Sample records for versatile experiment spherical

  1. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  2. Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok

    2011-10-01

    A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.

  3. Design Features and Commissioning of the Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    J. Chung, K.; H. An, Y.; K. Jung, B.; Y. Lee, H.; C., Sung; S. Na, Y.; S. Hahm, T.; S. Hwang, Y.

    2013-03-01

    A new spherical torus called VEST (Versatile Experiment Spherical Torus) is designed, constructed and successfully commissioned at Seoul National University. A unique design feature of the VEST is two partial solenoid coils installed at both vertical ends of a center stack, which can provide sufficient magnetic fluxes to initiate tokamak plasmas while keeping a low aspect ratio configuration in the central region. According to initial double null merging start-up scenario using the partial solenoid coils, appropriate power supplies for driving a toroidal field coil, outer poloidal field coils, and the partial solenoid coils are fabricated and successfully commissioned. For reliable start-up, a pre-ionization system with two cost-effective homemade magnetron power supplies is also prepared. In addition, magnetic and spectroscopic diagnostics with appropriate data acquisition and control systems are well prepared for initial operation of the device. The VEST is ready for tokamak plasma operation by completing and commissioning most of the designed components.

  4. Design of a dual sensor probe array for internal field measurement in Versatile Experiment Spherical Torusa)

    NASA Astrophysics Data System (ADS)

    Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.

    2012-10-01

    A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.

  5. Turbulent equipartition pinch of toroidal momentum in spherical torus

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Lee, J.; Wang, W. X.; Diamond, P. H.; Choi, G. J.; Na, D. H.; Na, Y. S.; Chung, K. J.; Hwang, Y. S.

    2014-12-01

    We present a new analytic expression for turbulent equipartition (TEP) pinch of toroidal angular momentum originating from magnetic field inhomogeneity of spherical torus (ST) plasmas. Starting from a conservative modern nonlinear gyrokinetic equation (Hahm et al 1988 Phys. Fluids 31 2670), we derive an expression for pinch to momentum diffusivity ratio without using a usual tokamak approximation of B ∝ 1/R which has been previously employed for TEP momentum pinch derivation in tokamaks (Hahm et al 2007 Phys. Plasmas 14 072302). Our new formula is evaluated for model equilibria of National Spherical Torus eXperiment (NSTX) (Ono et al 2001 Nucl. Fusion 41 1435) and Versatile Experiment Spherical Torus (VEST) (Chung et al 2013 Plasma Sci. Technol. 15 244) plasmas. Our result predicts stronger inward pinch for both cases, as compared to the prediction based on the tokamak formula.

  6. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less

  7. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  8. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  9. Efficient ECH-assisted plasma start-up using trapped particle configuration in the versatile experiment spherical torus

    NASA Astrophysics Data System (ADS)

    An, YoungHwa; Lee, Jeongwon; Jo, JongGab; Jung, Bong-Ki; Lee, HyunYeong; Chung, Kyoung-Jae; Na, Yong-Su; Hahm, T. S.; Hwang, Y. S.

    2017-01-01

    An efficient and robust ECH (electron cyclotron heating)-assisted plasma start-up scheme with a low loop voltage and low volt-second consumption utilizing the trapped particle configuration (TPC) has been developed in the versatile experiment spherical torus (VEST). The TPC is a mirror-like magnetic field configuration providing a vertical magnetic field in the same direction as the equilibrium field. It significantly enhances ECH pre-ionization with enhanced particle confinement due to its mirror effect, and intrinsically provides an equilibrium field with a stable decay index enabling prompt plasma current initiation. Consequently, the formation of TPC before the onset of the loop voltage allows the plasma to start up with a lower loop voltage and lower volt-second consumption as well as a wider operation range in terms of ECH pre-ionization power and H2 filling pressure. The TPC can improve the widely-used field null configuration significantly for more efficient start-up when ECH pre-ionization is used. This can then be utilized in superconducting tokamaks requiring a low loop voltage start-up, such as ITER, or in spherical tori with limited volt-seconds. The TPC can be particularly useful in superconducting tokamaks with a limited current slew-rate of superconducting PF coils, as it can save volt-second consumption before plasma current initiation by providing prompt initiation with an intrinsic stable equilibrium field.

  10. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  11. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions.

    PubMed

    Wong, Chin Ken; Mason, Alexander F; Stenzel, Martina H; Thordarson, Pall

    2017-11-01

    Polymersomes, made up of amphiphilic block copolymers, are emerging as a powerful tool in drug delivery and synthetic biology due to their high stability, chemical versatility, and surface modifiability. The full potential of polymersomes, however, has been hindered by a lack of versatile methods for shape control. Here we show that a range of non-spherical polymersome morphologies with anisotropic membranes can be obtained by exploiting hydrophobic directional aromatic interactions between perylene polymer units within the membrane structure. By controlling the extent of solvation/desolvation of the aromatic side chains through changes in solvent quality, we demonstrate facile access to polymersomes that are either ellipsoidal or tubular-shaped. Our results indicate that perylene aromatic interactions have a great potential in the design of non-spherical polymersomes and other structurally complex self-assembled polymer structures.

  12. Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy

    NASA Astrophysics Data System (ADS)

    Sreekumar, K. P.; Saxena, S. K.; Kumar, Yogendra; Thiyagarajan, T. K.; Dash, Ashutosh; Ananthapadmanabhan, P. V.; Venkatesh, Meera

    2010-02-01

    Plasma spheroidization exploits the high temperature and high enthalpy available in the thermal plasma jet to melt irregularly shaped powder particles and quench them to get dense spherical particles. Plasma spheroidization is a versatile process and can be applied to metals, ceramics, alloys and composites to obtain fine spherical powders. Radioactive microspheres incorporated with high energetic beta emitting radioisotopes have been reported to be useful in the palliative treatment of liver cancer. These powders are to be prepared in closer range of near spherical morphology in the size range 20-35 microns. Inactive glass samples were prepared by heating the pre-calculated amount of glass forming ingredients in a recrystallized alumina crucible. The glass was formed by keeping the glass forming ingredients at 1700°C for a period of three hours to form a homogeneous melt. After cooling, the glass was recovered from the crucible by crushing and was subsequently powdered mechanically with the help of mortar and pestle. This powder was used as the feed stock for plasma spheroidization using an indigenously developed 40 kW plasma spray system. Experiments were carried out at various operating parameters. The operating parameters were optimised to get spheroidised particles. The powder was sieved to get the required size range before irradiation.

  13. Model-based phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.

  14. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere

    NASA Technical Reports Server (NTRS)

    Gorski, K. M.; Hivon, Eric; Banday, A. J.; Wandelt, Benjamin D.; Hansen, Frode K.; Reinecke, Mstvos; Bartelmann, Matthia

    2005-01-01

    HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.

  15. Spherically Actuated Motor

    NASA Technical Reports Server (NTRS)

    Peeples, Steven

    2015-01-01

    A three degree of freedom (DOF) spherical actuator is proposed that will replace functions requiring three single DOF actuators in robotic manipulators providing space and weight savings while reducing the overall failure rate. Exploration satellites, Space Station payload manipulators, and rovers requiring pan, tilt, and rotate movements need an actuator for each function. Not only does each actuator introduce additional failure modes and require bulky mechanical gimbals, each contains many moving parts, decreasing mean time to failure. A conventional robotic manipulator is shown in figure 1. Spherical motors perform all three actuation functions, i.e., three DOF, with only one moving part. Given a standard three actuator system whose actuators have a given failure rate compared to a spherical motor with an equal failure rate, the three actuator system is three times as likely to fail over the latter. The Jet Propulsion Laboratory reliability studies of NASA robotic spacecraft have shown that mechanical hardware/mechanism failures are more frequent and more likely to significantly affect mission success than are electronic failures. Unfortunately, previously designed spherical motors have been unable to provide the performance needed by space missions. This inadequacy is also why they are unavailable commercially. An improved patentable spherically actuated motor (SAM) is proposed to provide the performance and versatility required by NASA missions.

  16. Laboratory observation of electron phase-space holes during magnetic reconnection.

    PubMed

    Fox, W; Porkolab, M; Egedal, J; Katz, N; Le, A

    2008-12-19

    We report the observation of large-amplitude, nonlinear electrostatic structures, identified as electron phase-space holes, during magnetic reconnection experiments on the Versatile Toroidal Facility at MIT. The holes are positive electric potential spikes, observed on high-bandwidth ( approximately 2 GHz) Langmuir probes. Investigations with multiple probes establish that the holes travel at or above the electron thermal speed and have a three-dimensional, approximately spherical shape, with a scale size approximately 2 mm. This corresponds to a few electron gyroradii, or many tens of Debye lengths, which is large compared to holes considered in simulations and observed by satellites, whose length scale is typically only a few Debye lengths. Finally, a statistical study over many discharges confirms that the holes appear in conjunction with the large inductive electric fields and the creation of energetic electrons associated with the magnetic energy release.

  17. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  18. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  19. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  20. Occurrence of spherical ceramic debris in indentation and sliding contact

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    Indenting experiments were conducted with the silicon carbide (0001) surface in contact with a spherical diamond indenter in air. Sliding friction experiments were also conducted with silicon carbide in contact with iron and iron-based binary alloys at room temperature and 800 C. Fracture pits with a spherical particle and spherical wear debris were observed as a result of indenting and sliding. Spherical debris may be produced by a mechanism that involves a spherical-shaped fracture along the circular or spherical stress trajectories under the inelastic deformation zone.

  1. Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates

    NASA Astrophysics Data System (ADS)

    Indukuri, Chaitanya; Mukherjee, Arnab; Basu, J. K.

    2015-03-01

    We report results of controlled tuning of the local density of states (LDOS) in versatile, flexible, and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nanoantenna within a polymer template randomly dispersed with quantum dots, we show how the photoluminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators.

  2. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  3. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  4. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  5. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  6. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    ERIC Educational Resources Information Center

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  7. Versatility, Openness to Experience, and Topical Diversity in Creative Products: An Exploratory Historiometric Analysis of Scientists, Philosophers, and Writers

    ERIC Educational Resources Information Center

    Cassandro, Vincent J.; Simonton, Dean Keith

    2010-01-01

    Creative individuals are considered "versatile" when their achievements extend beyond their most commonly cited domain, thus indicating remarkable and varied interests and abilities. The present study examined the association between versatility and (a) the personalities of eminent creators and (b) the topical diversity of their creative products.…

  8. Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S. C.; Langendorf, S. J.; Yates, K. C.

    Here, we describe an experiment to form and characterize a section of a spherically imploding plasma liner by merging six supersonic plasma jets that are launched by newly designed contoured-gap coaxial plasma guns. This experiment is a prelude to forming a fully spherical imploding plasma liner using many dozens of plasma guns, as a standoff driver for plasma-jet-driven magneto-inertial fusion. The objectives of the six-jet experiments are to assess the evolution and scalings of liner Mach number and uniformity, which are important metrics for spherically imploding plasma liners to compress magnetized target plasmas to fusion conditions. Lastly, this article describesmore » the design of the coaxial plasma guns, experimental characterization of the plasma jets, six-jet experimental setup and diagnostics, initial diagnostic data from three- and six-jet experiments, and the high-level objectives of associated numerical modeling.« less

  9. Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner

    DOE PAGES

    Hsu, S. C.; Langendorf, S. J.; Yates, K. C.; ...

    2017-12-18

    Here, we describe an experiment to form and characterize a section of a spherically imploding plasma liner by merging six supersonic plasma jets that are launched by newly designed contoured-gap coaxial plasma guns. This experiment is a prelude to forming a fully spherical imploding plasma liner using many dozens of plasma guns, as a standoff driver for plasma-jet-driven magneto-inertial fusion. The objectives of the six-jet experiments are to assess the evolution and scalings of liner Mach number and uniformity, which are important metrics for spherically imploding plasma liners to compress magnetized target plasmas to fusion conditions. Lastly, this article describesmore » the design of the coaxial plasma guns, experimental characterization of the plasma jets, six-jet experimental setup and diagnostics, initial diagnostic data from three- and six-jet experiments, and the high-level objectives of associated numerical modeling.« less

  10. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells

    PubMed Central

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-01-01

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061

  11. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.

    PubMed

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-03-10

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.

  12. Are Nanoparticles Spherical or Quasi-Spherical?

    PubMed

    Sokolov, Stanislav V; Batchelor-McAuley, Christopher; Tschulik, Kristina; Fletcher, Stephen; Compton, Richard G

    2015-07-20

    The geometry of quasi-spherical nanoparticles is investigated. The combination of SEM imaging and electrochemical nano-impact experiments is demonstrated to allow sizing and characterization of the geometry of single silver nanoparticles. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions

    PubMed Central

    Schwechheimer, Carmen; Kuehn, Meta J.

    2017-01-01

    Outer-membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content and are commonly produced by Gram-negative bacteria. The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, enabling bacterial survival during stress conditions and regulating microbial interactions within bacterial communities. Additionally, because of this functional versatility, researchers have begun to explore OMVs as a platform for bioengineering applications. In this Review, we discuss recent advances in the study of OMVs, focusing on new insights into the mechanisms of biogenesis and the functions of these vesicles. PMID:26373371

  14. The Geophysical Fluid Flow Cell Experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  15. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, E. C.; Ao, T.; Bailey, J. E.

    2015-04-15

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-raysmore » with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.« less

  16. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    PubMed

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  17. Polyhedral Boranes: A Versatile Building Block for Nanoporous Materials

    NASA Astrophysics Data System (ADS)

    Clingerman, Daniel Jon

    The studies described in this dissertation examine several new concepts related to polyhedral boranes and their applications towards the synthesis of novel nanoporous materials. The unique thermal and chemical robustness, rigidity, quasi-spherical geometry, and high boron content of polyhedral boranes are explored to generate materials not possible with typical organic synthons. Aside from the fundamental synthetic work, this work was also aimed at solving larger global issues such as energy storage and new routes to therapeutics. Chapter 2 highlights the discovery of the first highly porous carborane-based metal-organic framework, where the spherical nature of the carborane increases volumetric surface area without reducing pore volume. Chapter 3 examines the first tritopic carborane-based ligand and the stabilizing effect the rigid, sterically bulky carboranyl groups have on highly porous topologies not stable with typical organic ligands. Chapters 4 and 5 describe the use of polyhedral borane-based ligands as a means to influence and generate unexpected topologies. Lastly, chapter 6 explores using a simple carborane-based ligand that harnesses the power of coordination-driven assembly to rapidly generate a high boron-containing supramolecular cuboctahedron.

  18. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  19. Molecular Transport Studies Through Unsupported Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  20. Calibration of Thomson scattering system on VEST

    NASA Astrophysics Data System (ADS)

    Kim, Y.-G.; Lee, J.-H.; Kim, D.; Yoo, M.-G.; Lee, H.; Hwang, Y. S.; Na, Y.-S.

    2017-12-01

    The Thomson scattering system has been recently installed on Versatile Experiment Spherical Torus (VEST) to measure the electron temperature and the density of the core plasmas. Since the calibration of the system is required for the accurate measurement of these parameters, a polychromator and the system efficiency are calibrated. The bias voltage of the detector is optimized and the relative responsivity of the polychromator is measured to analyse the spectral broadening. The tendency of decreasing responsivity because of the ambient temperature change is addressed together. The efficiencies of the alignments using HeNe laser and Nd:YAG laser are compared. After the alignment using Rayleigh scattering, it is improved ~ 7 times while the peak signal of the stray light is decreased. To evaluate the efficiencies of the alignment using HeNe laser, it is compared with the efficiency of the fine alignment by Rayleigh scattering. After absolute calibration is done, the Thomson scattering signal is estimated theoretically. The Bayesian analysis is tried using the synthetic data, and the results show that the input temperature and the density are inside the contour of the 90% confident level. The calibrated Thomson scattering system will provide the meaningful information of the core plasma of the VEST.

  1. Laboratory Experiments to Study Spherical, Iron Oxide Concretion Growth Without Solid Nuclei: Implications for Understanding Meridiani "Blueberries"

    NASA Astrophysics Data System (ADS)

    Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.

    2006-03-01

    Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.

  2. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  3. Observations of reduced electron Gyroscale fluctuations in national spherical torus experiment H-mode plasmas with large ExB flow shear.

    PubMed

    Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H

    2009-06-05

    Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and shouldmore » be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.« less

  5. Carbon dots: emerging theranostic nanoarchitectures.

    PubMed

    Mishra, Vijay; Patil, Akshay; Thakur, Sourav; Kesharwani, Prashant

    2018-06-01

    Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  7. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    NASA Astrophysics Data System (ADS)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  8. Efficient pre-ionization by direct X-B mode conversion in VEST

    NASA Astrophysics Data System (ADS)

    Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.

    2017-01-01

    Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.

  9. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) themore » stochastic diffusion does not have a considerable influence on the confinement of energetic ions.« less

  10. A Simple Method to Measure the Trajectory of a Spherical Pendulum

    ERIC Educational Resources Information Center

    Yang, Hujiang; Xiao, Jinghua; Yang, Tianyu; Qiu, Chen

    2011-01-01

    Compared with a single gravity pendulum, the spherical pendulum behaves more complicatedly in experiments, which makes it difficult to measure. In this paper, we present a method to visualize the trajectories of a spherical pendulum by employing a gravity ball with a lit LED and a digital camera. This new measurement is inexpensive and easy to…

  11. Experiments on Thermal Convection in Rotating Spherical Shells With Radial Gravity: The Geophysical Fluid Flow Cell

    NASA Technical Reports Server (NTRS)

    Hart, John E.

    1996-01-01

    Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.

  12. Fast calculation of low altitude disturbing gravity for ballistics

    NASA Astrophysics Data System (ADS)

    Wang, Jianqiang; Wang, Fanghao; Tian, Shasha

    2018-03-01

    Fast calculation of disturbing gravity is a key technology in ballistics while spherical cap harmonic(SCH) theory can be used to solve this problem. By using adjusted spherical cap harmonic(ASCH) methods, the spherical cap coordinates are projected into a global coordinates, then the non-integer associated Legendre functions(ALF) of SCH are replaced by integer ALF of spherical harmonics(SH). This new method is called virtual spherical harmonics(VSH) and some numerical experiment were done to test the effect of VSH. The results of earth's gravity model were set as the theoretical observation, and the model of regional gravity field was constructed by the new method. Simulation results show that the approximated errors are less than 5mGal in the low altitude range of the central region. In addition, numerical experiments were conducted to compare the calculation speed of SH model, SCH model and VSH model, and the results show that the calculation speed of the VSH model is raised one order magnitude in a small scope.

  13. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  14. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, C; Liu, H; Indiana University Bloomington, Bloomington, IN

    Purpose: A rapid cycling proton beam has several distinct characteristics superior to a slow extraction synchrotron: The beam energy and energy spread, beam intensity and spot size can be varied spot by spot. The feasibility of using a spot scanning beam from a rapidc-ycling-medical-synchrotron (RCMS) at 10 Hz repetition frequency is investigated in this study for its application in proton therapy. Methods: The versatility of the beam is illustrated by two examples in water phantoms: (1) a cylindrical PTV irradiated by a single field and (2) a spherical PTV irradiated by two parallel opposed fields. A uniform dose distribution ismore » to be delivered to the volumes. Geant4 Monte Carlo code is used to validate the dose distributions in each example. Results: Transverse algorithms are developed to produce uniform distributions in each transverseplane in the two examples with a cylindrical and a spherical PTV respectively. Longitudinally, different proton energies are used in successive transverse planes toproduce the SOBP required to cover the PTVs. In general, uniformity of dosedistribution within 3% is obtained for the cylinder and 3.5% for the sphere. The transversealgorithms requires only few hundred beam spots for each plane The algorithms may beapplied to larger volumes by increasing the intensity spot by spot for the same deliverytime of the same dose. The treatment time can be shorter than 1 minute for any fieldconfiguration and tumor shape. Conclusion: The unique beam characteristics of a spot scanning beam from a RCMS at 10 Hz repetitionfrequency are used to design transverse and longitudinal algorithms to produce uniformdistribution for any arbitrary shape and size of targets. The proposed spot scanning beam ismore versatile than existing spot scanning beams in proton therapy with better beamcontrol and lower neutron dose. This work is supported in part by grants from the US Department of Energy under contract; DE-FG02-12ER41800 and the National Science Foundation NSF PHY-1205431.« less

  16. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Aleksandrov, V. V.; Gritsuk, A. N.

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m{sub l}(θ) ∝ sin{sup –1}θ and m{sub l}(θ) ∝ sin{sup –2}θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear massmore » profiling, m{sub l}(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m{sub l}(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.« less

  17. Visual acuity with simulated and real astigmatic defocus.

    PubMed

    Ohlendorf, Arne; Tabernero, Juan; Schaeffel, Frank

    2011-05-01

    To compare the effects of "simulated" and "real" spherical and astigmatic defocus on visual acuity (VA). VA was determined with letter charts that were blurred by calculated spherical or astigmatic defocus (simulated defocus) or were seen through spherical or astigmatic trial lenses (real defocus). Defocus was simulated using ZEMAX and the Liou-Brennan eye model. Nine subjects participated [mean age, 27.2 ± 1.8 years; logarithm of the minimum angle of resolution (logMAR), -0.1]. Three different experiments were conducted in which VA was reduced by 20% (logMAR 0.0), 50% (logMAR 0.2), or 75% (logMAR 0.5) by either (1) imposing positive spherical defocus, (2) imposing positive and negative astigmatic defocus in three axes (0, 45, and 90°), and (3) imposing cross-cylinder defocus in the same three axes as in (2). Experiment (1): there were only minor differences in VA with simulated and real positive spherical defocus. Experiment (2): simulated astigmatic defocus reduced VA twice as much as real astigmatic defocus in all tested axes (p < 0.01 in all cases). Experiment (3): simulated cross-cylinder defocus reduced VA much more than real cross-cylinder defocus (p < 0.01 in all cases), similarly for all three tested axes. The visual system appears more tolerant against "real" spherical, astigmatic, and cross-cylinder defocus than against "simulated" blur. Possible reasons could be (1) limitations in the modeling procedures to simulate defocus, (2) higher ocular aberrations, and (3) fluctuations of accommodation. However, the two optical explanations (2) and (3) cannot account for the magnitude of the effect, and (1) was carefully analyzed. It is proposed that something may be special about the visual processing of real astigmatic and cross-cylinder defocus-because they have less effect on VA than simulations predict.

  18. A nanotectonics approach to produce hierarchically organized bioactive glass nanoparticles-based macrospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2012-09-01

    Bioactive particles have been widely used in a series of biomedical applications due to their ability to promote bone-bonding and elicit favorable biological responses in therapies associated with the replacement and regeneration of mineralized tissues. In this work hierarchical architectures are prepared by an innovative methodology using SiO2-CaO sol-gel based nanoparticles. Inspired by colloidal crystals, spherical aggregates were formed on biomimetic superhydrophobic surfaces using bioactive glass nanoparticles (BG-NPs) able to promote bone regeneration. A highly ordered organization, a common feature of mineralized structures in Nature, was achieved at both nano- and microlevels, being the crystallization degree of the structures controlled by the evaporation rates taking place at room temperature (RT) or at 4 °C. The crystallization degree of the structures influenced the Ca/P ratio of the apatitic film formed at their surface, after 7 days of immersion in SBF. This allows the regulation of bioactive properties and the ability to release potential additives that could be also incorporated in such particles with a high efficiency. Such a versatile method to produce bioactive particles with controlled size and internal structure could open new possibilities in designing new spherical devices for orthopaedic applications, including tissue engineering.

  19. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.

    2015-04-21

    In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less

  20. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  1. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE PAGES

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; ...

    2017-01-11

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  2. A versatile system for the rapid collection, handling and graphics analysis of multidimensional data

    NASA Astrophysics Data System (ADS)

    O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.

    1993-05-01

    The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.

  3. Theoretical study on surface plasmon properties of gold nanostars

    NASA Astrophysics Data System (ADS)

    Shan, Feng; Zhang, Tong

    2018-03-01

    With the rapid development of nanotechnology, the surface plasmon properties of metal nanostructures have become the focus of research. In this paper, a multi-tip gold nanostars (GNSs) structure is designed theoretically, and its surface plasmon properties are simulated by using the finite element method (FEM), which is practical and versatile. Compared with the traditional spherical and triangular plate particles, the results show that the tip structure of the GNSs has a stronger hot spots effect, resulting in greater local field enhancement properties. The relationship between the structure parameters of GNSs and their resonance peaks was also studied. The results indicate that the resonance peaks of GNSs depend strongly on the size, spacing between two GNSs, quantity and refractive index of the GNSs.

  4. The influence of cellular uptake on gold nanorods photostability and photoacoustic conversion efficiency

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Ratto, Fulvio; Tatini, Francesca; Matteini, Paolo; Cini, Alberto; Giovannelli, Ilaria; de Angelis, Marella; Rossi, Francesca; Centi, Sonia; Pini, Roberto

    2015-03-01

    Their intense optical absorbance in the near-infrared window and chemical versatility make gold nanorods attractive for biomedical applications, such as photothermal therapies and photoacoustic imaging. However, their limited photostability remains a drawback of practical concern. In fact, when gold nanorods are irradiated with nanosecond laser pulses in resonance with their plasmon oscillations, there may occur reshaping into spherical particles or even fragmentation at higher optical fluences, which cause substantial modifications of their optical features with a loss of photoacoustic conversion efficiency. In this contribution, we focus on how the gold nanorods photostability is affected when these particles are modified for cellular uptake, by investigating their stability and photoacoustic conversion efficiency under near infrared pulsed irradiation at different laser fluences.

  5. Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial

    NASA Astrophysics Data System (ADS)

    Christofi, Aristi; Stefanou, Nikolaos

    2018-03-01

    We report on the optical response of a nonreciprocal bianisotropic metamaterial, consisting of spherical, metal-coated magnetic nanoparticles embedded in an optically active medium, thus combining gyrotropy, plasmonic resonances, and chirality in a versatile design. The corresponding effective medium is deduced by an appropriate two-step generalized Maxwell-Garnett homogenization scheme. The associated photonic band structure and transmission spectra are obtained through a six-vector formulation of Maxwell equations, which provides an efficient framework for general bianisotropic structures going beyond existing approaches that involve cumbersome nonlinear eigenvalue problems. Our results, analyzed and discussed in the light of group theory, provide evidence that the proposed metamaterial exhibits some remarkable frequency-tunable properties, such as strong, plasmon-enhanced nonreciprocal polarization azimuth rotation and magnetochiral dichroism.

  6. Development of a versatile laser light scattering instrument

    NASA Astrophysics Data System (ADS)

    Meyer, William V.; Ansari, Rafat R.

    1990-10-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  7. Development of a versatile laser light scattering instrument

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Ansari, Rafat R.

    1990-01-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  8. Characterization of the non axial thrust generated by large solid propellant rocket motors in three axis stabilized ascent

    NASA Technical Reports Server (NTRS)

    Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.

    1978-01-01

    Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.

  9. VORTEX: Versatile and open subsea robot for technical experiment: Prototyping software architecture for the next AUV and ROV generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigaud, V.; Le Rest, E.; Marce, L.

    1994-12-31

    This paper describes a new experimental vehicle named V.O.R.T.E.X. (Versatile and Open subsea Robot for Technical EXperiment) built by the Subsea Robotics Laboratory at the French institute for Sea exploitation (Ifremer). The aim of this project is to work out the metamorphosis of a classical ROV architecture into an AUV architecture in particular for the control and programming architecture design. This vehicle is also designed to emulate the new IFREMER ROV6000 and the future Abyssal Survey Vehicle AUV, from a functional point of view.

  10. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer's disease.

    PubMed

    Zhou, Jingting; Fa, Huanbao; Yin, Wei; Zhang, Jin; Hou, Changjun; Huo, Danqun; Zhang, Dong; Zhang, Haifeng

    2014-04-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been proposed for use in magnetic resonance imaging as versatile ultra-sensitive nanoprobes for Alzheimer's disease imaging. In this work, we synthetized an efficient contrast agent of Alzheimer's disease using 1,1-dicyano-2-[6-(dimethylamino)naphthalene-2-yl]propene (DDNP) carboxyl derivative to functionalize the surface of SPIONs. The DDNP-SPIONs are prepared by conjugating DDNP carboxyl derivative to oleic acid-treated SPIONs through ligand exchange. The structure, size distribution and magnetic property were identified by IR, TGA-DTA, XRD, TEM, Zetasizer Nano and VSM. TEM and Zetasizer Nano observations indicated that the DDNP-SPIONs are relatively mono-dispersed spherical distribution with an average size of 11.7nm. The DDNP-SPIONs were then further analyzed for their MRI relaxation properties using MR imaging and demonstrated high T2 relaxivity of 140.57s(-1)FemM(-1), and the vitro experiment that DDNP-SPIONs binding to β-Amyloid aggregates were then investigated by fluorophotometry, the results showed that the combination had induced the fluorescence enhancement of the DDNP-SPIONs and displayed tremendous promise for use as a contrast agent of Alzheimer's disease in MRI. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun

    2018-04-01

    The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

  12. Bifurcation of rotating liquid drops: Results from USML-1 experiments in space

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G.; Anilkumar, A. V.; Lee, C. P.; Lin, K. C.

    1994-01-01

    Experiments on rotational bifurcation of liquid drops, in which the drops were levitated and spun using acoustic fields in a low-gravity environment, were conducted during the first United States Microgravity Laboratory (USML-1) Space Shuttle flight. The experiments have successfully resolved the discrepancies existing between the previous experimental results and the theoretical predictions. In the case of a spherical drop, for which theory exists, the results agree well with the predictions. In the case of flattened drops, the experiments have extablished a family of curves, with the spherical drop as the limiting case.

  13. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization

    NASA Astrophysics Data System (ADS)

    Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing

    2017-09-01

    Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.

  14. SUNIST Microwave Power System

    NASA Astrophysics Data System (ADS)

    Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng

    2005-06-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  15. Theoretical and experimental design studies for the Atmospheric General Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Hathaway, D. H.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.

    1985-01-01

    The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.

  16. A versatile small form factor twisted-pair TFC FMC for MTCA AMCs

    NASA Astrophysics Data System (ADS)

    Meder, L.; Lebedev, J.; Becker, J.

    2017-03-01

    In continuous readout systems of particle physics experiments, the provision of a common clock and time reference and the distribution of critical low latency messages to the processing and fronted layers of the readout are crucial tasks. In the context of the Compressed Baryonic Matter (CBM) experiment, a versatile small form factor Timing and Fast-Control (TFC) interfacing FPGA Mezzanine Card (FMC) was developed, offering bidirectional twisted-pair (TP) links for the communication between TFC nodes. Also a versatile clocking including voltage controlled oscillators and a connection to the telecommunication clock lines of mTCA crates are available. Being designed for both TFC Master and Slaves, the card allows rapid system developments without additional Slave hardware circuits. Measurements show that it is possible to transmit over cable lengths of 25 m at a rate of 240 Mbit/s for all data channels simultaneously. A TFC Master-Slave system using two of these cards can be synchronized with a precision of ±10 ps to an user-defined phase setpoint.

  17. Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf

    2017-04-01

    Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an optically thick snowpack with a given snow grain effective size, the absorbing aerosol RE is smaller for non-spherical than for spherical snow grains. The reason for this is that due to the lower asymmetry parameter of the non-spherical snow grains, solar radiation does not penetrate as deep in snow as in the case of spherical snow grains. However, in a climate model simulation, the RE is sensitive to patterns of aerosol deposition and simulated snow cover. In fact, the global land-area mean absorbing aerosol RE is larger in the NONSPH than SPH experiment (0.193 vs. 0.168 W m-2), owing to later snowmelt in spring.

