ERIC Educational Resources Information Center
Davis, James; Leslie, Ray; Billington, Susan; Slater, Peter R.
2010-01-01
The use of "Origami" is presented as an accessible and transferable modeling system through which to convey the intricacies of molecular shape and highlight structure-function relationships. The implementation of origami has been found to be a versatile alternative to conventional ball-and-stick models, possessing the key advantages of being both…
Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio
2013-01-01
Behavioral diversity is an essential feature of living systems, enabling them to exhibit adaptive behavior in hostile and dynamically changing environments. However, traditional engineering approaches strive to avoid, or suppress, the behavioral diversity in artificial systems to achieve high performance in specific environments for given tasks. The goals of this research include understanding how living systems exhibit behavioral diversity and using these findings to build lifelike robots that exhibit truly adaptive behaviors. To this end, we have focused on one of the most primitive forms of intelligence concerning behavioral diversity, namely, a plasmodium of true slime mold. The plasmodium is a large amoeba-like unicellular organism that does not possess any nervous system or specialized organs. However, it exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously between these. Inspired by the plasmodium, we built a mathematical model that exhibits versatile oscillatory patterns and spontaneously transitions between these patterns. This model demonstrates that, in contrast to coupled nonlinear oscillators with a well-designed complex diffusion network, physically interacting mechanosensory oscillators are capable of generating versatile oscillatory patterns without changing any parameters. Thus, the results are expected to shed new light on the design scheme for lifelike robots that exhibit amazingly versatile and adaptive behaviors.
Siggers, Keri A; Lesser, Cammie F
2008-07-17
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Ophiuroid robot that self-organizes periodic and non-periodic arm movements.
Kano, Takeshi; Suzuki, Shota; Watanabe, Wataru; Ishiguro, Akio
2012-09-01
Autonomous decentralized control is a key concept for understanding the mechanism underlying adaptive and versatile locomotion of animals. Although the design of an autonomous decentralized control system that ensures adaptability by using coupled oscillators has been proposed previously, it cannot comprehensively reproduce the versatility of animal behaviour. To tackle this problem, we focus on using ophiuroids as a simple model that exhibits versatile locomotion including periodic and non-periodic arm movements. Our existing model for ophiuroid locomotion uses an active rotator model that describes both oscillatory and excitatory properties. In this communication, we develop an ophiuroid robot to confirm the validity of this proposed model in the real world. We show that the robot travels by successfully coordinating periodic and non-periodic arm movements in response to external stimuli.
Versatile clinical information system design for emergency departments.
Amouh, Teh; Gemo, Monica; Macq, Benoît; Vanderdonckt, Jean; El Gariani, Abdul Wahed; Reynaert, Marc S; Stamatakis, Lambert; Thys, Frédéric
2005-06-01
Compared to other hospital units, the emergency department presents some distinguishing characteristics of its own. Emergency health-care delivery is a collaborative process involving the contribution of several individuals who accomplish their tasks while working autonomously under pressure and sometimes with limited resources. Effective computerization of the emergency department information system presents a real challenge due to the complexity of the scenario. Current computerized support suffers from several problems, including inadequate data models, clumsy user interfaces, and poor integration with other clinical information systems. To tackle such complexity, we propose an approach combining three points of view, namely the transactions (in and out of the department), the (mono and multi) user interfaces and data management. Unlike current systems, we pay particular attention to the user-friendliness and versatility of our system. This means that intuitive user interfaces have been conceived and specific software modeling methodologies have been applied to provide our system with the flexibility and adaptability necessary for the individual and group coordinated tasks. Our approach has been implemented by prototyping a web-based, multiplatform, multiuser, and versatile clinical information system built upon multitier software architecture, using the Java programming language.
DLR MiroSurge: a versatile system for research in endoscopic telesurgery.
Hagn, Ulrich; Konietschke, R; Tobergte, A; Nickl, M; Jörg, S; Kübler, B; Passig, G; Gröger, M; Fröhlich, F; Seibold, U; Le-Tien, L; Albu-Schäffer, A; Nothhelfer, A; Hacker, F; Grebenstein, M; Hirzinger, G
2010-03-01
Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans. To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front-ends towards surgery and configurable interfaces for the surgeon. This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback. While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.
Modular, Semantics-Based Composition of Biosimulation Models
ERIC Educational Resources Information Center
Neal, Maxwell Lewis
2010-01-01
Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…
Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research
ERIC Educational Resources Information Center
Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver
2009-01-01
Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…
The Parallel System for Integrating Impact Models and Sectors (pSIMS)
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian
2014-01-01
We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.
Watershed modeling applications in south Texas
Pedraza, Diana E.; Ockerman, Darwin J.
2012-01-01
This fact sheet presents an overview of six selected watershed modeling studies by the USGS and partners that address a variety of water-resource issues in south Texas. These studies provide examples of modeling applications and demonstrate the usefulness and versatility of watershed models in aiding the understanding of hydrologic systems.
Study of an engine flow diverter system for a large scale ejector powered aircraft model
NASA Technical Reports Server (NTRS)
Springer, R. J.; Langley, B.; Plant, T.; Hunter, L.; Brock, O.
1981-01-01
Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed.
Modelling of nanoscale quantum tunnelling structures using algebraic topology method
NASA Astrophysics Data System (ADS)
Sankaran, Krishnaswamy; Sairam, B.
2018-05-01
We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.
NASA Technical Reports Server (NTRS)
Martin, J. P.; Kok, B.; Radmer, R.
1976-01-01
A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.
Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks
2011-01-01
Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary adaptive, potentially through functional innovations. Domain bigram networks are informative as a model of biological functions. The networking versatility indices extracted from such networks for individual domains reflect the strength of evolutionary selection that the domains have experienced. PMID:21849086
Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks.
Xie, Xueying; Jin, Jing; Mao, Yongyi
2011-08-18
Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary adaptive, potentially through functional innovations. Domain bigram networks are informative as a model of biological functions. The networking versatility indices extracted from such networks for individual domains reflect the strength of evolutionary selection that the domains have experienced.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.
Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang
2017-08-22
A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.
Modelling healthcare systems with phase-type distributions.
Fackrell, Mark
2009-03-01
Phase-type distributions constitute a very versatile class of distributions. They have been used in a wide range of stochastic modelling applications in areas as diverse as telecommunications, finance, biostatistics, queueing theory, drug kinetics, and survival analysis. Their use in modelling systems in the healthcare industry, however, has so far been limited. In this paper we introduce phase-type distributions, give a survey of where they have been used in the healthcare industry, and propose some ideas on how they could be further utilized.
True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio
2013-09-01
Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.
Versatile microrobotics using simple modular subunits
NASA Astrophysics Data System (ADS)
Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun
2016-07-01
The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.
Versatile microrobotics using simple modular subunits
Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun
2016-01-01
The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852
AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system
NASA Astrophysics Data System (ADS)
Hamre, Børge; Stamnes, Snorre; Stamnes, Knut; Stamnes, Jakob
2017-02-01
Reliable, accurate, and efficient modeling of the transport of electromagnetic radiation in turbid media has important applications in the study of the Earth's climate by remote sensing. For example, such modeling is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol and cloud particles in the atmosphere, the dissolved organic and particulate biogeochemical matter in lakes, rivers, coastal, and open-ocean waters. It is also needed to simulate the performance of remote sensing detectors deployed on aircraft, balloons, and satellites as well as radiometric detectors deployed on buoys, gliders and other aquatic observing systems. Accurate radiative transfer modeling is also required to compute irradiances and scalar irradiances that are used to compute warming/cooling and photolysis rates in the atmosphere and primary production and warming/cooling rates in the water column. AccuRT is a radiative transfer model for the coupled atmosphere-water system that is designed to be a versatile tool for researchers in the ocean optics and remote sensing communities. It addresses the needs of researchers interested in analyzing irradiance and radiance measurements in the field and laboratory as well as those interested in making simulations of the top-of-the-atmosphere radiance in support of remote sensing algorithm development.
Interactive Spacecraft Trajectory Design Strategies Featuring Poincare Map Topology
NASA Astrophysics Data System (ADS)
Schlei, Wayne R.
Space exploration efforts are shifting towards inexpensive and more agile vehicles. Versatility regarding spacecraft trajectories refers to the agility to correct deviations from an intended path or even the ability to adapt the future path to a new destination--all with limited spaceflight resources (i.e., small DeltaV budgets). Trajectory design methods for such nimble vehicles incorporate equally versatile procedures that allow for rapid and interactive decision making while attempting to reduce Delta V budgets, leading to a versatile trajectory design platform. A versatile design paradigm requires the exploitation of Poincare map topology , or the interconnected web of dynamical structures, existing within the chaotic dynamics of multi-body gravitational models to outline low-Delta V transfer options residing nearby to a current path. This investigation details an autonomous procedure to extract the periodic orbits (topology nodes) and correlated asymptotic flow structures (or the invariant manifolds representing topology links). The autonomous process summarized in this investigation (termed PMATE) overcomes discontinuities on the Poincare section that arise in the applied multi-body model (the planar circular restricted three-body problem) and detects a wide variety of novel periodic orbits. New interactive capabilities deliver a visual analytics foundation for versatile spaceflight design, especially for initial guess generation and manipulation. Such interactive strategies include the selection of states and arcs from Poincare section visualizations and the capabilities to draw and drag trajectories to remove dependency on initial state input. Furthermore, immersive selection is expanded to cull invariant manifold structures, yielding low-DeltaV or even DeltaV-free transfers between periodic orbits. The application of interactive design strategies featuring a dense extraction of Poincare map topology is demonstrated for agile spaceflight with a simple spacecraft rerouting scenario incorporating a very limited Delta V budget. In the Earth-Moon system, a low-DeltaV transfer from low Earth orbit (LEO) to the distant retrograde orbit (DRO) vicinity is derived with interactive topology-based design tactics. Finally, Poincare map topology is exploited in the Saturn-Enceladus system to explore a possible ballistic capture scenario around Enceladus.
Advanced instrumentation for aeronautical propulsion research
NASA Technical Reports Server (NTRS)
Hartmann, M. J.
1986-01-01
The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.
Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique
2016-01-01
The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.
[The GIPSY-RECPAM model: a versatile approach for integrated evaluation in cardiologic care].
Carinci, F
2009-01-01
Tree-structured methodology applied for the GISSI-PSICOLOGIA project, although performed in the framework of earliest GISSI studies, represents a powerful tool to analyze different aspects of cardiologic care. The GISSI-PSICOLOGIA project has delivered a novel methodology based on the joint application of psychometric tools and sophisticated statistical techniques. Its prospective use could allow building effective epidemiological models relevant to the prognosis of the cardiologic patient. The various features of the RECPAM method allow a versatile use in the framework of modern e-health projects. The study used the Cognitive Behavioral Assessment H Form (CBA-H) psychometrics scales. The potential for its future application in the framework of Italian cardiology is relevant and particularly indicated to assist planning of systems for integrated care and routine evaluation of the cardiologic patient.
Design and application of implicit solvent models in biomolecular simulations.
Kleinjung, Jens; Fraternali, Franca
2014-04-01
We review implicit solvent models and their parametrisation by introducing the concepts and recent devlopments of the most popular models with a focus on parametrisation via force matching. An overview of recent applications of the solvation energy term in protein dynamics, modelling, design and prediction is given to illustrate the usability and versatility of implicit solvation in reproducing the physical behaviour of biomolecular systems. Limitations of implicit modes are discussed through the example of more challenging systems like nucleic acids and membranes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V. Krishnan; Ljubimova, Julia; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.
2012-01-01
Purpose Several established optical imaging approaches have been applied, usually in isolation, to preclinical studies; however, truly useful in vivo imaging may require a simultaneous combination of imaging modalities to examine dynamic characteristics of cells and tissues. We developed a new multimode optical imaging system designed to be application-versatile, yielding high sensitivity, and specificity molecular imaging. Procedures We integrated several optical imaging technologies, including fluorescence intensity, spectral, lifetime, intravital confocal, two-photon excitation, and bioluminescence, into a single system that enables functional multiscale imaging in animal models. Results The approach offers a comprehensive imaging platform for kinetic, quantitative, and environmental analysis of highly relevant information, with micro-to-macroscopic resolution. Applied to small animals in vivo, this provides superior monitoring of processes of interest, represented here by chemo-/nanoconstruct therapy assessment. Conclusions This new system is versatile and can be optimized for various applications, of which cancer detection and targeted treatment are emphasized here. PMID:21874388
A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors
NASA Astrophysics Data System (ADS)
Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.
2018-04-01
The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.
FveGD: an online resource for diploid strawberry (fragaria vesca) genomics data
USDA-ARS?s Scientific Manuscript database
Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system that is an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. xananassa) and...
A brief introduction to the model microswimmer Chlamydomonas reinhardtii
NASA Astrophysics Data System (ADS)
Jeanneret, Raphaël; Contino, Matteo; Polin, Marco
2016-11-01
The unicellular biflagellate green alga Chlamydomonas reinhardtii has been an important model system in biology for decades, and in recent years it has started to attract growing attention also within the biophysics community. Here we provide a concise review of some of the aspects of Chlamydomonas biology and biophysics most immediately relevant to physicists that might be interested in starting to work with this versatile microorganism.
Solid Freeform Fabrication Proceedings -1999
1999-08-11
geometry of the stylus. Some geometries cannot be used to acquire data if the part geometry interferes 48 with a feature on the part. Thus, the data...fabrication processing systems such as surface micro- machining and lithography . 63 Conclusion The LCVD system (figure 6) has the versatility and...part, creating STL (STereo Lithography ) or VRML (Virtual Reality Modeling Language) files, slicing them, converting into laser path files, and
Performance model for grid-connected photovoltaic inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Galbraith, Gary M.; King, David L.
2007-09-01
This document provides an empirically based performance model for grid-connected photovoltaic inverters used for system performance (energy) modeling and for continuous monitoring of inverter performance during system operation. The versatility and accuracy of the model were validated for a variety of both residential and commercial size inverters. Default parameters for the model can be obtained from manufacturers specification sheets, and the accuracy of the model can be further refined using measurements from either well-instrumented field measurements in operational systems or using detailed measurements from a recognized testing laboratory. An initial database of inverter performance parameters was developed based on measurementsmore » conducted at Sandia National Laboratories and at laboratories supporting the solar programs of the California Energy Commission.« less
A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.
Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V
2018-06-05
The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S.-Y.; Berman, A.; Austin, E. E.
1984-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
Ground resonance analysis using a substructure modeling approach
NASA Technical Reports Server (NTRS)
Chen, S. Y.; Austin, E. E.; Berman, A.
1985-01-01
A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel
NASA Technical Reports Server (NTRS)
Askew, Robert B.; Quinto, P. Frank
1994-01-01
The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.
Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G
2017-08-01
The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L. Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.
NASA Astrophysics Data System (ADS)
Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G.
2017-08-01
The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L . Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.
Terrain modeling for microwave landing system
NASA Technical Reports Server (NTRS)
Poulose, M. M.
1991-01-01
A powerful analytical approach for evaluating the terrain effects on a microwave landing system (MLS) is presented. The approach combines a multiplate model with a powerful and exhaustive ray tracing technique and an accurate formulation for estimating the electromagnetic fields due to the antenna array in the presence of terrain. Both uniform theory of diffraction (UTD) and impedance UTD techniques have been employed to evaluate these fields. Innovative techniques are introduced at each stage to make the model versatile to handle most general terrain contours and also to reduce the computational requirement to a minimum. The model is applied to several terrain geometries, and the results are discussed.
