed biointerfaces, the development of rigorous cell type specific biocompatibility data is imperative. Supplementing the currently limited database of functional 3D-printed biomaterials affords the opportunity for experiment-specific AM process and polymer selection, dependent on biological application and intricacy of design features required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monath, Thomas P; Caldwell, Joseph R; Mundt, Wolfgang; Fusco, Joan; Johnson, Casey S; Buller, Mark; Liu, Jian; Gardner, Bridget; Downing, Greg; Blum, Paul S; Kemp, Tracy; Nichols, Richard; Weltzin, Richard
2004-10-01
The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.
Nogal, María L.; González de Buitrago, Gonzalo; Rodríguez, Clara; Cubelos, Beatriz; Carrascosa, Angel L.; Salas, María L.; Revilla, Yolanda
2001-01-01
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis. PMID:11222676
Nogal, M L; González de Buitrago, G; Rodríguez, C; Cubelos, B; Carrascosa, A L; Salas, M L; Revilla, Y
2001-03-01
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.
Biological activities of aqueous extract from Cinnamomum porrectum
NASA Astrophysics Data System (ADS)
Farah, H. Siti; Nazlina, I.; Yaacob, W. A.
2013-11-01
A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.
Evangelista, Julio; Cruz, Cristhopher; Guevara, Carolina; Astete, Helvio; Carey, Cristiam; Kochel, Tadeusz J; Morrison, Amy C; Williams, Maya; Halsey, Eric S; Forshey, Brett M
2013-06-01
We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.
Diphtheria toxin-induced channels in Vero cells selective for monovalent cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandvig, K.; Olsnes, S.
1988-09-05
Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of /sup 45/Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+,more » K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.« less
Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon.
Murali, Krishnan Saravana; Sivasubramanian, Srinivasan; Vincent, Savariar; Murugan, Shanmugaraj Bala; Giridaran, Bupesh; Dinesh, Sundaram; Gunasekaran, Palani; Krishnasamy, Kaveri; Sathishkumar, Ramalingam
2015-05-01
To obtain luteolin and apigenin rich fraction from the ethanolic extract of Cynodon dactylon (L.) (C. dactylon) Pers and evaluate the fraction's cytotoxicity and anti-Chikungunya potential using Vero cells. The ethanolic extract of C. dactylon was subjected to silica gel column chromatography to obtain anti-chikungunya virus (CHIKV) fraction. Reverse phase-HPLC and GC-MS studies were carried out to identify the major phytochemicals in the fraction using phytochemical standards. Cytotoxicity and the potential of the fraction against CHIKV were evaluated in vitro using Vero cells. Reduction in viral replication was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) after treating the viral infected Vero cells with the fraction. Reverse Phase-HPLC and GC-MS studies confirmed the presence of flavonoids, luteolin and apigenin as major phytochemicals in the anti-CHIKV ethanolic fraction of C. dactylon. The fraction was found to exhibit potent viral inhibitory activity (about 98%) at the concentration of 50 µg/mL as observed by reduction in cytopathic effect, and the cytotoxic concentration of the fraction was found to be 250 µg/mL. RT-PCR analyses indicated that the reduction in viral mRNA synthesis in fraction treated infected cells was much higher than the viral infected control cells. Luteolin and apigenin rich ethanolic fraction from C. dactylon can be utilized as a potential therapeutic agent against CHIKV infection as the fraction does not show cytotoxicity while inhibiting the virus. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Laassri, Majid; Bidzhieva, Bella; Speicher, James; Pletnev, Alexander G; Chumakov, Konstantin
2011-05-01
Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G(2337) C (Met(457) Ile) in the E gene and A(6751) G (Lys(125) Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this article could be useful for monitoring the molecular consistency and quality control of vaccine strains. Copyright © 2011 Wiley-Liss, Inc.
Laassri, Majid; Bidzhieva, Bella; Speicher, James; Pletnev, Alexander G.; Chumakov, Konstantin
2012-01-01
Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G2337C (Met457Ile) in the E gene and A6751G (Lys125Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this paper could be useful for monitoring the molecular consistency and quality control of vaccine strains. PMID:21360544
El Golli, Emna; Hassen, Wafa; Bouslimi, Amel; Bouaziz, Chayma; Ladjimi, M Moncef; Bacha, Hassen
2006-10-10
This paper analysed the toxicity mechanisms of several mycotoxins using Hsp 70 expression, cytoprotection of Vero cells by sub-lethal heat shock (sub-LHS) and Vitamin E. Our aim was (i) to determine whether Citrinin (CTN), Zearalenone (ZEN) and T2 toxin (T2) could induce the expression of Hsp 70, (ii) to check whether or not elevated levels of Hsp and Vitamin E pre-treatment could provide cytoprotection from these mycotoxins, and finally (iii) to emphasize the eventual involvement of oxidative stress on mycotoxin's toxicity. Our study demonstrated that the three examined mycotoxins induced Hsp 70 expression in a dose-dependent manner. A cytoprotective effect of Hsp 70 was obtained when Vero cells were exposed to sub-lethal heat shock followed by a 12h recovery prior to mycotoxins treatment and evidenced by a reduction of their cytolethality. This cytoprotection suggested that Hsp 70 might constitute an important cellular defence mechanism. A cytoprotective action was also obtained although at lesser extent, when cells were pre-treated with an antioxidant agent, the Vitamin E before mycotoxins treatment. This Vitamin E cytoprotection evoked the involvement of oxidative stress in mycotoxins induced toxicity, which was further, confirmed by the reduction of Hsp 70 expression when cells were pre-treated with Vitamin E prior to mycotoxins. Our data clearly shows that oxidative stress is certainly involved in the toxicity of the three studied mycotoxins, Citrinin, Zearalenone and T2 toxin and may therefore constitutes a relevant part in their toxicities; however, at variable extent from one mycotoxin to another.
NASA Astrophysics Data System (ADS)
Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria
2016-06-01
Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.
Ekins, Sean; Freundlich, Joel S.; Hobrath, Judith V.; White, E. Lucile; Reynolds, Robert C
2013-01-01
Purpose Tuberculosis treatments need to be shorter and overcome drug resistance. Our previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis (Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data for building computational models as an approach to minimize the number of compounds tested. Methods A cheminformatics clustering approach followed by Bayesian machine learning models (based on publicly available Mtb screening data) was used to illustrate that application of these models for screening set selections can enrich the hit rate. Results In order to explore chemical diversity around active cluster scaffolds of the dose-response hits obtained from our previous Mtb screens a set of 1924 commercially available molecules have been selected and evaluated for antitubercular activity and cytotoxicity using Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can significantly enrich the selection of non-toxic actives compared to random selection. Across all cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that seven out of nine Mtb active compounds from different academic published studies and eight out of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified by these Bayesian models. Conclusion Combining clustering and Bayesian models represents a useful strategy for compound prioritization and hit-to lead optimization of antitubercular agents. PMID:24132686
Feng, Na; Liu, Yuxiu; Wang, Jianzhong; Xu, Weiwei; Li, Tiansong; Wang, Tiecheng; Wang, Lei; Yu, Yicong; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Gao, Yuwei; Hu, Guixue; Xia, Xianzhu
2016-08-02
In 2008, an outbreak of canine distemper virus (CDV) infection in monkeys was reported in China. We isolated CDV strain (subsequently named Monkey-BJ01-DV) from lung tissue obtained from a rhesus monkey that died in this outbreak. We evaluated the ability of this virus on Vero cells expressing SLAM receptors from dog, monkey and human origin, and analyzed the H gene of Monkey-BJ01-DV with other strains. The Monkey-BJ01-DV isolate replicated to the highest titer on Vero cells expressing dog-origin SLAM (10(5.2±0.2) TCID50/ml) and monkey-origin SLAM (10(5.4±0.1) TCID50/ml), but achieved markedly lower titers on human-origin SLAM cells (10(3.3±0.3) TCID50/ml). Phylogenetic analysis of the full-length H gene showed that Monkey-BJ01-DV was highly related to other CDV strains obtained during recent CDV epidemics among species of the Canidae family in China, and these Monkey strains CDV (Monkey-BJ01-DV, CYN07-dV, Monkey-KM-01) possessed a number of amino acid specific substitutions (E276V, Q392R, D435Y and I542F) compared to the H protein of CDV epidemic in other animals at the same period. Our results suggested that the monkey origin-CDV-H protein could possess specific substitutions to adapt to the new host. Monkey-BJ01-DV can efficiently use monkey- and dog-origin SLAM to infect and replicate in host cells, but further adaptation may be required for efficient replication in host cells expressing the human SLAM receptor.
Piret, Jocelyne; Roy, Sylvie; Gagnon, Mylène; Landry, Sébastien; Désormeaux, André; Omar, Rabeea F.; Bergeron, Michel G.
2002-01-01
The mechanisms of herpes simplex virus (HSV) inactivation by sodium lauryl sulfate (SLS) and n-lauroylsarcosine (LS), two anionic surfactants with protein denaturant potency, have been evaluated in cultured cells. Results showed that pretreatment of HSV type 1 (HSV-1) strain F and HSV-2 strain 333 with either surfactant inhibited, in a concentration- and time-dependent manner, their infectivities on Vero cells. SLS was a more potent inhibitor of HSV-2 strain 333 infectivity than LS with respect to the concentration (4.8-fold lower) and time (2.4-fold shorter) required to completely inactivate the virus. No inhibition of both herpesvirus strains infectivities was observed when Vero cells were pretreated with either surfactant. LS prevented the binding of HSV-2 strain 333 to cells without affecting the stable attachment and the rate of penetration into cells, whereas SLS exerted the opposite effect. Both SLS and LS inhibited, in a concentration-dependent manner, the HSV-2 strain 333-induced cytopathic effect, probably by affecting newly synthesized virions that come into contact with surfactant molecules present in culture medium. The pretreatment of HSV-2 strain 333 with specific combinations of SLS and LS concentrations inhibited the viral infectivity in a synergistic manner and resulted in only a small increase in their toxicities for exponentially growing Vero cells compared with that caused by each compound alone. Taken together, these results suggest that SLS and LS, alone or combined, could represent potent candidates as microbicides in topical vaginal formulations to prevent the transmission of herpes and possibly other pathogens that cause sexually transmitted diseases, including human immunodeficiency virus type 1. PMID:12183250
Enhanced production of enveloped viruses in BST-2-deficient cell lines.
Yi, Eunbi; Oh, Jinsoo; Giao, Ngoc Q; Oh, Soohwan; Park, Se-Ho
2017-10-01
Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Y.-S.; Yip, C.-W.; Hon, C.-C.
We have previously demonstrated that over-expression of spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) or its C-terminal subunit (S2) is sufficient to induce apoptosis in vitro. To further investigate the possible roles of S2 in SARS-CoV-induced apoptosis and pathogenesis of SARS, we characterized the host expression profiles induced upon S2 over-expression in Vero E6 cells by oligonucleotide microarray analysis. Possible activation of mitochondrial apoptotic pathway in S2 expressing cells was suggested, as evidenced by the up-regulation of cytochrome c and down-regulation of the Bcl-2 family anti-apoptotic members. Inhibition of Bcl-2-related anti-apoptotic pathway was further supported by themore » diminution of S2-induced apoptosis in Vero E6 cells over-expressing Bcl-xL. In addition, modulation of CCN E2 and CDKN 1A implied the possible control of cell cycle arrest at G1/S phase. This study is expected to extend our understanding on the pathogenesis of SARS at a molecular level.« less
Hsu, Alan Yi-Hui; Wu, Shang-Rung; Tsai, Jih-Jin; Chen, Po-Lin; Chen, Ya-Ping; Chen, Tsai-Yun; Lo, Yu-Chih; Ho, Tzu-Chuan; Lee, Meed; Chen, Min-Ting; Chiu, Yen-Chi; Perng, Guey Chuen
2015-01-01
The levels of neutralizing antibody to a pathogen are an effective indicator to predict efficacy of a vaccine in trial. And yet not all the trial vaccines are in line with the theory. Using dengue virus (DENV) to investigate the viral morphology affecting the predictive value, we evaluated the viral morphology in acute dengue plasma compared to that of Vero cells derived DENV. The virions in plasma were infectious and heterogeneous in shape with a “sunny-side up egg” appearance, viral RNA was enclosed with CD61+ cell-derived membrane interspersed by the viral envelope protein, defined as dengue vesicles. The unique viral features were also observed from ex vivo infected human bone marrow. Dengue vesicles were less efficiently neutralized by convalescent patient serum, compared to virions produced from Vero cells. Our results exhibit a reason why potencies of protective immunity fail in vivo and significantly impact dengue vaccine and drug development. PMID:26657027
Sasmito, Ediati; Mulyadi, Sri Mulyani; Hertiani, Triana; Fathdhieny, Annisa Qisthia; Witsqa, Ade Azka Surya; Laksono, Yogi Sotya
2017-09-01
Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause the dysfunction of macrophage, decreasing proliferation of lymphocytes, decreasing CD4+/CD8+ ratio and inducing hepatotoxicity. Doxorubicin inhibits the growth of Vero, HeLa, and T47D cell lines, and also induces a resistance of MCF-7 cells. Previous studies showed that ethanolic extract and ethyl acetate fraction of ant-plant (Myrmecodia tuberose Jack) hipocotyl could increase macrophage phagocytosis activity and lymphocyte proliferation in vitro. Therefore, antplant is a potential immune stimulator. Combinational treatment of non n-hexane fraction (NHF) of ant-plant with doxorubicin did not affect the doxorubicin's potency. Nevertheless, increased lymphocyte viability induced by doxorubicin in varied dosages of NHF that lethal to HeLa, MCF-7 and T47D cells. Moreover, on Vero cells, doxorubicin became less toxic when induced together with NHF. Thus, NHF of ant-plant is potential to be proposed as doxorubicin co-chemotherapeutic agent against cancer cells.
Roy, Soumen; Pawar, Sandip; Chowdhary, Abhay
2016-01-01
To evaluate in vitro cytotoxicity and antioxidant activity of Datura metel L. and Cynodon dactylon L. extracts. The extraction of plants parts (datura seed and fruit pulp) and areal parts of durva was carried out using soxhlet and cold extraction method using solvents namely methanol and distilled water. The total phenolic content (TPC) and total flavonoid content (TFC) was determined by established methods. The in vitro cytotoxicity assay was performed in vero cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method. In vitro antioxidant activity of the extract was performed by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging method. We found that the highest amount of TPC and TFC in methanolic extracts of seed (268.6 μg of gallic acid equivalence/mg of dry plant material) and fruit pulp (8.84 μg of quercetin equivalence/mg dry plant material) of D. metel, respectively prepared by Soxhlet method. The methanolic extract of C. dactylon prepared using soxhlation has shown potent free radical scavenging activity with 50% inhibitory concentration (IC50) value of 100 μg/ml. The IC50 of a methanolic cold extract of datura fruit was found to be 3 mg/ml against vero cell line. We observed that plant parts of C. dactylon and D. metel have a high antioxidant activity. Further research is needed to explore the therapeutic potential of these plant extracts. In the present study we observed a positive correlation was between the phenolic and flavanoid content of the Datura metel and cynodon doctylon (durva) extracts with the free radical scavenging activities. Both were found to have a high antioxidant activity. Abbreviations used: BHA: Butylated hydroxyanisole, BHT: Butylated hydroxytoluene, CC50: 50% cell cytotoxic concentration, CNS: Central nervous system, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, IC50: 50% inhibitory concentration, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), TFC: Total flavonoid content, TPC: Total phenolic content.
Yalcın, Husniye Tansel; Ozen, Mehmet Ozgün; Gocmen, Bayram; Nalbantsoy, Ayse
2014-01-01
Cytotoxic and antimicrobial effects of Montivipera xanthina venom against LNCaP, MCF-7, HT-29, Saos-2, Hep3B, Vero cells and antimicrobial activity against selected bacterial and fungal species: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, E. coli O157H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus epidermidis ATCC 12228, S. typhimirium CCM 5445, Proteus vulgaris ATCC 6957 and Candida albicans ATCC 10239 were studied for evaluating the potential medical benefit of this snake venom. Cytotoxicity of venom was determined using MTT assay. Snake venom cytotoxicity was expressed as the venom dose that killed 50 % of the cells (IC50). The antimicrobial activity of venom was studied by minimal inhibitory concentration (MIC) and disc diffusion assay. MIC was determined using broth dilution method. The estimated IC50 values of venom varied from 3.8 to 12.7 or from 1.9 to 7.2 μg/ml after treatment with crude venom for 24 or 48 h for LNCaP, MCF-7, HT-29 and Saos-2 cells. There was no observable cytotoxic effect on Hep3B and Vero cells. Venom exhibited the most potent activity against C. albicans (MIC, 7.8 μg/ml and minimal fungicidal concentration, 62.5 μg/ml) and S. aureus (MIC, 31.25 μg/ml). This study is the first report showing the potential of M. xanthina venom as an alternative therapeutic approach due to its cytotoxic and antimicrobial effects.
Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.
2012-01-01
Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095
Vicenti, Ilaria; Boccuto, Adele; Giannini, Alessia; Dragoni, Filippo; Saladini, Francesco; Zazzi, Maurizio
2018-01-15
A strong correlation between Zika virus (ZIKV) infection and severe neurological disease in newborns and occasionally adults has emerged in the Brazilian outbreak. Efficient human cell-based assays are required to test candidate inhibitors of ZIKV replication. The aim of this work was to investigate ZIKV propagation and quantification in different cell lines. The human (U87, A549, Huh7), mosquito (C6/36) and monkey (VERO E6) cell lines tested were all permissive to ZIKV infection. When assessed by plaque forming units (PFU) in three different target cell lines, the maximal production of ZIKV was achieved in Huh7 at day 3 post-infection (6.38±0.44 log 10 PFU/ml). The C6/36 cell line showed a low and slow production of virus when compared with other cell lines. A549 readout cells generated a larger number of plaques compared to Huh7 but not to VERO E6 cells. ZIKV PFU and RNA titers showed the highest correlation when Huh7 and A549 were used as the producer and readout cells, respectively. Also, U87 cells produced ZIKV RNA titers which were highly correlated with PFU independently from the readout cell line. Using the best virus-cell system, sofosbuvir and ribavirin EC 50 were 1.2μM and 1.1μM when measured through plaque assay, and 4.2μM and 5.2μM when measured by quantitative real time PCR (qRT-PCR), respectively. In summary, ZIKV can efficiently infect different human cell lines and rapidly reach peak viral titers. Overall, A549 cells appear to be as efficient as the VERO E6 gold standard for plaque assay allowing the use of human, rather than simian, cells for evaluating candidate anti-ZIKV compounds by the reference assay. The possibility to replace the labor-intensive plaque assay with the more rapid and easy-to-perform qRT-PCR is appealing and warrants further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Deng, Xukun; Zhao, Xiangpei; Lan, Zhou; Jiang, Jie; Yin, Wu; Chen, Lvyi
2014-07-01
This study investigated the active components and the anti-tumor efficacy and mechanisms of the flavonoids from Docynia delavayi (Franch.) Schneid. (DDS). MTT assay was used to examine the growth inhibitory effects of the four flavonoids, including chrysin, quercetin, naringenin, and avicularin that were isolated from the rhizome of DDS, on human hematomas cell (HepG2), esophageal carcinoma cell (EC109), human cervical adenocarcinoma cell (Hela), human colon adenocarcinoma cell (SW480), and African green monkey kidney cell (Vero cells). The anti-tumor mechanism of chrysin on HepG2 was further investigated by the methods of fluorescence staining, flow cytometry, and immunoblotting. The results showed that the inhibitory activity of chrysin was much stronger than the other three flavonoids on HepG2, EC109, Hela, and SW480 cells for 48 h treatment in vitro. Moreover, no inhibiting effect of chrysin on the proliferation of normal cells (Vero cells) was observed. Further study revealed that chrysin caused HepG2 cell shrinkage, membrane blebbing, and apoptotic body formation, all of which were typical characteristics of apoptosis programmed cell death. Flow cytometric analysis demonstrated that chrysin increased the sub G0/G1 population, which indicated the increased cell apoptosis, thus preventing cells from entering the S phase as the population in G2/M or S phase declined; whereas in G0/G1 phase, it increased. In addition, immunoblot results showed that chrysin significantly increased the expression levels of caspase-3 and Bax proteins, and it decreased the expression level of B-cell lymphoma/leukemia-2 (Bcl-2) protein. These findings indicate that chrysin is the major flavonoid present in DDS, and it induces HepG2 cell death via apoptosis, probably through the participation of caspase-3, Bax, and Bcl-2 proteins.
Persistent measles virus infection of the intestine: confirmation by immunogold electron microscopy.
Lewin, J; Dhillon, A P; Sim, R; Mazure, G; Pounder, R E; Wakefield, A J
1995-01-01
This study sought to investigate persistent measles virus infection of the intestine: a novel protocol for immunogold electron microscopy was developed using a polyclonal anti-measles nucleoprotein antibody on reprocessed, formalin fixed paraffin wax embedded tissue sections. Antibody binding was detected using both immunoperoxidase and light microscopy on tissue sections, and 10 nm gold conjugated secondary antibody and electron microscopy on ultrathin sections. The techniques were validated using both measles infected vero cells and human tissues with established measles infection: these included brain affected by subacute sclerosing panencephalitis and acute measles appendicitis. The technique was applied subsequently to six untreated cases of granulomatous Crohn's disease, and two cases of ileocaecal tuberculosis, a granulomatous control. Mumps primary antibody--applied to both mumps infected vero cells, and measles infected vero cells and tissues studied by immunoperoxidase, and measles antibody on mumps infected cells studied by immunoperoxidase and immunogold--were used as specificity controls: the primary antibodies identified their respective target antigen and there was no antibody cross reactivity. Measles virus nucleocapsids labelled with gold conjugated antibody in both infected cells and tissues, including foci of granulomatous inflammation in five of six cases of Crohn's disease: in the fifth case, the granuloma could not be identified in ultrathin section. In one of the tuberculosis cases, a low level of signal was noted while the second case was negative. Labelling adopted a characteristic pattern in all infected tissues, strengthening the specificity of these findings. This study provides the first direct confirmation of persistent measles virus infection of the intestine. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7737565
Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji
2006-03-01
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.
Sato, Ko; Watanabe, Oshi; Ohmiya, Suguru; Chiba, Fumiko; Suzuki, Akira; Okamoto, Michiko; Younghuang, Jiang; Hata, Akihiro; Nonaka, Hiroyuki; Kitaoka, Setsuko; Nagai, Yukio; Kawamura, Kazuhisa; Hayashi, Masahiro; Kumaki, Satoru; Suzuki, Tamio; Kawakami, Kazuyoshi; Nishimura, Hidekazu
2017-11-01
Isolation of human metapneumovirus (HMPV) from clinical specimens is currently inefficient because of the lack of a cell culture system in which a distinct cytopathic effect (CPE) occurs. The cell lines LLC-MK2, Vero and Vero E6 are used for isolation of HMPV; however, the CPE in these cell lines is subtle and usually requires a long observation period and sometimes blind passages. Thus, a cell line in which an early and distinct CPE occurs following HMPV inoculation is highly desired by clinical virology laboratories. In this study, it was demonstrated that, in the human malignant melanoma cell line MNT-1, obvious syncytium formation occurs shortly after inoculation with HMPV-positive clinical specimens. In addition, the growth and efficiency of isolation of HMPV were greater using MNT-1 than using any other conventional cell line. Addition of this cell line to our routine viral isolation system for clinical specimens markedly enhanced isolation frequency, allowing isolation-based surveillance. MNT-1 has the potential to facilitate clinical and epidemiological studies of HMPV. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Hurtado, Carolina; Granja, Aitor G; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; de Yébenes, Virginia G; Salas, María L; Revilla, Yolanda; Carrascosa, Angel L
2004-08-15
The open reading frame EP153R of African swine fever virus (ASFV) encodes a nonessential protein that has been involved in the hemadsorption process induced in virus-infected cells. By the use of a virus deletion mutant lacking the EP153R gene, we have detected, in several virus-sensitive cells, increased levels of caspase-3 and cell death as compared with those obtained after infection with the parental BA71V strain. Both transient and stable expression of the EP153R gene in Vero or COS cells resulted in a partial protection of the transfected lines from the apoptosis induced in response to virus infection or external stimuli. The presence of gene EP153R resulted in a reduction of the transactivating activity of the cellular protein p53 in Vero cell cultures in which apoptosis was induced by virus infection or staurosporine treatment. This is to our knowledge the first description of a viral C-type lectin with anti-apoptotic properties.
Cytotoxicity and DNA interaction of brucine and strychnine-Two alkaloids of semen strychni.
Liu, Fei; Wang, Xiaolin; Han, Xu; Tan, Xiaoxin; Kang, Weijun
2015-01-01
The cytotoxicities of the two alkaloids strychnine and brucine from the seed of Strychnos nux-vomica and their interaction with DNA were investigated. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrasolium bromide (MTT) assay was used to examine the growth inhibitory effects of these alkaloids on Vero cells after 24, 48 and 72h of incubation. The cytotoxicities of strychnine and brucine were found to be time- and concentration-dependent. Strychnine was determined to be more toxic to Vero cells than brucine. At the same time, the interactions of strychnine and brucine with DNA were investigated using neutral red (NR) dye as a probe by UV-vis spectroscopy, fluorescence spectroscopy, and an examination of the ionic strength effect, and the effects of alkaloids on DNA melting were also examined. The results indicated that a DNA-brucine mixture but not a DNA-strychnine mixture could be extracted from Vero cells after treatment with brucine and strychnine, respectively. Brucine competitively intercalated into the DNA double-helix causing fluorescence quenching of the DNA-NR system. UV absorption spectroscopy and the melting temperature (Tm) curve also provided evidence that brucine interacted with DNA through intercalation. Furthermore, the results of the ionic strength effect experiment suggested that electrostatic interactions between brucine and phosphate groups in the DNA backbone might also play an important role in the binding of brucine to DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Vaidya, Sunil R; Kumbhar, Neelakshi S; Bhide, Vandana S
2014-12-01
Measles, mumps and rubella are vaccine-preventable diseases; however limited epidemiological data are available from low-income or developing countries. Thus, it is important to investigate the transmission of these viruses in different geographical regions. In this context, a cell culture-based rapid and reliable immuno-colorimetric assay (ICA) was established and its utility studied. Twenty-three measles, six mumps and six rubella virus isolates and three vaccine strains were studied. Detection by ICA was compared with plaque and RT-PCR assays. In addition, ICA was used to detect viruses in throat swabs (n = 24) collected from patients with suspected measles or mumps. Similarly, ICA was used in a focus reduction neutralization test (FRNT) and the results compared with those obtained by a commercial IgG enzyme immuno assay. Measles and mumps virus were detected 2 days post-infection in Vero or Vero-human signaling lymphocytic activation molecule cells, whereas rubella virus was detected 3 days post-infection in Vero cells. The blue stained viral foci were visible by the naked eye or through a magnifying glass. In conclusion, ICA was successfully used on 35 virus isolates, three vaccine strains and clinical specimens collected from suspected cases of measles and mumps. Furthermore, an application of ICA in a neutralization test (i.e., FRNT) was documented; this may be useful for sero-epidemiological, cross-neutralization and pre/post-vaccine studies. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.
Nikolay, Alexander; Castilho, Leda R; Reichl, Udo; Genzel, Yvonne
2018-05-24
The recent spread of Zika virus (ZIKV) in the Americas and the Pacific has reached alarming levels in more than 60 countries. However, relatively little is known about the disease on a virological and epidemiological level and its consequences for humans. Accordingly, a large demand for in vitro derived Brazilian ZIKV material to support in vitro and in vivo studies has arisen. However, a prompt supply of ZIKV and ZIKV antigens cannot be guaranteed as the production of this virus typically using Vero or C6/36 cell lines remains challenging. Here we present a production platform based on BHK-21 suspension (BHK-21 SUS ) cells to propagate Brazilian ZIKV at larger quantities in perfusion bioreactors. Scouting experiments performed in tissue culture flasks using adherent BHK-21 and Vero cells have demonstrated similar permissivity and virus yields for four different Brazilian ZIKV isolates. The cell-specific yield of infectious virus particles varied between respective virus strains (1-48PFU/cell), and the ZIKV isolate from the Brazilian state Pernambuco (ZIKV PE ) showed to be a best performing isolate for both cell lines. However, infection studies of BHK-21 SUS cells with ZIKV PE in shake flasks resulted in poor virus replication, with a maximum titer of 8.9×10 3 PFU/mL. Additional RT-qPCR measurements of intracellular and extracellular viral RNA levels revealed high viral copy numbers within the cell, but poor virus release. Subsequent cultivation in a perfusion bioreactor using an alternating tangential flow filtration system (ATF) under controlled process conditions enabled cell concentrations of about 1.2×10 7 cells/mL, and virus titers of 3.9×10 7 PFU/mL. However, while the total number of infectious virus particles was increased, the cell-specific yield (3.3PFU/cell) remained lower than determined in adherent cell lines. Nevertheless, the established perfusion process allows to provide large amounts of ZIKV material for research and is a first step towards process development for manufacturing inactivated or live-attenuated ZIKV vaccines. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Carrascosa, Angel L; Bustos, María J; Nogal, María L; González de Buitrago, Gonzalo; Revilla, Yolanda
2002-03-15
Permissive Vero cells develop apoptosis, as characterized by DNA fragmentation, caspases activation, cytosolic release of mitochondrial cytochrome c, and flow cytometric analysis of DNA content, upon infection with African swine fever virus (ASFV). To determine the step in virus replication that triggers apoptosis, we used UV-inactivated virus, inhibitors of protein and nucleic acid synthesis, and lysosomotropic drugs that block virus uncoating. ASFV-induced apoptosis was accompanied by caspase-3 activation, which was detected even in the presence of either cytosine arabinoside or cycloheximide, indicating that viral DNA replication and protein synthesis were not required to activate the apoptotic process. The activation of caspase-3 was released from chloroquine inhibition 2 h after virus absorption, while the infection with UV-inactivated ASFV did not induce the activation of the caspase cascade. We conclude that ASFV induces apoptosis in the infected cell by an intracellular pathway probably triggered during the process of virus uncoating.
Cota, Betania Barros; Tunes, Luiza Guimarães; Maia, Daniela Nabak Bueno; Ramos, Jonas Pereira; Oliveira, Djalma Menezes de; Kohlhoff, Markus; Alves, Tânia Maria de Almeida; Souza-Fagundes, Elaine Maria; Campos, Fernanda Fraga; Zani, Carlos Leomar
2018-02-01
BACKGROUND In a screen of extracts from plants and fungi to detect antileishmanial activity, we found that the ethyl acetate extract of the fungus Nectria pseudotrichia, isolated from the tree Caesalpinia echinata (Brazilwood), is a promising source of bioactive compounds. OBJECTIVES The aims of this study were to isolate and determine the chemical structures of the compounds responsible for the antileishmanial activity of the organic extract from N. pseudotrichia. METHODS Compounds were isolated by chromatographic fractionation using semi-preparative high-performance liquid chromatography, and their chemical structures were determined by analytical and spectral data and by comparison with published data. The antileishmanial activity of the isolated compounds was evaluated in intracellular amastigote forms of Leishmania (Viannia) braziliensis expressing firefly luciferase as reporter gene, and cytotoxicity was determined in Vero and THP-1 mammalian cell lines by MTT assay. FINDINGS Fractionation of the extract yielded seven compounds: 10-acetyl trichoderonic acid A (1), 6'-acetoxy-piliformic acid (2), 5',6'-dehydropiliformic acid (3), piliformic acid (4), hydroheptelidic acid (5), xylaric acid D (6), and cytochalasin D (7). Compounds 1, 2 and 3 are reported here for the first time. Compounds 1, 2, and 5 were more active, with IC50 values of 21.4, 28.3, and 24.8 µM, respectively, and showed low toxicity to Vero and THP-1 cells. MAIN CONCLUSIONS N. pseudotrichia produces secondary metabolites that are more toxic to intracellular amastigote forms of L. (V.) braziliensis than to mammalian cells.
Masaeli, Elahe; Morshed, Mohammad; Rasekhian, Parsa; Karbasi, Saeed; Karbalaie, Khadije; Karamali, Fereshte; Abedi, Daryoush; Razavi, Shahnaz; Jafarian-Dehkordi, Abbas; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein
2012-07-01
A critical element in tissue engineering involves the fabrication of a three-dimensional scaffold. The scaffold provides a space for new tissue formation, supports cellular ingrowth, and proliferation and mimics many roles of the extracellular matrix. Poly(3-hydroxybutyrate) (PHB) is the most thoroughly investigated member of the polyhydroxyalkanoates (PHAs) family that has various degrees of biocompatibility and biodegradability for tissue engineering applications. In this study, we fabricated PHB scaffolds by utilizing electrospinning and salt-leaching procedures. The behavior of monkey epithelial kidney cells (Vero) and mouse mesenchymal stem cells (mMSCs) on these scaffolds was compared by the MTS assay and scanning electron microscopy. Additionally, this study investigated the mechanical and physical properties of these scaffolds by measuring tensile strength and modulus, dynamic contact angle and porosity. According to our results, the salt-leached scaffolds showed more wettability and permeability, but inferior mechanical properties when compared with nanofibrous scaffolds. In terms of cell response, salt-leached scaffolds showed enhanced Vero cell proliferation, whereas both scaffolds responded similarly in the case of mMSCs proliferation. In brief, nanofibrous scaffolds can be a better substrate for cell attachment and morphology. Copyright © 2012 Wiley Periodicals, Inc.
Extracts from black carrot tissue culture as potent anticancer agents.
Sevimli-Gur, Canan; Cetin, Burcu; Akay, Seref; Gulce-Iz, Sultan; Yesil-Celiktas, Ozlem
2013-09-01
Black carrots contain anthocyanins possessing enhanced physiological activities. Explants of young black carrot shoots were cultured in Murashige and Skoog (MS) medium for callus initiation and were transferred to new MS medium supplemented with four different combinations of 2,4-dichlorophenoxyacetic acid and kinetin. Subsequently, the lyophilized calli and black carrot harvested from fields were subjected to ultrasound extraction with ethanol at a ratio of 1:15 (w:v). Obtained extracts were applied to various human cancer cell lines including MCF-7 SK-BR-3 and MDA-MB-231 (human breast adenocarcinomas), HT-29 (human colon adenocarcinoma), PC-3 (human prostate adenocarcinoma), Neuro 2A (Musmusculus neuroblastoma) cancer cell lines and VERO (African green monkey kidney) normal cell line by MTT assay. The highest cytotoxic activity was achieved against Neuro-2A cell lines exhibiting viability of 38-46% at 6.25 μg/ml concentration for all calli and natural extracts. However, a significantly high IC50 value of 170.13 μg/ml was attained in normal cell line VERO indicating that its natural counterpart is an ideal candidate for treatment of brain cancer without causing negative effects to normal healthy cells.
USDA-ARS?s Scientific Manuscript database
Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by po...
Miron-Lopez, Gumersindo; Bazzocchi, Isabel L; Jimenez-Diaz, Ignacio A; Moujir, Laila M; Quijano-Quiñones, Ramiro; Quijano, Leovigildo; Mena-Rejon, Gonzalo J
2014-05-01
Four new diterpenes, crossogumerins A-D (1-4) along with six known ones (5-10) were isolated from the root bark of Crossopetalum gaumeri, an endemic medicinal plant from the Yucatan Peninsula. Their structures were elucidated on the basis of 1D and 2D NMR techniques, including HMQC, HMBC, and ROESY experiments. Compounds 1-5, 8-10 were evaluated for cytotoxicity against HeLa (carcinoma of the cervix) and Hep-2 (lung carcinoma) human tumor cells lines and against normal Vero cells (African green monkey kidney) in lag and log phase of growth. Podocarpane diterpenes, crossogumerin B (2) and nimbiol (10), exhibited the highest activity against HeLa cells (IC50 values of 3.1 and 8.1 μM, respectively), but also selectivity on Vero cells (SI 22.6 and 7.5, respectively). The preliminary SAR studies suggest that an epoxy moiety in ring B and a hydrogen bond-donor group strategically positioned in the diterpene core are important requirements for cytotoxicity and selectivity. Copyright © 2014. Published by Elsevier Ltd.
Lee, Jong-Seon; Kim, Ju-Hwan; Seo, Young-Seok; Yang, Jung-Bo; Kim, Yong-Il; Kim, Hye-Jin; Lee, Ki-Hwan
2013-09-01
This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos. A total of 1,099 two-cell embryos collected from imprinting control region mice were cultured in SF-VCM with 10% and 20% human follicular fluid (hFF), serum substitute supplement (SSS), and serum protein substitute (SPS). Development of embryos was observed every 24 hours. Results between different groups were analyzed by chi-square test, and considered statistically significant when P-value was less than 0.05. The rates of embryonic development cultured in SF-VCM supplemented with serum substituents were significantly higher compare with serum-free group (P < 0.05). The rates of embryonic development after 48 hours (morula≤) and 96 hours (blastocyst≤) were significantly higher in 20% SSS and 10% SPS than in 20% hFF supplementation (P < 0.05). And the rates of embryonic development after 96 hours (hatching blastocyst≤) were significantly higher in 10% SPS (94.5%) than in 20% SSS (82.6%) and 20% hFF supplementation (68.5%). The rates of embryonic development according to storage period of the SF-VCM supplemented with 10% SPS showed no significant difference between control, 2 weeks and 4 weeks group. However developmental rate in 6 weeks storage group was significantly lower than other groups. The rate of embryonic development after 96 hours (hatching blastocyst≤) was significantly higher in SF-VCM supplemented with 10% SPS. And storage period of media up to 4 weeks did not affect on embryonic development.
NASA Astrophysics Data System (ADS)
Ismaeel, Mahmud Yusef Yusef; Dyari, Herryawan Ryadi Eziwar; Yaacob, Wan Ahmad; Ibrahim, Nazlina
2018-04-01
Phaleria macrocarpa fruits have been used as herbal medicine for several diseases. This study aims to determine the cytotoxicity and antiviral activity of aqueous extract of P. macrocarpa fruit (AEPMF). Phytochemical analysis showed the presence of steroids, tannins, flavones aglycones, saponins, terpenoids and alkaloids. AEPMF was found to contain protein with the concentration of 740 µg/mL. The cytotoxicity towards Vero cell was evaluated using MTT assay with 50% cytotoxic concentration (CC50) value of AEPMF 5 mg/mL. The finding indicates that AEPMF is safe and not toxic towards Vero cells. Screening by plaque reduction assay showed that AEPMF have antiviral activity against herpes simplex virus type 1 (HSV-1) with effective concentration (EC50) was 0.28 mg/mL. The selective index (SI=CC50/EC50) of AEPMF is 17.9 indicating AEPMF have potential for further evaluation in antiviral activity.
Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin.
Popoff, M R; Boquet, P
1988-05-16
We have purified from Clostridium spiroforme strain 246 an heterogeneous population of proteins (Sa) ranging from 43 to 47 kilodaltons exhibiting ADP-ribosyl transferase activity as do C. botulinum C2 toxin component I or the ia chain of C. perfringens E iota toxin. C. spiriforme Sa had alone no activity upon injection in mice or inoculated to Vero cells. When spiroforme ADP ribosyl transferase were mixed with a trypsin activated protein (Sb) separated from C. spiroforme bacterial supernatant, a lethal effect in mice and cytotoxicity on Vero cells were recorded. The Sa cross-reacted immunologically with either the light chain of C. perfringens E iota toxin or the ADP-ribosyl transferase from C. difficile 196 strain. No immunological relatedness was observed between Sa and C2 toxin component I. C. spiroforme toxin is thus another binary toxin close to iota.
Muhd Haffiz, J; Norhayati, I; Getha, K; Nor Azah, M A; Mohd Ilham, A; Lili Sahira, H; Roshan Jahn, M S; Muhd Syamil, A
2013-03-01
Essential oil from Cymbopogon nardus was evaluated for activity against Trypanosoma brucei brucei BS221 (IC50 = 0.31 ± 0.03 μg/mL) and cytotoxic effect on normal kidney (Vero) cells (IC50 = >100 μg/mL). The crude essential oil was subjected to various chromatography techniques afforded active sub fractions with antitrypanosomal activity; F4 (IC50 = 0.61 ± 0.06 μg/mL), F6 (IC50= 0.73 ± 0.33 μg/mL), F7 (IC50 = 1.15 ± 0 μg/mL) and F8 (IC50 = 1.11 ± 0.01 μg/mL). These active fractions did not exhibit any toxic effects against Vero cell lines and the chemical profiles investigation indicated presence of α-and γ-eudesmol, elemol, α-cadinol and eugenol by GC/MS analysis.
Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V
2013-01-01
In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.
Fujimoto, Y; Ozaki, K; Iwamori, N; Takakuwa, H; Ono, E
2016-03-01
Cell entry of herpes simplex virus type 2 (HSV-2) requires the interaction of viral glycoprotein D (gD) with the receptor nectin-1 and herpesvirus entry mediator (HVEM). In addition, it is known that nectin-2 is also functional as a receptor for HSV-2, although the binding to the gD is weak. To examine an antiviral potential of a soluble form of human nectin-2 (hNectin-2Ig), transfected Vero cells expressing the entire ectodomain of nectin-2 fused to the Fc portion of human IgG were established. Specific binding of hNectin-2Ig to HSV-2 gD was confirmed by ELISA. Competitive ELISA demonstrated that accumulation of hNectin-2Ig in transfected cells increased significantly in a cell culture time dependent manner. Viral growth of several HSV-2 strains was significantly inhibited in the transfected cells that were cultured for 72 hr compared with control Vero cells, but not in cells that were cultured for 24 hr. These results indicate that accumulation of a soluble form of nectin-2 is required for exerting the resistance against HSV-2 infection.
Ladner, Jason T.; Ettinger, Chelsea R.; Palacios, Gustavo
2017-01-01
ABSTRACT Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus. IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544) that enhanced virus entry, but they did not agree in their conclusions regarding its impact on pathogenesis. Our findings here address the origins of this polymorphism and provide experimental evidence showing that it is the result of a spontaneous mutation (T544I) specific to tissue culture conditions, suggesting that it has no role in pathogenesis. We further show that this mutation may be unique to the species Zaire ebolavirus, as it does not occur in Sudan, Bundibugyo, and Tai Forest ebolaviruses. Understanding the mechanism behind this mutation can provide insight into functional differences that exist in culture conditions and among ebolavirus glycoproteins. PMID:28539437
Zahedan rhabdovirus, a novel virus detected in ticks from Iran.
Dilcher, Meik; Faye, Oumar; Faye, Ousmane; Weber, Franziska; Koch, Andrea; Sadegh, Chinikar; Weidmann, Manfred; Sall, Amadou Alpha
2015-11-05
Rhabdoviridae infect a wide range of vertebrates, invertebrates and plants. Their transmission can occur via various arthropod vectors. In recent years, a number of novel rhabdoviruses have been identified from various animal species, but so far only few tick-transmitted rhabdoviruses have been described. We isolated a novel rhabdovirus, provisionally named Zahedan rhabdovirus (ZARV), from Hyalomma anatolicum anatolicum ticks collected in Iran. The full-length genome was determined using 454 next-generation sequencing and the phylogenetic relationship to other rhabdoviruses was analyzed. Inoculation experiments in mammalian Vero cells and mice were conducted and a specific PCR assay was developed. The complete genome of ZARV has a size of 11,230 nucleotides (nt) with the typical genomic organization of Rhabdoviridae. Phylogenetic analysis confirms that ZARV is closely related to Moussa virus (MOUV) from West Africa and Long Island tick rhabdovirus (LITRV) from the U.S., all forming a new monophyletic clade, provisionally designated Zamolirhabdovirus, within the Dimarhabdovirus supergroup. The glycoprotein (G) contains 12 conserved cysteins which are specific for animal rhabdoviruses infecting fish and mammals. In addition, ZARV is able to infect mammalian Vero cells and is lethal for mice when inoculated intracerebrally or subcutaneously. The developed PCR assay can be used to specifically detect ZARV. The novel tick-transmitted rhabdovirus ZARV is closely related to MOUV and LITRV. All three viruses seem to form a new monophyletic clade. ZARV might be pathogenic for mammals, since it can infect Vero cells, is lethal for mice and its glycoprotein contains 12 conserved cysteins only found in animal rhabdoviruses. The mammalian host of ZARV remains to be identified.
Roy, Soumen; Pawar, Sandip; Chowdhary, Abhay
2016-01-01
Aim: To evaluate in vitro cytotoxicity and antioxidant activity of Datura metel L. and Cynodon dactylon L. extracts. Materials and Methods: The extraction of plants parts (datura seed and fruit pulp) and areal parts of durva was carried out using soxhlet and cold extraction method using solvents namely methanol and distilled water. The total phenolic content (TPC) and total flavonoid content (TFC) was determined by established methods. The in vitro cytotoxicity assay was performed in vero cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method. In vitro antioxidant activity of the extract was performed by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging method. Results: We found that the highest amount of TPC and TFC in methanolic extracts of seed (268.6 μg of gallic acid equivalence/mg of dry plant material) and fruit pulp (8.84 μg of quercetin equivalence/mg dry plant material) of D. metel, respectively prepared by Soxhlet method. The methanolic extract of C. dactylon prepared using soxhlation has shown potent free radical scavenging activity with 50% inhibitory concentration (IC50) value of 100 μg/ml. The IC50 of a methanolic cold extract of datura fruit was found to be 3 mg/ml against vero cell line. Conclusion: We observed that plant parts of C. dactylon and D. metel have a high antioxidant activity. Further research is needed to explore the therapeutic potential of these plant extracts. SUMMARY In the present study we observed a positive correlation was between the phenolic and flavanoid content of the Datura metel and cynodon doctylon (durva) extracts with the free radical scavenging activities. Both were found to have a high antioxidant activity. Abbreviations used: BHA: Butylated hydroxyanisole, BHT: Butylated hydroxytoluene, CC50: 50% cell cytotoxic concentration, CNS: Central nervous system, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, IC50: 50% inhibitory concentration, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), TFC: Total flavonoid content, TPC: Total phenolic content. PMID:27034603
Boonyaketgoson, Sirada; Rukachaisirikul, Vatcharin; Phongpaichit, Souwalak; Trisuwan, Kongkiat
2018-01-01
Four new naphthoquinones (1-4), named rhinacanthins S (1), T (2), U (3) and V (4), together with 13 known naphthoquinones were isolated from the leaf extract of Rhinacanthus nasutus. The structures of isolated compounds were elucidated by spectroscopic methods, especially 1D and 2D NMR spectroscopy and mass spectrometry. Rhinacanthin S (1) exhibited acetylcholinesterase inhibition activity with a % inhibition value of 48.04±3.25. The known rhinacanthin A (5) showed cytotoxicity against a MCF-7 cell line with an IC 50 value of 8.79μM, while rhinacanthin N (15) was active against the NCI-H187 cell line with an IC 50 =2.24μM and Vero cells (IC 50 =3.00μM). Copyright © 2017 Elsevier B.V. All rights reserved.