  18. Ball-and-Socket-Bearing Wear Test

    NASA Technical Reports Server (NTRS)

    Graham, W. G.

    1984-01-01

    Series of experiments to measure wear life of spherical bearing summarized. Report designed to establish clearance, contour, finish, and lubricant parameters for highly-loaded, compact plain spherical bearing. Information useful in design of bearings for helicopter control linkages, business machines, nuclear reactor, and rotor bearings.

  19. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  20. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition

    PubMed Central

    Zhang, Lanyue; Ding, Dandan; Yang, Desen; Wang, Jia; Shi, Jie

    2017-01-01

    Spherical microphone arrays have been paid increasing attention for their ability to locate a sound source with arbitrary incident angle in three-dimensional space. Low-frequency sound sources are usually located by using spherical near-field acoustic holography. The reconstruction surface and holography surface are conformal surfaces in the conventional sound field transformation based on generalized Fourier transform. When the sound source is on the cylindrical surface, it is difficult to locate by using spherical surface conformal transform. The non-conformal sound field transformation by making a transfer matrix based on spherical harmonic wave decomposition is proposed in this paper, which can achieve the transformation of a spherical surface into a cylindrical surface by using spherical array data. The theoretical expressions of the proposed method are deduced, and the performance of the method is simulated. Moreover, the experiment of sound source localization by using a spherical array with randomly and uniformly distributed elements is carried out. Results show that the non-conformal surface sound field transformation from a spherical surface to a cylindrical surface is realized by using the proposed method. The localization deviation is around 0.01 m, and the resolution is around 0.3 m. The application of the spherical array is extended, and the localization ability of the spherical array is improved. PMID:28489065

  1. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.

    PubMed

    Ball, Philip

    2015-04-19

    Alan Turing was neither a biologist nor a chemist, and yet the paper he published in 1952, 'The chemical basis of morphogenesis', on the spontaneous formation of patterns in systems undergoing reaction and diffusion of their ingredients has had a substantial impact on both fields, as well as in other areas as disparate as geomorphology and criminology. Motivated by the question of how a spherical embryo becomes a decidedly non-spherical organism such as a human being, Turing devised a mathematical model that explained how random fluctuations can drive the emergence of pattern and structure from initial uniformity. The spontaneous appearance of pattern and form in a system far away from its equilibrium state occurs in many types of natural process, and in some artificial ones too. It is often driven by very general mechanisms, of which Turing's model supplies one of the most versatile. For that reason, these patterns show striking similarities in systems that seem superficially to share nothing in common, such as the stripes of sand ripples and of pigmentation on a zebra skin. New examples of 'Turing patterns' in biology and beyond are still being discovered today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  2. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E. M.; He, Xian-Tu

    2017-03-01

    Octahedral spherical hohlraums with a single laser ring at an injection angle of 55∘ are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55∘ are reported and compared to that observed with cylindrical hohlraums with injection angles of 28 .5∘ and 55∘, similar to that of the NIF. Significant LPI is observed with the laser injection of 28 .5∘ in the cylindrical hohlraum where the propagation path is similar to the 55∘ injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35 -μ m incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

  3. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target.

    PubMed

    Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E M; He, Xian-Tu

    2017-03-01

    Octahedral spherical hohlraums with a single laser ring at an injection angle of 55^{∘} are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55^{∘} are reported and compared to that observed with cylindrical hohlraums with injection angles of 28.5^{∘} and 55^{∘}, similar to that of the NIF. Significant LPI is observed with the laser injection of 28.5^{∘} in the cylindrical hohlraum where the propagation path is similar to the 55^{∘} injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35-μm incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

  4. DOE FES FY2017 Joint Research Target Fourth Quarter Milestone Report for theNational Spherical Torus Experiment Upgrade.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A.

    2017-09-13

    A successful high-performance plasma operation with a radiative divertor has been demonstrated on many tokamak devices, however, significant uncertainty remains in accurately modeling detachment thresholds, and in how detachment depends on divertor geometry. Whereas it was originally planned to perform dedicated divertor experiments on the National Spherical Tokamak Upgrade to address critical detachment and divertor geometry questions for this milestone, the experiments were deferred due to technical difficulties. Instead, existing NSTX divertor data was summarized and re-analyzed where applicable, and additional simulations were performed.

  5. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    PubMed

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  6. MAGNETO-FRICTIONAL MODELING OF CORONAL NONLINEAR FORCE-FREE FIELDS. I. TESTING WITH ANALYTIC SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Keppens, R.; Xia, C.

    2016-09-10

    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov–Démoulin model. We compare different combinations of spatial and temporal discretizations, and find thatmore » the fourth-order central difference with a local Lax–Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.« less

  7. Versatile module for experiments with focussing neutron guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; Pfleiderer, C.; Böni, P.

    2014-09-22

    We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effectsmore » of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.« less

  8. Deconvolution and analysis of wide-angle longwave radiation data from Nimbus 6 Earth radiation budget experiment for the first year

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Green, R. N.; Smith, G. L.

    1980-01-01

    One year of longwave radiation data from July 1975 through June 1976 from the Nimbus 6 satellite Earth radiation budget experiment is analyzed by representing the radiation field by a spherical harmonic expansion. The data are from the wide field of view instrument. Contour maps of the longwave radiation field and spherical harmonic coefficients to degree 12 and order 12 are presented for a 12 month data period.

  9. Baroclinic instability with variable static stability - A design study for a spherical atmospheric model experiment. [for Spacelab flight

    NASA Technical Reports Server (NTRS)

    Giere, A. C.; Fowlis, W. W.

    1980-01-01

    The effect of a radially-variable, dielectric body force, analogous to gravity on baroclinic instability for the design of a spherical, synoptic-scale, atmospheric model experiment in a Spacelab flight is investigated. Exact solutions are examined for quasi-geostrophic baroclinic instability in which the rotational Froude number is a linear function of the height. Flow in a rotating rectilinear channel with a vertically variable body force without horizontal shear of the basic state is also discussed.

  10. Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment.

    PubMed

    Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  11. Improving Spherical Photogrammetry Using 360° OMNI-CAMERAS: Use Cases and New Applications

    NASA Astrophysics Data System (ADS)

    Fangi, G.; Pierdicca, R.; Sturari, M.; Malinverni, E. S.

    2018-05-01

    During the last few years, there has been a growing exploitation of consumer-grade cameras allowing one to capture 360° images. Each device has different features and the choice should be entrusted on the use and the expected final output. The interest on such technology within the research community is related to its use versatility, enabling the user to capture the world with an omnidirectional view with just one shot. The potential is huge and the literature presents many use cases in several research domains, spanning from retail to construction, from tourism to immersive virtual reality solutions. However, the domain that could the most benefit is Cultural Heritage (CH), since these sensors are particularly suitable for documenting a real scene with architectural detail. Following the previous researches conducted by Fangi, which introduced its own methodology called Spherical Photogrammetry (SP), the aim of this paper is to present some tests conducted with the omni-camera Panono 360° which reach a final resolution comparable with a traditional camera and to validate, after almost ten years from the first experiment, its reliability for architectural surveying purposes. Tests have been conducted choosing as study cases Santa Maria della Piazza and San Francesco alle scale Churches in Ancona, Italy, since they were previously surveyed and documented with SP methodology. In this way, it has been possible to validate the accuracy of the new survey, performed by means an omni-camera, compared with the previous one for both outdoor and indoor scenario. The core idea behind this work is to validate if this new sensor can replace the standard image collection phase, speeding up the process, assuring at the same time the final accuracy of the survey. The experiment conducted demonstrate that, w.r.t. the SP methodology developed so far, the main advantage in using 360° omni-directional cameras lies on increasing the rapidity of acquisition and panorama creation phases. Moreover, in order to foresee the implications that a wide adoption of fast and agile tools of acquisition could bring within the CH domain, points cloud have been generated with the same panoramas and visualized in a WEB application, to allow a result dissemination between the users.

  12. Efficacy of lyophilised C-strain vaccine after oral immunisation of domestic pigs and wild boar against classical swine fever: first results.

    PubMed

    Faust, A; Lange, E; Kaden, V

    2007-11-01

    The aim of this study was to evaluate the efficacy of lyophilised C-strain vaccine in domestic pigs and wild boar after oral application. A new spherical bait form (diameter 3 cm) containing lyophilised vaccine virus and the recent vaccine baits were used for animal experiments. Four vaccination groups were established in experiment 1 (group 1: recent liquid bait vaccine; group 2: spherical baits containing one dose of the lyophilised vaccine; groups 3 (domestic pigs) and 4 (wild boar): spherical baits containing two doses of the lyophilised vaccine) and two groups in experiment 2 (group 1: recent liquid bait vaccine; group 2: spherical baits with two doses of the lyophilised vaccine). Challenge was carried out with the highly virulent virus strain "Alfort 187" (using 100 TCID50 in the first and 1.000 TCID50 in the second experiment). Our results showed that the animals vaccinated with lyophilised C-strain vaccine developed high neutralising antibody titres comparable to those obtained after vaccination with the recent bait vaccine. All pigs which picked up the baits remained healthy after challenge. Neither clinical symptoms nor viremia or virus shedding were observed after infection except in one pig (group 2, experiment 2) which had not consumed the vaccine bait. The surviving domestic pigs and wild boar were tested negative for CSFV and viral RNA at the end of the study. This result demonstrates that lyophilised vaccine may become an effective vaccine formulation for oral immunisation of wild boar against CSF in the near future.

  13. Estimation of settling velocity of sediment particles in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Nasiha, Hussain J.; Shanmugam, Palanisamy

    2018-04-01

    A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can be easily adopted for various scientific and operational applications since the required parameters are readily measurable with the commercially available instrumentations.

  14. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  15. Early Rockets

    NASA Image and Video Library

    2004-04-15

    This photograph is of the engine for the Redstone rocket. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of its versatility, the Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile.

  16. Early Rockets

    NASA Image and Video Library

    2004-04-15

    The image depicts Redstone missile being erected. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  17. Redstone Missile

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The image depicts Redstone missile being erected. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and the production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  18. Preparation of Co-Zn ferrite nano-based materials and their enhanced magnetic performance via inverse miniemulsion method

    NASA Astrophysics Data System (ADS)

    Ji, Juejin; Zhang, Zhenqian; Fang, Bijun; Ding, Jianning

    2017-11-01

    The well dispersed CZF/PAM nanoparticles were prepared by the inverse miniemulsion method, which present high calcining and sintering activity for preparing Co0.875Zn0.125Fe2O4 (CZF) films, powders and ceramics at rather low temperatures. The prepared CZF/PAM inverse miniemulsion exhibits excellent film-formation performance, which is feasible for coating CZF films. XRD and FT-IR measurements confirmed that phase pure spinel structure and well crystalline CZF powders can be prepared calcined at the least temperature of 400 °C. The 450 °C-calcined CZF powders exhibit nearly spherical shape grains with average particle size 20-30 nm accompanied by apparent conglomeration. Improved external magnetic performance and electrical properties are obtained in the synthesized CZF powders and ceramics, which provide versatile promising applications.

  19. Virus-mimetic nanovesicles as a versatile antigen-delivery system

    PubMed Central

    Zhang, Pengfei; Chen, Yixin; Zeng, Yun; Shen, Chenguang; Li, Rui; Guo, Zhide; Li, Shaowei; Zheng, Qingbing; Chu, Chengchao; Wang, Zhantong; Zheng, Zizheng; Tian, Rui; Ge, Shengxiang; Zhang, Xianzhong; Xia, Ning-Shao; Liu, Gang; Chen, Xiaoyuan

    2015-01-01

    It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses. PMID:26504197

  20. Song matching, overlapping, and switching in the banded wren: the sender’s perspective

    PubMed Central

    Vehrencamp, Sandra L.; Hall, Michelle L.; Bohman, Erin R.; Depeine, Catherine D.; Dalziell, Anastasia H.

    2008-01-01

    Interpreting receiver responses to on-territory playback of aggressive signals is problematic. One solution is to combine such receiver-perspective experiments with a sender-perspective experiment that allows subjects to demonstrate how their choice of singing strategies is associated with their approach behavior. Here we report the results of a sender-perspective study on the banded wren (Thryothorus pleurostictus), and combine information on context and results of previous receiver-perspective experiments to clarify function. Territorial males were presented with a 5-min playback consisting of song types present in their repertoire. We assessed the degree to which the subjects’ song matching rate, overlapping rate, and song-type versatility were correlated with their approach latency, closeness of approach, latency to first retreat, and time spent close to the speaker. Male age, breeding stage, and features of the playback stimuli were also considered. Song matching was associated with rapid and close approach, consistent with the receiver-perspective interpretation of type matching as a conventional signal of aggressive motivation. Overlapping was associated with earlier retreat, and together with the aversive receiver response to our previous overlapping playback experiment suggests that overlapping is a defensive withdrawal signal. High versatility was associated with slower first retreat from the speaker and high levels of reciprocal matching between subject and playback. Males with fledglings sang with particularly low versatility and approached the speaker aggressively, whereas males with nestlings overlapped more and retreated quickly. Finally, older males matched more but overlapped less. PMID:18392112

  1. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi

    2014-01-21

    Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic shell structures-that allow fabrication of a variety of hollow nanoparticles. Importantly, we synthesized all of these particles in water, avoiding use of hazardous organic solvents. We have designed the precursor of the inorganic material to be selectively sorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void. By rationally tailoring experimental parameters, we readily and selectively obtained a variety of hollow nanoparticles including silica, hybrid silicas, metal-oxides, metal-carbonates, metal-sulfates, metal-borates, and metal-phosphates. Finally, we highlight the state-of-the-art techniques we used to characterize these nanoparticles, and describe experiments that demonstrate the potential of these hollow particles in drug delivery, and as anode and cathode materials for lithium-ion batteries.

  2. Baseline Design of a 5-7 kJ KrF Laser Facility for Direct Illumination ICF Experiments.

    DTIC Science & Technology

    1985-12-31

    energies of 5-7 kJ, pulsewidths 5 ns, and broadband (> 20 45) capabilities, the proposed sys - tem is intended primarily for laser-plasma experiments...optics with mounts and align- ment hardware, (3) building, (4) chamber system, (5) oscillator, (6) I.S.I. array, and (7) control sys - tem. Each component...hence, for a spherical mirror, 2 - COA 3pDG (B14) NABE - NOMA 16f2?( Astigmatisnr~ (78)MAx 2CID92 -- (VL8)mlN; hence, for either a spherical mirror or

  3. Full toroidal imaging of non-axisymmetric plasma material interaction in the National Spherical Torus Experiment divertor.

    PubMed

    Scotti, Filippo; Roquemore, A L; Soukhanovskii, V A

    2012-10-01

    A pair of two dimensional fast cameras with a wide angle view (allowing a full radial and toroidal coverage of the lower divertor) was installed in the National Spherical Torus Experiment in order to monitor non-axisymmetric effects. A custom polar remapping procedure and an absolute photometric calibration enabled the easier visualization and quantitative analysis of non-axisymmetric plasma material interaction (e.g., strike point splitting due to application of 3D fields and effects of toroidally asymmetric plasma facing components).

  4. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    PubMed

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to facilitate targeted cell binding while being resistant to non-specific cellular uptake. Such a platform could allow for investigations into how physical parameters of a particle and its surface affect the interface between biomaterials and cells, as well as provide biomimetic technology platforms for drug delivery and cellular engineering. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Further Experiments with Ferns in Culture: Regeneration.

    ERIC Educational Resources Information Center

    Sheffield, Elizabeth; Attree, Stephen M.

    1983-01-01

    Ferns in culture provide versatile and easily manipulated material for a wide variety of experiments and observations. Information is provided that supplements earlier reports of the vast experimental potential of these cryptogams and outlines laboratory exercises which reveal the regenerative behavior of fern tissue. (JN)

  6. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the climatic differences to the SPH experiment become very small. Finally, the impact of assumed snow grain shape on the radiative effects of absorbing aerosols in snow is discussed.

  7. Identification and onset of inertial modes in the wide-gap spherical Couette system

    NASA Astrophysics Data System (ADS)

    Barik, A.; Wicht, J.; Triana, S. A.; Hoff, M.

    2016-12-01

    The spherical Couette system consists of two concentric rotating spheres with a fluid filling the shell in between. The system has been studied for a long time by fluid dynamicists and is ideal for studying flow instabilities due to differential rotation and the interaction of the same with magnetic fields - important for understanding dynamics of planetary and stellar interiors. The system is also a basis for a new generation of dynamo experiments because of its closer geometrical resemblance to real astrophysical objects as compared to past experiments. We simulate this system using the two different pseudo-spectral codes MagIC and XSHELLS. We focus here on a very interesting and general instability in this system - inertial modes. A rotating body of fluid is known to sustain oscillatory waves due to the restoring action of the Coriolis force. In a bounded container, these form a discrete spectrum called inertial modes. These modes have been analytically known for a rotating full sphere for over a century now. In a spherical shell, they cannot be formulated analytically. However, many of these inertial modes are observed in spherical Couette experiments as well as in simulations. Past studies have tried to explain the onset of these modes invoking wave over-reflection or critical layer instabilities on the cylinder tangent to the inner sphere. In this study, we present the inertial modes found in our simulations and try to explain their onset as secondary instabilities due to the destabilization of the fundamental non-axisymmetric instability, forming a triadic resonance with the fundamental instability. We run various simulations varying the rotation rate of the inner sphere, while keeping the rotation rate of the outer sphere constant. We track velocities and induced magnetic field and produce spectrograms similar to those of the experiments. Our results match very well the experimental data from spherical Couette set-ups at BTU Cottbus and the University of Maryland.

  8. A Geophysical Flow Experiment in a Compressible Critical Fluid

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Garcia, Laudelino

    1996-01-01

    The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.

  9. Forging patterns and making waves from biology to geology: a commentary on Turing (1952) ‘The chemical basis of morphogenesis’

    PubMed Central

    Ball, Philip

    2015-01-01

    Alan Turing was neither a biologist nor a chemist, and yet the paper he published in 1952, ‘The chemical basis of morphogenesis’, on the spontaneous formation of patterns in systems undergoing reaction and diffusion of their ingredients has had a substantial impact on both fields, as well as in other areas as disparate as geomorphology and criminology. Motivated by the question of how a spherical embryo becomes a decidedly non-spherical organism such as a human being, Turing devised a mathematical model that explained how random fluctuations can drive the emergence of pattern and structure from initial uniformity. The spontaneous appearance of pattern and form in a system far away from its equilibrium state occurs in many types of natural process, and in some artificial ones too. It is often driven by very general mechanisms, of which Turing's model supplies one of the most versatile. For that reason, these patterns show striking similarities in systems that seem superficially to share nothing in common, such as the stripes of sand ripples and of pigmentation on a zebra skin. New examples of ‘Turing patterns' in biology and beyond are still being discovered today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750229

  10. Growth of 2D Mesoporous Polyaniline with Controlled Pore Structures on Ultrathin MoS2 Nanosheets by Block Copolymer Self-Assembly in Solution.

    PubMed

    Tian, Hao; Zhu, Shuyan; Xu, Fugui; Mao, Wenting; Wei, Hao; Mai, Yiyong; Feng, Xinliang

    2017-12-20

    The development of versatile strategies toward two-dimensional (2D) porous nanocomposites with tunable pore structures draws immense scientific attention in view of their attractive physiochemical properties and a wide range of promising applications. This paper describes a self-assembly approach for the directed growth of mesoporous polyaniline (PANi) with tunable pore structures and sizes on ultrathin freestanding MoS 2 nanosheets in solution, which produces 2D mesoporous PANi/MoS 2 nanocomposites. The strategy employs spherical and cylindrical micelles, which are formed by the controlled solution self-assembly of block copolymers, as the soft templates for the construction of well-defined spherical and cylindrical mesopores in the 2D PANi/MoS 2 nanocomposites, respectively. With potential applications as supercapacitor electrode materials, the resultant 2D composites show excellent capacitive performance with a maximum capacitance of 500 F g -1 at a current density of 0.5 A g -1 , good rate performance, as well as outstanding stability for charge-discharge cycling. Moreover, the 2D mesoporous nanocomposites offer an opportunity for the study on the influence of different pore structures on their capacitive performance, which helps to understand the pore structure-property relationship of 2D porous electrode materials and to achieve their electrochemical performance control.

  11. Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    NASA Technical Reports Server (NTRS)

    Hart, J.; Toomre, J.

    1980-01-01

    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.

  12. An Undergraduate Experiment on Nuclear Lifetime Measurement Using the Doppler Effect

    ERIC Educational Resources Information Center

    Campbell, J. L.; And Others

    1972-01-01

    While designed for a senior undergraduate laboratory, the experiment illustrates the principles involved in the various Doppler techniques currently used in nuclear lifetime studies and demonstrates the versatility of the Ge(Li) detector in applications other than direct energy or intensity measurement. (Author/TS)

  13. Continuous form-dependent focusing of non-spherical microparticles in a highly diluted suspension with the help of microfluidic spirals

    NASA Astrophysics Data System (ADS)

    Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.

    2018-04-01

    Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.

  14. Defect Implosion Experiments (DIME) at OMEGA

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Schmitt, M. J.; Tregillis, I. L.; Obrey, K. D.; Magelssen, G. R.; Wilke, M. D.; Glebov, V.; Marshall, F. J.; Kim, Y. H.; Bradley, P. A.; Batha, S. H.

    2010-11-01

    The Los Alamos DIME campaign involves perturbed spherical implosions, driven by 60 OMEGA beams with uniform, symmetrical illumination. D-T-filled CH-shell targets with equatorial-plane defects are designed to produce a non-spherical neutron burn region. The objectives of the DIME series are to observe the non-spherical burn with the neutron imaging system (NIS) and to simulate the physics of the neutron and x-ray production. We have demonstrated adequate neutron yield for NIS imaging with targets of diameter 860 μm. All targets are filled with 5 atm of DT. We used two separate shell thicknesses: 8 μm and 15 μm, thus testing both exploding pusher and ablative designs. Defect channel depth ranges from 0 -- 8 μm. Width is 20 -- 40 μm. Perfect targets have no defect. Numerical simulations predict enhanced x-ray emission, that is suggested by experiment. Results from a recent DIME campaign will be discussed.

  15. Diagnostics for PLX-alpha

    NASA Astrophysics Data System (ADS)

    Gilmore, Mark; Hsu, Scott

    2015-11-01

    The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.

  16. A numerical and experimental study of three-dimensional liquid sloshing in a rotating spherical container

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.

    1992-01-01

    A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.

  17. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.

    The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less

  18. Drift kinetic effects on plasma response in high beta spherical tokamak experiments

    NASA Astrophysics Data System (ADS)

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan

    2018-01-01

    The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.

  19. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE PAGES

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...

    2017-09-21

    The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less

  20. Sooting and disruption in spherically symmetrical combustion of decane droplets in air

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Williams, F. A.; Haggard, J. B., Jr.; Shaw, B. D.

    1987-01-01

    The paper presents the results of experiments on the burning of individual 1-2 mm decane droplets in air at room temperature and atmospheric pressure. The NASA Lewis 2.2 s drop tower was used as well as a newly designed droplet-combustion apparatus that promotes nearly spherically symmetrical combustion. Unanticipated disruptions related to sooting behavior were encountered.

  1. Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn

    1987-01-01

    Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively loose tolerances) indicate an accuracy only 3 or 4 times that achieved by conventional two-axis contouring (10 AM as opposed to 3 pm rms) The successful completion of these projects demonstrates the successful application of three-axis contouring with the LOG. Toroidal cutters have also solved many of the drawbacks of spherical wheels. Work remains to be done in improving machine response and decreasing the contribution of backlash errors.

  2. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  3. Early Rockets

    NASA Image and Video Library

    1958-05-15

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the "reliable workhorse" for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  4. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  5. Supramolecular guests in solvent driven block copolymer assembly: From internally structured nanoparticles to micelles

    PubMed Central

    Klinger, Daniel; Robb, Maxwell J.; Spruell, Jason M.; Lynd, Nathaniel A.; Hawker, Craig J.

    2014-01-01

    Supramolecular interactions between different hydrogen-bonding guests and poly(2-vinyl pyridine)-block-poly (styrene) can be exploited to prepare remarkably diverse self-assembled nanostructures in dispersion from a single block copolymer (BCP). The characteristics of the BCP can be efficiently controlled by tailoring the properties of a guest which preferentially binds to the P2VP block. For example, the incorporation of a hydrophobic guest creates a hydrophobic BCP complex that forms phase separated nanoparticles upon self-assembly. Conversely, the incorporation of a hydrophilic guest results in an amphiphilic BCP complex that forms spherical micelles in water. The ability to tune the self-assembly behavior and access dramatically different nanostructures from a single BCP substrate demonstrates the exceptional versatility of the self-assembly of BCPs driven by supramolecular interactions. This approach represents a new methodology that will enable the further design of complex, responsive self-assembled nanostructures. PMID:25525473

  6. The NIFTy way of Bayesian signal inference

    NASA Astrophysics Data System (ADS)

    Selig, Marco

    2014-12-01

    We introduce NIFTy, "Numerical Information Field Theory", a software package for the development of Bayesian signal inference algorithms that operate independently from any underlying spatial grid and its resolution. A large number of Bayesian and Maximum Entropy methods for 1D signal reconstruction, 2D imaging, as well as 3D tomography, appear formally similar, but one often finds individualized implementations that are neither flexible nor easily transferable. Signal inference in the framework of NIFTy can be done in an abstract way, such that algorithms, prototyped in 1D, can be applied to real world problems in higher-dimensional settings. NIFTy as a versatile library is applicable and already has been applied in 1D, 2D, 3D and spherical settings. A recent application is the D3PO algorithm targeting the non-trivial task of denoising, deconvolving, and decomposing photon observations in high energy astronomy.

  7. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  8. Redstone Missile on Launch Pad

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  9. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Min, Qilong

    2015-11-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors.

  10. Comparison between Measured and Simulated Radiation Doses in the Matoroshka-R Spherical phantom Experiment#1 and Area Monitoring aboard International Space Station using PADLES from May - Sep. 2012

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Aiko; Tolochek, Raisa; Shurshakov, Vyacheslav; Nikolaev, Igor; Tawara, Hiroko; Kitajo, Keiichi; Shimada, Ken

    The measurement of radiation environmental parameters in space is essential to support radiation risk assessments for astronauts and establish a benchmark for space radiation models for present and future human space activities. Since Japanese Experiment Module ‘KIBO’ was attached to the International Space Station (ISS) in 2008, we have been performing continuous space radiation dosimetery using a PADLES (Passive Dosimeter for Life-Science Experiments in Space) consisting of CR-39 PNTDs (Plastic Nuclear track detectors) and TLD-MSOs (Mg2SiO4:Tb) for various space experiments onboard the ‘KIBO’ part of the ISS. The MATROSHKA-R experiments aims to verify of dose distributions in a human body during space flight. The phantom consists of tissue equivalent material covered by a poncho jacket with 32 pockets on the surface. 20 container rods with dosimeters can be struck into the spherical phantom. Its diameter is 370 mm and it is 32 kg in weight. The first experiment onboard the KIBO at Forward No.2 area (JPM1F2 Rack2) was conducted over 114 days from 21 May to 12 September 2012 (the installation schedule inside the phantom) on the way to solar cycle 24th upward curve. 16 PADLES packages were deployed into 16 poncho pockets on the surface of the spherical phantom. Another 12 PADLES packages were deployed inside 4 rods (3 packages per rod in the outer, middle and inner side). Area monitoring in the KIBO was conducted in the same period (Area PADLES series #8 from 15 May to 16 September, 2012). Absorbed doses were measured at 17 area monitoring points in the KIBO and 28 locations (16 packages in poncho pockets and 12 inside 4 rods) in the phantom. The maximum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the outer wall was 0.43 mGy/day and the minimum value measured with the PADLES in the poncho pockets on the surface of the spherical phantom facing the KIBO interior was 0.30 mGy/day. The maximum absorbed doses measured inside rods was 0.28 mGy/day and the minimum value was 0.19 mGy/day. This indicates doses measured from the dosimeters placed in the outer side of each rod are relatively high compared to the doses placed in the center of rod. At this time, we also would like to show the preliminary results of comparative study between measured and Simulated Radiation Doses using the Particle and Heavy Ion Transport code System (PHITS) calculations with well developed shielding model of the KIBO and numerical spherical phantom inside.

  11. Does correcting astigmatism with toric lenses improve driving performance?

    PubMed

    Cox, Daniel J; Banton, Thomas; Record, Steven; Grabman, Jesse H; Hawkins, Ronald J

    2015-04-01

    Driving is a vision-based activity of daily living that impacts safety. Because visual disruption can compromise driving safety, contact lens wearers with astigmatism may pose a driving safety risk if they experience residual blur from spherical lenses that do not correct their astigmatism or if they experience blur from toric lenses that rotate excessively. Given that toric lens stabilization systems are continually improving, this preliminary study tested the hypothesis that astigmats wearing toric contact lenses, compared with spherical lenses, would exhibit better overall driving performance and driving-specific visual abilities. A within-subject, single-blind, crossover, randomized design was used to evaluate driving performance in 11 young adults with astigmatism (-0.75 to -1.75 diopters cylinder). Each participant drove a highly immersive, virtual reality driving simulator (210 degrees field of view) with (1) no correction, (2) spherical contact lens correction (ACUVUE MOIST), and (3) toric contact lens correction (ACUVUE MOIST for Astigmatism). Tactical driving skills such as steering, speed management, and braking, as well as operational driving abilities such as visual acuity, contrast sensitivity, and foot and arm reaction time, were quantified. There was a main effect for type of correction on driving performance (p = 0.05). Correction with toric lenses resulted in significantly safer tactical driving performance than no correction (p < 0.05), whereas correction with spherical lenses did not differ in driving safety from no correction (p = 0.118). Operational tests differentiated corrected from uncorrected performance for both spherical (p = 0.008) and toric (p = 0.011) lenses, but they were not sensitive enough to differentiate toric from spherical lens conditions. Given previous research showing that deficits in these tactical skills are predictive of future real-world collisions, these preliminary data suggest that correcting low to moderate astigmatism with toric lenses may be important to driving safety. Their merits relative to spherical lens correction require further investigation.

  12. Let's Make a Deal in the Classroom: Institutional Solutions to the Monty Hall Dilemma

    ERIC Educational Resources Information Center

    Dupont, Brandon; Durham, Yvonne

    2018-01-01

    The authors describe how the Monty Hall Dilemma, a well-known choice anomaly, can be demonstrated with a simple and versatile classroom experiment. In addition to demonstrating the anomaly, the experiment can be used to introduce students to some institutional modifications that have been shown to ameliorate it. This experiment, which can be…

  13. Spherical crystals of Pb 1 - xSn xTe grown in microgravity

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kyoichi; Yamada, Tomoaki

    1996-07-01

    Pb 1- xSn xTe spherical crystals were unintentionally obtained along with a cylindrical Pb 1 - xSn xTe crystal grown during the {SL-J}/{FMPT} mission on board the space shuttle "Endeavor". About 25 spherical crystals ranged from 0.5 to 11 mm in diameter. Melt leaked from the melt reservoir into the spring that plays the role of pushing the melt toward a seed crystal and eliminating free surface areas of the melt. Because of the surface tension of the melt, spherical melt drops formed in the hollow of the spring, then solidified into spherical crystals during the cooling process. Some of the crystals had lower dislocation densities, in the order of 10 4 cm -2, two orders smaller than those of terrestrially grown crystals from a melt. The experiment showed a way of stably positioning a large volume of liquid in microgravity without touching the crucible wall and a way of reducing crystalline defects by such growth.