Developing and Evaluating Gamifying Learning System by Using Flow-Based Model
ERIC Educational Resources Information Center
Su, Chung-Ho; Hsaio, Kai-Chong
2015-01-01
Game-based learning is an effective learning method, whose performance depends on the quality of the educational game. Due to versatile game environments with complex backgrounds, evaluations are not easy to implement. Consequently, it is difficult for educators to determine to what degree a game may be qualified. This study proposes a novel,…
Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G
NASA Technical Reports Server (NTRS)
Gaski, J. D.; Lewis, D. R.; Thompson, L. R.
1972-01-01
New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format.
A versatile scalable PET processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman
2011-06-01
Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed tomore » accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.« less
Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
NASA Astrophysics Data System (ADS)
Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine
2016-06-01
Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de; Schreiber, Falk; Martin-Luther-University Halle-Wittenberg, Halle
The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the contextmore » of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.« less
Sexual Role and Transmission of HIV Type 1 among Men Who Have Sex with Men, in Peru
Goodreau, Steven M.; Goicochea, L. Pedro; Sanchez, Jorge
2014-01-01
In Latin America, men who have sex with men (MSM) have traditionally practiced role segregation—that is, the adoption of a fixed role (insertive or receptive) rather than a versatile role (both practices) during anal sex. Previous modeling has shown that role segregation may yield a lower incidence of human immunodeficiency virus (HIV) type 1 infection, compared with role versatility; however, the modeling assumed no risk of acquiring HIV-1 during insertive sex, which is now recognized as unlikely. We reexamine the issue by use of a deterministic model incorporating bidirectional transmission and data from a cohort study of MSM in Lima, Peru, to demonstrate the potential effects of role segregation on the trajectory of the HIV-1 epidemic. In Lima, 67% of MSM reported segregated roles in their recent male partnerships. A population of MSM with identical contact rates but complete role versatility would have twice the prevalence of HIV-1 infection throughout the epidemic’s first 3 decades. Preferential mixing among versatile MSM does not change overall prevalence but affects which individuals become infected. PMID:15627225
CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.
Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang
2016-03-15
The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area. © 2015 UICC.
An engineering design approach to systems biology.
Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A
2017-07-17
Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.
NASA Technical Reports Server (NTRS)
1971-01-01
The analytical models developed for the Space Propulsion Automated Synthesis Modeling (SPASM) program are presented. Weight scaling laws developed during this study are incorporated into the program's scaling data bank. A detail listing, logic diagram and input/output formats are supplied for the SPASM program. Two test examples for one to four-stage vehicles performing different types of missions are shown to demonstrate the program's capability and versatility.
Direct 3D cell-printing of human skin with functional transwell system.
Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo
2017-06-06
Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was used than in a conventional culture. Collectively, because this single-step process opens up chances for versatile designs, we envision that our cell-printing strategy could provide an attractive platform in engineering various human skin models.
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen
1995-01-01
A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.
Automated procedures for sizing aerospace vehicle structures /SAVES/
NASA Technical Reports Server (NTRS)
Giles, G. L.; Blackburn, C. L.; Dixon, S. C.
1972-01-01
Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.
NASA Astrophysics Data System (ADS)
Brandic, Ivona; Music, Dejan; Dustdar, Schahram
Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.
This study presents the development and bench-testing of a versatile aerosol concentration enrichment system (VACES) capable of simultaneously concentrating ambient particles of the coarse, fine and ultrafine size fractions for conducting in vivo and in vitro studies. The VACE...
This study presents results from a field evaluation of a mobile versatile aerosol concentration enrichment system (VACES), designed to enhance the ambient concentrations of ultrafine (less than 0.18 VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN VIVO AND IN VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE AND COARSE AMBIENT PARTICLES. PART II: FIELD EVALUATION. (R827352C001)
This study presents results from a field evaluation of a mobile versatile aerosol concentration enrichment system (VACES), designed to enhance the ambient concentrations of ultrafine (less than 0.18
Computerized analysis and duplication of mandibular motion.
Knap, F J; Abler, J H; Richardson, B L
1975-05-01
A new digital system has been devised to analyze and duplicate jaw motion. The arrangement of the electronic system offers a range of versatility which includes graphic as well as numerical data analysis. The duplicator linkage is identical to the sensor linkage which, together with an accurate model transfer system, results in an encouraging level of accuracy in jaw-motion duplication. The data collected from normal subjects should offer some new knowledge in the normal motions of the mandible as well as establish a reference for comparison with abnormal masticatory function.
Air breathing engine/rocket trajectory optimization
NASA Technical Reports Server (NTRS)
Smith, V. K., III
1979-01-01
This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.
Current progress in patient-specific modeling
2010-01-01
We present a survey of recent advancements in the emerging field of patient-specific modeling (PSM). Researchers in this field are currently simulating a wide variety of tissue and organ dynamics to address challenges in various clinical domains. The majority of this research employs three-dimensional, image-based modeling techniques. Recent PSM publications mostly represent feasibility or preliminary validation studies on modeling technologies, and these systems will require further clinical validation and usability testing before they can become a standard of care. We anticipate that with further testing and research, PSM-derived technologies will eventually become valuable, versatile clinical tools. PMID:19955236
NASA Technical Reports Server (NTRS)
1972-01-01
A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.
RICOR K527 highly reliable linear cooler: applications and model overview
NASA Astrophysics Data System (ADS)
Riabzev, Sergey; Nachman, Ilan; Levin, Eli; Perach, Adam; Vainshtein, Igor; Gover, Dan
2017-05-01
The K527 linear cooler was developed in order to meet the requirements of reliability, cooling power needs and versatility for a wide range of applications such as hand held, 24/7 and MWS. During the recent years the cooler was incorporated in variety of systems. Some of these systems can be sensitive to vibrations which are induced from the cooler. In order to reduce those vibrations significantly, a Tuned Dynamic Absorber (TDA) was added to the cooler. Other systems, such as the MWS type, are not sensitive to vibrations, but require a robust cooler in order to meet the high demand for environmental vibration and temperature. Therefore various mounting interfaces are designed to meet system requirements. The latest K527 version was designed to be integrated with the K508 cold finger, in order to give it versatility to standard detectors that are already designed and available for the K508 cooler type. The reliability of the cooler is of a high priority. In order to meet the 30,000 working hours target, special design features were implemented. Eight K527 coolers have passed the 19,360 working hours without degradations, and are still running according to our expectations.
Barczi, Jean-François; Rey, Hervé; Griffon, Sébastien; Jourdan, Christophe
2018-04-18
Many studies exist in the literature dealing with mathematical representations of root systems, categorized, for example, as pure structure description, partial derivative equations or functional-structural plant models. However, in these studies, root architecture modelling has seldom been carried out at the organ level with the inclusion of environmental influences that can be integrated into a whole plant characterization. We have conducted a multidisciplinary study on root systems including field observations, architectural analysis, and formal and mathematical modelling. This integrative and coherent approach leads to a generic model (DigR) and its software simulator. Architecture analysis applied to root systems helps at root type classification and architectural unit design for each species. Roots belonging to a particular type share dynamic and morphological characteristics which consist of topological and geometric features. The DigR simulator is integrated into the Xplo environment, with a user interface to input parameter values and make output ready for dynamic 3-D visualization, statistical analysis and saving to standard formats. DigR is simulated in a quasi-parallel computing algorithm and may be used either as a standalone tool or integrated into other simulation platforms. The software is open-source and free to download at http://amapstudio.cirad.fr/soft/xplo/download. DigR is based on three key points: (1) a root-system architectural analysis, (2) root type classification and modelling and (3) a restricted set of 23 root type parameters with flexible values indexed in terms of root position. Genericity and botanical accuracy of the model is demonstrated for growth, branching, mortality and reiteration processes, and for different root architectures. Plugin examples demonstrate the model's versatility at simulating plastic responses to environmental constraints. Outputs of the model include diverse root system structures such as tap-root, fasciculate, tuberous, nodulated and clustered root systems. DigR is based on plant architecture analysis which leads to specific root type classification and organization that are directly linked to field measurements. The open source simulator of the model has been included within a friendly user environment. DigR accuracy and versatility are demonstrated for growth simulations of complex root systems for both annual and perennial plants.
Computer display and manipulation of biological molecules
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.
1978-01-01
This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.
Versatile Optical Bench for Teaching, Development, and Testing of Electron and Ion Optical Systems
ERIC Educational Resources Information Center
Bhiday, M. R.; And Others
1977-01-01
Describes a versatile apparatus for demonstrating the imaging properties of various types of electrostatic lenses. The apparatus can be used to study the focusing properties of different types of electrostatic electron or ion lenses or their combinations. (MLH)
Personality Types, Learning Styles, and Educational Goals.
ERIC Educational Resources Information Center
Miller, Alan
1991-01-01
Outlines a new personality typology that provides a coherent system for construing and conducting research on learning styles. Discusses analytic, holistic, objective, and subjective styles as the affect versatility. Presents implications for educational goals, such as determining which students can benefit from stylistic versatility and which…
Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications
NASA Technical Reports Server (NTRS)
Vargas-Aburto, Carlos; Liff, Dale R.
1991-01-01
A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.
Simulation platform of LEO satellite communication system based on OPNET
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Yong; Li, Xiaozhuo; Wang, Chuqiao; Li, Haihao
2018-02-01
For the purpose of verifying communication protocol in the low earth orbit (LEO) satellite communication system, an Optimized Network Engineering Tool (OPNET) based simulation platform is built. Using the three-layer modeling mechanism, the network model, the node model and the process model of the satellite communication system are built respectively from top to bottom, and the protocol will be implemented by finite state machine and Proto-C language. According to satellite orbit parameters, orbit files are generated via Satellite Tool Kit (STK) and imported into OPNET, and the satellite nodes move along their orbits. The simulation platform adopts time-slot-driven mode, divides simulation time into continuous time slots, and allocates slot number for each time slot. A resource allocation strategy is simulated on this platform, and the simulation results such as resource utilization rate, system throughput and packet delay are analyzed, which indicate that this simulation platform has outstanding versatility.
The Occupational Versatility Program: Student-Directed Learning in Industrial Arts.
ERIC Educational Resources Information Center
Lavender, John
1978-01-01
Describes the Occupational Versatility program in industrial arts, involving a self-instructional school shop in which the learning system is student-managed, nongraded, upgraded, and team taught. This federally funded learning method has also been successfully applied to home economics and art education. Information sources for the teacher are…
High Efficiency Variable Speed Versatile Power Air Conditioning System
2013-08-08
Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology
A versatile system for the rapid collection, handling and graphics analysis of multidimensional data
NASA Astrophysics Data System (ADS)
O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.
1993-05-01
The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.
Space crew radiation exposure analysis system based on a commercial stand-alone CAD system
NASA Technical Reports Server (NTRS)
Appleby, Matthew H.; Golightly, Michael J.; Hardy, Alva C.
1992-01-01
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
NASA Astrophysics Data System (ADS)
Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie
2015-10-01
CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.
On the Computational Power of Spiking Neural P Systems with Self-Organization.
Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan
2016-06-10
Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.
On the Computational Power of Spiking Neural P Systems with Self-Organization
Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan
2016-01-01
Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun. PMID:27283843
On the Computational Power of Spiking Neural P Systems with Self-Organization
NASA Astrophysics Data System (ADS)
Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan
2016-06-01
Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.
Mailloux, Shay; Halámek, Jan; Katz, Evgeny
2014-03-07
A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.
Muto, Yutaka; Yokoyama, Shigeyuki
2012-01-01
'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.
Versatile Desktop Experiment Module (DEMo) on Heat Transfer
ERIC Educational Resources Information Center
Minerick, Adrienne R.
2010-01-01
This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…
High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles
2013-08-01
MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY , MICHIGAN High efficiency variable speed versatile power air conditioning system for...power draw was measured using a calibrated Watt meter. The schematic of the setup is shown in Figure 5 and the setup is shown in Figure 6. Figure...Rocky Research environmental chamber. Cooling Capacity was directly measured in Btu/hr or Watts via measuring the Air flow velocity and the air
Versatile simulation testbed for rotorcraft speech I/O system design
NASA Technical Reports Server (NTRS)
Simpson, Carol A.
1986-01-01
A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer command structure and features, feedback from the recognizer, and random access to controls via speech command.
Aeroelastic analysis of versatile thermal insulation (VTI) panels with pinched boundary conditions
NASA Astrophysics Data System (ADS)
Carrera, Erasmo; Zappino, Enrico; Patočka, Karel; Komarek, Martin; Ferrarese, Adriano; Montabone, Mauro; Kotzias, Bernhard; Huermann, Brian; Schwane, Richard
2014-03-01
Launch vehicle design and analysis is a crucial problem in space engineering. The large range of external conditions and the complexity of space vehicles make the solution of the problem really challenging. The problem considered in the present work deals with the versatile thermal insulation (VTI) panel. This thermal protection system is designed to reduce heat fluxes on the LH2 tank during the long coasting phases. Because of the unconventional boundary conditions and the large-scale geometry of the panel, the aeroelastic behaviour of VTI is investigated in the present work. Known available results from literature related to similar problem, are reviewed by considering the effect of various Mach regimes, including boundary layer thickness effects, in-plane mechanical and thermal loads, non-linear effects and amplitude of limit cycle oscillations. A dedicated finite element model is developed for the supersonic regime. The models used for coupling the orthotropic layered structural model with Piston Theory aerodynamic models allow the calculations of flutter conditions in case of curved panels supported in a discrete number of points. An advanced computational aeroelasticity tool is developed using various dedicated commercial softwares (CFX, ZAERO, EDGE). A wind tunnel test campaign is carried out to assess the computational tool in the analysis of this type of problem.
Mechanism-based model of a mass rapid transit system: A perspective
NASA Astrophysics Data System (ADS)
Legara, Erika Fille; Khoon, Lee Kee; Guang, Hung Gih; Monterola, Christopher
2015-01-01
In this paper, we discuss our findings on the spatiotemporal dynamics within the mass rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin-Destination (OD) station pairs follows a power-law, implying the existence of critical OD pairs. We then present and discuss the empirically validated agent-based model (ABM) we have developed. The model allows recreation of the observed statistics and the setting up of various scenarios and their effects on the system, such as increasing the commuter population and the propagation of travel delays within the transportation network. The proposed model further enables identification of bottlenecks that can cause the MRT to break down, and consequently provide foresight on how such disruptions can possibly be managed. This can potentially provide a versatile approach for transport planners and government regulators to make quantifiable policies that optimally balance cost and convenience as a function of the number of the commuting public.
Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement
Harne, R. L.; Wang, K. W.
2015-01-01
Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. PMID:25608517
Applications of the CRISPR-Cas9 system in cancer biology
Sánchez-Rivera, Francisco J.; Jacks, Tyler
2015-01-01
Preface The prokaryotic type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is rapidly revolutionizing the field of genetic engineering, allowing researchers to alter the genomes of a large variety of organisms with relative ease. Experimental approaches based on this versatile technology have the potential to transform the field of cancer genetics. Here we review current approaches based on CRISPR-Cas9 for functional studies of cancer genes, with emphasis on its applicability for the development of the next-generation models of human cancer. PMID:26040603
Manufacturing technology methodology for propulsion system parts
NASA Astrophysics Data System (ADS)
McRae, M. M.