Sanders, Barbara P; Oakes, Isabel de los Rios; van Hoek, Vladimir; Liu, Ying; Marissen, Wilfred; Minor, Philip D; Wimmer, Eckard; Schuitemaker, Hanneke; Custers, Jerome H H V; Macadam, Andrew; Cello, Jeronimo; Edo-Matas, Diana
2015-11-27
As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (p<0.0001) on the PER.C6(®) cell platform as compared to the Vero cell platform in infectious titer and D-antigen content. Furthermore, Sabin strain productivity on the PER.C6(®) cell platform was maintained at 10l scale. Yields of infectious titers of S19 and MonoCre(X) strains were 0.5-1 log10 lower than seen for cIPV strains, whereas D-antigen yield and productivities in doses/ml using rationally-attenuated strains were in line with yields reported for cIPV strains. Sabin and rationally-attenuated polioviruses can be grown to high infectious titers and D-antigen yields. Sabin strain infection shows increased productivity on the PER.C6(®) cell platform as compared to the conventional Vero cell platform. Novel cell platforms with the potential for higher yields could contribute to increased affordability of a next generation of IPV vaccines needed for achieving and maintaining poliovirus eradication. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pérez-Moya, M; Kaisto, T; Navarro, M; Del Valle, L J
2017-03-01
Degradation of bisphenol A (BPA, 0.5 L, 30 mg L -1 ) was studied by photo-Fenton treatment, while Fenton reagents were variables. The efficiency of the degradation process was evaluated by the reduction of total organic carbon (TOC), the biochemical oxygen demand (BOD), and toxicity. For toxicity analysis, bacterial methods were found infeasible, but the in vitro assay of VERO cells culture was successfully applied. Experiments according to a 2 2 design of experiments (DOE) with star points and three center points for statistical validity allowed selecting those process conditions (Fe(II) and H 2 O 2 load) that maximized the process performance. Photo-Fenton process effectively eliminated BPA and partly degraded its by-products (residual TOC <15 %) under substoichiometric H 2 O 2 dose (100.62 mg L -1 ) and at least 4 mg L -1 Fe(II), after a 90-min treatment. All treated samples were at least partially biodegradable. The cytotoxic concentration (LD 50 ) of BPA for VERO cells was 7 mg L -1 . With small H 2 O 2 amount (15.24 mg L -1 ), only low BPA mineralization (TOC = 92 %) was attained. Toxicity was also detected to 50 % of cellular mortality even at long reaction times. However, 40.25 mg L -1 of H 2 O 2 decreased residual TOC to 70 % while cell mortality decreased down to 25 %. With more H 2 O 2 , the residual TOC decreased down to 15 % but cell mortality remained within the 20-25 % level. Photo-Fenton increased the biodegradability and reduced the toxicity of the studied sample.
Cota, Betania Barros; Tunes, Luiza Guimarães; Maia, Daniela Nabak Bueno; Ramos, Jonas Pereira; de Oliveira, Djalma Menezes; Kohlhoff, Markus; Alves, Tânia Maria de Almeida; Souza-Fagundes, Elaine Maria; Campos, Fernanda Fraga; Zani, Carlos Leomar
2018-01-01
BACKGROUND In a screen of extracts from plants and fungi to detect antileishmanial activity, we found that the ethyl acetate extract of the fungus Nectria pseudotrichia, isolated from the tree Caesalpinia echinata (Brazilwood), is a promising source of bioactive compounds. OBJECTIVES The aims of this study were to isolate and determine the chemical structures of the compounds responsible for the antileishmanial activity of the organic extract from N. pseudotrichia. METHODS Compounds were isolated by chromatographic fractionation using semi-preparative high-performance liquid chromatography, and their chemical structures were determined by analytical and spectral data and by comparison with published data. The antileishmanial activity of the isolated compounds was evaluated in intracellular amastigote forms of Leishmania (Viannia) braziliensis expressing firefly luciferase as reporter gene, and cytotoxicity was determined in Vero and THP-1 mammalian cell lines by MTT assay. FINDINGS Fractionation of the extract yielded seven compounds: 10-acetyl trichoderonic acid A (1), 6′-acetoxy-piliformic acid (2), 5′,6′-dehydropiliformic acid (3), piliformic acid (4), hydroheptelidic acid (5), xylaric acid D (6), and cytochalasin D (7). Compounds 1, 2 and 3 are reported here for the first time. Compounds 1, 2, and 5 were more active, with IC50 values of 21.4, 28.3, and 24.8 µM, respectively, and showed low toxicity to Vero and THP-1 cells. MAIN CONCLUSIONS N. pseudotrichia produces secondary metabolites that are more toxic to intracellular amastigote forms of L. (V.) braziliensis than to mammalian cells. PMID:29236928
Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages.
Jacoby, Letícia Spinelli; Rodrigues Junior, Valnês da Silva; Campos, Maria Martha; Macedo de Menezes, Luciane
2017-05-01
The safety of orthodontic materials is a matter of high interest. In this study, we aimed to assess the in-vitro cytotoxicity of orthodontic band extracts, with and without silver solder, by comparing the viability outcomes of the HaCat keratinocytes, the fibroblastic cell lineages HGF and MRC-5, and the kidney epithelial Vero cells. Sterilized orthodontic bands with and without silver solder joints were added to culture media (6 cm 2 /mL) and incubated for 24 hours at 37°C under continuous agitation. Subsequently, the cell cultures were exposed to the obtained extracts for 24 hours, and an assay was performed to evaluate the cell viability. Copper strip extracts were used as positive control devices. The extracts from orthodontic bands with silver solder joints significantly reduced the viability of the HaCat, MRC-5, and Vero cell lines, whereas the viability of HGF was not altered by this material. Conversely, the extracts of orthodontic bands without silver solder did not significantly modify the viability index of all evaluated cell lines. Except for HGF fibroblasts, all tested cell lines showed decreased viability percentages after exposure to extracts of orthodontic bands containing silver solder joints. These data show the relevance of testing the toxicity of orthodontic devices in different cell lines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein.
Kukkonen, Sami K J; Vaheri, Antti; Plyusnin, Alexander
2004-05-01
The complete open reading frame of Tula hantavirus (TULV) L RNA was cloned in three parts. The middle third (nt 2191-4344) could be expressed in E. coli and was used to immunize rabbits. The resultant antiserum was then used to immunoblot concentrated TULV and infected Vero E6 cells. The L protein of a hantavirus was detected, for the first time, in infected cells and was found to be expressed as a single protein with an apparent molecular mass of 250 kDa in both virions and infected cells. Using the antiserum, the expression level of the L protein was followed and image analysis of immunoblots indicated that there were 10(4) copies per cell at the peak level of expression. The antiserum was also used to detect the L protein in cell fractionation studies. In cells infected with TULV and cells expressing recombinant L, the protein pelleted with the microsomal membrane fraction. The membrane association was confirmed with membrane flotation assays. To visualize L protein localization in cells, a fusion protein of L and enhanced green fluorescent protein, L-EGFP, was expressed in Vero E6 cells with a plasmid-driven T7 expression system. L-EGFP localized in the perinuclear region where it had partial co-localization with the Golgi matrix protein GM130 and the TULV nucleocapsid protein.
Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana)
Palacios, Gustavo; Storm, Nadia; Markotter, Wanda; Birkhead, Monica; Kemp, Alan
2017-01-01
The Bunyaviridae family comprises viruses causing diseases of public and veterinary health importance, including viral haemorrhagic and arboviral fevers. We report the isolation, identification and genome characterization of a novel orthobunyavirus, named Wolkberg virus (WBV), from wingless bat fly ectoparasites (Eucampsipoda africana) of Egyptian fruit bats (Rousettus aegyptiacus) in South Africa. Complete genome sequence data of WBV suggests it is most closely related to two bat viruses (Mojuí dos Campos and Kaeng Khoi viruses) and an arbovirus (Nyando virus) previously shown to infect humans. WBV replicates to high titres in VeroE6 and C6-36 cells, characteristic of mosquito-borne arboviruses. These findings expand our knowledge of the diversity of orthobunyaviruses and their insect vector host range. PMID:28488954
Sanford, B; Holinka, L G; O'Donnell, V; Krug, P W; Carlson, J; Alfano, M; Carrillo, C; Wu, Ping; Lowe, Andre; Risatti, G R; Gladue, D P; Borca, M V
2016-02-02
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically deleting virus genes involved in virulence, including the thymidine kinase (TK) gene. TK has been shown to be involved in the virulence of several viruses, including ASFV. Here we report the construction of a recombinant virus (ASFV-G/V-ΔTK) obtained by deleting the TK gene in a virulent strain of ASFV Georgia adapted to replicate in Vero cells (ASFV-G/VP30). ASFV-G/P-ΔTK demonstrated decreased replication both in primary swine macrophage cell cultures and in Vero cells compared with ASFV-G/VP30. In vivo, intramuscular administration of up to 10(6) TCID50 of ASFV-G/V-ΔTK does not result in ASF disease. However, these animals are not protected when challenged with the virulent parental Georgia strain. Published by Elsevier B.V.
Identification of plant compounds that inactivate Shiga toxin from Escherichia coli O157:H7
USDA-ARS?s Scientific Manuscript database
In the present study, we describe a simple cell-based assay for the detection of Stxs and inhibitors of Stx activity. A Vero cell line that expresses a destabilized variant (t1/2 = 2 hours) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the Stx-induced inhibition of protein ...
USDA-ARS?s Scientific Manuscript database
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infan...
Experimental infection of Rickettsia parkeri in the Rhipicephalus microplus tick.
Cordeiro, Matheus Dias; de Azevedo Baêta, Bruna; Cepeda, Patricia Barizon; Teixeira, Rafaella Câmara; Ribeiro, Carla Carolina Dias Uzedo; de Almeida Valim, Jaqueline Rodrigues; Pinter, Adriano; da Fonseca, Adivaldo Henrique
2018-01-01
This study aimed to evaluate, by means of artificial feeding, the interaction between a pathogenic rickettsia and the hard tick R. microplus. We used partially engorged females fed on calves free of Rickettsia spp. Group 1 (G1), containing 20 ticks, was fed bovine blood only. Group 2 (G2), containing 20 ticks, was fed blood containing uninfected VERO cells, and group 3 (G3), containing 40 ticks, was fed blood containing VERO cells infected with Rickettsia parkeri. Biological parameters of the non-parasitic phase and a possible bacterial transmission to the tick eggs and to guinea pigs were evaluated. At the end of oviposition, all G3 females were PCR-positive for genes specific for the genus Rickettsia. Although no guinea pigs were infected, the experimental infection of R. microplus by R. parkeri caused a deleterious effect on the oviposition and provided the first report of transovarian transmission of rickettsia in this tick. Copyright © 2017 Elsevier GmbH. All rights reserved.
Casais, Rosa; Molleda, Lorenzo González; Machín, Angeles; del Barrio, Gloria; Manso, Alberto García; Dalton, Kevin P; Coto, Ana; Alonso, José Manuel Martín; Prieto, Miguel; Parra, Francisco
2008-10-01
Rabbit vesivirus infection induces membrane modifications and accumulation of vesicular structures in the cytoplasm of infected Vero cells. Crude RaV replication complexes (RCs) have been purified and their structural and functional properties have been characterized. We show that calnexin, an ER-resident protein, RaV non-structural proteins 2AB-, 2C-, 3A-, 3B- and 3CD-like as well as viral RNAs co-localize within membranous structures which are able to replicate the endogenous RNA templates. The purified virus factories protected their viral RNA contents from microccocal nuclease degradation and were inaccessible to exogenously added synthetic transcripts. In addition, we have shown that RCs can be used to investigate uridylylation of native endogenous VPg. In contrast to the observation that the virus factories were inaccessible to RNAs, RCs were accessible to added recombinant VPg which was subsequently nucleotidylylated. Nevertheless no elongation of an RNA chain attached to native or recombinant VPg could be demonstrated.
Ramli, Munirah; Hussein, Mohd Zobir; Yusoff, Khatijah
2013-01-01
A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells. PMID:23345976
Ruedas, John B; Ladner, Jason T; Ettinger, Chelsea R; Gummuluru, Suryaram; Palacios, Gustavo; Connor, John H
2017-08-01
Ebolaviruses have a surface glycoprotein (GP 1,2 ) that is required for virus attachment and entry into cells. Mutations affecting GP 1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP 1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP 1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP 1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544) that enhanced virus entry, but they did not agree in their conclusions regarding its impact on pathogenesis. Our findings here address the origins of this polymorphism and provide experimental evidence showing that it is the result of a spontaneous mutation (T544I) specific to tissue culture conditions, suggesting that it has no role in pathogenesis. We further show that this mutation may be unique to the species Zaire ebolavirus , as it does not occur in Sudan, Bundibugyo, and Tai Forest ebolaviruses. Understanding the mechanism behind this mutation can provide insight into functional differences that exist in culture conditions and among ebolavirus glycoproteins. Copyright © 2017 American Society for Microbiology.
Shi, Nianmin; Zhang, Yibin; Zheng, Huizhen; Zhu, Zhenggang; Wang, Dingming; Li, Sihai; Li, Yuhua; Yang, Liqing; Zhang, Junnan; Bai, Yunhua; Lu, Qiang; Zhang, Zheng; Luo, Fengji; Yu, Chun; Li, Li
2017-01-01
ABSTRACT Aim: To compare the safety, immunogenicity and long-term effect of a purified vero cell cultured rabies vaccine in post-exposure subjects following 2 intramuscular regimens, Zagreb or Essen regimen. Methods: Serum samples were collected before vaccination and on days 7, 14, 42, 180 and 365 post vaccination. Solicited adverse events were recorded for 7 d following each vaccine dose, and unsolicited adverse events throughout the entire study period. This study was registered with ClinicalTrials.gov (NCT01821911 and NCT01827917). Results: No serious adverse events were reported. Although Zagreb regimen had a higher incidence of adverse reactions than Essen regimen at the first and second injection, the incidence was similar at the third and fourth injection between these 2 groups as well. At day 42, 100% subjects developed adequate rabies virus neutralizing antibody concentrations (≥ 0.5IU/ml) for both regimens. At days 180 and 365, the antibody level decreased dramatically, however, the percentage of subjects with adequate antibody concentrations still remained high (above 75% and 50% respectively). None of confirmed rabies virus exposured subjects had rabies one year later, and percentage of subjects with adequate antibody concentrations reached 100% at days 14 and 42. Conclusions: Rabies post-exposure prophylaxis vaccination with PVRV following a Zagreb regimen had a similar safety, immunogenicity and long-term effect to the Essen regimen in China. PMID:28121231
[Study on the inhibition effect of siRNA on herpes simplex virus type 2 ICP4 gene].
Liu, Ji-feng; Guan, Cui-ping; Tang, Xu; Xu, Ai-e
2010-06-01
To explore the inhibition effect of RNA interference on the ICP4 expression and DNA replication of herpes simplex virus type 2 (HSV2). Four pairs of siRNA targeted to HSV2 ICP4 gene and negative control siRNA were synthetized by chemical method, named as siRNA-1, siRNA-2, siRNA-3, siRNA-4 and siRNA-N respecticely. HSV2 HG52 was used to attack Vero cell after transfection overnight. Vero cell and supernatant were collected at 1d, 2d, 3d, 4d and 5d after virus attacking. Flurogenic quantitative reverse transcription polymerase chain reaction (FQ-RT-PCR)was used to detect the expression of HSV2 ICP4 mRNA, flurogenic quantitative polymerase chain reaction(FG-PCR) was used to detect the expression of HSV2 DNA and Western-Blot was used to detect the expression of HSV2 ICP4 protein. All the four pairs of siRNA could significantly inhibit the expression of HSV2 ICP4 mRNA and protein, especially siRNA-2. The above siRNAs could significantly decrease HSV2 DNA copy number,too. siRNAs targeted to HSV2 ICP4 gene could significantly inhibit expression of HSV2 ICP4 mRNA and protein, and decrease HSV2 DNA copy number, suggesting that siRNA can inhibit HSV2 DNA replication through silencing ICP4 gene.
An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.
Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena
2015-08-20
Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acellular organ scaffolds for tumor tissue engineering
NASA Astrophysics Data System (ADS)
Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei
2015-12-01
Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.
Sun, Pei; Wu, Haoyang; Huang, Jiali; Xu, Ying; Yang, Feng; Zhang, Qi; Xu, Xingang
2018-05-22
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified or cell culture-adapted ASFV have been evaluated but no commercial vaccine is available to control African Swine Fev...
Beer, María Florencia; Frank, Fernanda Maria; Germán Elso, Orlando; Ernesto Bivona, Augusto; Cerny, Natacha; Giberti, Gustavo; Luis Malchiodi, Emilio; Susana Martino, Virginia; Alonso, María Rosario; Patricia Sülsen, Valeria; Cazorla, Silvia Ines
2016-10-01
Context Chagas' disease and leishmaniasis produce significant disability and mortality with great social and economic impact. The genus Stevia (Asteraceae) is a potential source of antiprotozoal compounds. Objective Aerial parts of four Stevia species were screened on Trypanosoma cruzi. Stevia satureiifolia (Lam.) Sch. Bip. var. satureiifolia (Asteraceae) dichloromethane extract was selected for a bioassay-guided fractionation in order to isolate its active compounds. Additionally, the antileishmanial activity and the cytotoxicity of these compounds on mammalian cells were assessed. Materials and methods The dichloromethane extract was fractionated by column chromatography. The isolated compounds were evaluated using concentrations of 0-100 μg/mL on T. cruzi epimastigotes and on Leishmania braziliensis promastigotes for 72 h, on trypomastigotes and amastigotes of T. cruzi for 24 h and 120 h, respectively. The compounds' cytotoxicity (12.5-500 μg/mL) was assessed on Vero cells by the MTT assay. The structure elucidation of each compound was performed by spectroscopic methods and HPLC analysis. Results The dichloromethane extracts of Stevia species showed significant activity on T. cruzi epimastigotes. The flavonoids eupatorin (1.3%), cirsimaritin (1.9%) and 5-desmethylsinensetin (1.5%) were isolated from S. satureiifolia var. satureiifolia extract. Eupatorin and 5-desmethylsinensetin showed IC50 values of 0.2 and 0.4 μg/mL on T. cruzi epimastigotes and 61.8 and 75.1 μg/mL on trypomastigotes, respectively. The flavonoid 5-desmethylsinensetin showed moderate activity against T. cruzi amastigotes (IC50 value = 78.7 μg/mL) and was the most active compound on L. braziliensis promastigotes (IC50 value = 37.0 μg/mL). Neither of the flavonoids showed cytotoxicity on Vero cells, up to a concentration of 500 μg/mL.
Chen, Xu; Ye, Haiyan; Li, Shilin; Jiao, Baihai; Wu, Jianqin; Zeng, Peibin; Chen, Limin
2017-01-01
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus (SFTS virus, SFTSV). At present there is still no specific antiviral treatment for SFTSV; To understand which cells support SFTSV life cycle and whether SFTSV infection activates host innate immunity, four different cell lines (Vero, Hela, Huh7.5.1, and Huh7.0) were infected with SFTSV. Intracellular/extracellular viral RNA and expression of IFNα, and IFNß were detected by real-time RT- PCR following infection. To confirm the role of non-structural protein (NSs) of SFTSV in exogenous IFNα-induced Jak/STAT signaling, p-STAT1 (Western Blot), ISRE activity (Luciferase assay) and ISG expression (real-time PCR) were examined following IFNα stimulation in the presence or absence of over-expression of NSs in Hela cells. Our study showed that all the four cell lines supported SFTSV life cycle and SFTSV activated host innate immunity to produce type I IFNs in Hela cells but not in Huh7.0, Huh7.5.1 or Vero cells. NSs inhibited exogenous IFNα-induced Jak/STAT signaling as shown by decreased p-STAT1 level, suppressed ISRE activity and down-regulated ISG expression. Suppression of the exogenous Type I IFN-induced Jak/STAT signaling by NSs might be one of the mechanisms of SFTSV to evade host immune surveillance.
In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women.
Mousavi, Elham; Makvandi, Manoochehr; Teimoori, Ali; Ataei, Angila; Ghafari, Shokouh; Najafian, Mahin; Ourang, Ziba; Samarbaf-Zadeh, Alireza
2016-12-01
The lactobacilli are a part of the bacterial flora of the human vagina. Detection of normal Lactobacillus species in the vaginas of healthy women in different geographical locations, and evaluation of their specific properties, can aid in the selection of the best species for preventing sexually transmitted diseases in the future. This study was performed to isolate and identify the Lactobacillus species in the vaginas of healthy women and to evaluate the adherence of these lactobacilli to Vero and HeLa cell lines. The study included 100 women. Bacteria were isolated from healthy women and purified. Phenotypic and biochemical tests were performed to identify the lactobacilli. The Lactobacillus species were detected by molecular methods using polymerase chain reaction amplification of the full length of the 16S rDNA of the isolated bacteria. Several isolates of each species were then selected to study their adherence to Vero and HeLa cell lines. Among the 50 samples taken from healthy women meeting the inclusion criteria, Lactobacillus species were identified in 33 (66%) samples. Of these lactobacilli, 14 isolates were Lactobacillus crispatus, six (18.2%) were Lactobacillus gasseri, nine (27%) were Lactobacillus rhamnosus, and the rest were either Lactobacillus salivarius (6%) or Lactobacillus plantarum (6%). L. rhamnosus showed the greatest adhesion to the cells when compared to the other tested species. All the lactobacilli isolated in this study showed a smaller capacity for cell adherence when compared with control species. L. crispatus, L. rhamnosus, and L. gasseri were the dominant Lactobacillus species in the vaginas of healthy women in Iran. L. rhamnosus attached more readily to the cells than did the other species; therefore, this isolate is a good candidate for further studies on the potential health benefits and application of lactobacilli as probiotics. Copyright © 2016. Published by Elsevier Taiwan LLC.
Bueno, Juan; Escobar, Patricia; Martínez, Jairo René; Leal, Sandra Milena; Stashenko, Elena E
2011-11-01
Tuberculosis (TB) is the most ancient epidemic disease in the world and a serious opportunistic disease in HIV/AIDS patients. The increase in multidrug resistant Mycobacterium tuberculosis (MDR-TB, XDR-TB) demands the search for novel antimycobacterial drugs. Essential oils (EOs) have been widely used in medicine and some EOs and their major components have been shown to be active against M. tuberculosis. The aim of this work was to evaluate the antimycobacterial and cell toxicity activities of three EOs derived from Salvia aratocensis, Turnera diffusa and Lippia americana, aromatics plants collected in Colombia. The EOs were isolated by hydrodistillation and analyzed by GC/MS techniques. The EOs were tested against 15 Mycobacterium spp using a colorimetric macrodilution method and against mammalian Vero and THP-1 cells by MTT. The activity was expressed as minimal concentration in microg/mL that inhibits growth, and the concentration that is cytotoxic for 50 or 90% of the cells (CC50 and CC90). The major components were epi-alpha-cadinol (20.1%) and 1,10-di-epi-cubenol (14.2%) for Salvia aratocensis; drima-7,9(11)-diene (22.9%) and viridiflorene (6.6%) for Turnera diffusa; and germacrene D (15.4%) and trans-beta- caryophyllene (11.3%) for Lippia americana. The most active EO was obtained from S. aratocensis, with MIC values below 125 microg mL(-1) for M. tuberculosis Beijing genotype strains, and 200 to 500 microg mL(-1) for nontuberculous mycobacterial strains. The EOs were either partially or non toxic to Vero and THP-1 mammalian cells with CC50 values from 30 to > 100 microg mL(-1), and a CC90 > 100 microg mL(-1). The EOs obtained from the three aromatic Colombian plants are an important source of potential compounds against TB. Future studies using the major EO components are recommended.
Saijo, Masayuki; Qing, Tang; Niikura, Masahiro; Maeda, Akihiko; Ikegami, Tetsuro; Sakai, Koji; Prehaud, Christophe; Kurane, Ichiro; Morikawa, Shigeru
2002-01-01
A HeLa cell line continuously expressing recombinant nucleoprotein (rNP) of the Crimean-Congo hemorrhagic fever virus (CCHFV) was established by transfection with an expression vector containing the cDNA of CCHFV NP (pKS336-CCHFV-NP). These cells were used as antigens for indirect immunofluorescence (IF) to detect immunoglobulin G antibodies to CCHFV. The sensitivity and specificity of this IF technique were examined by using serum samples and were compared to those of the IF technique using CCHFV-infected Vero E6 cells (authentic antigen). Staining of the CCHFV rNP expressed in HeLa cells showed a unique granular pattern similar to that of CCHFV-infected Vero E6 cells. Positive staining could easily be distinguished from a negative result. All 13 serum samples determined to be positive by using the authentic antigen were also determined to be positive by using CCHFV rNP-expressing HeLa cells (recombinant antigen). The 108 serum samples determined to be negative by using the authentic antigen were also determined to be negative by using the recombinant antigen. Thus, both the sensitivity and the specificity of this IF technique were 100% compared to the IF with authentic antigen. The novel IF technique using CCHFV rNP-expressing HeLa cells can be used not only for diagnosis of CCHF but also for epidemiological studies on CCHFV infections. PMID:11825944
Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City.
Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela
2016-01-01
Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii , and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx 1 /stx 2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD 50 ) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas , and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS.
Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City
Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J.; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela
2016-01-01
Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii, and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx1/stx2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD50) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas, and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS. PMID:27725813
Lin, Tzou-Yien; Liu, Yi-Chun; Jheng, Jia-Rong; Tsai, Hui-Ping; Jan, Jia-Tsrong; Wong, Wen-Rou; Horng, Jim-Tong
2009-01-01
Antipyretic and toxin-eliminating traditional Chinese herbs are believed to possess antiviral activity. In this study, we screened extracts of 22 herbs for activity against enterovirus 71 (EV71). We found that only extracts of Houttuynia cordata Thunb. could neutralize EV71-induced cytopathic effects in Vero cells. The 50% inhibitory concentration of H. cordata extract for EV71 was 125.92 +/- 27.84 mug/ml. Antiviral screening of herb extracts was also conducted on 3 genotypes of EV71, coxsackievirus A16 and echovirus 9. H. cordata extract had the highest activity against genotype A of EV71. A plaque reduction assay showed that H. cordata extract significantly reduced plaque formation. Viral protein expression, viral RNA synthesis and virus-induced caspase 3 activation were inhibited in the presence of H. cordata extract, suggesting that it affected apoptotic processes in EV71-infected Vero cells by inhibiting viral replication. The antiviral activity of H. cordata extract was greater in cells pretreated with extract than those treated after infection. We conclude that H. cordata extract has antiviral activity, and it offers a potential to develop a new anti-EV71 agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaram, Jyothi; Department of Biology, Texas A and M University, College Station, TX 77843-3258; Youn, Soonjeon
Because phosphorylation of the infectious bronchitis virus (IBV) nucleocapsid protein (N) may regulate its multiple roles in viral replication, the dynamics of N phosphorylation were examined. {sup 32}P-orthophosphate labeling and Western blot analyses confirmed that N was the only viral protein that was phosphorylated. Pulse labeling with {sup 32}P-orthophosphate indicated that the IBV N protein was phosphorylated in the virion, as well as at all times during infection in either chicken embryo kidney cells or Vero cells. Pulse-chase analyses followed by immunoprecipitation of IBV N proteins using rabbit anti-IBV N polyclonal antibody demonstrated that the phosphate on the N proteinmore » was stable for at least 1 h. Simultaneous labeling with {sup 32}P-orthophosphate and {sup 3}H-leucine identified a 3.5-fold increase in the {sup 32}P:{sup 3}H counts per minute (cpm) ratio of N in the virion as compared to the {sup 32}P:{sup 3}H cpm ratio of N in the cell lysates from chicken embryo kidney cells, whereas in Vero cells the {sup 32}P:{sup 3}H cpm ratio of N from the virion was 10.5-fold greater than the {sup 32}P:{sup 3}H cpm ratio of N from the cell lysates. These studies are consistent with the phosphorylation of the IBV N playing a role in assembly or maturation of the viral particle.« less
Balashanmugam, Pannerselvam; Durai, Prabhu; Balakumaran, Manickam Dakshinamoorthi; Kalaichelvan, Pudupalayam Thangavelu
2016-12-01
Gold nanoparticles are considered of great importance compared to other noble metal nanoparticles and its wide range of applications like pharmaceutics, therapeutics and diagnostics etc. During the past decade, phytosynthesized gold nanoparticles (AuNPs) are more focused in in vitro and in vivo study. The present study was focused on the gold chloride and phytosynthesized gold nanoparticles from aqueous leaf extract of Cassia roxburghii and their toxic effects on African green monkey normal kidney Vero cell line and three different cancer cell lines such as HepG2, MCF7 and HeLa. Phytosynthesized AuNPs were characterized by HRTEM, EDX, XRD and FTIR analysis. The particles size range of 25-35nm was confirmed by HRTEM. The elemental gold and the crystalline nature of AuNPs were confirmed by EDX and XRD, respectively. The reduction of functional groups was confirmed by FTIR. In in vitro study, the IC 50 of HepG2 cells was found to be 30μg/ml compared to other cell lines, HeLa and MCF7 cell line showing IC 50 of 50μg/ml and normal Vero cell line also nontoxic up to 75μg/ml confirmed by MTT assay. Further, apoptosis in HepG2 was analyzed by fluorescence microscope and DNA fragmentation was observed in HepG2 treated cells. These results suggested that phytosynthesized AuNPs of C. roxburghii extract clearly limited toxic on normal cells but toxic in cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Proteome profiling of virus-host interactions of wild type and attenuated measles virus strains.
Billing, Anja M; Kessler, Julia R; Revets, Dominique; Sausy, Aurélie; Schmitz, Stephanie; Barra, Claire; Muller, Claude P
2014-08-28
Quantitative gel-based proteomics (2D DIGE coupled to MALDI-TOF/TOF MS) has been used to investigate the effects of different measles virus (MV) strains on the host cell proteome. A549/hSLAM cells were infected either with wild type MV strains, an attenuated vaccine or a multiple passaged Vero cell adapted strain. By including interferon beta treatment as a control it was possible to distinguish between the classical antiviral response and changes induced specifically by the different strains. Of 38 differentially expressed proteins in total (p-value ≤0.05, fold change ≥2), 18 proteins were uniquely modulated following MV infection with up to 9 proteins specific per individual strain. Interestingly, wt strains displayed distinct protein patterns particularly during the late phase of infection. Proteins were grouped into cytoskeleton, metabolism, transcription/translation, immune response and mitochondrial proteins. Bioinformatics analysis revealed mostly changes in proteins regulating cell death and apoptosis. Surprisingly, wt strains affected the cytokeratin system much stronger than the vaccine strain. To our knowledge, this is the first study on the MV-host proteome addressing interstrain differences. In the present study we investigated the host cell proteome upon measles virus (MV) infection. The novelty about this study is the side-by side comparison of different strains from the same virus, which has not been done at the proteome level for any other virus including MV. We used different virus strains including a vaccine strain, wild type isolates derived from MV-infected patients as well as a Vero cell adapted strain, which serves as an intermediate between vaccine and wild type strain. We observed differences between vaccine and wild type strains as well as common features between different wild type strains. Perhaps one of the most surprising findings was that differences did not only occur between wild type and vaccine or Vero cell adapted strains but also between different wild type strains. In fact our study suggests that besides the cytokeratin and the IFN system wild type viruses seem to differ as much among each other than from vaccine strains. Thus our results are suggestive of complex and diverse virus-host interactions which differ considerably between different wild type strains. Our data indicate that interstrain differences are prominent and have so far been neglected by proteomics studies. Copyright © 2014 Elsevier B.V. All rights reserved.
A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.
Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V
2017-05-15
Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
Structure-guided design was used to generate a series of noncovalent inhibitors with nanomolar potency against the papain-like protease (PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit antiviral activity against SARS-CoV infected Vero E6 cells and broadened specificity toward the homologous PLP2 enzyme from the human coronavirus NL63. Selectivity and cytotoxicity studies established a more than 100-fold preference for the coronaviral enzyme over homologous human deubiquitinating enzymes (DUBs), and no significant cytotoxicity in Vero E6 and HEK293 cell lines is observed. X-ray structural analyses of inhibitor-bound crystal structures revealed subtle differences between binding modes of the initial benzodioxolane lead (15g) and the most potent analogues 3k and 3j, featuring a monofluoro substitution at para and meta positions of the benzyl ring, respectively. Finally, the less lipophilic bis(amide) 3e and methoxypyridine 5c exhibit significantly improved metabolic stability and are viable candidates for advancing to in vivo studies. PMID:24568342
SU-E-T-433: Field-In-Field Irradiation for Breast Cancer with VERO-4DRT System: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, N; Mizuno, T; Takada, Y
2015-06-15
Purpose: The Vero-4DRT system is a dedicated system for high precision radiation therapy. However, the field size is limited at 15 cm x 15 cm and shapes by using multi-leaf collimator (MLC) without X-Jaw and Y-Jaw. Therefore VERO-4DRT system is not available to simple wedged irradiation for breast cancer. In this study, we suppose FIF with ring and/or tilt/pan angles whole breast irradiation (FIFWBI). The purpose of this study is to verify the feasibility of FIFWBI with VERO-4DRT system. Methods: As fundamental evaluation, we performed commissioning test with phantom. The absorbed dose evaluation at several reference points and dose distributionmore » including split area were performed. We planned 10 demonstrative shapes in phantom for measuring these contents with i-plan workstation (BrainLAB). As clinical evaluation, the dose distribution and dose indexes were evaluated with actual patient data. Five patients with breast cancer were designed FIFWBI radiotherapy plan with split fields. Then, the dose distribution and dose indexes (including Dmax, Dmin, D95, D5 and Homogeneity index) were evaluated in these plans. Results: As the results of fundamental evaluation, all absorbed dose errors between calculated and measured doses were within 2%. The gamma passing rates with 2 mm/3% criteria in all cases were 96±2%. As the results of clinical evaluation, the values of Dmax, D95, D50, D5, and Homogeneity Index were 41.7±0.90 Gy, 49.4±0.34 Gy, 52.26±0.24 Gy, and 1.39±0.03, respectively. For Japanese breast cancer patients, this technique was feasible. However, the large split region was happened in FIFWBI in case of patient with large breast. Conclusion: We evaluated the FIFWBI technique with VERO-4DRT system. This technique is feasible for Japanese patients, but the patient with large breast should be disagreed with this technique.« less
Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication
Castrillón-Betancur, Juan Camilo; Urcuqui-Inchima, Silvio
2017-01-01
BACKGROUND Dengue is considered one of the world’s most important mosquito-borne diseases. MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that play an important role in the regulation of gene expression in eukaryotes. Although miRNAs possess antiviral activity against many mammalian-infecting viruses, their involvement in Dengue virus (DENV) replication remains poorly understood. OBJECTIVE To determine the role of miR-484 and miR-744 in DENV infection and to examine whether DENV infection alters the expression of both miRNAs. METHODS We used bioinformatics tools to explore the relationship between DENV and cellular miRNAs. We then overexpressed miR-484 or miR-744 in Vero cells to examine their role in DENV replication using flow cytometry, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), and western blotting. FINDINGS We found several cellular miRNAs that target a conserved region within the 3′ untranslated region (3′ UTR) of the genome of the four DENV serotypes and found that overexpression of miR-484 or miR-744 inhibits infection by DENV-1 to DENV-4. Furthermore, we observed that DENV RNA might be involved in the downregulation of endogenous miR-484 and miR-744. CONCLUSION Our study identifies miR-484 and miR-744 as two possible restriction host factors against DENV infection. However, further studies are needed to directly verify whether miR-484 and miR-744 both have an anti-DENV effect in vivo. PMID:28327787
Osman, Kamelia M; Hassan, Hany M; Orabi, Ahmed; Abdelhafez, Ahmed S T
2014-06-01
Studies on the prevalence and virulence genes of Klebsiella mastitis pathogens in a buffalo population are undocumented. Also, the association of rmpA kfu, uge, magA, Aerobactin, K1 and K2 virulent factors with K. pneumoniae buffalo, and cow mastitis is unreported. The virulence of K. pneumoniae was evaluated through both phenotypic and molecular assays. In vivo virulence was assessed by the Vero cell cytotoxicity, suckling mouse assay and mice lethality test. Antimicrobial susceptibility was tested by disk diffusion method. The 45 K. pneumoniae isolates from buffalo (n = 10/232) and cow (n = 35/293) milk were isolated (45/525; 8.6%) and screened via PCR for seven virulence genes encoding uridine diphosphate galactose 4 epimerase encoding gene responsible for capsule and smooth lipopolysaccharide synthesis (uge), siderophores (kfu and aerobactin), protectines or invasins (rmpA and magA), and the capsule and hypermucoviscosity (K1 and K2). The most common virulence genes were rmpA, kfu, uge, and magA (77.8% each). Aerobactin and K1 genes were found at medium rates of 66.7% each and K2 (55.6%). The Vero cell cytotoxicity and LD (50) in mice were found in 100% of isolates. A multidrug resistance pattern was observed for 40% of the antimicrobials. The distribution of virulence profiles indicate a role of rmpA, kfu, uge, magA, Aerobactin, and K1 and K2 in pathogenicity of K. pneumoniae in udder infections and invasiveness, and constitutes a threat for vulnerable animals, even more if they are in combination with antibiotic resistance.
1982-08-13
phospholipid, such as phosphatidyllnositolphosphate or phosphatidic acid , or some other phosphorylated membrane molecule. 34 Clearly, it has not been...metabolize lactic acid (40), all represented secondary changes which followed a rapid and irreversible primary Injury (73, 142). Pappenheimer...CR>1197 is taken as 100. Determined from the amino acid sequence (42), From Holmes (74). and lysogeny was demonstrated (11, 66, reviewed in 6, 8
A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus.
Chen, Can; Fan, Wenhui; Li, Jing; Zheng, Weinan; Zhang, Shuang; Yang, Limin; Liu, Di; Liu, Wenjun; Sun, Lei
2018-01-01
Interferon (IFN)-sensitive and replication-incompetent influenza viruses are likely to be the alternatives to inactivated and attenuated virus vaccines. Some IFN-sensitive influenza vaccine candidates with modified non-structural protein 1 (NS1) are highly attenuated in IFN-competent hosts but induce robust antiviral immune responses. However, little research has been done on the manufacturability of these IFN-sensitive vaccine viruses. Here, RIG-I-knockout 293T cells were used to package the IFN-sensitive influenza A/WSN/33 (H1N1) virus expressing the mutant NS1 R38A/K41A. We found that the packaging efficiency of the NS1 R38A/K41A virus in RIG-I-knockout 293T cells was much higher than that in 293T cells. Moreover, the NS1 R38A/K41A virus almost lost its IFN antagonist activity and could no longer replicate in A549, MDCK, and Vero cells after 3-6 passages. This indicated that the replication of NS1 R38A/K41A virus is limited in conventional cells. Therefore, we further established a stable Vero cell line expressing the wild-type (WT) NS1 of the WSN virus, based on the Tet-On 3G system. The NS1 R38A/K41A virus was able to steadily propagate in this IFN-deficient cell line for at least 20 passages. In a mouse model, the NS1 R38A/K41A virus showed more than a 4-log reduction in lung virus titers compared to the WT virus at 3 and 5 days post infection. Furthermore, we observed that the NS1 R38A/K41A virus triggered high-level of IFN-α/β production in lung tissues and was eliminated from the host in a relatively short period of time. Additionally, this virus induced high-titer neutralizing antibodies against the WT WSN, A/Puerto Rico/8/1934 (PR8), or A/California/04/2009 (CA04) viruses and provided 100% protection against the WT WSN virus. Thus, we found that the replication of the NS1 R38A/K41A virus was limited in IFN-competent cells and mice. We also presented a promising IFN-deficient system, involving a RIG-I-knockout 293T cell line to package the IFN-sensitive vaccine virus and a stable Vero cell line expressing NS1 to propagate the IFN-sensitive vaccine virus. The IFN-deficient system is applicable for the manufacture of IFN-sensitive vaccine virus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jincun; Wang Wei; Yuan Zhihong
The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/cmore » mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.« less
G₂/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora.
Rouf, Razina; Stephens, Alexandre S; Spaan, Lina; Arndt, Nadia X; Day, Christopher J; May, Tom W; Tiralongo, Evelin; Tiralongo, Joe
2014-01-01
A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.
Surface vimentin is critical for the cell entry of SARS-CoV.
Yu, Yvonne Ting-Chun; Chien, Ssu-Chia; Chen, I-Yin; Lai, Chia-Tsen; Tsay, Yeou-Guang; Chang, Shin C; Chang, Ming-Fu
2016-01-22
Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.
Oglesbee, M; Jackwood, D; Perrine, K; Axthelm, M; Krakowka, S; Rice, J
1986-11-01
A cDNA library was prepared from canine distemper viral (CDV) messenger RNA (mRNA) derived from Vero cells lytically infected with the Onderstepoort strain (Ond) of CDV. A 300 base pair insert was identified which, by Northern blot analysis and Sanger sequence data, was shown to be specific to the nucleocapsid gene. The nucleocapsid (NC) clone was radiolabelled with 32P using nick translation and used to detect viral RNA in both dot-blot and in situ preparations of Vero cells lytically infected with Onderstepoort CDV (Ond-CDV) and immortalized mink lung cells persistently infected with racoon origin CDV (CCL64-RCDV). Dot-blot hybridization results paralleled immunofluorescent results in the lytically infected cells. In 18 persistently infected cell lines from the RCDV-CCL64 parental stock, 13 lines were positive and two were negative on both immunofluorescence and dot-blot hybridization analysis for CDV antigen and RNA, respectively. Viral nucleic acid was detected in these persistently infected cells, where as few as 1.9% of the members of a line were positive on immunofluorescence. A dot-blot autoradiographic signal was obtained in three lines which were negative for CDV antigen. CDV RNA was detected in both lytically and persistently infected cell lines by in situ hybridization, where decreasing probe length was important in increasing the sensitivity of this assay. Viral RNA was detected in over 90% of the lytically infected cells, where only 70% were positive for viral antigen by immunofluorescence.
A simple and highly repeatable viral plaque assay for enterovirus 71.
Yin, Yingxian; Xu, Yi; Ou, Zhiying; Su, Ling; Xia, Huimin
2015-04-01
The classic plaque assay is a method for counting infectious viral particles, however its complexity limits its use in a variety of virological experiments. To simplify the operation and to improve the repeatability, we employed an improved plaque assay procedure based on Avicel to make the whole experiment easier and optimize the results on a model of Vero cells infection with Enterovirus 71(EV71). Clear plaques visible to the naked eyes can be formed on a 24-well plate or a 96-well plate without immunostaining. Following further improvement, this plaque assay procedure could be applied to other viruses, being both simple and repeatable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lam, Chui-Wan; AbuBakar, Sazaly; Chang, Li-Yen
2017-05-01
Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus with unusual broad host tropism and is designated as a Category C pathogen by the U.S. National Institute of Allergy and Infectious Diseases. NiV infection is initiated after binding of the viral G glycoprotein to the host cell receptor. The aim of this study was to map the NiV G glycoprotein cell binding domain using a phage display system. The NiV G extracellular domain was truncated and displayed as attachment proteins on M13 phage g3p minor coat protein. The binding efficiency of recombinant phages displaying different regions of NiV G to mammalian cells was evaluated. Results showed that regions of NiV G consisting of amino acids 396-602 (recombinant phage G4) and 498-602 (recombinant phage G5) demonstrated the highest binding to both Vero (5.5×10 3 cfu/ml and 5.6×10 3 cfu/ml) and THP-1 cells (3.5×10 3 cfu/ml and 2.9×10 3 cfu/ml). However, the binding of both of these recombinant phages to THP-1 cells was significantly lower than to Vero cells, and this could be due to the lack of primary host cell receptor expression on THP-1 cells. Furthermore, the binding between these two recombinant phages was competitive suggesting that there was a common host cell attachment site. This study employed an approach that is suitable for use in a biosafety level 2 containment laboratory without the need to use live virus to show that NiV G amino acids 498-602 play an important role for attachment to host cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Singireesu, Soma Shiva Nageswara Rao; Mondal, Sujan Kumar; Yerramsetty, Suresh; Misra, Sunil
2018-06-15
Zoledronic acid (ZA), a FDA approved drug has used widely in the treatment of bone metastasis complications, has been linked to renal toxicity with unclear mechanism. The present study is aimed at investigating the genotoxic and cytotoxic effects of ZA in renal epithelial cells. The genotoxic effect of ZA in Vero and MDCK cells determined by cytokinesis block micronucleus (CBMN) assay. The cytotoxic effect assessed by analysing cell cycle profile, cell death and mitochondrial membrane potential by flow cytometry using propidium iodide, AnnexinV-FITC/PI and JC1 dye staining, respectively, BAX and Bcl-2 expression by Western blotting and caspase activity by spectrofluorimetry. The cytotoxic effect of ZA based on MTT assay revealed variable sensitivities of Vero and MDCK cells, with IC 50 values of 7.41 and 109.58 μM, respectively. The CBMN assay has shown prominent dose-dependent (IC 10-50 ) induction of micronuclei formation in both cells, indicating ZA's clastogenic and aneugenic potential. Further, the ZA treatment led the cells to apoptosis, evident from dose-dependent increase in the percentage of cells in subG1 phase and display of membranous phosphatidylserine translocation. Studies also confirmed apoptosis through mitochondria, evident from the prominent increase in BAX/Bcl-2 ratio, mitochondrial membrane depolarization and caspase-3/7 activity. In addition, ZA reduces cytokinetic activity of renal cells, evident from dose-wise lowered replicative indices. The study depict ZA's potential genotoxic effect along with cytotoxic effect in renal epithelial cells, could be key factors for the development of renal complications associated with it, which prompts renal safety measures in lieu with ZA usage. Copyright © 2018 Elsevier Inc. All rights reserved.
Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger
2013-04-17
We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.
USDA-ARS?s Scientific Manuscript database
Aflatoxin (AF)-producing fungi contaminate food and feed during preharvest, storage and processing periods. Once consumed, AF accumulates in tissues, causing illnesses in animals and humans. At least 20 different types of AFs have been identified, and of these, aflatoxin B1 (AFB1) is the most ubiqui...
Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2
Kulkarni, Ashish A.; Fuller-Schaefer, Cynthia; Korman, Henry; Weiss, Alison A.; Iyer, Suri S.