  14. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrudan, R.; Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin; Brüssing, F.

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses tomore » excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.« less

  15. One-degree-of-freedom spherical model for the passive motion of the human ankle joint.

    PubMed

    Sancisi, Nicola; Baldisserri, Benedetta; Parenti-Castelli, Vincenzo; Belvedere, Claudio; Leardini, Alberto

    2014-04-01

    Mathematical modelling of mobility at the human ankle joint is essential for prosthetics and orthotic design. The scope of this study is to show that the ankle joint passive motion can be represented by a one-degree-of-freedom spherical motion. Moreover, this motion is modelled by a one-degree-of-freedom spherical parallel mechanism model, and the optimal pivot-point position is determined. Passive motion and anatomical data were taken from in vitro experiments in nine lower limb specimens. For each of these, a spherical mechanism, including the tibiofibular and talocalcaneal segments connected by a spherical pair and by the calcaneofibular and tibiocalcaneal ligament links, was defined from the corresponding experimental kinematics and geometry. An iterative procedure was used to optimize the geometry of the model, able to predict original experimental motion. The results of the simulations showed a good replication of the original natural motion, despite the numerous model assumptions and simplifications, with mean differences between experiments and predictions smaller than 1.3 mm (average 0.33 mm) for the three joint position components and smaller than 0.7° (average 0.32°) for the two out-of-sagittal plane rotations, once plotted versus the full flexion arc. The relevant pivot-point position after model optimization was found within the tibial mortise, but not exactly in a central location. The present combined experimental and modelling analysis of passive motion at the human ankle joint shows that a one degree-of-freedom spherical mechanism predicts well what is observed in real joints, although its computational complexity is comparable to the standard hinge joint model.

  16. Recent Progress on Spherical Torus Research and Implications for Fusion Energy Development Path

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2014-10-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A =R0 / a) reduced to A near 1.5, well below the normal tokamak operating range of A equal to 2.5 or greater. As the aspect ratio is reduced, the ideal tokamak beta (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural plasma elongation which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to the longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in the UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all areas of fusion research, including fundamental fusion energy science as well as technological innovation. These results suggest exciting future prospects for ST research in both the near and longer term. The talk will summarize the key physics results from worldwide ST experiments, and describe ST community plans to provide the database for FNSF design while improving predictive capabilities for ITER and beyond. This work supported by DoE Contract No. DE-AC02-09CH11466.

  17. RESPONSES OF MALE TROPICAL MOCKINGBIRDS TO VARIATION IN WITHIN-SONG AND BETWEEN-SONG VERSATILITY

    PubMed Central

    Botero, Carlos A.; Vehrencamp, Sandra L.

    2007-01-01

    Despite their large vocal repertoires and otherwise highly versatile singing style, male mockingbirds sometimes sing in a highly repetitive fashion. We conducted a playback experiment to determine the possible signal value of different syllable presentation patterns during simulated male intrusions in the Tropical Mockingbird (Mimus gilvus) testing the hypothesis that more repetitive singing represents a stronger threat and generates a stronger aggressive response. Responses were measured in terms of approach and singing behavior and were analyzed using McGregor’s (1992) multivariate method. We also introduce the use of survival analysis for analyzing response variables for which subjects do not perform the behavior in question in at least one of the replicates (known as ‘right-censored variables’ in the statistical literature). As predicted by theory, experimental subjects responded more aggressively to songs composed of a single note than to variable ones. However, versatility at the between-song level had an opposite effect as high song switching rates generated stronger responses than low ones. Given the lack of a statistical interaction between within-song versatility and switching rate, we conclude that these two parameters may serve independent purposes and possibly transmit different information. We discuss the possibility that the signal value of variation in vocal versatility lies in the mediation of territorial conflicts, the attraction of female partners and/or the mediation of conflicts over access to reproductive females. PMID:18509510

  18. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  19. Bryophyllum: A Versatile Plant for the Laboratory

    ERIC Educational Resources Information Center

    Hibbs, E. Thomas; Yokum, Nanci G.

    1976-01-01

    A possible solution for classroom plant growth where space and time are minimal. Care and plant propagation are discussed. Several experiments in which bryophyllum can be successfully used are described. (EB)

  20. Summary of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.

    2001-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  1. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.

    2003-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  2. High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration

    2014-10-01

    We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.

  3. Background reduction of a spherical gaseous detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fard, Ali Dastgheibi; Loaiza, Pia; Piquemal, Fabrice

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of detector. It consists of a large spherical volume filled with gas, using a single detection readout channel. The detector allows 100 % detection efficiency. SEDINE is a low background version of SPC installed at the Laboratoire Souterrain de Modane (LSM) underground laboratory (4800 m.w.e) looking for rare events at very low energy threshold, below 100 eV. This work presents the details on the chemical cleaning to reduce internal {sup 210}Pb surface contamination on the copper vessel and the external radon reduction achieved via circulation of pure airmore » inside anti-radon tent. It will be also show the radon measurement of pure gases (Ar, N, Ne, etc) which are used in the underground laboratory for the low background experiments.« less

  4. A Versatile Ion Injector at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  5. Versatility and addiction in gaming: the number of video-game genres played is associated with pathological gaming in male adolescents.

    PubMed

    Donati, Maria Anna; Chiesi, Francesca; Ammannato, Giulio; Primi, Caterina

    2015-02-01

    This study tested the predictive power of gaming versatility (i.e., the number of video game genres engaged in) on game addiction in male adolescents, controlling for time spent on gaming. Participants were 701 male adolescents attending high school (Mage=15.6 years). Analyses showed that pathological gaming was predicted not only by higher time spent on gaming, but also by participation in a greater number of video game genres. Specifically, the wider the array of video game genres played, the higher were the negative consequences caused by gaming. Findings show that versatility can be considered as one of the behavioral risk factors related to gaming addiction, which may be characterized by a composite and diversified experience with video games. This study suggests that educational efforts designed to prevent gaming addiction among youth may also be focused on adolescents' engagement in different video games.

  6. Chem 13 News Digest

    ERIC Educational Resources Information Center

    Friesen, R. J., Ed.

    1975-01-01

    Describes an experiment, using a soap bubble raft, intended to provide insight into the orderly packing of spherical objects and the properties of metallic crystals. Also describes a solubility product experiment which uses barium hydroxide. (MLH)

  7. The dynamics and control of a spherical robot with an internal omniwheel platform

    NASA Astrophysics Data System (ADS)

    Karavaev, Yury L.; Kilin, Alexander A.

    2015-03-01

    This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.

  8. Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity

    NASA Astrophysics Data System (ADS)

    Breuer, D.; Futterer, B.; Plesa, A.; Krebs, A.; Zaussinger, F.; Egbers, C.

    2013-12-01

    In mantle dynamics research, experiments, usually performed in rectangular geometries in Earth-based laboratories, have the character of ';exploring new physics and testing theories' [1]. In this work, we introduce our spherical geometry experiments on electro-hydrodynamical driven Rayleigh-Benard convection that have been performed for both temperature-independent (`GeoFlow I'), and temperature-dependent fluid viscosity properties (`GeoFlow II') with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high voltage potential between the inner and outer boundaries and a dielectric insulating liquid and perform the experiment under microgravity conditions at the ISS [2, 3]. Further, numerical simulations in 3D spherical geometry have been used to reproduce the results obtained in the `GeoFlow' experiments. For flow visualisation, we use Wollaston prism shearing interferometry which is an optical method producing fringe pattern images. Flow pattern differ between our two experiments (Fig. 1). In `GeoFlow I', we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by 3D numerical simulations using two different and independently developed codes. In contrast, in `GeoFlow II' we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realised in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the `GeoFlow II' experiment, from which we conclude that non-linear effects shift the effective viscosity ratio [4]. References [1] A. Davaille and A. Limare (2009). In: Schubert, G., Bercovici, D. (Eds.), Treatise on Geophysics - Mantle Dynamics. [2] B. Futterer, C. Egbers, N. Dahley, S. Koch, L. Jehring (2010). Acta Astronautica 66, 193-100. [3] B. Futterer, N. Dahley, S. Koch, N. Scurtu, C. Egbers (2012). Acta Astronautica 71, 11-19. [4] B. Futterer, A. Krebs, A.-C. Plesa, F. Zaussinger, D.Breuer, C. Egbers (2013). submitted to Journal of Fluid Mechanics. Fig. 1: a) Sheet-like thermal flow in the GeoFlow I spherical experiment with silicone oil of temperature-stable properties (RaE=1.17e6); b) Plume-like dominated flow in the GeoFlow II experiment using a fluid with temperature dependent viscosity and volume expansion (RaE=1.87e6).

  9. An Interdisciplinary Experiment: Azo-Dye Metabolism by "Staphylococcus Aureus"

    ERIC Educational Resources Information Center

    Brocklesby, Kayleigh; Smith, Robert; Sharp, Duncan

    2012-01-01

    An interdisciplinary and engaging practical is detailed which offers great versatility in the study of a qualitative and quantitative metabolism of azo-dyes by "Staphylococcus aureus". This practical has broad scope for adaptation in the number and depth of variables to allow a focused practical experiment or small research project. Azo-dyes are…

  10. A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.

    ERIC Educational Resources Information Center

    Farrell, Shawn O.; Choo, Darryl

    1989-01-01

    Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…

  11. Glovebox in orbit - ESA/NASA Glovebox: A versatile USML-1 experiment facility

    NASA Technical Reports Server (NTRS)

    Sutherland, Ian A.; Wolff, Heinz; Helmke, Hartmut; Riesselmann, Werner; Nagy, Mike; Voeten, Eduard; Chassay, Roger

    1993-01-01

    The general purpose experiment facility flown aboard Space Shuttle USML-1 and known as the Glovebox is briefly discussed. Glovebox enabled scientists to perform materials science, fluids, and combustion experiments safely without contaminating the closed environment of Spacelab and endangering the crew. The evolution of Glovebox, its special features, and its hardware are described. The Glovebox experiments are summarized along with postmission and crew debriefing. Future uses of Glovebox are discussed.

  12. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.

  13. Development of a versatile multiaperture negative ion sourcea)

    NASA Astrophysics Data System (ADS)

    Cavenago, M.; Kulevoy, T.; Petrenko, S.; Serianni, G.; Antoni, V.; Bigi, M.; Fellin, F.; Recchia, M.; Veltri, P.

    2012-02-01

    A 60 kV ion source (9 beamlets of 15 mA each of H-) and plasma generators are being developed at Consorzio RFX and INFN-LNL, for their versatility in experimental campaigns and for training. Unlike most experimental sources, the design aimed at continuous operation. Magnetic configuration can achieve a minimum |B| trap, smoothly merged with the extraction filter. Modular design allows for quick substitution and upgrading of parts such as the extraction and postacceleration grids or the electrodes in contact with plasma. Experiments with a radio frequency plasma generator and Faraday cage inside the plasma are also described.

  14. Development of a versatile multiaperture negative ion source.

    PubMed

    Cavenago, M; Kulevoy, T; Petrenko, S; Serianni, G; Antoni, V; Bigi, M; Fellin, F; Recchia, M; Veltri, P

    2012-02-01

    A 60 kV ion source (9 beamlets of 15 mA each of H(-)) and plasma generators are being developed at Consorzio RFX and INFN-LNL, for their versatility in experimental campaigns and for training. Unlike most experimental sources, the design aimed at continuous operation. Magnetic configuration can achieve a minimum ∣B∣ trap, smoothly merged with the extraction filter. Modular design allows for quick substitution and upgrading of parts such as the extraction and postacceleration grids or the electrodes in contact with plasma. Experiments with a radio frequency plasma generator and Faraday cage inside the plasma are also described.

  15. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Forest, C. B.; O'Connell, R.; Nornberg, M. D.; Spence, E. J.

    2004-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid-sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. The temperature of the vessel is maintained through an actively-heated-and-cooled oil heat-exchange system. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities near 15 m/s. Each shaft is sealed with an oil-buffered dual mechanical cartridge seal. The experiment is automated for remote operation and data logging. The melting and transfer of one metric ton of sodium to a storage vessel is discussed. Operating parameters and performance of the experiment are presented.

  16. The PLX- α project: demonstrating the viability of spherically imploding plasma liners as an MIF driver

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team

    2015-11-01

    Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.

  17. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-05-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  18. A Spherical to Plane Wave Transformation Using a Reflectarray

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lee, Richard Q.

    1997-01-01

    A reflectarray has generally been used as a replacement for a reflector antenna. Using in this capacity, different configurations (prime focus, offset etc.) and various applications (dual frequency, scanning etc.) have been demonstrated with great success. Another potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space power combining applications such as space-fed lens and power combining amplifier. In these applications, it is required to convert a spherical wave to a plane wave with proper phase correction added to each element of the reflectarray. This paper reports an experiment to investigate the feasibility of using a reflectarray as an alternative to a lens in space power combining. The experiment involves transforming a spherical wave from a orthomode horn to a plane wave at the horn aperture. The reflcctarray consists of square patches terminated in open stubs to provide necessary phase compensation. In this paper, preliminary results will be presented and the feasibility of such compensation scheme will be discussed.

  19. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmore » one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.« less

  20. Models for randomly distributed nanoscopic domains on spherical vesicles

    NASA Astrophysics Data System (ADS)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  1. Aberration analysis and calculation in system of Gaussian beam illuminates lenslet array

    NASA Astrophysics Data System (ADS)

    Zhao, Zhu; Hui, Mei; Zhou, Ping; Su, Tianquan; Feng, Yun; Zhao, Yuejin

    2014-09-01

    Low order aberration was founded when focused Gaussian beam imaging at Kodak KAI -16000 image detector, which is integrated with lenslet array. Effect of focused Gaussian beam and numerical simulation calculation of the aberration were presented in this paper. First, we set up a model of optical imaging system based on previous experiment. Focused Gaussian beam passed through a pinhole and was received by Kodak KAI -16000 image detector whose microlenses of lenslet array were exactly focused on sensor surface. Then, we illustrated the characteristics of focused Gaussian beam and the effect of relative space position relations between waist of Gaussian beam and front spherical surface of microlenses to the aberration. Finally, we analyzed the main element of low order aberration and calculated the spherical aberration caused by lenslet array according to the results of above two steps. Our theoretical calculations shown that , the numerical simulation had a good agreement with the experimental result. Our research results proved that spherical aberration was the main element and made up about 93.44% of the 48 nm error, which was demonstrated in previous experiment. The spherical aberration is inversely proportional to the value of divergence distance between microlens and waist, and directly proportional to the value of the Gaussian beam waist radius.

  2. Examination of Sandwich-Type Multidegree-of-Freedom Spherical Ultrasonic Motor

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Aoyagi, Manabu; Takano, Takehiro; Tamura, Hideki

    2010-07-01

    A sandwich-type multidegree-of-freedom (MDOF) spherical ultrasonic motor (SUSM) is newly proposed. The motor consists of a spherical rotor and two stator vibrators holding the rotor. This structure has both a rotor support and a preload mechanism. The stator excites five vibration modes, and the rotor can rotate on three axes. An experiment of a torque composition of two stators was carried out. The contact surface between the rotor and the stators forms a spherical surface. Moreover, a displacement magnification mechanism, which was used in the former model to rotate on the Z-axis, is no longer necessary. Hence the stator is simpler in construction than the former model. In this paper, we describe the construction and the operating principle of the MDOF ultrasonic motor, modal analysis results for the stator, and some measurement results from trial manufacturing. The miniaturization of the motor and increase in torque were successfully realized.

  3. Defects at grain boundaries: A coarse-grained, three-dimensional description by the amplitude expansion of the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Marco; Backofen, Rainer; Elder, K. R.; Voigt, Axel

    2018-05-01

    We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method calculations. This approach allows for the description of microscopic features, such as dislocations, while simultaneously being able to describe length scales that are orders of magnitude larger than the lattice spacing. Moreover, it allows for the direct description of extended defects by means of a scalar order parameter. The versatility of this framework is shown by considering both fcc and bcc lattice symmetries and different rotation axes. First, the specific case of planar, twist grain boundaries is illustrated. The details of the method are reported and the consistency of the results with literature is discussed. Then, the dislocation networks forming at the interface between a spherical, rotated crystal embedded in an unrotated crystalline structure, are shown. Although explicitly accounting for dislocations which lead to an anisotropic shrinkage of the rotated grain, the extension of the spherical grain boundary is found to decrease linearly over time in agreement with the classical theory of grain growth and recent atomistic investigations. It is shown that the results obtained for a system with bcc symmetry agree very well with existing results, validating the methodology. Furthermore, fully original results are shown for fcc lattice symmetry, revealing the generality of the reported observations.

  4. XCII. A Low-Cost Voltammetric Signal Generator for the Electroanalytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed

    1977-01-01

    Describes the construction of a versatile signal generator suitable for use in cyclic voltammetric experiments, which can also be adapted to a conventional dc polarograph by replacing its ramp source. (MLH)

  5. Overview of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Jacobson, C. M.; Parada, C. A.; Forest, C. B.

    2006-10-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin-Madison's liquid-sodium facility. The experiment is designed to self-generate magnetic fields from flows of conducting metal. The apparatus consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium. Two 100 Hp motors drive impellers which generate the flow. The motors have been operated up to 1300 RPM (70% of design specification), achieving a magnetic Reynolds number of 130, based on impeller tip speed. Various polarizations of external magnetic fields have been applied to the sodium, and the induced magnetic field has been measured by both internal and external Hall probe arrays. The voltage induced across the sphere by the turbulent flow has been measured. Techniques for using ultrasound Doppler velocimetry have been explored in the water model of the experiment, including the use of high-pressure bubbles as seed particles.

  6. Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry

    NASA Astrophysics Data System (ADS)

    Toque, Nathalie

    1996-12-01

    This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.

  7. Spherical nanoindentation stress-strain analysis, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Turner, David; Miller, Calvin

    Nanoindentation is a tool that allows the mechanical response of a variety of materials at the nano to micron length scale to be measured. Recent advances in spherical nanoindentation techniques have allowed for a more reliable and meaningful characterization of the mechanical response from nanoindentation experiments in the form on an indentation stress-strain curve. This code base, Spin, is written in MATLAB (The Mathworks, Inc.) and based on the analysis protocols developed by S.R. Kalidindi and S. Pathak [1, 2]. The inputs include the displacement, load, harmonic contact stiffness, harmonic displacement, and harmonic load from spherical nanoindentation tests in themore » form of an Excel (Microsoft) spreadsheet. The outputs include indentation stress-strain curves and indentation properties as well their variance due to the uncertainty of the zero-point correction in the form of MATLAB data (.mat) and figures (.png). [1] S. Pathak, S.R. Kalidindi. Spherical nanoindentation stress–strain curves, Mater. Sci. Eng R-Rep 91 (2015). [2] S.R. Kalidindi, S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia 56 (2008) 3523-3532.« less

  8. Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment

    ERIC Educational Resources Information Center

    Dopke, Nancy Carter; Lovett, Timothy Neal

    2007-01-01

    Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…

  9. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  10. Hydrogels in endovascular embolization. II. Clinical use of spherical particles.

    PubMed

    Horák, D; Svec, F; Kálal, J; Adamyan, A A; Volynskii, Y D; Voronkova, O S; Kokov, L S; Gumargalieva, K Z

    1986-11-01

    In this study we report the results of clinical experiments, obtained with spherical particles made from poly(2-hydroxyethyl methacrylate) used in the embolization of arteriovenous anastomoses, in the suppression of pulmonary haemorrhage and haemoptysis and in the occlusion of some other arteries. So far we have used these particles in the treatment of 187 patients. It must be stressed that the advantage of spherical particles consists in the simplicity of their introduction into the blood vessel through a catheter, while in the blood vessel itself the particle swells in blood still more, when compared with the particle size in saline. This results in an immediate and permanent haemostatic effect. No revascularization occurs.

  11. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  12. Inorganic fullerene-like nanoparticles of TiS 2

    NASA Astrophysics Data System (ADS)

    Margolin, Alexander; Popovitz-Biro, Ronit; Albu-Yaron, Ana; Rapoport, Lev; Tenne, Reshef

    2005-08-01

    Inorganic closed-cage nanoparticles of TiS 2 were synthesized using gas-phase synthesis. The reported nanoparticles are perfectly spherical with diameters centered between 60 and 80 nm, consisting from up to 80-100 concentric layers. The nucleation and growth mechanism was proposed for the formation of these nanoparticles. Tribological experiments emphasized the important role played by the spherical shape of the nanoparticles in providing rolling friction with a reduced friction coefficient and wear.

  13. Development of fully non-inductive plasmas heated by medium and high-harmonic fast waves in the national spherical torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Poli, F.; Bertelli, N.; Harvey, R. W.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Phillips, C. K.; Raman, R.

    2015-12-01

    A major challenge for spherical tokamak development is to start-up and ramp-up the plasma current (Ip) without using a central solenoid. Experiments in the National Spherical Torus eXperiment (NSTX) demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a non-inductive Ip fraction, fNI ˜ 0.7. The discharge had an axial toroidal magnetic field (BT(0)) of 0.55 T, the maximum BT(0) available on NSTX. NSTX has undergone a major upgrade (NSTX-U), that will eventually allow the generation of BT(0) ≤ 1 T and Ip ≤ 2 MA plasmas. Full wave simulations of 30 MHz HHFW and medium harmonic fast wave (MHFW) heating in NSTX-U predict significantly reduced FW power loss in the plasma edge at the higher BT(0) achievable in NSTX-U. HHFW experiments will aim to generate stable, fNI ˜ 1, Ip = 300 kA H-mode plasmas and to ramp Ip from 250 to 400 kA with FW power. Time-dependent TRANSP simulations are used to develop non-inductive Ip ramp-up and sustainment using 30 MHz FW power. This paper presents results from these RF simulations and plans for developing non-inductive plasmas heated by FW power.

  14. Granular gases of rod-shaped grains in microgravity.

    PubMed

    Harth, K; Kornek, U; Trittel, T; Strachauer, U; Höme, S; Will, K; Stannarius, R

    2013-04-05

    Granular gases are convenient model systems to investigate the statistical physics of nonequilibrium systems. In the literature, one finds numerous theoretical predictions, but only few experiments. We study a weakly excited dilute gas of rods, confined in a cuboid container in microgravity during a suborbital rocket flight. With respect to a gas of spherical grains at comparable filling fraction, the mean free path is considerably reduced. This guarantees a dominance of grain-grain collisions over grain-wall collisions. No clustering was observed, unlike in similar experiments with spherical grains. Rod positions and orientations were determined and tracked. Translational and rotational velocity distributions are non-Gaussian. Equipartition of kinetic energy between translations and rotations is violated.

  15. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  16. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional; (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in mu-g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in mu-g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  17. Long distance cell communication using spherical tether balloons

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Rajagopalan, Vasudevan; Vasudevan, Rajagopalan; Mehrotra, R. K.; Sreenivasan, S.; Pawaskar, M.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar; Kulkarni, P. M.

    A proof-of-concept experiment was conducted for long-range cell communication for rural tele-phony and internet. We designed and fabricated a spherical tether balloon to carry the con-ventional micro base transceiver station (BTS) along with three slotted antenna to cover 2-pi radius. AC power and optical fiber were anchored along with the tether line. A special fre-quency license was obtained from Wireless Planning Commission (WPC) wing of Department of Telecommunication (DoT), India for the period of experiment so as not to affect the opera-tional networks. The experiments were carried out for different BTS heights up to 500 meter. Signal measurement both in data mode and voice quality were done in different quadrant using mobile vans. This paper describes the methodology (under patenting) and utility of technique for operational application.

  18. Kelly works on the MSG

    NASA Image and Video Library

    2010-12-27

    ISS026-E-022582 (27 Dec. 2010) --- NASA astronaut Scott Kelly, Expedition 26 commander, works with Capillary Channel Flow (CCF) experiment hardware in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. CCF is a versatile experiment for studying a critical variety of inertial-capillary dominated flows key to spacecraft systems that cannot be studied on the ground.

  19. Kelly works on the MSG

    NASA Image and Video Library

    2010-12-27

    ISS026-E-022581 (27 Dec. 2010) --- NASA astronaut Scott Kelly, Expedition 26 commander, works with Capillary Channel Flow (CCF) experiment hardware in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. CCF is a versatile experiment for studying a critical variety of inertial-capillary dominated flows key to spacecraft systems that cannot be studied on the ground.

  20. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  1. Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom

    NASA Astrophysics Data System (ADS)

    Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph

    2018-03-01

    The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.

  2. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Wilson; R.E. Bell; S. Bernabei

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less

  3. Clay-clast aggregates: A new textural evidence for seismic fault sliding?

    NASA Astrophysics Data System (ADS)

    Boutareaud, Sébastien; Calugaru, Dan-Gabriel; Han, Raehee; Fabbri, Olivier; Mizoguchi, Kazuo; Tsutsumi, Akito; Shimamoto, Toshihiko

    2008-03-01

    To determine the processes responsible for slip-weakening in clayey gouge zones, rotary-shear experiments were conducted at seismic slip rates (equivalent to 0.9 and 1.3 m/s) at 0.6 MPa normal stress on a natural clayey gouge for saturated and non-saturated initial conditions. The mechanical behavior of the simulated faults shows a reproducible slip-weakening behavior, whatever initial moisture conditions. Examination of gouge obtained at the residual friction stage in saturated and non-saturated initial conditions allows the definition of two types of microstructures: a foliated type reflecting strain localization, and a non-foliated type composed of spherical aggregates. Friction experiments demonstrate that liquid-vapor transition of water within gouge due to frictional heating has a high capacity to explain the formation of spherical aggregates in the first meters of displacement. This result suggests that the occurrence of spherical aggregates in natural clayey fault gouges can constitute a new textural evidence for shallow depth pore water phase transition at seismic slip velocity and consequently for past seismic fault sliding.

  4. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.

    PubMed

    Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi

    2017-12-01

    Identifying the viscous properties of the plantar soft tissue is crucial not only for understanding the dynamic interaction of the foot with the ground during locomotion, but also for development of improved footwear products and therapeutic footwear interventions. In the present study, the viscous and hyperelastic material properties of the plantar soft tissue were experimentally identified using a spherical indentation test and an analytical contact model of the spherical indentation test. Force-relaxation curves of the heel pads were obtained from the indentation experiment. The curves were fit to the contact model incorporating a five-element Maxwell model to identify the viscous material parameters. The finite element method with the experimentally identified viscoelastic parameters could successfully reproduce the measured force-relaxation curves, indicating the material parameters were correctly estimated using the proposed method. Although there are some methodological limitations, the proposed framework to identify the viscous material properties may facilitate the development of subject-specific finite element modeling of the foot and other biological materials. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Gregori, G.; ...

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  6. Ultrasoft x-ray imaging system for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M. J.; Moos, H. W.; Kaita, R.

    1999-01-01

    A spectrally resolved ultrasoft x-ray imaging system, consisting of arrays of high resolution (<2 Å) and throughput (⩾tens of kHz) miniature monochromators, and based on multilayer mirrors and absolute photodiodes, is being designed for the National Spherical Torus Experiment. Initially, three poloidal arrays of diodes filtered for C 1s-np emission will be implemented for fast tomographic imaging of the colder start-up plasmas. Later on, mirrors tuned to the C Lyα emission will be added in order to enable the arrays to "see" the periphery through the hot core and to study magnetohydrodynamic activity and impurity transport in this region. We also discuss possible core diagnostics, based on tomographic imaging of the Lyα emission from the plume of recombined, low Z impurity ions left by neutral beams or fueling pellets. The arrays can also be used for radiated power measurements and to map the distribution of high Z impurities injected for transport studies. The performance of the proposed system is illustrated with results from test channels on the CDX-U spherical torus at Princeton Plasma Physics Laboratory.

  7. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  8. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    PubMed

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  9. Spherical self-organizing map using efficient indexed geodesic data structure.

    PubMed

    Wu, Yingxin; Takatsuka, Masahiro

    2006-01-01

    The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the icosahedron-based geodesic dome. Vertices relationships are maintained by their positions in the data structure rather than by immediate neighbor pointers or an adjacency list. Increasing the number of neurons can be done efficiently because the overhead caused by pointer updates is reduced. Experiments show that the spherical SOM using our data structure, called a GeoSOM, runs with comparable speed to the conventional 2D SOM. The GeoSOM also reduces data distortion due to removal of the boundaries. Furthermore, we developed an interface to project the GeoSOM onto the 2D plane using a cartographic approach, which gives users a global view of the spherical data map. Users can change the center of the 2D data map interactively. In the end, we compare the GeoSOM to the other spherical SOMs by space complexity and time complexity.

  10. Instrumentation for investigation of the depth-dose distribution by the Liulin-5 instrument of a human phantom on the Russian segment of ISS for estimation of the radiation risk during long term space flights

    NASA Technical Reports Server (NTRS)

    Semkova, J.; Koleva, R.; Todorova, G.; Kanchev, N.; Petrov, V.; Shurshakov, V.; Tchhernykh, I.; Kireeva, S.

    2004-01-01

    Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. Study on spherical stator for multidegree-of-freedom ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Nakajima, Shuta; Kajiwara, Hidekazu; Aoyagi, Manabu; Tamura, Hideki; Takano, Takehiro

    2016-07-01

    A multidegree-of-freedom ultrasonic motor (MDOF-USM) has excellent features such as high torque at a low speed and a self-holding force, compared with other types of MDOF motor. Therefore, the MDOF-USM has been considered for applications in robot joints, multidimensional systems, and spacecraft. In previous research, the MDOF-USM consisting of a spherical rotor and a stator vibrator of various shapes has been mainly studied. In contrast, the MDOF-USM consisting of a spherical stator and a rotor of various shapes is proposed in this paper. The excitation methods for vibration modes and mode rotation using piezoelectric plates and multilayered piezoelectric actuators were examined. Furthermore, a stator support method that does not significantly affect the vibration of the sphere was devised. From the results of experiments using the fabricated prototype stator, the generation of vibration mode and mode rotation were confirmed. Therefore, the possibility of the realization of the MDOF-USM using a spherical stator was indicated.

  12. Numerical modeling of a spherical buoy moored by a cable in three dimensions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangqian; Yoo, Wan-Suk

    2016-05-01

    Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code ProteusDS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable.

  13. Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin

    2013-11-01

    We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.

  14. Modeling of DNA-Mediated Self-Assembly from Anisotropic Nanoparticles: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Millan, Jaime; Girard, Martin; Brodin, Jeffrey; O'Brien, Matt; Mirkin, Chad; Olvera de La Cruz, Monica

    The programmable selectivity of DNA recognition constitutes an elegant scheme to self-assemble a rich variety of superlattices from versatile nanoscale building blocks, where the natural interactions between building blocks are traded by complementary DNA hybridization interactions. Recently, we introduced and validated a scale-accurate coarse-grained model for a molecular dynamics approach that captures the dynamic nature of DNA hybridization events and reproduces the experimentally-observed crystallization behavior of various mixtures of spherical DNA-modified nanoparticles. Here, we have extended this model to robustly reproduce the assembly of nanoparticles with the anisotropic shapes observed experimentally. In particular, we are interested in two different particle types: (i) regular shapes, namely the cubic and octahedral polyhedra shapes commonly observed in gold nanoparticles, and (ii) irregular shapes akin to those exhibited by enzymes. Anisotropy in shape can provide an analog to the atomic orbitals exhibited by conventional atomic crystals. We present results for the assembly of enzymes or anisotropic nanoparticles and the co-assembly of enzymes and nanoparticles.

  15. At the dawn of geodesy

    NASA Astrophysics Data System (ADS)

    Fischer, Irene K.