1992-07-01
A development history and a current status evaluation are presented for lost-wax casting of such gas turbine engine components as turbine vanes and blades. The most advanced such systems employ computer-integrated manufacturing methods for high process repeatability, reprogramming versatility, and feedback monitoring. Stereolithography-based plastic model 3D prototyping has also been incorporated for the wax part of the investment casting; it may ultimately be possible to produce the 3D prototype in wax directly, or even to create a ceramic mold directly. Nonintrusive inspections are conducted by X-radiography and neutron radiography.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Collaborative Recurrent Neural Networks forDynamic Recommender Systems
2016-11-22
formulation leads to an efficient and practical method. Furthermore, we demonstrate the versatility of our model by applying it to two different tasks: music ...form (user id, location id, check-in time). The LastFM9 dataset consists of sequences of songs played by a user’s music player collected by using a...Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2), 1990. Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
Multifaceted Modelling of Complex Business Enterprises
2015-01-01
We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control. PMID:26247591
Multifaceted Modelling of Complex Business Enterprises.
Chakraborty, Subrata; Mengersen, Kerrie; Fidge, Colin; Ma, Lin; Lassen, David
2015-01-01
We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.
Simulation of all-scale atmospheric dynamics on unstructured meshes
NASA Astrophysics Data System (ADS)
Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng
2016-10-01
The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.
Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing
2015-08-01
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.
A versatile small form factor twisted-pair TFC FMC for MTCA AMCs
NASA Astrophysics Data System (ADS)
Meder, L.; Lebedev, J.; Becker, J.
2017-03-01
In continuous readout systems of particle physics experiments, the provision of a common clock and time reference and the distribution of critical low latency messages to the processing and fronted layers of the readout are crucial tasks. In the context of the Compressed Baryonic Matter (CBM) experiment, a versatile small form factor Timing and Fast-Control (TFC) interfacing FPGA Mezzanine Card (FMC) was developed, offering bidirectional twisted-pair (TP) links for the communication between TFC nodes. Also a versatile clocking including voltage controlled oscillators and a connection to the telecommunication clock lines of mTCA crates are available. Being designed for both TFC Master and Slaves, the card allows rapid system developments without additional Slave hardware circuits. Measurements show that it is possible to transmit over cable lengths of 25 m at a rate of 240 Mbit/s for all data channels simultaneously. A TFC Master-Slave system using two of these cards can be synchronized with a precision of ±10 ps to an user-defined phase setpoint.
The KATE shell: An implementation of model-based control, monitor and diagnosis
NASA Technical Reports Server (NTRS)
Cornell, Matthew
1987-01-01
The conventional control and monitor software currently used by the Space Center for Space Shuttle processing has many limitations such as high maintenance costs, limited diagnostic capabilities and simulation support. These limitations have caused the development of a knowledge based (or model based) shell to generically control and monitor electro-mechanical systems. The knowledge base describes the system's structure and function and is used by a software shell to do real time constraints checking, low level control of components, diagnosis of detected faults, sensor validation, automatic generation of schematic diagrams and automatic recovery from failures. This approach is more versatile and more powerful than the conventional hard coded approach and offers many advantages over it, although, for systems which require high speed reaction times or aren't well understood, knowledge based control and monitor systems may not be appropriate.
ERIC Educational Resources Information Center
Yeung, Brendan; Ng, Tuck Wah; Tan, Han Yen; Liew, Oi Wah
2012-01-01
The use of different types of stains in the quantification of proteins separated on gels using electrophoresis offers the capability of deriving good outcomes in terms of linear dynamic range, sensitivity, and compatibility with specific proteins. An inexpensive, simple, and versatile lighting system based on liquid crystal display backlighting is…
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Keppens, Rony
2012-07-01
The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.
DEAN: A program for dynamic engine analysis
NASA Technical Reports Server (NTRS)
Sadler, G. G.; Melcher, K. J.
1985-01-01
The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.
On-Demand Drug Delivery System Using Micro-organogels with Gold Nanorods
2016-01-01
In this study, we designed a biocompatible drug carrier: micro-organogels prepared by emulsification using vegetable oils and self-assembled gelator fibers. Flurbiprofen was chosen as a hydrophobic model drug and is classified as a nonsteroidal anti-inflammatory drug. In the absence of NIR light, flurbiprofen encapsulated in micro-organogels with gold nanorods (GNRs) was released slowly, while release was accelerated in the presence of NIR light due to the increase in the temperature surrounding the GNRs that transforms the gels into liquid. These results suggest that our system can be efficiently used as a versatile scaffold for on-demand drug delivery systems. PMID:27994743
NASA Technical Reports Server (NTRS)
1990-01-01
Lunar base projects, including a reconfigurable lunar cargo launcher, a thermal and micrometeorite protection system, a versatile lifting machine with robotic capabilities, a cargo transport system, the design of a road construction system for a lunar base, and the design of a device for removing lunar dust from material surfaces, are discussed. The emphasis on the Gulf of Mexico project was on the development of a computer simulation model for predicting vessel station keeping requirements. An existing code, used in predicting station keeping requirements for oil drilling platforms operating in North Shore (Alaska) waters was used as a basis for the computer simulation. Modifications were made to the existing code. The input into the model consists of satellite altimeter readings and water velocity readings from buoys stationed in the Gulf of Mexico. The satellite data consists of altimeter readings (wave height) taken during the spring of 1989. The simulation model predicts water velocity and direction, and wind velocity.
Medicine, material science and security: the versatility of the coded-aperture approach.
Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A
2014-03-06
The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.
Robust and versatile ionic liquid microarrays achieved by microcontact printing
NASA Astrophysics Data System (ADS)
Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan
2014-04-01
Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.
Verification of a Finite Element Model for Pyrolyzing Ablative Materials
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2017-01-01
Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.
1989-03-01
DI _1.3)))an also the wire connecting m419 (id (3))( (tp (P-PORT))(port-of rDim) (m88 ( l l ) (type (P-PORT)) (port-of ( DI -1.1))) (m428 (id (2)) (type (P...research on this project had two dis - tinct but overlapping phases: consolidation of work done during the previous two years and developing new...diagnosis when VMES notices a diagnostic short-cut from the dual device model is present; this will be dis - cussed in the section of "Dual Device Model
ICAN: A versatile code for predicting composite properties
NASA Technical Reports Server (NTRS)
Ginty, C. A.; Chamis, C. C.
1986-01-01
The Integrated Composites ANalyzer (ICAN), a stand-alone computer code, incorporates micromechanics equations and laminate theory to analyze/design multilayered fiber composite structures. Procedures for both the implementation of new data in ICAN and the selection of appropriate measured data are summarized for: (1) composite systems subject to severe thermal environments; (2) woven fabric/cloth composites; and (3) the selection of new composite systems including those made from high strain-to-fracture fibers. The comparisons demonstrate the versatility of ICAN as a reliable method for determining composite properties suitable for preliminary design.
Development of STOLAND, a versatile navigation, guidance and control system
NASA Technical Reports Server (NTRS)
Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.
1972-01-01
STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.
CRISPR/Cas9 for Human Genome Engineering and Disease Research.
Xiong, Xin; Chen, Meng; Lim, Wendell A; Zhao, Dehua; Qi, Lei S
2016-08-31
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.
Atomistic Modeling of Nanostructures via the BFS Quantum Approximate Method
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Garces, Jorge E.; Noebe, Ronald D.; Farias, D.
2003-01-01
Ideally, computational modeling techniques for nanoscopic physics would be able to perform free of limitations on the type and number of elements, while providing comparable accuracy when dealing with bulk or surface problems. Computational efficiency is also desirable, if not mandatory, for properly dealing with the complexity of typical nano-strucured systems. A quantum approximate technique, the BFS method for alloys, which attempts to meet these demands, is introduced for the calculation of the energetics of nanostructures. The versatility of the technique is demonstrated through analysis of diverse systems, including multi-phase precipitation in a five element Ni-Al-Ti-Cr-Cu alloy and the formation of mixed composition Co-Cu islands on a metallic Cu(III) substrate.
A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins
Tastet, Christophe; Lescuyer, Pierre; Diemer, Hélène; Luche, Sylvie; van Dorsselaer, Alain; Rabilloud, Thierry
2003-01-01
A new, versatile, multiphasic buffer system for high resolution sodium dodecyl sulfatepolyacrylamide gel electrophoresis of proteins in the relative molecular weight Mw range of 300,000-3000 Da is described. The system, based on the theory of multiphasic zone electrophoresis, allows complete stacking and destacking of proteins in the above Mw range. The buffer system uses taurine and chloride as trailing and leading ion, respectively, and Tris, at a pH close to its pKa, as the buffering counter ion. Coupled with limited variation in the acrylamide concentration, this electrophoresis system allows to tailor the resolution in the 6–200 kDa Mw range, with minimal difficulties in the post electrophoretic identification processes. PMID:12783456
An Experimental Characterization System for Deep Ultra-Violet (UV) Photoresists
NASA Astrophysics Data System (ADS)
Drako, Dean M.; Partlo, William N.; Oldham, William G.; Neureuther, Andrew R.
1989-08-01
A versatile system designed specifically for experimental automated photoresist characterization has been constructed utilizing an excimer laser source for exposure at 248nm. The system was assembled, as much as possible, from commercially available components in order to facilitate its replication. The software and hardware are completely documented in a University of California-Berkeley Engineering Research Lab Memo. An IBM PC-AT compatible computer controls an excimer laser, operates a Fourier Transform Infrared (FTIR) Spectrometer, measures and records the energy of each laser pulse (incident, reflected, and transmitted), opens and closes shutters, and operates two linear stages for sample movement. All operations (except FTIR data reduction) are managed by a control program written in the "C" language. The system is capable of measuring total exposure dose, performing bleaching measurements, creating and recording exposure pulse sequences, and generating exposure patterns suitable for multiple channel monitoring of the development. The total exposure energy, energy per pulse, and pulse rate are selectable over a wide range. The system contains an in-situ Fourier Transform Infrared Spectrometer for qualitative and quantitative analysis of the photoresist baking and exposure processes (baking is not done in-situ). FIIR may be performed in transmission or reflection. The FTIR data will form the basis of comprehensive multi-state resist models. The system's versatility facilitates the development of new automated and repeatable experiments. Simple controlling software, utilizing the provided interface sub-routines, can be written to control new experiments and collect data.
Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.
Harne, R L; Wang, K W
2015-03-06
Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Giving students the run of sprinting models
NASA Astrophysics Data System (ADS)
Heck, André; Ellermeijer, Ton
2009-11-01
A biomechanical study of sprinting is an interesting task for students who have a background in mechanics and calculus. These students can work with real data and do practical investigations similar to the way sports scientists do research. Student research activities are viable when the students are familiar with tools to collect and work with data from sensors and video recordings and with modeling tools for comparing simulation and experimental results. This article describes a multipurpose system, named COACH, that offers a versatile integrated set of tools for learning, doing, and teaching mathematics and science in a computer-based inquiry approach. Automated tracking of reference points and correction of perspective distortion in videos, state-of-the-art algorithms for data smoothing and numerical differentiation, and graphical system dynamics based modeling are some of the built-in techniques that are suitable for motion analysis. Their implementation and their application in student activities involving models of running are discussed.
Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots.
Douglas-Gallardo, Oscar A; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban
2018-04-14
Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.
Communication: Photoinduced carbon dioxide binding with surface-functionalized silicon quantum dots
NASA Astrophysics Data System (ADS)
Douglas-Gallardo, Oscar A.; Sánchez, Cristián Gabriel; Vöhringer-Martinez, Esteban
2018-04-01
Nowadays, the search for efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf-SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). The chemical and electronic properties of the proposed SiQDs have been studied with a Density Functional Theory and Density Functional Tight-Binding (DFTB) approach along with a time-dependent model based on the DFTB framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf-SiQDs for photochemically activated carbon dioxide fixation.
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Dorsey, John T.; Doggett, William R.
2015-01-01
The Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) is a versatile long-reach robotic manipulator that is currently being tested at NASA Langley Research Center. TALISMAN is designed to be highly mass-efficient and multi-mission capable, with applications including asteroid retrieval and manipulation, in-space servicing, and astronaut and payload positioning. The manipulator uses a modular, periodic, tension-compression design that lends itself well to analytical modeling. Given the versatility of application for TALISMAN, a structural sizing methodology was developed that could rapidly assess mass and configuration sensitivities for any specified operating work space, applied loads and mission requirements. This methodology allows the systematic sizing of the key structural members of TALISMAN, which include the truss arm links, the spreaders and the tension elements. This paper summarizes the detailed analytical derivations and methodology that support the structural sizing approach and provides results from some recent TALISMAN designs developed for current and proposed mission architectures.
Stochastic Models for Closed Boundary Analysis: Part I. Representation and Reconstruction.
1980-07-01
discussed. In a subsequent paper we will consider the classification problem. C> * School of Electrical Engineering, Purdue University, West Lafayette, IN...1972. 2. T. S. Huang, "Coding of Two Tone Images," TR EE 77-10, School of Elec. Engr., Purdue University, W. Lafeyette, IN 47907. 3. A. Oosterlink, A...Jan. 1977. 5. A. Ambler et al., "A Versatile computer controlled assembly system," Third Intl. Conf. on Art . Intel., 1973, pp. 298-303. 6. C. Rosen
SHAO, Ming; XU, Tian-Rui; CHEN, Ce-Shi
2016-01-01
Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and biomedicine. PMID:27469250
Shao, Ming; Xu, Tian-Rui; Chen, Ce-Shi
2016-07-18
Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.
Multilayer network decoding versatility and trust
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Yadav, Alok; Jalan, Sarika
2016-01-01
In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.
Staritzbichler, René; Anselmi, Claudio; Forrest, Lucy R.; Faraldo-Gómez, José D.
2014-01-01
As new atomic structures of membrane proteins are resolved, they reveal increasingly complex transmembrane topologies, and highly irregular surfaces with crevices and pores. In many cases, specific interactions formed with the lipid membrane are functionally crucial, as is the overall lipid composition. Compounded with increasing protein size, these characteristics pose a challenge for the construction of simulation models of membrane proteins in lipid environments; clearly, that these models are sufficiently realistic bears upon the reliability of simulation-based studies of these systems. Here, we introduce GRIFFIN, which uses a versatile framework to automate and improve a widely-used membrane-embedding protocol. Initially, GRIFFIN carves out lipid and water molecules from a volume equivalent to that of the protein, so as to conserve the system density. In the subsequent optimization phase GRIFFIN adds an implicit grid-based protein force-field to a molecular dynamics simulation of the pre-carved membrane. In this force-field, atoms inside the implicit protein volume experience an outward force that will expel them from that volume, whereas those outside are subject to electrostatic and van-der-Waals interactions with the implicit protein. At each step of the simulation, these forces are updated by GRIFFIN and combined with the intermolecular forces of the explicit lipid-water system. This procedure enables the construction of realistic and reproducible starting configurations of the protein-membrane interface within a reasonable timeframe and with minimal intervention. GRIFFIN is a standalone tool designed to work alongside any existing molecular dynamics package, such as NAMD or GROMACS. PMID:24707227
Nagai, Moeto; Oohara, Kiyotaka; Kato, Keita; Kawashima, Takahiro; Shibata, Takayuki
2015-04-01
Parallel manipulation of single cells is important for reconstructing in vivo cellular microenvironments and studying cell functions. To manipulate single cells and reconstruct their environments, development of a versatile manipulation tool is necessary. In this study, we developed an array of hollow probes using microelectromechanical systems fabrication technology and demonstrated the manipulation of single cells. We conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation. We etched a silicon wafer on both sides and formed through holes with stepped structures. The inner diameters of the holes were reduced by SiO2 deposition of plasma-enhanced chemical vapor deposition to trap cells on the tips. This fabrication process makes it possible to control the wall thickness, inner diameter, and outer diameter of the probes. With the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. We studied the capture, release, and survival rates of cells at different suction and release pressures and found that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system makes it possible to place cells in a well array and observe the adherence, spreading, culture, and death of the cells. This system has potential as a tool for massively parallel manipulation and for three-dimensional hetero cellular assays.