2011-01-01
Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae, cause life-threatening conditions that include hemolytic-uremic syndrome (HUS), kidney failure and neurological complications. Cellular entry is mediated by the B subunit of the AB5 toxin, which recognizes cell surface glycolipids present in lipid raft like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These highly soluble glyconanoparticles were nontoxic to the Vero monkey kidney cell line and protected Vero cells from Stx-mediated toxicity in a dose dependent manner. The inhibition is highly dependent on the structure and density of the glycans; selective inhibition of Stx1 and the more clinically relevant Stx2 was achieved. Interestingly, natural variants of Stx2, Stx2c and Stx2d, possessing minimal amino acid variation in the receptor binding site of the B subunit or changes in the A subunit were not neutralized by either the Stx1- or Stx2-specific gold glyconanoparticles. Our results suggest that tailored glyconanoparticles that mimic the natural display of glycans in lipid rafts could serve as potential therapeutics for Stx1 and Stx2. However, a few amino acid changes in emerging Stx2 variants can change receptor specificity, and further research is needed to develop receptor mimics for the emerging variants of Stx2. PMID:20669970
Differential Requirements in Endocytic Trafficking for Penetration of Dengue Virus
Acosta, Eliana G.; Castilla, Viviana; Damonte, Elsa B.
2012-01-01
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection. PMID:22970315
Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried
2017-09-01
Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
Abhinayaa, R; Jeevitha, G; Mangalaraj, D; Ponpandian, N; Vidhya, Kalieswaran; Angayarkanni, Jayaraman
2018-05-19
Cytotoxic effects of iron oxide (Fe 3 O 4 ) nanoparticles and Halloysite nanotube/iron oxide (HNT/Fe 3 O 4 ) nanocomposite are compared based on their interaction with Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. Similarly, the action of these two nanomaterials on non-cancerous Vero cell lines and human lung cancerous (A-549) cell lines are compared. The cytotoxicity studies on Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite showed difference in the rate of killing of bacterial cells. This is reflected in differential cell growth, cell membrane integrity loss, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. These factors are measured over a range of concentrations of Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite and at specified time intervals, to test if there is any statistically significant difference between the toxicity of the two nanomaterials. Between the two nanomaterials, HNT/Fe 3 O 4 nanocomposite is found to be less toxic to bacterial cells than Fe 3 O 4 nanoparticles. HNT, when attached to the Fe 3 O 4 nanoparticles, changes their surface characteristics and suppresses their inherent toxicity on bacteria. In the study on the effect on cell lines, Fe 3 O 4 nanoparticles and HNT/Fe 3 O 4 nanocomposite are both seen to be biocompatible with Vero cell lines. However, HNT/Fe 3 O 4 nanocomposite showed more cytotoxicity than Fe 3 O 4 nanoparticles on A-549 cell lines. Copyright © 2018 Elsevier B.V. All rights reserved.
Efstratiou, Androulla; Engler, Kathryn H.; Dawes, Charlotte S.; Sesardic, Dorothea
1998-01-01
We have compared molecular, immunochemical, and cytotoxic assays for the detection of diphtheria toxin from 55 isolates of Corynebacterium diphtheriae and Corynebacterium ulcerans originally isolated in five different countries. The suitabilities and accuracies of these assays for the laboratory diagnosis of diphtheria were compared and evaluated against the “gold standard” in vivo methods. The in vivo and Vero cell cytotoxicity assays were accurate in their abilities to detect diphtheria toxin but were time-consuming; however, the cytotoxicity assay is a suitable in vitro alternative to the in vivo virulence test. There was complete concordance between all the phenotypic methods. Genotypic tests based upon PCR were rapid; however, PCR must be used with caution because some isolates of C. diphtheriae possessed toxin genes but failed to express a biologically active toxin. Therefore, phenotypic confirmation of toxigenicity for the microbiological diagnosis of diphtheria is recommended. PMID:9774560
Efstratiou, A; Engler, K H; Dawes, C S; Sesardic, D
1998-11-01
We have compared molecular, immunochemical, and cytotoxic assays for the detection of diphtheria toxin from 55 isolates of Corynebacterium diphtheriae and Corynebacterium ulcerans originally isolated in five different countries. The suitabilities and accuracies of these assays for the laboratory diagnosis of diphtheria were compared and evaluated against the "gold standard" in vivo methods. The in vivo and Vero cell cytotoxicity assays were accurate in their abilities to detect diphtheria toxin but were time-consuming; however, the cytotoxicity assay is a suitable in vitro alternative to the in vivo virulence test. There was complete concordance between all the phenotypic methods. Genotypic tests based upon PCR were rapid; however, PCR must be used with caution because some isolates of C. diphtheriae possessed toxin genes but failed to express a biologically active toxin. Therefore, phenotypic confirmation of toxigenicity for the microbiological diagnosis of diphtheria is recommended.
Boukadida, Celia; Torres-Flores, Jesús M; Yocupicio-Monroy, Martha; Piten-Isidro, Elvira; Rivero-Arrieta, Amaranta Y; Luna-Villalobos, Yara A; Martínez-Vargas, Liliane; Alcaraz-Estrada, Sofía L; Torres, Klintsy J; Lira, Rosalia; Reyes-Terán, Gustavo; Sevilla-Reyes, Edgar E
2017-03-23
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus associated with severe congenital malformations and neurological complications. Although the ZIKV genome is well characterized, there is limited information regarding changes after cell isolation and culture adaptation. We isolated, and passaged in Vero cells, ZIKV from the serum of a symptomatic male patient and compared the viral genomes before and after culture. Single nucleotide polymorphisms were characteristic among serum-circulating genomes, while such diversity decreased after cell culture. Copyright © 2017 Boukadida et al.
Anand, J; Rai, N
2017-03-01
The present investigation aims at evaluating synergistic herbal based composition of purified catechins with fluconazole, amphotericin B and copper sulphate against Candida albicans (MTCC 3017) and Candida glabrata (MTCC 3019). The catechins were isolated from green tea leaves of Assam, Himachal Pradesh and Uttarakhand regions of India. The synergistic activity of combinations against Candida species was assessed following microdilution checkerboard technique and time kill assay. The inhibitory action of most significant combination on treated Candida cells was assessed by scanning electron microscopy. Cytotoxicity of synergistic compositions was further analyzed by performing MTT assay on Vero cell lines. Purified catechins of Assam and Himachal Pradesh green tea showed synergistic activity with fluconazole and amphotericin B against Candida species. Time kill assay depicted synergistic activity at minimum inhibitory concentration and twice of minimum inhibitory concentration of purified catechins and antimycotics. Further, Copper sulphate increased anticandidal efficacy of synergistic combinations by 0.4% to 6.63%. SEM analysis revealed morphological distortions of treated Candida cells. Cytotoxicity analysis of synergistic composition depicted high percentage viability (≥91.4% to≥100%) of Vero cell line, which suggests non-cytotoxic activity of proposed composition on healthy cells. It can be inferred that present evaluated synergistic composition can confer promising anticandidal efficacy and requires further investigation of safety and translational guidelines for effective and safer green tea based potent therapeutic drug. Copyright © 2016. Published by Elsevier Masson SAS.
Calegari, Luan P; Dias, Roberto S; de Oliveira, Michelle D; Pessoa, Carine Ribeiro; de Oliveira, André S; Oliveira, Ana F C S; da Silva, Cynthia C; Fonseca, Flavio G; Versiani, Alice F; De Paula, Sérgio O
2016-07-27
In recent times, studies have demonstrated that carbon nanotubes are good candidates for use as vehicles for transfection of exogenous material into the cells. However, there are few studies evaluating the behavior of carbon nanotubes as DNA vectors and few of these studies have used multi-walled carbon nanotubes (MWCNTs) or carboxylated MWCNTs. Thus, this study aims to assess the MWCNTs' (carboxylated or not) efficiency in the increase in expression of the tetravalent vaccine candidate (TVC) plasmid vector for dengue virus in vitro using Vero cells, and in vivo, through the intramuscular route, to evaluate the immunological response profile. Multi-walled carbon nanotubes internalized by Vero cells, have been found in the cytoplasm and nucleus associated with the plasmid. However, it was not efficient to increase the messenger ribonucleic acid (mRNA) compared to the pure vaccine candidate associated with Lipofectamine(®) 2000. The in vivo experiments showed that the use of intramuscular injection of the TVC in combination with MWCNTs reduced the immune response compared to pure TVC, in a general way, although an increase was observed in the population of the antibody-producing B cells, as compared to pure TVC. The results confirm the data found by other authors, which demonstrate the ability of nanotubes to penetrate target cells and reach both the cytoplasm and the cell nucleus. The cytotoxicity values are also in accordance with the literature, which range from 5 to 20 µg/mL. This has been found to be 10 µg/mL in this study. Although the expression levels are higher in cells that receive the pure TVC transfected using Lipofectamine(®) 2000, the nanotubes show an increase in B-cells producing antibodies.
Doucey, Marie-Agnès; Rosso, Lia; Curie, Thomas; Montagner, Alexandra; Wittek, Riccardo; Vandelvelde, Marc; Zurbriggen, Andreas; Hirling, Harald; Desvergne, Béatrice
2012-01-01
Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses. PMID:22403712
Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan
2017-07-01
Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Carneiro, Paula F; do Nascimento, Samara B; Pinto, Antonio V; Pinto, Maria do Carmo F R; Lechuga, Guilherme C; Santos, Dilvani O; dos Santos Júnior, Helvécio M; Resende, Jackson A L C; Bourguignon, Saulo C; Ferreira, Vitor F
2012-08-15
New oxirane derivatives were synthesized using six naphthoquinones as the starting materials. Our biological results showed that these oxiranes acted as trypanocidal agents against Trypanosoma cruzi with minimal cytotoxicity in the VERO cell line compared to naphthoquinones. In particular, oxirane derivative 14 showed low cytotoxicity in a mammalian cell line and exhibited better activity against epimastigote forms of T.cruzi than the current drug used to treat Chagas disease, benznidazole. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Blueberries (10 g) inoculated with T. gondii (5 log oocysts/g) were exposed to an absorbed dose of 0 (control), 0.2, 0.4 or 0.6 kGy gamma radiation at 4°C. After treatment, oocysts were recovered from berries by washing, and excysted sporozoites were enumerated using a plaque assay. Vero cells wer...
Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.
2012-01-01
Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli. PMID:22919675
Sudeep, A B; Bondre, V P; Gurav, Y K; Gokhale, M D; Sapkal, G N; Mavale, M S; George, R P; Mishra, A C
2014-05-01
An outbreak of acute encephalitis syndrome was reported from Vidarbha region of Maharashtra s0 tate, India, during July 2012. Anti-IgM antibodies against Chandipura virus (CHPV) were detected in clinical samples. Sandfly collections were done to determine their role in CHPV transmission. Twenty nine pools of Sergentomyia spp. comprising 625 specimens were processed for virus isolation in Vero E6 cell line. Diagnostic RT-PCR targeting N-gene was carried out with the sample that showed cytopathic effects (CPE). The PCR product was sequenced, analysed and the sequences were deposited in Genbank database. CPE in Vero E6 cell line infected with three pools was detected at 48 h post infection. However, virus could be isolated only from one pool. RT-PCR studies demonstrated 527 nucleotide product that confirmed the agent as CHPV. Sequence analysis of the new isolate showed difference in 10-12 nucleotides in comparison to earlier isolates. This is perhaps the first isolation of CHPV from Sergentomyia spp. in India and virus isolation during transmission season suggests their probable role in CHPV transmission. Further studies need to be done to confirm the precise role of Sargentomyia spp. in CHPV transmission.
Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim
2018-01-01
Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.
Rosa, Antonella; Deiana, Monica; Atzeri, Angela; Corona, Giulia; Incani, Alessandra; Melis, M Paola; Appendino, Giovanni; Dessì, M Assunta
2007-01-30
Various phenolics and (mero)terpenoids from Helichrysum italicum subsp. microphyllum, a plant endemic to Sardinia, were investigated for their capacity to inhibit non-enzymatic lipid peroxidation. These compounds were studied in simple in vitro systems, under conditions of autoxidation and of iron (EDTA)-mediated oxidation of linoleic acid at 37 degrees C. Arzanol, a pyrone-phloroglucinol etherodimer, and helipyrone, a dimeric pyrone, showed antioxidant activity, and could protect linoleic acid against free radical attack in assays of autoxidation and EDTA-mediated oxidation. Methylarzanol, as well as the sesquiterpene alcohol rosifoliol, showed a decreased, but still significant, protective effect against linoleic acid oxidation. Arzanol and helipyrone were also tested in an assay of thermal (140 degrees C) autoxidation of cholesterol, where arzanol showed significant antioxidant activity. The cytotoxicity of arzanol was further evaluated in VERO cells, a line of fibroblasts derived from monkey kidney. Arzanol, at non-cytotoxic concentrations, showed a strong inhibition of TBH-induced oxidative stress in VERO cells. The results of the present work suggest that the natural compound arzanol exerts useful antioxidant properties in different in vitro systems of lipid peroxidation.
In vitro antiviral efficacy of caffeic acid against canine distemper virus.
Wu, Zong-Mei; Yu, Zhen-Jiang; Cui, Zhen-Qiang; Peng, Lu-Yuan; Li, Hao-Ran; Zhang, Chun-Lei; Shen, Hai-Qing; Yi, Peng-Fei; Fu, Ben-Dong
2017-09-01
Canine distemper (CD) is a highly contagious disease caused by the canine distemper virus (CDV), and mortality can be as high as 100%. However, there is no specific treatment for CD. In this study, the antiviral activity of the caffeic acid against CDV was evaluated in vitro. The results showed that the IC 50 of the caffeic acid against CDV at 1 and 2 h post infection (PI) is 23.3 and 32.3 μg/mL, respectively. Consistently, at 1 and 2 h PI, the caffeic acid exhibited a reduced (23.3-57.0% and 37.2-38.1%) viral inhibitory effect in vero cells. Furthermore, the caffeic acid plus Ribavirin (RBV) has greater antiviral activity against CDV than the caffeic acid or RBV individually. In addition, the caffeic acid reduced the total viral RNA synthesis by 59-86% at 24-72 h. Therefore, our data provided the experimental evidence that the caffeic acid effectively inhibited CDV infection in vero cells, which may potentially be used to treat clinical disease associated with CDV infection. Copyright © 2017. Published by Elsevier Ltd.
In-vitro maturation of round spermatids using co-culture on Vero cells.
Cremades, N; Bernabeu, R; Barros, A; Sousa, M
1999-05-01
In an attempt to determine whether co-culture could promote sperm maturation, three patients with non-obstructive azoospermia, two with maturation arrest at the level of primary spermatocytes and one patient with <1% tubules showing complete spermatogenesis, and one patient with total globozoospermia, gave consent to experimentally co-culture round spermatids retrieved from the testicle on Vero cell monolayers. In all azoospermic patients elongating spermatids could be obtained from round spermatids. In one case of maturation arrest, of 37 round spermatids co-cultured for up to 5 days, 30% developed flagella, 46% matured to elongating and 19% to elongated spermatids, with one mature spermatozoon also obtained (3%). In the same patient, primary cultures of three round spermatids with flagella enabled development of one further mature spermatozoon. In the case with total globozoospermia, of six round spermatids co-cultured for up to 5 days, one mature spermatozoon was obtained, with a flagellum and normal head morphology. These preliminary findings suggest that it may be possible to overcome the round spermatid block, and even the triggering of morphological abnormalities arising at the spermiogenic level, by in-vitro maturation under special environmental conditions.
Newer Vaccines against Mosquito-borne Diseases.
Aggarwal, Anju; Garg, Neha
2018-02-01
Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.
Shin, Y; Mori, T; Okita, M; Gemma, T; Kai, C; Mikami, T
1995-06-01
For a rapid diagnosis of canine distemper virus (CDV) infection, the reverse transcription-PCR (RT-PCR) was carried out to detect CDV nucleoprotein (NP) gene from canine peripheral blood mononuclear cells (PBMCs). Two sets of primers were targeted to two regions of NP gene of CDV Onderstepoort strain. The NP gene fragments were well amplified by the RT-PCR in each of the RNA extracts from Vero cells infected with 6 laboratory strains of CDV including Onderstepoort strain, and from PBMCs of a dog experimentally infected with CDV. The amplified NP gene was detected in 17 of 32 samples from dogs which were clinically suspected for CDV infection at veterinary hospitals. No RT-PCR product was found in 52 samples from healthy dogs including 40 specific pathogen free beagles vaccinated with an attenuated live virus-vaccine for CDV and 12 stray dogs. The RT-PCR provides a fast, sensitive, and supplementary method for the diagnosis of CDV infection in dogs.
NASA Astrophysics Data System (ADS)
Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath
2015-02-01
In phylum Echinodermata, the family Holothuridae is distinguished by its capacity of bioactive compounds. Sea cucumber Holothuria atra is commonly known as the lollyfish. The antifungal activity was detected using agar well diffusion method against the various fungal strains such as Trichoderma viride, Aspergillus niger, Aspergillus flavis, Candida albicans and Penicillium chrysogenum. Relatively high antifungal activity was seen against Candida albicans at 100 μL-1 concentration of extracts. Zone of inhibition was measured at 18 mm of diameter. The anti-tumor activities were detected against the Vero and Hep2 cell lines using MTT assay. The cells were treated with H. atra extract at concentrations 0.078-10mg mL-1. The extract showed high proliferative activity against the Hep2 cells. The body wall extracts of sea cucumber ( H. atra) showed effective antifungal and antitumor activities. All these findings suggest that the extracts could be used for the development of drugs.
Antiviral active peptide from oyster
NASA Astrophysics Data System (ADS)
Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao
2008-08-01
An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.
Charretier, Cédric; Saulnier, Aure; Benair, Loïc; Armanet, Corinne; Bassard, Isabelle; Daulon, Sandra; Bernigaud, Bertrand; Rodrigues de Sousa, Emanuel; Gonthier, Clémence; Zorn, Edouard; Vetter, Emmanuelle; Saintpierre, Claire; Riou, Patrice; Gaillac, David
2018-02-01
The classical cell-culture methods, such as cell culture infectious dose 50% (CCID 50 ) assays, are time-consuming, end-point assays currently used during the development of a viral vaccine production process to measure viral infectious titers. However, they are not suitable for handling the large number of tests required for high-throughput and large-scale screening analyses. Impedance-based bio-sensing techniques used in real-time cell analysis (RTCA) to assess cell layer biological status in vitro, provide real-time data. In this proof-of-concept study, we assessed the correlation between the results from CCID 50 and RTCA assays and compared time and costs using monovalent and tetravalent chimeric yellow fever dengue (CYD) vaccine strains. For the RTCA assay, Vero cells were infected with the CYD sample and real-time impedance was recorded, using the dimensionless cell index (CI). The CI peaked just after infection and decreased as the viral cytopathic effect occurred in a dose-dependent manner. The time to the median CI (CIT med ) was correlated with viral titers determined by CCID 50 over a range of about 4-5log 10 CCID 50 /ml. This in-house RTCA virus-titration assay was shown to be a robust method for determining real-time viral infectious titers, and could be an alternative to the classical CCID 50 assay during the development of viral vaccine production process. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Maktedar, Shrikant S; Mehetre, Shantilal S; Avashthi, Gopal; Singh, Man
2017-01-01
The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, 13 C solid state NMR, XPS, XRD, Raman' HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128mgmL -1 . It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14-48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10-80μgmL -1 . The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi
2004-11-10
Previous results indicated that the herpes simplex virus 1 (HSV-1) U{sub L}31 gene is necessary and sufficient for localization of the U{sub L}34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U{sub L}31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Veromore » cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U{sub L}31 gene. The replication of the U{sub L}31 deletion virus was restored on U{sub L}31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U{sub L}34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U{sub L}34 protein localized at the nuclear membrane in rabbit skin cells, and U{sub L}31 complementing CV1 cells infected with the U{sub L}31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U{sub L}34 protein to the nuclear membrane. We speculate that this function partially complements that of U{sub L}31 and may explain why U{sub L}31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells.« less
Cytotoxicity of extracts of spices to cultured cells.
Unnikrishnan, M C; Kuttan, R
1988-01-01
The cytotoxicity of the extracts from eight different spices used in the Indian diet was determined using Dalton's lymphoma ascites tumor cells and human lymphocytes in vitro and Chinese Hamster Ovary cells and Vero cells in tissue culture. Alcoholic extracts of the spices were found to be more cytotoxic to these cells than their aqueous extracts. Alcoholic extracts of several spices inhibited cell growth at concentrations of 0.2-1 mg/ml in vitro and 0.12-0.3 mg/ml in tissue culture. Ginger, pippali (native to India; also called dried catkins), pepper, and garlic showed the highest activity followed by asafetida, mustard, and horse-gram (native to India). These extracts also inhibited the thymidine uptake into DNA.
Antiviral activity of lauryl gallate against animal viruses.
Hurtado, Carolina; Bustos, Maria Jose; Sabina, Prado; Nogal, Maria Luisa; Granja, Aitor G; González, Maria Eugenia; Gónzalez-Porqué, Pedro; Revilla, Yolanda; Carrascosa, Angel L
2008-01-01
Antiviral compounds are needed in the control of many animal and human diseases. We analysed the effect of the antitumoural drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (herpes simplex and vaccinia) and RNA (influenza, porcine transmissible gastroenteritis and Sindbis) viruses, paying attention to its effect on the viability of the corresponding host cells. Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 microM), reducing the titres 3->5 log units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5-8 h post-infection. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug; however, the early viral protein synthesis and the virus-mediated increase of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells. Furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. Lauryl gallate is a powerful antiviral agent against several pathogens of clinical and veterinary importance. The overall results indicate that a cellular factor or function might be the target of the antiviral action of alkyl gallates.
Smith, A R; Boursnell, M E; Binns, M M; Brown, T D; Inglis, S C
1990-01-01
Nucleotide sequences from the third open reading frame of mRNA D (D3) of infectious bronchitis virus (IBV) were expressed in bacteria as part of a fusion protein with beta-galactosidase. Antiserum raised in rabbits against this fusion protein immunoprecipitated from IBV-infected chick kidney or Vero cells a polypeptide of 12.4K, the size expected for a D3-encoded product. The D3 polypeptide is apparently non-glycosylated, and appears to be associated with the membrane fraction of infected cells, as judged by cell fractionation and immunofluorescence.
Validation of the Filovirus Plaque Assay for Use in Preclinical Studies
2016-09-02
filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for...and robust for filovirus titration in samples associated with the performance of GLP animal model studies. Keywords: Plaque assay; filovirus; Ebola...ebolavirus; marburgvirus; Marburg virus; Vero E6 cells; GLP compliant; validation; animal rule DISTRIBUTION STATEMENT A: Approved for public
Fernandes, K.V.; Deus-de-Oliveira, N.; Godoy, M.G.; Guimarães, Z.A.S.; Nascimento, V.V.; de Melo, E.J.T.; Freire, D.M.G.; Dansa-Petretski, M.; Machado, O.L.T.
2012-01-01
Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 × 105 cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained. PMID:22911344
Structure-dependent Pseudoreceptor Intracellular Traffic of Adamantyl Globotriaosyl Ceramide Mimics*
Saito, Mitsumasa; Mylvaganum, Murugespillai; Tam, Patty; Novak, Anton; Binnington, Beth; Lingwood, Clifford
2012-01-01
The verotoxin (VT) (Shiga toxin) receptor globotriaosyl ceramide (Gb3), mediates VT1/VT2 retrograde transport to the endoplasmic reticulum (ER) for cytosolic A subunit access to inhibit protein synthesis. Adamantyl Gb3 is an amphipathic competitive inhibitor of VT1/VT2 Gb3 binding. However, Gb3-negative VT-resistant CHO/Jurkat cells incorporate adaGb3 to become VT1/VT2-sensitive. CarboxyadaGb3, urea-adaGb3, and hydroxyethyl adaGb3, preferentially bound by VT2, also mediate VT1/VT2 cytotoxicity. VT1/VT2 internalize to early endosomes but not to Golgi/ER. AdabisGb3 (two deacyl Gb3s linked to adamantane) protects against VT1/VT2 more effectively than adaGb3 without incorporating into Gb3-negative cells. AdaGb3 (but not hydroxyethyl adaGb3) incorporation into Gb3-positive Vero cells rendered punctate cell surface VT1/VT2 binding uniform and subverted subsequent Gb3-dependent retrograde transport to Golgi/ER to render cytotoxicity (reduced for VT1 but not VT2) brefeldin A-resistant. VT2-induced vacuolation was maintained in adaGb3-treated Vero cells, but vacuolar membrane VT2 was lost. AdaGb3 destabilized membrane cholesterol and reduced Gb3 cholesterol stabilization in phospholipid liposomes. Cholera toxin GM1-mediated Golgi/ER targeting was unaffected by adaGb3. We demonstrate the novel, lipid-dependent, pseudoreceptor function of Gb3 mimics and their structure-dependent modulation of endogenous intracellular Gb3 vesicular traffic. PMID:22418442
Quantitative estimation of Nipah virus replication kinetics in vitro
Chang, Li-Yen; Ali, AR Mohd; Hassan, Sharifah Syed; AbuBakar, Sazaly
2006-01-01
Background Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR® Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay. Results The qRT-PCR had a dynamic range of at least seven orders of magnitude and can detect Nipah virus from as low as one PFU/μL. Following initiation of infection, it was estimated that Nipah virus RNA doubles at every ~40 minutes and attained peak intracellular virus RNA level of ~8.4 log PFU/μL at about 32 hours post-infection (PI). Significant extracellular Nipah virus RNA release occurred only after 8 hours PI and the level peaked at ~7.9 log PFU/μL at 64 hours PI. The estimated rate of Nipah virus RNA released into the cell culture medium was ~0.07 log PFU/μL per hour and less than 10% of the released Nipah virus RNA was infectious. Conclusion The SYBR® Green I-based qRT-PCR assay enabled quantitative assessment of Nipah virus RNA synthesis in Vero cells. A low rate of Nipah virus extracellular RNA release and low infectious virus yield together with extensive syncytial formation during the infection support a cell-to-cell spread mechanism for Nipah virus infection. PMID:16784519
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; McGrath, M. S.; Hanks, D.; Erickson, S.; Pulliam, L.
1992-01-01
We have investigated the direct effect of dimethyl prostaglandin A1 (dmPGA1) on the replication of herpes simplex virus (HSV) and human immunodeficiency virus type 1 (HIV-1). dmPGA1 significantly inhibited viral replication in both HSV and HIV infection systems at concentrations of dmPGA1 that did not adversely alter cellular DNA synthesis. The 50% inhibitory concentration (ID50) for several HSV type 1 (HSV-1) strains ranged from 3.8 to 5.6 micrograms/ml for Vero cells and from 4.6 to 7.3 micrograms/ml for human foreskin fibroblasts. The ID50s for two HSV-2 strains varied from 3.8 to 4.5 micrograms/ml for Vero cells; the ID50 was 5.7 micrograms/ml for human foreskin fibroblasts. We found that closely related prostaglandins did not have the same effect on the replication of HSV; dmPGE2 and dmPGA2 caused up to a 60% increase in HSV replication compared with that in untreated virus-infected cells. HIV-1 replication in acutely infected T cells (VB line) and chronically infected macrophages was assessed by quantitative decreases in p24 concentration. The effective ID50s were 2.5 micrograms/ml for VB cells acutely infected with HIV-1 and 5.2 micrograms/m for chronically infected macrophages. dmPGA1 has an unusual broad-spectrum antiviral activity against both HSV and HIV-1 in vitro and offers a new class of potential therapeutic agents for in vivo use.
Paneth Iheozor-Ejiofor, Rommel; Levanov, Lev; Hepojoki, Jussi; Strandin, Tomas; Lundkvist, Åke; Plyusnin, Alexander; Vapalahti, Olli
2016-05-01
Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 105-108, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (rs = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.
Fujino, Kan; Yamamoto, Yusuke; Daito, Takuji; Makino, Akiko; Honda, Tomoyuki; Tomonaga, Keizo
2017-09-01
Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses. © 2017 The Societies and John Wiley & Sons Australia, Ltd.
Kakisu, Emiliano; Abraham, Analía G; Farinati, Carla Tironi; Ibarra, Cristina; De Antoni, Graciela L
2013-02-01
Kefir is a fermented-milk beverage originating and widely consumed in the Caucasus as well as in Eastern Europe and is a source of bacteria with potential probiotic properties. Enterohaemorrhagic Escherichia coli producing Shiga toxin is commonly associated with food-transmitted diseases; the most prevalent serotype causing epidemics is Esch. coli O157:H7. The aim of this study was to evaluate the antagonism of Lactobacillus plantarum isolated from kefir against the action on Vero cells of supernatants of the Esch. coli O157:H7 strain 69160 expressing the type-II Shiga toxin (Stx2) and to study the role of the Lactobacillus cell wall in that inhibition. Spent culture supernatants of Esch. coli O157:H7 strain 69160 led to cytotoxic effects on cultured eukaryotic cells as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide-cleavage assay or by lactate-dehyrogenase release. Lb. plantarum CIDCA 83114 reduced the cytotoxic activity of Stx present in strain-69160 supernatants, and this protection was markedly higher than those of Lactobacillus kefir CIDCA 83113 and 8348 and Lb. delbrueckii subsp. bulgaricus CIDCA 333. This antagonism of cytotoxicity was mimicked by Lb. plantarum cell walls but was reduced after heating or protease treatments, thus indicating a protein or peptide as being involved in the protection mechanism. The cell surface of the lactobacilli bound the subunit B of Stx thereby decreasing the cytotoxicity. These interactions could constitute the first step in preventing the damage induced by Esch. coli O157:H7 supernatants, thus representing a valuable means of potentially mitigating the noxious effects of this food pathogen.
Opitz, Lars; Zimmermann, Anke; Lehmann, Sylvia; Genzel, Yvonne; Lübben, Holger; Reichl, Udo; Wolff, Michael W
2008-12-01
Strategies to control influenza outbreaks are focused mainly on prophylactic vaccination. Human influenza vaccines are trivalent blends of different virus subtypes. Therefore and due to frequent antigenic drifts, strain independent manufacturing processes are required for vaccine production. This study verifies the strain independency of a capture method based on Euonymus europaeus lectin-affinity chromatography (EEL-AC) for downstream processing of influenza viruses under various culture conditions propagated in MDCK cells. A comprehensive lectin binding screening was conducted for two influenza virus types from the season 2007/2008 (A/Wisconsin/67/2005, B/Malaysia/2506/2004) including a comparison of virus-lectin interaction by surface plasmon resonance technology. EEL-AC resulted in a reproducible high product recovery rate and a high degree of contaminant removal in the case of both MDCK cell-derived influenza virus types demonstrating clearly the general applicability of EEL-AC. In addition, host cell dependency of EEL-AC was studied with two industrial relevant cell lines: Vero and MDCK cells. However, the choice of the host cell lines is known to lead to different product glycosylation profiles. Hence, altered lectin specificities have been observed between the two cell lines, requiring process adaptations between different influenza vaccine production systems.
Du, Yanhua; Zhang, Baifan; Li, Yi; Ma, Hongxia; Huang, Xueyong; Xu, Bianli
2015-10-01
To diagnose imported dengue fever case from Henan province, and to sequence and analyze the characteristics of whole genome sequence, and to explore the possible viral origin source. A suspected dengue fever case was reported in Yuzhou city, Henan province. The patient returned from foshan, Guangdong province on September 19, 2014, after the epidemiological investigation and serum specimen collected, which dengue fever case was diagnosed in the laboratory, then it was inoculated on Vero cells. Whole genome sequence was amplified by several pairs primers and characterized using biologic software. The imported case was diagnosed as dengue virus 1 serotype infection. Dengue 1 strain was isolated using Vero cells successfully. Whole genome was 10,670 nt, which belonged to dengue virus 1 serotype V genotype and didn't found any recombination event. The phylogenetic analysis demonstrated that the strain was closed to Indian starins isolated in 2008-2011, and the homology of nucleotide sequence was between 98.2%-99.4%. It was the first time to discover imported dengue 1 serotype case in Henan province. However, according to the patient has been to Guangdong province before onset, it inferred that the Indian strain had been imported to Guangdong province before this case in Henan province.
Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut
2015-06-06
Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.
Dorneburg, Carmen; Debatin, Klaus-Michael; Wei, Jiwu; Beltinger, Christian
2018-01-01
Background Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. Methods OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID50) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. Results UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. Conclusion We prove the principle that a non-replicating OMV can serve as a “decoy” for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV. PMID:29750140
Girardi, Cynthia; Fabre, Nicolas; Paloque, Lucie; Ramadani, Arba Pramundita; Benoit-Vical, Françoise; González-Aspajo, German; Haddad, Mohamed; Rengifo, Elsa; Jullian, Valérie
2015-07-21
Pseudelephantopus spiralis (Less.) Cronquist is distributed in the Caribbean, Mesoamerica and Latin America. Preparations of the plant are traditionally used in Latin America for the treatment of various diseases including fever, malaria, and spleen or liver inflammations. Aerial parts of P. spiralis were extracted with either ethanol or distilled water. Seven hirsutinolide-type sesquiterpenoids were isolated: 8-acetyl-13-ethoxypiptocarphol (1), diacetylpiptocarphol (2), piptocarphins A (3), F (4) and D (5), (1S(*),4R(*),8S(*),10R(*))-1,4-epoxy-13-ethoxy-1,8,10-trihydroxygermacra-5E,7(11)-dien-6,12-olide (6), and piptocarphol (7). Extracts and isolated compounds (2, 3, 5-7) were screened for their in vitro antiplasmodial activity against the chloroquine-resistant Plasmodium falciparum strain FcM29-Cameroon and antileishmanial activity against three stages of Leishmania infantum. Their cytotoxicities were also evaluated against healthy VERO cell lines and J774A.1 macrophages, the host cells of the Leishmania parasites in humans. Aqueous extracts showed a greater inhibitory effect than alcoholic extracts, with IC50 on P. falciparum of 3.0µg/mL versus 21.1µg/mL, and on L. infantum of 13.4µg/mL versus >50µg/mL. Both extracts were found to be cytotoxic to VERO cells (CC50<3µg/mL). Sesquiterpene lactones 2 and 3 showed the best activity against both parasites but failed in selectivity. Carbon 8 hydroxylated hirsutinolides 5-7 presented the particularity of exhibiting two conformers observed in solution during extensive NMR analyses in CD3OD and UHPLC-MS. The presence of a hydroxyl function at C-8 decreased the activity of 5-7 on the two parasites and also on VERO cells. The antiplasmodial activity displayed by the aqueous extract explains the traditional use of P. spiralis in the treatment of malaria. This activity seems to be attributable to the presence of sesquiterpene lactones 2 and 3, the most active against P. falciparum. Aqueous extract and compounds 2, 3 and 6 were also active against L. infantum but lacked in selectivity due to their cytotoxicity towards macrophages. Exploring the safety and antiplasmodial efficacy of this traditional remedy will require further toxicological and in vivo studies in the light of the cytotoxicity towards healthy cell lines displayed by the aqueous extract and compounds 2 and 3. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Martínez-Betancur, Viviana; Marín-Villa, Marcel; Martínez-Gutierrez, Marlén
2014-08-01
Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection. © 2013 Wiley Periodicals, Inc.
van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Karpilow, Jon; Tripp, Ralph A.
2015-01-01
ABSTRACT Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work describes a platform-enabling technology applicable to most vaccine-preventable diseases. PMID:26581994
Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N
2007-07-01
Until recently, there has not been a homologous avian cellular substrate which could continuously produce high titer avian metapneumovirus (AMPV); development of such a cell line should provide an excellent model system for studying AMPV infection. We have established a non-tumorigenic immortal turkey turbinate cell line (TT-1) to propagate sufficiently high AMPV titers. Currently, immortal TT-1 cells are growing continuously at 1.2-1.4 population doublings per day and are at passage 160. Kinetic analysis suggests that AMPV can infect and replicate more rapidly in TT-1 compared to Vero cells, although both cell types undergo apoptosis upon infection. The non-tumorigenic, reverse transcriptase negative TT-1 cell line can serve as an excellent homologous cellular substrate for virus propagation.
Synthetic transcripts of double-stranded Birnavirus genome are infectious.
Mundt, E; Vakharia, V N
1996-01-01
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines. Images Fig. 2 Fig. 3 Fig. 4 PMID:8855321
Dynamics of actin-based movement by Rickettsia rickettsii in vero cells.
Heinzen, R A; Grieshaber, S S; Van Kirk, L S; Devin, C J
1999-08-01
Actin-based motility (ABM) is a virulence mechanism exploited by invasive bacterial pathogens in the genera Listeria, Shigella, and Rickettsia. Due to experimental constraints imposed by the lack of genetic tools and their obligate intracellular nature, little is known about rickettsial ABM relative to Listeria and Shigella ABM systems. In this study, we directly compared the dynamics and behavior of ABM of Rickettsia rickettsii and Listeria monocytogenes. A time-lapse video of moving intracellular bacteria was obtained by laser-scanning confocal microscopy of infected Vero cells synthesizing beta-actin coupled to green fluorescent protein (GFP). Analysis of time-lapse images demonstrated that R. rickettsii organisms move through the cell cytoplasm at an average rate of 4.8 +/- 0.6 micrometer/min (mean +/- standard deviation). This speed was 2.5 times slower than that of L. monocytogenes, which moved at an average rate of 12.0 +/- 3.1 micrometers/min. Although rickettsiae moved more slowly, the actin filaments comprising the actin comet tail were significantly more stable, with an average half-life approximately three times that of L. monocytogenes (100.6 +/- 19.2 s versus 33.0 +/- 7.6 s, respectively). The actin tail associated with intracytoplasmic rickettsiae remained stationary in the cytoplasm as the organism moved forward. In contrast, actin tails of rickettsiae trapped within the nucleus displayed dramatic movements. The observed phenotypic differences between the ABM of Listeria and Rickettsia may indicate fundamental differences in the mechanisms of actin recruitment and polymerization.
Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.
Hatahet, T; Morille, M; Hommoss, A; Dorandeu, C; Müller, R H; Bégu, S
2016-05-01
Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
SU-F-T-255: Accuracy and Precision of Dynamic Tracking Irradiation with VERO-4DRT System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, N; Takada, Y; Mizuno, T
2016-06-15
Purpose: The VERO-4DRT system is able to provide dynamic tracking irradiation (DTI) for the target with respiratory motion. This technique requires enough commissioning for clinical implementation. The purpose of this study is to make sure the accuracy and precision of DTI using VERO- 4DRT through commissioning from fundamental evaluation to end-to-end test. Method: We evaluated several contents for DTI commissioning: the accuracy of absorption dose at isocenter in DTI, the field size and penumbra of DTI, the accuracy of 4D modeling in DTI. All evaluations were performed by respiratory motion phantom (Quasar phantom). These contents were compared the results betweenmore » static irradiation and DTI. The shape of radiation field was set to square from 3 cm × 3 cm to 10 cm × 10 cm. The micro 3D chamber and Gafchromic EBT3 film were used for absorbed dose and relative dose distribution measurement, respectively. The sine and irregular shaped waves were used for demonstrative respiratory motion. The visicoil was implanted into the phantom for guidance of respiratory motion. The respiration patterns of frequency and motion amount were set to 10–15 BPM and 1–2 cm, respectively. Results: As the result of absorbed dose of DTI in comparison with static irradiation, the average dose error at isocenter was 0.5% even though various respiratory patterns were set on. As the result of relative dose distribution, the field size (set it on 50% dose line) was not significantly changed in all respiratory patterns. However, the penumbra was larger in greater respiratory motion (up to 4.1 mm). The 4D modeling coincidence between actual and created waves was within 1%. Conclusion: The DTI using VERO-4DRT can provide sufficient accuracy and precision in absorbed dose and distribution. However, the patientspecific quantitative internal margin corresponding respiratory motion should be taken into consideration with image guidance.« less
Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models
Delvecchio, Rodrigo; Higa, Luiza M.; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P.; Monteiro, Fábio L.; Loiola, Erick C.; Dias, André A.; Silva, Fábio J. M.; Aliota, Matthew T.; Caine, Elizabeth A.; Osorio, Jorge E.; Bellio, Maria; O’Connor, David H.; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar
2016-01-01
Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres. PMID:27916837
Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models.
Delvecchio, Rodrigo; Higa, Luiza M; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P; Monteiro, Fábio L; Loiola, Erick C; Dias, André A; Silva, Fábio J M; Aliota, Matthew T; Caine, Elizabeth A; Osorio, Jorge E; Bellio, Maria; O'Connor, David H; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar
2016-11-29
Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.
Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur
2016-07-01
Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. Copyright © 2016 Elsevier B.V. All rights reserved.
Arana-Argáez, Víctor Ermilo; Chan-Zapata, Ivan; Canul-Canche, Jaqueline; Fernández-Martín, Karla; Martín-Quintal, Zhelmy; Torres-Romero, Julio Cesar; Coral-Martínez, Tania Isolina; Lara-Riegos, Julio Cesar; Ramírez-Camacho, Mario Alberto
2017-01-01
Background: The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. Material and Methods: Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H2O2) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. Results: The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H2O2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. Conclusion: These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds. PMID:28480396
Lagler, Heimo; Wenisch, Judith M; Tobudic, Selma; Gualdoni, Guido A; Rödler, Susanne; Rasoul-Rockenschaub, Susanne; Jaksch, Peter; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Burgmann, Heinz
2011-09-16
During the 2009/10 pandemic of influenza A (H1N1), the American Society of Transplantation and other health organizations recommended that immunocompromised patients should be vaccinated as the key preventive measure. Since there are no data available for the immunogenicity of the unadjuvanted pandemic influenza vaccine in immunocompromised patients - as opposed to the adjuvanted preparation - the objective of this study was to evaluate the immunogenicity of an adjuvant-free H1N1 vaccine in recipients of solid organ transplants. Patients were recruited at the Vienna General Hospital, Austria. The vaccination schedule consisted of 2 doses of a whole-virion, vero cell derived, inactivated, non-adjuvanted influenza A/California/07/2009 (H1N1) vaccine given with an interval of 3 weeks. A hemagglutination inhibition (HI) assay on blood samples obtained prior to the first and after each vaccination was used for serologic analysis. The primary immunologic endpoint was the seroconversion rate, defined as the proportion of subjects with an individual 4-fold increase in HI titer of at least 1:40. In addition, virus-specific IgG antibodies to the pandemic H1N1 strain were measured using a commercially available ELISA. Twenty-five organ transplant patients (16 males, 9 females) aged 25-79 years were vaccinated and provided blood samples for serologic analysis. The time elapsed since transplantation was 10 months to 25 years (mean: 9 years; 95% CI 6-13 years). The vaccine was well tolerated and no local adverse events were noticed. After two vaccinations 37% of the patients demonstrated seroconversion in the HI assay as defined above and 70% had virus-specific IgG antibodies. Among the HI vaccine responders were 6 of 14 heart transplant recipients and 1 of 4 liver transplant recipients. The number and type of immunosuppressive agents did not significantly differ in their effect on the immune response. Our results show that the novel vero cell derived and adjuvant-free pandemic A/California/07/2009 (H1N1) influenza vaccine induced limited but measurable immune responses in adult recipients of solid organ transplants. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Molecular Approach Designed to Limit the Replication of Mature DENV2 in Host Cells.
Raheel, Ummar; Jamal, Muhsin; Zaidi, Najam Us Sahar Sadaf
2015-09-01
Dengue virus (DENV) is an arthropod-borne virus, which belongs to the Flaviviridae family, and completes its life cycle in two hosts: humans and mosquitoes. For DENV maturation, the surface pre-membrane (prM) protein is cleaved to form a mature membrane protein (M) by furin, which is a cellular enzyme subsequently releasing the mature virus from the host dendritic cell. The objective of the current study was to inhibit mature DENV isotype 2 (DENV2) by RNA-interference in a Vero-81 cell line. Mature DENV2 was propagated in and isolated from U937 cells expressing dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin. Maturation of DENV2 was confirmed by Western blot analysis, where virus stock lacking prM was considered mature. Inhibition studies were carried out by transfection of Vero-81 cells with six synthetic siRNAs along with a control siRNA. Reduction in cellular DENV2 was observed also by focus-reduction assay, immunofluorescence assay (IFA), and real-time quantitative polymerase chain reaction (RT-qPCR). Cells transfected with DENV2SsiRNA2, which was targeting the structural region M of mature DENV2, was able to reduce DENV2 titer by up to 85% in focus reduction assays. A significant reduction in mature DENV2 RNA load was observed by RT-qPCR, confirming the previous findings. IFA also revealed reduced levels of cellular DENV2. These results demonstrated that mature DENV2 can be effectively inhibited by synthetic siRNA targeting the structural region of the genome. Mature DENV2 can be successfully inhibited by siRNAs, and specifically high knock-down efficiency is observed by siRNAs against M region of mature DENV2. This study shows that M represents a potential target for RNAi based inhibitory approaches.
Antiplasmodial activities of gold(I) complexes involving functionalized N-heterocyclic carbenes.
Hemmert, Catherine; Ramadani, Arba Pramundita; Boselli, Luca; Fernández Álvarez, Álvaro; Paloque, Lucie; Augereau, Jean-Michel; Gornitzka, Heinz; Benoit-Vical, Françoise
2016-07-01
A series of twenty five molecules, including imidazolium salts functionalized by N-, O- or S-containing groups and their corresponding cationic, neutral or anionic gold(I) complexes were evaluated on Plasmodium falciparum in vitro and then on Vero cells to determine their selectivity. Among them, eight new compounds were synthesized and fully characterized by spectroscopic methods. The X-ray structures of three gold(I) complexes are presented. Except one complex (18), all the cationic gold(I) complexes show potent antiplasmodial activity with IC50 in the micro- and submicromolar range, correlated with their lipophilicity. Structure-activity relationships enable to evidence a lead-complex (21) displaying a good activity (IC50=210nM) close to the value obtained with chloroquine (IC50=514nM) and a weak cytotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
A cytotoxicity assay for Clostridium spiroforme enterotoxin in cecal fluid of rabbits.
Butt, M T; Papendick, R E; Carbone, L G; Quimby, F W
1994-02-01
Clostridium spiroforme enterotoxin-mediated diarrhea can be a common cause of mortality among weanling age rabbits. Definitive diagnosis of this disorder requires detection of the causative enterotoxin. Using filtered cecal supernatant from necropsy specimens, antibodies to C. spiroforme and its products and Vero cells, a cytotoxicity assay was performed on 22 rabbits with clinical signs and lesions consistent with C. spiroforme enterotoxin-mediated diarrhea. A cytotoxic effect was detected, generally within 4 h, in 18 of 22 rabbits. The cytotoxic effect was blocked by preincubation of the cecal material with antibodies to C. spiroforme and its products. Culture of cecal contents and smears of cecal contents identified C. spiroforme in 10/22 and 12/22 cases, respectively. This cytotoxicity assay provided a rapid and sensitive method for diagnosing C. spiroforme enterotoxin-mediated diarrhea.
Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.
Ozçelik, Berrin; Aslan, Mustafa; Orhan, Ilkay; Karaoglu, Taner
2005-01-01
In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls.
Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan
2014-12-05
The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of antitumor drugs toward lung cancer treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shi, Nianmin; Zhang, Yibin; Zheng, Huizhen; Zhu, Zhenggang; Wang, Dingming; Li, Sihai; Li, Yuhua; Yang, Liqing; Zhang, Junnan; Bai, Yunhua; Lu, Qiang; Zhang, Zheng; Luo, Fengji; Yu, Chun; Li, Li
2017-06-03
To compare the safety, immunogenicity and long-term effect of a purified vero cell cultured rabies vaccine in post-exposure subjects following 2 intramuscular regimens, Zagreb or Essen regimen. Serum samples were collected before vaccination and on days 7, 14, 42, 180 and 365 post vaccination. Solicited adverse events were recorded for 7 d following each vaccine dose, and unsolicited adverse events throughout the entire study period. This study was registered with ClinicalTrials.gov (NCT01821911 and NCT01827917). No serious adverse events were reported. Although Zagreb regimen had a higher incidence of adverse reactions than Essen regimen at the first and second injection, the incidence was similar at the third and fourth injection between these 2 groups as well. At day 42, 100% subjects developed adequate rabies virus neutralizing antibody concentrations (≥ 0.5IU/ml) for both regimens. At days 180 and 365, the antibody level decreased dramatically, however, the percentage of subjects with adequate antibody concentrations still remained high (above 75% and 50% respectively). None of confirmed rabies virus exposured subjects had rabies one year later, and percentage of subjects with adequate antibody concentrations reached 100% at days 14 and 42. Rabies post-exposure prophylaxis vaccination with PVRV following a Zagreb regimen had a similar safety, immunogenicity and long-term effect to the Essen regimen in China.
Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A
2014-11-01
Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.
Danve, Christelle; Morfin, Florence; Thouvenot, Danielle; Aymard, Michèle
2002-09-01
The widespread use of acyclovir (ACV) could increase the prevalence of herpes simplex virus (HSV) ACV-resistant isolates, and a screening assay are thus important for routine surveillance of the ACV susceptibility of HSV. A screening dye-uptake assay was developed, based on the conventional dye-uptake assay [J. Biol. Stand. 14 (1986) 201]. The susceptibility of HSV was measured by testing two virus dilutions (10(-1) and 10(-2)) against two ACV concentrations (5 and 10 microM) on Vero cells and expressed as a reduced percentage of viral replication. The reproducibility was evaluated with HSV1 and HSV2 ACV-sensitive and ACV-resistant reference strains introduced as controls in successive series. The dye-uptake by Vero cells, the growth capacity of the HSV strains and the reduction of the viral replication in the presence of acyclovir varied by less than 14, 20 and 30%, respectively. This assay allowed the detection of a heterogenous population containing as few as 20% of ACV-resistant strain. The screening test was applied to 500 HSV isolates in a prospective study, and over 95% of the HSV isolates tested were characterised using a single test. This test appeared to be half the cost and much easier to carry out than the conventional dye-uptake assay, and consequently is well suited for large scale surveillance.
NASA Astrophysics Data System (ADS)
Kalaiselvam, S.; Sandhya, J.; Krishnan, K. V. Hari; Kedharnath, A.; Arulkumar, G.; Roseline, A. Ameelia
Surgical instruments and other bioimplant devices, owing to their importance in the biomedical industry require high biocompatibility to be used in the human body. Nevertheless, issues of compatibility, bacterial infections are quite common in such devices. Hence development of surface coatings on various substrates for implant applications is a promising technique to combat the issues arising in these implant materials. The present investigation aims at coating copper on stainless steel substrate using DC Magnetron sputtering which is used to achieve film of required thickness (0.5-8μm). The deposition pressure, substrate temperature, power supply, distance between the specimen and target are optimized and maintained constant, while the sputtering time (30-110min) is varied. The sputtered copper thin film’s morphology, composition are characterized by SEM and EDAX. X-ray diffraction analysis shows copper oriented on (111) and (002) and copper oxide on (111) planes. The contact angle of copper thin film is 92∘ while AISI 316L shows 73∘. The antimicrobial studies carried in Staphylococcus aureus, Escherichia Coli, Klebsiella pneumonia and Candida albicans show that the maximum reduction was seen upto 35, 26, 54, 39CFU/mL, respectively after 24h. The cell viability is studied by MTT assay test on Vero cell line for 24h, 48h and 72h and average cell viability is 43.85%. The copper release from the thin film to the culture medium is 6691μg/L (maximum) is estimated from AAS studies. The copper coated substrate does not show much reaction with living Vero cells whereas the bacteria and fungi are found to be destroyed.
Halperin, S A; Davies, H D; Barreto, L; Guasparini, R; Meekison, W; Humphreys, G; Eastwood, B J
1997-04-01
To compare the safety and immunity of an acellular pertussis vaccine containing pertussis toxoid, filamentous hemagglutinin, 69 kd protein, fimbriae 2 and 3 combined with diphtheria and tetanus toxoids given as single or separate injection with inactivated poliovirus vaccine (MRC-5-or Vero cell-derived) or live attenuated polio vaccine. A total of 425 healthy children between 17 and 19 months of age who were receiving the fourth dose of their routine immunization series were randomly allocated to receive either the acellular pertussis vaccine and oral poliovirus vaccine or one of two inactivated poliovirus vaccines as a combined injection or separate injections. Although minor adverse events were commonly reported, differences between the groups were few. Fever and decreased feeding were less common in recipients of live attenuated poliovirus vaccine than the combination vaccine containing MRC-5 cell-derived inactivated poliovirus vaccine. A significant antibody response was demonstrated in all groups against all the antigens contained in the vaccines. Antibodies against poliovirus were higher in the groups immunized with the inactivated poliovirus vaccine than the live attenuated vaccine. Anti-69 kd protein antibodies were higher in the group given the MRC-5 cell-derived inactivated poliovirus vaccine as a combined injection than in the group given the separate injection or the group immunized with the live attenuated poliovirus vaccine. The five-component acellular pertussis vaccine combined with diphtherid and tetanus toxoids is safe and immunogenic when combined with either MRC-5- or Vero cell-derived inactivated poliovirus vaccine. This will facilitate the implementation of acellular pertussis vaccine and the movement to inactivated poliovirus vaccine programs.
Kurohane, Kohta; Nagano, Kyoko; Nakanishi, Katsuhiro; Iwata, Koki; Miyake, Masaki; Imai, Yasuyuki
2014-01-01
Shiga toxin 1 (Stx1) is a virulence factor of enterohaemorrhagic Escherichia coli strains such as O157:H7 and Shigella dysenteriae. To prevent entry of Stx1 from the mucosal surface, an immunoglobulin A (IgA) specific for Stx1 would be useful. Due to the difficulty of producing IgA monoclonal antibodies (mAb) against the binding subunit of Stx1 (Stx1B) in mice, we took advantage of recombinant technology that combines the heavy chain variable region from Stx1B-specific IgG1 mAb and the Fc region from IgA. The resulting hybrid IgG/IgA was stably expressed in Chinese hamster ovary cells as a dimeric hybrid IgG/IgA. We separated the dimeric hybrid IgG/IgA from the monomeric one by size-exclusion chromatography. The dimer fraction, confirmed by immunoblot analyses, was used for toxin neutralization assays. The dimeric IgG/IgA was shown to neutralize Stx1 toxicity toward Vero cells by assaying their viability. To compare the relative effectiveness of the dimeric hybrid IgG/IgA and parental IgG1 mAb, Stx1-induced apoptosis was examined using 2 different cell lines, Ramos and Vero cells. The hybrid IgG/IgA inhibited apoptosis more efficiently than the parental IgG1 mAb in both cases. The results indicated that the use of high affinity binding sites as variable regions of IgA would increase the utility of IgA specific for virulence factors.
Pujols, Joan; Segalés, Joaquim
2014-12-05
Bovine plasma was inoculated with porcine epidemic diarrhea virus (PEDV) at an average final titer of 4.2 log10 TCID50/mL to determine the effect of spray drying on viral inactivation. Using a laboratory scale drier, inoculated plasma was spray dried at 200 °C inlet temperature and either 70 or 80 °C throughout substance. Both liquid and dried samples were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. Results indicated liquid samples contained infective virus, but none of the spray dried samples were infectious. Also, survivability of PEDV inoculated on spray dried bovine plasma (SDBP) and stored at 4, 12 or 22 °C was determined for 7, 14 and 21 days. Commercial SDBP powder was inoculated with PEDV to an average final titer of 2.8 log10 TCID50/g. Five samples per time and temperature conditions were subjected to three passages on VERO cell monolayers to determine PEDV infectivity. The virus was non-infectious for all samples stored at 22 °C at 7, 14 and 21 days. PEDV was infective in 1 out of 5 samples stored at 12 °C at 7 days, but none of the samples stored for 14 and 21 days were infectious in cell culture. For samples stored at 4 °C, 4 out of 5 samples were infectious at 7 days, 1 out of 5 samples were infectious at 14 days, but none were infectious at 21 days. In summary, PEDV was not infectious on cell culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Albaayit, Shaymaa Fadhel Abbas; Abba, Yusuf; Rasedee, Abdullah; Abdullah, Noorlidah
2015-01-01
Clausena excavata is a well-known plant used in folkloric medicine for the treatment of different ailments. This study aimed to determine the in vitro cytoxicity of its leaf solvent extracts as well as the in vivo wound healing and antioxidant activities of the methanolic extracts of C. excavata (MECE). HaCaT (keratocyte) and Vero cell lines were used for evaluation of the in vitro cytotoxic effects, while the in vivo wound healing and antioxidant activities were determined in skin wounds inflicted on rats. Twenty adult male Sprague-Dawley rats were divided into five groups of four animals each. Approximately 3.14 cm(2) excisional wound was inflicted on the nape of each rat following anesthesia. The treatment groups received topical application of MECE at 50 mg/mL (MECE-LD [low dose]), 100 mg/mL (MECE-MD [medium dose]), and 200 mg/mL (MECE-HD [high dose]), while the negative control group was treated with gum acacia in normal saline and the positive control group with intrasite gel. Wound contraction was evaluated on days 5, 10, and 15 after wound infliction, and tissue from wound area was collected at day 15 post-wound infliction for antioxidant enzyme evaluation and histopathological analyses. Generally, Vero cells were more resistant to the cytotoxic effects of the solvent extracts as compared with HaCaT cells. Chloroform (CH) and ethyl acetate (EA) extracts of C. excavata were toxic to HaCaT cells at 200 and 400 µg/mL, but the same concentrations showed higher (P<0.05) viability in Vero cells. There was significantly (P<0.01) greater wound contraction at days 10 and 15 post-wound infliction in all the treatment groups than in the control groups. Histopathologically, the MECE-HD-treated wound showed significantly (P<0.05) lesser inflammatory cell proliferation, degeneration, and distribution of granulation tissue than other groups. Similarly, the degree of collagen maturation, angiogenesis, and collagen distribution were significantly (P<0.05) lower in MECE-HD than in other groups. The MECE-HD, MECE-MD, and intrasite treatment groups showed a significantly (P<0.05) higher number of VEGF-positive and TGF-β1-positive cells in the skin wound than the control groups. The activities of superoxide dismutase and catalase were significantly (P<0.01) higher in the MECE-HD and intrasite treatment groups than in the other groups. Lipid peroxidase activity of the treated groups was significantly (P<0.01) lower than that in the control group. The study showed that MECE is a potent wound healing agent through anti-inflammatory and antioxidant effects that enhanced the rate of wound contraction, re-epithelialization, and collagen deposition. The effect of MECE is suggested to be due to its high polyphenolic compound content.
Albaayit, Shaymaa Fadhel Abbas; Abba, Yusuf; Rasedee, Abdullah; Abdullah, Noorlidah
2015-01-01
Clausena excavata is a well-known plant used in folkloric medicine for the treatment of different ailments. This study aimed to determine the in vitro cytoxicity of its leaf solvent extracts as well as the in vivo wound healing and antioxidant activities of the methanolic extracts of C. excavata (MECE). HaCaT (keratocyte) and Vero cell lines were used for evaluation of the in vitro cytotoxic effects, while the in vivo wound healing and antioxidant activities were determined in skin wounds inflicted on rats. Twenty adult male Sprague-Dawley rats were divided into five groups of four animals each. Approximately 3.14 cm2 excisional wound was inflicted on the nape of each rat following anesthesia. The treatment groups received topical application of MECE at 50 mg/mL (MECE-LD [low dose]), 100 mg/mL (MECE-MD [medium dose]), and 200 mg/mL (MECE-HD [high dose]), while the negative control group was treated with gum acacia in normal saline and the positive control group with intrasite gel. Wound contraction was evaluated on days 5, 10, and 15 after wound infliction, and tissue from wound area was collected at day 15 post-wound infliction for antioxidant enzyme evaluation and histopathological analyses. Generally, Vero cells were more resistant to the cytotoxic effects of the solvent extracts as compared with HaCaT cells. Chloroform (CH) and ethyl acetate (EA) extracts of C. excavata were toxic to HaCaT cells at 200 and 400 µg/mL, but the same concentrations showed higher (P<0.05) viability in Vero cells. There was significantly (P<0.01) greater wound contraction at days 10 and 15 post-wound infliction in all the treatment groups than in the control groups. Histopathologically, the MECE-HD-treated wound showed significantly (P<0.05) lesser inflammatory cell proliferation, degeneration, and distribution of granulation tissue than other groups. Similarly, the degree of collagen maturation, angiogenesis, and collagen distribution were significantly (P<0.05) lower in MECE-HD than in other groups. The MECE-HD, MECE-MD, and intrasite treatment groups showed a significantly (P<0.05) higher number of VEGF-positive and TGF-β1-positive cells in the skin wound than the control groups. The activities of superoxide dismutase and catalase were significantly (P<0.01) higher in the MECE-HD and intrasite treatment groups than in the other groups. Lipid peroxidase activity of the treated groups was significantly (P<0.01) lower than that in the control group. The study showed that MECE is a potent wound healing agent through anti-inflammatory and antioxidant effects that enhanced the rate of wound contraction, re-epithelialization, and collagen deposition. The effect of MECE is suggested to be due to its high polyphenolic compound content. PMID:26203223
[Analysis on molecular epidemiology of rubella virus in Shandong province during 2000-2007].
Wang, Chang-Yin; Zhu, Zhen; Xu, Ai-Qiang; Xiong, Ping; Song, Li-Zhi; Xu, Qing; Feng, Lei; Xu, Wen-Bo
2010-11-01
Analyze the genetic characteristics of sixteen strains of wild-type rubella viruses derived from Vero cells, Rk13 cells or Vero/slam cells, and isolated from throat samples in Shandong province during 2000-2007. The 1107 nucleotide sequence of nucleoprotein (E1) gene of these isolates were amplified by RT-PCR, and the PCR products were directly sequenced. Comparing with the gene tree that was constructed based on the 739 gene sequences of the WHO reference strains, twelve isolated strains belonged to 1E genotype, one strain belonged to 1F genotype, three strains belonged to 2A genotype. The first strain belonged to 1E genotype was isolated in Shandong province in 2001, then genotype 1E became dominant genotype of wild rubella viruses circulated. The 1E genotype circulated from 2006-2007 was different compared with that circulated from 2001 to 2002, but no significant deviation in temporal and geographic distribution was found. The strain belonged to Genotype 1F was only isolated during 2000 to 2001. The three strains of 2A genotype of rubella viruses were similar to rubella viruses vaccine strain (BRDII). The most nucleotide mutation of rubella viruses among the sixteen strains were nonsense mutation, and the amino acid sequences were highly conservative with no change in important antigen sites. Alike the previous reports, there was the same amino acid mutation in protein E1 at the site of 338 in all of the 1E genotype rubella viruses isolated during 2001- 2007 in Shandong (Leu338 --> Phe338).
Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna
2014-09-01
A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.
A universal mammalian vaccine cell line substrate.
Murray, Jackelyn; Todd, Kyle V; Bakre, Abhijeet; Orr-Burks, Nichole; Jones, Les; Wu, Weilin; Tripp, Ralph A
2017-01-01
Using genome-wide small interfering RNA (siRNA) screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD) enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences) across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205) showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.
Hassen, Wafa; Ayed-Boussema, Imen; Bouslimi, Amel; Bacha, Hassen
2007-12-05
Ochratoxin A (OTA) is a mycotoxin routinely detected in improperly stored animal and human food supplies as well as in human sera worldwide. OTA has multiple toxic effects; however, the most prominent is nephrotoxicity. Thus, OTA is involved in the pathogenesis of human nephropathy in Balkan areas. In this study, we address the question of the appropriate functioning of the basal cellular defense mechanisms, after exposure to OTA, which, up to now, has not been investigated satisfactorily. In this context, we have monitored the effect of OTA on (i) the inhibition of cell viability, (ii) the oxidative damage using the GSH depletion, (iii) the inhibition of protein synthesis through the incorporation of [(3)H] Leucine and (iv) the induction of Hsp 70 gene expression as a parameter of cytotoxicity, oxidative damage and particularly as a protective and adaptative response. This study was conducted using the Human Hep G2 hepatocytes and monkey kidney Vero cells under exposure conditions ranging from non-cytotoxic to sub-lethal. Our results clearly showed that OTA inhibits cell proliferation, strongly reduces protein synthesis and induces the decrease of GSH in concentration-dependent manner in both Hep G2 and Vero cells. However, although cytotoxicity and oxidative damage (main inducers of Hsp expression) occur, no change was observed in Hsp 70 level under the multiple tested conditions. Inhibition of protein synthesis could not explain the absence of Hsp 70 response since concentrations, which did not influence protein synthesis, also failed to display the expected Hsp 70 response. Our data are consistent with recently published reports where considerable differences were noticed in the ability of relevant toxicants to induce Hsp. These results raised doubt about the universal character of Hsp induction which seems to be more complex than originally envisioned. It could be concluded that Hsp 70 induction is not systematic to cell stress.
Virulence factors in Vibrios and Aeromonads isolated from seafood.
Scoglio, M E; Di Pietro, A; Picerno, I; Delia, S; Mauro, A; Lagana, P
2001-07-01
Thirty-one isolates from seafood, identified as Aeromonas hydrophila (7), Aeromonas caviae (11), Vibrio parahaemolyticus (3), Vibrio fluvialis (5), Vibrio alginolytictus (3), Vibrio metschnikovii (1) and Vibrio damsela (1), were tested for possible virulence factors including extracellular hydrolytic enzymes, haemolysins, cytotoxins (VERO and HEp-2 cells) and adherence ability (HEp-2 cells). All the A. hydrophila strains were beta-haemolytic and produced cytotoxins as well as one strain of V. fluvialis. A. hydrophila and A. caviae strains, frequently adhesive, showed both aggregative and diffusive patterns, while five Vibrio strains only (three V. fluvialis, one V. parahaemolyticus and one V. alginolyticus) were adhesive with an aggregative pattern.
Agelasine F from a Philippine Agelas sp. sponge exhibits in vitro antituberculosis activity.
Mangalindan, G C; Talaue, M T; Cruz, L J; Franzblau, S G; Adams, L B; Richardson, A D; Ireland, C M; Concepcion, G P
2000-05-01
Marine sponge samples were collected in Baler, Aurora, Philippines, and extracts were tested for in vitro antituberculosis activity. An orange Agelas sp. sponge yielded the known compound, agelasine F, which inhibited some drug resistant strains of Mycobacterium tuberculosis in vitro at concentrations as low as 3.13 micrograms/ml. Activity against M. tuberculosis residing within macrophages required concentrations of 13-22 micrograms/ml which was below the IC50 for Vero cells (34 micrograms/ml).
Immunogenicity of an inactivated oil-emulsion canine distemper vaccine in African wild dogs.
Cirone, Francesco; Elia, Gabriella; Campolo, Marco; Friedrich, Klaus; Martella, Vito; Pratelli, Annamaria; Buonavoglia, Canio
2004-04-01
The immunogenicity of an inactivated oil-emulsion vaccine against canine distemper virus was evaluated in nine captive African wild dogs (Lycaon pictus). Antibody levels were determined by neutralization test in Vero cells. No significant local or systemic adverse reactions were observed in the animals. Virus neutralizing antibody levels >1:20 were detected, especially in animals that were vaccinated twice. The use of oil adjuvants is suggested as a good way to enhance the immune response to inactivated canine distemper vaccine.
Yadav, P. D.; Basu, A.; Shete, A.; Patil, D. Y.; Zawar, D.; Majumdar, T. D.; Kokate, P.; Sarkale, P.; Raut, C. G.; Jadhav, S. M.
2014-01-01
During a survey in the year 2010, a novel phlebovirus was isolated from the Rousettus leschenaultii species of bats in western India. The virus was identified by electron microscopy from infected Vero E6 cells. Phylogenic analysis of the complete genome showed its close relation to severe fever with thrombocytopenia syndrome (SFTS) and Heartland viruses, which makes it imperative to further study its natural ecology and potential as a novel emerging zoonotic virus. PMID:24390329
Porcine platelet lysate as a supplement for animal cell culture
Aldén, Anna; Gonzalez, Lorena; Persson, Anna; Christensson, Kerstin; Holmqvist, Olov
2007-01-01
A novel supplementation of cell growth media based on a porcine platelet lysate was developed for culture of animal-derived cells. The platelet lysate was produced from porcine blood and contained lysate of platelets and plasma components. It showed satisfactory microbiological integrity and it carried only low amount of endotoxins (<10 EU/mL). The porcine platelet lysate supported well proliferation of Vero (African green monkey transformed kidney epithelial cells), Chinese hamster ovary (CHO) and hybridoma cells comparable to fetal bovine serum (FBS). Platelet lysate shows promise as a viable choice over FBS as it can be produced in large quantities, high lot-to-lot consistency and with an attractive price structure. Furthermore it is a strong alternative to FBS for ethical reasons. It is expected that it can be used as a general supplementation for most animal cells for research studies on the proliferation of cells and their expression of products. PMID:19002989
Adaptation of plastic surfaces for tissue culture by glow discharge.
Amstein, C F; Hartman, P A
1975-01-01
Plastic petri dishes and microtitration plates were electrically charged by a glow discharge unit installed in a vacuum evaporator. Charged and uncharged plates, as well as plates commercially treated for tissue culture, were inoculated with Vero and BHK-21 cell lines; secondary cultures of monkey kidney, chicken lung, canine kidney, and embryonic bovine kidney; and primary chicken embryo fibroblasts and chicken lung cells. All cell cultures grew normally on petri plates charged with the covers open. Growth rate and cell density compared favorably with growth on the commercial tissue culture plates; cell growth was somewhat less dense, however, on plates charged with the covers closed. Charged plates could be sterilized by ultraviolet light and ethylene oxide with no adverse effects on cell growth. Cells inoculated onto plates charged up to 7 months before inoculation grew as well as on freshly charged plates. Images PMID:818106
WE-G-213CD-03: A Dual Complementary Verification Method for Dynamic Tumor Tracking on Vero SBRT.
Poels, K; Depuydt, T; Verellen, D; De Ridder, M
2012-06-01
to use complementary cine EPID and gimbals log file analysis for in-vivo tracking accuracy monitoring. A clinical prototype of dynamic tracking (DT) was installed on the Vero SBRT system. This prototype version allowed tumor tracking by gimballed linac rotations using an internal-external correspondence model. The DT prototype software allowed the detailed logging of all applied gimbals rotations during tracking. The integration of an EPID on the vero system allowed the acquisition of cine EPID images during DT. We quantified the tracking error on cine EPID (E-EPID) by subtracting the target center (fiducial marker detection) and the field centroid. Dynamic gimbals log file information was combined with orthogonal x-ray verification images to calculate the in-vivo tracking error (E-kVLog). The correlation between E-kVLog and E-EPID was calculated for validation of the gimbals log file. Further, we investigated the sensitivity of the log file tracking error by introducing predefined systematic tracking errors. As an application we calculate gimbals log file tracking error for dynamic hidden target tests to investigate gravity effects and decoupled gimbals rotation from gantry rotation. Finally, calculating complementary cine EPID and log file tracking errors evaluated the clinical accuracy of dynamic tracking. A strong correlation was found between log file and cine EPID tracking error distribution during concurrent measurements (R=0.98). We found sensitivity in the gimbals log files to detect a systematic tracking error up to 0.5 mm. Dynamic hidden target tests showed no gravity influence on tracking performance and high degree of decoupled gimbals and gantry rotation during dynamic arc dynamic tracking. A submillimetric agreement between clinical complementary tracking error measurements was found. Redundancy of the internal gimbals log file with x-ray verification images with complementary independent cine EPID images was implemented to monitor the accuracy of gimballed tumor tracking on Vero SBRT. Research was financially supported by the Flemish government (FWO), Hercules Foundation and BrainLAB AG. © 2012 American Association of Physicists in Medicine.
Bonaldo, Myrna C; Mello, Samanta M; Trindade, Gisela F; Rangel, Aymara A; Duarte, Adriana S; Oliveira, Prisciliana J; Freire, Marcos S; Kubelka, Claire F; Galler, Ricardo
2007-01-01
Background The yellow fever virus, a member of the genus Flavivirus, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP). This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor. Results YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus. Conclusion This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow in vivo studies on flavivirus cell and tissue tropism as well as cellular processes related to flavivirus infection. PMID:17971212
van der Sanden, Sabine M G; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C; Brooks, Paula; O'Donnell, Jason; Jones, Les P; Brown, Cedric; Tompkins, S Mark; Oberste, M Steven; Karpilow, Jon; Tripp, Ralph A
2016-02-15
Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work describes a platform-enabling technology applicable to most vaccine-preventable diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Genetic stability of Rift Valley fever virus MP-12 vaccine during serial passages in culture cells.
Lokugamage, Nandadeva; Ikegami, Tetsuro
2017-01-01
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa which affects both ruminants and humans. RVF causes serious damage to the livestock industry and is also a threat to public health. The Rift Valley fever virus has a segmented negative-stranded RNA genome consisting of Large (L)-, Medium (M)-, and Small (S)-segments. The live-attenuated MP-12 vaccine is immunogenic in livestock and humans, and is conditionally licensed for veterinary use in the U.S. The MP-12 strain encodes 23 mutations (nine amino acid substitutions) and is attenuated through a combination of mutations in the L-, M-, and S-segments. Among them, the M-U795C, M-A3564G, and L-G3104A mutations contribute to viral attenuation through the L- and M-segments. The M-U795C, M-A3564G, L-U533C, and L-G3750A mutations are also independently responsible for temperature-sensitive (ts) phenotype. We hypothesized that a serial passage of the MP-12 vaccine in culture cells causes reversions of the MP-12 genome. The MP-12 vaccine and recombinant rMP12-ΔNSs16/198 were serially passaged 25 times. Droplet digital PCR analysis revealed that the reversion occurred at L-G3750A during passages of MP-12 in Vero or MRC-5 cells. The reversion also occurred at M-A3564G and L-U533C of rMP12-ΔNSs16/198 in Vero cells. Reversion mutations were not found in MP-12 or the variant, rMP12-TOSNSs, in the brains of mice with encephalitis. This study characterized genetic stability of the MP-12 vaccine and the potential risk of reversion mutation at the L-G3750A ts mutation after excessive viral passages in culture cells.
Novel Activity of a Synthetic Decapeptide Against Toxoplasma gondii Tachyzoites.
Giovati, Laura; Santinoli, Claudia; Mangia, Carlo; Vismarra, Alice; Belletti, Silvana; D'Adda, Tiziana; Fumarola, Claudia; Ciociola, Tecla; Bacci, Cristina; Magliani, Walter; Polonelli, Luciano; Conti, Stefania; Kramer, Laura H
2018-01-01
The killer peptide KP is a synthetic decapeptide derived from the sequence of the variable region of a recombinant yeast killer toxin-like microbicidal single-chain antibody. KP proved to exert significant activities against diverse microbial and viral pathogens through different mechanisms of action, but little is known of its effect on apicomplexan protozoa. The aim of the present study was to evaluate the in vitro activity of KP against Toxoplasma gondii , a globally widespread protozoan parasite of great medical interest. The effect of KP treatment and its potential mechanism of action on T. gondii were evaluated by various methods, including light microscopy, quantitative PCR, flow cytometry, confocal microscopy, and transmission electron microscopy. In the presence of KP, the number of T. gondii tachyzoites able to invade Vero cells and the parasite intracellular proliferation were significantly reduced. Morphological observation and analysis of apoptotic markers suggested that KP is able to trigger an apoptosis-like cell death in T. gondii . Overall, our results indicate that KP could be a promising candidate for the development of new anti- Toxoplasma drugs with a novel mechanism of action.
Rasty, S; Poliani, P L; Fink, D J; Glorioso, J C
1997-08-01
A distinctive feature of the genetic make-up of herpes simplex virus type 1 (HSV-1), a human neurotropic virus, is that approximately half of the 81 known viral genes are not absolutely required for productive infection in Vero cells, and most can be individually deleted without substantially impairing viral replication in cell culture. If large blocks of contiguous viral genes could be replaced with foreign DNA sequences, it would be possible to engineer highly attenuated recombinant HSV-1 gene transfer vectors capable of carrying large cellular genes or multiple genes having related functions. We report the isolation and characterization of an HSV-1 mutant, designated d311, containing a 12 kb deletion of viral DNA located between the L-S Junction a sequence and the U(S)6 gene, spanning the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5. Replication of d311 was totally inhibited in rat B103 and mouse Neuro-2A neuroblastoma cell lines, and was reduced by over three orders of magnitude in human SK-N-SH neuroblastoma cells compared to wild-type (wt) HSV-1 KOS. This suggested that the deleted genes, while nonessential for replication in Vero cells, play an important role in HSV replication in neuronal cells, particularly those of rodent origin. Unlike wt KOS which replicated locally and spread to other regions of brain following stereotactic inoculation into rat hippocampus, d311 was unable to replicate and spread within the brain, and did not cause any apparent local neuronal cell damage. These results demonstrate that d311 is highly attenuated for the rat central nervous system. d311 and other mutants of HSV containing major deletions of the nonessential genes within U(S) have the potential to serve as useful tools for gene transfer applications to brain.
Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M.; Whitmire, Jason K.; Maury, Wendy
2017-01-01
ABSTRACT Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1−/− Ifnar1−/− and Tim4−/− Ifnar1−/− double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1−/− mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1−/−Ifnar1−/− mice compared to Ifnar1−/− mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. PMID:28874468
Olmo, Francisco; Gómez-Contreras, Fernando; Navarro, Pilar; Marín, Clotilde; Yunta, María J R; Cano, Carmen; Campayo, Lucrecia; Martín-Oliva, David; Rosales, María José; Sánchez-Moreno, Manuel
2015-12-01
A series of new phthalazine derivatives (1-4) containing imidazole rings and functionalized with nitro groups in the benzene ring of the phthalazine moiety were prepared and identified on the basis of their MS, elemental analyses and bidimensional (1)H and (13)C NMR data, and their trypanocidal activity was tested. The 8-nitrosubstituted compound (3) was more active in vitro against Trypanosoma cruzi and less toxic against Vero cells than the reference drug benznidazole, and showed a SI value that was 47-fold better than the reference drug in amastigote forms. It also remarkably reduced the infectivity rate in Vero cells and decreased the reactivation of parasitemia in immunodeficient mice. Ultrastructural alterations found in epimastigotes treated with 3 confirmed extensive cytoplasm destruction in the parasites, whereas histopathological analysis of the hearts of mice infected and treated with 3 resulted in a decrease in cardiac damage. Biochemical markers showed that livers, hearts, and kidneys of treated mice were substantially unaffected by the administration of 3, despite the presence of the potentially toxic nitro group. It was also found that this compound selectively inhibited the antioxidant parasite enzyme Fe-superoxide dismutase (Fe-SOD) in comparison with human CuZn-SOD, and molecular modeling suggested interaction with the H-bonding system of the iron-based moiety as a feasible mechanism of action against the enzyme. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Soares, A M S; Carvalho, L P; Melo, E J T; Costa, H P S; Vasconcelos, I M; Oliveira, J T A
2015-06-01
Toxoplasma gondii is a parasite of great medical and veterinary importance that has worldwide distribution and causes toxoplasmosis. There are few treatments available for toxoplasmosis and the search for plant extracts and compounds with anti-Toxoplasma activity is of utmost importance for the discovery of new active drugs. The objective of this study was to investigate the action of a protein extract and a protease inhibitor enriched fraction from J. curcas seed cake on developing tachyzoites of T. gondii-infected Vero cells. The protein extract (JcCE) was obtained after solubilization of the J. curcas seed cake with 100 mM sodium borate buffer, pH 10, centrifugation and dialysis of the resulting supernatant with the extracting buffer. JcCE was used for the in vitro assays of anti-Toxoplasma activity at 0.01, 0.1, 0.5, 1.5, 3.0 and 5.0 mg/ml concentration for 24 h. The results showed that JcCE reduced the percentage of infection and the number of intracellular parasites, but had no effect on the morphology of Vero cells up to 3.0 mg/mL. The cysteine protease inhibitor enriched fraction, which was obtained after chromatography of JcCE on Sephadex G-75 and presented a unique protein band following SDS-PAGE, reduced both the number of T. gondii infected cells and intracellular parasites. These results suggest that both JcCE and the cysteine protease inhibitor enriched fraction interfere with the intracellular growth of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.
Lin, Chun-Ming; Hou, Yixuan; Marthaler, Douglas G; Gao, Xiang; Liu, Xinsheng; Zheng, Lanlan; Saif, Linda J; Wang, Qiuhong
2017-03-01
Although porcine epidemic diarrhea (PED) has caused huge economic losses in the pork industry worldwide, an effective live, attenuated vaccine is lacking. In this study, an original US, highly virulent PED virus (PEDV) strain PC22A was serially passaged in Vero CCL81 and Vero BI cells. The virus growth kinetics in cell culture, virulence in neonatal pigs and the whole genomic sequences of selected passages were examined. Increased virus titers and sizes of syncytia were observed at the 65th passage level (P65) and P120, respectively. Based on the severity of clinical signs, histopathological lesions and the distribution of PEDV antigens in the gut, the virulence of P100 and above, but not P95C13 (CCL81), was markedly reduced in 4-day-old, caesarian-derived, colostrum-deprived piglets. Subsequently, the attenuation of P120 and P160 was confirmed in 4-day-old, conventional suckling piglets. Compared with P120, P160 replicated less efficiently in the intestine of pigs and induced a lower rate of protection after challenge. Sequence analysis revealed that the virulent viruses [P3 and P95C13 (CCL81)] had one, one, sixteen (including an early termination of nine amino acids) and two amino acid differences in non-structure protein 1 (nsp1), nsp4, spike and membrane proteins, respectively, from the fully attenuated P160. However, the overall pattern of attenuation-related genetic changes in PC22A differed from those of the other four pairs of PEDV wild type strains and their attenuated derivatives. These results suggest that PEDV attenuation can occur through multiple molecular mechanisms. The knowledge provides insights into potential molecular mechanisms of PEDV attenuation. Copyright © 2017 Elsevier B.V. All rights reserved.
Irikura, Daisuke; Monma, Chie; Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi
2015-01-01
There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins' gene(s) among the Genus Clostridium.
Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi
2015-01-01
There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins’ gene(s) among the Genus Clostridium. PMID:26584048
Tiwari, Mugdha; Parida, Manmohan; Santhosh, S R; Khan, Mohsin; Dash, Paban Kumar; Rao, P V Lakshmana
2009-04-21
The recent resurgence of Chikungunya virus (CHIKV) in India and Indian Ocean Islands with unusual clinical severity is a matter of great public health concern. Despite the fact that CHIKV resurgence is associated with epidemic of unprecedented magnitude, no approved licensed vaccine is currently available. In the present study, a Vero cell adapted purified formalin inactivated prototype vaccine candidate was prepared using a current Indian strain implicated with the explosive epidemic during 2006. The bulk preparation of the vaccine candidate was undertaken in microcarrier based spinner culture using cytodex-1 in virus production serum free medium. The inactivation of the virus was accomplished through standard formalin inactivation protocol. The mice were immunized subcutaneously with alhydrogel gel formulation of inactivated virus preparation. The assessment of both humoral and cell-mediated immune response was accomplished through ELISA, plaque reduction neutralization test (PRNT), microcytotoxicity assay and cytokine production assay. The results revealed that formalin inactivated vaccine candidate induced both high titered ELISA (1:51,200) and plaque reduction neutralizing antibodies (1:6400) with peak antibody titer being observed during 6 -- 8 weeks of post-vaccination. In the absence of suitable murine challenge model, the protective efficacy was established by both in vitro and in vivo neutralization tests. Further assessment of cellular immunity through in vitro stimulation of spleenocytes from immunized mice revealed augmentation of high levels of both pro- and anti-inflammatory cytokines, indicating a mixed balance of Th1 and Th2 response. These findings suggest that the formalin inactivated Chikungunya vaccine candidate reported in this study has very good immunogenic potential to neutralize the virus infectivity by augmenting both humoral and cell-mediated immune response.
Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus
Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei
1999-01-01
We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199
2014-01-01
Background The Fabaceae family is the second largest family of medicinal plants, containing more than 490 species which are being used as traditional medicine. The aim of this study was to determine the antioxidant and antibacterial activity as well as the cytotoxicity of acetone leaf extracts of nine tree species from the Fabaceae family that have not been investigated well previously for possible use in animal health and production. Methods The antibacterial activity was determined by a serial microdilution method against three Gram-positive and three Gram-negative bacteria. Antioxidant activity was determined using free-radical scavenging assays. The safety of the extracts was ascertained using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero African green monkey kidney cells. Results Six of the nine acetone extracts had significant antibacterial activity against at least one of the six bacterial species with (MIC 20–80 μg/mL). The Crotalaria capensis extract had the highest activity against Salmonella typhimurium, followed by Indigofera cylindrica with MICs of 20 μg/mL and 40 μg/mL respectively. The Dalbergia nitidula extract had free radical scavenging capacity (IC50 of 9.31 ± 2.14 μg/mL) close to that of the positive control Trolox in the DPPH assay. The Xylia torreana extract also had high activity (IC50 of 14.56 ± 3.96 μg/mL) in the ABTS assay. There was a good correlation between antioxidant activity and total phenolic content (R2 values > 0.8). The extracts had weak or no toxicity to Vero cells, compared to the positive control doxorubicin with the LC50 varying from 10.70 ± 3.47 to 131.98 ± 24.87 μg/mL at the concentrations tested. Conclusion Extracts of D. nitidula, X. torreana, C. capensis and I. cylindrica had a low cytotoxicity and high antimicrobial and/or antioxidant activity. These species are therefore promising candidates for the development of useful antimicrobial/antioxidant preparations with a low cytotoxicity that may be useful in promoting animal health and productivity. PMID:24885143
Feng, Xiu L; Liu, Qing T; Cao, Rui B; Zhou, Bin; Wang, Fang Q; Deng, Wen L; Qiu, Ya F; Zhang, Yu; Ishag, Hassan; Ma, Zhi Y; Zheng, Qi S; Chen, Pu Y
2012-06-01
The bursa of Fabricius (BF) is the central humoral immune organ unique to birds. Here, we isolated a novel bursal pentapeptide I (BPP-I), LGPGP, from BF. BPP-I could play inhibition effect on MCF-7 but not on CEF or Vero cell proliferation in vitro, and enhance antitumor factor p53 protein expression. Also, BPP-I stimulated antibody production in a dose-dependent manner in hybridoma cell. Furthermore, BPP-I could induce various immune responses in mice immunization experiments, including increase antibody production and cytokines IL-4 and IFN-γ level, and induce T-cell immunophenotyping. These results suggest that BPP-I is a potential immunomodulator of antitumor and immunity. The study could provide some novel insights on the probable candidate reagent for the antitumor and immune improvement.
Regulation of host translational machinery by African swine fever virus.
Castelló, Alfredo; Quintas, Ana; Sánchez, Elena G; Sabina, Prado; Nogal, Marisa; Carrasco, Luis; Revilla, Yolanda
2009-08-01
African swine fever virus (ASFV), like other complex DNA viruses, deploys a variety of strategies to evade the host's defence systems, such as inflammatory and immune responses and cell death. Here, we analyse the modifications in the translational machinery induced by ASFV. During ASFV infection, eIF4G and eIF4E are phosphorylated (Ser1108 and Ser209, respectively), whereas 4E-BP1 is hyperphosphorylated at early times post infection and hypophosphorylated after 18 h. Indeed, a potent increase in eIF4F assembly is observed in ASFV-infected cells, which is prevented by rapamycin treatment. Phosphorylation of eIF4E, eIF4GI and 4E-BP1 is important to enhance viral protein production, but is not essential for ASFV infection as observed in rapamycin- or CGP57380-treated cells. Nevertheless, eIF4F components are indispensable for ASFV protein synthesis and virus spread, since eIF4E or eIF4G depletion in COS-7 or Vero cells strongly prevents accumulation of viral proteins and decreases virus titre. In addition, eIF4F is not only activated but also redistributed within the viral factories at early times of infection, while eIF4G and eIF4E are surrounding these areas at late times. In fact, other components of translational machinery such as eIF2alpha, eIF3b, eIF4E, eEF2 and ribosomal P protein are enriched in areas surrounding ASFV factories. Notably, the mitochondrial network is polarized in ASFV-infected cells co-localizing with ribosomes. Thus, translation and ATP synthesis seem to be coupled and compartmentalized at the periphery of viral factories. At later times after ASFV infection, polyadenylated mRNAs disappear from the cytoplasm of Vero cells, except within the viral factories. The distribution of these pools of mRNAs is similar to the localization of viral late mRNAs. Therefore, degradation of cellular polyadenylated mRNAs and recruitment of the translation machinery to viral factories may contribute to the inhibition of host protein synthesis, facilitating ASFV protein production in infected cells.
Regulation of Host Translational Machinery by African Swine Fever Virus
Castelló, Alfredo; Quintas, Ana; Sánchez, Elena G.; Sabina, Prado; Nogal, Marisa; Carrasco, Luis; Revilla, Yolanda
2009-01-01
African swine fever virus (ASFV), like other complex DNA viruses, deploys a variety of strategies to evade the host's defence systems, such as inflammatory and immune responses and cell death. Here, we analyse the modifications in the translational machinery induced by ASFV. During ASFV infection, eIF4G and eIF4E are phosphorylated (Ser1108 and Ser209, respectively), whereas 4E-BP1 is hyperphosphorylated at early times post infection and hypophosphorylated after 18 h. Indeed, a potent increase in eIF4F assembly is observed in ASFV-infected cells, which is prevented by rapamycin treatment. Phosphorylation of eIF4E, eIF4GI and 4E-BP1 is important to enhance viral protein production, but is not essential for ASFV infection as observed in rapamycin- or CGP57380-treated cells. Nevertheless, eIF4F components are indispensable for ASFV protein synthesis and virus spread, since eIF4E or eIF4G depletion in COS-7 or Vero cells strongly prevents accumulation of viral proteins and decreases virus titre. In addition, eIF4F is not only activated but also redistributed within the viral factories at early times of infection, while eIF4G and eIF4E are surrounding these areas at late times. In fact, other components of translational machinery such as eIF2α, eIF3b, eIF4E, eEF2 and ribosomal P protein are enriched in areas surrounding ASFV factories. Notably, the mitochondrial network is polarized in ASFV-infected cells co-localizing with ribosomes. Thus, translation and ATP synthesis seem to be coupled and compartmentalized at the periphery of viral factories. At later times after ASFV infection, polyadenylated mRNAs disappear from the cytoplasm of Vero cells, except within the viral factories. The distribution of these pools of mRNAs is similar to the localization of viral late mRNAs. Therefore, degradation of cellular polyadenylated mRNAs and recruitment of the translation machinery to viral factories may contribute to the inhibition of host protein synthesis, facilitating ASFV protein production in infected cells. PMID:19714237
Malani, Kalpesh; Thakkar, Sampark S; Thakur, Mukund Chandra; Ray, Arabinda; Doshi, Hiren
2016-10-01
A series of eight compounds diethyl-3-methyl-5-(6-methyl-2-thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamido) thiophene-2,4-dicarboxilate (KM10-17) analogues have been prepared by conventional methods and characterized by IR, Mass, NMR and elemental analysis. In silico docking studies on Human topoisomerase IIbeta (PDB Id: 3QX3) have been performed for all molecules (KM10-17) synthesized. The compounds were tested for in vitro anti-proliferative activity on VERO and 786-O cell lines. Out of all the synthesized compounds, KM11 &KM16 showed moderate activity on both cell lines. In vitro anti-microbial activity was also checked against Bacillus subtilis (BS), Staphylococcus aurous (SA), Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Candida albicans (CA) by well diffusion method. The compound KM11 was found to have highest zone of inhibition against BS, SA, PA and EC. The molecules KM13 and KM16 exhibited good activity against CA. The compounds KM14 and KM16 indicated good zone of inhibition against BS. Copyright © 2016 Elsevier Inc. All rights reserved.
E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote
2016-01-01
Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.
2012-03-06
redness, pain, and swelling) and five systemic symp- toms ( fever , headache, rash, vomiting or diarrhea, and muscle aches) on each of the 4 days following...counts between the two cohorts defined by previous JE vaccine status. b Other vaccines received included influenza (n = 5 subjects), typhoid (n = 2...subjects), typhoid (n = 3), hepatitis A, hepatitis B, and typhoid (n = 2), anthrax and typhoid (n = 1), and hepatitis A and hepatitis B (n = 1). d For dose
2017-06-14
sensitivity: To simulate sera collected from experimentally - infected animals, we tested WNV (strain WN-USAMRIID99) serially diluted in heat-inactivated...Sensitivity of WNV Vero cell viability test Cq, WNV RT-qPCR Experimental Replicate PFU 1 2 3 2.00E+06 13.74 13.22 12.98 2.00E+05 13.61 13.23 12.13...proteins were identified and quantitated . Relative abundance of serum proteins to pre-infection levels was determined at each post -infection time-point
Dzoyem, Jean P; McGaw, Lyndy J; Eloff, Jacobus N
2014-05-05
The Fabaceae family is the second largest family of medicinal plants, containing more than 490 species which are being used as traditional medicine. The aim of this study was to determine the antioxidant and antibacterial activity as well as the cytotoxicity of acetone leaf extracts of nine tree species from the Fabaceae family that have not been investigated well previously for possible use in animal health and production. The antibacterial activity was determined by a serial microdilution method against three Gram-positive and three Gram-negative bacteria. Antioxidant activity was determined using free-radical scavenging assays. The safety of the extracts was ascertained using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero African green monkey kidney cells. Six of the nine acetone extracts had significant antibacterial activity against at least one of the six bacterial species with (MIC 20-80 μg/mL). The Crotalaria capensis extract had the highest activity against Salmonella typhimurium, followed by Indigofera cylindrica with MICs of 20 μg/mL and 40 μg/mL respectively. The Dalbergia nitidula extract had free radical scavenging capacity (IC50 of 9.31±2.14 μg/mL) close to that of the positive control Trolox in the DPPH assay. The Xylia torreana extract also had high activity (IC50 of 14.56±3.96 μg/mL) in the ABTS assay. There was a good correlation between antioxidant activity and total phenolic content (R2 values>0.8). The extracts had weak or no toxicity to Vero cells, compared to the positive control doxorubicin with the LC50 varying from 10.70±3.47 to 131.98±24.87 μg/mL at the concentrations tested. Extracts of D. nitidula, X. torreana, C. capensis and I. cylindrica had a low cytotoxicity and high antimicrobial and/or antioxidant activity. These species are therefore promising candidates for the development of useful antimicrobial/antioxidant preparations with a low cytotoxicity that may be useful in promoting animal health and productivity.