    1981-06-01

    The first land surveyors were rope stretchers and rope knotters, remembered in ancient documents and tomb paintings and also in some terminology. The L-shaped carpenter’s square, one of the earliest and most versatile basic tools, represents the observed direction of the plumb line versus the water level and appears as the shadow-casting gnomon and also as the geometrical gnomon in magically-restricted enlargements of altars. The related “Pythagorean” theorem was known in antiquity centuries before Pythagoras, with algebraic proofs in Babylonia and China. The spherical shape of the earth, deduced from the observation of circumpolar stars, was part of a complete equatorial astronomical system in ancient China. But although shadow measurements were generally used to establish north-south distances, only the Greeks derived from them the size of the earth. The striking difference between the abstract, geometric approach of Greece and the concrete, algebraic approach of Babylonia and China represents not a difference in talents but a difference in culture-bound interests.

  16. Modelling studies in aqueous solution of lanthanide (III) chelates designed for nuclear magnetic resonance biomedical applications

    NASA Astrophysics Data System (ADS)

    Henriques, E. S.; Geraldes, C. F. G. C.; Ramos, M. J.

    Molecular dynamics simulations and complementary modelling studies have been carried out for the [Gd(DOTA)·(H2O)]- and [Tm(DOTP)]5- chelates in aqueous media, to provide a better understanding of several structural and dynamical properties of these versatile nuclear magnetic resonance (NMR) probes, including coordination shells and corresponding water exchange mechanisms, and interactions of these complexes with alkali metal ions. This knowledge is of key importance in the areas of 1H relaxation and shift reagents for NMR applications in medical diagnosis. A new refinement of our own previously developed set of parameters for these Ln(III) chelates has been used, and is reported here. Calculations of water mean residence times suggest a reassessment of the characterization of the chelates' second coordination shell, one where the simple spherical distribution model is discarded in favour of a more detailed approach. Na+ probe interaction maps are in good agreement with the available site location predictions derived from 23Na NMR shifts.

  17. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    PubMed

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping

    PubMed Central

    Pu, Mingbo; Zhao, Zeyu; Wang, Yanqin; Li, Xiong; Ma, Xiaoliang; Hu, Chenggang; Wang, Changtao; Huang, Cheng; Luo, Xiangang

    2015-01-01

    The geometries of objects are deterministic in electromagnetic phenomena in all aspects of our world, ranging from imaging with spherical eyes to stealth aircraft with bizarre shapes. Nevertheless, shaping the physical geometry is often undesired owing to other physical constraints such as aero- and hydro-dynamics in the stealth technology. Here we demonstrate that it is possible to change the traditional law of reflection as well as the electromagnetic characters without altering the physical shape, by utilizing the achromatic phase shift stemming from spin-orbit interaction in ultrathin space-variant and spectrally engineered metasurfaces. The proposal is validated by full-wave simulations and experimental characterization in optical wavelengths ranging from 600 nm to 2800 nm and microwave frequencies in 8-16 GHz, with echo reflectance less than 10% in the whole range. The virtual shaping as well as the revised law of reflection may serve as a versatile tool in many realms, including broadband and conformal camouflage and Kinoform holography, to name just a few. PMID:25959663

  19. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  20. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well-defined measurements of nitric oxide formation at high temperatures, contributing to disagreement between chemical models. This work accomplishes several goals. It identifies disagreements in pollutant formation chemistry. It creates a novel database of burning velocity measurements at relevant, sensitive conditions. It presents a simple, conservative estimate of radiation-induced measurement uncertainty in spherical flames. Finally, it utilizes systems-level flame experiments to indirectly measure elementary reaction rates.

  1. M1 excitation in Sm isotopes and the proton-neutron sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Sugita, Michiaki

    1991-10-01

    The magnetic-dipole scissors mode in spherical to deformed Sm isotopes is studied in terms of the proton-neutron sdg interacting boson model, providing a good agreement with recent experiment by Ziegler et al. The present calculation correctly reproduces the increase of M1 excitation strength in going from spherical to deformed nuclei. It is suggested that there may be 1+ states which do not correspond to the scissors mode but absorb certain M1 strength from the ground state.

  2. Three-dimensional computer model for the atmospheric general circulation experiment

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    An efficient, flexible, three-dimensional, hydrodynamic, computer code has been developed for a spherical cap geometry. The code will be used to simulate NASA's Atmospheric General Circulation Experiment (AGCE). The AGCE is a spherical, baroclinic experiment which will model the large-scale dynamics of our atmosphere; it has been proposed to NASA for future Spacelab flights. In the AGCE a radial dielectric body force will simulate gravity, with hot fluid tending to move outwards. In order that this force be dominant, the AGCE must be operated in a low gravity environment such as Spacelab. The full potential of the AGCE will only be realized by working in conjunction with an accurate computer model. Proposed experimental parameter settings will be checked first using model runs. Then actual experimental results will be compared with the model predictions. This interaction between experiment and theory will be very valuable in determining the nature of the AGCE flows and hence their relationship to analytical theories and actual atmospheric dynamics.

  3. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  4. Notes and Discussion

    ERIC Educational Resources Information Center

    American Journal of Physics, 1978

    1978-01-01

    Describes experiments demonstrating the Josephson effect, single-file diffusion in biological membranes, refractive index of beer, lines of magnetic fields, indexing diffraction patterns, Maxwell's equations, and spherical aberration. (SL)

  5. Sticking properties of ice grains

    NASA Astrophysics Data System (ADS)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  6. Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun

    2006-01-01

    The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.

  7. Corrosion Experiments Using Spherical Uranium Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G. L.; Siekhaus, W. J.; Teslich, N. E.

    2017-02-01

    Corrosion experiments using spherical U powders are continuing with scanning electron microscopy (SEM) showing that the particles are highly textured, 5 m to 25 m diameters with 4% larger particles that are fused smaller particles. This U has a high specific surface area with no corners or back-sides, is well annealed with no machining work, and coated with a coherent oxide film, 30 nm to 300 nm thick. Exposure of this powder to low vapor pressure H 2O in the absence of O 2, i.e., a vacuum desiccator, resulted in a coherent oxide film growth of ~1 m/y, ~ 10Xmore » the growth rate in ambient air, displaying fracture along the growth plane at ~300 nm.« less

  8. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  9. Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W.; Leblanc, B.; Maingi, R.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.

    2010-03-01

    Transient coaxial helicity injection (CHI) started discharges in the National Spherical Torus Experiment (NSTX) have attained peak currents up to 300 kA and when coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/J of capacitor bank energy. In addition, for the first time, the CHI-produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices.

  10. A collective scattering system for measuring electron gyroscale fluctuations on the National Spherical Torus Experiment.

    PubMed

    Smith, D R; Mazzucato, E; Lee, W; Park, H K; Domier, C W; Luhmann, N C

    2008-12-01

    A collective scattering system has been installed on the National Spherical Torus Experiment (NSTX) to measure electron gyroscale fluctuations in NSTX plasmas. The system measures fluctuations with k( perpendicular)rho(e) less, similar0.6 and k( perpendicular) less, similar20 cm(-1). Up to five distinct wavenumbers are measured simultaneously, and the large toroidal curvature of NSTX plasmas provides enhanced spatial localization. Steerable optics can position the scattering volume throughout the plasma from the magnetic axis to the outboard edge. Initial measurements indicate rich turbulent dynamics on the electron gyroscale. The system will be a valuable tool for investigating the connection between electron temperature gradient turbulence and electron thermal transport in NSTX plasmas.

  11. Review of blunt body wake flows at hypersonic low density conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. N.; Price, J. M.

    1996-01-01

    Recent results of experimental and computational studies concerning hypersonic flows about blunted cones including their near wake are reviewed. Attention is focused on conditions where rarefaction effects are present, particularly in the wake. The experiments have been performed for a common model configuration (70 deg spherically-blunted cone) in five hypersonic facilities that encompass a significant range of rarefaction and nonequilibrium effects. Computational studies using direct simulation Monte Carlo (DSMC) and Navier-Stokes solvers have been applied to selected experiments performed in each of the facilities. In addition, computations have been made for typical flight conditions in both Earth and Mars atmospheres, hence more energetic flows than produced in the ground-based tests. Also, comparisons of DSMC calculations and forebody measurements made for the Japanese Orbital Reentry Experiment (OREX) vehicle (a 50 deg spherically-blunted cone) are presented to bridge the spectrum of ground to flight conditions.

  12. Magnetic Eigenmodes in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.

    2002-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.

  13. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    ERIC Educational Resources Information Center

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  14. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    PubMed

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  15. Mass change from GRACE: a simulated comparison of Level-1B analysis techniques

    NASA Astrophysics Data System (ADS)

    Andrews, Stuart B.; Moore, Philip; King, Matt. A.

    2015-01-01

    Spherical harmonic and mascon parameters have both been successfully applied in the recovery of time-varying gravity fields from Gravity Recovery and Climate Experiment (GRACE). However, direct comparison of any mass flux is difficult with solutions generated by different groups using different codes and algorithms. It is therefore opportune to compare these methodologies, within a common software base, to understand potential limitations associated with each technique. Here we use simulations to recover a known monthly surface mass distribution from GRACE KBRR data. The ability of spherical harmonic and mascon parameters to resolve basin-level mass change is quantified with an assessment of how the noise and errors, inherent in GRACE solutions, are handled. Recovery of a noise and error free GLDAS anomaly revealed no quantifiable difference between spherical harmonic and mascon parameters. Expansion of the GLDAS anomaly to degree and order 120 shows that both spherical harmonic and mascon parameters are affected by comparable omission errors. However, the inclusion of realistic KBRR noise and errors in the simulations reveals the advantage of the mascon parameters over spherical harmonics at reducing noise and errors in the higher degree and order harmonics with an rms (cm of EWH) to the GLDAS anomaly of 10.0 for the spherical harmonic solution and 8.8 (8.6) for the 4°(2°) mascon solutions. The introduction of a constraint matrix in the mascon solution based on parameters that share geophysical similarities is shown to further reduce the signal lost at all degrees. The recovery of a simulated Antarctic mass loss signal shows that the mascon methodology is superior to spherical harmonics for this region with an rms (cm of EWH) of 8.7 for the 2° mascon solution compared to 10.0 for the spherical harmonic solution. Investigating the noise and errors for a month when the satellites were in resonance revealed both the spherical harmonic and mascon methodologies are able to recover the GLDAS and Antarctic mass loss signal with either a comparable (spherical harmonic) or improved (mascon) rms compared to non-resonance periods.

  16. SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; The University of Sydney, Sydney, NSW; The University of Newcastle, Newcastle, NSW

    Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple,more » open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.« less

  17. The Versatile Terminal.

    ERIC Educational Resources Information Center

    Evans, C. D.

    This paper describes the experiences of the industrial research laboratory of Kodak Ltd. in finding and providing a computer terminal most suited to its very varied requirements. These requirements include bibliographic and scientific data searching and access to a number of worldwide computing services for scientific computing work. The provision…

  18. Investigation of Microtubular Ceramic Structures

    DTIC Science & Technology

    1979-02-01

    25 Experiments 05x - Excel ŗ-5 CAL" (Powder D). 25 Experiments 06x - Excel ŗ-5 CAL" (Powder D). 26 Experiments 07x - Stabilized Zirconia ( Powder E...an extremely fine particle size (- 0. 4 jim) for satisfactory sintering. With zirconia powder of this particle size, spherical aggregates formed...firm" packing pressure, sustained large additions (15 to--9 gm/cycle) occurred. Experiments 07x - Stabilized Zirconia ( Powder E) The 07x experiments

  19. A highly versatile automatized setup for quantitative measurements of PHIP enhancements

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Sauer, Grit; Hadjiali, Sara; Yurkovskaya, Alexandra V.; Breitzke, Hergen; Buntkowsky, Gerd

    2017-12-01

    The design and application of a versatile and inexpensive experimental extension to NMR spectrometers is described that allows to carry out highly reproducible PHIP experiments directly in the NMR sample tube, i.e. under PASADENA condition, followed by the detection of the NMR spectra of hyperpolarized products with high spectral resolution. Employing this high resolution it is feasible to study kinetic processes in the solution with high accuracy. As a practical example the dissolution of hydrogen gas in the liquid and the PHIP kinetics during the hydrogenation reaction of Fmoc-O-propargyl-L-tyrosine in acetone-d6 are monitored. The timing of the setup is fully controlled by the pulse-programmer of the NMR spectrometer. By flushing with an inert gas it is possible to efficiently quench the hydrogenation reaction in a controlled fashion and to detect the relaxation of hyperpolarization without a background reaction. The proposed design makes it possible to carry out PHIP experiments in an automatic mode and reliably determine the enhancement of polarized signals.

  20. BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.

    PubMed

    Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K

    2014-02-15

    Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A robust activity marking system for exploring active neuronal ensembles

    PubMed Central

    Sørensen, Andreas T; Cooper, Yonatan A; Baratta, Michael V; Weng, Feng-Ju; Zhang, Yuxiang; Ramamoorthi, Kartik; Fropf, Robin; LaVerriere, Emily; Xue, Jian; Young, Andrew; Schneider, Colleen; Gøtzsche, Casper René; Hemberg, Martin; Yin, Jerry CP; Maier, Steven F; Lin, Yingxi

    2016-01-01

    Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system’s versatility. DOI: http://dx.doi.org/10.7554/eLife.13918.001 PMID:27661450

  2. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  3. CRUSER News. Issue 30, Aug 2013

    DTIC Science & Technology

    2013-08-01

    Versatile Low Cost Tactical SUAS by Dr. Richard Guiler, Physical Sciences Inc. • Small Unmanned Aircraft System ( SUAS )/Unattended Ground Sensor...NPS faculty JIFX 13-4 was held last week and included several different planned experiments in the unmanned systems /robot- ics thread. One of the many... planned experiments for the unmanned systems / robotics thread. • Tactical Operations for Multiple Swarm UAVs by Dr Timothy Chung, NPS • ងlb

  4. Microgravity

    NASA Image and Video Library

    1995-10-20

    Payload specialist Fred Leslie makes use of the versatile U.S. Microgravity Laboratory (USML-2) glovebox to conduct an investigation with the Oscillatory Thermocapillary Flow Experiment (OTFE). This complement of the Surface-Tension-Driven Convection Experiment (STDCE) studies the shapes that fluid surfaces in weightless environments assume within specific containers. Leslie was one of two guest researchers who joined five NASA astronauts for 16 days of on Earth-orbit research in support of USML-2.

  5. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  6. Compaction Around a Spherical Inclusion in Partially Molten Rock

    NASA Astrophysics Data System (ADS)

    Alisic, Laura; Rhebergen, Sander; Rudge, John F.; Katz, Richard F.; Wells, Garth N.

    2015-04-01

    Conservation laws that describe the behavior of partially molten mantle rock have been established for several decades, but the associated rheology remains poorly understood. Constraints on the rheology may be obtained from recently published torsion experiments involving deformation of partially molten rock around a rigid, spherical inclusion. These experiments give rise to patterns of melt segregation that exhibit the competing effects of pressure shadows around the inclusion and melt-rich bands through the medium. Such patterns provide an opportunity to infer rheological parameters through comparison with models based on the conservation laws and constitutive relations that hypothetically govern the system. To this end, we have developed software tools using the automated code generation package FEniCS to simulate finite strain, two-phase flow around a rigid, spherical inclusion in a three-dimensional configuration that mirrors the laboratory experiments. The equations for compaction and advection-diffusion of a porous medium are solved utilising newly developed matrix preconditioning techniques. Simulations indicate that the evolution of porosity and therefore of melt distribution is predominantly controlled by the non-linear porosity-weakening exponent of the shear viscosity and the poorly known bulk viscosity. In the simulations presented here, we find that the balance of pressure shadows and melt-rich bands observed in experiments only occurs for bulk-to-shear viscosity ratio of less than about five. However, the evolution of porosity in simulations with such low bulk viscosity exceeds physical bounds at unrealistically small strain due to the unchecked, exponential growth of the porosity variations. Processes that limit or balance porosity localization will have to be incorporated in the formulation of the model to produce results that are consistent with the porosity evolution in experiments.

  7. Recent Progress on Spherical Torus Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configurationmore » can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.« less

  8. Spherical hashing: binary code embedding with hyperspheres.

    PubMed

    Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui

    2015-11-01

    Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

  9. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  10. Platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choi, Yoonho; Kang, Sehyeon; Cha, Song-Hyun; Kim, Hyun-Seok; Song, Kwangho; Lee, You Jeong; Kim, Kyeongsoon; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2018-01-01

    A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix ( Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively. No other chemicals were introduced during the reduction reactions, providing an entirely green, eco-friendly, and sustainable method. UV-visible spectra showed the surface plasmon resonance bands of PD-AuNPs at 536 nm and PD-AgNPs at 427 nm. Spherically shaped nanoparticles were observed from high-resolution transmission electron microscopy with average diameters of 14.94 ± 2.14 nm for PD-AuNPs and 18.40 ± 3.20 nm for PD-AgNPs. Minor triangular and other polygonal shapes were also observed for PD-AuNPs along with spherical ones. Atomic force microscopy (AFM) images also demonstrated that both nanoparticles were mostly spherical in shape. Curvature-dependent evolution was employed to enhance the AFM images and precisely measure the sizes of the nanoparticles. The sizes were measured as 19.14 nm for PD-AuNPs and 29.93 nm for PD-AgNPs from the enhanced AFM images. Face-centered cubic structures for both nanoparticles were confirmed by strong diffraction patterns from high-resolution X-ray diffraction analyses. Fourier transform infrared spectra revealed the contribution of -OH, aromatic C=C, C-O, and C-H functional groups to the synthesis. Furthermore, the catalytic activity of PD-AuNPs was assessed with a reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The catalytic activity results suggest the potential application of these gold nanoparticles as catalysts in the future. The green strategy reported in this study using saponins as reducing agents will pave new roads to develop novel nanomaterials with versatile applications.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.

    The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs. (WRF)

  12. A versatile nanoplatform for synergistic combination therapy to treat human esophageal cancer.

    PubMed

    Wang, Xin-Shuai; Kong, De-Jiu; Lin, Tzu-Yin; Li, Xiao-Cen; Izumiya, Yoshihiro; Ding, Xue-Zhen; Zhang, Li; Hu, Xiao-Chen; Yang, Jun-Qiang; Gao, She-Gan; Lam, Kit S; Li, Yuan-Pei

    2017-06-01

    One of the major goals of precision oncology is to promote combination therapy to improve efficacy and reduce side effects of anti-cancer drugs based on their molecular mechanisms. In this study, we aimed to develop and validate new nanoformulations of docetaxel (DTX) and bortezomib (BTZ) for targeted combination therapy to treat human esophageal cancer. By leveraging our versatile disulfide cross-linked micelles (DCMs) platform, we developed nanoformulations of DTX and BTZ (named DTX-DCMs and BTZ-DCMs). Their physical properties were characterized; their anti-cancer efficacies and mechanisms of action were investigated in a human esophageal cancer cell line in vitro. Furthermore, the in vitro anti-tumor activities of combination therapies (concurrent drug treatment, sequential drug treatment, and treatment using different ratios of the drugs) were examined in comparison with the single drug treatment and free drug strategies. These drug-loaded nanoparticles were spherical in shape and relatively small in size of approximately 20-22 nm. The entrapment efficiencies of DTX and BTZ into nanoparticles were 82.4% and 84.1%, respectively. The drug release rates of DTX-DCMs and BTZ-DCMs were sustained, and greatly increased in the presence of GSH. These nanodrugs were effectively internalized by KYSE30 esophageal cancer cells, and dose-dependently induced cell apoptosis. We further revealed a strong synergistic effect between DTX-DCMs and BTZ-DCMs against KYSE30 esophageal cancer cells. Sequential combination therapy with DTX-DCMs followed by BTZ-DCMs exhibited the best anti-tumor efficacy in vitro. This study demonstrates that DTX and BTZ could be successfully nanoformulated into disulfide cross-linked micelles. The nanoformulations of DTX and BTZ demonstrate an immense potential for synergistic combination therapy to treat human esophageal cancer.

  13. A versatile stereoscopic visual display system for vestibular and oculomotor research.

    PubMed

    Kramer, P D; Roberts, D C; Shelhamer, M; Zee, D S

    1998-01-01

    Testing of the vestibular system requires a vestibular stimulus (motion) and/or a visual stimulus. We have developed a versatile, low cost, stereoscopic visual display system, using "virtual reality" (VR) technology. The display system can produce images for each eye that correspond to targets at any virtual distance relative to the subject, and so require the appropriate ocular vergence. We elicited smooth pursuit, "stare" optokinetic nystagmus (OKN) and after-nystagmus (OKAN), vergence for targets at various distances, and short-term adaptation of the vestibulo-ocular reflex (VOR), using both conventional methods and the stereoscopic display. Pursuit, OKN, and OKAN were comparable with both methods. When used with a vestibular stimulus, VR induced appropriate adaptive changes of the phase and gain of the angular VOR. In addition, using the VR display system and a human linear acceleration sled, we adapted the phase of the linear VOR. The VR-based stimulus system not only offers an alternative to more cumbersome means of stimulating the visual system in vestibular experiments, it also can produce visual stimuli that would otherwise be impractical or impossible. Our techniques provide images without the latencies encountered in most VR systems. Its inherent versatility allows it to be useful in several different types of experiments, and because it is software driven it can be quickly adapted to provide a new stimulus. These two factors allow VR to provide considerable savings in time and money, as well as flexibility in developing experimental paradigms.

  14. The Explosive Spherical Cavity Expansion for Characterization of SiC-N Ceramic Dynamic Behavior and Post Shock Damage Using RUS Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gefken, Paul; Curran, Donald; Nesterenko, Vitali F.

    Two spherical cavity expansion experiments were performed with SiC-N to provide high-strain rate data for developing ceramic armor penetration models. Here, an explosive charge is detonated within a cavity machined in the ceramic, generating a pulse that moves radially outward. The particle velocity at multiple radial locations from the charge, including at the charge radii, was measured and the fractured ceramic was recovered for posttest evaluation. From the particle velocity histories we derived displacement, radial strain and circumferential strain histories. In the recovered samples we observed the regions where comminution, radial cracking and circumferential cracking occurred. The elastic properties ofmore » initial undamaged SiC-N and shocked damaged material were measured using a resonant ultrasound spectroscopy (RUS). Comparison of these measurements illustrated the posttest condition of the SiC-N material. Hot isostatic pressing of ''as is'' SiC-N material demonstrated a significant increase in the quality factor. The same procedure applied to SiC-N damaged in spherical cavity experiments resulted in a significant recovery of the elastic properties.« less

  15. Reconstructing the vibro-acoustic quantities on a highly non-spherical surface using the Helmholtz equation least squares method.

    PubMed

    Natarajan, Logesh Kumar; Wu, Sean F

    2012-06-01

    This paper presents helpful guidelines and strategies for reconstructing the vibro-acoustic quantities on a highly non-spherical surface by using the Helmholtz equation least squares (HELS). This study highlights that a computationally simple code based on the spherical wave functions can produce an accurate reconstruction of the acoustic pressure and normal surface velocity on planar surfaces. The key is to select the optimal origin of the coordinate system behind the planar surface, choose a target structural wavelength to be reconstructed, set an appropriate stand-off distance and microphone spacing, use a hybrid regularization scheme to determine the optimal number of the expansion functions, etc. The reconstructed vibro-acoustic quantities are validated rigorously via experiments by comparing the reconstructed normal surface velocity spectra and distributions with the benchmark data obtained by scanning a laser vibrometer over the plate surface. Results confirm that following the proposed guidelines and strategies can ensure the accuracy in reconstructing the normal surface velocity up to the target structural wavelength, and produce much more satisfactory results than a straight application of the original HELS formulations. Experiment validations on a baffled, square plate were conducted inside a fully anechoic chamber.

  16. Fluidization of spherocylindrical particles

    NASA Astrophysics Data System (ADS)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  17. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    ERIC Educational Resources Information Center

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  18. Space-Inspired Trailers Encourage Exploration on Earth

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Architect Garret Finney joined Johnson Space Center's Habitability Design Center to work on creating comfortable, efficiently designed crew quarters for the ISS. Drawing directly on that experience, Finney founded Houston-based Cricket and set about creating unique, versatile recreational trailers that incorporate space habitat principles and features.

  19. Analysis of AtCry1 and Mutants

    NASA Astrophysics Data System (ADS)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  20. A Star on Earth

    ScienceCinema

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2018-02-14

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  1. Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yitian; Tian Bo; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100083

    2006-11-15

    The spherical modified Kadomtsev-Petviashvili (smKP) model is hereby derived with symbolic computation for the dust-ion-acoustic waves with zenith-angle perturbation in a cosmic dusty plasma. Formation and properties of both dark and bright smKP nebulons are obtained and discussed. The relevance of those smKP nebulons to the supernova shells and Saturn's F-ring is pointed out, and possibly observable nebulonic effects for the future cosmic plasma experiments are proposed. The difference of the smKP nebulons from other types of nebulons is also analyzed.

  2. Effect of multiple spin species on spherical shell neutron transmission analysis

    NASA Technical Reports Server (NTRS)

    Semler, T. T.

    1972-01-01

    A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.

  3. Manufacturing and integration of the SOFIA suspension assembly

    NASA Astrophysics Data System (ADS)

    Sust, Eberhard; Weis, Ulrich; Bremers, Eckhard; Schubbach, Walter

    2003-02-01

    The Suspension Assembly is the most complex mechanical subsystem of the SOFIA telescope, responsible for suspending and positioning the telescope in the aircraft on the sky. It is a highly integrated system comprising of a vibration isolating system, a spherical hydraulic bearing, a spherical torque motor, a coarse drive and airworthiness relevant components like brakes, hard-stops etc. The components were manufactured under airworthiness standards by dedicated suppliers and integrated and commissioned in 2001/2002 at MAN Technologie in Augsburg. The paper describes the experience gotten during the manufacturing and integration process.

  4. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  5. A Research Program of Spherical Tokamak in China

    NASA Astrophysics Data System (ADS)

    He, Ye-xi

    2002-08-01

    The mission of this program is to explore the spherical torus plasma with a SUNIST spherical tokamak. Main experiments in the start phase will be involved with breakdown and plasma current set-up with a mode of saving volt-second and without ohmic heating system, equilibrium and instability, current driving, heating and profile modification. The SUNIST is a university-scale conceptual spherical tokamak, with R = 0.3 m, A 1.3, Ip ~ 50 kA, BT < 0.15 T, and PRF = 100 kW. The only peculiarity of SUNIST is that there is a toroidal insulating break along the outer wall of vacuum vessel. The expected that advantages of this arrangement are helpful not only for saving flux swing, but also for having a deep understanding of what will influence the discharge startup and globe performances of plasma under different conditions of strong vessel eddy and ECR power assistance. Of course, the vessel structure of cross seal will be at a great risk of controlling vacuum quality, although we have achieved positive results on simulation test and vacuum vessel test.

  6. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  7. Learning the spherical harmonic features for 3-D face recognition.

    PubMed

    Liu, Peijiang; Wang, Yunhong; Huang, Di; Zhang, Zhaoxiang; Chen, Liming

    2013-03-01

    In this paper, a competitive method for 3-D face recognition (FR) using spherical harmonic features (SHF) is proposed. With this solution, 3-D face models are characterized by the energies contained in spherical harmonics with different frequencies, thereby enabling the capture of both gross shape and fine surface details of a 3-D facial surface. This is in clear contrast to most 3-D FR techniques which are either holistic or feature based, using local features extracted from distinctive points. First, 3-D face models are represented in a canonical representation, namely, spherical depth map, by which SHF can be calculated. Then, considering the predictive contribution of each SHF feature, especially in the presence of facial expression and occlusion, feature selection methods are used to improve the predictive performance and provide faster and more cost-effective predictors. Experiments have been carried out on three public 3-D face datasets, SHREC2007, FRGC v2.0, and Bosphorus, with increasing difficulties in terms of facial expression, pose, and occlusion, and which demonstrate the effectiveness of the proposed method.

  8. Reduction effect of surface temperature of baked bricks with different pore shapes during absorption-evaporation test

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Shinozuka, Katsumi

    2017-04-01

    To study the effect of decreasing in surface temperature of baked bricks with various pore shapes, the present study performed several experiments such as water absorbance test and heating test. For the preparation of experimental specimens, bricks with artificial spherical pores, artificial linear pores and non-additional artificial pores were made. The bricks were examined their properties of bulk density, Equotip hardness and absorbing properties by putting in the water. Wet bricks were also put in the incubator set at 50 °C, and monitored the increasing of surface temperature of each brick. Brick with linear pores shows higher water absorption rate in a short time than those with spherical pores. They evaporated moisture faster than those with a spherical pores. They kept the temperature by 11.7 °C lower than the setting temperature, whereas the bricks with a spherical pores kept the temperature by 10.5 °C . Bricks with linear pores has about 10% higher effectiveness of decreasing in surface temperature than those with spheroidal pores.

  9. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  10. Application of the space-resolving flux detector for radiation measurements from an octahedral-aperture spherical hohlraum

    NASA Astrophysics Data System (ADS)

    Xie, Xufei; Du, Huabing; Chen, Jinwen; Liu, Shenye; Li, Zhichao; Yang, Dong; Huang, Yunbao; Ren, Kuan; Hou, Lifei; Li, Sanwei; Guo, Liang; Jiang, Xiaohua; Huo, Wenyi; Chen, Yaohua; Ren, Guoli; Lan, Ke; Wang, Feng; Jiang, Shaoen; Ding, Yongkun

    2018-06-01

    Space-resolving flux detection is an important technique for the diagnostic of the radiation field within the hohlraum in inertial confinement fusion, especially for the radiation field diagnostic in the novel spherical hohlraum with octahedral six laser entrance holes (LEHs), where localized measurements are necessary for the discrimination of the radiation flux from different LEHs. A novel space-resolving flux detector (SRFD) is developed at the SG-III laser facility for the radiation flux measurement in the first campaign of the octahedral spherical hohlraum energetics experiment. The principle and configuration of the SRFD system is introduced. The radiation flux from the wall of a gas-filled octahedral spherical hohlraum is measured for the first time by placing the SRFD system at the equatorial position of the SG-III laser facility, aiming at the hohlraum wall through one of the six LEHs. The absolute radiation flux from the re-emission area on the hohlraum wall is measured, and good consistency is found between the experimental data and the calculated data from a three-dimensional view factor analysis.

  11. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    PubMed

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  12. Radiation absorbed dose to bladder walls from positron emitters in the bladder content.

    PubMed

    Powell, G F; Chen, C T

    1987-01-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  13. Towards anti-causal Green's function for three-dimensional sub-diffraction focusing

    NASA Astrophysics Data System (ADS)

    Ma, Guancong; Fan, Xiying; Ma, Fuyin; de Rosny, Julien; Sheng, Ping; Fink, Mathias

    2018-06-01

    In causal physics, the causal Green's function describes the radiation of a point source. Its counterpart, the anti-causal Green's function, depicts a spherically converging wave. However, in free space, any converging wave must be followed by a diverging one. Their interference gives rise to the diffraction limit that constrains the smallest possible dimension of a wave's focal spot in free space, which is half the wavelength. Here, we show with three-dimensional acoustic experiments that we can realize a stand-alone anti-causal Green's function in a large portion of space up to a subwavelength distance from the focus point by introducing a near-perfect absorber for spherical waves at the focus. We build this subwavelength absorber based on membrane-type acoustic metamaterial, and experimentally demonstrate focusing of spherical waves beyond the diffraction limit.