Firing patterns in the adaptive exponential integrate-and-fire model.
Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram
2008-11-01
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.
Update 0.2 to "pysimm: A python package for simulation of molecular systems"
NASA Astrophysics Data System (ADS)
Demidov, Alexander G.; Fortunato, Michael E.; Colina, Coray M.
2018-01-01
An update to the pysimm Python molecular simulation API is presented. A major part of the update is the implementation of a new interface with CASSANDRA - a modern, versatile Monte Carlo molecular simulation program. Several significant improvements in the LAMMPS communication module that allow better and more versatile simulation setup are reported as well. An example of an application implementing iterative CASSANDRA-LAMMPS interaction is illustrated.
Modeling Physical Systems Using Vensim PLE Systems Dynamics Software
NASA Astrophysics Data System (ADS)
Widmark, Stephen
2012-02-01
Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address this problem by having my students use a variety of software solutions to model physical systems described by differential equations. These include spreadsheets, applets, software my students themselves create, and systems dynamics software. For the latter, cost is often the main issue in choosing a solution for use in a public school and so I researched no-cost software. I found Sphinx SD,2OptiSim,3 Systems Dynamics,4 Simile (Trial Edition),5 and Vensim PLE.6 In evaluating each of these solutions, I looked for the fewest restrictions in the license for educational use, ease of use by students, power, and versatility. In my opinion, Vensim PLE best fulfills these criteria.7
Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool.
Kim, Adele; Pyykko, Ilmari
2011-08-01
Transposons have been promising elements for gene integration, and the Sleeping Beauty (SB) system has been the major one for many years, although there have been several other transposon systems available, for example, Tol2. However, recently another system known as PiggyBac (PB) has been introduced and developed for fulfilling the same purposes, for example, mutagenesis, transgenesis and gene therapy and in some cases with improved transposition efficiency and advantages over the Sleeping Beauty transposon system, although improved hyperactive transposase has highly increased the transposition efficacy for SB. The PB systems have been used in many different scientific research fields; therefore, the purpose of this review is to describe some of these versatile uses of the PiggyBac system to give readers an overview on the usage of PiggyBac system.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, William R.; Roithmayr, Carlos M.; King, Bruce D.; Mikulas, Marting M.
2009-01-01
The objective of this paper is to describe and summarize the results of the development efforts for the Lunar Surface Manipulation System (LSMS) with respect to increasing the performance, operational versatility, and automation. Three primary areas of development are covered, including; the expansion of the operational envelope and versatility of the current LSMS test-bed, the design of a second generation LSMS, and the development of automation and remote control capability. The first generation LSMS, which has been designed, built, and tested both in lab and field settings, is shown to have increased range of motion and operational versatility. Features such as fork lift mode, side grappling of payloads, digging and positioning of lunar regolith, and a variety of special end effectors are described. LSMS operational viability depends on bei nagble to reposition its base from an initial position on the lander to a mobility chassis or fixed locations around the lunar outpost. Preliminary concepts are presented for the second generation LSMS design, which will perform this self-offload capability. Incorporating design improvements, the second generation will have longer reach and three times the payload capability, yet it will have approximately equivalent mass to the first generation. Lastly, this paper covers improvements being made to the control system of the LSMS test-bed, which is currently operated using joint velocity control with visual cues. These improvements include joint angle sensors, inverse kinematics, and automated controls.
A Versatile PDMS/Paper Hybrid Microfluidic Platform for Sensitive Infectious Disease Diagnosis
2015-01-01
Bacterial meningitis is a serious health concern worldwide. Given that meningitis can be fatal and many meningitis cases occurred in high-poverty areas, a simple, low-cost, highly sensitive method is in great need for immediate and early diagnosis of meningitis. Herein, we report a versatile and cost-effective polydimethylsiloxane (PDMS)/paper hybrid microfluidic device integrated with loop-mediated isothermal amplification (LAMP) for the rapid, sensitive, and instrument-free detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The introduction of paper into the microfluidic device for LAMP reactions enables stable test results over a much longer period of time than a paper-free microfluidic system. This hybrid system also offers versatile functions, by providing not only on-site qualitative diagnostic analysis (i.e., a yes or no answer), but also confirmatory testing and quantitative analysis in laboratory settings. The limit of detection of N. meningitidis is about 3 copies per LAMP zone within 45 min, close to single-bacterium detection sensitivity. In addition, we have achieved simple pathogenic microorganism detection without a laborious sample preparation process and without the use of centrifuges. This low-cost hybrid microfluidic system provides a simple and highly sensitive approach for fast instrument-free diagnosis of N. meningitidis in resource-limited settings. This versatile PDMS/paper microfluidic platform has great potential for the point of care (POC) diagnosis of a wide range of infectious diseases, especially for developing nations. PMID:25019330
Childs, Lauren M; Paskow, Michael; Morris, Sidney M; Hesse, Matthias; Strogatz, Steven
2011-11-01
Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur.
Paskow, Michael; Morris, Sidney M.; Hesse, Matthias; Strogatz, Steven
2011-01-01
Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur. PMID:21347813
Aeroelastic Analysis Of Versatile Thermal Insulation Panels For Launchers Applications
NASA Astrophysics Data System (ADS)
Carrera, E.; Zappino, E.; Augello, G.; Ferrarese, A.; Montabone, M.
2011-05-01
The aeroelastic behavior of a Versatile Thermal Insulation (VTI) has been investigated. Among the various loadings acting on the panels in this work the attention is payed to fluid structure interaction. e.g. panel flutter phenomena. Known available results from open literature, related to similar problems, permit to analyze the effect of various Mach regimes, including boundary layers thickness effects, in-plane mechanical and thermal loadings, nonlinear effect and amplitude of so called limit cycle oscillations. Dedicated finite element model is developed for the supersonic regime. The model used for coupling orthotropic layered structural model with to Piston Theory aerodynamic models allows the calculations of flutter conditions in case of curved panels supported in a dis- crete number of points. Through this approach the flutter boundaries of the VTI-panel have been investigated.
A versatile modular vector system for rapid combinatorial mammalian genetics.
Albers, Joachim; Danzer, Claudia; Rechsteiner, Markus; Lehmann, Holger; Brandt, Laura P; Hejhal, Tomas; Catalano, Antonella; Busenhart, Philipp; Gonçalves, Ana Filipa; Brandt, Simone; Bode, Peter K; Bode-Lesniewska, Beata; Wild, Peter J; Frew, Ian J
2015-04-01
Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.
A versatile localization system for microscopic multiparametric analysis of cells.
Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P
1983-03-01
A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.
Productivity increase through implementation of CAD/CAE workstation
NASA Technical Reports Server (NTRS)
Bromley, L. K.
1985-01-01
The tracking and communication division computer aided design/computer aided engineering system is now operational. The system is utilized in an effort to automate certain tasks that were previously performed manually. These tasks include detailed test configuration diagrams of systems under certification test in the ESTL, floorplan layouts of future planned laboratory reconfigurations, and other graphical documentation of division activities. The significant time savings achieved with this CAD/CAE system are examined: (1) input of drawings and diagrams; (2) editing of initial drawings; (3) accessibility of the data; and (4) added versatility. It is shown that the Applicon CAD/CAE system, with its ease of input and editing, the accessibility of data, and its added versatility, has made more efficient many of the necessary but often time-consuming tasks associated with engineering design and testing.
CELCAP: A Computer Model for Cogeneration System Analysis
NASA Technical Reports Server (NTRS)
1985-01-01
A description of the CELCAP cogeneration analysis program is presented. A detailed description of the methodology used by the Naval Civil Engineering Laboratory in developing the CELCAP code and the procedures for analyzing cogeneration systems for a given user are given. The four engines modeled in CELCAP are: gas turbine with exhaust heat boiler, diesel engine with waste heat boiler, single automatic-extraction steam turbine, and back-pressure steam turbine. Both the design point and part-load performances are taken into account in the engine models. The load model describes how the hourly electric and steam demand of the user is represented by 24 hourly profiles. The economic model describes how the annual and life-cycle operating costs that include the costs of fuel, purchased electricity, and operation and maintenance of engines and boilers are calculated. The CELCAP code structure and principal functions of the code are described to how the various components of the code are related to each other. Three examples of the application of the CELCAP code are given to illustrate the versatility of the code. The examples shown represent cases of system selection, system modification, and system optimization.
Transport systems research vehicle color display system operations manual
NASA Technical Reports Server (NTRS)
Easley, Wesley C.; Johnson, Larry E.
1989-01-01
A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
Housel, Lisa M.; Wang, Lei; Abraham, Alyson; ...
2018-02-19
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housel, Lisa M.; Wang, Lei; Abraham, Alyson
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Three-Dimensional Mechanical Model of the Human Spine and the Versatility of its Use
NASA Astrophysics Data System (ADS)
Sokol, Milan; Velísková, Petra; Rehák, Ľuboš; Žabka, Martin
2014-03-01
The aim of the work is oriented towards the simulation or modeling of the lumbar and thoracic human spine as a load-bearing 3D system in a computer program (ANSYS). The human spine model includes a determination of the geometry based on X-ray pictures of frontal and lateral projections. For this reason, another computer code, BMPCOORDINATES, was developed as an aid to obtain the most precise and realistic model of the spine. Various positions, deformations, scoliosis, rotation and torsion can be modelled. Once the geometry is done, external loading on different spinal segments is entered; consequently, the response could be analysed. This can contribute a lot to medical practice as a tool for diagnoses, and developing implants or other artificial instruments for fixing the spine.
Prediction of convective activity using a system of parasitic-nested numerical models
NASA Technical Reports Server (NTRS)
Perkey, D. J.
1976-01-01
A limited area, three dimensional, moist, primitive equation (PE) model is developed to test the sensitivity of quantitative precipitation forecasts to the initial relative humidity distribution. Special emphasis is placed on the squall-line region. To accomplish the desired goal, time dependent lateral boundaries and a general convective parameterization scheme suitable for mid-latitude systems were developed. The sequential plume convective parameterization scheme presented is designed to have the versatility necessary in mid-latitudes and to be applicable for short-range forecasts. The results indicate that the scheme is able to function in the frontally forced squallline region, in the gently rising altostratus region ahead of the approaching low center, and in the over-riding region ahead of the warm front. Three experiments are discussed.
On the identity of the last known stable radical in X-irradiated sucrose
NASA Astrophysics Data System (ADS)
Kusakovskij, Jevgenij; De Cooman, Hendrik; Sagstuen, Einar; Callens, Freddy; Vrielinck, Henk
2017-04-01
Identification of radiation-induced radicals in relatively simple molecules is a prerequisite for the understanding of reaction pathways of the radiation chemistry of complex systems. Sucrose presents an additional practical interest as a versatile radiation dosimetric system. In this work, we present a periodic density functional theory study aimed to identify the fourth stable radical species in this carbohydrate. The proposed model is a fragment suspended in the lattice by hydrogen bonds with an unpaired electron at the original C5' carbon of the fructose unit. It requires a double scission of the ring accompanied by substantial chemical and geometric reorganization.
Stanley, Sarah A; Hung, Deborah T
2009-12-16
Loss-of-function genetic screens have facilitated great strides in our understanding of the biology of model organisms but have not been possible in diploid human cells. A recent report by Brummelkamp's group in Science describes the use of insertional mutagenesis to generate loss-of-function alleles in a largely haploid human cell line and demonstrates the versatility of this method in screens designed to investigate the host/pathogen interaction. This approach has strengths that are complementary to existing strategies and will facilitate progress toward a systems-level understanding of infectious disease and ultimately the development of new therapeutics.
Nagasaki, Masao; Doi, Atsushi; Matsuno, Hiroshi; Miyano, Satoru
2004-01-01
The research on modeling and simulation of complex biological systems is getting more important in Systems Biology. In this respect, we have developed Hybrid Function Petri net (HFPN) that was newly developed from existing Petri net because of their intuitive graphical representation and their capabilities for mathematical analyses. However, in the process of modeling metabolic, gene regulatory or signal transduction pathways with the architecture, we have realized three extensions of HFPN, (i) an entity should be extended to contain more than one value, (ii) an entity should be extended to handle other primitive types, e.g. boolean, string, (iii) an entity should be extended to handle more advanced type called object that consists of variables and methods, are necessary for modeling biological systems with Petri net based architecture. To deal with it, we define a new enhanced Petri net called hybrid functional Petri net with extension (HFPNe). To demonstrate the effectiveness of the enhancements, we model and simulate with HFPNe four biological processes that are diffcult to represent with the previous architecture HFPN.
MEMOSys: Bioinformatics platform for genome-scale metabolic models
2011-01-01
Background Recent advances in genomic sequencing have enabled the use of genome sequencing in standard biological and biotechnological research projects. The challenge is how to integrate the large amount of data in order to gain novel biological insights. One way to leverage sequence data is to use genome-scale metabolic models. We have therefore designed and implemented a bioinformatics platform which supports the development of such metabolic models. Results MEMOSys (MEtabolic MOdel research and development System) is a versatile platform for the management, storage, and development of genome-scale metabolic models. It supports the development of new models by providing a built-in version control system which offers access to the complete developmental history. Moreover, the integrated web board, the authorization system, and the definition of user roles allow collaborations across departments and institutions. Research on existing models is facilitated by a search system, references to external databases, and a feature-rich comparison mechanism. MEMOSys provides customizable data exchange mechanisms using the SBML format to enable analysis in external tools. The web application is based on the Java EE framework and offers an intuitive user interface. It currently contains six annotated microbial metabolic models. Conclusions We have developed a web-based system designed to provide researchers a novel application facilitating the management and development of metabolic models. The system is freely available at http://www.icbi.at/MEMOSys. PMID:21276275
A versatile stereoscopic visual display system for vestibular and oculomotor research.
Kramer, P D; Roberts, D C; Shelhamer, M; Zee, D S
1998-01-01
Testing of the vestibular system requires a vestibular stimulus (motion) and/or a visual stimulus. We have developed a versatile, low cost, stereoscopic visual display system, using "virtual reality" (VR) technology. The display system can produce images for each eye that correspond to targets at any virtual distance relative to the subject, and so require the appropriate ocular vergence. We elicited smooth pursuit, "stare" optokinetic nystagmus (OKN) and after-nystagmus (OKAN), vergence for targets at various distances, and short-term adaptation of the vestibulo-ocular reflex (VOR), using both conventional methods and the stereoscopic display. Pursuit, OKN, and OKAN were comparable with both methods. When used with a vestibular stimulus, VR induced appropriate adaptive changes of the phase and gain of the angular VOR. In addition, using the VR display system and a human linear acceleration sled, we adapted the phase of the linear VOR. The VR-based stimulus system not only offers an alternative to more cumbersome means of stimulating the visual system in vestibular experiments, it also can produce visual stimuli that would otherwise be impractical or impossible. Our techniques provide images without the latencies encountered in most VR systems. Its inherent versatility allows it to be useful in several different types of experiments, and because it is software driven it can be quickly adapted to provide a new stimulus. These two factors allow VR to provide considerable savings in time and money, as well as flexibility in developing experimental paradigms.
Stabilometer Computerized Analog Recording System for Studying Gross Motor Skill Learning
ERIC Educational Resources Information Center
Chasey, William C., Jr.; And Others
1976-01-01
The stabilometer computerized analog recording system (SCARS) provides for storing analog and digital information on a single channel audio tape recorder at lower cost and greater versatility than other systems. (MB)
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz
2015-06-10
A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design.