Abdul Ahmad, Siti Aisyah; Palanisamy, Uma D; Tejo, Bimo A; Chew, Miaw Fang; Tham, Hong Wai; Syed Hassan, Sharifah
2017-11-21
The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated. Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC 50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay. Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC 50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity. Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.
The polyGeVero® software for fast and easy computation of 3D radiotherapy dosimetry data
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Maras, Piotr
2015-01-01
The polyGeVero® software package was elaborated for calculations of 3D dosimetry data such as the polymer gel dosimetry. It comprises four workspaces designed for: i) calculating calibrations, ii) storing calibrations in a database, iii) calculating dose distribution 3D cubes, iv) comparing two datasets e.g. a measured one with a 3D dosimetry with a calculated one with the aid of a treatment planning system. To accomplish calculations the software was equipped with a number of tools such as the brachytherapy isotopes database, brachytherapy dose versus distance calculation based on the line approximation approach, automatic spatial alignment of two 3D dose cubes for comparison purposes, 3D gamma index, 3D gamma angle, 3D dose difference, Pearson's coefficient, histograms calculations, isodoses superimposition for two datasets, and profiles calculations in any desired direction. This communication is to briefly present the main functions of the software and report on the speed of calculations performed by polyGeVero®.
Kumar, Naveen; Barua, Sanjay; Riyesh, Thachamvally; Chaubey, Kundan K; Rawat, Krishan Dutt; Khandelwal, Nitin; Mishra, Anil K; Sharma, Nitika; Chandel, Surender S; Sharma, Shalini; Singh, Manoj K; Sharma, Dinesh K; Singh, Shoor V; Tripathi, Bhupendra N
2016-01-01
Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV) and foot-and-mouth disease virus (FMDV) mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE) of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP). PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture) transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV) and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus) in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of viruses, but could also help in establishing better guidelines for trading animals that could transmit further infections and epidemics in disease free nations.
Dauber, Bianca; Poon, David; Dos Santos, Theodore; Duguay, Brett A; Mehta, Ninad; Saffran, Holly A; Smiley, James R
2016-07-01
The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kumar, Naveen; Barua, Sanjay; Riyesh, Thachamvally; Chaubey, Kundan K.; Rawat, Krishan Dutt; Khandelwal, Nitin; Mishra, Anil K.; Sharma, Nitika; Chandel, Surender S.; Sharma, Shalini; Singh, Manoj K.; Sharma, Dinesh K.; Singh, Shoor V.; Tripathi, Bhupendra N.
2016-01-01
Successful purification of multiple viruses from mixed infections remains a challenge. In this study, we investigated peste des petits ruminants virus (PPRV) and foot-and-mouth disease virus (FMDV) mixed infection in goats. Rather than in a single cell type, cytopathic effect (CPE) of the virus was observed in cocultured Vero/BHK-21 cells at 6th blind passage (BP). PPRV, but not FMDV could be purified from the virus mixture by plaque assay. Viral RNA (mixture) transfection in BHK-21 cells produced FMDV but not PPRV virions, a strategy which we have successfully employed for the first time to eliminate the negative-stranded RNA virus from the virus mixture. FMDV phenotypes, such as replication competent but noncytolytic, cytolytic but defective in plaque formation and, cytolytic but defective in both plaque formation and standard FMDV genome were observed respectively, at passage level BP8, BP15 and BP19 and hence complicated virus isolation in the cell culture system. Mixed infection was not found to induce any significant antigenic and genetic diversity in both PPRV and FMDV. Further, we for the first time demonstrated the viral interference between PPRV and FMDV. Prior transfection of PPRV RNA, but not Newcastle disease virus (NDV) and rotavirus RNA resulted in reduced FMDV replication in BHK-21 cells suggesting that the PPRV RNA-induced interference was specifically directed against FMDV. On long-term coinfection of some acute pathogenic viruses (all possible combinations of PPRV, FMDV, NDV and buffalopox virus) in Vero cells, in most cases, one of the coinfecting viruses was excluded at passage level 5 suggesting that the long-term coinfection may modify viral persistence. To the best of our knowledge, this is the first documented evidence describing a natural mixed infection of FMDV and PPRV. The study not only provides simple and reliable methodologies for isolation and purification of two epidemiologically and economically important groups of viruses, but could also help in establishing better guidelines for trading animals that could transmit further infections and epidemics in disease free nations. PMID:27227480
Siriwarin, Boondaree; Weerapreeyakul, Natthida
2016-07-25
Sesamol is a phenolic lignan found in sesame seeds (Sesamum indicum L.) and sesame oil. The anticancer effects and molecular mechanisms underlying its apoptosis-inducing effect were investigated in human lung adenocarcinoma (SK-LU-1) cells. Sesamol inhibited SK-LU-1 cell growth with an IC50 value of 2.7 mM and exhibited less toxicity toward normal Vero cells after 48 h of treatment (Selective index = 3). Apoptotic bodies-the hallmark of apoptosis-were observed in sesamol-treated SK-LU-1 cells, stained with DAPI. Sesamol increased the activity of caspase 8, 9, and 3/7, indicating that apoptotic cell death occurred through both extrinsic and intrinsic pathways. Sesamol caused the loss of mitochondrial transmembrane potential signifying intrinsic apoptosis induction. Decreasing Bid expression revealed crosstalk between the intrinsic and extrinsic apoptotic pathways; demonstrating clearly that sesamol induces apoptosis through both pathways in human lung adenocarcinoma (SK-LU-1) cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Overview of measles and mumps vaccine: origin, present, and future of vaccine production.
Betáková, T; Svetlíková, D; Gocník, M
2013-01-01
Measles and mumps are common viral childhood diseases that can cause serious complications. Vaccination remains the most efficient way to control the spread of these viruses. The manufacturing capability for viral vaccines produced in embryonated hen eggs and conventional/classical cell substrates, such as chicken embryo fibroblast or primary dog kidney cell substrates, is no longer sufficient. This limitation can be overcome by utilizing other recognized cell substrates such as Madin Darby Canine Kidney (MDCK), Chinese Hamster Ovary (CHO), Vero (monkey origin) cells, MRC-5 (human diploid) or as an alternative, introducing new cell substrates of human or avian origin. A very important factor in vaccine production is the safety and immunogenicity of the final vaccine, where the proper choice of cell substrate used for virus propagation is made. All substrates used in vaccine production must be fully characterized to avoid the contamination of hidden unknown pathogens which is difficult to achieve in primary cell substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K., E-mail: tfrey@gsu.edu
Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drugmore » selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.« less
Eremeeva, Marina E.; Silverman, David J.
1998-01-01
Rickettsia rickettsii infection of endothelial cells is manifested in very distinctive changes in cell morphology, consisting of extensive dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope and blebbing of the plasma membrane, as seen by transmission electron microscopy (D. J. Silverman, Infect. Immun. 44:545–553, 1984). These changes in cellular architecture are thought to be due to oxidant-mediated cell injury, since their occurrence correlates with dramatic alterations in cellular metabolism, particularly with regard to antioxidant systems. In this study, it was shown that R. rickettsii infection of human umbilical vein endothelial cells resulted in a significant depletion of intracellular reduced glutathione (thiol) content at 72 and 96 h and decreased glutathione peroxidase activity at 72 h postinfection. Infected cells displayed a dramatic increase in the concentration of intracellular peroxides by 72 h. Supplementation of the cell culture medium with 100, 200, or 500 μM α-lipoic acid, a metabolic antioxidant, after inoculation with R. rickettsii restored the intracellular levels of thiols and glutathione peroxidase and reduced the intracellular peroxide levels in infected cells. These effects were dose dependent. Treated infected monolayers maintained better viability at 96 h after inoculation with R. rickettsii than did untreated infected cells. Moreover, supplementation of the cell culture medium with 100 μM α-lipoic acid for 72 h after infection prevented the occurrence of morphological changes in the infected cells. The presence of 100 or 200 μM α-lipoic acid did not influence rickettsial growth in endothelial cells, nor did it affect the ability of R. rickettsii to form lytic plaques in Vero cells. Treatment with 500 μM α-lipoic acid decreased by 50% both the number and size of lytic plaques in Vero cells, and it also decreased the recovery of viable rickettsiae from endothelial cells. However, under all treatment conditions, a significant number of rickettsiae could be detected microscopically. Furthermore, the rickettsiae apparently retained their capacity for intracellular movement, since they possessed long polymerized actin tails after 72 and 96 h of treatment regardless of the concentration of α-lipoic acid used. Since α-lipoic acid does not seem to exhibit direct antirickettsial activity except with long-term exposure at very high concentrations, the mechanism of its protective activity for endothelial cells infected with rickettsiae may involve complex changes in cellular metabolism that only indirectly affect rickettsiae. PMID:9573120
NASA Astrophysics Data System (ADS)
Azizi, Susan; Mohamad, Rosfarizan; Rahim, Raha Abdul; Moghaddam, Amin Boroumand; Moniri, Mona; Ariff, Arbakariya; Saad, Wan Zuhainis; Namvab, Farideh
2016-10-01
In this paper, a novel green method for fabrication of zinc oxide-silver (ZnO-Ag) core-shell nanocomposite using essential oil of ginger (EO-G) is reported. The EO-G played two significant roles in the synthesis process: it could act as a reaction media for the formation of ZnO and reduce Ag+ to Ag0. The bioformed ZnO-Ag nanocomposite was compared with pure biosynthesized ZnO-NPs and characterized by UV-vis spectroscopy, TEM, EDX, XRD and FTIR. The characterization results confirmed that Ag-NPs had been embedded in ZnO hexagonal nanoparticles. Six Gram positive and negative pathogens were used to investigate the antibacterial effects of these samples. Ag-doping improves the bactericidal activity of ZnO-NPs. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 100 μg/mL was shown for ZnO-Ag nanocomposite. The biosynthesized ZnO-Ag nanocomposites were found to be comparable to those obtained from the conventional methods using hazardous materials which can be an excellent alternative for the synthesis of ZnO-Ag using biomass.
Effect of jet injection on infectivity of measles, mumps, and rubella vaccine in a bench model.
Coughlin, Melissa M; Collins, Marcus; Saxon, Gene; Jarrahian, Courtney; Zehrung, Darin; Cappello, Chris; Dhere, Rajeev; Royals, Michael; Papania, Mark; Rota, Paul A
2015-08-26
Disposable-syringe jet injectors (DSJIs) with single-use, auto disable, needle-free syringes offer the opportunity to avoid hazards associated with injection using a needle and syringe. Clinical studies have evaluated DSJIs for vaccine delivery, but most studies have focused on inactivated, subunit, or DNA vaccines. Questions have been raised about possible damage to live attenuated viral vaccines by forces generated during the jet injection process. This study examines the effect of jet injection on the integrity of measles, mumps, and rubella vaccine (MMR), measured by viral RNA content and infectivity. Three models of DSJIs were evaluated, each generating a different ejection force. Following jet injection, the RNA content for each of the vaccine components was measured using RT-qPCR immediately after injection and following passage in Vero cells. Jet injection was performed with and without pig skin as a simulation of human skin. There was little to no reduction of RNA content immediately following jet injection with any of the three DSJIs. Samples passaged in Vero cells showed no loss in infectivity of the measles vaccine following jet injection. Mumps vaccine consistently showed increased replication following jet injection. Rubella vaccine showed no loss after jet injection alone but some infectivity loss following injection through pig skin with two of the devices. Overall, these data demonstrated that forces exerted on a live attenuated MMR vaccine did not compromise vaccine infectivity. The bench model and protocol used in this study can be applied to evaluate the impact of jet injection on other live virus vaccines. Published by Elsevier Ltd.
Antitubercular activity of the semi-polar extractives of Uvaria rufa.
Macabeo, Allan Patrick G; Tudla, Florie A; Krohn, Karsten; Franzblau, Scott G
2012-10-01
To investigate the inhibitory activity of the chloroform extract, petroleum ether and chloroform sub-extracts, lead-acetate treated chloroform extract, fractions and secondary metabolites of Uvaria rufa (U. rufa) against Mycobacterium tuberculosis (M. tuberculosis) H(37)Rv. The antituberculosis susceptibility assay was carried out using the colorimetric Microplate Alamar blue assay (MABA). In addition, the cytotoxicity of the most active fraction was evaluated using the VERO cell toxicity assay. The in vitro inhibitory activity against M. tuberculosis H(37)Rv increased as purification progressed to fractionation (MIC up to 23 μg/mL). The chloroform extract and its sub-extracts showed moderate toxicity while the most active fraction from chloroform sub-extract exhibited no cytotoxicity against VERO cells. Meanwhile, the lead acetate-treated crude chloroform extract and its fractions showed complete inhibitions (100%) with MIC values up to 8 μg/mL. Phytochemical screening of the most active fraction showed, in general, the presence of terpenoids, steroids and phenolic compounds. Evaluation of the antimycobacterial activity of known secondary metabolites isolated showed no promising inhibitory activity against the test organism. The present results demonstrate the potential of U. rufa as a phytomedicinal source of compounds that may exhibit promising antituberculosis activity. In addition, elimination of polar pigments revealed enhanced inhibition against M. tuberculosis H(37)Rv. While several compounds known for this plant did not show antimycobacterial activity, the obtained results are considered sufficient reason for further study to isolate the metabolites from U. rufa responsible for the antitubercular activity. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Kading, Rebekah; Crabtree, Mary; Miller, Barry
2013-04-01
Formaldehyde is routinely used to fix tissues in preparation for pathology studies, however concerns remain that treatment of tissues with cellular fixatives may not entirely inactivate infectious virus particles. This concern is of particular regulatory importance for research involving viruses that are classified as select agents such as Rift Valley fever virus (RVFV). Therefore, the specific aims of this study were to (1) assay RVFV-exposed Aedes aegypti mosquitoes fixed in 4% paraformaldehyde for the presence of infectious RVFV particles at various time points following infection and (2) demonstrate the utility of immunofluorescence assay (IFA) for the detection of RVFV antigen in various tissues of paraformaldehyde-fixed mosquitoes. Mosquitoes were administered an infectious blood meal containing one of two strains of RVFV, harvested at various time points following infection, intrathoracically inoculated with 4% paraformaldehyde, and fixed overnight at 4°C. The infection status of a subset of mosquitoes was verified by IFA on leg tissues prior to fixation, and infectivity of RVFV in fixed mosquito carcasses was determined by Vero cell plaque assay. Paraformaldehyde-fixed mosquitoes harvested 14 days post infection were also paraffin-embedded and sectioned for detection of RVFV antigen to particular tissues by IFA. None of the RVFV-exposed mosquitoes tested by Vero cell plaque assay contained infectious RVFV after fixation. Furthermore, incubation of mosquito sections with trypsin prior to antibody staining is recommended for optimal visualization of RVFV antigen in infected mosquito tissues by IFA. Published by Elsevier B.V.
Antiviral Activities of Honey, Royal Jelly, and Acyclovir Against HSV-1.
Hashemipour, Maryam Alsadat; Tavakolineghad, Zahra; Arabzadeh, Sayed Ali Mohammad; Iranmanesh, Zahra; Nassab, Sayed Amir Hossein Gandjalikhan
2014-02-01
Herpes simplex virus type 1 (HSV-1) belongs to the Herpesviridae family and genus simplex virus. This virus is usually acquired during childhood and is transmitted through direct mucocutaneous contact or droplet infection from infected secretions. The aim of the present study was to compare antiviral effects of honey, royal jelly, and acyclovir on herpes simplex virus-1 in an extra-somatic environment. Vero cells were cultured in the Dulbecco's Modified Eagle's Medium (DMEM) along with 10% fetal bovine serum (FBS) in 12-welled microplates. Various dilutions of honey, royal jelly, and acyclovir (5, 10, 50, 100, 2500, 500, and 800 μg/mL) were added to the Vero cells along with a 100-virus concentration of TCID50. The plaque assay technique was used to evaluate the antiviral activities. The results showed that honey, royal jelly, and acyclovir have the highest inhibitory effects on HSV-1 at concentrations of 500, 250, and 100 μg/mL, respectively. In addition, honey, royal jelly, and acyclovir decreased the viral load from 70 795 to 43.3, 30, and 0 PFU/mL at a concentration of 100 μg/mL, respectively. The results of the present study showed that honey and royal jelly, which are natural products with no reports about their deleterious effect at least in laboratory conditions, can be considered alternatives to acyclovir in the treatment of herpetic lesions. However, it should be pointed out that further studies are necessary to substantiate their efficacy because hard evidence on their effectiveness is not available at present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yun; Kwon, Young-Chan; Kim, Soo-In
Hantaan virus (HTNV) is a pathogenic hantavirus that causes hemorrhagic fever with renal syndrome (HFRS). HTNV infection is mediated by {alpha}v{beta}3 integrin. We used protein blots of Vero E6 cell homogenates to demonstrate that radiolabeled HTNV virions bind to gC1qR/p32, the acidic 32-kDa protein known as the receptor for the globular head domain of complement C1q. RNAi-mediated suppression of gC1qR/p32 markedly reduced HTNV binding and infection in human lung epithelial A549 cells. Conversely, transient expression of either simian or human gC1qR/p32 rendered non-permissive CHO cells susceptible to HTNV infection. These results suggest an important role for gC1qR/p32 in HTNV infectionmore » and pathogenesis.« less
Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid
2017-06-15
Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Arana-Argáez, Víctor Ermilo; Chan-Zapata, Ivan; Canul-Canche, Jaqueline; Fernández-Martín, Karla; Martín-Quintal, Zhelmy; Torres-Romero, Julio Cesar; Coral-Martínez, Tania Isolina; Lara-Riegos, Julio Cesar; Ramírez-Camacho, Mario Alberto
2017-01-01
The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H 2 O 2 ) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H 2 O 2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds.
Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A
2015-02-01
RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines. Copyright © 2014 Elsevier Inc. All rights reserved.
Vercammen, M; Scorza, T; El Bouhdidi, A; Van Beeck, K; Carlier, Y; Dubremetz, J F; Verschueren, H
1999-11-01
We have recently shown that Toxoplasma gondii tachyzoites grown in in vitro culture can bind unspecific immunoglobulin (Ig) through their Fc moiety. We show now that Fc receptors are also present on T. gondii within the host animal, and that intraperitoneal parasites in immunocompetent mice are saturated with unspecific Ig. We have also investigated the effect of the parasite's Fc receptor on the interaction of tachyzoites with mammalian cells, using the Vero cell line as a model for nonphagocytic host cells and murine peritoneal macrophages in primary culture as a model for phagocytic cells. Coating of tachyzoites with parasite-unrelated Ig did not enhance their invasive capacity in either target cell type, but slightly decreased the parasite proliferation. Moreover, phagocytosis by macrophages was increased by approximately 50% when parasites were coated with unspecific Ig. These results indicate that the Fc receptor on T. gondii affects the balance between invasion and phagocytosis in a way that is detrimental to the parasites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la
2011-10-25
Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the largemore » GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.« less
Radiation prevulcanized natural rubber latex: Cytotoxicity and safety evaluation on animal
NASA Astrophysics Data System (ADS)
Keong, C. C.; Zin, W. M. Wan; Ibrahim, P.; Ibrahim, S.
2010-05-01
Radiation prevulcanized natural rubber latex (RVNRL) was claimed to be more user friendly than natural rubber latex prevulcanized by sulphur curing system. The absence of Type IV allergy inducing chemicals in RVNRL make it a suitable material for manufacturing of many kinds of latex products, especially those come into direct contact with users. This paper reveals and discusses the findings of cytotoxicity test and safety evaluation on animal for RVNRL. The test was done on RVNRL films prepared by coagulant dipping method and RVNRL dipped products produced by latex dipped product manufacturers. Cytotocixity test was carried out on mammalian cell culture American Type Culture Collection CCL 81, Vero. Results indicated that no cytotoxic effect from RVNRL films and products was found on the cell culture. Two animal studies, namely dermal sensitization study and primary skin irritation study, were done on gloves made from RVNRL. Albino white guinea pigs were used as test subjects in dermal sensitization study and results showed no sensitization induced by the application of test material in the guinea pigs. Primary skin irritation study was done on New Zealand white rabbits and results showed that the product tested was not corrosive and was not a primary irritant
Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan
2017-07-01
Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.
Paris, Daniel H; Blacksell, Stuart D; Newton, Paul N; Day, Nicholas P J
2008-12-01
We present a loop-mediated isothermal PCR assay (LAMP) targeting the groEL gene, which encodes the 60kDa heat shock protein of Orientia tsutsugamushi. Evaluation included testing of 63 samples of contemporary in vitro isolates, buffy coats and whole blood samples from patients with fever. Detection limits for LAMP were assessed by serial dilutions and quantitation by real-time PCR assay based on the same target gene: three copies/microl for linearized plasmids, 26 copies/microl for VERO cell culture isolates, 14 copies/microl for full blood samples and 41 copies/microl for clinical buffy coats. Based on a limited sample number, the LAMP assay is comparable in sensitivity with conventional nested PCR (56kDa gene), with limits of detection well below the range of known admission bacterial loads of patients with scrub typhus. This inexpensive method requires no sophisticated equipment or sample preparation, and may prove useful as a diagnostic assay in financially poor settings; however, it requires further prospective validation in the field setting.
Cytotoxicity and phytochemical analyses of Orthosiphon stamineus leaves and flower extracts
NASA Astrophysics Data System (ADS)
Alwahid, Alaa Abd; Yusoff, Wan Mohtar Wan; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2015-09-01
Orthosiphon stamineus Benth (Lamiaceae) is a plant with many ethnobotanical uses including antifungal and antibacterial activities. This study is aimed to determine the cytotoxicity and phytochemical content of O. stamineus leaves and flower using ethanol and water as solvents. The cytotoxicity of the extracts towards Vero cell was determined by MTT assay. The CC50 values were between 3.4-7.4 mg/ml and can be considered as nontoxic. Phytochemical screening revealed terpenes, alkaloid and phenolic were present in the leaves and flower of O. stamineus that might pose as the bioactive compound.
Detection of mumps virus genotype H in two previously vaccinated patients from Mexico City.
Del Valle, Alberto; García, Alí A; Barrón, Blanca L
2016-06-01
Infections caused by mumps virus (MuV) have been successfully prevented through vaccination; however, in recent years, an increasing number of mumps outbreaks have been reported within vaccinated populations. In this study, MuV was genotyped for the first time in Mexico. Saliva samples were obtained from two previously vaccinated patients in Mexico City who had developed parotitis. Viral isolation was carried out in Vero cells, and the SH and HN genes were amplified by RT-PCR. Amplicons were sequenced and compared to a set of reference sequences to identify the MuV genotype.
Burghelea, Manuela; Verellen, Dirk; Poels, Kenneth; Gevaert, Thierry; Depuydt, Tom; Tournel, Koen; Hung, Cecilia; Simon, Viorica; Hiraoka, Masahiro; de Ridder, Mark
2015-07-15
The purpose of this study was to define an independent verification method based on on-board orthogonal fluoroscopy to determine the geometric accuracy of synchronized gantry-ring (G/R) rotations during dynamic wave arc (DWA) delivery available on the Vero system. A verification method for DWA was developed to calculate O-ring-gantry (G/R) positional information from ball-bearing positions retrieved from fluoroscopic images of a cubic phantom acquired during DWA delivery. Different noncoplanar trajectories were generated in order to investigate the influence of path complexity on delivery accuracy. The G/R positions detected from the fluoroscopy images (DetPositions) were benchmarked against the G/R angulations retrieved from the control points (CP) of the DWA RT plan and the DWA log files recorded by the treatment console during DWA delivery (LogActed). The G/R rotational accuracy was quantified as the mean absolute deviation ± standard deviation. The maximum G/R absolute deviation was calculated as the maximum 3-dimensional distance between the CP and the closest DetPositions. In the CP versus DetPositions comparison, an overall mean G/R deviation of 0.13°/0.16° ± 0.16°/0.16° was obtained, with a maximum G/R deviation of 0.6°/0.2°. For the LogActed versus DetPositions evaluation, the overall mean deviation was 0.08°/0.15° ± 0.10°/0.10° with a maximum G/R of 0.3°/0.4°. The largest decoupled deviations registered for gantry and ring were 0.6° and 0.4° respectively. No directional dependence was observed between clockwise and counterclockwise rotations. Doubling the dose resulted in a double number of detected points around each CP, and an angular deviation reduction in all cases. An independent geometric quality assurance approach was developed for DWA delivery verification and was successfully applied on diverse trajectories. Results showed that the Vero system is capable of following complex G/R trajectories with maximum deviations during DWA below 0.6°. Copyright © 2015 Elsevier Inc. All rights reserved.
Porous alumina-hydroxyapatite composites through protein foaming-consolidation method.
Sopyan, I; Fadli, A; Mel, M
2012-04-01
This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio. Copyright © 2011 Elsevier Ltd. All rights reserved.
Albert-Baskar, Arul; Ignacimuthu, Savarimuthu
2010-07-01
The present study was aimed at evaluating the chemopreventive property of Cynodon dactylon. The antioxidant, antiproliferative and apoptotic potentials of the plant were investigated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, nitric oxide radical scavenging activity (NO(-)) and MTT assay on four cancer cell lines (COLO 320 DM, MCH-7, AGS, A549) and a normal cell line (VERO). In vivo chemopreventive property of the plant extract was studied in DMH-induced colon carcinogenesis. The methanolic extract of C. dactylon was found to be antiproliferative and antioxidative at lower concentrations and induced apoptotic cell death in COLO 320 DM cells. Treatment with methanolic extract of C. dactylon increased the levels of antioxidant enzymes and reduced the number of dysplastic crypts in DMH-induced colon of albino rats. The present investigation revealed the anticancer potential of methanolic extract of C. dactylon in COLO 320 DM cells and experimentally induced colon carcinogenesis in rats.
A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.
York, Joanne; Nunberg, Jack H
2018-01-01
For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.
Al Tanoury, Ziad; Schaffner-Reckinger, Elisabeth; Halavatyi, Aliaksandr; Hoffmann, Céline; Moes, Michèle; Hadzic, Ermin; Catillon, Marie; Yatskou, Mikalai; Friederich, Evelyne
2010-01-01
Background Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. Methodology/Principal Findings To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-δ isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. Conclusions/Significance Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity binding to the cytoskeleton. In carcinoma cells, PKC-δ signaling pathways appear to link L-plastin phosphorylation to actin polymerization and invasion. PMID:20169155
NASA Astrophysics Data System (ADS)
Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.
2014-09-01
Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.
Moreira-Soto, Rolando D; Moreira-Soto, Andrés; Corrales-Aguilar, Eugenia; Calderón-Arguedas, Ólger; Troyo, Adriana
2017-06-01
Rickettsiae are intracellular bacteria commonly associated with hematophagous arthropods. Most of them have been described in hard ticks, but some have been found in soft ticks. Here we report the detection and isolation of a new Rickettsia from Ornithodoros knoxjonesi larvae collected from Balantiopteryx plicata (Emballonuridae) in Nicoya, Costa Rica. Two ticks were processed to detect Rickettsia spp. genes gltA, ompA, ompB, and htrA by PCR. Part of the macerate was also inoculated into Vero E6 and C6/36 cell lines, and cells were evaluated by Giménez stain, indirect immunofluorescence assay (IFA), and PCR. Both ticks were positive by PCR and rickettsial growth was successful in Vero E6 cells. Amplification and sequencing of near full length rrs, gltA, sca4 genes, and fragments of ompA and ompB showed that the Rickettsia sp. was different from described species. The highest homologies were with 'Candidatus Rickettsia wissemanii' and Rickettsia peacockii: 99.70% (1321/1325) with both sequences for rrs, 99.58% (1172/1177) and 99.76% (1246/1249) for gltA, 99.26% with both sequences (2948/2970 and 2957/2979) for sca4, 98.78% (485/491) and 98.39% (2069/2115) for ompA, and 98.58 (1453/1474) and 98.92% (1459/1475) for ompB; respectively. Bat blood, spleen, liver, and lung samples analyzed for Rickettsia detection were negative. Results demonstrate that the Rickettsia isolated from O. knoxjonesi is probably an undescribed species that belongs to the spotted fever group, for which 'Candidatus Rickettsia nicoyana' is proposed. Considering that B. plicata inhabits areas where contact with humans may occur and that human parasitism by Ornithodoros has been reported in the country, it will be important to continue with the characterization of this species and its pathogenic potential. Copyright © 2017 Elsevier GmbH. All rights reserved.
Secretome analysis of Trypanosoma cruzi by proteomics studies.
Brossas, Jean-Yves; Gulin, Julián Ernesto Nicolás; Bisio, Margarita Maria Catalina; Chapelle, Manuel; Marinach-Patrice, Carine; Bordessoules, Mallaury; Palazon Ruiz, George; Vion, Jeremy; Paris, Luc; Altcheh, Jaime; Mazier, Dominique
2017-01-01
Chagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease. To identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener). Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1). Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families. This study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.
Ogrzewalska, Maria; Nieri-Bastos, Fernanda A; Marcili, Arlei; Nava, Santiago; González-Acuña, Daniel; Muñoz-Leal, Sebastián; Ruiz-Arrondo, Ignacio; Venzal, José M; Mangold, Atilio; Labruna, Marcelo B
2016-04-01
The tick Amblyomma parvitarsum (Acari: Ixodidae) has established populations in Andean and Patagonic environments of South America. For the present study, adults of A. parvitarsum were collected in highland areas (elevation >3500 m) of Argentina and Chile during 2009-2013, and tested by PCR for rickettsial infection in the laboratory, and isolation of rickettsiae in Vero cell culture by the shell vial technique. Overall, 51 (62.2%) out of 82 A. parvitarsum adult ticks were infected by spotted fever group (SFG) rickettsiae, which generated DNA sequences 100% identical to each other, and when submitted to BLAST analysis, they were 99.3% identical to corresponding sequence of the ompA gene of Rickettsia sp. strain Atlantic rainforest. Rickettsiae were successfully isolated in Vero cell culture from two ticks, one from Argentina and one from Chile. DNA extracted from the third passage of the isolates of Argentina and Chile were processed by PCR, resulting in partial sequences for three rickettsial genes (gltA, ompB, ompA). These sequences were concatenated and aligned with rickettsial corresponding sequences available in GenBank. Phylogenetic analysis revealed that the A. pavitarsum rickettsial agent grouped under high bootstrap support in a clade composed by the SFG pathogens R. sibirica, R. africae, R. parkeri, Rickettsia sp. strain Atlantic rainforest, and two unnamed SFG agents of unknown pathogenicty, Rickettsia sp. strain NOD, and Rickettsia sp. strain ApPR. The pathogenic role of this A. parvitarsum rickettsia cannot be discarded, since several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections. Copyright © 2016. Published by Elsevier GmbH.
Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.
Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman
In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-). In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine. The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Martins, Lívia C; Diniz, José A P; Silva, Eliana V P; Barros, Vera L R S; Monteiro, Hamilton A O; Azevedo, Raimunda S S; Quaresma, Juarez A S; Vasconcelos, Pedro F C
2007-01-01
Minaçu virus was isolated from Ochlerotatus scapularis (Diptera: Culicidae) in Minaçu, Goiás State, Brazil, in 1996. In attempting characterization of virus serological (hemagluttination inhibition, HI; indirect immunofluorescence assay, IFA), physicochemical [test for deoxycholate acid (DCA) sensitivity; polyacrylamide gel electrophoresis (PAGE)] tests and ultrastructural studies were made. Virus was also assayed in suckling mice after intracerebral inoculation of 0.02 ml and in VERO and C6/36 cells with 0.1 ml of viral suspension containing 105 LD50/ml. Inoculated and control systems were observed daily. Every 24 h, one control and two inoculated animals were killed for tissue testing, including histopathological changes by haematoxylin and eosin (HE)-stained sections, which were semi-quantified. Research into viral antigen in the tissues of mice [central nervous system (CNS), liver, heart, lungs, spleen and kidneys] was carried out by the immunohistochemical technique using the peroxidase system. The virus only replicated in VERO cells, with antigen positive by IFA. Positive complement fixation tests were only obtained using antiserum of Minaçu virus. Minaçu virus is DCA resistant; haemagglutinating activity was negative. By electronic microscopy non-enveloped virus particles were 75 nm in diameter. PAGE analysis showed Minaçu virus genome profile with 10 RNA segments. Infected, non-killed animals died 7 days after inoculation. Tissue lesions were observed in all organs, except the lungs. Intense lesions were observed in the CNS and the heart, where neurone and cardiocyte necroses, respectively, were noted. The liver, spleen and kidneys had moderate tissue changes. Viral antigens were more abundant in the CNS and the heart, and absent in the lungs. In conclusion, Minaçu virus belongs to the family Reoviridae, genus Orbivirus. PMID:17244340
Deethae, A; Peerapornpisal, Y; Pekkoh, J; Sangthong, P; Tragoolpua, Y
2018-06-01
To determine the antiviral activities of Spirogyra spp. algal extracts against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). Spirogyra spp. was extracted using water, ethanol and methanol. Aqueous extract of Spirogyra spp. had the lowest toxicity on Vero cells with the 50% cytotoxicity concentration (CC 50 ) of 4363·30 μg ml -1 . As for potent inhibitory effect, the ethanolic extract presented the highest inhibition of viral infection on HSV-1 in the treatment during viral attachment on Vero cells with 50% inhibitory concentration (IC 50 ) and selective index (SI) values of 164·20 and 2·17 μg ml -1 . However, the methanolic extract showed the highest inhibition of HSV-2 when treated during viral attachment with IC 50 and SI values of 75·03 and 3·34 μg ml -1 . The methanolic extract of Spirogyra spp. also demonstrated significant virucidal effects on viral particles. Therefore, anti-HSV activity at various stages of the viral multiplication cycle was shown. The main active compounds in the active fractions of Spirogyra spp. ethanolic extract against HSV were found to be alkaloids, essential oils and terpenoids. The highest anti-HSV activity was obtained from the ethanolic extract of Spirogyra spp. The extract inhibited the HSV viral particles and the inhibition was during the viral attachment and the viral multiplication. Anti-HSV activity of extract of freshwater green macroalga Spirogyra spp. in Thailand was demonstrated. Therefore, anti-HSV product containing the Spirogyra spp. extract should be developed for treatment of HSV infection. © 2018 The Society for Applied Microbiology.
Biological characteristics of genetic variants of Urabe AM9 mumps vaccine virus.
Wright, K E; Dimock, K; Brown, E G
2000-03-01
The Urabe AM9 mumps vaccine is composed of a mixture of variants distinguishable by a difference at nucleotide (nt) 1081 of the hemagglutinin-neuraminidase (HN) gene (Brown, E.G., Dimock, K., Wright, K.E., 1996. The Urabe AM9 mumps vaccine is a mixture of viruses differing at amino acid (aa) 335 of the hemagglutinin-neuraminidase gene with one form associated with disease. J. Infect. Dis. 174, 619-622.). Further genetic and biological variation was detected in plaque purified viruses from the Urabe AM9 vaccine by examining the HN gene sequence, plaque morphology, cytopathic effects and growth in Vero cells, and temperature sensitivity (ts). Infection of Vero cells with plaque purified viruses with a G at nt 1081 of the HN gene produced large, clear plaques, caused significant CPE early after infection but yielded lower titres of virus than other purified viruses. None of these viruses were ts. In contrast, half of the plaque purified viruses with an A at nt 1081 were sensitive to a temperature of 39.5 degrees C. These viruses produced small plaques, caused significant CPE and grew to low titres. Two ts viruses possessed a unique aa substitution at aa 468 of HN. The remaining A(1081) viruses were not ts, produced large plaques but little CPE, and grew to titres 10-fold higher than the G(1081) viruses. Isolates of Urabe AM9 associated with post-vaccination illness were similar to these non-ts A(1081) viruses, but could be further sub-divided into two groups on the basis of a difference at aa 464 of HN. The post-vaccination isolates may represent insufficiently attenuated components of the vaccine, while the G(1081) and ts subset of A(1081) viruses may be more fully attenuated.
Radtanakatikanon, Araya; Keawcharoen, Juthatip; Charoenvisal, Na Taya; Poovorawan, Yong; Prompetchara, Eakachai; Yamaguchi, Ryoji; Techangamsuwan, Somporn
2013-09-27
Canine distemper virus (CDV) is known to cause multisystemic disease in all families of terrestrial carnivores. Attenuated live vaccines have been used to control CDV in a variety of species for many decades, yet a number of CDV infections in vaccinated dogs are still observed. The aims of this study were to investigate the genetic diversity of CDV lineages based on phosphoprotein (P), hemagglutinin (H) and fusion protein (F) genes and to develop the restriction fragment length polymorphism (RFLP) technique for effective differentiation among individual wild-type and vaccine lineages in Thailand. Four commercial vaccine products, thirteen conjunctival swabs and various tissues from 9 necropsied dogs suspected of having CDV infections were included. Virus isolation was performed using Vero cell expressing canine signaling lymphocyte activation molecules (Vero-DST cells). Reverse-transcription polymerase chain reaction (RT-PCR) on 3 gene regions from the dog derived specimens and the vaccines were carried out, then RFLP analysis upon F-gene amplified fragments was developed. Nucleotide sequence and phylogenetic analysis were compared with other CDV lineages in Genbank. Phylogenetic relationships revealed that CDV field isolates were separated from the vaccine lineage and could be divided into two clusters; one of which belonged to the Asia-1 lineage and another, not related to any previous recognized lineages was proposed as 'Asia-4'. RFLP patterns demonstrating concordance with phylogenetic trees of the distemper virus allowed for differentiation between the Asia-1, Asia-4 and vaccine lineages. Thus, RFLP technique is able to effectively distinguish individual wild-type canine distemper virus from vaccine lineages in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.
Sesardic, D; Prior, C; Daas, A; Buchheit, K H
2003-07-01
A stable liquid candidate Biological Reference Preparation (BRP) for diphtheria toxin was prepared in peptone buffer (nominal content of diphtheria toxin: 1 Lf/ml, 0.4 micro g/ml), filled in ampoules (filling volume: 1 ml) and characterised in a collaborative study. The toxin is to be used in the test "Absence of toxin and irreversibility of toxoid" as described in the current European Pharmacopoeia (Ph. Eur.) monograph Diphtheria Vaccine (Adsorbed) (2002:0443). Eleven laboratories assessed the specific activity of the preparation by in vivo and in vitro assays. The material is assumed to have satisfactory stability with a calculated predicted loss of activity of <1% per year at 4-8 degrees C. From the collaborative study, the specific activity was calculated as 77.6 (45-113) LD( 50)/ml (lethal challenge) and >75 000 Lr/Lf (intradermal challenge). The candidate BRP was successfully used in nine laboratories and confirmed suitable for use in the Vero cell test for "Absence of toxin and irreversibility of toxoid" as described in the Ph. Eur. monograph 2002:0443; i.e., concentrations of 5 x 10( -5) Lf/ml and below caused cytotoxic effects in the Vero cell test. Due to its liquid nature, the stability of the material will be monitored at regular intervals and preparation of a stable freeze-dried formulation will be considered for long-term use. Additional studies will be performed to confirm suitability of this BRP for other applications. The candidate BRP was adopted as the Ph. Eur. reference material for Diphtheria Toxin Batch 1 by the Ph. Eur. Commission at its session in March 2003.
Preparation and characterization of dextran nanobubbles for oxygen delivery.
Cavalli, R; Bisazza, A; Giustetto, P; Civra, A; Lembo, D; Trotta, G; Guiot, C; Trotta, M
2009-11-03
Dextran nanobubbles were prepared with a dextran shell and a perfluoropentan core in which oxygen was stored. To increase the stability polyvinylpirrolidone was also added to the formulation as stabilizing agent. Rhodamine B was used as fluorescent marker to obtain fluorescent nanobubbles. The nanobubble formulations showed sizes of about 500nm, a negative surface charge and a good capacity of loading oxygen, no hemolytic activity or toxic effect on cell lines. The fluorescent labelled nanobubbles could be internalized in Vero cells. Oxygen-filled nanobubbles were able to release oxygen in different hypoxic solutions at different time after their preparation in in vitro experiments. The oxygen release kinetics could be enhanced after nanobubble insonation with ultrasound at 2.5MHz. The oxygen-filled nanobubble formulations might be proposed for therapeutic applications in various diseases.
Jääskeläinen, Kirsi M; Plyusnina, Angelina; Lundkvist, Ake; Vaheri, Antti; Plyusnin, Alexander
2008-01-11
The competitiveness of two Tula hantavirus (TULV) isolates, TULV/Lodz and TULV/Moravia, was evaluated in interferon (IFN) -competent and IFN-deficient cells. The two isolates differ in the length of the open reading frame (ORF) encoding the nonstructural protein NSs, which has previously been shown to inhibit IFN response in infected cells. In IFN-deficient Vero E6 cells both TULV isolates survived equally well. In contrast, in IFN-competent MRC5 cells TULV/Lodz isolate, that possesses the NSs ORF for the full-length protein of 90 aa, survived for more consequent passages than TULV/Moravia isolate, which contains the ORF for truncated NSs protein (66-67 aa). Our data show that expression of a full-length NSs protein is beneficial for the virus survival and competitiveness in IFN-competent cells and not essential in IFN-deficient cells. These results suggest that the N-terminal aa residues are important for the full activity of the NSs protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro, E-mail: fujii@sapmed.ac.j
2011-05-25
Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression ofmore » C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-{gamma} signaling pathway via inhibition of phosphorylated STAT1 dimerization.« less
Oyman Eyrilmez, Gizem; Doran, Sean; Murtezi, Eljesa; Demir, Bilal; Odaci Demirkol, Dilek; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
2015-09-01
N-Acetyl-l-cysteine (NAC)-capped poly(methyl methacrylate)-b-polycaprolactone block copolymer (PMMA-b-PCL-NAC) was prepared using the previously described one-pot photoinduced sequential CuAAC/thiol-ene double click procedure. PMMA-b-PCL-NAC had previously shown good applicability as a matrix for cell adhesion of cells from the Vero cell line (African green monkey kidney epithelial). Here, in this work, PMMA-b-PCL-NAC served as an excellent immobilization matrix for biomolecule conjugation. Covalent binding of RGD (R: arginine, G: glycine, and D: aspartic acid) peptide sequence onto the PMMA-b-PCL-NAC-coated surface was performed via EDC chemistry. RGD-modified PMMA-b-PCL-NAC (PMMA-b-PCL-NAC-RGD) as a non-toxic cell proliferation platform was used for selective "integrin αvβ3-mediated cell adhesion and biosensing studies. Both optical and electrochemical techniques were used to monitor the adhesion differences between "integrin αvβ3" receptor positive and negative cell lines on to the designed biofunctional surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices
Pauly, Diana; Worbs, Sylvia; Kirchner, Sebastian; Shatohina, Olena; Dorner, Martin B.; Dorner, Brigitte G.
2012-01-01
Background In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. Methodology/Findings This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index–time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. Conclusions/Significance The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices. PMID:22532852
Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean
2016-09-01
The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.
Genetic Diversity of Vibrio cholerae O1 in Argentina and Emergence of a New Variant
Pichel, Mariana; Rivas, Marta; Chinen, Isabel; Martín, Fernando; Ibarra, Cristina; Binsztein, Norma
2003-01-01
The genetic diversity of Vibrio cholerae O1 strains from Argentina was estimated by random amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE). Twenty-nine isolates carrying the virulence genes ctxA, zot, ace, and tcpA appeared to represent a single clone by both typing methods; while 11 strains lacking these virulence genes exhibited several heterogeneous RAPD and PFGE patterns. Among the last group, a set of isolates from the province Tucumán showed a single RAPD pattern and four closely related PFGE profiles. These strains, isolated from patients with diarrhea, did not produce the major V. cholerae O1 virulence determinants, yet cell supernatants of these isolates caused a heat-labile cytotoxic effect on Vero and Y-1 cells and elicited significant variations on the water flux and short-circuit current in human small intestine mounted in an Ussing chamber. All these effects were completely abolished by incubation with a specific antiserum against El Tor hemolysin, suggesting that this virulence factor was responsible for the toxic activity on both the epithelial cells and the small intestine specimens and may hence be involved in the development of diarrhea. We propose “Tucumán variant” as the designation for this new cluster of cholera toxin-negative V. cholerae O1 strains. PMID:12517837
Belloto, Andrezza C; Souza, Gredson K; Perin, Paula C; Schuquel, Ivania T A; Santin, Silvana M O; Chiavelli, Lucas U R; Garcia, Francielle P; Kaplum, Vanessa; Rodrigues, Jean H S; Scariot, Débora B; Delvecchio, Rodrigo; Machado-Ferreira, Erik; Santana Aguiar, Renato; Soares, Carlos A G; Nakamura, Celso V; Pomini, Armando M
2017-11-08
The phytochemical study of Laelia marginata (Lindl.) L. O. Williams (Orchidaceae) led to the isolation of a new natural product named crispoic acid (1), together with six other known compounds (2-7). The new natural product was identified as a dimer of eucomic acid and was structurally characterised based upon 1D and 2D NMR and HRMS data. Biological assays with plant crude extract, fractions and isolated compounds were performed against two human cancer cell lines (Hela and Siha), and the tropical parasites Trypanosoma cruzi and Leishmania (Leishmania) amazonensis. The phenantrenoid 9,10-dihydro-4-methoxyphenanthren-2,7-diol 2 was active against Hela and Siha cells (CC 50 5.86 ± 0.19 and 20.78 ± 2.72 μg/mL, respectively). Sub-lethal concentrations of the flavone rhamnazin 4 were not able to rescue the viability of the Vero cells infected by Zika virus.