  14. Waves in Radial Gravity Using Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.

    1999-01-01

    Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart Zweben; Samuel Cohen; Hantao Ji

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.

  16. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1980-08-01

    projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure

  17. Final Report. Grant DOE DE-FG02-04ER54768

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, Riccardo

    The magnetized spherical implosion campaign funded by this grant is summarized in this progress report. The main goal of this grant was to improve the seed eld generator MIFEDS (Magneto- Inertial Fusion Energy Delivery System) on the OMEGA laser to enable experiments at high elds (> 8 T) and to carry out magnetized spherical implosion experiments to study the e ect of magnetic elds on the fusion yield. New experiments were carried out in the last budget period to study the e ect of higher elds and shaped laser pulses. These new experiments improved the magnetized implosion database and allowedmore » us to improve the con dence of our conclusions with respect to the e ect of magnetic elds on implosion performance. The main conclusion is that adding magnetic eld leads to a 30% higher neutron yield, but using seed magnetic eld higher than 8 T does not further increase the neutron yield. A further conclusion is that the yield enhancement due to the magnetic eld is approximately independent of the laser pulse shape.« less

  18. TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS): a versatile tool for radioactive beam physics

    NASA Astrophysics Data System (ADS)

    Ball, G. C.; Andreyev, A.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Chen, A.; Churchman, R.; Cifarelli, F.; Cline, D.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Moisan, F.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2007-05-01

    TIGRESS is a new generation γ-ray spectrometer designed for use with radioactive beams from ISAC. This paper gives an overview of the project and presents results from the first radioactive beam experiment with TIGRESS, the Coulomb excitation of 20,21Na.

  19. A New Approach to Teaching Mathematics

    DTIC Science & Technology

    1994-02-01

    We propose a new approach to teaching discrete math : First, teach logic as a powerful and versatile tool for discovering and communicating truths...using logic in other areas of study. Our experiences in teaching discrete math at Cornell shows that such success is possible. Propositional logic, Predicate logic, Discrete mathematics.

  20. Nice Voices Are a Dime a Dozen.

    ERIC Educational Resources Information Center

    Hollahan, Patricia Welting

    1979-01-01

    To succeed in today's competitive opera world, a singer needs--in addition to a good voice--personality, acting ability, good appearance, musicianship, language facility, versatility, and experience. Especially important are sight reading skills, care of the voice, and the ability to express emotion. Part of a theme issue on opera. (Author/SJL)

  1. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  2. FREEDOM TO MOVE.

    ERIC Educational Resources Information Center

    CARPENTER, ETHELOUISE; SHIPLEY, FERNE

    PLAY WHICH INVOLVES NATURAL MOVEMENT HELPS THE CHILD TO LEARN ABOUT THE PROPERTIES OF MATTER AND ABOUT HIMSELF. AN EXPANSIVE AND VERSATILE USE OF SPACE FOR LIVING INCREASES WITH EXPLORATION. FREEDOM TO MOVE IS INTELLECTUAL AND EMOTIONAL, AS WELL AS PHYSICAL. NEW EXPERIENCES ARISING OUT OF CURIOSITY AND INTERACTION WITH HIS OWN FAMILY AND OTHER…

  3. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  4. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light to a field stop that is also a focal point of each spherical lens. A correcting lens in front of the field stop compensates for the spherical aberration of the spherical lenses. The front surface of each spherical lens collimates the light coming from the field stop. After the collimated light passes through the filter in the spherical lens, the rear surface of the lens focuses the light onto a charge-coupled-device image detector.

  5. Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1975-01-01

    In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.

  6. Science Support for Space-Based Droplet Combustion: Drop Tower Experiments and Detailed Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Frederick L.

    1997-01-01

    This program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies. Experimental emphasis is on the study of simple alcohols (methanol, ethanol) and alkanes (n-heptane, n-decane) as fuels with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Experiments have included bench-scale studies at Princeton, studies in the 2.2 and 5.18 drop towers at NASA-LeRC, and both the Fiber Supported Droplet Combustion (FSDC-1, FSDC-2) and the free Droplet Combustion Experiment (DCE) studies aboard the shuttle. Test matrix and data interpretation are performed through spherically-symmetric, time-dependent numerical computations which embody detailed sub-models for physical and chemical processes. The computed burning rate, flame stand-off, and extinction diameter are compared with the respective measurements for each individual experiment. In particular, the data from FSDC-1 and subsequent space-based experiments provide the opportunity to compare all three types of data simultaneously with the computed parameters. Recent numerical efforts are extending the computational tools to consider time dependent, axisymmetric 2-dimensional reactive flow situations.

  7. Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Stone, D.; Lathrop, D. P.

    2014-12-01

    Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.

  8. Radiesse: Advanced Techniques and Applications for a Unique and Versatile Implant.

    PubMed

    Eviatar, Joseph; Lo, Christopher; Kirszrot, James

    2015-11-01

    Radiesse is a well-tolerated facial injectable with unique filling and lifting capabilities. Although initially approved for facial volumizing in HIV-related lipodystrophy patients, it quickly gained wide acceptance for aesthetic facial rejuvenation. In the USA, the Food and Drug Administration has approved several new indications for its use. This synopsis presents the experience and injection techniques currently favored by the primary author after many years of use in thousands of patients. The anecdotal practice of an experienced injector is presented along with the current Food and Drug Administration-approved standards of Radiesse injection. Radiesse has many on- and off-label applications that can be thoughtfully incorporated into clinical practice. Its unique chemical composition allows for immediate lifting and filling with long-term collagen stimulation. The product can be reconstituted to increase its versatility and minimize adverse events. Injections can be performed in the supraperiosteal space and the subcutaneous layer and are best administered in small, calculated doses to prevent nodules or vascular occlusion. Various techniques for Radiesse injection in specific areas are discussed in detail. Radiesse is a versatile injectable implant and a valuable tool for short- and long-term cosmetic and reconstructive treatments. In addition to various off-label uses, this injectable is often used in conjunction with botox, other injectables, collagen stimulators and tightening devices. A customized reconstitution of product increases its versatility for natural appearing and long lasting results that are both economical and effective for full facial rejuvenation.

  9. US fusion effort hit by tokamak losses

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2016-11-01

    Stewart Prager, director of the Princeton Plasma Physics Laboratory (PPPL) in the US, resigned in late September just weeks after a major setback at the lab's National Spherical Torus Experiment Upgrade (NSTX-U).

  10. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Shiroto, T.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  11. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Nagatomo, H.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  12. Influence of zeolite shape and particle size on their capacity to adsorb uremic toxin as powders and as fillers in membranes.

    PubMed

    Lu, Limin; Chen, Chen; Samarasekera, Champika; Yeow, John T W

    2017-08-01

    Membranes with zeolites are promising for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the size and the shape of zeolite particles can potentially influence the performance of the membranes with respect of creatinine uptake level, it is not clear what sizes and shapes lead to better performance. In this paper, we carry out experiments to answer this question. Spherical microparticle 840, spherical nanoparticle P-87 and rod-like nanoparticle P-371 zeolites were chosen to be used in all the experiments. Their creatinine uptake levels were first measured as powders in creatinine solutions with different concentrations, volumes and adsorption times. Then, nanofibrous membranes with zeolites were electrospun and their ability to adsorb creatinine was measured and compared against their respective powders' creatinine uptake level. The experiment shows that the zeolites have similar creatinine uptake ability as powders. However, they have significantly different creatinine uptake ability after being incorporated inside the membranes. Spherical microparticle 840 in the membrane presented the best creatinine uptake ability, at 8957 µg g -1 , which was half of its powders'. On the other hand, P-87 presented largely decreased, while P-371 presented even lower creatinine uptake ability in membranes when compared to respective powders'. The results shows that microparticle and sphere shaped particles perform better inside the membranes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1594-1601, 2017. © 2016 Wiley Periodicals, Inc.

  13. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling.

    PubMed

    Yang, Hao; Cheng, Jian; Chen, Mingjun; Wang, Jian; Liu, Zhichao; An, Chenhui; Zheng, Yi; Hu, Kehui; Liu, Qi

    2017-07-24

    In high power laser systems, precision micro-machining is an effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal. Repaired surfaces with smooth spherical and Gaussian contours can alleviate the light field modulation caused by damage site. To obtain the optimal repairing structure parameters, finite element method (FEM) models for simulating the light intensification caused by the mitigation pits on rear KDP surface were established. The light intensity modulation of these repairing profiles was compared by changing the structure parameters. The results indicate the modulation is mainly caused by the mutual interference between the reflected and incident lights on the rear surface. Owing to the total reflection, the light intensity enhancement factors (LIEFs) of the spherical and Gaussian mitigation pits sharply increase when the width-depth ratios are near 5.28 and 3.88, respectively. To achieve the optimal mitigation effect, the width-depth ratios greater than 5.3 and 4.3 should be applied to the spherical and Gaussian repaired contours. Particularly, for the cases of width-depth ratios greater than 5.3, the spherical repaired contour is preferred to achieve lower light intensification. The laser damage test shows that when the width-depth ratios are larger than 5.3, the spherical repaired contour presents higher laser damage resistance than that of Gaussian repaired contour, which agrees well with the simulation results.

  14. Low toxic maghemite nanoparticles for theranostic applications.

    PubMed

    Kuchma, Elena A; Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I; Soldatov, Alexander V

    2017-01-01

    Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe 2 O 3 ) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe 2 O 3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Quasispherical Fe 3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy.

  15. Low toxic maghemite nanoparticles for theranostic applications

    PubMed Central

    Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I

    2017-01-01

    Background Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Methods Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). Results TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Conclusion Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. PMID:28919740

  16. The numerical design of a spherical baroclinic experiment for Spacelab flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Roberts, G. O.

    1982-01-01

    The near-zero G environment of Spacelab is the basis of a true spherical experimental model of synoptic scale baroclinic atmospheric processes, using a radial dielectric body force analogous to gravity over a volume of liquid within two concentric spheres. The baroclinic motions are generated by corotating the spheres and imposing thermal boundary conditions, such that the liquid is subjected to a stable radial gradient and a latitudinal gradient. Owing to mathematical difficulties associated with the spherical geometry, quantitative design criteria can be acquired only by means of numerical models. The procedure adopted required the development of two computer codes based on the Navier-Stokes equations. The codes, of which the first calculates axisymmetric steady flow solutions and the second determines the growth or decay rates of linear wave perturbations with different wave numbers, are combined to generate marginal stability curves.

  17. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront.

    PubMed

    Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang

    2016-12-14

    An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.

  18. Compressive spherical beamforming for localization of incipient tip vortex cavitation.

    PubMed

    Choo, Youngmin; Seong, Woojae

    2016-12-01

    Noises by incipient propeller tip vortex cavitation (TVC) are generally generated at regions near the propeller tip. Localization of these sparse noises is performed using compressive sensing (CS) with measurement data from cavitation tunnel experiments. Since initial TVC sound radiates in all directions as a monopole source, a sensing matrix for CS is formulated by adopting spherical beamforming. CS localization is examined with known source acoustic measurements, where the CS estimated source position coincides with the known source position. Afterwards, CS is applied to initial cavitation noise cases. The result of cavitation localization was detected near the upper downstream area of the propeller and showed less ambiguity compared to Bartlett spherical beamforming. Standard constraint in CS was modified by exploiting the physical features of cavitation to suppress remaining ambiguity. CS localization of TVC using the modified constraint is shown according to cavitation numbers and compared to high-speed camera images.

  19. Dynamic response of sand particles impacted by a rigid spherical object

    NASA Astrophysics Data System (ADS)

    Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.

    2018-06-01

    A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.

  20. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  1. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2014-11-01

    Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene) (PS-b-PEO) diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical) macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret A. Marshall

    In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.« less

  3. Benchmark gas core critical experiment.

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.; Cooper, C. G.; Hyland, R. E.

    1972-01-01

    A critical experiment with spherical symmetry has been conducted on the gas core nuclear reactor concept. The nonspherical perturbations in the experiment were evaluated experimentally and produce corrections to the observed eigenvalue of approximately 1% delta k. The reactor consisted of a low density, central uranium hexafluoride gaseous core, surrounded by an annulus of void or low density hydrocarbon, which in turn was surrounded with a 97-cm-thick heavy water reflector.

  4. Containerless solidification of BiFeO3 oxide under microgravity

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, E; Peng, Yueng Kay Martin

    Oak Ridge National Laboratory (ORNL) proposes to build the Spherical Torus Experiment (STX), a very low aspect ratio toroidal confinement device. This proposal concentrates on tokamak operation of the experiment; however, it can in principle be operated as a pinch or reversed-field pinch as well. As a tokamak, the spherical torus confines a plasma that is characterized by high toroidal beta, low poloidal beta, large natural elongation, high plasma current for a given edge q, and strong paramagnetism. These features combine to offer the possibility of a compact, low-field fusion device. The figure below shows that when compared to amore » conventional tokamak the spherical torus represents a major change in geometry. The primary goals of the experiment will be to demonstrate a capability for high beta (20%) in the first stability regime, to extend our knowledge of tokamak confinement scaling, and to test oscillating-field current drive. The experiment will operate in the high-beta, collisionless regime, which is achieved in STX at low temperatures because of the geometry. At a minimum, operation of STX will help to resolve fundamental questions regarding the scaling of beta and confinement in tokamaks. Complete success in this program would have a significant impact on toroidal fusion research in that it would demonstrate solutions to the problems of beta and steady-state operation in the tokamak. The proposed device has a major radius of 0.45 m, a toroidai field of 0.5 T, a plasma current of 900 kA, and heating by neutral beam injection. We estimate 30 months for design, construction, and assembly. The budget estimate, including contingency and escalation, is $6.8 million.« less

  6. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1992-01-01

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  7. The motion of a cloud of solid spherical particles falling in a cellular flow field at low Stokes number

    NASA Astrophysics Data System (ADS)

    Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth

    2017-11-01

    We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.

  8. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  9. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.

    PubMed

    Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu

    2009-01-21

    A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.

  10. Versatile strain-tuning of modulated long-period magnetic structures

    DOE PAGES

    Fobes, D. M.; Luo, Yongkang; León-Brito, N.; ...

    2017-05-10

    In this paper, we report a detailed small-angle neutron scattering (SANS) study of the skyrmion lattice phase of MnSi under compressive and tensile strain. In particular, we demonstrate that tensile strain applied to the skyrmion lattice plane, perpendicular to the magnetic field, acts to destabilize the skyrmion lattice phase. Finally, this experiment was enabled by our development of a versatile strain cell, unique in its ability to select the application of either tensile or compressive strain in-situ by using two independent helium-actuated copper pressure transducers, whose design has been optimized for magnetic SANS on modulated long-period magnetic structures and vortexmore » lattices, and is compact enough to fit in common sample environments such as cryostats and superconducting magnets.« less

  11. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  12. Novel TMS coils designed using an inverse boundary element method

    NASA Astrophysics Data System (ADS)

    Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David

    2017-01-01

    In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.

  13. A potential nanobiotechnology platform based on infectious bursal disease subviral particles.

    PubMed

    Taghavian, Omid; Mandal, Manoj K; Steinmetz, Nicole F; Rasche, Stefan; Spiegel, Holger; Fischer, Rainer; Schillberg, Stefan

    2012-03-07

    We describe a novel nanobiotechnology platform based on subviral particles derived from infectious bursal disease virus (IBD-SVPs). The major virus coat protein VP2 assembles into spherical, 23 nm SVPs when expressed as a heterologous protein in the yeast Pichia pastoris . We recovered up to 38 mg of IBD-SVPs at > 95% purity from 1 L of recombinant yeast culture. The purified particles were able to tolerate organic solvents up to 20% concentration (ethanol or dimethylsulfoxide), they resisted temperatures up to 65 °C and remained stable over a wide pH range (2.5-9.0). We achieved bioconjugation to the amine groups of lysine residues and to the carboxyl groups of aspartic and glutamic acid residues, allowing the functionalization of IBD-SVPs with biotin. The accessibility of surface amine groups was measured using Alexa Fluor 488 N -hydroxysuccinimide (NHS) ester, an amine-selective fluorescent dye, revealing that approximately 60 dye molecules were attached to the surface of each particle. IBD-SVPs can therefore be exploited as a robust and versatile nanoscaffold to display diverse functional ligands.

  14. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  15. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  16. Online International Learning: Internationalising the Curriculum through Virtual Mobility at Coventry University

    ERIC Educational Resources Information Center

    Villar-Onrubia, Daniel; Rajpal, Brinder

    2016-01-01

    Virtual mobility initiatives are one of the most flexible, versatile and inclusive approaches in the provision of international experience opportunities. Given that in most universities only a small fraction of students can benefit from forms of academic mobility that involve travelling abroad, Internet-based intercultural interactions prove to be…

  17. Preparative Protein Production from Inclusion Bodies and Crystallization: A Seven-Week Biochemistry Sequence

    ERIC Educational Resources Information Center

    Peterson, Megan J.; Snyder, W. Kalani; Westerman, Shelley; McFarland, Benjamin J.

    2011-01-01

    We describe how to produce and purify proteins from "Escherichia coli" inclusion bodies by adapting versatile, preparative-scale techniques to the undergraduate laboratory schedule. This 7-week sequence of experiments fits into an annual cycle of research activity in biochemistry courses. Recombinant proteins are expressed as inclusion bodies,…

  18. Notes on Experiments: A Versatile Light-Emitter-Detector Arrangement for Use with a Microcomputer.

    ERIC Educational Resources Information Center

    Kirkup, Les

    1987-01-01

    Describes efforts of members of the biology and physics departments of Paisley College (Scotland) to develop a simple light-emitter-detector arrangement adapted as a colorimeter interfaced with a microcomputer for use by undergraduate students. Discusses the setup and provides a computer program in BASIC to run it. (CW)

  19. Use of the pericranial flap in medial canthal reconstruction: another application for this versatile flap.

    PubMed

    Leatherbarrow, Brian; Watson, Adam; Wilcsek, Geoffrey

    2006-01-01

    To describe the use and outcomes of a versatile surgical technique in the reconstruction of deep soft tissue and bony defects of the medial canthus. A retrospective review of consecutive cases requiring reconstruction of medial canthal defects involving loss of periosteum or bone by a median forehead pericranial flap and full-thickness skin grafting in a tertiary referral hospital setting. Two techniques were used: an open technique, using a midline forehead incision; and an endoscopic technique, using 2 incisions behind the hairline. Twenty-one cases were identified: 19 open and 2 endoscopic. The average length of follow-up was 13 months (range, 6-50 months). Ten cases required additional oculoplastic procedures including local periosteal flaps and mucous membrane grafts. Two cases (10%) had complete flap failure; one of these was caused by infection. Five (24%) had partial (< 50%) skin graft necrosis. Two cases (10%) have required further surgery. Our experience shows the pericranial flap to be versatile, robust, and easy to manipulate, offering advantages over alternative techniques when used for the repair of deep medial canthal defects. It is a valuable reconstructive technique that can yield good cosmetic and functional results.

  20. A simple and versatile data acquisition system for software coincidence and pulse-height discrimination in 4πβ-γ coincidence experiments.

    PubMed

    Kawada, Y; Yamada, T; Unno, Y; Yunoki, A; Sato, Y; Hino, Y

    2012-09-01

    A simple but versatile data acquisition system for software coincidence experiments is described, in which any time stamping and live time controller are not provided. Signals from β- and γ-channels are fed to separately two fast ADCs (16 bits, 25 MHz clock maximum) via variable delay circuits and pulse-height stretchers, and also to pulse-height discriminators. The discriminating level was set to just above the electronic noise. Two ADCs were controlled with a common clock signal, and triggered simultaneously by the logic OR pulses from both discriminators. Paired digital signals for each sampling were sent to buffer memories connected to main PC with a FIFO (First-In, First-Out) pipe via USB. After data acquisition in list mode, various processing including pulse-height analyses was performed using MS-Excel (version 2007 and later). The usefulness of this system was demonstrated for 4πβ(PS)-4πγ coincidence measurements of (60)Co, (134)Cs and (152)Eu. Possibilities of other extended applications will be touched upon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. RNA Framework: an all-in-one toolkit for the analysis of RNA structures and post-transcriptional modifications.

    PubMed

    Incarnato, Danny; Morandi, Edoardo; Simon, Lisa Marie; Oliviero, Salvatore

    2018-06-09

    RNA is emerging as a key regulator of a plethora of biological processes. While its study has remained elusive for decades, the recent advent of high-throughput sequencing technologies provided the unique opportunity to develop novel techniques for the study of RNA structure and post-transcriptional modifications. Nonetheless, most of the required downstream bioinformatics analyses steps are not easily reproducible, thus making the application of these techniques a prerogative of few laboratories. Here we introduce RNA Framework, an all-in-one toolkit for the analysis of most NGS-based RNA structure probing and post-transcriptional modification mapping experiments. To prove the extreme versatility of RNA Framework, we applied it to both an in-house generated DMS-MaPseq dataset, and to a series of literature available experiments. Notably, when starting from publicly available datasets, our software easily allows replicating authors' findings. Collectively, RNA Framework provides the most complete and versatile toolkit to date for a rapid and streamlined analysis of the RNA epistructurome. RNA Framework is available for download at: http://www.rnaframework.com.

  2. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Dietrich, Daniel L.; T'ien, James S.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY)) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  3. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; T'ien, James S.; Dietrich, Daniel L.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY) ) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  4. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  5. Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model.

    PubMed

    Babiloni, F; Babiloni, C; Carducci, F; Fattorini, L; Onorati, P; Urbano, A

    1996-04-01

    This paper presents a realistic Laplacian (RL) estimator based on a tensorial formulation of the surface Laplacian (SL) that uses the 2-D thin plate spline function to obtain a mathematical description of a realistic scalp surface. Because of this tensorial formulation, the RL does not need an orthogonal reference frame placed on the realistic scalp surface. In simulation experiments the RL was estimated with an increasing number of "electrodes" (up to 256) on a mathematical scalp model, the analytic Laplacian being used as a reference. Second and third order spherical spline Laplacian estimates were examined for comparison. Noise of increasing magnitude and spatial frequency was added to the simulated potential distributions. Movement-related potentials and somatosensory evoked potentials sampled with 128 electrodes were used to estimate the RL on a realistically shaped, MR-constructed model of the subject's scalp surface. The RL was also estimated on a mathematical spherical scalp model computed from the real scalp surface. Simulation experiments showed that the performances of the RL estimator were similar to those of the second and third order spherical spline Laplacians. Furthermore, the information content of scalp-recorded potentials was clearly better when the RL estimator computed the SL of the potential on an MR-constructed scalp surface model.

  6. Study Of Dose Distribution In A Human Body In Space Flight With The Spherical Tissue-Equivalent Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.

    In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.

  7. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  8. Research on the feature set construction method for spherical stereo vision

    NASA Astrophysics Data System (ADS)

    Zhu, Junchao; Wan, Li; Röning, Juha; Feng, Weijia

    2015-01-01

    Spherical stereo vision is a kind of stereo vision system built by fish-eye lenses, which discussing the stereo algorithms conform to the spherical model. Epipolar geometry is the theory which describes the relationship of the two imaging plane in cameras for the stereo vision system based on perspective projection model. However, the epipolar in uncorrected fish-eye image will not be a line but an arc which intersects at the poles. It is polar curve. In this paper, the theory of nonlinear epipolar geometry will be explored and the method of nonlinear epipolar rectification will be proposed to eliminate the vertical parallax between two fish-eye images. Maximally Stable Extremal Region (MSER) utilizes grayscale as independent variables, and uses the local extremum of the area variation as the testing results. It is demonstrated in literatures that MSER is only depending on the gray variations of images, and not relating with local structural characteristics and resolution of image. Here, MSER will be combined with the nonlinear epipolar rectification method proposed in this paper. The intersection of the rectified epipolar and the corresponding MSER region is determined as the feature set of spherical stereo vision. Experiments show that this study achieved the expected results.

  9. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  10. Spherical rotation orientation indication for HEVC and JEM coding of 360 degree video

    NASA Astrophysics Data System (ADS)

    Boyce, Jill; Xu, Qian

    2017-09-01

    Omnidirectional (or "360 degree") video, representing a panoramic view of a spherical 360° ×180° scene, can be encoded using conventional video compression standards, once it has been projection mapped to a 2D rectangular format. Equirectangular projection format is currently used for mapping 360 degree video to a rectangular representation for coding using HEVC/JEM. However, video in the top and bottom regions of the image, corresponding to the "north pole" and "south pole" of the spherical representation, is significantly warped. We propose to perform spherical rotation of the input video prior to HEVC/JEM encoding in order to improve the coding efficiency, and to signal parameters in a supplemental enhancement information (SEI) message that describe the inverse rotation process recommended to be applied following HEVC/JEM decoding, prior to display. Experiment results show that up to 17.8% bitrate gain (using the WS-PSNR end-to-end metric) can be achieved for the Chairlift sequence using HM16.15 and 11.9% gain using JEM6.0, and an average gain of 2.9% for HM16.15 and 2.2% for JEM6.0.

  11. Role versatility among men who have sex with men in urban Peru.

    PubMed

    Goodreau, Steven M; Peinado, Jesus; Goicochea, Pedro; Vergara, Jorge; Ojeda, Nora; Casapia, Martin; Ortiz, Abner; Zamalloa, Victoria; Galvan, Rosa; Sanchez, Jorge R

    2007-08-01

    Role versatility refers to the practice in which individual men who have sex with men (MSM) play both insertive and receptive sexual roles over time. Versatility has been thought to be relatively uncommon among Latin American MSM but possibly rising. Versatility has also been shown to be a potentially large population-level risk factor for HIV infection. In this study we examine the correlates of versatile behavior and identity among 2,655 MSM in six Peruvian cities. Versatile behavior with recent male partners was found in 9% of men and versatile ("moderno") identity was reported by 16%. Significant predictors included high education, white-collar occupation, sex work, and residence in Lima. Age was not significant in any analysis. Since sex work is negatively correlated with other predictors, versatile men appear to comprise two distinct sub-populations. Insertive-only men appear to play a strong role in bridging the HIV epidemic between MSM and women.

  12. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.

  13. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Self-Assembly of Trimer Colloids: Effect of Shape and Interaction Range†

    PubMed Central

    Hatch, Harold W.; Yang, Seung-Yeob; Mittal, Jeetain; Shen, Vincent K.

    2016-01-01

    Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction potentials. Extended corresponding states principle was successfully applied to self-assembling systems in order to approximately collapse the results for models with the same shape, but different interaction range. This helps us directly compare simulation results with previous experiment, and good agreement was found between the two. In addition, a variety of self-assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and experiments, via extended corresponding states, and we predict the formation of self-assembled structures for trimer shapes that have not been experimentally synthesized. PMID:27087490

  15. Vented Tank Resupply Experiment--Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Martin, Timothy A.

    1997-01-01

    This paper reports the results of the Vented Tank Resupply Experiment (VTRE) which was flown as a payload on STS 77. VTRE looks at the ability of vane Propellant Management Devices (PMD) to separate liquid and gas in low gravity. VTRE used two clear 0.8 cubic foot tanks one spherical and one with a short barrel section and transferred Refrigerant 113 between them as well as venting it to space. Tests included retention of liquid during transfer, liquid free venting, and recovery of liquid into the PMD after thruster firing. Liquid was retained successfully at the highest flow rate tested (2.73 gpm). Liquid free vents were achieved for both tanks, although at a higher flow rate (0.1591 cfm) for the spherical tank than the other (0.0400 cfm). Recovery from a thruster firing which moved the liquid to the opposite end of the tank from the PMD was achieved in 30 seconds.

  16. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information. Electronic supplementary information (ESI) available: Further details about anodisation profiles, SEM cross-section images, digital pictures, transmission spectra, photonic barcodes and ASCII codes of the different NAA photonic crystals fabricated and analysed in our study. See DOI: 10.1039/c6nr01068g

  17. Nucleic acid hybridization with RNA immobilized on filter paper.

    NASA Technical Reports Server (NTRS)

    Saxinger, W. C.; Ponnamperuma, C.; Gillespie, D.

    1972-01-01

    RNA has been immobilized in a manner suitable for use in molecular hybridization experiments with dissolved RNA or DNA by a nonaqueous solid-phase reaction with carbonyldiimidazole and RNA 'dry coated' on cellulose or, preferably, on previously activated phosphocellulose filters. Immobilization of RNA does not appear to alter its chemical character or cause it to acquire affinity for unspecific RNA or DNA. The versatility and efficiency of this method make it potentially attractive for use in routine analytical or preparative hybridization experiments, among other applications.

  18. OTFE, Payload Specialist Fred Leslie works in Spacelab

    NASA Image and Video Library

    1995-11-05

    STS073-233-007 (20 October - 5 November 1995) --- Payload specialist Fred W. Leslie makes use of the versatile U.S. Microgravity Laboratory (USML-2) glovebox to conduct an investigation with the Oscillatory Thermocapillary Flow Experiment (OTFE). This complement of the Surface-Tension-Driven Convection Experiment (STDCE) studies the shapes that fluid surfaces in weightless environments assume within specific containers. Leslie was one of two guest researchers who joined five NASA astronauts for 16 days of on Earth-orbit research in support of USML-2.

  19. The Earth Is Flat when Personally Significant Experiences with the Sphericity of the Earth Are Absent

    ERIC Educational Resources Information Center

    Carbon, Claus-Christian

    2010-01-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A…

  20. Elastic energy of polyhedral bilayer vesicles

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397

  1. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.

    PubMed

    Beck, David A C; Armen, Roger S; Daggett, Valerie

    2005-01-18

    The correct treatment of van der Waals and electrostatic nonbonded interactions in molecular force fields is essential for performing realistic molecular dynamics (MD) simulations of solvated polypeptides. The most computationally tractable treatment of nonbonded interactions in MD utilizes a spherical distance cutoff (typically, 8-12 A) to reduce the number of pairwise interactions. In this work, we assess three spherical atom-based cutoff approaches for use with all-atom explicit solvent MD: abrupt truncation, a CHARMM-style electrostatic shift truncation, and our own force-shifted truncation. The chosen system for this study is an end-capped 17-residue alanine-based alpha-helical peptide, selected because of its use in previous computational and experimental studies. We compare the time-averaged helical content calculated from these MD trajectories with experiment. We also examine the effect of varying the cutoff treatment and distance on energy conservation. We find that the abrupt truncation approach is pathological in its inability to conserve energy. The CHARMM-style shift truncation performs quite well but suffers from energetic instability. On the other hand, the force-shifted spherical cutoff method conserves energy, correctly predicts the experimental helical content, and shows convergence in simulation statistics as the cutoff is increased. This work demonstrates that by using proper and rigorous techniques, it is possible to correctly model polypeptide dynamics in solution with a spherical cutoff. The inherent computational advantage of spherical cutoffs over Ewald summation (and related) techniques is essential in accessing longer MD time scales.

  2. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  3. A model experiment to study swallowing of spherical and elongated particles

    NASA Astrophysics Data System (ADS)

    Marconati, Marco; Raut, Sharvari; Charkhi, Farshad; Burbidge, Adam; Engmann, Jan; Ramaioli, Marco

    2017-06-01

    Swallowing disorders are not uncommon among elderly and people affected by neurological diseases. For these patients the ingestion of solid grains, such as pharmaceutical oral solid formulations, could result in choking. This generally results in a low compliance in taking solid medications. The effect of the solid medication size on the real or perceived ease of swallowing is still to be understood from the mechanistic viewpoint. The interplay of the inclusion shape and the rheology of the liquid being swallowed together with the medication is also not fully understood. In this study, a model experiment was developed to study the oropharyngeal phase of swallowing, replicating the dynamics of the bolus flow induced by the tongue (by means of a roller driven by an applied force). Experiments were performed using a wide set of solid inclusions, dispersed in a thick Newtonian liquid. Predictions for a simple theory are compared with experiments. Results show that an increase in the grain size results in a slower dynamics of the swallowing. Furthermore, the experiments demonstrated the paramount role of shape, as flatter and more streamlined inclusions flow faster than spherical. This approach can support the design of new oral solid formulations that can be ingested more easily and effectively also by people with mild swallowing disorders.