Han, Haopeng; Moritz, Raphael; Oberacker, Eva; Waiczies, Helmar; Niendorf, Thoralf; Winter, Lukas
2017-10-18
Magnetic resonance imaging (MRI) is the mainstay of diagnostic imaging, a versatile instrument for clinical science and the subject of intense research interest. Advancing clinical science, research and technology of MRI requires high fidelity measurements in quantity, location and time of the given physical property. To meet this goal a broad spectrum of commercial measurement systems has been made available. These instruments frequently share in common that they are costly and typically employ closed proprietary hardware and software. This shortcoming makes any adjustment for a specified application difficult if not prohibitive. Recognizing this limitation this work presents COSI Measure, an automated open source measurement system that provides submillimetre resolution, robust configuration and a large working volume to support a versatile range of applications. The submillimetre fidelity and reproducibility/backlash performance were evaluated experimentally. Magnetic field mapping of a single ring Halbach magnet, a 3.0 T and a 7.0 T MR scanner as well as temperature mapping of a radio frequency coil were successfully conducted. Due to its open source nature and versatile construction, the system can be easily modified for other applications. In a resource limited research setting, COSI Measure makes efficient use of laboratory space, financial resources and collaborative efforts.
An assembly process model based on object-oriented hierarchical time Petri Nets
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Liu, Shaoli; Liu, Jianhua; Du, Zenghui
2017-04-01
In order to improve the versatility, accuracy and integrity of the assembly process model of complex products, an assembly process model based on object-oriented hierarchical time Petri Nets is presented. A complete assembly process information model including assembly resources, assembly inspection, time, structure and flexible parts is established, and this model describes the static and dynamic data involved in the assembly process. Through the analysis of three-dimensional assembly process information, the assembly information is hierarchically divided from the whole, the local to the details and the subnet model of different levels of object-oriented Petri Nets is established. The communication problem between Petri subnets is solved by using message database, and it reduces the complexity of system modeling effectively. Finally, the modeling process is presented, and a five layer Petri Nets model is established based on the hoisting process of the engine compartment of a wheeled armored vehicle.
Versatile composite resins simplifying the practice of restorative dentistry.
Margeas, Robert
2014-01-01
After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.
Li, Jingjing; Zhang, Siwei
2016-01-01
Abstract Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration. PMID:27800170
Closed-form solution of decomposable stochastic models
NASA Technical Reports Server (NTRS)
Sjogren, Jon A.
1990-01-01
Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool.
Numerical model for the thermal behavior of thermocline storage tanks
NASA Astrophysics Data System (ADS)
Ehtiwesh, Ismael A. S.; Sousa, Antonio C. M.
2018-03-01
Energy storage is a critical factor in the advancement of solar thermal power systems for the sustained delivery of electricity. In addition, the incorporation of thermal energy storage into the operation of concentrated solar power systems (CSPs) offers the potential of delivering electricity without fossil-fuel backup even during peak demand, independent of weather conditions and daylight. Despite this potential, some areas of the design and performance of thermocline systems still require further attention for future incorporation in commercial CSPs, particularly, their operation and control. Therefore, the present study aims to develop a simple but efficient numerical model to allow the comprehensive analysis of thermocline storage systems aiming better understanding of their dynamic temperature response. The validation results, despite the simplifying assumptions of the numerical model, agree well with the experiments for the time evolution of the thermocline region. Three different cases are considered to test the versatility of the numerical model; for the particular type of a storage tank with top round impingement inlet, a simple analytical model was developed to take into consideration the increased turbulence level in the mixing region. The numerical predictions for the three cases are in general good agreement against the experimental results.
White, David T; Eroglu, Arife Unal; Wang, Guohua; Zhang, Liyun; Sengupta, Sumitra; Ding, Ding; Rajpurohit, Surendra K; Walker, Steven L; Ji, Hongkai; Qian, Jiang; Mumm, Jeff S
2017-01-01
The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed ‘ARQiv-HTS’. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives. PMID:27831568
2011-05-06
electric fields. For that, we are going to use PS - b - P2VP block copolymers as a model system, utilizing the quite versatile chemistry of the P2VP ...displays. Our efforts at Hanyang have focused on tunable PBG materials self-assembled from polystyrene- b -poly(2-vinyl pyridine) ( PS - b - P2VP ) block...small angle x-ray scattering measurements during swelling of low molecular weight PS - P2VP polymers at the Cornell High Energy Synchrotron Source
A Versatile Nonlinear Method for Predictive Modeling
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Yao, Weigang
2015-01-01
As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.
NASA Astrophysics Data System (ADS)
Lange, Manfred; Vrekoussis, Mihalis; Sciare, Jean; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos
2015-04-01
Unmanned Aerial Systems (UAS) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They offer an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. UAS have the proven potential to contribute to a multi-component assessment strategy that combines remote-sensing, numerical modelling and surface measurements in order to elucidate important atmospheric processes. This includes physical and chemical transformations related to ongoing climate change as well as issues linked to aerosol-cloud interactions and air quality. The distinct advantages offered by UAS comprise, to name but a few: (i) their ability to operate from altitudes of a few meters to up to a few kilometers; (ii) their capability to perform autonomously controlled missions, which provides for repeat-measurements to be carried out at precisely defined locations; (iii) their relative ease of operation, which enables flexible employment at short-term notice and (iv) the employment of more than one platform in stacked formation, which allows for unique, quasi-3D-observations of atmospheric properties and processes. These advantages are brought to bear in combining in-situ ground based observations and numerical modeling with UAS-based remote sensing in elucidating specific research questions that require both horizontally and vertically resolved measurements at high spatial and temporal resolutions. Employing numerical atmospheric modelling, UAS can provide survey information over spatially and temporally localized, focused areas of evolving atmospheric phenomena, as they become identified by the numerical models. Conversely, UAS observations offer urgently needed data for model verification and provide boundary conditions for numerical models. In this presentation, we will briefly describe the current elements of our observational capabilities that enable the aforementioned multi-component assessment strategy by the Unmanned Systems Research Laboratory of the Cyprus Institute. This strategy is applied and utilized in the context of the EU-funded BACCHUS project, aside from other tasks. The ongoing and planned observations are particularly relevant as they are carried out in the Eastern Mediterranean and the Middle East, a region characterized by increasing anthropogenic pressures and ongoing and anticipated severe climatic changes and their impacts.
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
UNIX and healthcare systems: a good marriage.
Wieners, W
1992-08-01
Powerful and versatile, UNIX makes open systems affordable in today's complex healthcare marketplace. As more emphasis is placed on combining the best systems for the least money, UNIX plays an important role. How many hospitals are using it already?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian
Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibitsmore » exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.« less
Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian; Liu, Jianzhao; Hu, Yi-Xin; Ma, Tianyuan; Amine, Rachid; Xie, Yingying; Zhang, Xiaoyi; Liu, Yuzi; Ren, Yang; Sun, Cheng-Jun; Heald, Steve M; Kovacevic, Jasmina; Sehlleier, Yee Hwa; Schulz, Christof; Mattis, Wenjuan Liu; Sun, Shi-Gang; Wiggers, Hartmut; Chen, Zonghai; Amine, Khalil
2018-01-10
Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na + intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li + , K + , Mg 2+, and Al 3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.
A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners
Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.
2016-01-01
We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392
NASA Astrophysics Data System (ADS)
Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.
2015-11-01
We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.
Microscopic Optical Projection Tomography In Vivo
Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios
2011-01-01
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481
Wu, J S; Huang, Y K; Wu, F L; Lin, D Y
2012-08-01
We present a simple but versatile piezoelectric coefficient measurement system, which can measure the longitudinal and transverse piezoelectric coefficients in the pressing and bending modes, respectively, at different applied forces and a wide range of frequencies. The functionality of this measurement system has been demonstrated on three samples, including a PbZr(0.52)Ti(0.48)O(3) (PZT) piezoelectric ceramic bulk, a ZnO thin film, and a laminated piezoelectric film sensor. The static longitudinal piezoelectric coefficients of the PZT bulk and the ZnO film are estimated to be around 210 and 8.1 pC/N, respectively. The static transverse piezoelectric coefficients of the ZnO film and the piezoelectric film sensor are determined to be, respectively, -0.284 and -0.031 C/m(2).
Data-driven integration of genome-scale regulatory and metabolic network models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
Data-driven integration of genome-scale regulatory and metabolic network models
Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...
2015-05-05
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less
RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)
NASA Astrophysics Data System (ADS)
Long, A. J.
2014-09-01
The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.
Winton, Alexander J; Baptiste, Janae L; Allen, Mark A
2018-09-01
Proteins and polypeptides represent nature's most complex and versatile polymer. They provide complicated shapes, diverse chemical functionalities, and tightly regulated and controlled sizes. Several disease states are related to the misfolding or overproduction of polypeptides and yet polypeptides are present in several therapeutic molecules. In addition to biological roles; short chain polypeptides have been shown to interact with and drive the bio-inspired synthesis or modification of inorganic materials. This paper outlines the development of a versatile cloning vector which allows for the expression of a short polypeptide by controlling the incorporation of a desired DNA coding insert. As a demonstration of the efficacy of the expression system, a solid binding polypeptide identified from M13 phage display was expressed and purified. The solid binding polypeptide was expressed as a soluble 6xHis-SUMO tagged construct. Expression was performed in E. coli using auto-induction followed by Ni-NTA affinity chromatography and ULP1 protease cleavage. Methodology demonstrates the production of greater than 8 mg of purified polypeptide per liter of E. coli culture. Isotopic labeling of the peptide is also demonstrated. The versatility of the designed cloning vector, use of the 6xHis-SUMO solubility partner, bacterial expression in auto-inducing media and the purification methodology make this expressionun vector a readily scalable and user-friendly system for the creation of desired peptide domains. Copyright © 2018. Published by Elsevier Inc.
An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.
ERIC Educational Resources Information Center
Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann
1999-01-01
Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)
A veterinary anatomy tutoring system.
Theodoropoulos, G; Loumos, V; Antonopoulos, J
1994-02-14
A veterinary anatomy tutoring system was developed by using Knowledge Pro, an object-oriented software development tool with hypermedia capabilities, and MS Access, a relational database. Communication between them is facilitated by using the Structured Query Language (SQL). The architecture of the system is based on knowledge sets, each of which covers four different descriptions of an organ, namely gross anatomy (general description), gross anatomy (comparative features), histology, and embryology, which constitute the knowledge units. These knowledge units are linked with three global variables that define the animals, the topographies, and the system to which this organ belongs, creating three data-bases. These three data-bases are interrelated through the organ field in order to establish a relational model. This system allows versatility in the student's navigation through the information space by offering different modes for information location and presentation. These include course mode, review mode, reference mode, dissection mode, and comparison mode. In addition, the system provides a self-evaluation mode.
Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping
Wu, Yijen L.; Lo, Cecilia W.
2017-01-01
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650
Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Shu; Yoon, Jongyoon; David, Jonathan
2011-01-07
Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafermore » high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.« less
Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System
NASA Astrophysics Data System (ADS)
Ouyang, Mengxing; Hill, Winfield; Lee, Jung Hyun; Hur, Soojung Claire
2017-03-01
Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.
NASA Technical Reports Server (NTRS)
Appleby, M. H.; Golightly, M. J.; Hardy, A. C.
1993-01-01
Major improvements have been completed in the approach to analyses and simulation of spacecraft radiation shielding and exposure. A computer-aided design (CAD)-based system has been developed for determining the amount of shielding provided by a spacecraft and simulating transmission of an incident radiation environment to any point within or external to the vehicle. Shielding analysis is performed using a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design programs such as a Mars transfer habitat, pressurized lunar rover, and the redesigned international Space Station. Results of analysis performed for the Space Station astronaut exposure assessment are provided to demonastrate the applicability and versatility of the system.
NASA Astrophysics Data System (ADS)
Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio
2015-07-01
We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.
A Low-Cost Imaging System for Aerial Applicators
USDA-ARS?s Scientific Manuscript database
Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are being used for research and commercial applications, most of these systems are either too expensive or too complex to be of practical use for aerial app...
Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks
Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.
2014-01-01
Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145
Rate-Based Model Predictive Control of Turbofan Engine Clearance
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.
2006-01-01
An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.
Systems view on spatial planning and perception based on invariants in agent-environment dynamics
Mettler, Bérénice; Kong, Zhaodan; Li, Bin; Andersh, Jonathan
2015-01-01
Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes. PMID:25628524
A Versatile Ion Injector at KACST
NASA Astrophysics Data System (ADS)
El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.
2011-10-01
A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.
Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent
2007-09-01
The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.
Retargeting of existing FORTRAN program and development of parallel compilers
NASA Technical Reports Server (NTRS)
Agrawal, Dharma P.
1988-01-01
The software models used in implementing the parallelizing compiler for the B-HIVE multiprocessor system are described. The various models and strategies used in the compiler development are: flexible granularity model, which allows a compromise between two extreme granularity models; communication model, which is capable of precisely describing the interprocessor communication timings and patterns; loop type detection strategy, which identifies different types of loops; critical path with coloring scheme, which is a versatile scheduling strategy for any multicomputer with some associated communication costs; and loop allocation strategy, which realizes optimum overlapped operations between computation and communication of the system. Using these models, several sample routines of the AIR3D package are examined and tested. It may be noted that automatically generated codes are highly parallelized to provide the maximized degree of parallelism, obtaining the speedup up to a 28 to 32-processor system. A comparison of parallel codes for both the existing and proposed communication model, is performed and the corresponding expected speedup factors are obtained. The experimentation shows that the B-HIVE compiler produces more efficient codes than existing techniques. Work is progressing well in completing the final phase of the compiler. Numerous enhancements are needed to improve the capabilities of the parallelizing compiler.
A low-cost single-camera imaging system for aerial applicators
USDA-ARS?s Scientific Manuscript database
Agricultural aircraft provide a readily available and versatile platform for airborne remote sensing. Although various airborne imaging systems are available, most of these systems are either too expensive or too complex to be of practical use for aerial applicators. The objective of this study was ...
Levy, Roie; Borenstein, Elhanan
2014-01-01
The human microbiome is a key contributor to health and development. Yet little is known about the ecological forces that are at play in defining the composition of such host-associated communities. Metagenomics-based studies have uncovered clear patterns of community structure but are often incapable of distinguishing alternative structuring paradigms. In a recent study, we integrated metagenomic analysis with a systems biology approach, using a reverse ecology framework to model numerous human microbiota species and to infer metabolic interactions between species. Comparing predicted interactions with species composition data revealed that the assembly of the human microbiome is dominated at the community level by habitat filtering. Furthermore, we demonstrated that this habitat filtering cannot be accounted for by known host phenotypes or by the metabolic versatility of the various species. Here we provide a summary of our findings and offer a brief perspective on related studies and on future approaches utilizing this metagenomic systems biology framework.
Anticipatory control: A software retrofit for current plant controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, S.; Parlos, A.G.; Atiya, A.F.
1993-01-01
The design and simulated testing of an artificial neural network (ANN)-based self-adapting controller for complex process systems are presented in this paper. The proposed controller employs concepts based on anticipatory systems, which have been widely used in the petroleum and chemical industries, and they are slowly finding their way into the power industry. In particular, model predictive control (MPC) is used for the systematic adaptation of the controller parameters to achieve desirable plant performance over the entire operating envelope. The versatile anticipatory control algorithm developed in this study is projected to enhance plant performance and lend robustness to drifts inmore » plant parameters and to modeling uncertainties. This novel technique of integrating recurrent ANNs with a conventional controller structure appears capable of controlling complex, nonlinear, and nonminimum phase process systems. The direct, on-line adaptive control algorithm presented in this paper considers the plant response over a finite time horizon, diminishing the need for manual control or process interruption for controller gain tuning.« less
Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel
2016-11-13
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.