The polyomavirus BK agnoprotein co-localizes with lipid droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unterstab, Gunhild; Gosert, Rainer; Leuenberger, David
Agnoprotein encoded by human polyomavirus BK (BKV) is a late cytoplasmic protein of 66 amino acids (aa) of unknown function. Immunofluorescence microscopy revealed a fine granular and a vesicular distribution in donut-like structures. Using BKV(Dunlop)-infected or agnoprotein-transfected cells, we investigated agnoprotein co-localization with subcellular structures. We found that agnoprotein co-localizes with lipid droplets (LD) in primary human renal tubular epithelial cells as well as in other cells supporting BKV replication in vitro (UTA, Vero cells). Using agnoprotein-enhanced green fluorescent protein (EGFP) fusion constructs, we demonstrate that agnoprotein aa 20-42 are required for targeting LD, whereas aa 1-20 or aa 42-66more » were not. Agnoprotein aa 22-40 are predicted to form an amphipathic helix, and mutations A25D and F39E, disrupting its hydrophobic domain, prevented LD targeting. However, changing the phosphorylation site serine-11 to alanine or aspartic acid did not alter LD co-localization. Our findings provide new clues to unravel agnoprotein function.« less
Elaeodendron orientale as a source of cytotoxic cardenolides.
Osorio, Alex A; López, Manuel R; Jiménez, Ignacio A; Moujir, Laila M; Rodríguez, Matías L; Bazzocchi, Isabel L
2014-09-01
In the present study, we report six cardiac glycosides (1-6) along with four known ones (7-10) isolated from the leaves and fruits of Elaeodendron orientale. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR, and the absolute configuration of 1 was determined by X-ray diffraction analysis. The compounds were evaluated for growth inhibitory activity against a panel of human cancer cell lines, HeLa, A-549, MCF-7 and HL-60, and normal Vero cells. Four compounds from this series (5 and 7-9, IC50 values ranging from 0.01 to 0.07μM) exhibited cytotoxicity against three of the cancer cell lines assayed that was similar to or higher than the well-known therapies digoxin and digitoxigenin. Taking into account the narrow safety range of cardiac glycosides used in clinic, this series shows a selectivity index higher than 3 for three of the cancer cell lines assayed, increasing their interest for further study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga
2015-03-16
The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.
Dyer, Paul D R; Kotha, Arun K; Gollings, Alex S; Shorter, Susan A; Shepherd, Thomas R; Pettit, Marie W; Alexander, Bruce D; Getti, Giulia T M; El-Daher, Samer; Baillie, Les; Richardson, Simon C W
2016-07-01
The catechin, epigallocatechin gallate (eGCG), found in green tea, has inhibitory activity against a number of protein toxins and was investigated in relation to its impact upon ricin toxin (RT) in vitro. The IC(50) for RT was 0.08±0.004 ng/mL whereas the IC(50) for RT+100 μM eGCG was 3.02±0.572 ng/mL, indicating that eGCG mediated a significant (p<0.0001) reduction in ricin toxicity. This experiment was repeated in the human macrophage cell line THP-1 and IC(50) values were obtained for RT (0.54±0.024 ng/mL) and RT+100 μM eGCG (0.68±0.235 ng/mL) again using 100 μM eGCG and was significant (p=0.0013). The documented reduction in ricin toxicity mediated by eGCG was found to be eGCG concentration dependent, with 80 and 100 μg/mL (i.e. 178 and 223 μM respectively) of eGCG mediating a significant (p=0.0472 and 0.0232) reduction in ricin toxicity at 20 and 4 ng/ml of RT in Vero and THP-1 cells (respectively). When viability was measured in THP-1 cells by propidium iodide exclusion (as opposed to the MTT assays used previously) 10 ng/mL and 5 ng/mL of RT was used. The addition of 1000 μM and 100 μM eGCG mediated a significant (p=0.0015 and <0.0001 respectively) reduction in ricin toxicity relative to an identical concentration of ricin with 1 μg eGCG. Further, eGCG (100 μM) was found to reduce the binding of RT B chain to lactose-conjugated Sepharose as well as significantly (p=0.0039) reduce the uptake of RT B chain in Vero cells. This data suggests that eGCG may provide a starting point to refine biocompatible substances that can reduce the lethality of ricin. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huh, S; Lee, S; Dagan, R
Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm withmore » a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets.« less
Dose calculation and verification of the Vero gimbal tracking treatment delivery
NASA Astrophysics Data System (ADS)
Prasetio, H.; Wölfelschneider, J.; Ziegler, M.; Serpa, M.; Witulla, B.; Bert, C.
2018-02-01
The Vero linear accelerator delivers dynamic tumor tracking (DTT) treatment using a gimbal motion. However, the availability of treatment planning systems (TPS) to simulate DTT is limited. This study aims to implement and verify the gimbal tracking beam geometry in the dose calculation. Gimbal tracking was implemented by rotating the reference CT outside the TPS according to the ring, gantry, and gimbal tracking position obtained from the tracking log file. The dose was calculated using these rotated CTs. The geometric accuracy was verified by comparing calculated and measured film response using a ball bearing phantom. The dose was verified by comparing calculated 2D dose distributions and film measurements in a ball bearing and a homogeneous phantom using a gamma criterion of 2%/2 mm. The effect of implementing the gimbal tracking beam geometry in a 3D patient data dose calculation was evaluated using dose volume histograms (DVH). Geometrically, the gimbal tracking implementation accuracy was <0.94 mm. The isodose lines agreed with the film measurement. The largest dose difference of 9.4% was observed at maximum tilt positions with an isocenter and target separation of 17.51 mm. Dosimetrically, gamma passing rates were >98.4%. The introduction of the gimbal tracking beam geometry in the dose calculation shifted the DVH curves by 0.05%-1.26% for the phantom geometry and by 5.59% for the patient CT dataset. This study successfully demonstrates a method to incorporate the gimbal tracking beam geometry into dose calculations. By combining CT rotation and MU distribution according to the log file, the TPS was able to simulate the Vero tracking treatment dose delivery. The DVH analysis from the gimbal tracking dose calculation revealed changes in the dose distribution during gimbal DTT that are not visible with static dose calculations.
SU-F-T-564: 3 Year Experience of Treatment Plan QualityAssurance for Vero SBRT Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Z; Li, Z; Mamalui, M
2016-06-15
Purpose: To verify treatment plan monitor units from iPlan treatment planning system for Vero Stereotactic Body Radiotherapy (SBRT) treatment using both software-based and (homogeneous and heterogeneous) phantom-based approaches. Methods: Dynamic conformal arcs (DCA) were used for SBRT treatment of oligometastasis patients using Vero linear accelerator. For each plan, Monte Carlo calculated treatment plans MU (prescribed dose to water with 1% variance) is verified first by RadCalc software with 3% difference threshold. Beyond 3% differences, treatment plans were copied onto (homogeneous) Scanditronix phantom for non-lung patients and copied onto (heterogeneous) CIRS phantom for lung patients and the corresponding plan dose wasmore » measured using a cc01 ion chamber. The difference between the planed and measured dose was recorded. For the past 3 years, we have treated 180 patients with 315 targets. Out of these patients, 99 targets treatment plan RadCalc calculation exceeded 3% threshold and phantom based measurements were performed with 26 plans using Scanditronix phantom and 73 plans using CIRS phantom. Mean and standard deviation of the dose differences were obtained and presented. Results: For all patient RadCalc calculations, the mean dose difference is 0.76% with a standard deviation of 5.97%. For non-lung patient plan Scanditronix phantom measurements, the mean dose difference is 0.54% with standard deviation of 2.53%; for lung patient plan CIRS phantom measurements, the mean dose difference is −0.04% with a standard deviation of 1.09%; The maximum dose difference is 3.47% for Scanditronix phantom measurements and 3.08% for CIRS phantom measurements. Conclusion: Limitations in secondary MU check software lead to perceived large dose discrepancies for some of the lung patient SBRT treatment plans. Homogeneous and heterogeneous phantoms were used in plan quality assurance for non-lung patients and lung patients, respectively. Phantom based QA showed the relative good agreement between iPlan calculated dose and measured dose.« less
Balakrishnan, Sreenath; Suma, M.S.; Raju, Shilpa R.; Bhargav, Santosh D.B.; Arunima, S.; Das, Saumitra
2015-01-01
Abstract We present a perfusion culture system with miniature bioreactors and peristaltic pumps. The bioreactors are designed for perfusion, live-cell imaging studies, easy incorporation of microfabricated scaffolds, and convenience of operation in standard cell culture techniques. By combining with miniature peristaltic pumps—one for each bioreactor to avoid cross-contamination and to maintain desired flow rate in each—we have made a culture system that facilitates perfusion culture inside standard incubators. This scalable system can support multiple parallel perfusion experiments. The major components are fabricated by three-dimensional printing using VeroWhite, which we show to be amenable to ex vivo cell culture. Furthermore, the components of the system can be reused, thus making it economical. We validate the system and illustrate its versatility by culturing primary rat hepatocytes, live imaging the growth of mouse fibroblasts (NIH 3T3) on microfabricated ring-scaffolds inserted into the bioreactor, performing perfusion culture of breast cancer cells (MCF7), and high-magnification imaging of hepatocarcinoma cells (HuH7). PMID:26309810
Stiles, Bradley G.; Hale, Martha L.; Marvaud, Jean-Christophe; Popoff, Michel R.
2000-01-01
The binding characteristics of iota toxin, a binary enterotoxin produced by Clostridium perfringens type E, were studied by fluorescence-activated cytometry. The proteolytically activated binding component of iota toxin, iota b (Ib), bound to various cell types when incubated at 4, 25, or 37°C for 10 min. The binding of Ib was inhibited by antisera against C. perfringens type E or Clostridium spiroforme culture supernatants, but not C. perfringens types C or D. Pretreatment of Vero cells with glycosidases or lectins did not affect Ib interactions, while pronase effectively prevented Ib binding to the cell surface. The Ib protomer (Ibp) bound to the cell surface, but trypsinization of Ibp was necessary for docking of the ADP-ribosylating component, iota a (Ia). Ia attached to cell-bound Ib within 10 min at 37°C, but surface levels of Ia decreased 90% after 30 min and were undetectable by 60 min. Detectable surface levels of Ib also diminished over time, and Western blot analysis suggested internalization or embedment of Ib into the membrane. PMID:10816501
Stiles, B G; Hale, M L; Marvaud, J C; Popoff, M R
2000-06-01
The binding characteristics of iota toxin, a binary enterotoxin produced by Clostridium perfringens type E, were studied by fluorescence-activated cytometry. The proteolytically activated binding component of iota toxin, iota b (Ib), bound to various cell types when incubated at 4, 25, or 37 degrees C for 10 min. The binding of Ib was inhibited by antisera against C. perfringens type E or Clostridium spiroforme culture supernatants, but not C. perfringens types C or D. Pretreatment of Vero cells with glycosidases or lectins did not affect Ib interactions, while pronase effectively prevented Ib binding to the cell surface. The Ib protomer (Ibp) bound to the cell surface, but trypsinization of Ibp was necessary for docking of the ADP-ribosylating component, iota a (Ia). Ia attached to cell-bound Ib within 10 min at 37 degrees C, but surface levels of Ia decreased 90% after 30 min and were undetectable by 60 min. Detectable surface levels of Ib also diminished over time, and Western blot analysis suggested internalization or embedment of Ib into the membrane.
Ha, Michael N.; Delpeut, Sébastien; Noyce, Ryan S.; Sisson, Gary; Black, Karen M.; Lin, Liang-Tzung; Bilimoria, Darius; Plemper, Richard K.; Privé, Gilbert G.
2017-01-01
ABSTRACT The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein. IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion. PMID:28904193
Characterization of Fitzroy River Virus and Serologic Evidence of Human and Animal Infection.
Johansen, Cheryl A; Williams, Simon H; Melville, Lorna F; Nicholson, Jay; Hall, Roy A; Bielefeldt-Ohmann, Helle; Prow, Natalie A; Chidlow, Glenys R; Wong, Shani; Sinha, Rohini; Williams, David T; Lipkin, W Ian; Smith, David W
2017-08-01
In northern Western Australia in 2011 and 2012, surveillance detected a novel arbovirus in mosquitoes. Genetic and phenotypic analyses confirmed that the new flavivirus, named Fitzroy River virus, is related to Sepik virus and Wesselsbron virus, in the yellow fever virus group. Most (81%) isolates came from Aedes normanensis mosquitoes, providing circumstantial evidence of the probable vector. In cell culture, Fitzroy River virus replicated in mosquito (C6/36), mammalian (Vero, PSEK, and BSR), and avian (DF-1) cells. It also infected intraperitoneally inoculated weanling mice and caused mild clinical disease in 3 intracranially inoculated mice. Specific neutralizing antibodies were detected in sentinel horses (12.6%), cattle (6.6%), and chickens (0.5%) in the Northern Territory of Australia and in a subset of humans (0.8%) from northern Western Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared
2006-03-15
The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsinsmore » can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.« less
Enhanced growth of influenza A virus by coinfection with human parainfluenza virus type 2.
Goto, Hideo; Ihira, Hironobu; Morishita, Keiichi; Tsuchiya, Mitsuki; Ohta, Keisuke; Yumine, Natsuko; Tsurudome, Masato; Nishio, Machiko
2016-06-01
It has been reported that dual or multiple viruses can coinfect epithelial cells of the respiratory tract. However, little has been reported on in vitro interactions of coinfected viruses. To explore how coinfection of different viruses affects their biological property, we examined growth of influenza A virus (IAV) and human parainfluenza virus type 2 (hPIV2) during coinfection of Vero cells. We found that IAV growth was enhanced by coinfection with hPIV2. The enhanced growth of IAV was not reproduced by coinfection with an hPIV2 mutant with reduced cell fusion activity, or by ectopic expression of the V protein of hPIV2. In contrast, induction of cell fusion by ectopic expression of the hPIV2 HN and F proteins augments IAV growth. hPIV2 coinfection supported IAV growth in cells originated from the respiratory epithelium. The enhancement correlated closely with cell fusion ability of hPIV2 in those cells. These results indicate that cell fusion induced by hPIV2 infection is beneficial to IAV replication and that enhanced viral replication by coinfection with different viruses can modify their pathological consequences.
Rosas-Ramírez, Daniel G; Fragoso-Serrano, Mabel; Escandón-Rivera, Sonia; Vargas-Ramírez, Alba L; Reyes-Grajeda, Juan P; Soriano-García, Manuel
2017-06-01
The multidrug resistance (MDR) phenotype is considered as a major cause of the failure in cancer chemotherapy. The acquisition of MDR is usually mediated by the overexpression of drug efflux pumps of a P-glycoprotein. The development of compounds that mitigate the MDR phenotype by modulating the activity of these transport proteins is an important yet elusive target. Here, we screened the saponification and enzymatic degradation products from Salvia hispanica seed's mucilage to discover modulating compounds of the acquired resistance to chemotherapeutic in breast cancer cells. Preparative-scale recycling HPLC was used to purify the hydrolysis degradation products. All compounds were tested in eight different cancer cell lines and Vero cells. All compounds were noncytotoxic at the concentration tested against the drug-sensitive and multidrug-resistant cells (IC 50 > 29.2 μM). For the all products, a moderate vinblastine-enhancing activity from 4.55-fold to 6.82-fold was observed. That could be significant from a therapeutic perspective. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Sun, Hongchao; Zhuo, Xunhui; Zhao, Xianfeng; Yang, Yi; Chen, Xueqiu; Yao, Chaoqun; Du, Aifang
2017-01-01
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells. PMID:28627357
Xu, Chun; Goß, Annika Verena; Dorneburg, Carmen; Debatin, Klaus-Michael; Wei, Jiwu; Beltinger, Christian
2018-01-01
Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID 50 ) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. We prove the principle that a non-replicating OMV can serve as a "decoy" for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV.
Blöcker, Dagmar; Bachmeyer, Christoph; Benz, Roland; Aktories, Klaus; Barth, Holger
2003-05-13
The binding component (C2II) of the binary Clostridium botulinum C2 toxin mediates transport of the actin ADP-ribosylating enzyme component (C2I) into the cytosol of target cells. C2II (80 kDa) is activated by trypsin cleavage, and proteolytically activated C2II (60 kDa) oligomerizes to heptamers in solution. Activated C2II forms channels in lipid bilayer membranes which are highly cation selective and voltage-gated. A role for this channel in C2I translocation across the cell membrane into the cytosol is discussed. Amino acid residues 303-331 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which likely facilitates membrane insertion and channel formation by creating two antiparallel beta-strands. Some of the residues are in strategic positions within the putative C2II channel, in particular, glutamate 307 (E307) localized in its center and glycine 316 (G316) localized on the trans side of the membrane. Here, single-lysine substitutions of these amino acids and the double mutant E307K/G316K of C2II were analyzed in vivo and in artificial lipid bilayer experiments. The pH dependence of C2I transport across cellular membranes was altered, and a pH of
Donis, Ruben O.; Chen, i-Mei; Davis, C Todd; Foust, Angie; Hossain, M. Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, odewijk; Neumeier, Elisabeth; Ziegler, Thedi
2018-01-01
Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine certified cell lines may well qualify for use in vaccine production. PMID:24975811
Donis, Ruben O; Davis, C Todd; Foust, Angie; Hossain, M Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, Odewijk; Neumeier, Elisabeth; Ziegler, Thedi
2014-11-12
Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine certified cell lines may well qualify for use in vaccine production. Published by Elsevier Ltd.
Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein
Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.
2015-01-01
ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can easily generate mutants resistant to practically any compounds targeting viral proteins. An alternative approach is to target stable cellular factors recruited for the virus-specific functions. In the present study, we analyzed the factors permitting and restricting the establishment of the resistance of poliovirus, a small (+)RNA virus, to brefeldin A (BFA), a drug targeting a cellular component of the viral replication complex. We found that the emergence and replication potential of resistant mutants is cell type dependent and that BFA resistance reduces virus fitness. Our data provide a rational approach to the development of antiviral therapeutics targeting host factors. PMID:25653442
Yousefzadi, Morteza; Riahi-Madvar, Ali; Hadian, Javad; Rezaee, Fatemeh; Rafiee, Roya; Biniaz, Mehdi
2014-01-01
In nature, essential oils play an important role in the protection of the plants by exerting anti-bacterial, -viral, -fungal, -oxidative, -genotoxic, and free radical scavenging properties, as well as in some cases acting as insecticides. Several Satureja species are used in traditional medicine due to recognized therapeutic properties, namely anti-microbial and cytotoxic activities. The purpose of the present work was to determine the biologic activity of the essential oil of S. khuzistanica Jamzad (Lamiaceae) against four human cancer cell lines, as well as its inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. The essential oil was isolated by hydro-distillation and analyzed by GC-FID and GC-MS. Carvacrol (92.87%) and limonene (1.2%) were found to be the main components of the isolated oil. Anti-microbial activity of the essential oil was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test effects of the oil on each cancer cell line. The oil exhibited considerable anti-microbial activity against the majority of the tested bacteria and fungi. The test oil also significantly reduced cell viability of Vero, SW480, MCF7, and JET 3 cells in a dose-dependent manner, with the IC50 values calculated for each cell type being, respectively, 31.2, 62.5, 125, and 125 μg/ml. Based on the findings, it is concluded that the essential oil of S. khuzistanica and its major constituents have a potential for further use in anti-bacterial and anti-cancer applications, pending far more extensive testing of toxicities in normal (i.e. primary) cells.
Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.
Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C
2010-08-01
Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.
Temperature-sensitive mutants of measles virus produced from persistently infected HeLa cells.
Armen, R C; Evermann, J F; Truant, A L; Laughlin, C A; Hallum, J V
1977-01-01
A persistent infection with the Edmonston strain of measles virus was established in HeLa cells in the absence of measles virus antibody (HeLaPI cells). By hemadsorption or immunofluoresnce virtually 100 per cent of the cells possessed measles virus components. HeLaPI cells produced no interferon and were not resistant to superinfection with Newcastle disease virus. HeLaPI cells contained both smooth (15--18 nm) and rought (20--35 nm) nucleocapsids as detected by electron microscopy. The virus produced from the HeLaPI cells (MVPI) varied in titer between 1.5 X 10(2) and 5.5 X10(4) PFU/ml, had a smaller plque size and was more heat resistant than wild-type measles virus. MVPI was also found to be temperature-sensitive. The temperature-sensitivity of MVPI was determined by the efficiency of plaquing at 33 degrees and 39 degrees C in Vero cell monolayers. When HeLaPI cells were incubated at 33 degrees C, there was a 50-fold increase in virus production as well as a slight increase in the percentage of cells forming infectious centers compared to HeLaPI cells grown at 37 degrees C. MVPI readily established a persistent infection in HeLa cells which also rleased temperature-sensitive virus.
Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.
Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger
2014-07-14
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Vidal, Jorge E; Enríquez-Rincón, Fernando; Giono-Cerezo, Silvia; Ribas-Aparicio, Rosa María; Figueroa-Arredondo, Paula
2009-01-01
To investigate whether the HlyA-induced vacuolating effect is produced by V. cholerae O1 ElTor strains isolated from different geographic origins, including Mexico. Supernatant-induced haemolysis, vacuolating activity and cytotoxicity in Vero cells were recorded. PCR, RFLP analysis and molecular cloning were performed. All ElTor strains analyzed induced cellular vacuolation. Ribotype 2 strains isolates from the U.S. gulf coast yielded the highest titer of vacuolating activity. Eight of nine strains were haemolytic, while all strains were PCR positive for the hlyA gene. We cloned the hlyA gene from two ElTor strains, a toxigenic (2514-88, ctxAB+) and a non-toxigenic Mexican strain (CM 91-3, ctxAB-). Supernatant from those recombinant E. coli strains induced haemolysis, cell vacuolation and cytotoxicity. RFLP-PCR analysis revealed similarities in the hlyA gene from all strains tested. The HlyA-induced vacuolating effect is a widespread phenotype of epidemic V. cholerae O1 ElTor strains.
Ramamoorthy, Sathishkumar; Gnanakan, Ananthan; S Lakshmana, Senthil; Meivelu, Moovendhan; Jeganathan, Arun
2018-06-15
In the present study, extracellular polysaccharides (EPS) producing bacterium Bacillus thuringiensis RSK CAS4 was isolated from ascidian Didemnum granulatum and its production was optimized by response surface methodology. Fructose and galactose were found as the major monosaccharides in the EPS from the strain RSK CAS4. Functional groups and structural characteristics of the EPS were characterized with FT-IR and 1 HNMR. The purified EPS showed potent antioxidant properties in investigation against DPPH, hydroxyl, superoxide free radicals. In vitro anticancer activity of purified EPS was evaluated on HEp-2 cells, A549 and Vero cell lines. Growth of cancer cells was inhibited by the EPS in a dose-dependent manner and maximum anticancer activity was found to be 76% against liver cancer at 1000 μg/ml. The antioxidant and anticancer potentials of theEPS from marine bacterium Bacillusthuringiensis RSK CAS4 suggests it as a potential natural source and its scopeas an alternative to synthetics for pharmaceutical application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors
2015-01-01
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629
Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul
2017-10-15
Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Borrego, Belén; Lorenzo, Gema; Mota-Morales, Josué D; Almanza-Reyes, Horacio; Mateos, Francisco; López-Gil, Elena; de la Losa, Nuria; Burmistrov, Vasily A; Pestryakov, Alexey N; Brun, Alejandro; Bogdanchikova, Nina
2016-07-01
In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta
Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less
Red light accelerates the formation of a human dermal equivalent.
Oliveira, Anna Cb; Morais, Thayz Fl; Bernal, Claudia; Martins, Virginia Ca; Plepis, Ana Mg; Menezes, Priscila Fc; Perussi, Janice R
2018-04-01
Development of biomaterials' substitutes and/or equivalents to mimic normal tissue is a current challenge in tissue engineering. Thus, three-dimensional cell culture using type I collagen as a polymeric matrix cell support designed to promote cell proliferation and differentiation was employed to create a dermal equivalent in vitro, as well to evaluate the photobiomodulation using red light. Polymeric matrix cell support was prepared from porcine serous collagen (1.1%) hydrolyzed for 96 h. The biomaterial exhibited porosity of 95%, a median pore of 44 µm and channels with an average distance between the walls of 78 ± 14 µm. The absorption of culture medium was 95%, and the sponge showed no cytotoxicity to Vero cells, a non-tumor cell line. Additionally, it was observed that irradiation with light at 630 nm (fluency 30 J cm -2 ) leads to the cellular photobiomodulation in both monolayer and human dermal equivalent (three-dimensional cell culture system). It was also verified that the cells cultured in the presence of the polymeric matrix cell support, allows differentiation and extracellular matrix secretion. Therefore, the results showed that the collagen sponge used as polymeric matrix cell support and the photobiomodulation at 630 nm are efficient for the production of a reconstructed human dermal equivalent in vitro.
Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)
NASA Astrophysics Data System (ADS)
Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina
2015-09-01
Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.
UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.
Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D
2011-01-10
UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.
Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin
2014-01-01
The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Park, Jun-Bom; Prodduturi, Suneela; Morott, Joe; Kulkarni, Vijay I.; Jacob, Melissa R.; Khan, Shabana I.; Stodghill, Steven P.; Repka, Michael A.
2017-01-01
Objectives The overall goal of this research was to produce a stable hot-melt extruded “Antifungal Denture Adhesive film” (ADA) system for the treatment of oral candidiasis. Methods The ADA systems with hydroxypropyl cellulose (HPC) and/or polyethylene oxide (PEO) containing clotrimazole (10%) or nystatin (10%) were extruded utilizing a lab scale twin-screw hot-melt extruder. Rolls of the antifungal-containing films were collected and subsequently die-cut into shapes adapted for a maxillary (upper) and mandibular (lower) denture. Results DSC and PXRD results indicated that the crystallinity of both APIs was changed to amorphous phase after hot-melt extrusion. The ADA system, containing blends of HPC and PEO, enhanced the effectiveness of the antimicrobials a maximum of 5-fold toward the inhibition of cell adherence of C. albicans to mammalian cells/Vero cells. Remarkably, a combination of the two polymers without drug also demonstrated a 38% decrease in cell adhesion to the fungi due to the viscosity and the flexibility of the polymers. Drug-release profiles indicated that both drug concentrations were above the minimum inhibitory concentration (MIC) for C. albicans within 10 minutes and was maintained for over 10 hours. In addition, based on the IC50 and MIC values, it was observed that the antifungal activities of both drugs were increased significantly in the ADA systems. Conclusions Based on these findings, the ADA system may be used for primary, prophylaxis or adjunct treatment of oral or pharyngeal candidiasis via controlled-release of the antifungal agent from the polymer matrix. PMID:25169007
Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M
2015-01-01
Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802
Enhancing enterovirus A71 vaccine production yield by microcarrier profusion bioreactor culture.
Liu, Chia-Chyi; Wu, Suh-Chin; Wu, Shang-Rung; Lin, Hsiao-Yu; Guo, Meng-Shin; Yung-Chih Hu, Alan; Chow, Yen-Hung; Chiang, Jen-Ron; Shieh, Dar-Bin; Chong, Pele
2018-05-24
Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharma, Deepak; Maheshwari, Dipika; Rana, Ravish; Bhatia, Shanu; Singh, Manisha; Gabrani, Reema; Sharma, Sanjeev K.; Ali, Javed; Sharma, Rakesh Kumar; Dang, Shweta
2014-01-01
The aim of the present study was to optimize lorazepam loaded PLGA nanoparticles (Lzp-PLGA-NPs) by investigating the effect of process variables on the response using Box-Behnken design. Effect of four independent factors, that is, polymer, surfactant, drug, and aqueous/organic ratio, was studied on two dependent responses, that is, z-average and % drug entrapment. Lzp-PLGA-NPs were successfully developed by nanoprecipitation method using PLGA as polymer, poloxamer as surfactant and acetone as organic phase. NPs were characterized for particle size, zeta potential, % drug entrapment, drug release behavior, TEM, and cell viability. Lzp-PLGA-NPs were characterized for drug polymer interaction using FTIR. The developed NPs showed nearly spherical shape with z-average 167–318 d·nm, PDI below 0.441, and −18.4 mV zeta potential with maximum % drug entrapment of 90.1%. In vitro drug release behavior followed Korsmeyer-Peppas model and showed initial burst release of 21.7 ± 1.3% with prolonged drug release of 69.5 ± 0.8% from optimized NPs up to 24 h. In vitro drug release data was found in agreement with ex vivo permeation data through sheep nasal mucosa. In vitro cell viability study on Vero cell line confirmed the safety of optimized NPs. Optimized Lzp-PLGA-NPs were radiolabelled with Technitium-99m for scintigraphy imaging and biodistribution studies in Sprague-Dawley rats to establish nose-to-brain pathway. PMID:25126544
Dias, Mirna Meana; Zuza, Ohana; Riani, Lorena R; de Faria Pinto, Priscila; Pinto, Pedro Luiz Silva; Silva, Marcos P; de Moraes, Josué; Ataíde, Ana Caroline Z; de Oliveira Silva, Fernanda; Cecílio, Alzira Batista; Da Silva Filho, Ademar A
2017-10-01
Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H 2 O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400μg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125μg/mL), which showed similar antiviral effect to acyclovir (50μg/mL) when tested at 400μg/mL. Also, AL (400, 200, and 100μg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cytotoxic and hemolytic effects of Tritrichomonas foetus on mammalian cells.
Burgess, D E; Knoblock, K F; Daugherty, T; Robertson, N P
1990-01-01
Geographically distinct lines of Tritrichomonas foetus were assayed for their ability to cause cytotoxicity in nucleated mammalian cells and lysis of bovine erythrocytes. T. foetus was highly cytotoxic toward a human cervical cell line (HeLa) and early bovine lymphosarcoma (BL-3) but displayed low levels of cytotoxicity against African green monkey kidney (Vero) cells. In addition to variation in the extent of cytotoxicity toward different targets, differences in the levels of cytotoxicity in the same nucleated target occurred with different parasite lines. Whole T. foetus, unfractionated whole-cell extracts, and parasite-conditioned medium (RPMI 1640 without serum) all caused lysis of bovine erythrocytes. Lytic activity in the conditioned medium was substantially reduced by repeated freezing and thawing or heating to 90 degrees C for 30 min. Damage of mammalian target cells by live T. foetus could be reduced by the presence of protease inhibitors; however, such inhibitors did not diminish the lytic effects of conditioned medium. These results suggested that proteolytic enzymes were necessary for the lytic mechanism of the live parasites but were not required once lytic factors were released into the parasite-conditioned medium. They further suggested that the lytic molecules were either proteins or had proteinaceous components. Images PMID:2228233
Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo
2015-06-01
Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Testing of veterinary clostridial vaccines: from mouse to microtitre plate.
Redhead, K; Wood, K; Jackson, K
2012-01-01
Vaccines to protect against clostridial diseases are among the most common veterinary biologicals. Each batch of these materials is subjected to a variety of toxicity and antigenicity tests. The potency of the final vaccine is then assessed by Toxin Neutralisation Test (TNT). All of these tests use mice and have lethal endpoints. Development of alternatives for potency testing was based on ELISAs able to measure antibody levels to the specific toxins relative to a standard serum with a defined unitage. These alternative assays were shown to correlate with the relevant TNTs and have been accepted by European Regulatory Authorities as batch release potency tests. Recently we have developed in vitro cell line alternatives for the toxicity and antigenicity tests for Cl. septicum using the VERO cell line. With this cell line it has been possible to develop in vitro assays which, when compared with the in vivo tests, gave correlations of 87% to 100%. Having shown proof of principle, similar cell line assays have been developed for Cl. novyi and Cl. perfringens types C and D.
The Plant-Derived Naphthoquinone Droserone Inhibits In Vitro Measles Virus Infection.
Lieberherr, Christina; Zhang, Guoliang; Grafen, Anika; Singethan, Katrin; Kendl, Sabine; Vogt, Valentin; Maier, Jonathan; Bringmann, Gerhard; Schneider-Schaulies, Jürgen
2017-02-01
The naphthoquinone droserone ( 1 ) is a natural product occurring in dicotyledonous plants. We have now observed that the addition of 1 during infection of tissue culture cells with measles virus considerably reduced the infection. Interestingly, the infection was inhibited only when droserone ( 1 ) was added during virus entry, but not when added to the cells prior to virus uptake or after virus uptake. These findings suggest that 1 interacts with viral particles to reduce infectivity. The formation of progeny measles virus particles was inhibited to 50 % by droserone ( 1 ) at a concentration (IC 50 ) of approximately 2 µM with a half-maximal cytotoxicity (CC 50 ) of about 60 µM for Vero cells. Other tested naphthoquinone derivatives, among them the likewise natural plumbagin ( 2 ), but also synthetic analogs, were either more cytotoxic or not as effective as 1 . Thus, our data do not support the development of naphthoquinone derivatives into antiviral compounds, but suggest that they may be interesting research tools to study measles virus entry into cells. Georg Thieme Verlag KG Stuttgart · New York.
An investigation of the potential of Aedes camptorhynchus (Thom.) as a vector of Ross River virus.
Ballard, J W; Marshall, I D
1986-04-01
Aedes camptorhynchus (Thom.) collected on the mid-south coast of New South Wales during the winter of 1982 were highly susceptible to infection (ID50 = 10(2.4) VERO pfu/mosquito) when fed on rat tail skins containing blood and serial dilutions of the T48 strain of Ross River (RR) virus. After 2 d, when no virus was detectable, rapid proliferation allowed transmission from 5 d post ingestion. A maximum transmission rate occurred 9 d post-feeding when 4 of 4 infected mosquitoes transmitted virus. The susceptibility of Ae camptorhynchus to RR virus infection was compared with that of a laboratory colony of Ae aegypti (L.) (ID50 = 10(3.8) VERO pfu/mosquito).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, Katie M.; Center for Oral Health Research, School of Dental Medicine University of Pennsylvania, Philadelphia, PA 19104; Milne, Richard S.B.
2008-03-30
During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated.more » Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.« less
Recombinant lipoprotein-based vaccine candidates against C. difficile infections.
Huang, Jui-Hsin; Wu, Chia-Wei; Lien, Shu-Pei; Leng, Chih-Hsiang; Hsiao, Kuang-Nan; Liu, Shih-Jen; Chen, Hsin-Wei; Siu, Leung-Kei; Chong, Pele
2015-08-07
Opportunistically nosocomial infections in hospitalized patients are often related to Clostridium difficile infections (CDI) due to disruption of the intestinal micro-flora by antibiotic therapies during hospitalization. Clostridial exotoxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) in the host intestine, disrupt the intestinal barrier leading to acute inflammation and diarrhea. The C-terminal receptor binding domain of TcdA (A-rRBD) has been shown to elicit antibody responses that neutralize TcdA toxicity in Vero cell cytotoxicity assays, but not effectively protect hamsters against a lethal dose challenge of C. difficile spores. To develop an effective recombinant subunit vaccine against CDI, A-rRBD was lipidated (rlipoA-RBD) as a rational design to contain an intrinsic adjuvant, a toll-like receptor 2 agonist and expressed in Escherichia coli. The purified rlipoA-RBD was characterized immunologically and found to have the following properties: (a) mice, hamsters and rabbits vaccinated with 3 μg of rlipoA-RBD produced strong antibody responses that neutralized TcdA toxicity in Vero cell cytotoxicity assays; furthermore, the neutralization titer was comparable to those obtained from antisera immunized either with 10 μg of TcdA toxoid or 30 μg of A-rRBD; (b) rlipoA-RBD elicited immune responses and protected mice from TcdA challenge, but offered insignificant protection (10 to 20 %) against C. difficile spores challenge in hamster models; (c) only rlipoA-RBD formulated with B-rRBD consistently confers protection (90 to 100 %) in the hamster challenge model; and (d) rlipoA-RBD was found to be 10-fold more potent than A-rRBD as an adjuvant to enhancing immune responses against a poor antigen such as ovalbumin. These results indicate that rlipoA-RBD formulated with B-rRBD could be an excellent vaccine candidate for preclinical studies and future clinical trials.
TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Miyabe, Y; Yamada, M
2014-06-15
Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate its dosimetric characteristic. Methods: The expanded field irradiation consisted of four separate fields with 2.39 degree gimbal rotation around orthogonal two axes. The central beam axis for each field shifted 40 mm from the isocenter for longitudinal and lateral directions, and thus, the field size was expanded up to 230×230 mm{sup 2}. Adjacent region were created at the isocenter (center-adjacent expanded-field) and 20 mmmore » from isocenter (offadjacent expanded-field). To create flat dose distribution in the combined piecewise-fields, the overlapping and gaps regions on the isocenter plane were adjusted with the gimbal rotating and the MLC. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 50, 100 and 150 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expandedfield irradiation technique was applied to IMRT. A head and neck IMRT field, which was planned for the conventional linac (Varian Clinac iX), was reproduced with the expanded-field of the Vero4DRT. The simulated dose distribution for the expanded IMRT field was compared to the measured dose distribution. Results: The field size, penumbra, flatness and symmetry of center- and off- adjacent expanded-fields were 230.2–232.1 mm, 7.8–10.7 mm, 2.3–6.5% and –0.5–0.4% at 100 mm depth. The 82.1% area of the expanded IMRT dose distribution was within 5% difference between measurement and simulation, which was analyzed upper 50% dose area, and the 3%/3 mm gamma pass rate was 98.4%. Conclusions: The expandedfield technique was developed using the gimbaled x-ray head. To extend applied targets, such as whole breast irradiations or head and neck IMRT, the expanded-field technique would be effective.« less
Adhesion and invasion of Clostridium perfringens type A into epithelial cells.
Llanco, Luis A; Nakano, Viviane; Moraes, Claudia T P de; Piazza, Roxane M F; Avila-Campos, Mario J
Clostridium perfringens is the causative agent for necrotic enteritis. It secretes the major virulence factors, and α- and NetB-toxins that are responsible for intestinal lesions. The TpeL toxin affects cell morphology by producing myonecrosis, but its role in the pathogenesis of necrotic enteritis is unclear. In this study, the presence of netB and tpeL genes in C. perfringens type A strains isolated from chickens with necrotic enteritis, their cytotoxic effects and role in adhesion and invasion of epithelial cells were evaluated. Six (27.3%) of the 22 C. perfringens type A strains were harboring the tpeL gene and produced morphological alterations in Vero cells after 6h of incubation. Strains tpeL (-) induced strong cell rounding after 6h of incubation and produced cell enlargement. None of the 22 strains harbored netB gene. All the six tpeL (+) gene strains were able to adhere to HEp-2 cells; however, only four of them (66.6%) were invasive. Thus, these results suggest that the presence of tpeL gene or TpeL toxin might be required for the adherence of bacteria to HEp-2 cells; however, it could not have any role in the invasion process. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Song, Jae-Hyoung; Park, Kwisung; Shim, Aeri; Kwon, Bo-Eun; Ahn, Jae-Hee; Choi, Young Jin; Kim, Jae Kyung; Yeo, Sang-Gu; Yoon, Kyungah; Ko, Hyun-Jeong
2015-01-01
Objectives Coxsackievirus A group 16 strain (CVA16) is one of the predominant causative agents of hand, foot, and mouth disease (HFMD). Methods Using a specimen from a male patient with HFMD, we isolated and performed sequencing of the Korean CVA16 strain and compared it with a G10 reference strain. Also, we were investigated the effects of medicinal plant extract on the cytopathic effects (CPE) by CPE reduction assay against Korean CVA16. Results Phylogenetic analysis showed that the Korean CVA16 isolate belonged to cluster B-1 and was closely related to the strain PM-15765-00 isolated in Malaysia in 2000. The Korean CVA16 isolate showed 73.2% nucleotide identity to the G10 prototype strain and 98.7% nucleotide identity to PM-15765-00. Next, we assessed whether the Korean CVA16 isolate could be used for in vitro screening of antiviral agents to treat HFMD infection. Vero cells infected with the Korean CVA16 isolate showed a cytopathic effect 2 days after the infection, and the treatment of cells with Cornus officinalis, Acer triflorum, Pulsatilla koreana, and Clematis heracleifolia var. davidiana Hemsl extracts exhibited strong antiviral activity against CVA16. Conclusion Collectively, our work provides potential candidates for the development of vaccine and novel drugs to treat the CVA16 strain isolated from a Korean patient. PMID:25737832
[Molecular epidemiological study of measles viruses isolated in Qinghai Province during 2000-2011].
Fan, Li-Xia; Ba, Zhuo-Ma; Zhao, Sheng-Cang; Yi, Hu; Jiang, Shuang-Ying; Zhang, Yan; Wang, Hui-Ling; Xu, Wen-Bo
2013-08-01
To carry out the molecular epidemiological study of the wild-type measles virus isolated in Qinghai Province during 2000-2011, and provide a scientific basis for the measles elimination. Measles viruses were isolated using B95a cell line or Vero/SLAM cell line from throat swabs collected from suspected measles cases during measles outbreak and sporadic in 6 prefectures during 2000-2011. The fragment of 696 nucleotides of N gene carboxy terminal was amplified by using RT-PCR methods. The PCR products were sequenced and analyzed. The phylogenetic tree was conducted with the viruses isolated in viruses from other province. Total 19 measles viruses were isolated during 2000-2011 in Qinghai province and all belong to genotype H1a. The results of phylogenetic tree showed that viruses in 2000-2005 and in 2009-2011 were distributed in two different lineages, and it revealed that these strains belonged to at least 2 viral transmission chains and the viruses circulated during 2000-2005 were not detected after 2005. Genotype H1a was the predominant genotype circulated in Qinghai province during 2000-2011. Qinghai measles virus strains had not evolved independently, but coevolved with the measles virus strains in other provinces in mainland China. The variation of important amino acid sites of measles virus should be continuous monitored and provide the scientific strategy for the measles elimination.
Antimicrobial activities of four Tunisian Chrysanthemum species.
Sassi, Ahlem Ben; Harzallah-Skhiri, Fethia; Bourgougnon, Nathalie; Aouni, Mahjoub
2008-02-01
Tunisian Chrysanthemum species are known to have medicinal activity and some of the species are used in traditional medicine. We have earlier shown the use of C. trifurcatum flowerheads in Tunisian traditional medicine to treat constipation. In the present study we investigated the anti microbiol activity of four Tunision Chrysanthemum species. Different parts (flowers, leaves, stems, roots, leaves and flowers and leaves and stems) of four Tunisian Chrysanthemum species, were extracted with solvents of increasing polarity to obtain aqueous and organic extracts. These extracts were tested in vitro for their antimicrobial activity against 14 bacteria and four yeasts, using agar diffusion and microdilution methods. Activity was evaluated by measuring the zones of inhibition against the tested organisms and minimum inhibitory concentrations (MIC) were determined from the lowest concentrations of extracts to inhibit the growth of microorganisms. Cytotoxity and antiviral activities against Herpes simplex virus type 1 (HSV-1), were evaluated using the neutral red incorporation method. Extracts of the 4 Chrysanthemum species showed some degree of activity against one or more of the microbial strains with MIC ranging from 0.625 to 1.25 mg/ml. Most of the extracts were well tolerated by Vero cells with CC(50) > 500 microg/ml. The petroleum ether extract of C. trifurcatum stems and leaves protected infected cells with EC(50) of 100 microg/ml. Our findings showed that some Chrysanthemum extracts exhibited antimicrobial and/or anti-HSV-1 activities. Further studies aimed to the isolation and identification of active substances from the extracts which exhibited interest activities, need to be done.
Quintin-Colonna, F; Devauchelle, P; Fradelizi, D; Mourot, B; Faure, T; Kourilsky, P; Roth, C; Mehtali, M
1996-12-01
The production of human interleukin-2 (hIL-2) local to the tumor site by engineered histoincompatible cells has been shown in various murine models to promote a strong immune response leading to tumor growth inhibition or rejection. To assess whether this strategy would be similarly applicable for treatment of primary neoplastic cells, two naturally occurring tumors were used as preclinical models; the highly metastatic melanoma of the dog and the low metastatic fibrosarcoma of the cat. We demonstrate that both cats and dogs when treated by tumor surgery, radiotherapy and repeated local injections of xenogeneic Vero cells secreting high levels of hIL-2 relapse less frequently and survive longer than control animals treated by surgery and radiotherapy alone. Local secretion of hIL-2 by the xenogeneic cells is shown to be necessary for the induction of an optimal antitumor effect. Moreover, the safety of the procedure was demonstrated in both animal models and through extensive toxicological analysis performed in rats. These results confirm for the first time to our knowledge the safety and therapeutic potential of a gene transfer strategy in animals with spontaneous metastatic and nonmetastatic tumors.
Borowiecki, Paweł; Wińska, Patrycja; Bretner, Maria; Gizińska, Małgorzata; Koronkiewicz, Mirosława; Staniszewska, Monika
2018-04-25
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC 50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC 50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC 50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Villamizar, Luz Helena; Cardoso, Maria das Graças; de Andrade, Juliana; Teixeira, Maria Luisa; Soares, Maurilio José
2017-01-01
BACKGROUND Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. OBJECTIVES In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. METHODS PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. FINDINGS PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. MAIN CONCLUSION The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature. PMID:28177047
Carreta, Jorge Augusto
2016-01-01
This article investigates the relationships between ceroplastics and the institutionalization of forensic medicine as a discipline at the Faculty of Medicine, Universidade de São Paulo, Brazil. The wax models, representing diseases or body parts that were the subject of medical forensic investigation, were produced by Augusto Esteves between 1936 and 1960. It is believed that the ceroplastic production represented the program devised by Flamínio Fávero, full professor of forensic medicine between 1923 and 1955. The comparison between the wax pieces at Museu Técnico-Científico (a science and technology museum) at Instituto Oscar Freire and the treatise on forensic medicine by Fávero, first published in 1938, indicates that such a supposition is plausible.
Naqash, Shabeena Yousuf; Nazeer, R A
2011-10-01
The sulphated polysaccharide from the widespread Tridax procumbens plant was studied for the anticoagulant, antiherpetic and antibacterial activity. The anticoagulant activity was determined by the activated partial thromboplastin time assay. The sulphated polysaccharide from T. procumbens represented potent anticoagulant reaching the efficacy to heparin and chondroitin sulphate. Moreover, the sulphated polysaccharide extracted from T. procumbens was found non-toxic on Vero cell lines up to the concentration of 200 μg/ml. Sulphated polysaccharide exhibited detectable antiviral effect towards HSV-1 with IC(50) value 100-150 μg/ml. Furthermore, sulphated polysaccharide from T. procumbens was highly inhibitory against the bacterial strains Vibrio alginolyticus and Vibrio harveyi isolated from oil sardine.