  4. Laboratory Exercise for Studying the Morphology of Heat-Denatured and Amyloid Aggregates of Lysozyme by Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna

    2018-01-01

    To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…

  5. 3-D Wizardry: Design in Papier-Mache, Plaster, and Foam.

    ERIC Educational Resources Information Center

    Wolfe, George

    Papier-mache, plaster, and foam are inexpensive and versatile media for 3-dimensional classroom and studio art experiences. They can be used equally well by elementary, high school, or college students. Each medium has its own characteristic. Papier-mache is pliable but dries into a hard, firm surface that can be waterproofed. Plaster can be…

  6. NASA Facts. An Educational Publication of the National Aeronautics and Space Administration: Space Shuttle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The versatility of space shuttle, its heat shieldings, principal components, and facilities for various operations are described as well as the accomodations for the spacecrew and experiments. The capabilities of an improved space suit and a personal rescue enclosure containing life support and communication systems are highlighted. A typical mission is described.

  7. Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core

    NASA Astrophysics Data System (ADS)

    Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.

    2016-12-01

    A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.

  8. Determination of injection molding process windows for optical lenses using response surface methodology.

    PubMed

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  9. A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Scotti, F.; Soukhanovskii, V. A.

    2015-12-09

    A two-channel spectral imaging system based on a charge injection device radiation-hardened intensified camera was built for studies of plasma-surface interactions on divertor plasma facing components in the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak. By means of commercially available mechanically referenced optical components, the two-wavelength setup images the light from the plasma, relayed by a fiber optic bundle, at two different wavelengths side-by-side on the same detector. Remotely controlled filter wheels are used for narrow band pass and neutral density filters on each optical path allowing for simultaneous imaging of emission at wavelengths differing in brightness up to 3more » orders of magnitude. Applications on NSTX-U will include the measurement of impurity influxes in the lower divertor strike point region and the imaging of plasma-material interaction on the head of the surface analysis probe MAPP (Material Analysis and Particle Probe). Furthermore, the diagnostic setup and initial results from its application on the lithium tokamak experiment are presented.« less

  10. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.

    The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. Themore » results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.« less

  11. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.

  12. Nuclear tetrahedral symmetry: possibly present throughout the periodic table.

    PubMed

    Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M

    2002-06-24

    More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.

  13. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  14. A two-dimensional phase separation on the spherical surface of the metallic glass Au55Pb22.5Sb22.5

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Johnson, W. L.

    1982-01-01

    Recent experiments indicate that a phase separation in a spherical sample of the metallic glass Au55Pb22.5Sb22.5 occurs near the surface of the sphere. This strongly suggests either a contribution of surface-free energy to the decomposition process or a possible influence of near surface impurities absorbed during synthesis of the sphere. The surface phase separation has been studied as a function of cooling rate of the sphere. At high cooling rates (small sphere sizes), the surface separation disappears altogether suggesting that the surface of the parent liquid droplet is initially homogeneous.

  15. Contribution of High-Order Rainbows to the Scattering of a Gaussian Laser Beam by a Spherical Particle

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1993-01-01

    I review the theory of the scattering of a Gaussian laser beam by a dielectric spherical particle and give the details for constructing a computer program to implement the theory. Computational results indicate that if the width of the laser beam is much less than the diameter of the particle and if the axis of the beam is incident near the edge of the particle, the fifth-, sixth-, and ninth-order rainbows should be evident in the far-field scattered intensity. I performed an experiment that yielded tentative evidence for the presence of the sixth- order rainbow.

  16. Theoretical regime diagrams for thermally driven flows in a beta-plane channel. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Geisler, J. E.; Fowlis, W. W.

    1979-01-01

    It is noted that thermally driven flows in rotating laboratory containers with cylindrical geometry can be axially symmetric or wavelike depending on the experimental parameters. In anticipation that rotating fluid experiments might soon be done in spherical shell geometry, Barcilon's model has been extended to a beta-plane channel in order to gain a rough understanding of the effects of rotating spherical geometry. An incompressible fluid version of the Charney (1947) model of baroclinic instability, modified to include Ekman pumping at rigid horizontal boundaries is used. With this model, stability boundaries are mapped out for individual zonal wavenumbers in the parameter space used by Barcilon.

  17. Transport systems research vehicle color display system operations manual

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Johnson, Larry E.

    1989-01-01

    A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.

  18. Simulation of magnetic active polymers for versatile microfluidic devices

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Özelt, Harald; Fischbacher, Johann; Reichel, Franz; Exl, Lukas; Bance, Simon; Kataeva, Nadezhda; Binder, Claudia; Brückl, Hubert; Schrefl, Thomas

    2013-01-01

    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.

  19. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the rolling mode, i.e. when the rover is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. Case studies that demonstrate the capabilities of the rover in rolling mode and parametric analyses that investigate the dependence of the rover's mobility on its design are presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future. It represents an important step toward developing a rover capable of traversing a variety of terrains that are impassible by the current fleet of rover designs, and thus has the potential to revolutionize planetary surface exploration.

  20. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem one-dimensional. (ii) The spherical diffusion flame completely encloses the soot which is formed on the fuel rich side of the reaction zone. This increases the importance of flame radiation because now both soot and gaseous combustion products co-exist inside the high temperature spherical diffusion flame. (iii) For small fuel injection velocities, as is usually the case for a pyrolyzing solid, the diffusion flame in :g around the solid naturally develops spherical symmetry. Thus, spherical diffusion flames are of interest to fires in :g and identifying conditions that lead to radiation-induced extinction is important for spacecraft fire safety.

  1. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration.

    PubMed

    Dryden, Michael D M; Wheeler, Aaron R

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as "black boxes," giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat's voltammetric measurements are much more sensitive than those of "CheapStat" (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial "black box" potentiostat. Likewise, in head-to-head tests, DStat's potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the "open source" movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools.

  2. DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration

    PubMed Central

    Dryden, Michael D. M.; Wheeler, Aaron R.

    2015-01-01

    Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as “black boxes,” giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat’s voltammetric measurements are much more sensitive than those of “CheapStat” (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial “black box” potentiostat. Likewise, in head-to-head tests, DStat’s potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the “open source” movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools. PMID:26510100

  3. The shape dependence of chameleon screening

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Moss, Adam; Stevenson, James A.

    2018-01-01

    Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle, and that the least screened objects are those which minimize some internal dimension. For the shapes considered in this work, keeping the mass, density and background environment fixed, the accelerations due to the source varied by a factor of ~ 3.

  4. Exploration of spherical torus physics in the NSTX device

    NASA Astrophysics Data System (ADS)

    Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team

    2000-03-01

    The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

  5. Equivalent source modeling of the core magnetic field using magsat data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.

    1983-01-01

    Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.

  6. Reverse depletion effects and the determination of ligand density on some spherical bioparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxiang; Liu, Yanhui, E-mail: ionazati@itp.ac.cn; Fan, Yangtao

    In cell environments crowded with macromolecules, the depletion effects act and assist in the assembly of a wide range of cellular structures, from the cytoskeleton to the chromatin loop, which are well accepted. But a recent quantum dot experiment indicated that the dimensions of the receptor–ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. In this article, a continuum elastic model is constructed to resolve the competition between the dimension of the receptor–ligand complex and depletion effects in the endocytosis of a spherical virus-like bioparticle. Our results show that the depletion effects do not alwaysmore » assist endocytosis of a spherical virus-like bioparticle; while the dimension of the ligand–receptor complex is larger than the size of a small bioparticle in cell environments, the depletion effects do not work and reverse effects appear. The ligand density covered on the virus can be identified quantitatively.« less

  7. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion.

    PubMed

    Ren, G; Yan, J; Liu, J; Lan, K; Chen, Y H; Huo, W Y; Fan, Z; Zhang, X; Zheng, J; Chen, Z; Jiang, W; Chen, L; Tang, Q; Yuan, Z; Wang, F; Jiang, S; Ding, Y; Zhang, W; He, X T

    2017-04-21

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15}  W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  8. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    NASA Astrophysics Data System (ADS)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  9. Navier-Stokes structure of merged layer flow on the spherical nose of a space vehicle

    NASA Technical Reports Server (NTRS)

    Jain, A. C.; Woods, G. H.

    1988-01-01

    Hypersonic merged layer flow on the forepart of a spherical surface of a space vehicle has been investigated on the basis of the full steady-state Navier-Stokes equations using slip and temperature jump boundary conditions at the surface and free-stream conditions far from the surface. The shockwave-like structure was determined as part of the computations. Using an equivalent body concept, computations were carried out under conditions that the Aeroassist Flight Experiment (AFE) Vehicle would encounter at 15 and 20 seconds in its flight path. Emphasis was placed on understanding the basic nature of the flow structure under low density conditions. Particular attention was paid to the understanding of the structure of the outer shockwave-like region as the fluid expands around the sphere. Plots were drawn for flow profiles and surface characteristics to understand the role of dissipation processes in the merged layer of the spherical nose of the vehicle.

  10. Inviscid dynamics of a wet foam drop with monodisperse bubble size distribution

    NASA Astrophysics Data System (ADS)

    McDaniel, J. Gregory; Akhatov, Iskander; Holt, R. Glynn

    2002-06-01

    Motivated by recent experiments involving the acoustic levitation of foam drops, we develop a model for nonlinear oscillations of a spherical drop composed of monodisperse aqueous foam with void fraction below 0.1. The model conceptually divides a foam drop into many cells, each cell consisting of a spherical volume of liquid with a bubble at its center. By treating the liquid as incompressible and inviscid, a nonlinear equation is obtained for bubble motion due to a pressure applied at the outer radius of the liquid sphere. Upon linearizing this equation and connecting the cells at their outer radii, a wave equation is obtained with a dispersion relation for the sound waves in a bubbly liquid. For the spherical drop, this equation is solved by a normal mode expansion that yields the natural frequencies as functions of standard foam parameters. Numerical examples illustrate how the analysis may be used to extract foam parameters, such as void fraction and bubble radius, from the experimentally measured natural frequencies of a foam drop.

  11. Magnetic Inertial Confinement Fusion (MICF)

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Zheng, Xianjun; Deng, Baiquan; Liu, Wei; Ou, Wei; Huang, Yi

    2016-11-01

    Based on the similarity in models of the early Sun and the 3-D common focal region of the micro-pinch in X-pinch experiments, a novel hybrid fusion configuration by continuous focusing of multiple Z-pinched plasma beams on spatially symmetric plasma is proposed. By replacing gravity with Lorentz force with subsequent centripetal spherical pinch, the beam-target fusion reactivity is enhanced in a quasi-spherical converging region, thus achieving MICF. An assessment, presented here, suggests that a practical fusion power source could be achieved using deuterium alone. Plasma instabilities can be suppressed by fast rotation resulting from an asymmetric tangential torsion in the spherical focal region of this configuration. Mathematical equivalence with the Sun allows the development of appropriate equations for the focal region of MICF, which are solved numerically to provide density, temperature and pressure distributions that produce net fusion energy output. An analysis of MICF physics and a preliminary experimental demonstration of a single beam are also carried out. supported by National Natural Science Foundation of China (Nos. 11374217 and 11176020)

  12. Ferrographic analysis of wear debris from boundary lubrication experiments with a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1974-01-01

    The types of wear particles generated by a five-ring polyphenyl ether in boundary lubrication experiments in various atmospheres were determined by ferrographic analysis. The types of wear particles observed included cylindrical or rocklike organometallic debris, adhesive and cutting wear particles, and some spherical debris. Interpretations as to the mechanism of generation of the various types of particles are presented.

  13. News on the Scissors Mode

    NASA Astrophysics Data System (ADS)

    Pietralla, N.; Beller, J.; Beck, T.; Derya, V.; Löher, B.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Zweidinger, M.

    2014-09-01

    We report on our recent nuclear resonance fluorescence experiments on l52,l54,l56Gd. Decay branches of the scissors mode to intrinsic excitations are observed. They are interpreted as a new signature for a spherical-to-deformed nuclear shape phase transition.

  14. DLR MiroSurge: a versatile system for research in endoscopic telesurgery.

    PubMed

    Hagn, Ulrich; Konietschke, R; Tobergte, A; Nickl, M; Jörg, S; Kübler, B; Passig, G; Gröger, M; Fröhlich, F; Seibold, U; Le-Tien, L; Albu-Schäffer, A; Nothhelfer, A; Hacker, F; Grebenstein, M; Hirzinger, G

    2010-03-01

    Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans. To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front-ends towards surgery and configurable interfaces for the surgeon. This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback. While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.

  15. 76 FR 31362 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Versatile Onboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Production Act of 1993--Versatile Onboard Traffic Embedded Roaming Sensors (Formerly Joint Venture To Perform Project Entitled Versatile Onboard Traffic Embedded Roaming Sensors) Notice is hereby given that, on April..., 15 U.S.C. 4301 et seq. (``the Act''), Versatile Onboard Traffic Embedded Roaming Sensors (formerly...

  16. Simulation and experimental research on spherical dome by 3D laser forming of square feet

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Wang, Yang

    2007-01-01

    Laser forming is a technique of using the energy from a laser beam to modify and adjust the curvature of sheet metals or hard materials. 2-dimensional laser forming can reasonably accurately control bend angles with various materials. To advance this process further for realistic forming applications in a manufacturing industry, it is necessary to consider larger scale controlled 3-dimensional laser forming. However, this is a different situation for 3-dimensional laser forming. The work presented in this paper uses the spider scanning path to form the thin square sheet to spherical dome by laser forming. The explicit dynamic analysis on 3-dimentional laser forming is shown in the article. On the base of temperature gradient mechanism of 2-dimensional laser forming, depending on the geometry and the thermo-physical properties of stainless steel lCrl8Ni9Ti, develop the mechanism of laser forming of thin square sheet to the spherical dome. This paper discusses the interaction between moving laser beam and sheet, the temperature field on the sheet, and the step transition of stress and deformation in laser forming. In order to give the verification on the results of simulation, the correlative experiment has progressed with Lumonics JK7O2H Nd:YAG laser. The results of experiments are in accord with the simulation.

  17. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  18. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.

    PubMed

    Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi

    2017-01-01

    Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    NASA Astrophysics Data System (ADS)

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  20. Experimental Results of OH Regime Investigation in Globus-M Spherical Torus

    NASA Astrophysics Data System (ADS)

    Golant, Victor; Gusev, Vasily; Levin, Roman; Petrov, Yuriy; Sakharov, Nikolay

    2001-10-01

    Plasma parameters were measured in novel spherical torus Globus-M in highly shaped plasmas with aspect ratio, A > 1.5, elongation, k < 1.9, triangularity < 0.5. Plasma column was created by direct induction method with the currents up to Ip 0.3 MA in the magnetic field, Bt - 0.08 - 0.5 T. In Globus-M spherical torus plasma column is closely fitted into the vacuum vessel and wall conditioning technology described in [1] was used to achieve good plasma performance. Plasma experiments were focused around achievement of ultimate OH regimes allowed by power supplies. The operational limits of the device were investigated. In the regime with extreme low q(cy1) < 1 and high normalized current > 4, the plasma current of almost 100kA was sustained transiently in low magnetic field 800 Gs. The first results on stability analysis with numerical code are presented. The runaway electrons behavior was studied in spherical tokamak conditions. Influence of plasma current and density ramp-up speeds, MHD events on plasma performance and stability was demonstrated. Magnetic reconstruction was performed with EFIT version adopted for PC simulations. Plans for auxiliary heating and current drive are discussed. 1. V.K. Gusev, …, V.E. Golant, et al., Nucl. Fusion 41, No 7, (2001), to be published

  1. Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.

  2. Issues around Creating a Reusable Learning Object to Support Statistics Teaching

    ERIC Educational Resources Information Center

    Gilchrist, Mollie

    2007-01-01

    Although our health professional students have some experience of simple charts, such as pie and bar, and some intuition of histograms, they do not appear to have much knowledge or understanding about box and whisker plots and their relation to the data they are describing or compared to histograms. The boxplot is a versatile charting tool, useful…

  3. Marine bacteria from the Roseobacter clade produce sulfur volatiles via amino acid and dimethylsulfoniopropionate catabolism.

    PubMed

    Brock, Nelson L; Menke, Markus; Klapschinski, Tim A; Dickschat, Jeroen S

    2014-07-07

    Dimethylsulfoniopropionate (DMSP) is a versatile sulfur source for the production of sulfur-containing secondary metabolites by marine bacteria from the Roseobacter clade. (34)S-labelled DMSP and cysteine, and several DMSP derivatives with modified S-alkyl groups were synthesised and used in feeding experiments that gave insights into the biosynthesis of sulfur volatiles from these bacteria.

  4. An Operational Summary of the BERMEX81-V3 Experiment: 17-19 September 1981.

    DTIC Science & Technology

    1982-07-01

    1979 and 1980) were to utilize the Versatile Experimental Kevlar Array (VEKA-3B), a two-hydrophone, vertically moored system with an RF telemetry link to...the nose and tail sections of a MK35 tor- pedo . Operational parameters of the BTS 9029 are presented in Table C-3. The BTS 9029 system was fully

  5. A Robust Magnetic Resonance Imager For Ground and Flight Based Measurements of Fluid Physics Phenomena

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nuclear magnetic resonance (NMR) is a powerful and versatile, noninvasive method for studying fluid transport problems, However, its applications to these types of investigations have been limited. A primary factor that limits the application of NMR has been the lack of a user-friendly, versatile, and inexpensive NMR imaging apparatus that can be used by scientists who are not familiar with sophisticated NMR. To rectify this situation, we developed a user-friendly, NMR imager for projects of relevance to the MRD science community. To that end, we performed preliminary collaborative experiments between NASA, NCMR, and New Mexico Resonance in the high field NMR set up at New Mexico Resonance to track wetting front dynamics in foams under gravity. The experiments were done in a 30 cm, 1.9T Oxford magnet with a TECMAG Libra spectrometer (Tecmag, Inc., Houston, TX). We used two different imaging strategies depending on whether the water in the foam sample was static or moving. Stationary water distributions were imaged with the standard Fourier imaging method, as used in medical MRI, in which data are acquired from all parts of the region of interest at all times and Fourier transformed into a static spatial image.

  6. Simulations of curved assemblies in soft matter and biological systems

    NASA Astrophysics Data System (ADS)

    Qiao, Cong

    Viruses are small infectious agents that replicate only inside living cells of other organisms. In the viral life cycle, the self-assembly of the outer protein shell (capsid) is an essential step. We study this process in the hope of shedding light on development of antiviral drugs, gene therapy and other virus-related technologies that can benefit the humankind. More fundamentally, learning about the process of viral capsid assembly can elucidate the assembly mechanisms of a wide range of complex structures. In this work, we use molecular dynamics simulations and coarse-grained computational models to study viral capsid assembly in several situations where geometric constraints play a role in dictating assembly outcomes. We first focus on icosahedral viruses with single-stranded RNA genomes, in which case the capsid usually assembles around the genomic RNA. It is consistently observed in experiments that such viral particles are ''overcharged'', meaning the net negative charge on the viral genome is greater than the net positive charge on the viral capsid. We computationally investigate the mechanisms that lead to ``overcharging'', and more broadly, how the encapsidated genome length is influenced by the capsid. We perform both dynamical simulations of the assembly process and equilibrium calculations to determine the optimal genome length (meaning that which maximizes the assembly yield and/or minimizes the free energy of the assembled virus). We find that the optimal genome length is determined by the interplay between capsid size, net capsid charge, distribution of capsid charge and nucleic acid structures. Our simulations demonstrate that overcharging results from a combination of electrostatic screening and the geometric constraints associated with encapsulating a nucleic acid inside of a spherical virus. We then study the assembly of the immature HIV. In contrast to icosahedral viruses, the immature HIV forms an asymmetric particle, consisting of continuous regularly packed regions with local hexagonal order and vacancies. A similar lattice structure has been observed in experiments in which mutually attractive colloidal particles pack on the surface of a spherical droplet (G. Meng, J. Paulose, D. R. Nelson, and V. N. Manoharan, ''Elastic instability of a crystal growing on a curved surface'', Science 343, 634-637 (2014).), suggesting that the two systems experience a similar form of geometric frustration. We therefore study the adsorption and packing of spherical particles on a spherical template, as a function of the strength and range of interparticle attractions, as well as the radius of the spherical template. We observe that the adsorbed particles form two different classes of packing arrangements, one with icosahedrally ordered topological defects, and the other with highly disordered defects and vacancies. The latter regime is consistent with experiments on colloidal packing on spherical droplets and the immature HIV lattice. Our results suggest that the transition between these regimes is controlled by the range of the interparticle attractions. In the last chapter, we study a model for the assembly and budding of a capsid on a membrane, such as occurs during the exit of the immature HIV virus from a cell. We use a coarse-grained subunit model to represent the capsid proteins, and a fluid membrane model to represent the cell membrane. We find that the size and structure of the assembled capsid depends sensitively on the timescale of budding.

  7. EARL: Exoplanet Analytic Reflected Lightcurves package

    NASA Astrophysics Data System (ADS)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-05-01

    EARL (Exoplanet Analytic Reflected Lightcurves) computes the analytic form of a reflected lightcurve, given a spherical harmonic decomposition of the planet albedo map and the viewing and orbital geometries. The EARL Mathematica notebook allows rapid computation of reflected lightcurves, thus making lightcurve numerical experiments accessible.

  8. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  9. Cartilage microindentation using cylindrical and spherical optical fiber indenters with integrated Bragg gratings as force sensors

    NASA Astrophysics Data System (ADS)

    Marchi, G.; Canti, O.; Baier, V.; Micallef, W.; Hartmann, B.; Alberton, P.; Aszodi, A.; Clausen-Schaumann, H.; Roths, J.

    2018-02-01

    Fiber optic microindentation sensors that have the potential to be integrated into arthroscopic instruments and to allow localizing degraded articular cartilage are presented in this paper. The indenters consist of optical fibers with integrated Bragg gratings as force sensors. In a basic configuration, the tip of the fiber optic indenter consists of a cleaved fiber end, forming a cylindrical flat punch indenter geometry. When using this indenter geometry, high stresses at the edges of the cylinder are present, which can disrupt the tissue structure. This is avoided with an improved version of the indenter. A spherical indenter tip that is formed by melting the end of the glass fiber. The spherical fiber tip shows the additional advantage of strongly reducing reflections from the fiber end. This allows a reduction of the length of the fiber optic sensor element from 65 mm of the flat punch type to 27 mm of the spherical punch. In order to compare the performance of both indenter types, in vitro stress-relaxation indentation experiments were performed on bovine articular cartilage with both indenter types, to assess biomechanical properties of bovine articular cartilage. For indentation depths between 60 μm and 300 μm, the measurements with both indenter types agreed very well with each other. This shows that both indenter geometries are suitable for microindentation measuremnts . The spherical indenter however has the additional advantage that it minimizes the risk to damage the surface of the tissue and has less than half dimensions than the flat indenter.

  10. Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)

    DTIC Science & Technology

    2017-06-22

    AFRL-RX-WP-JA-2017-0341 EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) M. Fernanda...AND SUBTITLE EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-2-5518 5b...Expanding applications of SERS through versatile nanomaterials engineering M. Fernanda Cardinal, Emma Vander Ende, Ryan A. Hackler, Michael O. McAnally

  11. A versatile atomic force microscope integrated with a scanning electron microscope.

    PubMed

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  12. Firing patterns in the adaptive exponential integrate-and-fire model.

    PubMed

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  13. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  14. Understanding magnetic remanence acquisition through combined synthetic sediment deposition experiments and numerical simulations.

    NASA Astrophysics Data System (ADS)

    Bilardello, D.

    2014-12-01

    Understanding depositional remanent magnetizations (DRMs) bears implications on interpreting paleomagnetic and paleointensity records extracted from sedimentary rocks. Laboratory deposition experiments have yielded DRMs with shallow remanent inclinations and revealed a field dependence of the magnetization (M), which is orders of magnitude lower than the saturation remanence. To investigate these observations further, experiments involving differently shaped particles were performed. Spherical particles confirmed the field dependence of both the inclination error and M and the fact that the DRM acquired experimentally is lower than saturation. A sediment concentration dependence of the inclination error was observed, indicating a dependance of the inclination error on the sediment load/burial depth or the sedimentation rate. Other outcome was the certainty that spherical particles alone can lead to substantial inclination shallowing. Numerical simulations of settling spherical particles indicated that DRM should be ~10 times lower than the saturation remanence and predicted that rolling of the grains on the sediment surface and particle interactions during settling can produce a substantial shallowing of the inclination and lowering of the remanence, bringing the simulations in close agreement to the experimental results. Experiments involving platy particles, instead allowed interesting comparisons and gave insight into the behavior of differently shaped particles, for instance yielding smaller amounts of shallowing than spheres, in contrast to general belief. Viewing DRM as an anisotropic process allows fitting the experimental results with tensors (kDRM). The ratios of kvertical over khorizontal are in good agreement to the ratios of M obtained in vertical over horizontal experimental fields, which should be equivalent to the widely used inclination shallowing factor f. Experimental results were highly repeatabile, however not always as repeatable for both M and inclination (direction) for both particle shapes, heighlighting that while a sediment might carry a stable remanent direction, it may not always be a particularily good paleointensity recorder.

  15. Little Boy replication: justification and construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malenfant, R.E.

    A reconstruction of the Little Boy weapon allowed experiments to evaluate yield, leakage measurements for comparison with calculations, and phenomenological measurements to evaluate various in-situ dosimeters. The reconstructed weapon was operated at sustained delayed critical at the Los Alamos Critical Assembly Facility. The present experiments provide a wealth of information to benchmark calculations and demonstrate that the 1965 measurements on the Ichiban assembly (a spherical mockup of Little Boy) were in error.

  16. Suppression of Alfven Modes on the National Spherical Torus Experiment Upgrade with Outboard Beam Injection [Suppression of Alfven Modes on the NSTX-U with Outboard Beam Injection

    DOE PAGES

    Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.; ...

    2017-06-29

    In this paper we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfven eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfven modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvenic ions consistingmore » of fusion generated alpha's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k(perpendicular to rho L). A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.« less

  17. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals

    PubMed Central

    Duecker, Daniel-André; Geist, A. René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-01-01

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles (μAUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μAUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μAUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system. PMID:28445419

  18. Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana

    2018-04-01

    In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.

  19. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals.

    PubMed

    Duecker, Daniel-André; Geist, A René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-04-26

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( μ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.

  20. Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials

    NASA Astrophysics Data System (ADS)

    Javid, Farhad; Smith-Roberge, Evelyne; Innes, Matthew C.; Shanian, Ali; Weaver, James C.; Bertoldi, Katia

    2015-12-01

    In this study, we report a novel periodic material with negative Poisson’s ratio (also called auxetic materials) fabricated by denting spherical dimples in an elastic flat sheet. While previously reported auxetic materials are either porous or comprise at least two phases, the material proposed here is non-porous and made of a homogeneous elastic sheet. Importantly, the auxetic behavior is induced by a novel mechanism which exploits the out-of-plane deformation of the spherical dimples. Through a combination of experiments and numerical analyses, we demonstrate the robustness of the proposed concept, paving the way for developing a new class of auxetic materials that significantly expand their design space and possible applications.

  1. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  2. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H., Ed.

    1982-01-01

    Discusses: (1) construction of an integrated spherical reflectometer; (2) limitations of the NOAA Weather Radio Network; and (3) a simple experiment to demonstrate/measure influence of damping force on amplitude resonance. Also discusses whether or not a homemade electrophorus can lose its charge and then recharge itself. (JN)

  3. CHI during an ohmic discharge in HIT-II

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; Nelson, Brian A.; Redd, Aaron J.; Hamp, William T.

    2004-11-01

    Coaxial Helicity Injection (CHI) has been used on the National Spherical Torus Experiment (NSTX), the Helicity Injected Torus (HIT) and HIT-II to initiate plasma and to drive up to 400 kA of toroidal current. The primary goal of the CHI systems is to provide a start-up plasma with substantial toroidal current that can be heated and sustained with other methods. We have investigated the use of CHI systems to add current to an established, inductively driven plasma. This may be an attractive method to add edge current that may modify the stability characteristics of the discharge or modify the particle and energy transport in a spherical torus. For example, divertor biasing experiments have been successful in modifying particle and energy transport in the scrape-off layer of tokamaks. Use of IGBT power supplies to modulate the injector current makes analysis of current penetration feasible by comparisons of before and after CHI using EFIT analysis of the data.

  4. Contact of a spherical probe with a stretched rubber substrate

    NASA Astrophysics Data System (ADS)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  5. Observation of quasi-coherent edge fluctuations in Ohmic plasmas on National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Santanu; Diallo, A.; Zweben, S. J.

    A quasi-coherent edge density mode with frequency f{sub mode} ∼ 40 kHz is observed in Ohmic plasmas in National Spherical Torus Experiment using the gas puff imaging diagnostic. This mode is located predominantly just inside the separatrix, with a maximum fluctuation amplitude significantly higher than that of the broadband turbulence in the same frequency range. The quasi-coherent mode has a poloidal wavelength λ{sub pol} ∼ 16 cm and a poloidal phase velocity of V{sub pol} ∼ 4.9 ± 0.3 km s{sup −1} in the electron diamagnetic direction, which are similar to the characteristics expected from a linear drift-wave-like mode in the edge. This is the first observation of amore » quasi-coherent edge mode in an Ohmic diverted tokamak, and so may be useful for validating tokamak edge turbulence codes.« less

  6. Measurement of poloidal velocity on the National Spherical Torus Experiment (invited).

    PubMed

    Bell, Ronald E; Feder, Russell

    2010-10-01

    A diagnostic suite has been developed to measure the impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all the quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both the active emission in the plane of the neutral heating beams and the background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent charge exchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. The local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. The radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  7. BIOPACK: the ground controlled late access biological research facility.

    PubMed

    van Loon, Jack J W A

    2004-03-01

    Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions.

  8. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  9. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan-Qing, E-mail: yqli@mail.ipc.ac.cn; Wang, Jian-Lei; Fu, Shao-Yun, E-mail: syfu@mail.ipc.ac.cn

    2010-06-15

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 {sup o}C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as themore » Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO{sub 2} nanoparticles is reduced by more than three orders compared with the pure SnO{sub 2} nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In{sub 2}O{sub 3}.« less

  10. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.

    PubMed

    Azuma, Yusuke; Herger, Michael; Hilvert, Donald

    2018-01-17

    Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.

  11. Laboratory and theoretical models of planetary-scale instabilities and waves

    NASA Technical Reports Server (NTRS)

    Hart, John E.; Toomre, Juri

    1990-01-01

    Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.

  12. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Mark; Hsu, Scott; Witherspoon, F. Douglas

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Losmore » Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.« less

  13. Versatile resonance-tracking circuit for acoustic levitation experiments.

    PubMed

    Baxter, K; Apfel, R E; Marston, P L

    1978-02-01

    Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.

  14. THAI Multi-Compartment Containment Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanzleiter, T.; Poss, G.; Funke, F.