Campillo, Noelia; Jorba, Ignasi; Schaedel, Laura; Casals, Blai; Gozal, David; Farré, Ramon; Almendros, Isaac; Navajas, Daniel
2016-01-01
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
Relaxation approximations to second-order traffic flow models by high-resolution schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolos, I.K.; Delis, A.I.; Papageorgiou, M.
2015-03-10
A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or balance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Riemann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution reconstructions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations reportedmore » demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.« less
Wu, Naiqi; Zhou, MengChu
2005-12-01
An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, an automated material handling system (MHS), and is computer-controlled. An effective and flexible alternative for implementing MHS is to use automated guided vehicle (AGV) system. The deadlock issue in AMS is very important in its operation and has extensively been studied. The deadlock problems were separately treated for parts in production and transportation and many techniques were developed for each problem. However, such treatment does not take the advantage of the flexibility offered by multiple AGVs. In general, it is intractable to obtain maximally permissive control policy for either problem. Instead, this paper investigates these two problems in an integrated way. First we model an AGV system and part processing processes by resource-oriented Petri nets, respectively. Then the two models are integrated by using macro transitions. Based on the combined model, a novel control policy for deadlock avoidance is proposed. It is shown to be maximally permissive with computational complexity of O (n2) where n is the number of machines in AMS if the complexity for controlling the part transportation by AGVs is not considered. Thus, the complexity of deadlock avoidance for the whole system is bounded by the complexity in controlling the AGV system. An illustrative example shows its application and power.
Role versatility among men who have sex with men in urban Peru.
Goodreau, Steven M; Peinado, Jesus; Goicochea, Pedro; Vergara, Jorge; Ojeda, Nora; Casapia, Martin; Ortiz, Abner; Zamalloa, Victoria; Galvan, Rosa; Sanchez, Jorge R
2007-08-01
Role versatility refers to the practice in which individual men who have sex with men (MSM) play both insertive and receptive sexual roles over time. Versatility has been thought to be relatively uncommon among Latin American MSM but possibly rising. Versatility has also been shown to be a potentially large population-level risk factor for HIV infection. In this study we examine the correlates of versatile behavior and identity among 2,655 MSM in six Peruvian cities. Versatile behavior with recent male partners was found in 9% of men and versatile ("moderno") identity was reported by 16%. Significant predictors included high education, white-collar occupation, sex work, and residence in Lima. Age was not significant in any analysis. Since sex work is negatively correlated with other predictors, versatile men appear to comprise two distinct sub-populations. Insertive-only men appear to play a strong role in bridging the HIV epidemic between MSM and women.
Surface plasmon resonance-enabled antibacterial digital versatile discs
NASA Astrophysics Data System (ADS)
Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli
2012-02-01
We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.
An inexpensive compact automatic camera system for wildlife research
William R. Danielson; Richard M. DeGraaf; Todd K. Fuller
1996-01-01
This paper describes the design, conversion, and deployment of a reliable, compact, automatic multiple-exposure photographic system that was used to photograph nest predation events. This system may be the most versatile yet described in the literature because of its simplicity, portability, and dependability. The system was very reliable because it was designed around...
Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.
Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S
2018-02-20
As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.
Filtering Meteoroid Flights Using Multiple Unscented Kalman Filters
NASA Astrophysics Data System (ADS)
Sansom, E. K.; Bland, P. A.; Rutten, M. G.; Paxman, J.; Towner, M. C.
2016-11-01
Estimator algorithms are immensely versatile and powerful tools that can be applied to any problem where a dynamic system can be modeled by a set of equations and where observations are available. A well designed estimator enables system states to be optimally predicted and errors to be rigorously quantified. Unscented Kalman filters (UKFs) and interactive multiple models can be found in methods from satellite tracking to self-driving cars. The luminous trajectory of the Bunburra Rockhole fireball was observed by the Desert Fireball Network in mid-2007. The recorded data set is used in this paper to examine the application of these two techniques as a viable approach to characterizing fireball dynamics. The nonlinear, single-body system of equations, used to model meteoroid entry through the atmosphere, is challenged by gross fragmentation events that may occur. The incorporation of the UKF within an interactive multiple model smoother provides a likely solution for when fragmentation events may occur as well as providing a statistical analysis of the state uncertainties. In addition to these benefits, another advantage of this approach is its automatability for use within an image processing pipeline to facilitate large fireball data analyses and meteorite recoveries.
Multilingual natural language generation as part of a medical terminology server.
Wagner, J C; Solomon, W D; Michel, P A; Juge, C; Baud, R H; Rector, A L; Scherrer, J R
1995-01-01
Re-usable and sharable, and therefore language-independent concept models are of increasing importance in the medical domain. The GALEN project (Generalized Architecture for Languages Encyclopedias and Nomenclatures in Medicine) aims at developing language-independent concept representation systems as the foundations for the next generation of multilingual coding systems. For use within clinical applications, the content of the model has to be mapped to natural language. A so-called Multilingual Information Module (MM) establishes the link between the language-independent concept model and different natural languages. This text generation software must be versatile enough to cope at the same time with different languages and with different parts of a compositional model. It has to meet, on the one hand, the properties of the language as used in the medical domain and, on the other hand, the specific characteristics of the underlying model and its representation formalism. We propose a semantic-oriented approach to natural language generation that is based on linguistic annotations to a concept model. This approach is realized as an integral part of a Terminology Server, built around the concept model and offering different terminological services for clinical applications.
Analysis of the Pricing Process in Electricity Market using Multi-Agent Model
NASA Astrophysics Data System (ADS)
Shimomura, Takahiro; Saisho, Yuichi; Fujii, Yasumasa; Yamaji, Kenji
Many electric utilities world-wide have been forced to change their ways of doing business, from vertically integrated mechanisms to open market systems. We are facing urgent issues about how we design the structures of power market systems. In order to settle down these issues, many studies have been made with market models of various characteristics and regulations. The goal of modeling analysis is to enrich our understanding of fundamental process that may appear. However, there are many kinds of modeling methods. Each has drawback and advantage about validity and versatility. This paper presents two kinds of methods to construct multi-agent market models. One is based on game theory and another is based on reinforcement learning. By comparing the results of the two methods, they can advance in validity and help us figure out potential problems in electricity markets which have oligopolistic generators, demand fluctuation and inelastic demand. Moreover, this model based on reinforcement learning enables us to consider characteristics peculiar to electricity markets which have plant unit characteristics, seasonable and hourly demand fluctuation, real-time regulation market and operating reserve market. This model figures out importance of the share of peak-load-plants and the way of designing operating reserve market.
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
Myokit: A simple interface to cardiac cellular electrophysiology.
Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A
2016-01-01
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Model dielectric function for 2D semiconductors including substrate screening
NASA Astrophysics Data System (ADS)
Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie
2017-01-01
Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN.
DOT2: Macromolecular Docking With Improved Biophysical Models
Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten
2015-01-01
Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987
Zebrafish: A Versatile Animal Model for Fertility Research.
Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun; Goh, Bey Hing
2016-01-01
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Physcomitrella patens, a versatile synthetic biology chassis.
Reski, Ralf; Bae, Hansol; Simonsen, Henrik Toft
2018-05-24
During three decades the moss Physcomitrella patens has been developed to a superb green cell factory with the first commercial products on the market. In the past three decades the moss P. patens has been developed from an obscure bryophyte to a model organism in basic biology, biotechnology, and synthetic biology. Some of the key features of this system include a wide range of Omics technologies, precise genome-engineering via homologous recombination with yeast-like efficiency, a certified good-manufacturing-practice production in bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein products, superb product stability from batch-to-batch, and a reliable procedure for cryopreservation of cell lines in a master cell bank. About a dozen human proteins are being produced in P. patens as potential biopharmaceuticals, some of them are not only similar to their animal-produced counterparts, but are real biobetters with superior performance. A moss-made pharmaceutical successfully passed phase 1 clinical trials, a fragrant moss, and a cosmetic moss-product is already on the market, highlighting the economic potential of this synthetic biology chassis. Here, we focus on the features of mosses as versatile cell factories for synthetic biology and their impact on metabolic engineering.
Brunner, J; Krummenauer, F; Lehr, H A
2000-04-01
Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.
Zebrafish: A Versatile Animal Model for Fertility Research
Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun
2016-01-01
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research. PMID:27556045
Hierarchical Helical Order in the Twisted Growth of Plant Organs
NASA Astrophysics Data System (ADS)
Wada, Hirofumi
2012-09-01
The molecular and cellular basis of left-right asymmetry in plant morphogenesis is a fundamental issue in biology. A rapidly elongating root or hypocotyl of twisting mutants of Arabidopsis thaliana exhibits a helical growth with a handedness opposite to that of the underlying cortical microtubule arrays in epidermal cells. However, how such a hierarchical helical order emerges is currently unknown. We propose a model for investigating macroscopic chiral asymmetry in Arabidopsis mutants. Our elastic model suggests that the helical pattern observed is a direct consequence of the simultaneous presence of anisotropic growth and tilting of cortical microtubule arrays. We predict that the root helical pitch angle is a function of the microtubule helical angle and elastic moduli of the tissues. The proposed model is versatile and is potentially important for other biological systems ranging from protein fibrous structures to tree trunks.
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control.
Bercich, Rebecca A; Wang, Zhi; Mei, Henry; Hammer, Lauren H; Seburn, Kevin L; Hargrove, Levi J; Irazoqui, Pedro P
2016-08-01
A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject's forearm. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device's programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system's functional protocol for patient- or algorithm-specific needs.
Model-based phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.
Aerial imaging with manned aircraft for precision agriculture
USDA-ARS?s Scientific Manuscript database
Over the last two decades, numerous commercial and custom-built airborne imaging systems have been developed and deployed for diverse remote sensing applications, including precision agriculture. More recently, unmanned aircraft systems (UAS) have emerged as a versatile and cost-effective platform f...
Ultrafast and versatile spectroscopy by temporal Fourier transform
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.
2014-06-01
One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Forsberg, J; Englund, C-J; Duda, L-C
2009-08-01
We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.
RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)
Long, Andrew J.
2015-01-01
The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.
Liverani, Chiara; La Manna, Federico; Groenewoud, Arwin; Mercatali, Laura; Van Der Pluijm, Gabri; Pieri, Federica; Cavaliere, Davide; De Vita, Alessandro; Spadazzi, Chiara; Miserocchi, Giacomo; Bongiovanni, Alberto; Recine, Federica; Riva, Nada; Amadori, Dino; Tasciotti, Ennio; Snaar-Jagalska, Ewa; Ibrahim, Toni
2017-02-15
Patient-derived specimens are an invaluable resource to investigate tumor biology. However, in vivo studies on primary cultures are often limited by the small amount of material available, while conventional in vitro systems might alter the features and behavior that characterize cancer cells. We present our data obtained on primary dedifferentiated liposarcoma cells cultured in a 3D scaffold-based system and injected into a zebrafish model. Primary cells were characterized in vitro for their morphological features, sensitivity to drugs and biomarker expression, and in vivo for their engraftment and invasiveness abilities. The 3D culture showed a higher enrichment in cancer cells than the standard monolayer culture and a better preservation of liposarcoma-associated markers. We also successfully grafted primary cells into zebrafish, showing their local migratory and invasive abilities. Our work provides proof of concept of the ability of 3D cultures to maintain the original phenotype of ex vivo cells, and highlights the potential of the zebrafish model to provide a versatile in vivo system for studies with limited biological material. Such models could be used in translational research studies for biomolecular analyses, drug screenings and tumor aggressiveness assays. © 2016. Published by The Company of Biologists Ltd.
Szaleniec, Maciej
2012-01-01
Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.
CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus
Manica, Andrea; Schleper, Christa
2013-01-01
CRISPR (clustered regularly interspaced short palindromic repeats)-mediated virus defense based on small RNAs is a hallmark of archaea and also found in many bacteria. Archaeal genomes and, in particular, organisms of the extremely thermoacidophilic genus Sulfolobus, carry extensive CRISPR loci each with dozens of sequence signatures (spacers) able to mediate targeting and degradation of complementary invading nucleic acids. The diversity of CRISPR systems and their associated protein complexes indicates an extensive functional breadth and versatility of this adaptive immune system. Sulfolobus solfataricus and S. islandicus represent two of the best characterized genetic model organisms in the archaea not only with respect to the CRISPR system. Here we address and discuss in a broader context particularly recent progress made in understanding spacer recruitment from foreign DNA, production of small RNAs, in vitro activity of CRISPR-associated protein complexes and attack of viruses and plasmids in in vivo test systems. PMID:23535277
Synthesis and Characterization of Novel Anchorlipids for Tethered Bilayer Lipid Membranes.
Andersson, Jakob; Knobloch, Jacqueline J; Perkins, Michael V; Holt, Stephen A; Köper, Ingo
2017-05-09
Tethered bilayer lipid membranes are versatile solid-supported model membrane systems. Core to these systems is an anchorlipid that covalently links a lipid bilayer to a support. The molecular structure of these lipids can have a significant impact on the properties of the resulting bilayer. Here, the synthesis of anchorlipids containing ester groups in the tethering part is described. The lipids are used to form bilayer membranes, and the resulting structures are compared with membranes formed using conventional anchorlipids or sparsely tethered membranes. All membranes showed good electrical sealing properties; the disulphide-terminated anchorlipids could be used in a sparsely tethered system without significantly reducing the sealing properties of the lipid bilayers. The sparsely tethered systems also allowed for higher ion transport across the membrane, which is in good correlation with higher hydration of the spacer region as seen by neutron scattering.
Multi-Disciplinary Knowledge Synthesis for Human Health Assessment on Earth and in Space
NASA Astrophysics Data System (ADS)
Christakos, G.
We discuss methodological developments in multi-disciplinary knowledge synthesis (KS) of human health assessment. A theoretical KS framework can provide the rational means for the assimilation of various information bases (general, site-specific etc.) that are relevant to the life system of interest. KS-based techniques produce a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, and generate informative health state predictions across space-time. The underlying epistemic cognition methodology is based on teleologic criteria and stochastic logic principles. The mathematics of KS involves a powerful and versatile spatiotemporal random field model that accounts rigorously for the uncertainty features of the life system and imposes no restriction on the shape of the probability distributions or the form of the predictors. KS theory is instrumental in understanding natural heterogeneities, assessing crucial human exposure correlations and laws of physical change, and explaining toxicokinetic mechanisms and dependencies in a spatiotemporal life system domain. It is hoped that a better understanding of KS fundamentals would generate multi-disciplinary models that are useful for the maintenance of human health on Earth and in Space.
Mindtagger: A Demonstration of Data Labeling in Knowledge Base Construction.
Shin, Jaeho; Ré, Christopher; Cafarella, Michael
2015-08-01
End-to-end knowledge base construction systems using statistical inference are enabling more people to automatically extract high-quality domain-specific information from unstructured data. As a result of deploying DeepDive framework across several domains, we found new challenges in debugging and improving such end-to-end systems to construct high-quality knowledge bases. DeepDive has an iterative development cycle in which users improve the data. To help our users, we needed to develop principles for analyzing the system's error as well as provide tooling for inspecting and labeling various data products of the system. We created guidelines for error analysis modeled after our colleagues' best practices, in which data labeling plays a critical role in every step of the analysis. To enable more productive and systematic data labeling, we created Mindtagger, a versatile tool that can be configured to support a wide range of tasks. In this demonstration, we show in detail what data labeling tasks are modeled in our error analysis guidelines and how each of them is performed using Mindtagger.