Ribeiro, João P; Ali Abol Hassan, Mohamed; Rouf, Razina; Tiralongo, Evelin; May, Tom W; Day, Christopher J; Imberty, Anne; Tiralongo, Joe; Varrot, Annabelle
2017-05-01
A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wild type measles virus attenuation independent of type I IFN.
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-02-03
Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.
Wild type measles virus attenuation independent of type I IFN
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-01-01
Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yingying; Li, Xiaoxue; Bai, Yunyun
Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus releasedmore » into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.« less
Ahmed, Aroke S; Elgorashi, Esameldin E; Moodley, Nivan; McGaw, Lyndy J; Naidoo, Vinasan; Eloff, Jacobus N
2012-10-11
Many Bauhinia species, including those indigenous to South Africa, are used in traditional medicine across the world for treating ailments such as gastrointestinal tract (GIT) disorders, diabetes, infectious diseases and inflammation. Several relevant aspects of different fractions of leaf extracts of Bauhinia bowkeri (BAB), Bauhinia galpinii (BAG), Bauhinia petersiana (BAP), and Bauhinia variegata (BAV) used in South African traditional medicine to alleviate diarrhoea related symptoms were evaluated. The antioxidative activities of the extracts were determined using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS(+)) radical scavenging and ferric reducing antioxidant power (FRAP) methods. In vitro antimicrobial activities of the extracts were determined against bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecalis) and clinical isolates of the opportunistic fungal strains (Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans) using a serial dilution microplate method. The polyphenolic contents were quantified using standard methods, and anti-inflammatory activities of the crude extracts were determined using the cyclooxygenase and soybean 15-lipoxygenase enzyme inhibitory assays. The safety of the extracts was evaluated by determining the cytotoxicity against Vero cell lines. The acidified 70% acetone crude extract and their fractions had good antiradical potency against the DPPH and ABTS radicals. The methanol soluble portions of the butanol fractions were more potent (EC(50) ranges from 0.64 ± 0.05 to 1.51 ± 0.07 and 0.88 ± 0.18 to 1.49 ± 0.09 μg/ml against DPPH and ABTS radical respectively) compared to the standard, trolox and ascorbic acid (EC(50) ranges from 1.47 ± 0.24 to 1.70 ± 0.27 μg/ml) for both DPPH and ABTS. The crude extracts contained variable quantities of phenolic content. The crude extracts and their fractions had weak to good antimicrobial activities, inhibiting the growth of the organisms at concentrations ranging from 39 to 2500 μg/ml. The BAG crude extract and its fractions were the most active against the fungi (MICs ranging from 39 to 625 μg/ml) while the BAB extract and its fractions were the least active with the MICs ranging between 39 and 2500 μg/ml. Aspergillus fumigatus was the least susceptible fungus while Cryptococcus neoformans was the most susceptible. The phenolic-rich crude extracts of BAB, BAG, and BAP had moderate to good dose-dependent cyclooxygenase-1 enzyme inhibitory activity with inhibitions between 22.8% and 71.4%. The extracts were however, inactive against cyclooxygenase-2. The extracts had some level of cytotoxicity towards Vero cell lines, reducing cell viability to less than 10% at concentrations more than 50 μg/ml. The biological activities observed in Bauhinia species provide a scientific basis for the use of the plants in traditional medicines to treat diseases with multi-factorial pathogenesis such as diarrhoea, with each aspect of activity contributing to the ultimate therapeutic benefit of the plants. However, the use of the phenolic-rich extracts of these plants to treat diarrhoea or any other ailments in traditional medicine needs to be monitored closely because of potential toxic effects and selective inhibition of COX-1 with the associated GIT injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga; Rhein, Bethany; Moller-Tank, Sven; Brouillette, Rachel; Hensley, Lucinda; Misumi, Ichiro; Lovell, William; Cullen, John M; Whitmire, Jason K; Maury, Wendy; Lemon, Stanley M
2017-09-05
Receptor molecules play key roles in the cellular entry of picornaviruses, and TIM1 (HAVCR1) is widely accepted to be the receptor for hepatitis A virus (HAV), an unusual, hepatotropic human picornavirus. However, its identification as the hepatovirus receptor predated the discovery that hepatoviruses undergo nonlytic release from infected cells as membrane-cloaked, quasi-enveloped HAV (eHAV) virions that enter cells via a pathway distinct from naked, nonenveloped virions. We thus revisited the role of TIM1 in hepatovirus entry, examining both adherence and infection/replication in cells with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-engineered TIM1 knockout. Cell culture-derived, gradient-purified eHAV bound Huh-7.5 human hepatoma cells less efficiently than naked HAV at 4°C, but eliminating TIM1 expression caused no difference in adherence of either form of HAV, nor any impact on infection and replication in these cells. In contrast, TIM1-deficient Vero cells showed a modest reduction in quasi-enveloped eHAV (but not naked HAV) attachment and replication. Thus, TIM1 facilitates quasi-enveloped eHAV entry in Vero cells, most likely by binding phosphatidylserine (PtdSer) residues on the eHAV membrane. Both Tim1 -/- Ifnar1 -/- and Tim4 -/- Ifnar1 -/- double-knockout mice were susceptible to infection upon intravenous challenge with infected liver homogenate, with fecal HAV shedding and serum alanine aminotransferase (ALT) elevations similar to those in Ifnar1 -/- mice. However, intrahepatic HAV RNA and ALT elevations were modestly reduced in Tim1 -/- Ifnar1 -/- mice compared to Ifnar1 -/- mice challenged with a lower titer of gradient-purified HAV or eHAV. We conclude that TIM1 is not an essential hepatovirus entry factor, although its PtdSer-binding activity may contribute to the spread of quasi-enveloped virus and liver injury in mice. IMPORTANCE T cell immunoglobulin and mucin-containing domain protein 1 (TIM1) was reported more than 2 decades ago to be an essential cellular receptor for hepatitis A virus (HAV), a picornavirus in the Hepatovirus genus, resulting in its designation as "hepatitis A virus cellular receptor 1" (HAVCR1) by the Human Genome Organization Gene Nomenclature Committee. However, recent studies have shown that HAV exists in nature as both naked, nonenveloped (HAV) virions and membrane-cloaked, quasi-enveloped infectious virus (eHAV), prompting us to revisit the role of TIM1 in viral entry. We show here that TIM1 (HAVCR1) is not an essential cellular receptor for HAV entry into cultured cells or required for viral replication and pathogenesis in permissive strains of mice, although it may facilitate early stages of infection by binding phosphatidylserine on the eHAV surface. This work thus corrects the published record and sets the stage for future efforts to identify specific hepatovirus entry factors. Copyright © 2017 Das et al.
Thermal inactivation of poliovirus type 1 in water, milk and yoghurt.
Strazynski, Marco; Krämer, Johannes; Becker, Barbara
2002-03-25
Loss of infectivity of poliovirus type 1, strain Sabin, during heating, freezing, and storage in water, milk and yoghurt was determined by plaque-titration in Vero cell cultures. The heating experiments simulated the conditions arising during the processing of milk and yoghurt, for example high-temperature heating (95 degrees C, 15 and 30 s), short-time pasteurization (72 degrees C, 15 and 30 s), long-time pasteurization (62 degrees C, 30 min), and yoghurt-fermentation (42 degrees C, 30 min and 180 min). Only high-temperature heating, long-time pasteurization and short-time pasteurization for 30 s proved to be reliable methods of inactivating polioviruses present in water, milk and yoghurt completely. Short-time pasteurization for 15 s and the conditions of yoghurt-fermentation failed to cause complete inactivation of polioviruses. Additionally, polioviruses mixed in milk or yoghurt withstood these procedures with significantly lower reductions of infectivity than in water. Heating at 55 degrees C for 30 min resulted in complete inactivation of polioviruses, regardless of the suspending medium. The infectivity of polioviruses is scarcely affected by freezing (-20 degrees C, 30 min) and storage (24 days) at low temperatures (4 degrees C) and high humidity (a(w) = 0.99).
[Phenotypic and genotypic characterization of Vibrio cholerae O1].
Giono-Cerezo, S; Rodríguez Angeles, M G; Gutiérrez-Cogco, L; Valdespino-Gómez, J L
1994-01-01
We made 52180 tests for isolation and identification of toxigenic V. cholerae O1 from rectal swabs and reference strains. We isolated 17.6% V. cholerae O1 strains in 1991, 43.5% in 1992 and 38.9% in 1993. The main serovar in 1991 was Inaba, whereas in 1993 a similar percentage was serovar Ogawa. The phenotype of V. cholerae strains was determined by hemolysis test, Voges-Proskauer test, polymyxin B resistance and phages 4 and 5 resistance. All of the mexican strains were El Tor. There were 2.9-0.75% hemolytic strains from 1991 to 1993, but they were negative when the test was made in tube with human erythrocytes. The resistotypes were performed in 24526 selected strains by Kirby-Bauer method and MIC tests. All of the strains were sensitive, except more than 100 strains isolated in Veracruz that were resistant to tetracycline and doxycycline. Detection of cholera toxin was made by ELISA and on culture of Vero and CHO cells. All the V. cholerae O1 strains were toxigenic. The genotype was determined by PCR and ribotyping. The PCR amplified one 564 pb fragment on V. cholerae O1. The ribotypes of mexican strains were 5 and 6a.
Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut).
Kim, Ji Won; Ha, Thi-Kim-Quy; Cho, Hyomoon; Kim, Eunhee; Shim, Sang Hee; Yang, Jun-Li; Oh, Won Keun
2017-07-01
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high fatality of piglets, influencing the swine industry. Japanese horse chestnut (seed of Aesculus turbinata) contains many saponin mixtures, called escins, and has been used for a long time as a traditional medicinal plant. Structure-activity relationship (SAR) studies on escins have revealed that acylations at C-21 and C-22 with angeloyl or tigloyl groups were important for their cytotoxic effects. However, the strong cytotoxicity of escins makes them hard to utilize for other diseases and to develop as nutraceuticals. In this research, we investigated whether escin derivatives 1-7 (including new compounds 2, 3, 5 and 6), without the angeloyl or tigloyl groups and with modified glycosidic linkages by hydrolysis, have PEDV inhibitory effects with less cytotoxicity. Compounds 1-7 had no cytotoxicity at 20μM on VERO cells, while compounds 8-10 showed strong cytotoxicity at similar concentrations on PEDV. Our results suggest that escin derivatives showed strong inhibitory activities on PEDV replication with lowered cytotoxicity. These studies propose a method to utilize Japanese horse chestnut for treating PEDV and to increase the diversity of its bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pertino, Mariano Walter; Petrera, Erina; Alché, Laura Edith; Schmeda-Hirschmann, Guillermo
2018-06-03
Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1 ⁻ 16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1 , 2 , 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3 ⁻ 8 , except for compound 7 ), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC 50 /CE 50 ) for some compounds.
Croen, K D; Ostrove, J M; Dragovic, L; Straus, S E
1991-01-01
The ability of herpes simplex virus type 2 (HSV-2) to establish latency in and reactivate from sacral dorsal root sensory ganglia is the basis for recurrent genital herpes. The expression of HSV-2 genes in latently infected human sacral ganglia was investigated by in situ hybridization. Hybridizations with a probe from the long repeat region of HSV-2 revealed strong nuclear signals overlying neurons in sacral ganglia from five of nine individuals. The RNA detected overlaps with the transcript for infected cell protein O but in the opposite, or "anti-sense," orientation. These observations mimic those made previously with HSV-1 in human trigeminal ganglia and confirm the recent findings during latency in HSV-2-infected mice and guinea pigs. Northern hybridization of RNA from infected Vero cells showed that an HSV-2 latency-associated transcript was similar in size to the larger (1.85 kb) latency transcript of HSV-1. Thus, HSV-1 and HSV-2 latency in human sensory ganglia are similar, if not identical, in terms of their cellular localization and pattern of transcription.
Ocular biocompatibility of polyquaternium 10 gel: functional and morphological results.
Alasino, Roxana Valeria; Garcia, Luciana Guadalupe; Gramajo, Ana Laura; Pusterla, Juan Pablo; Beltramo, Dante Miguel; Luna, José Domingo
2015-02-01
This paper deals with the characterization study of topical and intraocular biocompatibility and toxicity of cationic hydroxyethylcellulose Polyquaternium 10 (PQ10). It also evaluates the rheological properties of gels. The cytotoxicity assays were done in two cell lines: HEp-2 and VERO (human larynx epidermoid carcinoma cell and African green monkey kidney cells respectively). For the in vivo study, New Zealand albino rabbits were used. The in vitro cytotoxic activity of PQ10 shows no statistically significant differences in relation to the control of hydroxypropylmethylcellulose (HPMC) in any of the cell lines used in this study. Similarly, the signs of inflammation observed after treatment showed no significant difference between the groups of animals treated with the polymer compared to the control group. Normal histological characteristics were seen in both groups with no histological inflammatory reaction. After 1 month of the intracameral application of 2% PQ10 (treatment group) or 0.3% HPMC (control group), electroretinograms showed similar levels of a- and b-waves latencies and amplitude. In summary, PQ10 gel was well tolerated in these experiments, with proper monitoring, it could stand as a new alternative in the development of ophthalmic viscosurgical devices.
Winter, Evelyn; Dal Pizzol, Carine; Locatelli, Claudriana; Silva, Adny H.; Conte, Aline; Chiaradia-Delatorre, Louise D.; Nunes, Ricardo J.; Yunes, Rosendo A.; Creckzynski-Pasa, Tânia B.
2014-01-01
Several obstacles are encountered in conventional chemotherapy, such as drug toxicity and poor stability. Nanotechnology is envisioned as a strategy to overcome these effects and to improve anticancer therapy. Nanoemulsions comprise submicron emulsions composed of biocompatible lipids, and present a large surface area revealing interesting physical properties. Chalcones are flavonoid precursors, and have been studied as cytotoxic drugs for leukemia cells that induce cell death by different apoptosis pathways. In this study, we encapsulated chalcones in a nanoemulsion and compared their effect with the respective free compounds in leukemia and in non-tumoral cell lines, as well as in an in vivo model. Free and loaded-nanoemulsion chalcones induced a similar anti-leukemic effect. Free chalcones induced higher toxicity in VERO cells than chalcones-loaded nanoemulsions. Similar results were observed in vivo. Free chalcones induced a reduction in weight gain and liver injuries, evidenced by oxidative stress, as well as an inflammatory response. Considering the high toxicity and the side effects induced generally by all cancer chemotherapies, nanotechnology provides some options for improving patients’ life quality and/or increasing survival rates. PMID:25264679
Zhang, Xinsheng; Wallace, Olivia; Wright, Kevin J; Backer, Martin; Coleman, John W; Koehnke, Rebecca; Frenk, Esther; Domi, Arban; Chiuchiolo, Maria J; DeStefano, Joanne; Narpala, Sandeep; Powell, Rebecca; Morrow, Gavin; Boggiano, Cesar; Zamb, Timothy J; Richter King, C; Parks, Christopher L
2013-11-01
We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination. © 2013 Elsevier Inc. All rights reserved.
Salak plum peel extract as a safe and efficient antioxidant appraisal for cosmetics.
Kanlayavattanakul, Mayuree; Lourith, Nattaya; Ospondpant, Dusadee; Ruktanonchai, Uracha; Pongpunyayuen, Siriluck; Chansriniyom, Chaisak
2013-01-01
The antioxidant activities of Salak plum (Salacca edulis) peel extracts were assessed by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid (ABTS), and ferric reducing ability of plasma (FRAP) assays. The ethyl acetate (EtOAc) fraction was the most potent (DPPHIC50=2.932 ± 0.030 µg/mL, ABTSIC50=7.933 ± 0.049 µg/mL, FRAPEC=7,844.44 ± 40.734). Chlorogenic acid was detected as the marker (1.400 ± 0.102 g/kg). The EtOAc fraction was non-cytotoxic in vero and normal human fibroblast (NHF) cells. It exhibited cellular oxidative prevention and damage treatment at 5-40 µg/mL in NHF cells. Salak plum peel loaded liposome consisting of lecithin and hydrophobically modified hydroxyethylcellulose (HMHEC) was developed and found stable with adequate entrapment efficacy. Thus Salak plum peel was highlighted as a potential ecological antioxidant for health promotion aspects, and for cosmetics.
Apigenin inhibits African swine fever virus infection in vitro.
Hakobyan, Astghik; Arabyan, Erik; Avetisyan, Aida; Abroyan, Liana; Hakobyan, Lina; Zakaryan, Hovakim
2016-12-01
African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.
A novel sheet-like virus particle array is a hallmark of Zika virus infection.
Liu, Jun; Kline, Brandon A; Kenny, Tara A; Smith, Darci R; Soloveva, Veronica; Beitzel, Brett; Pang, Song; Lockett, Stephen; Hess, Harald F; Palacios, Gustavo; Kuhn, Jens H; Sun, Mei G; Zeng, Xiankun
2018-04-25
Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.
[Behavior of Orf virus in permissive and nonpermissive systems].
Büttner, M; Czerny, C P; Schumm, M
1995-04-01
Dogs were immunized i.m. with attenuated poxvirus vaccines (vaccinia virus, Orf-virus) and a bovine herpesvirus-1 (BHV-1) vaccine. After intradermal (i.d.) application of the vaccine viruses a specific delayed type hypersensitivity (DTH) reaction of the skin occurred only with vaccinia virus. The i.d. application of Orf-virus caused a short-term, non-specific inflammatory reaction of the skin, even in dogs not immunized with Orf-virus. Out of 30 sera from Orf-virus immunized beagles (n = 4) only eight were found reactive to Orf-virus in a competition ELISA. Three sera from dogs not Orf-virus immunized but skin-tested with the virus contained low antibody titers. Using indirect immunofluorescence (IIF) in flow cytometry, the existence of Orf-virus antigens was examined on the surface and in the cytoplasm of permissive (BFK and Vero)- and questionable permissive MDCK cells. The canine kidney MDCK cell line was found to be non-permissive for Orf-virus replication; the occurrence of an Orf-(ecthyma contagiosum) like disease in dogs is unlikely.
Biosynthesis and Characterization of Nanocellulose-Gelatin Films
Taokaew, Siriporn; Seetabhawang, Sutasinee; Siripong, Pongpun; Phisalaphong, Muenduen
2013-01-01
A nanocellulose-gelatin (bacterial cellulose gelatin (BCG)) film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR) results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a cellulose nanofiber network resulted in significantly improved optical transparency and water absorption capacity of the films. A significant drop in the mechanical strengths and a decrease in the porosity of the film were observed when the supplement of gelatin was more than 3% (w/v). The BCG films showed no cytotoxicity against Vero cells. PMID:28809339
Breitschwerdt, E B; Davidson, M G; Aucoin, D P; Levy, M G; Szabados, N S; Hegarty, B C; Kuehne, A L; James, R L
1991-01-01
Dogs were experimentally inoculated with Rickettsia rickettsii to characterize the comparative efficacies of chloramphenicol, enrofloxacin, and tetracycline for the treatment of Rocky Mountain spotted fever (RMSF). All three antibiotics were equally effective in abrogating the clinical, hematologic, and vascular indicators of rickettsial infection. Antibiotic treatment for 24 h was sufficient to decrease the rickettsemia to levels below detection by Vero cell culture. Early treatment with all three antibiotics resulted in a similar decrease in antibody titer, but acute and convalescent serum samples taken at appropriate times would have still facilitated an accurate diagnosis of RMSF in all but one dog, which did not seroconvert. We conclude that chloramphenicol, enrofloxacin, and tetracycline are equally efficacious for treating experimental canine RMSF. PMID:1666498
Chitosan/chondroitin sulfate hydrogels prepared in [Hmim][HSO4] ionic liquid.
Nunes, Cátia S; Rufato, Kessily B; Souza, Paulo R; de Almeida, Elizângela A M S; da Silva, Michael J V; Scariot, Débora B; Nakamura, Celso V; Rosa, Fernanda A; Martins, Alessandro F; Muniz, Edvani C
2017-08-15
[Hmim][HSO 4 ] ionic liquid (IL) and bio-renewable sources as chitosan (CHT) and chondroitin sulfate (CS) were used to yield hydrogel-based materials (CHT/CS). The use of IL to solubilize both polysaccharides was considered an innovative way based on "green chemistry" principle, aiming the production of CHT/CS blended systems. CHT/CS hydrogels were carried out in homogeneous medium from short dissolution times. The hydrogels were characterized and achieved with excellent stabilities (in the 1.2-10pH range), larger swelling capacities, as well as devoid of cytotoxicity towards the normal VERO and diseased HT29 cells. The CHT/CS hydrogels carried out in [Hmim][HSO 4 ] could be applied in many technological purposes, like medical, pharmaceutical, and environmental fields. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yamanaka, Atsushi; Iwakiri, Akira; Yoshikawa, Tomoki; Sakai, Kouji; Singh, Harpal; Himeji, Daisuke; Kikuchi, Ikuo; Ueda, Akira; Yamamoto, Seigo; Miura, Miho; Shioyama, Yoko; Kawano, Kimiko; Nagaishi, Tokiko; Saito, Minako; Minomo, Masumi; Iwamoto, Naoyasu; Hidaka, Yoshio; Sohma, Hirotoshi; Kobayashi, Takeshi; Kanai, Yuta; Kawagishi, Takehiro; Nagata, Noriyo; Fukushi, Shuetsu; Mizutani, Tetsuya; Tani, Hideki; Taniguchi, Satoshi; Fukuma, Aiko; Shimojima, Masayuki; Kurane, Ichiro; Kageyama, Tsutomu; Odagiri, Takato; Saijo, Masayuki; Morikawa, Shigeru
2014-01-01
A Japanese man suffered from acute respiratory tract infection after returning to Japan from Bali, Indonesia in 2007. Miyazaki-Bali/2007, a strain of the species of Nelson Bay orthoreovirus, was isolated from the patient's throat swab using Vero cells, in which syncytium formation was observed. This is the sixth report describing a patient with respiratory tract infection caused by an orthoreovirus classified to the species of Nelson Bay orthoreovirus. Given the possibility that all of the patients were infected in Malaysia and Indonesia, prospective surveillance on orthoreovirus infections should be carried out in Southeast Asia. Furthermore, contact surveillance study suggests that the risk of human-to-human infection of the species of Nelson Bay orthoreovirus would seem to be low.
Microwave sterilization of plastic tissue culture vessels for reuse.
Sanborn, M R; Wan, S K; Bulard, R
1982-10-01
A simple protocol has been developed for recycling plastic tissue culture vessels. The killing properties of microwaves were used to decontaminate plastic tissue culture vessels for reuse. Nine bacterial cultures, four gram-negative and five gram-positive genera, including two Bacillus species, were used to artificially contaminate tissue culture vessels. The microwaves produced by a "home-type" microwave oven (2.45 gHz) were able to decontaminate the vessels with a 3-min exposure. The same exposure time was also used to completely inactivate the following three test viruses: polio type 1, parainfluenza type 1 (Sendai), and bacteriophage T4. The recycling procedure did not reduce the attachment and proliferation of the following cell types: primary chicken and turkey embryo, HEp-2, Vero, BGMK, and MK-2.
[Detection of rubella virus RNA in clinical material by real time polymerase chain reaction method].
Domonova, É A; Shipulina, O Iu; Kuevda, D A; Larichev, V F; Safonova, A P; Burchik, M A; Butenko, A M; Shipulin, G A
2012-01-01
Development of a reagent kit for detection of rubella virus RNA in clinical material by PCR-RT. During development and determination of analytical specificity and sensitivity DNA and RNA of 33 different microorganisms including 4 rubella strains were used. Comparison of analytical sensitivity of virological and molecular-biological methods was performed by using rubella virus strains Wistar RA 27/3, M-33, "Orlov", Judith. Evaluation of diagnostic informativity of rubella virus RNAisolation in various clinical material by PCR-RT method was performed in comparison with determination of virus specific serum antibodies by enzyme immunoassay. A reagent kit for the detection of rubella virus RNA in clinical material by PCR-RT was developed. Analytical specificity was 100%, analytical sensitivity - 400 virus RNA copies per ml. Analytical sensitivity of the developed technique exceeds analytical sensitivity of the Vero E6 cell culture infection method in studies of rubella virus strains Wistar RA 27/3 and "Orlov" by 11g and 31g, and for M-33 and Judith strains is analogous. Diagnostic specificity is 100%. Diagnostic specificity for testing samples obtained within 5 days of rash onset: for peripheral blood sera - 20.9%, saliva - 92.5%, nasopharyngeal swabs - 70.1%, saliva and nasopharyngeal swabs - 97%. Positive and negative predictive values of the results were shown depending on the type of clinical material tested. Application of reagent kit will allow to increase rubella diagnostics effectiveness at the early stages of infectious process development, timely and qualitatively perform differential diagnostics of exanthema diseases, support tactics of anti-epidemic regime.
Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging
Darling, Tamarand Lee; Sherwood, Laura Jo; Hayhurst, Andrew
2017-01-01
Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein–protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs) against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV) and Ebolavirus (EBOV). Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking). Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP) assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking intracellular NP using relatively small amounts of dimeric sdAb to restrict NP packaging. The stoichiometry and ease of application of the approach would likely benefit from transitioning away from intracellular expression of crosslinking sdAb to exogenous delivery of antibody. By retuning sdAb specificity, the approach of crosslinking highly conserved regions of assembly critical proteins may well be applicable to inhibiting replication processes of a broad spectrum of viruses. PMID:29021793
Yun, Ki Wook; Lee, Hoan Jong; Park, Ji Young; Cho, Hye-Kyung; Kim, Yae-Jean; Kim, Kyung-Hyo; Kim, Nam Hee; Hong, Young Jin; Kim, Dong Ho; Kim, Hwang Min; Cha, Sung-Ho
2018-03-07
This study was performed with the aim of determining the long-term immunogenicity of an inactivated, Vero cell culture-derived Japanese encephalitis (JE) vaccine (JE-VC) and an inactivated, mouse brain-derived JE vaccine (JE-MB) after the 1st booster dose at 2 years of age, as well as the safety and immunogenicity of the 2nd booster dose of JE-VC at 6 years of age, in children primed and given a 1st booster dose of either JE-VC or JE-MB. In this multicenter, open-label clinical trial, the study population consisted of healthy Korean children (aged 6 years) who participated in the previous JE vaccine trial. All subjects were subcutaneously vaccinated once for the booster immunization with Boryung Cell Culture Japanese Encephalitis Vaccine® (JE-VC). Approximately 4 years after the 1st booster dose of JE-VC, the seroprotection rate (SPR) and geometric mean titer (GMT) of the neutralizing antibody were 100% and 1113.8, respectively. In children primed and given a 1st booster dose of JE-MB, the SPR and GMT were 88.5% and 56.3, respectively. After the 2nd booster dose of JE-VC, all participants primed and given a 1st booster dose of either JE-MB or JE-VC were seroprotective against JE virus. The GMT of the neutralizing antibody was higher in children primed and given a 1st booster dose of JE-VC (8144.1) than in those primed and given a 1st booster dose of JE-MB (942.5) after the vaccination (p < 0.001). In addition, the 2nd booster dose of JE-VC showed a good safety profile with no serious vaccine-related adverse events. The 1st booster dose of JE-VC and JE-MB showed long-term immunogenicity of at least 4 years, and the 2nd booster dose of JE-VC showed a good safety and immunogenicity profile in children primed and given a 1st booster dose of either JE-VC or JE-MB. ClinicalTtrials.gov Identifier: NCT02532569. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beutin, L; Steinrück, H; Krause, G; Steege, K; Haby, S; Hultsch, G; Appel, B
2007-03-01
To evaluate the suitability of the commercially distributed Ridascreen Verotoxin enzyme immunoassay (EIA) for detection of known genetic types of the Vero (Shiga) toxins 1 (Stx1) and 2 (Stx2) families and to determine its relative sensitivity and specificity. The Ridascreen-EIA was compared with the Vero cell assay, a P(1)-glycoprotein receptor EIA and with stx gene-specific PCs for detection of Stx with 43 Shiga toxin-producing strains of Escherichia coli (STEC) reference strains and with 241 test strains. The Ridascreen-EIA detects strains producing Stx1 and variants Stx1c and Stx1d, as well as Stx2 and variants Stx2d1, Stx2d2, Stx2e, Stx2d, Stx2-O118 (Stx2d-ount), Stx2-NV206, Stx2f and Stx2g. The assay showed a relative sensitivity of 95.7% and a relative specificity of 98.7%. Some of the Stx2-O118-, Stx2e- and Stx2g-producing STEC were not detected with the Ridascreen-EIA probably because of low amount of toxin produced by these strains. The Ridascreen-EIA is able to detect all known types of Stx and is applicable for routine screening of bacterial isolates owing to its high specificity. It is less applicable for testing samples where low amounts of Stx are expected, such as mixed cultures and certain Stx2 variants. This study presents a first comprehensive evaluation of the Ridascreen-EIA, a rapid standardized STEC screening test for routine diagnostic laboratories. Data are presented on the type of the spectrum of Stx that are detected with this immunoassay and its advantages and limits for practical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minagawa, T.; Nakaya, C.; Iida, H.
1974-05-01
Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virusmore » as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)« less
Minagawa, Tomonori; Nakaya, Chikako; Iida, Hiroo
1974-01-01
Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated component which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither UV-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. PMID:4207526
Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188.
Supong, Khomsan; Sripreechasak, Paranee; Tanasupawat, Somboon; Danwisetkanjana, Kannawat; Rachtawee, Pranee; Pittayakhajonwut, Pattama
2017-01-01
The terrestrial actinomycete strain BCC71188 was identified as Streptomyces by its morphology (having spiral chain spore on the aerial mycelium), chemotaxonomy (containing LL-diaminopimelic acid in the cell wall), and 16S rRNA gene sequence analysis [showing high similarity values compared with Streptomyces samsunensis M1463 T (99.85 %) and Streptomyces malaysiensis NBRC 16446 T (99.40 %)]. The crude extract exhibited antimalarial against Plasmodium falciparum (IC 50 0.19 μg/ml), anti-TB against Mycobacterial tuberculosis (MIC 6.25 μg/ml), and antibacterial against Bacillus cereus (MIC 1.56 μg/ml) activities. Therefore, chemical investigation was conducted by employing bioassay-guided method and led to the isolation of 19 compounds including two cyclic peptides (1-2), five macrolides (3-7), new naphthoquinone (8), nahuoic acid C (9), geldanamycin derivatives (10-13), cyclooctatin (14), germicidins A (15) and C (16), actinoramide A (17), abierixin, and 29-O-methylabierixin. These isolated compounds were evaluated for antimicrobial activity, such as antimalarial, anti-TB, and antibacterial activities, and for cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. Compounds 1-7, 10-14 exhibited antimalarial (IC 50 0.22-7.14 μg/ml), and elaiophylin analogs (4-6) displayed anti-TB (MIC 0.78-12.00 μg/ml) and B. cereus (MIC 0.78-3.13 μg/ml) activities. Compounds 1, 2, 14, and abierixin displayed weak cytotoxicity, indicating a potential for antimicrobial agents.
Kumaki, Yohichi; Wandersee, Miles K; Smith, Aaron J; Zhou, Yanchen; Simmons, Graham; Nelson, Nathan M; Bailey, Kevin W; Vest, Zachary G; Li, Joseph K-K; Chan, Paul Kay-Sheung; Smee, Donald F; Barnard, Dale L
2011-04-01
Urtica dioica agglutinin (UDA) is a small plant monomeric lectin, 8.7 kDa in size, with an N-acetylglucosamine specificity that inhibits viruses from Nidovirales in vitro. In the current study, we first examined the efficacy of UDA on the replication of different SARS-CoV strains in Vero 76 cells. UDA inhibited virus replication in a dose-dependent manner and reduced virus yields of the Urbani strain by 90% at 1.1 ± 0.4 μg/ml in Vero 76 cells. Then, UDA was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. BALB/c mice were infected with two LD50 (575 PFU) of virus for 4 h before the mice were treated intraperitoneally with UDA at 20, 10, 5 or 0 mg/kg/day for 4 days. Treatment with UDA at 5 mg/kg significantly protected the mice against a lethal infection with mouse-adapted SARS-CoV (p < 0.001), but did not significantly reduce virus lung titers. All virus-infected mice receiving UDA treatments were also significantly protected against weight loss (p < 0.001). UDA also effectively reduced lung pathology scores. At day 6 after virus exposure, all groups of mice receiving UDA had much lower lung weights than did the placebo-treated mice. Thus, our data suggest that UDA treatment of SARS infection in mice leads to a substantial therapeutic effect that protects mice against death and weight loss. Furthermore, the mode of action of UDA in vitro was further investigated using live SARS-CoV Urbani strain virus and retroviral particles pseudotyped with SARS-CoV spike (S). UDA specifically inhibited the replication of live SARS-CoV or SARS-CoV pseudotyped virus when added just before, but not after, adsorption. These data suggested that UDA likely inhibits SARS-CoV infection by targeting early stages of the replication cycle, namely, adsorption or penetration. In addition, we demonstrated that UDA neutralizes the virus infectivity, presumably by binding to the SARS-CoV spike (S) glycoprotein. Finally, the target molecule for the inhibition of virus replication was partially characterized. When UDA was exposed to N-acetylglucosamine and then UDA was added to cells just prior to adsorption, UDA did not inhibit the virus infection. These data support the conclusion that UDA might bind to N-acetylglucosamine-like residues present on the glycosylated envelope glycoproteins, thereby preventing virus attachment to cells. Copyright © 2011 Elsevier B.V. All rights reserved.
Kumaki, Yohichi; Wandersee, Miles K.; Smith, Aaron J.; Zhou, Yanchen; Simmons, Graham; Nelson, Nathan M.; Bailey, Kevin W.; Vest, Zachary G.; Li, Joseph K.-K.; Chan, Paul Kay-Sheung; Smee, Donald F.; Barnard, Dale L.
2011-01-01
Urtica dioica agglutinin (UDA) is a small plant monomeric lectin, 8.7 kDa in size, with an N-acetylglucosamine specificity that inhibits viruses from Nidovirales in vitro. In the current study, we first examined the efficacy of UDA on the replication of different SARS-CoV strains in Vero 76 cells. UDA inhibited virus replication in a dose-dependent manner and reduced virus yields of the Urbani strain by 90% at 1.1 ± 0.4 µg/ml in Vero 76 cells. Then, UDA was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. BALB/c mice were infected with two LD50 (575 PFU) of virus for 4 hours before the mice were treated intraperitoneally with UDA at 20, 10, 5 or 0 mg/kg/day for 4 days. Treatment with UDA at 5 mg/kg significantly protected the mice against a lethal infection with mouse-adapted SARS-CoV (p<0.001), but did not significantly reduce virus lung titers. All virus-infected mice receiving UDA treatments were also significantly protected against weight loss (p<0.001). UDA also effectively reduced lung pathology scores. At day 6 after virus exposure, all groups of mice receiving UDA had much lower lung weights than did the placebo-treated mice. Thus, our data suggest that UDA treatment of SARS infection in mice leads to a substantial therapeutic effect that protects mice against death and weight loss. Furthermore, the mode of action of UDA in vitro was further investigated using live SARS-CoV Urbani strain virus and retroviral particles pseudotyped with SARS-CoV spike (S). UDA specifically inhibited the replication of live SARS-CoV or SARS-CoV pseudotyped virus when added just before, but not after, adsorption. These data suggested that UDA likely inhibits SARS-CoV infection by targeting early stages of the replication cycle, namely, adsorption or penetration. In addition, we demonstrated that UDA neutralizes the virus infectivity, presumably by binding to the SARS-CoV spike (S) glycoprotein. Finally, the target molecule for inhibition of virus replication was partially characterized. When UDA was exposed to N-acetylglucosamine and then UDA was added to cells just prior to adsorption, UDA did not inhibit the virus infection. These data support the conclusion that UDA might bind to N-acetylglucosamine-like residues present on the glycosylated envelope glycoproteins, thereby preventing virus attachment to cells. PMID:21338626
McDonnell, R J; Rampling, A; Crook, S; Cockcroft, P M; Wilshaw, G A; Cheasty, T; Stuart, J
1997-12-12
An outbreak of food poisoning due to Escherichia coli O157 phage type 2 Vero cytotoxin 2 affected 26 people in southern counties of England in May and June 1995. The organism was isolated from faecal specimens from 23 patients, 16 of whom lived in Dorset and seven in Hampshire. Isolates were indistinguishable by phage typing, Vero cytotoxin gene typing, restriction fragment length polymorphism, and pulsed field gel electrophoresis. Three associated cases, linked epidemiologically to the outbreak, were confirmed serologically by detection of antibodies to E. coli O157 lipopolysaccharide. Twenty-two of the 26 patients were adults: four were admitted to hospital with haemorrhagic colitis. Four cases were children: two were admitted to hospital with haemolytic uraemic syndrome (HUS). There were no deaths. Although E. coli O157 was not isolated from any food samples, illness was associated with having eaten cold meats in sandwiches bought from two sandwich producers, in Weymouth and in Portsmouth. Both shops were supplied by the same wholesaler, who kept no records and obtained cooked meats from several sources in packs that did not carry adequate identification marks. It was, therefore, impossible to trace back to the original producer or to investigate further to determine the origin of contamination with E. coli O157. To protect the public health it is essential that all wholesale packs of ready-to-eat food carry date codes and the producer's identification mark. Detailed record keeping should be part of hazard analysis critical control point (HACCP) systems and should be maintained throughout the chain of distribution from the producer to retail outlets.
Zhang, Xiaowei; Zhu, Zhenggang; Wang, Chuanlin
2011-01-01
This study was done to investigate the antibody response to a Vero cell antirabies vaccine, the persistence of antibody for 5 years, and the effect of a booster dose after this interval. From August 2005 to February 2011, a total of 195 patients were enrolled into our study due to an animal bite. The Essen intramuscular (i.m.) regimen, which is recommended by the WHO for modern vaccines used in postexposure treatment, was adopted in this study. Blood samples were obtained on day 0, day 7, day 14, day 45, year 1, year 2, year 3, year 4, year 5, and year 5 plus 14 days. Immunogenicity was evaluated by the titration of neutralizing antibodies with a rapid fluorescent focus inhibition test (RFFIT). Seroconversion was expressed as the seroconversion rate (SCR). A secondary quantitative evaluation criterion, other than the seroconversion level, was the geometric mean titer (GMT). Of the 195 enrolled patients, 168 (86.4%) of them completed the whole study. No serious adverse reactions to the vaccine were reported during vaccination, the 5-year follow-up period, or revaccination. On day 14, the rabies antibody GMT value was 8.87 IU/ml in the vaccinees. During the next 5 years, the SCR in the ChengDa vaccine group gradually decreased to 34.0% at year 5, down from 90.5% at year 1. There was a significant booster effect: the GMT was 15.22 IU/ml on year 5 plus 14 days. Our findings demonstrate that the ChengDa rabies vaccine offers an alternative with a high degree of efficacy and yet limited side effects and ensures that the exposed patient will be on the safe side of the risk of rabies by the 14th day. Moreover, when followed by a booster dose 5 years later, it could boost the immunity. A further booster is effective in inducing a good neutralizing antibody response even after an interval of 5 years. PMID:21752947
Zhang, Xiaowei; Zhu, Zhenggang; Wang, Chuanlin
2011-09-01
This study was done to investigate the antibody response to a Vero cell antirabies vaccine, the persistence of antibody for 5 years, and the effect of a booster dose after this interval. From August 2005 to February 2011, a total of 195 patients were enrolled into our study due to an animal bite. The Essen intramuscular (i.m.) regimen, which is recommended by the WHO for modern vaccines used in postexposure treatment, was adopted in this study. Blood samples were obtained on day 0, day 7, day 14, day 45, year 1, year 2, year 3, year 4, year 5, and year 5 plus 14 days. Immunogenicity was evaluated by the titration of neutralizing antibodies with a rapid fluorescent focus inhibition test (RFFIT). Seroconversion was expressed as the seroconversion rate (SCR). A secondary quantitative evaluation criterion, other than the seroconversion level, was the geometric mean titer (GMT). Of the 195 enrolled patients, 168 (86.4%) of them completed the whole study. No serious adverse reactions to the vaccine were reported during vaccination, the 5-year follow-up period, or revaccination. On day 14, the rabies antibody GMT value was 8.87 IU/ml in the vaccinees. During the next 5 years, the SCR in the ChengDa vaccine group gradually decreased to 34.0% at year 5, down from 90.5% at year 1. There was a significant booster effect: the GMT was 15.22 IU/ml on year 5 plus 14 days. Our findings demonstrate that the ChengDa rabies vaccine offers an alternative with a high degree of efficacy and yet limited side effects and ensures that the exposed patient will be on the safe side of the risk of rabies by the 14th day. Moreover, when followed by a booster dose 5 years later, it could boost the immunity. A further booster is effective in inducing a good neutralizing antibody response even after an interval of 5 years.
Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads.
Jain, Jagrati; Jain, Surendra K; Walker, Larry A; Tekwani, Babu L
2017-06-02
Protein ubiquitylation is an important post-translational regulation, which has been shown to be necessary for life cycle progression and survival of Plasmodium falciparum. Ubiquitin is a highly conserved 76 amino acid polypeptide, which attaches covalently to target proteins through combined action of three classes of enzymes namely, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-protein ligase (E3). Ubiquitin E1 and E2 are highly conserved within eukaryotes. However, the P. falciparum E3 ligase is substantially variable and divergent compared to the homologs from other eukaryotes, which make the E3 ligase a parasite-specific target. A set of selected E3 ubiquitin ligase inhibitors was tested in vitro against a chloroquine-sensitive P. falciparum D6 strain (PfD6) and a chloroquine-resistant P. falciparum W2 strain (PfW2). The inhibitors were also tested against Vero and transformed THP1 cells for cytotoxicity. The lead antimalarial E3 ubiquitin ligase inhibitors were further evaluated for the stage-specific antimalarial action and effects on cellular development of P. falciparum in vitro. Statistics analysis was done by two-way ANOVA followed by Tukey and Sidak multiple comparison test using GraphPad Prism 6. E3 ligase inhibitors namely, JNJ 26854165, HLI 373 and Nutlin 3 showed prominent antimalarial activity against PfD6 and PfW2. These inhibitors were considerably less cytotoxic to mammalian Vero cells. JNJ 26854165, HLI 373 and Nutlin 3 blocked the development of P. falciparum parasite at the trophozoite and schizont stages, resulting in accumulation of distorted trophozoites and immature schizonts. Interruption of trophozoites and schizont maturation by the antimalarial E3 ligase inhibitors suggest the role of ubiquitin/proteasome functions in the intraerythrocytic development of malaria parasite. The ubiquitin/proteasome functions may be critical for schizont maturation. Further investigations on the lead E3 ligase inhibitors shall provide better understanding regarding the importance of E3 ligase functions in the malaria parasite as a potential new antimalarial drug target and a new class of antimalarial drug leads.
Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter
2014-01-01
Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.
Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Ikegami, Tetsuro
2011-11-01
Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain as well as wild-type RVFV strains, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level. IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs), which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify NSs mutants lacking the function to suppress IFN-beta mRNA synthesis. In addition to its essential role in innate immunity, type-I IFN is important for the maturation of dendritic cells and the induction of an adaptive immune response. Thus, NSs mutants inducing type-I IFN are further attenuated, but at the same time are more efficient at stimulating host immune responses than wild-type MP-12, which makes them ideal candidates for vaccination approaches.
NASA Astrophysics Data System (ADS)
Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Arumugam, Sangili; Mahalingam, Sundrarajan
2018-03-01
Multifunctional biologically active materials have approached for antibiofilm, anticancer and osteoblast adhesion activities with significant biomedical applications, owing to this MWCNT modified with polypyrrole (PPy) matrix with the incorporation of palladium nanoparticles (NPs). The synthesized composite displays a tube-shaped morphology with highly dispersed crystalline Pd NPs, which are established through XRD, SEM, TEM and SAED studies. The pyridinic-N(∼402.7), pyrrolic sbnd N (∼400.8) peak in XPS spectra evidenced the interaction of PPy with Pd and MWCNT. Polymer stretching frequencies in FTIR and Raman spectroscopy proves successful formation of PPy and the Pd-N (1609 cm-1) interaction. In the stability aspect, it is up to 58.73% mass withstood at 800 °C in TGA analysis. The composite exhibits an efficient Anti-biofilm against a set of bacterial stain with planktonic cell growth. In vitro cytotoxicity of Vero and HeLa cell line assess the composites toxicity and anticancer activity up to 100 μg. The outcome of cell adhesions showed that human osteosarcoma cells (HOS) can adhere and to develop on the MWCNT/PPy/Pd composites. Furthermore, the proliferation of cells on MWCNT/PPy/Pd composites was also proved the biocompatibility of the composites against HOS cells. These results suggest that Pd-doped MWCNT/PPy composites are promising materials for biomedical applications.
Yamasaki, Yasuhiro; Katsuo, Daisuke; Nakayasu, Seiichiro; Salati, Cristina; Duan, JingJing; Zou, Yanan; Matsuyama, Yukihiko; Yamaguchi, Kenichi; Oda, Tatsuya
2008-01-01
Our recent studies have demonstrated that the aqueous extract prepared from Alexandrium tamarense, a harmful red tide phytoplankton, showed cytotoxicity on Vero cells. In this study, the toxic substance was purified from the culture supernatant of A. tamarense. Based on the gel-filtration profile, the molecular mass of a purified toxin was estimated to be about 1,000 kDa. On sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a main band with molecular mass of 1,000 kDa was detected with periodic acid-Schiff (PAS) staining, but no protein bands were detected by Coomassie brilliant blue (CBB) protein staining. Sugar composition analysis of the toxin suggested that the toxin contains galactose, fucose, mannose, N-acetylglucosamine, xylose, and other minor saccharides, whereas no significant levels of amino acids were detected by amino acid analysis. These results suggest that the toxin is a polysaccharide-based compound. The toxin showed cytotoxic effects on various cell lines in a concentration-dependent manner. Among the cell lines tested, U937 cells were the most susceptible to the toxin. In U937 cells treated with the toxin, a typical apoptotic nuclear morphological change and DNA fragmentation were observed. This is the first report demonstrating that a polysaccharide-based toxin isolated from red tide phytoplankton can induce apoptotic cell death. (c) 2008 Wiley Periodicals, Inc.
Badia, Roger; Angulo, Guillem; Riveira-Muñoz, Eva; Pujantell, Maria; Puig, Teresa; Ramirez, Cristina; Torres-Torronteras, Javier; Martí, Ramón; Pauls, Eduardo; Clotet, Bonaventura; Ballana, Ester; Esté, José A
2016-02-01
Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Yellow Fever Outbreak, Imatong, Southern Sudan
Ofula, Victor O.; Sang, Rosemary C.; Konongoi, Samson L.; Sow, Abdourahmane; De Cock, Kevin M.; Tukei, Peter M.; Okoth, Fredrick A.; Swanepoel, Robert; Burt, Felicity J.; Waters, Norman C.; Coldren, Rodney L.