    2006-07-01

    The THAI experimental programme includes combined-effect investigations on thermal hydraulics, hydrogen, and fission product (iodine and aerosols) behaviour in LWR containments under severe accident conditions. An overview on the experiments performed up to now and on the future test program is presented, in combination with a selection of typical results to illustrate the versatility of the test facility and the broad variety of topics investigated. (authors)

  15. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment

    PubMed Central

    Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.

    2013-01-01

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  16. Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media

    NASA Astrophysics Data System (ADS)

    Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.

    2018-06-01

    In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.

  17. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    PubMed

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  18. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.

    PubMed

    Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q

    2015-05-01

    The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezzacappa, Anthony; Endeve, Eirik; Hauck, Cory D.

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and themore » use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.« less

  20. Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2017-02-01

    New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.

  1. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  2. Structure and stability of molybdenum sulfide fullerenes.

    PubMed

    Bar-Sadan, M; Enyashin, A N; Gemming, S; Popovitz-Biro, R; Hong, S Y; Prior, Yehiam; Tenne, R; Seifert, G

    2006-12-21

    MoS2 nanooctahedra are believed to be the smallest stable closed-cage structures of MoS2, i.e., the genuine inorganic fullerenes. Here a combination of experiments and density functional tight binding calculations with molecular dynamics annealing are used to elucidate the structures and electronic properties of octahedral MoS2 fullerenes. Through the use of these calculations MoS2 octahedra were found to be stable beyond nMo > 100 but with the loss of 12 sulfur atoms in the six corners. In contrast to bulk and nanotubular MoS2, which are semiconductors, the Fermi level of the nanooctahedra is situated within the band, thus making them metallic-like. A model is used for extending the calculations to much larger sizes. These model calculations show that, in agreement with experiment, the multiwall nanooctahedra are stable over a limited size range of 104-105 atoms, whereupon they are converted into multiwall MoS2 nanoparticles with a quasi-spherical shape. On the experimental side, targets of MoS2 and MoSe2 were laser-ablated and analyzed mostly through transmission electron microscopy. This analysis shows that, in qualitative agreement with the theoretical analysis, multilayer nanooctahedra of MoS2 with 1000-25 000 atoms (Mo + S) are stable. Furthermore, this and previous work show that beyond approximately 105 atoms fullerene-like structures with quasi-spherical forms and 30-100 layers become stable. Laser-ablated WS2 samples yielded much less faceted and sometimes spherically symmetric nanocages.

  3. Jezebel: Reconstructing a Critical Experiment from 60 Years Ago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorite, Jeffrey A.

    The Jezebel experiment of 1954-1955 was a very small, nearly-spherical, nearly-bare (unreflected), nearly-homogeneous assembly of plutonium alloyed with gallium. This experiment was used to determine the critical mass of spherical, bare, homogeneous Pu-alloy. In 1956, the critical mass of Pu-alloy was determined to be 16.45 ± 0.05 kg. The experiment was reevaluated in 1969 using logbooks from the 1950s and updated nuclear cross sections. The critical mass of Pu-alloy was determined to be 16.57 ± 0.10 kg. In 2013, the 239Pu Jezebel experiment was again reevaluated, this time using detailed geometry and materials models and modern nuclear cross sections inmore » high-fidelity Monte Carlo neutron transport calculations. Documentation from the 1950s was often inconsistent or missing altogether, and assumptions had to be made. The critical mass of Pu-alloy was determined to be 16.624 ± 0.075 kg. Historic documents were subsequently found that validated some of the 2013 assumptions and invalidated others. In 2016, the newly found information was used to once again reevaluate the 239Pu Jezebel experiment. The critical mass of Pu-alloy was determined to be 16.624 ± 0.065 kg. This talk will discuss each of these evaluations, focusing on the calculation of the uncertainty as well as the critical mass. We call attention to the ambiguity, consternation, despair, and euphoria involved in reconstructing the historic Jezebel experiment. This talk is quite accessible for undergraduate students as well as non-majors.« less

  4. Little Boy replication: justification and construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malenfant, R.E.

    A reconstruction of the Little Boy weapon allowed experiments to evaluate yield, leakage measurements for comparison with calculations, and phenomenological measurements to evaluate various in-situ dosimeters. The reconstructed weapon was operated at sustained delayed critical at the Los Alamos Critical Assembly Facility. The present experiments provide a wealth of information to benchmark calculations and demonstrate that the 1965 measurements on the Ichiban assembly (a spherical mockup of Little Boy) were in error. 5 references, 2 figures.

  5. The Kinetics of Dissolution Revisited

    NASA Astrophysics Data System (ADS)

    Antonel, Paula S.; Hoijemberg, Pablo A.; Maiante, Leandro M.; Lagorio, M. Gabriela

    2003-09-01

    An experiment analyzing the kinetics of dissolution of a solid with cylindrical geometry in water is presented. The dissolution process is followed by measuring the solid mass and its size parameters (thickness and diameter) as a function of time. It is verified that the dissolution rate follows the Nernst model. Data treatment is compared with the dissolution of a spherical solid previously described. Kinetics, diffusion concepts, and polynomial fitting of experimental data are combined in this simple experiment.

  6. Plasma MRI Experiments at UW-Madison

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.

    2015-11-01

    Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.

  7. Global evaluation of new GRACE mascon products for hydrologic applications

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Zhang, Zizhan; Save, Himanshu; Wiese, David N.; Landerer, Felix W.; Long, Di; Longuevergne, Laurent; Chen, Jianli

    2016-12-01

    Recent developments in mascon (mass concentration) solutions for GRACE (Gravity Recovery and Climate Experiment) satellite data have significantly increased the spatial localization and amplitude of recovered terrestrial Total Water Storage anomalies (TWSA); however, land hydrology applications have been limited. Here we compare TWSA from April 2002 through March 2015 from (1) newly released GRACE mascons from the Center for Space Research (CSR-M) with (2) NASA JPL mascons (JPL-M), and with (3) CSR Tellus gridded spherical harmonics rescaled (sf) (CSRT-GSH.sf) in 176 river basins, ˜60% of the global land area. Time series in TWSA mascons (CSR-M and JPL-M) and spherical harmonics are highly correlated (rank correlation coefficients mostly >0.9). The signal from long-term trends (up to ±20 mm/yr) is much less than that from seasonal amplitudes (up to 250 mm). Net long-term trends, summed over all 176 basins, are similar for CSR and JPL mascons (66-69 km3/yr) but are lower for spherical harmonics (˜14 km3/yr). Long-term TWSA declines are found mostly in irrigated basins (-41 to -69 km3/yr). Seasonal amplitudes agree among GRACE solutions, increasing confidence in GRACE-based seasonal fluctuations. Rescaling spherical harmonics significantly increases agreement with mascons for seasonal fluctuations, but less for long-term trends. Mascons provide advantages relative to spherical harmonics, including (1) reduced leakage from land to ocean increasing signal amplitude, and (2) application of geophysical data constraints during processing with little empirical postprocessing requirements, making it easier for nongeodetic users. Results of this product intercomparison should allow hydrologists to better select suitable GRACE solutions for hydrologic applications.

  8. Rapid automated superposition of shapes and macromolecular models using spherical harmonics.

    PubMed

    Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I

    2016-06-01

    A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.

  9. A curved ultrasonic actuator optimized for spherical motors: design and experiments.

    PubMed

    Leroy, Edouard; Lozada, José; Hafez, Moustapha

    2014-08-01

    Multi-degree-of-freedom angular actuators are commonly used in numerous mechatronic areas such as omnidirectional robots, robot articulations or inertially stabilized platforms. The conventional method to design these devices consists in placing multiple actuators in parallel or series using gimbals which are bulky and difficult to miniaturize. Motors using a spherical rotor are interesting for miniature multidegree-of-freedom actuators. In this paper, a new actuator is proposed. It is based on a curved piezoelectric element which has its inner contact surface adapted to the diameter of the rotor. This adaptation allows to build spherical motors with a fully constrained rotor and without a need for additional guiding system. The work presents a design methodology based on modal finite element analysis. A methodology for mode selection is proposed and a sensitivity analysis of the final geometry to uncertainties and added masses is discussed. Finally, experimental results that validate the actuator concept on a single degree-of-freedom ultrasonic motor set-up are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. An Electron is the God Particle

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2001-04-01

    Philosophers, Clifford, Mach, Einstein, Wyle, Dirac & Schroedinger, believed that only a wave structure of particles could satisfy experiment and fulfill reality. A quantum Wave Structure of Matter is described here. It predicts the natural laws more accurately and completely than classic laws. Einstein reasoned that the universe depends on particles which are "spherically, spatially extended in space." and "Hence a discrete material particle has no place as a fundamental concept in a field theory." Thus the discrete point particle was wrong. He deduced the true electron is primal because its force range is infinite. Now, it is found the electron's wave structure contains the laws of Nature that rule the universe. The electron plays the role of creator - the God particle. Electron structure is a pair of spherical outward/inward quantum waves, convergent to a center in 3D space. This wave pair creates a h/4pi quantum spin when the in-wave spherically rotates to become the out-wave. Both waves form a spinor satisfying the Dirac Equation. Thus, the universe is binary like a computer. Reference: http://members.tripod.com/mwolff

  11. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  12. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  13. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  14. Analysis of pinching in deterministic particle separation

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German

    2011-11-01

    We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.

  15. Aspherical bubble dynamics and oscillation times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godwin, R.P.; Chapyak, E.J.; Noack, J.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightlymore » from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.« less

  16. Hydrogels in endovascular embolization. IV. Effect of radiopaque spherical particles on the living tissue.

    PubMed

    Horák, D; Svec, F; Kálal, J; Adamyan, A; Skuba, N; Titova, M; Dan, V; Varava, B; Trostenyuk, N; Voronkova, O

    1988-07-01

    In this study we report the results of toxicological, histological and haematological experiments on radiopaque spherical particles based on poly(2-hydroxyethyl methacrylate). These particles have been developed for endovascular occlusion of various organs. Radiopacity was attained by two independent methods: the chemical attachment of radiopaque substances to the hydrogel or the precipitation of radiopaque substances in the hydrogel network. The first method yields particles that appear to have uniformly-distributed contrast material, but in the particles prepared by the second procedure the contrast material is predominantly located on the surface. The visibility of such particles by X-rays makes possible controlled embolus introduction and inspection of the polymer for long periods after embolization. Radiopaque contrasting changes the morphology and reduces the porosity of the material but supports quick thrombus formation. Embolic material implanted in rabbits becomes surrounded by a thin fibrous capsule and undergoes partial organization. This and other results of medico-biological investigations have fully demonstrated the biocompatibility of radiopaque spherical emboli, which can now be used clinically.

  17. Hydrodynamic entrainment in micro-confined suspensions and its implications for two-point microrheology

    NASA Astrophysics Data System (ADS)

    Aponte-Rivera, Christian; Zia, Roseanna N.

    2017-11-01

    We study hydrodynamic entrainment in spherically confined colloidal suspensions of hydrodynamically interacting particles as a model system for intracellular and other micro-confined biophysical transport. Modeling of transport and rheology in such materials requires an accurate description of the microscopic forces driving particle motion and of particle interactions with nearby boundaries. We carry out dynamic simulations of concentrated, spherically confined colloids as a model system to study the effect of 3D confinement on entrainment and rheology. We show that entrainment between two tracer particles exhibits qualitatively different functional dependence on inter-particle separation as compared to an unbound suspension, and develop a scaling theory that collapses the concentrated mobility of spherically confined suspensions for all volume fractions and particle to cavity size ratios onto a master curve. For widely separated particles, the master curve can be predicted via a Green's function, which suggests a framework with which to conduct two-point microrheology measurements near confining boundaries. The implications of these results for experiments in micro-confined biophysical systems, such as the interior of eukaryotic cells, are discussed.

  18. ViDiT-CACTUS: an inexpensive and versatile library preparation and sequence analysis method for virus discovery and other microbiology applications.

    PubMed

    Verhoeven, Joost Theo Petra; Canuti, Marta; Munro, Hannah J; Dufour, Suzanne C; Lang, Andrew S

    2018-04-19

    High-throughput sequencing (HTS) technologies are becoming increasingly important within microbiology research, but aspects of library preparation, such as high cost per sample or strict input requirements, make HTS difficult to implement in some niche applications and for research groups on a budget. To answer these necessities, we developed ViDiT, a customizable, PCR-based, extremely low-cost (<5 US dollars per sample) and versatile library preparation method, and CACTUS, an analysis pipeline designed to rely on cloud computing power to generate high-quality data from ViDiT-based experiments without the need of expensive servers. We demonstrate here the versatility and utility of these methods within three fields of microbiology: virus discovery, amplicon-based viral genome sequencing and microbiome profiling. ViDiT-CACTUS allowed the identification of viral fragments from 25 different viral families from 36 oropharyngeal-cloacal swabs collected from wild birds, the sequencing of three almost complete genomes of avian influenza A viruses (>90% coverage), and the characterization and functional profiling of the complete microbial diversity (bacteria, archaea, viruses) within a deep-sea carnivorous sponge. ViDiT-CACTUS demonstrated its validity in a wide range of microbiology applications and its simplicity and modularity make it easily implementable in any molecular biology laboratory, towards various research goals.

  19. VERSATILE, HIGH-RESOLUTION ANTEROGRADE LABELING OF VAGAL EFFERENT PROJECTIONS WITH DEXTRAN AMINES

    PubMed Central

    Walter, Gary C.; Phillips, Robert J.; Baronowsky, Elizabeth A.; Powley, Terry L.

    2009-01-01

    None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut. PMID:19056424

  20. The importance of nanoparticle shape in cancer drug delivery.

    PubMed

    Truong, Nghia P; Whittaker, Michael R; Mak, Catherine W; Davis, Thomas P

    2015-01-01

    Nanoparticles have been successfully used for cancer drug delivery since 1995. In the design of commercial nanoparticles, size and surface characteristics have been exploited to achieve efficacious delivery. However, the design of optimized drug delivery platforms for efficient delivery to disease sites with minimal off-target effects remains a major research goal. One crucial element of nanoparticle design influencing both pharmacokinetics and cell uptake is nanoparticle morphology (both size and shape). In this succinct review, the authors collate the recent literature to assess the current state of understanding of the influence of nanoparticle shape on the effectiveness of drug delivery with a special emphasis on cancer therapy. This review draws on studies that have focused on the role of nonspherical nanoparticles used for cancer drug delivery. In particular, the authors summarize the influence of nanoparticle shape on biocirculation, biodistribution, cellular uptake and overall drug efficacy. By comparing spherical and nonspherical nanoparticles, they establish some general design principles to serve as guidelines for developing the next generation of nanocarriers for drug delivery. Pioneering studies on nanoparticles show that nonspherical shapes show great promise as cancer drug delivery vectors. Filamentous or worm-like micelles together with other rare morphologies such as needles or disks may become the norm for next-generation drug carriers, though at present, traditional spherical micelles remain the dominant shape of nanocarriers described in the literature due to synthesis and testing difficulties. The few reports that do exist describing nonspherical nanoparticles show a number of favorable properties that should encourage more efforts to develop facile and versatile nanoparticle synthesis methodologies with the flexibility to create different shapes, tunable sizes and adaptable surface chemistries. In addition, the authors note that there is a current lack of understanding into the factors governing (and optimizing) the inter-relationships of size, surface characteristics and shapes of many nanoparticles proposed for use in cancer therapy.

  1. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy

    NASA Astrophysics Data System (ADS)

    Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares

    2011-06-01

    A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm-2 CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.

  2. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy.

    PubMed

    Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares

    2011-06-21

    A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm(-2) CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.

  3. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  4. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    NASA Astrophysics Data System (ADS)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  5. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  6. Binary Colloidal Alloy Test-5: Aspheres

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Hollingsworth, Andrew D.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..

  7. Balls and Spheres

    ERIC Educational Resources Information Center

    Szekely, George

    2011-01-01

    This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…

  8. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    ERIC Educational Resources Information Center

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  9. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1981-08-01

    necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules

  10. Antimicrobial activity of spherical silver nanoparticles: evidence for induction of a prolonged bacterial lag phase

    USDA-ARS?s Scientific Manuscript database

    Background: Recently, there has been a great deal of interest surrounding the discovery that Ag[0] nanoparticles (Np) are more effective antimicrobial agents in terms of the minimum effective concentration than their Ag[+] counterparts. Methods: Both solid and liquid phase experiments were perform...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Peng, Yueng Kay Martin

    Transport theory for potato orbits in the region near the magnetic axis in an axisymmetric torus such as tokamaks and spherical tori is extended to the situation where the toroidal flow speed is of the order of the sonic speed as observed in National Spherical Torus Experiment [E. J. Synakowski, M. G. Bell, R. E. Bell et al., Nucl. Fusion 43, 1653 (2003)]. It is found that transport fluxes such as ion radial heat flux, and bootstrap current density are modified by a factor of the order of the square of the toroidal Mach number. The consequences of the orbitmore » squeezing are also presented. The theory is developed for parabolic (in radius r) plasma profiles. A method to apply the results of the theory for the transport modeling is discussed.« less

  12. Laser multipass system with interior cell configuration.

    PubMed

    Borysow, Jacek; Kostinski, Alexander; Fink, Manfred

    2011-10-20

    We ask whether it is possible to restore a multipass system alignment after a gas cell is inserted in the central region. Indeed, it is possible, and we report on a remarkably simple rearrangement of a laser multipass system, composed of two spherical mirrors and a gas cell with flat windows in the middle. For example, for a window of thickness d and refractive index of n, adjusting the mirror separation by ≈2d(1-1/n) is sufficient to preserve the laser beam alignment and tracing. This expression is in agreement with ray-tracing computations and our laboratory experiment. Insofar as our solution corrects for spherical aberrations, it may also find applications in microscopy. © 2011 Optical Society of America

  13. Initial operation of the NSTX-Upgrade real-time velocity diagnostic

    DOE PAGES

    Podestà, M.; Bell, R. E.

    2016-11-03

    A real-time velocity (RTV) diagnostic based on active charge-exchange recombination spectroscopy is now operational on the National Spherical Torus Experiment-Upgrade (NSTX-U) spherical torus (Menard et al 2012 Nucl. Fusion 52 083015). We designed the system in order to supply plasma velocity data in real time to the NSTX-U plasma control system, as required for the implementation of toroidal rotation control. Our measurements are available from four radii at a maximum sampling frequency of 5 kHz. Post-discharge analysis of RTV data provides additional information on ion temperature, toroidal velocity and density of carbon impurities. Furthermore, examples of physics studies enabled bymore » RTV measurements from initial operations of NSTX-U are discussed.« less

  14. Metal shell technology based upon hollow jet instability. [for inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.; Lee, M. C.; Wang, T. G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.

  15. Effective Thermal Conductivity of Spherical Particulate Nanocomposites: Comparison with Theoretical Models, Monte Carlo Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Machrafi, Hatim; Lebon, Georgy

    2014-11-01

    The purpose of this work is to study heat conduction in systems that are composed out of spherical micro-and nanoparticles dispersed in a bulk matrix. Special emphasis will be put on the dependence of the effective heat conductivity on various selected parameters as dimension and density of particles, interface interaction with the matrix. This is achieved by combining the effective medium approximation and extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the status of independent variable. The model is illustrated by three examples: Silicium-Germanium, Silica-epoxy-resin and Copper-Silicium systems. Predictions of our model are in good agreement with other theoretical models, Monte-Carlo simulations and experimental data.

  16. Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins

    NASA Astrophysics Data System (ADS)

    Cheng, Polly; Kambli, Ankita; Stone, Johnny

    2017-10-01

    Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

  17. Spacelab 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The most promising new technology for scientific research is America's Space Transportation System; the space shuttle and its companion facility, Spacelab. Spacelab is a versatile laboratory designed specifically to accommodate scientists and their instruments in low-Earth orbit. In a space laboratory, scientists can perform experiments that are impossible on Earth. They can also use very large instruments aboard the Shuttle, with the added benefit of bringing all their equipment, experiment samples, and data home for analysis. Spacelab 2 is one in a series of missions that gives the world's scientists a chance to do research in a well-equipped laboratory in space.

  18. A planar reacting shear layer system for the study of fluid dynamics-combustion interaction

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Chang, C. T.; Ghorashi, B.; Wey, C. C.; Wey, C.; Mularz, E. J.

    1989-01-01

    A versatile planar reacting shear layer facility is constructed at NASA-Lewis. The research objectives, as well as design, instrumentations and the operational procedures developed for the system are described. The fundamental governing equations and the type of quantitative information that are needed from experiments are described. Additionally, a review of earlier work is presented. Whenever appropriate, comparisons are made with similar systems in other facilities and the main differences are described. Finally, the nonintrusive measurement techniques (PLIF, PMS, LDV, and Schlieren photography) and the type of experiments that are planned are described.

  19. Large amplitude Fourier transformed ac voltammetry at a rotating disc electrode: a versatile technique for covering Levich and flow rate insensitive regimes in a single experiment.

    PubMed

    Bano, Kiran; Kennedy, Gareth F; Zhang, Jie; Bond, Alan M

    2012-04-14

    The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.

  20. Using video podcasting to enhance the learning of clinical skills: A qualitative study of physiotherapy students' experiences.

    PubMed

    Hurst, Kay M

    2016-10-01

    Video podcasts, or vodcasts are increasingly used by a range of healthcare professions in the mastery of new skills. Little is known about the experiences of using vodcasts in physiotherapy education. Traditional pedagogic strategies have been employed in order to master those skills required for physiotherapy practice. There have been advances in the use of technology in medical education in the nursing, dentistry and medical fields. Vodcasts offer great versatility and potential when used as a pedagogical tool, embedded within a physiotherapy curriculum. To explore students' experiences of using technology enhanced learning, namely vodcasts, in the Physiotherapy curriculum to develop the learning of clinical skills. A series of focus groups were carried out with undergraduate and pre-registration physiotherapy students (n=31). Students valued the versatility and audio-visual nature of vodcasts; helpful in revising for practical examinations and practising their skills prior to, during and after taught skills classes. Watching and practising simultaneously allowed students to practice repeatedly and formulate a process for each skill. When learning a new skill, a combination of teaching and learning approaches was favoured, marrying traditional approaches with those that utilise technology. This study's findings add to the existing body of evidence in skills based teaching and support a multi-media, blended approach in those disciplines involved in the learning and teaching of clinical skills. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Mario Becomes Cognitive.

    PubMed

    Schrodt, Fabian; Kneissler, Jan; Ehrenfeld, Stephan; Butz, Martin V

    2017-04-01

    In line with Allen Newell's challenge to develop complete cognitive architectures, and motivated by a recent proposal for a unifying subsymbolic computational theory of cognition, we introduce the cognitive control architecture SEMLINCS. SEMLINCS models the development of an embodied cognitive agent that learns discrete production rule-like structures from its own, autonomously gathered, continuous sensorimotor experiences. Moreover, the agent uses the developing knowledge to plan and control environmental interactions in a versatile, goal-directed, and self-motivated manner. Thus, in contrast to several well-known symbolic cognitive architectures, SEMLINCS is not provided with production rules and the involved symbols, but it learns them. In this paper, the actual implementation of SEMLINCS causes learning and self-motivated, autonomous behavioral control of the game figure Mario in a clone of the computer game Super Mario Bros. Our evaluations highlight the successful development of behavioral versatility as well as the learning of suitable production rules and the involved symbols from sensorimotor experiences. Moreover, knowledge- and motivation-dependent individualizations of the agents' behavioral tendencies are shown. Finally, interaction sequences can be planned on the sensorimotor-grounded production rule level. Current limitations directly point toward the need for several further enhancements, which may be integrated into SEMLINCS in the near future. Overall, SEMLINCS may be viewed as an architecture that allows the functional and computational modeling of embodied cognitive development, whereby the current main focus lies on the development of production rules from sensorimotor experiences. Copyright © 2017 Cognitive Science Society, Inc.

  2. A versatile, pulsed anion source utilizing plasma-entrainment: Characterization and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yu-Ju; Lehman, Julia H.; Lineberger, W. Carl, E-mail: wcl@jila.colorado.edu

    2015-01-28

    A novel pulsed anion source has been developed, using plasma entrainment into a supersonic expansion. A pulsed discharge source perpendicular to the main gas expansion greatly reduces unwanted “heating” of the main expansion, a major setback in many pulsed anion sources in use today. The design principles and construction information are described and several examples demonstrate the range of applicability of this anion source. Large OH{sup −}(Ar){sub n} clusters can be generated, with over 40 Ar solvating OH{sup −}. The solvation energy of OH{sup −}(Ar){sub n}, where n = 1-3, 7, 12, and 18, is derived from photoelectron spectroscopy andmore » shows that by n = 12-18, each Ar is bound by about 10 meV. In addition, cis– and trans– HOCO{sup −} are generated through rational anion synthesis (OH{sup −} + CO + M → HOCO{sup −} + M) and the photoelectron spectra compared with previous results. These results, along with several further proof-of-principle experiments on solvation and transient anion synthesis, demonstrate the ability of this source to efficiently produce cold anions. With modifications to two standard General Valve assemblies and very little maintenance, this anion source provides a versatile and straightforward addition to a wide array of experiments.« less

  3. Simulations and experiments on vibration damping for zoom-holography and nano-scanning at the GINIX

    NASA Astrophysics Data System (ADS)

    Osterhoff, Markus; Luley, Peter; Sprung, Michael; Salditt, Tim

    2017-09-01

    The Göttingen Instrument for Nano-Imaging with X-ray (GINIX) is a holography endstation located at the P10 coherence beamline at PETRA III, designed and operated by the University of Göttingen in close collaboration with DESY Photon science Hamburg [1-2]. GINIX is designed as a waveguide based holography experiment with a Kirkpatrick-Baez nanofocus. Its versatility has stimulated a great manifold of imaging modalities. Today, users choose the GINIX setup not only for its few nm coherent waveguide beams (e.g. for ptychography or holography), but also to carry out scanning SAXS measurements to probe local anisotropies with sub-micron real-space and even higher reciprocal space resolution. In addition, it is possible to combine different detectors for e.g. simultaneous SAXS/WAXS and fluorescence measurements [3]. We summarise our ongoing efforts to reduce vibrations in the setup, and present latest experimental results obtained with GINIX, focusing on the unique capabilities offered by its versatile and flexible design. The overview includes results from different imaging schemes such as waveguide based zoom-tomography and user examples in WAXS geometry. We show how to correlate complementary techniques like holography and scanning SAXS and present first results obtained using a new fast sample scanner for Multilayer Zone Plate imaging..

  4. Adverse Childhood Experiences and Arrest Patterns in a Sample of Sexual Offenders.

    PubMed

    Levenson, Jill S; Socia, Kelly M

    2016-06-01

    Developmental psychopathology theories suggest that childhood adversity can contribute to antisocial conduct and delinquent activities. The purpose of this study was to explore the influence of adverse childhood experiences (ACE) on arrest patterns in a sample of sexual offenders (N = 740). Higher ACE scores were associated with a variety of arrest outcomes, indicating that the accumulation of early trauma increased the likelihood of versatility and persistence of criminal behavior. Rapists of adults had higher ACE scores, lower levels of specialization, and higher levels of persistence than sex offenders with minor victims only. Child sexual abuse, emotional neglect, and domestic violence in the childhood home were significant predictors of a higher number of sex crime arrests. For measures of nonsexual arrests and criminal versatility, it was the household dysfunction factors-substance abuse, unmarried parents, and incarceration of a family member-that were predictive, suggesting that family dysfunction and a chaotic home environment contributed significantly to increased risk of general criminal behavior. Sex offenders inspire little sympathy in our society but may be among those most in need of trauma-informed models of treatment that recognize the influence of early adversity on maladaptive schema and self-regulation deficits related to criminal behavior. © The Author(s) 2015.

  5. Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx)

    DTIC Science & Technology

    2009-01-01

    environment encountered by medium-earth orbits (MEO). at an altitude range from 6,000 to 15.000 km "’. The discovery of the earth’s radiation...forecast models that enable future space missions in the medium Earth orbit regime to enable better spacecraft designed to withstand the harsh environment...the size of the sensor and to exploit a compact layout. The inside spherical section has an attraction voltage and the outside section has the

  6. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    PubMed

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  7. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V., E-mail: alexvv@triniti.ru; Gasilov, V. A.; Grabovski, E. V.

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffractionmore » grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.« less

  8. Management of Legg-Calvé-Perthes disease using an A-frame orthosis and hip range of motion: a 25-year experience.

    PubMed

    Rich, Margaret M; Schoenecker, Perry L

    2013-03-01

    Containment treatment is widely accepted in the management of Legg-Calvé-Perthes disease. Many reports indicate the need to regain hip motion before pelvic or femoral osteotomy, but have not indicated how osteotomy affected motion. Recent studies have suggested that osteotomy treatment of lateral pillar B hips may result in a higher proportion of spherical hips than those managed nonoperatively; however, outcomes for children older than 8 years of age or with pillar C involvement remain unsatisfactory. The records of all patients with a diagnosis of Legg-Calvé-Perthes disease seen at our facility from 1985 through 2001 were reviewed. Two hundred and thirteen patients (175 males, 38 females), average age 6.4 years (range, 2.6 to 11.3 y), with 240 involved hips in the necrotic or the fragmentation stage were managed under a protocol to restore and maintain satisfactory hip abduction with an adductor tenotomy and abduction cast, followed by daily hip range-of-motion exercises and an A-frame orthosis to facilitate the concentric position of the epiphysis within the acetabulum. Assessment included measurement of hip abduction, femoral head sphericity and congruence, presence of femoral neck deformity, limb-length inequality, and later reconstructive surgical procedures. Hips were grouped by lateral pillar class (12A, 113B, 115C) and evaluated at maturity using a modified Stulberg grade. All pillar A hips were spherically congruent. Of pillar B hips, 101 were spherically congruent, 8 were aspherical but congruent, and 4 were aspherical and incongruent. Of pillar C hips, 77 were spherically congruent, 26 were aspherical but congruent, and 12 were aspherical and incongruent. Age did not correlate with outcome. Hip abduction improved and was maintained in all groups. Treatment that restored and maintained hip range of motion along with the use of an A-frame orthosis resulted in a high proportion of spherically congruent hips for patients of all ages irrespective of the extent of disease. Seventy-eight percent of pillar B and C hips were spherically congruent hips at maturity; overall, 93% of hips were congruent. This regimen has supplanted all other methods of treatment at our institution. Level IV-case series.

  9. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study.

    PubMed

    Amigó, Alfredo; Martinez-Sorribes, Paula; Recuerda, Margarita

    2017-07-01

    To study the effect on vision of induced negative and positive spherical aberration within the range of laser vision correction procedures. In 10 eyes (mean age: 35.8 years) under cyclopegic conditions, spherical aberration values from -0.75 to +0.75 µm in 0.25-µm steps were induced by an adaptive optics system. Astigmatism and spherical refraction were corrected, whereas the other natural aberrations remained untouched. Visual acuity, depth of focus defined as the interval of vision for which the target was still perceived acceptable, contrast sensitivity, and change in spherical refraction associated with the variation in pupil diameter from 6 to 2.5 mm were measured. A refractive change of 1.60 D/µm of induced spherical aberration was obtained. Emmetropic eyes became myopic when positive spherical aberration was induced and hyperopic when negative spherical aberration was induced (R 2 = 81%). There were weak correlations between spherical aberration and visual acuity or depth of focus (R 2 = 2% and 3%, respectively). Contrast sensitivity worsened with the increment of spherical aberration (R 2 = 59%). When pupil size decreased, emmetropic eyes became hyperopic when preexisting spherical aberration was positive and myopic when spherical aberration was negative, with an average refractive change of 0.60 D/µm of spherical aberration (R 2 = 54%). An inverse linear correlation exists between the refractive state of the eye and spherical aberration induced within the range of laser vision correction. Small values of spherical aberration do not worsen visual acuity or depth of focus, but positive spherical aberration may induce night myopia. In addition, the changes in spherical refraction when the pupil constricts may worsen near vision when positive spherical aberration is induced or improve it when spherical aberration is negative. [J Refract Surg. 2017;33(7):470-474.]. Copyright 2017, SLACK Incorporated.