Versatile monolithic 2-micron laser systems
NASA Astrophysics Data System (ADS)
Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.
2018-02-01
To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
Silk constructs for delivery of muskuloskeletal therapeutics
Meinel, Lorenz; Kaplan, David L.
2012-01-01
Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139
Brandariz-Nuñez, Alberto; Otero-Romero, Iria; Benavente, Javier; Martinez-Costas, Jose M
2011-09-20
We have recently developed a versatile tagging system (IC-tagging) that causes relocation of the tagged proteins to ARV muNS-derived intracellular globular inclusions. In the present study we demonstrate (i) that the IC-tag can be successfully fused either to the amino or carboxyl terminus of the protein to be tagged and (ii) that IC-tagged proteins are able to interact between them and perform complex reactions that require such interactions while integrated into muNS inclusions, increasing the versatility of the IC-tagging system. Also, our studies with the DsRed protein add some light on the structure/function relationship of the evolution of DsRed chromophore. Copyright © 2011 Elsevier B.V. All rights reserved.
The Physics and Mathematics of MRI
NASA Astrophysics Data System (ADS)
Ansorge, Richard; Graves, Martin
2016-10-01
Magnetic Resonance Imaging is a very important clinical imaging tool. It combines different fields of physics and engineering in a uniquely complex way. MRI is also surprisingly versatile, `pulse sequences' can be designed to yield many different types of contrast. This versatility is unique to MRI. This short book gives both an in depth account of the methods used for the operation and construction of modern MRI systems and also the principles of sequence design and many examples of applications. An important additional feature of this book is the detailed discussion of the mathematical principles used in building optimal MRI systems and for sequence design. The mathematical discussion is very suitable for undergraduates attending medical physics courses. It is also more complete than usually found in alternative books for physical scientists or more clinically orientated works.
Zhao, Fangyuan; Conzuelo, Felipe; Hartmann, Volker; Li, Huaiguang; Stapf, Stefanie; Nowaczyk, Marc M; Rögner, Matthias; Plumeré, Nicolas; Lubitz, Wolfgang; Schuhmann, Wolfgang
2017-08-15
The development of a versatile microbiosensor for hydrogen detection is reported. Carbon-based microelectrodes were modified with a [NiFe]-hydrogenase embedded in a viologen-modified redox hydrogel for the fabrication of a sensitive hydrogen biosensor By integrating the microbiosensor in a scanning photoelectrochemical microscope, it was capable of serving simultaneously as local light source to initiate photo(bio)electrochemical reactions while acting as sensitive biosensor for the detection of hydrogen. A hydrogen evolution biocatalyst based on photosystem 1-platinum nanoparticle biocomplexes embedded into a specifically designed redox polymer was used as a model for proving the capability of the developed hydrogen biosensor for the detection of hydrogen upon localized illumination. The versatility and sensitivity of the proposed microbiosensor as probe tip allows simplification of the set-up used for the evaluation of complex electrochemical processes and the rapid investigation of local photoelectrocatalytic activity of biocatalysts towards light-induced hydrogen evolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)
Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...
2016-08-26
The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less
Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi
2012-05-01
We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.
Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi
2012-01-01
We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651
Factors which motivate the use of social networks by students.
González Sanmamed, Mercedes; Muñoz Carril, Pablo C; Dans Álvarez de Sotomayor, Isabel
2017-05-01
The aim of this research was to identify those factors which motivate the use of social networks by 4th year students in Secondary Education between the ages of 15 and 18. 1,144 students from 29 public and private schools took part. The data were analysed using Partial Least Squares Structural Equation Modelling technique. Versatility was confirmed to be the variable which most influences the motivation of students in their use of social networks. The positive relationship between versatility in the use of social networks and educational uses was also significant. The characteristics of social networks are analysed according to their versatility and how this aspect makes them attractive to students. The positive effects of social networks are discussed in terms of educational uses and their contribution to school learning. There is also a warning about the risks associated with misuse of social networks, and finally, the characteristics and conditions for the development of good educational practice through social networks are identified.
Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI
Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe
2016-01-01
Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056
A versatile strategy for gene trapping and trap conversion in emerging model organisms.
Kontarakis, Zacharias; Pavlopoulos, Anastasios; Kiupakis, Alexandros; Konstantinides, Nikolaos; Douris, Vassilis; Averof, Michalis
2011-06-01
Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.
The Design of an Interactive Data Retrieval System for Casual Users.
ERIC Educational Resources Information Center
Radhakrishnan, T.; And Others
1982-01-01
Describes an interactive data retrieval system which was designed and implemented for casual users and which incorporates a user-friendly interface, aids to train beginners in use of the system, versatility in output, and error recovery protocols. A 14-item reference list and two figures illustrating system operation and output are included. (JL)
The microcomputer scientific software series 1: the numerical information manipulation system.
Harold M. Rauscher
1983-01-01
The Numerical Information Manipulation System extends the versatility provided by word processing systems for textual data manipulation to mathematical or statistical data in numeric matrix form. Numeric data, stored and processed in the matrix form, may be manipulated in a wide variety of ways. The system allows operations on single elements, entire rows, or columns...
Sources of particulate matter exposure for an elderly population in a city north of Baltimore, MD were evaluated using advanced factor analysis models. Data collected with Versatile Air Pollutant Samplers (VAPS) positioned at a community site, outside and inside of an elderly ...
Modeling Spatial and Temporal Aspects of Visual Backward Masking
ERIC Educational Resources Information Center
Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo
2008-01-01
Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…
Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition
Islam, Md. Rabiul
2014-01-01
The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al. PMID:25114676
Feature and score fusion based multiple classifier selection for iris recognition.
Islam, Md Rabiul
2014-01-01
The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr
2014-02-15
Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less
NASA Astrophysics Data System (ADS)
Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.
2014-02-01
Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.
Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S
2014-02-01
Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.
A robust activity marking system for exploring active neuronal ensembles
Sørensen, Andreas T; Cooper, Yonatan A; Baratta, Michael V; Weng, Feng-Ju; Zhang, Yuxiang; Ramamoorthi, Kartik; Fropf, Robin; LaVerriere, Emily; Xue, Jian; Young, Andrew; Schneider, Colleen; Gøtzsche, Casper René; Hemberg, Martin; Yin, Jerry CP; Maier, Steven F; Lin, Yingxi
2016-01-01
Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system’s versatility. DOI: http://dx.doi.org/10.7554/eLife.13918.001 PMID:27661450
An Information and Technical Manual for the Computer-Assisted Teacher Training System (CATTS).
ERIC Educational Resources Information Center
Semmel, Melvyn I.; And Others
The manual presents technical information on the computer assisted teacher training system (CATTS) which aims at developing a versatile and economical computer based teacher training system with the capability of providing immediate analysis and feedback of data relevant to teacher pupil transactions in a classroom setting. The physical…
Cache coherency without line exclusivity in MP systems having store-in caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomerene, J.H.; Puzak, T.R.; Rechtschaffen, R.N.
1983-11-01
By modifying the function of the storage control unit, a multiprocessor (MP) system having store-in caches is enabled to operate with the same versatility as an MP system having store-through caches, thereby eliminating the requirement for line exclusivity and greatly reducing the occurrence of cross-interrogates.
A Versatile, User-Oriented, Computerized Library System.
ERIC Educational Resources Information Center
Neuron, Eric
This paper deals with the problem of the referencing or storing methods in information systems which must be designed to allow for rapid retrieval of the key data leading to the desired information or the recovery of the information directly. Considered as a secondary, but frequently desirable, feature for the system is the ability to determine…
Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology
Bowker, Matthew A.; Maestre, Fernando T.; Eldridge, David; Belnap, Jayne; Castillo-Monroy, Andrea; Escolar, Cristina; Soliveres, Santiago
2014-01-01
Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combinations of these features that should be more widely exploited in community, landscape and ecosystem ecology. In community ecology, biocrusts are elucidating the importance of biodiversity and spatial pattern for maintaining ecosystem multifunctionality due to their manipulability in experiments. Due to idiosyncrasies in their modes of facilitation and competition, biocrusts have led to new models on the interplay between environmental stress and biotic interactions and on the maintenance of biodiversity by competitive processes. Biocrusts are perhaps one of the best examples of micro-landscapes—real landscapes that are small in size. Although they exhibit varying patch heterogeneity, aggregation, connectivity and fragmentation, like macro-landscapes, they are also compatible with well-replicated experiments (unlike macro-landscapes). In ecosystem ecology, a number of studies are imposing small-scale, low cost manipulations of global change or state factors in biocrust micro-landscapes. The versatility of biocrusts to inform such disparate lines of inquiry suggests that they are an especially useful model system that can enable researchers to see ecological principles more clearly and quickly.
A versatile model for soft patchy particles with various patch arrangements.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-01-21
We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.
Versatile time-dependent spatial distribution model of sun glint for satellite-based ocean imaging
NASA Astrophysics Data System (ADS)
Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhang, Kai; Ma, Zhongqi; Wang, Jiwen; Zhang, Yue
2017-01-01
We propose a versatile model to describe the time-dependent spatial distribution of sun glint areas in satellite-based wave water imaging. This model can be used to identify whether the imaging is affected by sun glint and how strong the glint is. The observing geometry is calculated using an accurate orbit prediction method. The Cox-Munk model is used to analyze the bidirectional reflectance of wave water surface under various conditions. The effects of whitecaps and the reflectance emerging from the sea water have been considered. Using the moderate resolution atmospheric transmission radiative transfer model, we are able to effectively calculate the sun glint distribution at the top of the atmosphere. By comparing the modeled data with the medium resolution imaging spectrometer image and Feng Yun 2E (FY-2E) image, we have proven that the time-dependent spatial distribution of sun glint areas can be effectively predicted. In addition, the main factors in determining sun glint distribution and the temporal variation rules of sun glint have been discussed. Our model can be used to design satellite orbits and should also be valuable in either eliminating sun glint or making use of it.
Chen, C L Philip; Liu, Zhulin
2018-01-01
Broad Learning System (BLS) that aims to offer an alternative way of learning in deep structure is proposed in this paper. Deep structure and learning suffer from a time-consuming training process because of a large number of connecting parameters in filters and layers. Moreover, it encounters a complete retraining process if the structure is not sufficient to model the system. The BLS is established in the form of a flat network, where the original inputs are transferred and placed as "mapped features" in feature nodes and the structure is expanded in wide sense in the "enhancement nodes." The incremental learning algorithms are developed for fast remodeling in broad expansion without a retraining process if the network deems to be expanded. Two incremental learning algorithms are given for both the increment of the feature nodes (or filters in deep structure) and the increment of the enhancement nodes. The designed model and algorithms are very versatile for selecting a model rapidly. In addition, another incremental learning is developed for a system that has been modeled encounters a new incoming input. Specifically, the system can be remodeled in an incremental way without the entire retraining from the beginning. Satisfactory result for model reduction using singular value decomposition is conducted to simplify the final structure. Compared with existing deep neural networks, experimental results on the Modified National Institute of Standards and Technology database and NYU NORB object recognition dataset benchmark data demonstrate the effectiveness of the proposed BLS.
Sun, Jared H; Wallis, Lee A
2012-08-01
As many as 90% of all trauma-related deaths occur in developing nations, and this is expected to get worse with modernisation. The current method of creating an emergency care system by modelling after that of a Western nation is too resource-heavy for most developing countries to handle. A cheaper, more community-based model is needed to establish new emergency care systems and to support them to full maturity. A needs assessment was undertaken in Manenberg, a township in Cape Town with high violence and injury rates. Community leaders and successfully established local services were consulted for the design of a first responder care delivery model. The resultant community-based emergency first aid responder (EFAR) system was implemented, and EFARs were tracked over time to determine skill retention and usage. The EFAR system model and training curriculum. Basic EFARs are spread throughout the community with the option of becoming stationed advanced EFARs. All EFARs are overseen by a local organisation and a professional body, and are integrated with the local ambulance response if one exists. On competency examinations, all EFARs tested averaged 28.2% before training, 77.8% after training, 71.3% 4 months after training and 71.0% 6 months after training. EFARs reported using virtually every skill taught them, and further review showed that they had done so adequately. The EFAR system is a low-cost, versatile model that can be used in a developing region both to lay the foundation for an emergency care system or support a new one to maturity.
AiResearch QCGAT engine, airplane, and nacelle design features
NASA Technical Reports Server (NTRS)
Heldenbrand, R. W.
1980-01-01
The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.
De Marco, Rossella; Bedini, Andrea; Spampinato, Santi; Cavina, Lorenzo; Pirazzoli, Edoardo; Gentilucci, Luca
2016-10-13
Recently, the tryptophan-containing noncationizable opioid peptides emerged with atypical structure and unexpected in vivo activity. Herein, we describe analogs of the naturally occurring mixed κ/μ-ligand c[Phe-d-Pro-Phe-Trp] 1 (CJ-15,208). Receptor affinity, selectivity, and agonism/antagonism varied upon enlarging macrocycle size, giving the μ-agonist 9 or the δ-antagonist 10 characterized by low nanomolar affinity. In particular, the μ-agonist c[β-Ala-d-Pro-Phe-Trp] 9 was shown to elicit potent antinociception in a mouse model of visceral pain upon systemic administration.
Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial.
Nagy, Krisztina; Ábrahám, Ágnes; Keymer, Juan E; Galajda, Péter
2018-01-01
Microfluidics is an emerging technology that is used more and more in biology experiments. Its capabilities of creating precisely controlled conditions in cellular dimensions make it ideal to explore cell-cell and cell-environment interactions. Thus, a wide spectrum of problems in microbial ecology can be studied using engineered microbial habitats. Moreover, artificial microfluidic ecosystems can serve as model systems to test ecology theories and principles that apply on a higher level in the hierarchy of biological organization. In this mini review we aim to demonstrate the versatility of microfluidics and the diversity of its applications that help the advance of microbiology, and in more general, experimental ecology.
NASA Astrophysics Data System (ADS)
Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan
2016-04-01
Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information. Electronic supplementary information (ESI) available: Further details about anodisation profiles, SEM cross-section images, digital pictures, transmission spectra, photonic barcodes and ASCII codes of the different NAA photonic crystals fabricated and analysed in our study. See DOI: 10.1039/c6nr01068g
Modeling lung cancer evolution and preclinical response by orthotopic mouse allografts.
Ambrogio, Chiara; Carmona, Francisco J; Vidal, August; Falcone, Mattia; Nieto, Patricia; Romero, Octavio A; Puertas, Sara; Vizoso, Miguel; Nadal, Ernest; Poggio, Teresa; Sánchez-Céspedes, Montserrat; Esteller, Manel; Mulero, Francisca; Voena, Claudia; Chiarle, Roberto; Barbacid, Mariano; Santamaría, David; Villanueva, Alberto
2014-11-01
Cancer evolution is a process that is still poorly understood because of the lack of versatile in vivo longitudinal studies. By generating murine non-small cell lung cancer (NSCLC) orthoallobanks and paired primary cell lines, we provide a detailed description of an in vivo, time-dependent cancer malignization process. We identify the acquisition of metastatic dissemination potential, the selection of co-driver mutations, and the appearance of naturally occurring intratumor heterogeneity, thus recapitulating the stochastic nature of human cancer development. This approach combines the robustness of genetically engineered cancer models with the flexibility of allograft methodology. We have applied this tool for the preclinical evaluation of therapeutic approaches. This system can be implemented to improve the design of future treatments for patients with NSCLC. ©2014 American Association for Cancer Research.
Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks.