2004-01-01
In May 2003, the World Health Organization received reports about a possible outbreak of a hemorrhagic disease of unknown cause in the Imatong Mountains of southern Sudan. Laboratory investigations were conducted on 28 serum samples collected from patients in the Imatong region. Serum samples from 13 patients were positive for immunoglobulin M antibody to flavivirus, and serum samples from 5 patients were positive by reverse transcription–polymerase chain reaction with both the genus Flavivirus–reactive primers and yellow fever virus–specific primers. Nucleotide sequencing of the amplicons obtained with the genus Flavivirus oligonucleotide primers confirmed yellow fever virus as the etiologic agent. Isolation attempts in newborn mice and Vero cells from the samples yielded virus isolates from five patients. Rapid and accurate laboratory diagnosis enabled an interagency emergency task force to initiate a targeted vaccination campaign to control the outbreak. PMID:15207058
Development and biological properties of a new live attenuated mumps vaccine.
Saika, Shizuko; Kidokoro, Minoru; Kubonoya, Hiroko; Ito, Kozo; Ohkawa, Tokitada; Aoki, Athuko; Nagata, Noriyo; Suzuki, Kazuyoshi
2006-01-01
To develop a new live attenuated mumps vaccine, a wild mumps Y7 strain isolated from a patient who developed mild parotitis was treated with nitrosoguanidine and ultraviolet, followed by selection of a temperature-sensitive clone. The selected clone, Y125, showed stable temperature-sensitivity in Vero cells. Intraspinal inoculation of marmosets with the Y125 produced only minimal histopathological changes, while intracerebral inoculation of neonatal rats revealed that the Y125 did not cause hydrocephalus. Both these effects of the Y125 were similar to those of the non-neurovirulent Jeryl Lynn strain. Furthermore, subcutaneous inoculation of the Y125 induced high levels of neutralizing antibodies in all Cercopithecus monkeys examined. Although the safety and immunogenicity should be confirmed in further field trials in humans, the present results indicate that the Y125 could be a promising vaccine candidate.
Rapid synthesis of gold and silver nanoparticles using tryptone as a reducing and capping agent
NASA Astrophysics Data System (ADS)
Mehta, Sourabh M.; Sequeira, Marilyn P.; Muthurajana, Harries; D'Souza, Jacinta S.
2018-02-01
Due to its eco-friendliness, recent times have seen an immense interest in the green synthesis of metallic nanoparticles. We present here, a protocol for the rapid and cheap synthesis of Au and Ag nanoparticles (NPs) using 1 mg/ml tryptone (trypsinized casein) as a reducing and capping agent. These nanoparticles are spherical, 10 nm in diameter and relatively monodispersed. The atoms of these NPs are arranged in face-centered cubic fashion. Further, when tested for their cytotoxic property against HeLa and VERO cell lines, gold nanoparticles were more lethal than silver nanoparticles, with a more or less similar trend observed against both Gram-positive and Gram-negative bacteria. On the other hand, the NPs were least cytotoxic against a unicellular alga, Chlamydomonas reinhardtii implying their eco-friendly property.
de Melo, Edinara Targino; Estrela, Andréia Bergamo; Santos, Elizabeth Cristina Gomes; Machado, Paula Renata Lima; Farias, Kleber Juvenal Silva; Torres, Taffarel Melo; Carvalho, Enéas; Lima, João Paulo Matos Santos; Silva-Júnior, Arnóbio Antonio; Barbosa, Euzébio Guimarães; Fernandes-Pedrosa, Matheus de Freitas
2015-06-01
A new antimicrobial peptide, herein named Stigmurin, was selected based on a transcriptomic analysis of the Brazilian yellow scorpion Tityus stigmurus venom gland, an underexplored source for toxic peptides with possible biotechnological applications. Stigmurin was investigated in silico, by circular dichroism (CD) spectroscopy, and in vitro. The CD spectra suggested that this peptide interacts with membranes, changing its conformation in the presence of an amphipathic environment, with predominance of random coil and beta-sheet structures. Stigmurin exhibited antibacterial and antifungal activity, with minimal inhibitory concentrations ranging from 8.7 to 69.5μM. It was also showed that Stigmurin is toxic against SiHa and Vero E6 cell lines. The results suggest that Stigmurin can be considered a potential anti-infective drug. Copyright © 2015 Elsevier Inc. All rights reserved.
Guimarães, Zulmira A S; Damatta, Renato A; Guimarães, Renan S; Filgueira, Marcello
2017-01-01
With the aim of introducing permanent prostheses with main properties equivalent to cortical human bone, Ti-diamond composites were processed through powder metallurgy. Grade 1 titanium and mixtures of Ti powder with 2%, 5% and 10 wt% diamond were compacted at 100MPa, and then sintered at 1250°C/2hr/10-6mbar. Sintered samples were studied in the point of view of their microstructures, structures, yield strength and elastic modulus. The results showed that the best addition of diamonds was 2 wt%, which led to a uniform porosity, yield strength of 370MPa and elastic modulus of 13.9 GPa. Samples of Ti and Ti-2% diamond were subjected to in vitro cytotoxicity test, using cultures of VERO cells, and it resulted in a biocompatible and nontoxic composite material.
Li, H; Spencer, S D; Lian, L; Zhang, Z; Lu, P
2012-09-01
Measles control in China is monitored in part by surveillance of circulating wild-type viruses. The objective of this study was genetic characterization and phylogenetic analysis of measles strains in the Nantong City region of Jiangsu province, China, during 2010. Sera from suspected cases were tested for IgM antibodies and measles virus isolated by inoculation of transport medium onto Vero/SLAM cells. Isolated strains were phylogenetically analysed according to the nucleotide sequence of the C-terminal region of the nucleoprotein gene amplified by RT-PCR. The results revealed 34 cases confirmed by positive IgM, for an incidence of 0·45/100 000. Six isolates identified were all clustered within genotype H1. The findings reported here support continued endemic transmission of measles virus in China.
Bodiba, Dikonketso Cathrine; Prasad, Preety; Srivastava, Ajay; Crampton, Brigdet; Lall, Namrita Sharan
2018-01-01
Curative plants have reportedly been used to make chewing sticks/toothbrushes intended for the treatment of oral diseases. The in vitro antibacterial activities of Azadirachta indica , Pongamia pinnata , Psidium guajava , and Mangifera indica were evaluated against Streptococcus mutans , along with the cytotoxicity and antioxidant and synergistic potentials. The effect of M. indica on the expression of crucial virulence genes spaP and gtfB of S. mutans was determined. The antibacterial activity was determined using a modified microdilution method. The antioxidant potential was evaluated using diphenyl picrylhydrazyl (DPPH), Griess reagent, and nitroblue tetrazolium calorimetric assays. The synergistic activity was investigated using a modified checkerboard method, while the cytotoxicity was determined according to a cell proliferation 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Reverse transcription was the chosen method for determining the difference in expression of the spaP and gtfB genes after treatment with the plant sample. M. indica and A. indica had the highest antibacterial activity at concentrations of 0.3 mg/ml and 6.25 mg/ml, respectively. A. indica had the best free radical scavenging of DPPH, exhibiting 50% inhibition at 28.72 μg/ml; while M. indica showed better superoxide scavenging potential than the positive control quercetin. Both M. indica and A. indica had adequate activity against the nitric oxide-free radical (12.87 and 18.89 μg/ml, respectively). M. indica selectively reduced the expression of the gtfB gene, indicating a mechanism involving Glucotranferases, specifically targeting bacterial attachment. Mangifera indica and Azadirachta indica had very good antibacterial activity against Streptococcus mutans and moderate toxicity against Vero cells M. indica had the best antioxidant capacity overall M. indica reduced the expression of gtfB gene at 0.5 mg/ml. Abbreviations used : AA: Ascorbic acid; BHI: Brain-heart infusion; CHX: Chlorhexidine; DPPH: Diphenyl picrylhydrazyl; DMSO: Dimethlysulfoxide; NBT: Nitroblue tetrazolium; NO: Nitric oxide.
Bilagumba, Gangaboraiah; Ravish, Haradanahalli Shankarappa; Narayana, Hanumanthappa Ashwath Doddabele
2010-01-01
The metadata of 10 published studies and 3 vaccine trial reports comprising of 19 vaccine cohorts from four countries conducted over a period of 23 years (1986–2009) was used for metaanalysis. The vaccines studied were purified chick embryo cell vaccine (Rabipur, India and Germany), purified vero cell rabies vaccine (Verorab, France; Indirab, India) and human diploid cell vaccine (MIRV, France). The potency of these vaccines varied from 0.55 IU to 2.32 IU per intradermal dose of 0.1 ml per site. The vaccines were administered to 1,011 subjects comprising of 19 cohorts and using five different ID regimens. The immunogenicity was measured by assays of rabies virus neutralizing antibody (RVNA) titres using rapid fluorescent focus inhibition test (RFFIT) [15 cohorts] and mouse neutralization test (MNT) [4 cohorts]. The statistical analysis of the data was done by Karl Pearson's correlation coefficient to measure the relationship between antigenicity and immunogenicity. It was revealed that, there was no significant linear relationship between antigenicity and immunogenicity of rabies vaccines when administered by intradermal route (p > 0.230 and p > 0.568). PMID:20523131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barquero, Andrea A.; Michelini, Flavia M.; Alche, Laura E.
2006-06-09
We have reported the isolation of the tetranortriterpenoid 1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM) from partially purified leaf extracts of Melia azedarach L. (MA) that reduced both, vesicular stomatitis virus (VSV) and Herpes simplex virus type 1 (HSV-1) multiplication. CDM blocks VSV entry and the intracellular transport of VSV-G protein, confining it to the Golgi apparatus, by pre- or post-treatment, respectively. Here, we report that HSV-1 glycoproteins were also confined to the Golgi apparatus independently of the nature of the host cell. Considering that MA could be acting as an immunomodulator preventing the development of herpetic stromal keratitis in mice, we also examined anmore » eventual effect of CDM on NF-{kappa}B signaling pathway. CDM is able to impede NF-{kappa}B activation in HSV-1-infected conjunctival cells and leads to the accumulation of p65 NF-{kappa}B subunit in the cytoplasm of uninfected treated Vero cells. In conclusion, CDM is a pleiotropic agent that not only inhibits the multiplication of DNA and RNA viruses by the same mechanism of action but also modulates the NF-{kappa}B signaling pathway.« less
Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses.
Kim, Seo-Young; Kim, Eun-A; Kim, Young-Sun; Yu, Seok-Kyu; Choi, Changyong; Lee, Jung-Suk; Kim, Yong-Tae; Nah, Jae-Woon; Jeon, You-Jin
2016-10-01
The aim of this study was to analyze antioxidant properties of a polysaccharide isolated from Psidium guajava leaves (PS-PGL) in vitro including its radical scavenging activities and protective effects against damage to cells as well as in vivo in zebrafish. The water extract of P. guajava leaves (WE-PGL) and PS-PGL showed strong radical scavenging effects in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and alkyl radical. Compared to WE-PGL, PS-PGL enhanced all scavenging activities and in particular strongly scavenged the hydroxyl radical (50% inhibitory concentration [IC50], 0.02mg/mL). In addition, PS-PGL exerted a protective effect against hydrogen peroxide-induced oxidative stress and against toxicity to Vero cells. Furthermore, in vivo experiments using zebrafish embryos indicated that treatment with hydrogen peroxide decreased the survival rate and heart-beating rate of zebrafish embryos, whereas these problems were reduced by PS-PGL treatment. Moreover, PS-PGL inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production, lipid peroxidation, and cell death. Taken together, these results suggest that PS-PGL may be useful as a beneficial antioxidant material in the food and cosmetic industries. Copyright © 2016 Elsevier B.V. All rights reserved.
RickA Expression Is Not Sufficient to Promote Actin-Based Motility of Rickettsia raoultii
Balraj, Premanand; Karkouri, Khalid El; Vestris, Guy; Espinosa, Leon; Raoult, Didier; Renesto, Patricia
2008-01-01
Background Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG). The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. Methodology/Principal Findings Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading) of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. Conclusion/Significance These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus. PMID:18612416
[Laboratory diagnosis of genital herpes--direct immunofluorescence method].
Majewska, Anna; Romejko-Wolniewicz, Ewa; Zareba-Szczudlik, Julia; Kilijańczyk, Marek; Gajewska, Małgorzata; Młynarczyk, Grazyna
2013-07-01
Aim of the study was to determine clinical usefulness of direct immunofluorescence method in the laboratory diagnosis of genital herpes in women. Overall 187 anogenital swabs were collected from 120 women. Using a dacron-tipped applicator 83 swabs were collected from women suspected of genital herpes and 104 from patients with no signs of genital infection. All samples were tested using cell culture (Vero cell line) and then direct immunofluorescence method (DIF) for the identification of antigens of herpes simplex viruses: HSV-1 and HSV-2. Characteristic cytopathic effect (CPE), indicative of alphaherpesvirus infection, was observed in 43.4% of cultures with clinical specimens collected from women with suspected genital herpes and in 29.8% of cultures of clinical specimens taken from patients with no clinical symptoms of genital herpes. Herpes simplex viruses were determined in 73 samples by direct immunofluorescence method after amplification of the virus in cell culture. The DIF test confirmed the diagnosis based on the microscopic CPE observation in 85%. In 15% of samples (taken from pregnant women without clinical signs of infection) we reported positive immunofluorescence in the absence of CPE. The frequency of antigen detection was statistically significantly higher in samples that were positive by culture study (chi-square test with Yates's correction, p < 0.01). This method proved to be highly sensitive (97%) in women with clinically suspected infection. High negative predictive value (99%) proves the clinical utility of the DIF in these group of patients. In asymptomatic infections, viral antigens were detected most frequently in the swabs from the cervical canal, and in cases of suspected genital herpes in swabs taken from the vestibule of the vagina and the vulva. However, there was no statistically significant difference in the frequency of detection of Herpes Simplex Virus antigens in specimens from different parts of the genital tract in both groups of women (chi-square test, p > 0.05). In our study HHV-1 was the main causative agent of genital herpes. The growing worldwide prevalence of genital herpes, challenges with the clinical diagnosis, and availability of effective antiviral therapy are the main reasons for a growing interest in rapid, proper laboratory diagnosis of infected patients. Optimal testing diagnostic algorithm depends on patient population, clinical circumstances and availability. Our results indicated that combination of laboratory tests may help to establish the diagnosis if genital herpes is suspected but there are no typical signs.
A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.
Liu, Yuehong; Li, Shufeng
2015-01-01
Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.
Demakovsky, Leah; Tesla, Blanka; Goodfellow, Forrest T.; Stice, Steven L.; Murdock, Courtney C.
2017-01-01
Zika virus (ZIKV) has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes. PMID:29258204
Novel toxic effects associated with a tropical Limnothrix/Geitlerinema-like cyanobacterium.
Bernard, Catherine; Froscio, Suzanne; Campbell, Rebecca; Monis, Paul; Humpage, Andrew; Fabbro, Larelle
2011-06-01
The presence of a toxic strain of a fine filamentous cyanobacterium belonging to the Oscillatorialean family Pseudanabaenacea was detected during a survey of cyanobacterial taxa associated with the presence of cylindrospermopsin in dams in Central Queensland (Australia). The strain, AC0243, was isolated and cultured, its genomic DNA extracted and 16S RNA gene sequenced. Phylogenetic analysis placed AC0243 with Limnothrix species, although this genus appears polyphyletic. Moreover, not all morphological characters are consistent with this genus but more closely fit the description of Geitlerinema unigranulatum (R.N. Singh) Komárek and Azevedo. The potential toxic effects of AC0243 extract were assessed chemically and biologically. Cell free protein synthesis was inhibited by the extract. Exposure of Vero cells to the extract resulted in a significant reduction in cellular ATP levels following 24-72 h incubation. The presence of cylindrospermopsin was excluded based on the nature of responses obtained in cell and cell-free assays; in addition, (i) it could not be detected by HPLC, LC-MS, or immunological assay, and (ii) no genes currently associated with the production of cylindrospermopsin were found in the genome. Other known cyanobacterial toxins were not detected. The apparent novelty of this toxin is discussed. Copyright © 2009 Wiley Periodicals, Inc.
Arenavirus reverse genetics for vaccine development
Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; Carlos de la Torre, Juan
2013-01-01
Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1. PMID:23364194
Abrin Toxicity and Bioavailability after Temperature and pH Treatment.
Tam, Christina C; Henderson, Thomas D; Stanker, Larry H; He, Xiaohua; Cheng, Luisa W
2017-10-13
Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin's toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin's ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin's ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays.
Abrin Toxicity and Bioavailability after Temperature and pH Treatment
Tam, Christina C.; Henderson, Thomas D.; Stanker, Larry H.; He, Xiaohua; Cheng, Luisa W.
2017-01-01
Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin’s toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin’s ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin’s ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays. PMID:29027937
Bioconjugation and Applications of Amino Functional Fluorescence Polymers.
Geyik, Caner; Guler, Emine; Gumus, Zinar Pinar; Barlas, Firat Baris; Akbulut, Huseyin; Demirkol, Dilek Odaci; Timur, Suna; Yagci, Yusuf
2017-03-01
Synthesis and novel applications of biofunctional polymers for diagnosis and therapy are promising area involving various research domains. Herein, three fluorescent polymers, poly(p-phenylene-co-thiophene), poly(p-phenylene), and polythiophene with amino groups (PPT-NH 2 , PPP-NH 2 , and PT-NH 2 , respectively) are synthesized and investigated for cancer cell targeted imaging, drug delivery, and radiotherapy. Polymers are conjugated to anti-HER2 antibody for targeted imaging studies in nontoxic concentrations. Three cell lines (A549, Vero, and HeLa) with different expression levels of HER2 are used. In a model of HER2 expressing cell line (A549), radiotherapy experiments are carried out and results show that all three polymers increase the efficacy of radiotherapy. This effect is even more increased when conjugated to anti-HER2. In the second part of this work, one of the selected polymers (PT-NH 2 ) is conjugated with a drug model; methotrexate via pH responsive hydrazone linkage and a drug carrier property of PT-NH 2 is demonstrated on neuroblastoma (SH-SY5Y) cell model. Our results indicate that, PPT-NH 2 , PPP-NH 2 , and PT-NH 2 have a great potential as biomaterials for various bioapplications in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin
Blöcker, Dagmar; Behlke, Joachim; Aktories, Klaus; Barth, Holger
2001-01-01
The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH ≤ 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 ± 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor. PMID:11292715
Hassan, Sherif T S; Švajdlenka, Emil; Berchová-Bímová, Kateřina
2017-04-30
For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC 50 values of 0.92 and 1.43 µg∙mL -1 , respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC 50 value of 82.4 µg∙mL -1 . This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.
Brugnari, Tatiane; da Silva, Pedro Henrique Alves; Contato, Alex Graça; Inácio, Fabíola Dorneles; Nolli, Mariene Marques; Kato, Camila Gabriel; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques
2018-01-01
In this study we evaluated the antioxidant capacity, antimicrobial activity, and cytotoxicity of an aqueous extract of the Pleurotus ostreatoroseus mushroom, which was cooked. Fresh basidiocarps were heated and steamed at 100°C and the resulting aqueous extract was assessed before and after in vitro digestion. Cooking reduced the amounts of phenolic compounds in the extract. The antioxidant activity of the extract was evaluated through the use of 4 methods. The lowest half-maximal effective concentration (EC50) against ABTS radicals was 0.057 ± 0.002 mg/mL for the uncooked basidiocarp extract. Cooking and the digestive process led to decreased activity (P > 0.05) against ABTS and DPPH radicals. A significant increase in chelating activity (P > 0.05) occurred after the basidiocarps were cooked (EC50 = 0.279 ± 0.007 mg/mL). The reducing power did not significantly change among the different extracts. The uncooked basidiocarp extract was cytotoxic to Vero cells. After cooking and subsequent in vitro digestion, the cytotoxicity of the extracts decreased (P < 0.05). Bacillus subtilis, Staphylococcus aureus, and Candida albicans were sensitive to the fresh mushroom extract. The data showed that after being cooked and digested, the P. ostreatoroseus mushroom maintains antioxidant activity and has a low cytotoxic effect.
Rasooly, Reuven; Do, Paula M; Hernlem, Bradley J
2016-06-15
Aflatoxin B1 (AFB1) producing fungi contaminate food and feed and are a major health concern. To minimize the sources and incidence of AFB1 illness there is a need to develop affordable, sensitive mobile devices for detection of active AFB1. In the present study we used a low cost fluorescence detector and describe two quantitative assays for detection of detoxified and active AFB1 demonstrating that AFB1 concentration can be measured as intensity of fluorescence. When the assay plate containing increasing concentrations of AFB1 is illuminated with a 366 nm ultraviolet lamp, AFB1 molecules absorb photons and emit blue light with peak wavelength of 432 nm. The fluorescence intensity increased in dose dependent manner. However, this method cannot distinguish between active AFB1 which poses a threat to health, and the detoxified AFB1 which exhibits no toxicity. To measure the toxin activity, we used a cell based assay that makes quantification more robust and is capable of detecting multiple samples simultaneously. It is an alternative to the qualitative duckling bioassay which is the "gold-standard" assay currently being used for quantitative analysis of active AFB1. AFB1 was incubated with transduced Vero cells expressing the green fluorescence protein (GFP) gene. After excitation with blue light at 475 nm, cells emitted green light with emission peak at 509 nm. The result shows that AFB1 inhibits protein expression in a concentration dependent manner resulting in proportionately less GFP fluorescence in cells exposed to AFB1. The result also indicates strong positive linear relationship with R(2)=0.90 between the low cost CCD camera and a fluorometer, which costs 100 times more than a CCD camera. This new analytical method for measuring active AFB1 is low in cost and combined with in vitro assay, is quantitative. It also does not require the use of animals and may be useful especially for laboratories in regions with limited resources. Published by Elsevier B.V.
Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Matsuo, Yukinori; Sawada, Akira; Kokubo, Masaki; Mizowaki, Takashi; Hiraoka, Masahiro
2017-03-01
To develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT. First, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan]. Differences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels. Our proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi
2015-01-01
Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.
Chen, Dayue; Nims, Raymond; Dusing, Sandra; Miller, Pamela; Luo, Wen; Quertinmont, Michelle; Parekh, Bhavin; Poorbaugh, Josh; Boose, Jeri Ann; Atkinson, E Morrey
2008-11-01
An adventitious agent contamination occurred during a routine 9 CFR bovine viral screening test at BioReliance for an Eli Lilly Chinese Hamster Ovary (CHO) cell-derived Master Cell Bank (MCB) intended for biological production. Scientists from the sponsor (Eli Lilly and Company) and the testing service company (BioReliance) jointly conducted a systematic investigation in an attempt to determine the root cause of the contamination. Our investigation resulted in the identification of the viral nature of the contaminant. Subsequent experiments indicated that the viral contaminant was a non-enveloped and non-hemadsorbing virus. Transmission electron microscopy (TEM) revealed that the viral contaminant was 25-30 nm in size and morphologically resembled viruses of the family Picornaviridae. The contaminant virus was readily inactivated when exposed to acidic pH, suggesting that the viral contaminant was a member of rhinoviruses. Although incapable of infecting CHO cells, the viral contaminant replicated efficiently in Vero cell with a life cycle of approximately 16 h. Our investigation provided compelling data demonstrating that the viral contaminant did not originate from the MCB. Instead, it was introduced into the process during cell passaging and a possible entry point was proposed. We identified the viral contaminant as an equine rhinitis A virus using molecular cloning and DNA sequencing. Finally, our investigation led us to conclude that the source of the viral contaminant was the equine serum added to the cell growth medium in the 9 CFR bovine virus test.
Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine.
Smee, D F; Martin, J C; Verheyden, J P; Matthews, T R
1983-01-01
The antiherpetic effects of a novel purine acyclic nucleoside, 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), were compared with those of acyclovir in cell cultures and in mice. The modes of action of DHPG and acyclovir were similar in that herpes thymidine kinase phosphorylated each compound, and both agents selectively inhibited viral over host cell DNA synthesis. In 50% plaque reduction assays in Vero cells, the drugs inhibited herpes simplex virus types 1 and 2 thymidine kinase-positive strains at 0.2 to 2.4 microM. DHPG was markedly more active than acyclovir against human cytomegalovirus (50% inhibitory doses were 7 and 95 microM, respectively). Each nucleoside inhibited uninfected cell macromolecule synthesis and cell proliferation at concentrations far above those required to inhibit herpes simplex virus replication. Although the two compounds had many similarities in their behavior in vitro, the important difference was the superior performance of DHPG against herpesvirus-induced encephalitis and vaginitis in vivo. Thus, mortality in mice infected with herpesvirus type 2 was reduced 50% by daily doses of 7 to 10 mg of DHPG/kg, whereas an equally effective daily dose of acyclovir was approximately 500 mg/kg. DHPG at a daily dose of 50 mg/kg was also superior to acyclovir at 100 mg/kg per day in its inhibition of herpetic vaginal lesions in mice. PMID:6307132
Clostridium perfringens Iota-Toxin: Mapping of Receptor Binding and Ia Docking Domains on Ib
Marvaud, Jean-Christophe; Smith, Theresa; Hale, Martha L.; Popoff, Michel R.; Smith, Leonard A.; Stiles, Bradley G.
2001-01-01
Clostridium perfringens iota-toxin is a binary toxin consisting of iota a (Ia), an ADP-ribosyltransferase that modifies actin, and iota b (Ib), which binds to a cell surface protein and translocates Ia into a target cell. Fusion proteins of recombinant Ib and truncated variants were tested for binding to Vero cells and docking with Ia via fluorescence-activated cytometry and cytotoxicity experiments. C-terminal residues (656 to 665) of Ib were critical for cell surface binding, and truncated Ib variants containing ≥200 amino acids of the C terminus were effective Ib competitors and prevented iota cytotoxicity. The N-terminal domain (residues 1 to 106) of Ib was important for Ia docking, yet this region was not an effective competitor of iota cytotoxicity. Further studies showed that Ib lacking just the N-terminal 27 residues did not facilitate Ia entry into a target cell and subsequent cytotoxicity. Five monoclonal antibodies against Ib were also tested with each truncated Ib variant for epitope and structural mapping by surface plasmon resonance and an enzyme-linked immunosorbent assay. Each antibody bound to a linear epitope within the N terminus (residues 28 to 66) or the C terminus (residues 632 to 655). Antibodies that target the C terminus neutralized in vitro cytotoxicity and delayed the lethal effects of iota-toxin in mice. PMID:11254604
Dewberry, Ebony J.; Dunkerley, Eric; Duffy, Carol
2012-01-01
Summary VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus type 1 (HSV-1) tegument and has been shown to be important for virus replication and spread. However, the exact role(s) played by VP22 in the HSV-1 replication cycle have yet to be delineated. The lack of a procedure to purify full-length VP22 has limited molecular studies on VP22 function. A procedure was developed for the purification of soluble, full-length VP22 from cells infected with HSV-1. A recombinant virus encoding His-tagged VP22 was generated and found to express VP22 at levels comparable to the wild type virus upon infection of Vero cells. By experimenting with a wide variety of cell lysis buffer conditions, several buffers that promote the solubility of full-length VP22 were identified. Buffers that gave the highest levels of solubility were then used in immobilized metal ion affinity chromatography experiments to identify conditions that provided the greatest level of VP22 binding and recovery from cobalt and nickel affinity resins. Using this strategy soluble, full-length VP22 was purified from cells infected with HSV-1. PMID:22569534
Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms
2014-01-01
Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms. PMID:24568567
Novel Trisubstituted Benzimidazoles, Targeting Mtb FtsZ, As A New Class of Antitubercular Agents
Kumar, Kunal; Awasthi, Divya; Lee, Seung-Yub; Zanardi, Ilaria; Ruzsicska, Bela; Knudson, Susan; Tonge, Peter J.; Slayden, Richard A.; Ojima, Iwao
2010-01-01
Libraries of novel trisubstituted benzimidazoles were created through rational drug design. A good number of these benzimidazoles exhibited promising MIC values in the range of 0.5-6 μg/mL (2-15 μM) for their antibacterial activity against Mtb H37Rv strain. Moreover, five of the lead compounds also exhibited excellent activity against clinical Mtb strains with different drug-resistance profiles. All lead compounds do not show appreciable cytotoxicity (IC50 >200 μM) against Vero cells, which inhibit Mtb FtsZ assembly in a dose dependent manner. The two lead compounds unexpectedly showed enhancement of the GTPase activity of Mtb FtsZ. The result strongly suggests that the increased GTPase activity destabilizes FtsZ assembly leading to efficient inhibition of FtsZ polymerization and filament formation. The TEM and SEM analyses of Mtb FtsZ and Mtb cells, respectively, treated with a lead compound strongly suggest that lead benzimidazoles have a novel mechanism of action on the inhibition of Mtb FtsZ assembly and Z-ring formation. PMID:21126020
Novel trisubstituted benzimidazoles, targeting Mtb FtsZ, as a new class of antitubercular agents.
Kumar, Kunal; Awasthi, Divya; Lee, Seung-Yub; Zanardi, Ilaria; Ruzsicska, Bela; Knudson, Susan; Tonge, Peter J; Slayden, Richard A; Ojima, Iwao
2011-01-13
Libraries of novel trisubstituted benzimidazoles were created through rational drug design. A good number of these benzimidazoles exhibited promising MIC values in the range of 0.5-6 μg/mL (2-15 μM) for their antibacterial activity against Mtb H37Rv strain. Moreover, five of the lead compounds also exhibited excellent activity against clinical Mtb strains with different drug-resistance profiles. All lead compounds did not show appreciable cytotoxicity (IC(50) > 200 μM) against Vero cells, which inhibited Mtb FtsZ assembly in a dose dependent manner. The two lead compounds unexpectedly showed enhancement of the GTPase activity of Mtb FtsZ. The result strongly suggests that the increased GTPase activity destabilizes FtsZ assembly, leading to efficient inhibition of FtsZ polymerization and filament formation. The TEM and SEM analyses of Mtb FtsZ and Mtb cells, respectively, treated with a lead compound strongly suggest that lead benzimidazoles have a novel mechanism of action on the inhibition of Mtb FtsZ assembly and Z-ring formation.
Bouhlal, Rhimou; Haslin, Camille; Chermann, Jean-Claude; Colliec-Jouault, Sylvia; Sinquin, Corinne; Simon, Gaelle; Cerantola, Stephane; Riadi, Hassane; Bourgougnon, Nathalie
2011-01-01
Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC50 of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively. PMID:21822410
Frog skin cultures secrete anti-yellow fever compounds.
Muñoz-Camargo, Carolina; Méndez, Margarita Correa; Salazar, Vivian; Moscoso, Johanna; Narváez, Diana; Torres, Maria Mercedes; Florez, Franz Kaston; Groot, Helena; Mitrani, Eduardo
2016-11-01
There is an urgent need to develop novel antimicrobial substances. Antimicrobial peptides (AMPs) are considered as promising candidates for future therapeutic use. Because of the re-emergence of the Flavivirus infection, and particularly the yellow fever virus (YFV), we have compared the antiviral activities from skin secretions of seven different frog species against YFV (strain 17D). Secretions from Sphaenorhynchus lacteus, Cryptobatrachus boulongeri and Leptodactylus fuscus displayed the more powerful activities. S. lacteus was found to inhibit viral lysis of Vero E6 cells even at the highest viral concentration evaluated of 10 LD 50 . We also report the identification of a novel frenatin-related peptide from S. lacteus and found that this peptide-on its own-can lead to 35% protection against YVF, while displaying no cytotoxicity against somatic cells even at fivefold higher concentrations. These results are attractive and support the need for continued exploration of new sources of AMPs from frog skin secretions such as those described here in the development of new compounds for the treatment of infectious diseases in general and specific viral infections in particular.
Jamil, Razieh Kamali; Taqavian, Mohammad; Sadigh, Zohreh-Azita; Shahkarami, Mohammad-Kazem; Esna-Ashari, Fatemeh; Hamkar, Rasool; Hosseini, Seyedeh-Marzieh; Hatami, Alireza
2014-04-01
The stability of live-attenuated viral vaccines is important for immunization efficacy. Here, the thermostabilities of lyophilized live-attenuated mumps vaccine formulations in two different stabilizers, a trehalose dihydrate-based stabilizer and a stabilizer containing sucrose, human serum albumin and sorbitol were investigated using accelerated stability tests at 4°C, 25°C and 37°C at time points between 4h (every 4h for the first 24h) and 1 week. Even under the harshest storage conditions of 37°C for 1 week, the 50% cell culture infective dose (CCID50) determined from titrations in Vero cells dropped by less than 10-fold using each stabilizer formulation and thus complied with the World Health Organization's requirements for the potency of live-attenuated mumps vaccines. However, as the half-life of the RS-12 strain mumps virus infectivity was lengthened substantially at elevated temperatures using the trehalose dihydrate (TD)-based stabilizer, this stabilizer is recommended for vaccine use. Copyright © 2013 Elsevier B.V. All rights reserved.
Phytochemical screening and antiviral activity of some medicinal plants from the island Soqotra.
Mothana, Ramzi A A; Mentel, Renate; Reiss, Christiane; Lindequist, Ulrike
2006-04-01
Methanol and hot-aqueous extracts of 25 different plant species, used in Yemeni traditional medicine and growing, partly as endemic plants, on the island Soqotra have been investigated for their antiviral activity. In addition, the phytochemical identification of the main chemical constituents was performed. The extracts were assayed in two in vitro viral systems, which used influenza virus type A/MDCK cells and herpes simplex virus type 1/Vero cells, at non-cytotoxic concentrations. The herpes simplex virus type 1 showed more sensitivity than the influenza virus type A against the extracts investigated. The methanol extracts of Boswellia ameero, Boswellia elongata, Buxus hildebrandtii, Cissus hamaderohensis, Cleome socotrana, Dracaena cinnabari, Exacum affine, Jatropha unicostata and Kalanchoe farinacea showed anti-influenza virus type A activity with 50% inhibition (IC50) concentrations ranging from 0.7 to 12.5 microg/mL. In addition, 17 plants of the 25 investigated exhibited anti-HSV-1 activity. The antiviral activity of some active extracts was also observed on a molecular level. Copyright 2006 John Wiley & Sons, Ltd.
77 FR 45979 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... information identified in this proposed AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach...
NASA Astrophysics Data System (ADS)
Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.
2017-11-01
For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.
In vitro effect of phototherapy with low-intensity laser on HSV-1 and epithelial cells
NASA Astrophysics Data System (ADS)
Eduardo, Fernanda P.; Mehnert, Dolores U.; Monezi, Telma A.; Zezell, Denise M.; Schubert, Mark M.; Eduardo, Carlos P.; Marques, Márcia M.
2007-02-01
The effects of phototherapy on herpes lesions have been clinically demonstrated by either preventing the lesion formation or speeding their repair. The aim of this in vitro study was analyze the effect of phototherapy on epithelial cells and HSV-1 in culture. Cultures of HSV-1 and epithelial cells (Vero cell line) were used. The irradiations were done using a GaAlAs laser (660 e 780 nm, 4.0 mm2). One, two and three irradiations with 6 h-intervals were done. The experimental groups were: Control: non-irradiated; 660 nm and 3 J/cm2 (2.8 sec); 660 nm and 5 J/cm2 (3.8 sec); 780 nm and 3 J/cm2 (1.9 sec), and 780 nm and 5 J/cm2 (2.5 sec). The HSV-1 cytopatic effect and the cell viability of irradiated cultures and controls were analyzed in four different conditions: irradiation of non-infected epithelial cells; epithelial cells irradiated prior infection; virus irradiated prior infection; irradiation of HSV infected cells. The mitochondrial activity and cytopathic effects were assessed. The number of irradiations influenced the cell growth positively and proportionally, except for the 660 nm/ 3 J/cm2 group. Any variation in cytopathic effects was observed amongst the experimental groups. The viability of infected cells prior irradiation was significantly higher than that of non-irradiated cultures when 2 irradiations were done. Under the experimental conditions of this study we concluded that phototherapy is capable of enhancing epithelial cell growth and prolonging cell viability of HSV-1 infected cells. Positive benefits of phototherapy could be resultant from prolongation of infected cells viability, corroborating with host defenses.
In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit.
Balachandran, C; Emi, N; Arun, Y; Yamamoto, Y; Ahilan, B; Sangeetha, B; Duraipandiyan, V; Inaguma, Yoko; Okamoto, Akinao; Ignacimuthu, S; Al-Dhabi, N A; Perumal, P T
2015-12-05
The present study was undertaken to investigate the anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit and to explore the molecular mechanisms of action in MCF-7 cells. Cytotoxic properties of hexane, ethyl acetate and methanol extracts were carried out against MCF-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Ethyl acetate extract showed good cytototoxic activities compared to hexane and methanol extracts. Methyl caffeate was isolated from the ethyl acetate extract using column chromatography. Cytotoxic properties of methyl caffeate was investigated against MCF-7, A549, COLO320, HepG-2 and Vero cells. The compound showed potent cytotoxic properties against MCF-7 cells compared to A549, COLO320 and HepG-2 cells. Methyl caffeate significantly reduced cell proliferation and increased formation of fragmented DNA and apoptotic body in MCF-7 cells. Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analysis. The activities of caspases-3 and PARP gradually increased after the addition of isolated compound. Bcl-2 protein was down regulated; Bid and Bax were up regulated after the treatment with methyl caffeate. Molecular docking studies showed that the compound bound stably to the active sites of poly (ADP-ribose) polymerase-1 (PARP1), B cell CLL/lymphoma-2 (BCL-2), E3 ubiquitin-protein ligase (MDM2) and tubulin. The results strongly suggested that methyl caffeate induced apoptosis in MCF-7 cells via caspase activation through cytochrome c release from mitochondria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco
2013-01-01
Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. PMID:23667668
Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji
2015-08-01
To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.
Santos, Acidália Carine Vieira; Santos, Francianne Oliveira; Lima, Hélimar Gonçalves; Silva, Gisele Dias Da; Uzêda, Rosangela Soares; Dias, Êuder Reis; Branco, Alexsandro; Cardoso, Klauber Viana; David, Jorge Mauricio; Botura, Mariana Borges; Costa, Silvia Lima; Batatinha, Maria José Moreira
2018-05-21
This study assessed the anthelmintic activity of plant-derived compounds against gastrointestinal nematodes of goats using the egg hatch and larval motility assays. The compounds tested were saponins (digitonin and aescin) and their respective sapogenins (aglycones), hecogenin acetate and flavonoids (catechin, hesperidin, isocordoin and a mixture of isocordoin and cordoin). Additionally, cytotoxicity of active substances was analysed on Vero cell through 3-4,5-dimethylthiazol-2-yl,2,5diphenyltetrazolium bromide (MTT) and propidium iodide (PI) tests. Significant reduction on the egg hatching (P 90%). Nevertheless, higher cytotoxicity was observed in the MTT assay, with IC50 of 0.20 mg mL-1 (aescin) and 0.0074 mg mL-1 (digitonin). Aescin and digitonin have a pronounced in vitro anthelmintic effect and the glycone portion of these saponins plays an important role in this activity.
NASA Astrophysics Data System (ADS)
Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina
2015-09-01
Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.
Scherer, W F; Anderson, K
1975-04-01
Nine strains of Venezuelan encephalitis (VE) virus isolated from the Amazon region of Peru in 1971 were identified as antigenic subtype I based on plaque-reduction neutralization tests with four and 20 units of antibody. A tenth strain, 71D1252, was possibly a new subtype, but was related to subtypes I and III. Hemagglutinins of each strain made from infected mouse brains had optimals pHs of 6.2 and 6.4. Nine strains were pathogenic for adult hamsters and adult mice, but strain 71D1252 inapparently infected some adult hamsters and mice inoculated peripherally. Plaques of nine strains in Vero African green monkey kidney cell cultures were intermediate in size between representative epizootic and enzootic strains, but plaques of strain 71D1252 were small like epizootic strains.
Antitubercular sterols from Thalia multiflora Horkel ex Koernicke.
Gutierrez-Lugo, Maria-Teresa; Wang, Yuehong; Franzblau, Scott G; Suarez, Enrique; Timmermann, Barbara N
2005-10-01
Bioassay guided isolation of an antitubercular extract of the aerial parts of Thalia multiflora led to the isolation of nine stigmast-5-ene and stigmasta-5,22-dien steroids, four isorhamnetin and quercetin flavonoid glycosides, two ceramides, an indole alkaloid and two simple phenolic compounds. Stigmast-5-en-3beta-ol-7-one (2), stigmast-4-ene-6beta-ol-3-one (3), stigmast-5,22-dien-3beta-ol-7-one (7) and stigmast-4,22-dien-6beta-ol-3-one (8) were found to be the most active compounds with MIC values of 1.98 +/- 0.02, 4.2 +/- 0.17, 1.0 +/- 0.06 and 2.2 +/- 0.3 microg/mL, respectively. Compounds 2, 3, 7 and 8 were not cytotoxic to Vero cells at 102 microg/mL. This investigation constitutes the first report of a chemical study of a species of the genus Thalia.
In vitro virucidal activity of a styrylpyrone derivative against herpes simplex virus strain KOS-1
NASA Astrophysics Data System (ADS)
Moses, Micheal; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina
2014-09-01
In this study, styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus root was tested against herpes simplex virus (HSV) strain KOS-1. Firstly, the cytotoxicity of SPD on Vero cells was tested and the value of cytotoxic concentration, CC50, was 44 μM (8.88 μg/mL), and the 50% Effective Concentration, EC50, was 3.35 μM (0.67 μg/mL). Selectivity index of SPD against HSV Kos-1 was more than 13 indicating potential as antiviral agent. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment. The findings indicated that the SPD from G. umbrosus has good potential for prospective nature-based antiviral drug.
Reina, Jordi; Ballesteros, Francisca; Ruiz de Gopegui, Enrique; Munar, Maria; Mari, Margarita
2003-01-01
We report a prospective comparison of the efficacies of an indirect immunofluorescence assay (IFA) and shell vial culture (SVC) of throat swab and urine samples from patients with mumps. Throat swab samples were used for the IFA; the urine samples and throat swabs were inoculated into vials of Vero cells. We studied 62 patients by using 62 throat swabs and 50 urine samples (50 patients with both samples). Sixty (96.7%) throat samples were positive in the SVC, and 61 (98.3%) were positive in the IFA. For the 50 patients from whom both samples were available, the IFA was positive in 50 (100%) cases, the urine sample was positive in 49 (98%) cases, and the throat swab was positive in 48 (96%) cases (P > 0.05). This comparison of throat swabs and urine samples has shown that the two clinical samples are similar in efficacy. PMID:14605158
Kumano, Y; Yamamoto, M; Inomata, H; Sakuma, S; Hidaka, Y; Minagawa, H; Mori, R
1990-01-01
A 35-year-old man had developed recurrent herpetic keratitis characterized by dendritic keratitis at intervals of a year. We were able to culture cytopathic agents repeatedly from his lesions by inoculating Vero cells. The cultures yielded definitive evidence of a virus that caused a cytopathic effect within 3 days. However, these virus strains could not be identified as herpes simplex virus (HSV) in immunofluorescence assays using the Syva MicroTrak HSV1/HSV2 direct specimen identification/typing test. Rather they were identified as strains of HSV type 1 (HSV-1) on the basis of plaque morphology, neutralization tests, electron-microscopic examination and DNA restriction endonuclease analysis. Our results allow us to assume the existence of HSV-1 strains isolated clinically that are negative to analysis using the Syva Micro-Trak HSV1/HSV2 direct specimen identification/typing test.
Chandranaik, B M; Singh, Raj Kumar; Hosamani, Mahusudan; Krishnappa, Giriappa; Harish, Balur R; Chethana, C S; Renukaprasad, C
2011-02-01
The present paper describes the isolation of buffalo pox virus from scab lesions and its molecular characterization through B5R gene sequencing. During our study, pustular pox lesions were observed on the teats and mammary parenchyma of cattle and buffaloes, and the disease was of significant zoonotic importance since similar lesions were produced on the hands, legs, and face of people in close contact with the affected animals. The collected scab materials were subjected for virus isolation in 9-11-day-old chicken embryos by the chorioallontoic membrane route and in the Vero cell line. The virus was confirmed by a sensitive and rapid diagnostic polymerase chain reaction using the primers that amplify "A type inclusion" gene, and further, B5R gene of the virus was sequenced and compared with the corresponding sequences of other orthopoxviruses. The results showed high sequence homology of our isolates with other orthopoxviruses.
Cheng, Yuening; Wang, Jianke; Zhang, Miao; Zhao, Jianjun; Shao, Xiqun; Ma, Zengjun; Zhao, Hang; Lin, Peng; Wu, Hua
2015-10-01
Canine distemper virus (CDV) is a major pathogen not only in raccoon dogs but also in a variety of carnivorous animals, including domesticated animals, particularly if they have not been vaccinated. In this study, a wild-type strain of CDV was isolated from lung tissue from a raccoon dog kept at a fur farm in Jilin Province, China. Cytopathic effects typical of CDV infection were observed after three blind passages in Vero cells, yielding a virus titer of 10(4.6) TCID50/mL. Virus identification was carried out by RT-PCR, immunofluorescence, electron microscopy, and genome sequencing. The results showed that the isolated virus, termed the SY strain, corresponded to the Asia-1 genotype of CDV and has a genome of 15,690 nucleotides. This represents the first complete nucleotide sequence of a CDV strain circulating in raccoon dogs in China.
Microwave-assisted synthesis and anti-YFV activity of 2,3-diaryl-1,3-thiazolidin-4-ones.
Sriram, Dharmarajan; Yogeeswari, Perumal; Kumar, T G Ashok
2005-09-01
The purpose of this study was to prepare several 1,3-thaizolidin-4-ones bearing variously substituted diaryl ring at C-2 and N-3 positions and evaluate them for their anti-YFV activity. Several 1,3-thaizolidin-4-ones were prepared by reacting substituted benzaldehyde with equimolar amount of an appropriate substituted aromatic amine in the presence of an excess of mercaptoacetic acid in toluene utilizing microwave irradiation. The synthesized compounds were also evaluated for their inhibitory effects on the replication of YFV in green monkey kidney (Vero) cells (ATCC CCL81), by means of a cytopathic effect reduction assay. The compound DS1 emerged as the most potent anti-YFV agent with EC50 of 6.9 microM and CC50 more than 100 microM making it more potent than ribavirin. 2,3-diaryl-1,3-thiazolidin-4-ones possess anti-YFV potency.