  10. Launch and Functional Considerations Guiding the Scaling and Design of Rigid Inflatable Habitat Modules

    NASA Astrophysics Data System (ADS)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low drag. Module pressure envelope geometries also influence internal layout versatility and functionality. SICSA examined cylindrical and spherical envelope approaches for habitat module application, exploring special advantages and disadvantages each presented. The 45 ft. diameter sphere constrained functional volumes and layouts around the upper level perimeter. A modified scheme was selected which reshaped and expanded the height of that area. SICSA's final plan proposes 45 ft. diameter modules of modified spherical form.

  11. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom

    NASA Astrophysics Data System (ADS)

    Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.

    2017-01-01

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated treatment concepts in adaptive radiotherapy.

  12. Lattice Rotation Patterns and Strain Gradient Effects in Face-Centered-Cubic Single Crystals Under Spherical Indentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y. F.; Larson, B. C.; Lee, J. H.

    Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load-displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation fieldmore » is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100mN force, 100 mu m radius spherical indentations in < 111 >, < 110 >, and < 001 > oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.« less

  13. Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution ( 2 km) gravity fields of the Moon

    NASA Astrophysics Data System (ADS)

    Šprlák, M.; Han, S.-C.; Featherstone, W. E.

    2017-12-01

    Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.

  14. Post implantation adjustable intraocular lenses.

    PubMed

    Schwartz, D M; Jethmalani, J M; Sandstedt, C A; Kornfield, J A; Grubbs, R H

    2001-06-01

    To eliminate persistent refractive errors after cataract and phakic IOL surgery, photosensitive silicone IOLs have been developed. These IOL formulations enable precise laser adjustment of IOL power to correct spherical and toric errors post-operatively, after wound and IOL stabilization. Initial experience with these laser adjustable IOLs indicate excellent biocompatability and adjustability of more than five diopters.

  15. Numerical Simulation of the Perrin-Like Experiments

    ERIC Educational Resources Information Center

    Mazur, Zygmunt; Grech, Dariusz

    2008-01-01

    A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…

  16. Direct evidence on the existence of [Mo132]Keplerate-type species in aqueous solution.

    PubMed

    Roy, Soumyajit; Planken, Karel L; Kim, Robbert; Mandele, Dexx v d; Kegel, Willem K

    2007-10-15

    We demonstrate the existence of discrete single molecular [Mo(132)] Keplerate-type clusters in aqueous solution. Starting from a discrete spherical [Mo(132)] cluster, the formation of an open-basket-type [Mo(116)] defect structure is shown for the first time in solution using analytical ultracentrifugation sedimentation velocity experiments.

  17. Numerical and experimental analysis of the sedimentation of spherical colloidal suspensions under centrifugal force

    NASA Astrophysics Data System (ADS)

    Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.

    2018-03-01

    Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.

  18. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment.

    PubMed

    Gerhardt, S P; Fredrickson, E; Guttadora, L; Kaita, R; Kugel, H; Menard, J; Takahashi, H

    2011-10-01

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The measurements are based on three techniques: (1) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (2) the direct measurement of halo currents into specially instrument tiles, and (3) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peaking factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems are shown.

  19. MTF Driven by Plasma Liner Dynamically Formed by the Merging of Plasma Jets: An Overview

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    One approach for standoff delivery of the momentum flux for compressing the target in MTF consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid (Figure 1). A 3-year experiment (PLX-1) to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets is described. An overview showing how this 3-year project (PLX-1) fits into the program plan at the national and international level for realizing MTF for energy and propulsion is discussed. Assuming that there will be a parallel program in demonstrating and establishing the underlying physics principles of MTF using whatever liner is appropriate (e.g. a solid liner) with a goal of demonstrating breakeven by 2010, the current research effort at NASA MSFC attempts to complement such a program by addressing the issues of practical embodiment of MTF for propulsion. Successful conclusion of PLX-1 will be followed by a Physics Feasibility Experiment (PLX-2) for the Plasma Liner Driven MTF.

  20. Convergent Geometry Foam Buffered Direct Drive Experiments*

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Wilson, D. C.; Hollis, R. V.; Gobby, P. L.; Chrien, R. E.; Mason, R. J.; Kopp, R. A.; Willi, O.; Iwase, A.; Barringer, L. H.; Gaillard, R.; Kalantar, D. H.; Lerche, R. A.; MacGowan, B.; Nelson, M.; Phillips, T.; Knauer, J. P.; McKenty, P. W.

    1996-11-01

    A serious concern for directly driven ICF implosions is the asymmetry imparted to the capsule by laser drive non-uniformities, particularly the ``early time imprint'' remaining despite the use of random phase plates and smoothing with spectral dispersion. The use of a foam buffer has been proposed as a means to reduce this imprint. Two types of convergent geometry tests of the technique to correct static nonuniformities have been studied to date; cylindrical implosions at the Trident and Vulcan lasers, and spherical implosions at the NOVA laser, all using 527 nm laser drive. Cylindrical implosions used end on x-ray backlighter imaging of inner surface disruption due an intentional hole in the drive footprint, using 50 mg/cc acyrlate foam with a thin Au preheat layer. Spherical implosions used 50 mg/cc polystyrene foam plus Au to study yield and imploded core symmetry of capsules with and without a foam buffer, in comparison to ``clean 1D'' calculations. For thick enough layers, all cases showed improvement. Details of the experiments and theoretical unpinnings will be shown. *Work performed under US DOE Contract No. W-7405-Eng-36.

  1. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  2. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE PAGES

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; ...

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  3. A new H{sub 2}{sup +} source: Conceptual study and experimental test of an upgraded version of the VIS—Versatile ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G., E-mail: Giuseppe.Castro@lns.infn.it; Celona, L.; Mascali, D.

    2016-08-15

    The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He{sup +} beams. DAEδALUS and IsoDAR experiments require high intensities for H{sub 2}{sup +} beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H{sub 2}{sup +} beam intensity. In this paper the studies for the increasing of the H{sub 2}{sup +}/p ratiomore » and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.« less

  4. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile Alternative when Reverse Sural Artery Flap is Not Feasible.

    PubMed

    Ademola, Samuel A; Michael, Afieharo I; Oladeji, Femi J; Mbaya, Kefas M; Oyewole, O

    2015-01-01

    Reverse sural artery fasciocutaneous flap has become a workhorse for the reconstruction of distal leg soft tissue defects. When its use is not feasible, perforator-based propeller flap offers a better, easier, faster, and cheaper alternative to free flap. We present our experience with two men both aged 34 years who sustained Gustilo 3B injuries from gunshot. The donor area for reversed sural artery flap was involved in the injuries. They had early debridement, external fixation, and wound coverage with perforator-based propeller flaps. The donor sites were covered with skin graft. All flaps survived. There were minor wound edge ulcers due to the pressure of positioning that did not affect flap survival and the ulcers healed with conservative management. Perforator-based propeller flap is a versatile armamentarium for reconstruction of soft tissue defects of the distal leg in resource-constrained settings, especially when the donor area for a reverse flow sural flap artery is involved in the injury.

  5. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes

    PubMed Central

    Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Evans-Holm, Martha; Carlson, Joseph W.; Levis, Robert W.; Spradling, Allan C.; Hoskins, Roger A.; Bellen, Hugo J.

    2011-01-01

    We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit. PMID:21985007

  6. High-temperature Gas Reactor (HTGR)

    NASA Astrophysics Data System (ADS)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  7. A new H2+ source: Conceptual study and experimental test of an upgraded version of the VIS—Versatile ion source

    NASA Astrophysics Data System (ADS)

    Castro, G.; Torrisi, G.; Celona, L.; Mascali, D.; Neri, L.; Sorbello, G.; Leonardi, O.; Patti, G.; Castorina, G.; Gammino, S.

    2016-08-01

    The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He+ beams. DAEδALUS and IsoDAR experiments require high intensities for H2+ beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H2+ beam intensity. In this paper the studies for the increasing of the H2+/p ratio and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.

  8. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  9. LDQ10: a compact ultra low-power radiation-hard 4 × 10 Gb/s driver array

    DOE PAGES

    Zeng, Z.; Zhang, T.; Wang, G.; ...

    2017-02-28

    Here, a High-speed and low-power VCSEL driver is an important component of the Versatile Link for the high-luminosity LHC (HL-LHC) experiments. A compact low-power radiation-hard 4 × 10 Gb/s VCSEL driver array (LDQ10) has been developed in 65 nm CMOS technology. Each channel in LDQ10 can provide a modulation current up to 8 mA and bias current up to 12 mA. Edge pre-emphasis is employed to compensate for the bandwidth limitations due to parasitic and the turn-on delay of VCSEL devices. LDQ10 occupies a chip area of 1900 μm × 1700 μm and consumes 130 mW power for typical currentmore » settings. The modulation amplitude degrades less than 5% after 300 Mrad total ionizing dose. LDQ10 can be directly wire-bonded to the VCSEL array and it is a suitable candidate for the Versatile Link.« less

  10. Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles.

    PubMed

    Bagheri, G H; Bonadonna, C; Manzella, I; Pontelandolfo, P; Haas, P

    2013-05-01

    A dedicated 4-m-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques. With its diverging test section, the tunnel is designed to study the aero-dynamical behavior of non-spherical particles with terminal velocities between 5 and 27 ms(-1). A particle tracking velocimetry (PTV) code is developed to calculate drag coefficient of particles in standard conditions based on the real projected area of the particles. Results of our wind tunnel and PTV code are validated by comparing drag coefficient of smooth spherical particles and cylindrical particles to existing literature. Experiments are repeatable with average relative standard deviation of 1.7%. Our preliminary experiments on the effect of particle to fluid density ratio on drag coefficient of cylindrical particles show that the drag coefficient of freely suspended particles in air is lower than those measured in water or in horizontal wind tunnels. It is found that increasing aspect ratio of cylindrical particles reduces their secondary motions and they tend to be suspended with their maximum area normal to the airflow. The use of the vertical wind tunnel in combination with the PTV code provides a reliable and precise instrument for measuring drag coefficient of freely moving particles of various shapes. Our ultimate goal is the study of sedimentation and aggregation of volcanic particles (density between 500 and 2700 kgm(-3)) but the wind tunnel can be used in a wide range of applications.

  11. Spherical nanoindentation stress–strain curves

    DOE PAGES

    Pathak, Siddhartha; Kalidindi, Surya R.

    2015-03-24

    Although indentation experiments have long been used to measure the hardness and Young's modulus, the utility of this technique in analyzing the complete elastic–plastic response of materials under contact loading has only been realized in the past few years – mostly due to recent advances in testing equipment and analysis protocols. This paper provides a timely review of the recent progress made in this respect in extracting meaningful indentation stress–strain curves from the raw datasets measured in instrumented spherical nanoindentation experiments. These indentation stress–strain curves have produced highly reliable estimates of the indentation modulus and the indentation yield strength inmore » the sample, as well as certain aspects of their post-yield behavior, and have been critically validated through numerical simulations using finite element models as well as direct in situ scanning electron microscopy (SEM) measurements on micro-pillars. Much of this recent progress was made possible through the introduction of a new measure of indentation strain and the development of new protocols to locate the effective zero-point of initial contact between the indenter and the sample in the measured datasets. As a result, this has led to an important key advance in this field where it is now possible to reliably identify and analyze the initial loading segment in the indentation experiments.« less

  12. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  13. Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Koshikawa, Naokiyo; Arai, Yasutomo; Yoda, Shinichi; Saitou, Hirofumi

    2001-11-01

    Containerless solidification of BiFeO 3 has been carried out in microgravity with an electrostatic levitation furnace (ELF) on board a sounding rocket (TR-IA). This was the first time the ELF was used in microgravity to study the solidification behavior of oxide insulator material. A spherical BiFeO 3 specimen with a diameter of 5 mm was laser heated and solidified in an oxygen and nitrogen mixture atmosphere. The microstructure resulting from solidification in the ELF was compared with that obtained from solidification in a 10 m drop tube and in crucibles. In the crucible experiments, the segregation of the primary Fe 2O 3 phase could not be suppressed, even if the cooling speed increased to 5000 K/s. However it did suppress in a 0.3 mm diameter droplet solidified in the drop tube experiment. This suggests that containerless processing effectively promoted the undercooling of the BiFeO 3 phase. In the microgravity experiment, although a homogeneous BiFeO 3 phase was not observed in the 5 mm spherical specimen, an anomalous fine cellular microstructure appeared due to high undercooling. In addition, the phase transitions of BiFeO 3 were measured by DTA from room temperature to 1523 K and its liquidus temperature was estimated to be 1423 K.

  14. Survey Analysis of Materials Processing Experiments Aboard STS-47: Spacelab J

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum (TM) is a survey outline of materials processing experiments aboard Space Shuttle Mission STS-47: Spacelab J, a joint venture between NASA and the National Space Development Agency of Japan. The mission explored materials processing experiments including electronics and crystal growth materials, metals and alloys, glasses and ceramics, and fluids. Experiments covered include Growth of Silicone Spherical Crystals and Surface Oxidation, Growth Experiment of Narrow Band-Gap Semiconductor Lead-Tin-Tellurium Crystals in Space, Study on Solidification of Immiscible Alloys, Fabrication of Very-Low-Density, High-Stiffness Carbon Fiber/Aluminum Hybridized Composites, High Temperature Behavior of Glass, and Study of Bubble Behavior. The TM underscores the historical significance of these experiments in the context of materials processing in space.

  15. Some Pecularities of Solidification of the Almandine Impact Melt

    NASA Astrophysics Data System (ADS)

    Feldman, V. I.; Kozlov, E. A.; Zhugin, Yu. N.

    1996-03-01

    SOME PECULIARITIES OF SOLIDIFICATION OF THE ALMANDINE IMPACT MELT. Feldman V.I. Moscow State University, Geological Faculty, Department of Petrology, 119899, Moscow, Russia. Kozlov E.A., Zhugin Yu.N. Russian Federal nuclear Center - Research Institute of Technical Physics, P.O.Box 245, 456770, Snezhinsk, Russia. The aim of these investigations is a description of the experiments and the first results of a loading of the garnet sand by spherical converging shock waves. These experiments show that impact liquid have by solidification three stage of liquid immiscibility.

  16. Planar hydrodynamic instability computations and experiments with rugby-shaped hohlraums at the Omega laser

    NASA Astrophysics Data System (ADS)

    Vandenboomgaerde, M.; Liberatore, S.; Galmiche, D.; Casner, A.; Huser, G.; Jadaud, J. P.; Villette, B.

    2008-05-01

    Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002 [1, 2], experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used [3, 4]. We present experimental results and comparisons with numerical simulations.

  17. Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.

    NASA Astrophysics Data System (ADS)

    Soukhanovskii, Vsevolod

    2007-11-01

    Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required for detachment.

  18. Exploring the effects of particle size and shape on ejecta production in response to low-velocity impacts

    NASA Astrophysics Data System (ADS)

    Dove, A.; Barsoum, C.; Colwell, J. E.

    2016-12-01

    Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons between the experimental observations and the numerical simulations, which allowed us to characterize the observational biases in the ejecta velocity and angle distributions.

  19. Skylab M518 multipurpose furnace convection analysis

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Spradley, L. W.

    1975-01-01

    An analysis was performed of the convection which existed on ground tests and during skylab processing of two experiments: vapor growth of IV-VI compounds growth of spherical crystals. A parallel analysis was also performed on Skylab experiment indium antimonide crystals because indium antimonide (InSb) was used and a free surface existed in the tellurium-doped Skylab III sample. In addition, brief analyses were also performed of the microsegregation in germanium experiment because the Skylab crystals indicated turbulent convection effects. Simple dimensional analysis calculations and a more accurate, but complex, convection computer model, were used in the analysis.

  20. Review of high convergence implosion experiments with single and double shell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, N. D.; Watt, R. G.; Varnum, W. S.

    2002-01-01

    Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.

  1. Eye patches: Protein assembly of index-gradient squid lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, J.; Townsend, J. P.; Dodson, T. C.

    A parabolic relationship between lens radius and refractive index allows spherical lenses to avoid spherical aberration. We show that in squid, patchy colloidal physics resulted from an evolutionary radiation of globular S-crystallin proteins. Small-angle x-ray scattering experiments on lens tissue show colloidal gels of S-crystallins at all radial positions. Sparse lens materials form via low-valence linkages between disordered loops protruding from the protein surface. The loops are polydisperse and bind via a set of hydrogen bonds between disordered side chains. Peripheral lens regions with low particle valence form stable, volume-spanning gels at low density, whereas central regions with higher averagemore » valence gel at higher densities. The proteins demonstrate an evolved set of linkers for self-assembly of nanoparticles into volumetric materials.« less

  2. First-Ply-Failure Performance of Composite Clamped Spherical Shells

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakravorty, D.

    2018-05-01

    The failure aspects of composites are available for plates, but studies of the literature on shells unveils that similar reports on them are very limited in number. The aim of this work was to investigate the first-ply-failure of industrially and aesthetically important spherical shells under uniform loadings. Apart from solving benchmark problems, numerical experiments were carried out with different variations of their parameters to obtain the first-ply-failure stresses by using the finite-element method. The load was increased in steps, and the lamina strains and stresses were put into well-established failure criteria to evaluate their first-ply-failure stress, the failed ply, the point of initiation of failure, and failure modes and tendencies. The results obtained are analyzed to extract the points of engineering significance.

  3. Centerband-only-detection-of-exchange (31)P nuclear magnetic resonance and phospholipid lateral diffusion: theory, simulation and experiment.

    PubMed

    Lai, Angel; Saleem, Qasim; Macdonald, Peter M

    2015-10-14

    Centerband-only-detection-of-exchange (CODEX) (31)P NMR lateral diffusion measurements were performed on dimyristoylphosphatidylcholine (DMPC) assembled into large unilamellar spherical vesicles. Optimization of sample and NMR acquisition conditions provided significant sensitivity enhancements relative to an earlier first report (Q. Saleem, A. Lai, H. Morales, and P. M. Macdonald, Chem. Phys. Lipids, 2012, 165, 721). An analytical description was developed that permitted the extraction of lateral diffusion coefficients from CODEX data, based on a Gaussian-diffusion-on-a-sphere model (A. Ghosh, J. Samuel, and S. Sinha, Europhys. Lett., 2012, 98, 30003-p1) as relevant to CODEX (31)P NMR measurements on a population of spherical unilamellar phospholipid bilayer vesicles displaying a distribution of vesicle radii.

  4. Tailoring sphere density for high pressure physical property measurements on liquids

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Tucker, R. F.; Balog, S. P.; Rutter, M. D.

    2001-04-01

    We present a new method of tailoring the density of a sphere for use as a probe in high pressure-temperature physical property experiments on liquids. The method consists of a composite sphere made of an inner, high density, metallic, spherical core and an exterior, low density, refractory, spherical shell or mantle. Micromechanical techniques are used to fabricate the composite sphere. We describe a relatively simple mechanical device that can grind hemispherical recesses as small as 200 μm in diameter in sapphire and as small as 500 μm in diameter in ruby hemispheres. Examples of composite spheres made with a Pt or WC core and Al2O3 shell used in metallic liquids pressurized to 16 GPa and 1900 K are shown.

  5. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  6. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  7. Local surface curvature analysis based on reflection estimation

    NASA Astrophysics Data System (ADS)

    Lu, Qinglin; Laligant, Olivier; Fauvet, Eric; Zakharova, Anastasia

    2015-07-01

    In this paper, we propose a novel reflection based method to estimate the local orientation of a specular surface. For a calibrated scene with a fixed light band, the band is reflected by the surface to the image plane of a camera. Then the local geometry between the surface and reflected band is estimated. Firstly, in order to find the relationship relying the object position, the object surface orientation and the band reflection, we study the fundamental theory of the geometry between a specular mirror surface and a band source. Then we extend our approach to the spherical surface with arbitrary curvature. Experiments are conducted with mirror surface and spherical surface. Results show that our method is able to obtain the local surface orientation merely by measuring the displacement and the form of the reflection.

  8. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 6 Earth radiation budget data set, July 1975 to June 1978

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1987-01-01

    An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 36 months of continuous data from July 1975 to June 1978. The data were derived from the first Earth radiation budget experiment, which was flown on the Nimbus-6 Sun-synchronous satellite in 1975. Only the wide-field-of-view longwave measurements are cataloged in this atlas. The contour maps along with the associated sets of spherical harmonic coefficients form a valuable data set for studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain, and over regional, zonal, and global scales in the spatial domain.

  9. Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries.

    PubMed

    Finke, K; Tilgner, A

    2012-07-01

    We study numerically the dynamo transition of an incompressible electrically conducting fluid filling the gap between two concentric spheres. In a first series of simulations, the fluid is driven by the rotation of a smooth inner sphere through no-slip boundary conditions, whereas the outer sphere is stationary. In a second series a volume force intended to simulate a rough surface drives the fluid next to the inner sphere within a layer of thickness one-tenth of the gap width. We investigate the effect of the boundary layer thickness on the dynamo threshold in the turbulent regime. The simulations show that the boundary forcing simulating the rough surface lowers the necessary rotation rate, which may help to improve spherical dynamo experiments.

  10. Mobile lidar system for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Lian, Ming; Li, Yiyun; Duan, Zheng; Zhu, Shiming; Svanberg, Sune

    2018-04-01

    A versatile mobile remote sensing system for multidisciplinary environmental monitoring tasks on the Chinese scene is described. The system includes a 20 Hz Nd:YAG laser-pumped dye laser, optical transmitting/receiving systems with a 30 cm and a 40 cm Newtonian telescope, and electronics, all integrated in a laboratory, installed on a Jiefang truck. Results from field experiments on atomic mercury DIAL mapping and remote laser-induced fluorescence and break-down spectroscopy are given.

  11. Research on automatic control system of greenhouse

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng

    2017-03-01

    This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.

  12. Effects of target shape and impact speed on the outcome of catastrophic disruptions

    NASA Astrophysics Data System (ADS)

    Campo~Bagatin, A.; Durda, D.; Alemañ, R.; Flynn, G.; Strait, M.; Clayton, A.; Patmore, E.

    2014-07-01

    Because of the propensity of previous laboratory investigations to focus on idealized spherical targets, there is a bit of ambiguity in decoupling the relative importance/influence of low speed or spherical shape in producing the 'onion shell' fragment shape outcomes found in impacts into spherical targets [1,2]. If due primarily to impact speed/energy density as suggested by [3], this could play an important role in main-belt impacts due to the presence of non-spherical targets and non-negligible probability of low-speed (i.e., below about 3-4 km/s, subsonic in rock) impacts [4]. Also, [5] and [6] suggested that the shape of targets may affect the outcome of shattering processes, both in terms of fragment shape and mass distribution. To examine explicitly the effects of target shape in impact outcomes, we chose to conduct impact experiments on both spherical and naturally-occurring irregularly-shaped basalt targets. We impacted a total of six targets (two spheres and four irregular targets). We focused on shots with impact speeds in the ˜4 to 6 km/s range by 3/16th-inch diameter Al-sphere projectiles fired at the NASA AVGR. Following each shot, the debris were recovered (>95 %) and large fragments (>0.20 g) were individually weighed, allowing us to carefully measure the mass-frequency distribution from each impact experiment. The 36 largest fragments of each shot were photographed and their largest axes accurately measured by the program ''ImageJ''. Their shortest axes were measured by means of a digital caliber. High-speed video of each impact was obtained to aid interpretation of the fragmentation mode of the targets. Images clearly show that shell-like fragments can be produced in shattering events not in the target's surface. Instead, those fragments may form around the core, well inside the target structure, independently on the target shape itself. This is a feature not reported to date. In order to understand what the bulk macro-porosity of a non-coherent set of fragments is, we gathered randomly together the fragments with weighed mass mimicking the post-shattering gravitational re-accumulation of fragments into an asteroid rubble-pile. For each set, we wrapped the fragments in a thin plastic film and measured the bulk volume by hanging and plunging the assemblage into distilled water. The volume is calculated straightforward from the density of water at the given temperature. Cumulative mass distributions are derived and exponents 0.75<β <1.2 are found for the relationship N(>m)=A m^{-β} (m is the fragment mass, A is the corresponding constant) in the stationary part of the distribution. The exponent of each distribution and the mass of each largest fragment are found to be related to the corresponding specific energy of each impact as expected [3]. The mass distributions seem to show slightly larger values of β in the case of spherical targets when comparing two sets of close specific energy impacts. However, this feature needs further sets of impact experiments to be properly investigated. As for the shapes of fragments, b/a and c/a ratios were calculated along with the shape metrics Ψ=[ c^2/(ab)]^{1/3}, F=(a-b)/(a-c) for deviation from the spherical shape and relative flatness, respectively [7,8]. The average relationship between a, b, and c axes is 1:0.7:0.4, slightly different (flatter) than reported by former investigations (1:0.7:0.5) carried on in the 70s and 80s [7]. This result is quite stable and no differences are found in average shapes among spherical and irregular targets nor for different specific energy up to a factor of ˜3. This does not mean that fragments look like triaxial ellipsoids, instead they are quite irregular but their average relative sizes are distributed very nicely as described. Finally, the study of the macro-porosities of randomly aggregated fragments shows values in the 45 to 50 % range. This result may be useful in the interpretation of small asteroids' bulk densities and in the calibration of numerical modelling of internal structures.

  13. Potential scattering on a spherical surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Ho, Tin-Lun

    2018-06-01

    The advances in cold atom experiments have allowed construction of confining traps in the form of curved surfaces. This opens up the possibility of studying quantum gases in curved manifolds. On closed surfaces, many fundamental processes are affected by the local and global properties, i.e. the curvature and the topology of the surface. In this paper, we study the problem of potential scattering on a spherical surface and discuss its difference with that on a 2D plane. For bound states with angular momentum m, their energies (E m ) on a sphere are related to those on a 2D plane (-| {E}m,o| ) as {E}m=-| {E}m,o| +{E}R≤ft[\\tfrac{{m}2-1}{3}+O≤ft(\\tfrac{{r}o2}{{R}2}\\right)\\right], where {E}R={{{\\hslash }}}2/(2{{MR}}2), and R is the radius of the sphere. Due to the finite extent of the manifold, the phase shifts on a sphere at energies E∼ {E}R differ significantly from those on a 2D plane. As energy E approaches zero, the phase shift in the planar case approaches 0, whereas in the spherical case it reaches a constant that connects the microscopic length scale to the largest length scale R.

  14. Frequency-radial duality based photoacoustic image reconstruction.

    PubMed

    Akramus Salehin, S M; Abhayapala, Thushara D

    2012-07-01

    Photoacoustic image reconstruction algorithms are usually slow due to the large sizes of data that are processed. This paper proposes a method for exact photoacoustic reconstruction for the spherical geometry in the limiting case of a continuous aperture and infinite measurement bandwidth that is faster than existing methods namely (1) backprojection method and (2) the Norton-Linzer method [S. J. Norton and M. Linzer, "Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solution for plane, cylindrical and spherical apertures," Biomedical Engineering, IEEE Trans. BME 28, 202-220 (1981)]. The initial pressure distribution is expanded using a spherical Fourier Bessel series. The proposed method estimates the Fourier Bessel coefficients and subsequently recovers the pressure distribution. A concept of frequency-radial duality is introduced that separates the information from the different radial basis functions by using frequencies corresponding to the Bessel zeros. This approach provides a means to analyze the information obtained given a measurement bandwidth. Using order analysis and numerical experiments, the proposed method is shown to be faster than both the backprojection and the Norton-Linzer methods. Further, the reconstructed images using the proposed methodology were of similar quality to the Norton-Linzer method and were better than the approximate backprojection method.

  15. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  16. Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    NASA Astrophysics Data System (ADS)

    Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.

    2016-01-01

    Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.

  17. Tearing of thin spherical shells adhered to equally curved rigid substrates

    NASA Astrophysics Data System (ADS)

    McMahan, Connor; Lee, Anna; Marthelot, Joel; Reis, Pedro

    Lasik (Laser-Assisted in Situ Keratomileusis) eye surgery involves the tearing of the corneal epithelium to remodel the corneal stroma for corrections such as myopia, hyperopia and astigmatism. One issue with this procedure is that during the tearing of the corneal epithelium, if the two propagating cracks coalesce, a flap detaches which could cause significant complications in the recovery of the patient. We seek to gain a predictive physical understanding of this process by performing precision desktop experiments on an analogue model system. First, thin spherical shells of nearly uniform thickness are fabricated by the coating of hemispherical molds with a polymer solution, which upon curing yields an elastic and brittle structure. We then create two notches near the equator of the shell and tear a flap by pulling tangentially to the spherical substrate, towards its pole. The resulting fracture paths are characterized by high-resolution 3D digital scanning. Our primary focus is on establishing how the positive Gaussian curvature of the system affects the path of the crack tip. Our results are directly contrasted against previous studies on systems with zero Gaussian curvature, where films were torn from planar and cylindrical substrates.

  18. Understanding pop-ins in spherical nanoindentation

    DOE PAGES

    Pathak, Siddhartha; Riesterer, Jessica L.; Kalidindi, Surya R.; ...

    2014-10-24

    In this study, pop-ins, or sudden displacement-bursts at constant load in a nanoindentation test, are typically attributed to the difficulty of setting up potent dislocation sources in the very small indentation zones in these experiments. Such displacement (and strain) bursts would intuitively indicate a sharp drop in stress during the pop-in event itself. However, spherical indentation stress-strain curves routinely exhibit a high and stable indentation stress value during the pop-in, and the indentation stresses decrease only after a further finite amount of additional indentation displacement has been applied. In order to understand this discrepancy, we utilize a combination of interruptedmore » spherical indentation tests along with depth profiling of the residual indentation surfaces using in-situ atomic force microscopy (AFM) to study pop-ins. The AFM surface profile maps show that there is an asymmetric profile change over a limited region around the indentation contact area for a single pop-in; the asymmetry disappears upon further loading beyond the pop-in. A plausible sequence of physical processes (related to metal plasticity) occurring underneath the indenter during and immediately after the occurrence of the pop-in is proposed to explain these observations.« less

  19. Understanding pop-ins in spherical nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Siddhartha, E-mail: pathak@lanl.gov, E-mail: siddharthapathak@gmail.com; Riesterer, Jessica L.; Michler, Johann

    2014-10-20

    Pop-ins, or sudden displacement-bursts at constant load in a nanoindentation test, are typically attributed to the difficulty of setting up potent dislocation sources in the very small indentation zones in these experiments. Such displacement (and strain) bursts would intuitively indicate a sharp drop in stress during the pop-in event itself. However, spherical indentation stress-strain curves routinely exhibit a high and stable indentation stress value during the pop-in, and the indentation stresses decrease only after a further finite amount of additional indentation displacement has been applied. In order to understand this discrepancy, we utilize a combination of interrupted spherical indentation testsmore » along with depth profiling of the residual indentation surfaces using in-situ atomic force microscopy (AFM) to study pop-ins. The AFM surface profile maps show that there is an asymmetric profile change over a limited region around the indentation contact area for a single pop-in; the asymmetry disappears upon further loading beyond the pop-in. A plausible sequence of physical processes (related to metal plasticity) occurring underneath the indenter during and immediately after the occurrence of the pop-in is proposed to explain these observations.« less

  20. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    PubMed

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

Top