Bardoscia, Marco; Marsili, Matteo; Samal, Areejit
2015-07-01
System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov chain Monte Carlo (MCMC) sampling based on flux balance analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
... Production Act of 1993--Versatile Onboard Traffic Embedded Roaming Sensors (Formerly Joint Venture To Perform Project Entitled Versatile Onboard Traffic Embedded Roaming Sensors) Notice is hereby given that, on April..., 15 U.S.C. 4301 et seq. (``the Act''), Versatile Onboard Traffic Embedded Roaming Sensors (formerly...
This article presents a general and versatile methodology for assessing sustainability with Fisher Information as a function of dynamic changes in urban systems. Using robust statistical methods, six Metropolitan Statistical Areas (MSAs) in Ohio were evaluated to comparatively as...
An integration architecture for the automation of a continuous production complex.
Chacón, Edgar; Besembel, Isabel; Narciso, Flor; Montilva, Jonás; Colina, Eliezer
2002-01-01
The development of integrated automation systems for continuous production plants is a very complicated process. A variety of factors must be taken into account, such as their different components (e.g., production units control systems, planning systems, financial systems, etc.), the interaction among them, and their different behavior (continuous or discrete). Moreover, the difficulty of this process is increased by the fact that each component can be viewed in a different way depending on the kind of decisions to be made, and its specific behavior. Modeling continuous production complexes as a composition of components, where, in turn, each component may also be a composite, appears to be the simplest and safest way to develop integrated automation systems. In order to provide the most versatile way to develop this kind of system, this work proposes a new approach for designing and building them, where process behavior, operation conditions and equipment conditions are integrated into a hierarchical automation architecture.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.
Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall
2014-01-01
The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.
Versatile optical coherence tomography for imaging the human eye
Tao, Aizhu; Shao, Yilei; Zhong, Jianguang; Jiang, Hong; Shen, Meixiao; Wang, Jianhua
2013-01-01
We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications. PMID:23847729
Development of CCSDS DCT to Support Spacecraft Dynamic Events
NASA Technical Reports Server (NTRS)
Sidhwa, Anahita F
2011-01-01
This report discusses the development of Consultative Committee for Space Data Systems (CCSDS) Design Control Table (DCT) to support spacecraft dynamic events. The Consultative Committee for Space Data Systems (CCSDS) Design Control Table (DCT) is a versatile link calculation tool to analyze different kinds of radio frequency links. It started out as an Excel-based program, and is now being evolved into a Mathematica-based link analysis tool. The Mathematica platform offers a rich set of advanced analysis capabilities, and can be easily extended to a web-based architecture. Last year the CCSDS DCT's for the uplink, downlink, two-way, and ranging models were developed as well as the corresponding input and output interfaces. Another significant accomplishment is the integration of the NAIF SPICE library into the Mathematica computation platform.
Supersonic cruise research aircraft structural studies: Methods and results
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.
1981-01-01
NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.
Biomimetic proteolipid vesicles for targeting inflamed tissues
NASA Astrophysics Data System (ADS)
Molinaro, R.; Corbo, C.; Martinez, J. O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I. K.; Zhao, P.; De Rosa, E.; Sherman, M. B.; de Vita, A.; Toledano Furman, N. E.; Wang, X.; Parodi, A.; Tasciotti, E.
2016-09-01
A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles--which we refer to as leukosomes--retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.
Toward an automated parallel computing environment for geosciences
NASA Astrophysics Data System (ADS)
Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping
2007-08-01
Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.
Functional human antibody CDR fusions as long-acting therapeutic endocrine agonists.
Liu, Tao; Zhang, Yong; Liu, Yan; Wang, Ying; Jia, Haiqun; Kang, Mingchao; Luo, Xiaozhou; Caballero, Dawna; Gonzalez, Jose; Sherwood, Lance; Nunez, Vanessa; Wang, Danling; Woods, Ashley; Schultz, Peter G; Wang, Feng
2015-02-03
On the basis of the 3D structure of a bovine antibody with a well-folded, ultralong complementarity-determining region (CDR), we have developed a versatile approach for generating human or humanized antibody agonists with excellent pharmacological properties. Using human growth hormone (hGH) and human leptin (hLeptin) as model proteins, we have demonstrated that functional human antibody CDR fusions can be efficiently engineered by grafting the native hormones into different CDRs of the humanized antibody Herceptin. The resulting Herceptin CDR fusion proteins were expressed in good yields in mammalian cells and retain comparable in vitro biological activity to the native hormones. Pharmacological studies in rodents indicated a 20- to 100-fold increase in plasma circulating half-life for these antibody agonists and significantly extended in vivo activities in the GH-deficient rat model and leptin-deficient obese mouse model for the hGH and hLeptin antibody fusions, respectively. These results illustrate the utility of antibody CDR fusions as a general and versatile strategy for generating long-acting protein therapeutics.
NASA Astrophysics Data System (ADS)
Patel, Utkarsh R.; Triverio, Piero
2016-09-01
An accurate modeling of skin effect inside conductors is of capital importance to solve transmission line and scattering problems. This paper presents a surface-based formulation to model skin effect in conductors of arbitrary cross section, and compute the per-unit-length impedance of a multiconductor transmission line. The proposed formulation is based on the Dirichlet-Neumann operator that relates the longitudinal electric field to the tangential magnetic field on the boundary of a conductor. We demonstrate how the surface operator can be obtained through the contour integral method for conductors of arbitrary shape. The proposed algorithm is simple to implement, efficient, and can handle arbitrary cross-sections, which is a main advantage over the existing approach based on eigenfunctions, which is available only for canonical conductor's shapes. The versatility of the method is illustrated through a diverse set of examples, which includes transmission lines with trapezoidal, curved, and V-shaped conductors. Numerical results demonstrate the accuracy, versatility, and efficiency of the proposed technique.
ERIC Educational Resources Information Center
Takemura, Atsushi
2015-01-01
This paper proposes a novel e-Learning system for learning electronic circuit making and programming a microcontroller to control a robot. The proposed e-Learning system comprises a virtual-circuit-making function for the construction of circuits with a versatile, Arduino microcontroller and an educational system that can simulate behaviors of…
Quantum Simulation of the Quantum Rabi Model in a Trapped Ion
NASA Astrophysics Data System (ADS)
Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan
2018-04-01
The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.
Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink
Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony
2016-01-01
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839
A modular architecture for transparent computation in recurrent neural networks.
Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim
2017-01-01
Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.
Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony
2016-04-21
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A
2014-01-01
This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432
Sahaza, Jorge H; Pérez-Torres, Armando; Zenteno, Edgar; Taylor, Maria Lucia
2014-05-01
The present paper is an overview of the primary events that are associated with the histoplasmosis immune response in the murine model. Valuable data that have been recorded in the scientific literature have contributed to an improved understanding of the clinical course of this systemic mycosis, which is caused by the dimorphic fungus Histoplasma capsulatum. Data must be analyzed carefully, given that misinterpretation could be generated because most of the available information is based on experimental host-parasite interactions that used inappropriate proceedings, i.e., the non-natural route of infection with the parasitic and virulent fungal yeast-phase, which is not the usual infective phase of the etiological agent of this mycosis. Thus, due to their versatility, complexity, and similarities with humans, several murine models have played a fundamental role in exploring the host-parasite interaction during H. capsulatum infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
Environmental durability of graphite.
DOT National Transportation Integrated Search
2002-01-01
The increasing acceptance and incorporation of fiber-reinforced polymer matrix composites (PMCs) as engineering construction materials have led many to look to the infrastructure as an application for these versatile materials. One such system is pul...
Biomedical technology transfer. Applications of NASA science and technology
NASA Technical Reports Server (NTRS)
Harrison, D. C.
1980-01-01
Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.
Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes.
Hutton, Georgina A M; Reuillard, Bertrand; Martindale, Benjamin C M; Caputo, Christine A; Lockwood, Colin W J; Butt, Julea N; Reisner, Erwin
2016-12-28
Light-driven enzymatic catalysis is enabled by the productive coupling of a protein to a photosensitizer. Photosensitizers used in such hybrid systems are typically costly, toxic, and/or fragile, with limited chemical versatility. Carbon dots (CDs) are low-cost, nanosized light-harvesters that are attractive photosensitizers for biological systems as they are water-soluble, photostable, nontoxic, and their surface chemistry can be easily modified. We demonstrate here that CDs act as excellent light-absorbers in two semibiological photosynthetic systems utilizing either a fumarate reductase (FccA) for the solar-driven hydrogenation of fumarate to succinate or a hydrogenase (H 2 ase) for reduction of protons to H 2 . The tunable surface chemistry of the CDs was exploited to synthesize positively charged ammonium-terminated CDs (CD-NHMe 2 + ), which were capable of transferring photoexcited electrons directly to the negatively charged enzymes with high efficiency and stability. Enzyme-based turnover numbers of 6000 mol succinate (mol FccA) -1 and 43,000 mol H 2 (mol H 2 ase) -1 were reached after 24 h. Negatively charged carboxylate-terminated CDs (CD-CO 2 - ) displayed little or no activity, and the electrostatic interactions at the CD-enzyme interface were determined to be essential to the high photocatalytic activity observed with CD-NHMe 2 + . The modular surface chemistry of CDs together with their photostability and aqueous solubility make CDs versatile photosensitizers for redox enzymes with great scope for their utilization in photobiocatalysis.
Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs
2015-01-01
Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells. PMID:24779637
A weed compaction roller system for use with mechanical herbicide application
Adam H. Wiese; Daniel A. Netzer; Don E. Riemenschneider; Ronald S., Jr. Zalesny
2006-01-01
We designed, constructed, and field-tested a versatile and unique weed compaction roller system that can be used with mechanical herbicide application for invasive weed control in tree plantations, agronomic settings, and areas where localized flora and fauna are in danger of elimination from the landscape. The weed compaction roller system combined with herbicide...
Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations
ERIC Educational Resources Information Center
Sung, Christopher Teh Boon
2011-01-01
Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…
GRASP - A Prototype Interactive Graphic Sawing Program - (Forest Products Journal)
Luis G. Occeña; Daniel L. Schmoldt
1996-01-01
A versatile microcomputer-based interactive graphics sawing program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, and even veneering. The microcomputer platform makes the tool affordable and accessible. A solid modeling basis provides the tool with a sound geometrical...
GRASP - A Prototype Interactive Graphic Sawing Program - (MU-IE Technical Report)
Luis G. Occeña; Daniel L. Schmoldt
1995-01-01
A versatile microcomputer-based interactive graphics program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, even veneering. The microcomputer platform makes the tool affordable and accessible.A solid modeling basis provides the tool with a sound geometrical and...
Information retrieval and display system
NASA Technical Reports Server (NTRS)
Groover, J. L.; King, W. L.
1977-01-01
Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.
NEW VERSATILE AEROSOL GENERATION SYSTEM DEVELOPED FOR USE IN A LARGE WIND TUNNEL
A new aerosol generation system was developed to accommodate a variety of research activities performed within a large wind tunnel. Because many of the velocity measurements are taken in the wind tunnel with a laser Doppler anemometer (LDA), it is necessary to maintain an aero...
Composite Design and Engineering
NASA Astrophysics Data System (ADS)
van der Woude, J. H. A.; Lawton, E. L.
Fiberglass is a versatile and cost-effective reinforcement for composites. Many processes, resins, and forms of fiberglass facilitate this versatility. The design, engineering, manufacture, and properties of fiberglass-reinforced composite products from diverse thermoset and thermoplastic resins are described. The attributes of fiberglass-reinforced composites include its mechanical and chemical properties, lightweight, corrosion resistance, longevity, low total system cost, and Class A surface properties. Specific examples illustrate the importance of the form of the fiberglass reinforcement and of the interfacial bond between the glass fibers and the matrix resin in optimizing composite properties. In addition, recent advances are described with regard to the fabrication of fiberglass-reinforced wind turbine blades.
Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.
Samadishadlou, Mehrdad; Farshbaf, Masoud; Annabi, Nasim; Kavetskyy, Taras; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl; Mousavi, Sepideh
2017-10-18
Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields.
Lee, Ho-Joon; Son, Myung Jin; Ahn, Jiwon; Oh, Soo Jin; Lee, Mihee; Kim, Ansoon; Jeung, Yun-Ji; Kim, Han-Gyeul; Won, Misun; Lim, Jung Hwa; Kim, Nam-Soon; Jung, Cho-Rock; Chung, Kyung-Sook
2017-12-01
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings
Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles
2012-01-01
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792
Riechmann, Veit
2017-01-01
In vivo RNAi in Drosophila facilitates simple and rapid analysis of gene functions in a cell- or tissue-specific manner. The versatility of the UAS-GAL4 system allows to control exactly where and when during development the function of a gene is depleted. The epithelium of the ovary is a particularly good model to study in a living animal how stem cells are maintained and how their descendants proliferate and differentiate. Here I provide basic information about the publicly available reagents for in vivo RNAi, and I describe how the oogenesis system can be applied to analyze stem cells and epithelial development at a histological level. Moreover, I give helpful hints to optimize the use of the UAS-GAL4 system for RNAi induction in the follicular epithelium. Finally, I provide detailed step-by-step protocols for ovary dissection, antibody stainings, and ovary mounting for microscopic analysis.
Engineering plant metabolism into microbes: from systems biology to synthetic biology.
Xu, Peng; Bhan, Namita; Koffas, Mattheos A G
2013-04-01
Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
CHARMM: The Biomolecular Simulation Program
Brooks, B.R.; Brooks, C.L.; MacKerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M.
2009-01-01
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. In addition, the CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This paper provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM paper in 1983. PMID:19444816
Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)
2017-06-22
AFRL-RX-WP-JA-2017-0341 EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) M. Fernanda...AND SUBTITLE EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-2-5518 5b...Expanding applications of SERS through versatile nanomaterials engineering M. Fernanda Cardinal, Emma Vander Ende, Ryan A. Hackler, Michael O. McAnally
A highly versatile and easily configurable system for plant electrophysiology.
Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan
2016-01-01
In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.
Software Tools For Building Decision-support Models For Flood Emergency Situations
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Ruiz, J. M.; Mosquera, J. C.
The SAIDA decision-support system was developed by the Spanish Ministry of the Environment to provide assistance to decision-makers during flood situations. SAIDA has been tentatively implemented in two test basins: Jucar and Guadalhorce, and the Ministry is currently planning to have it implemented in all major Spanish basins in a few years' time. During the development cycle of SAIDA, the need for providing as- sistance to end-users in model definition and calibration was clearly identified. System developers usually emphasise abstraction and generality with the goal of providing a versatile software environment. End users, on the other hand, require concretion and specificity to adapt the general model to their local basins. As decision-support models become more complex, the gap between model developers and users gets wider: Who takes care of model definition, calibration and validation?. Initially, model developers perform these tasks, but the scope is usually limited to a few small test basins. Before the model enters operational stage, end users must get involved in model construction and calibration, in order to gain confidence in the model recommendations. However, getting the users involved in these activities is a difficult task. The goal of this re- search is to develop representation techniques for simulation and management models in order to define, develop and validate a mechanism, supported by a software envi- ronment, oriented to provide assistance to the end-user in building decision models for the prediction and management of river floods in real time. The system is based on three main building blocks: A library of simulators of the physical system, an editor to assist the user in building simulation models, and a machine learning method to calibrate decision models based on the simulation models provided by the user.
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374
Local difference measures between complex networks for dynamical system model evaluation.
Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors
NASA Astrophysics Data System (ADS)
Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua
2016-11-01
The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.
Passos, Helena; Dinis, Teresa B V; Cláudio, Ana Filipa M; Freire, Mara G; Coutinho, João A P
2018-05-23
Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and conventional salts have been largely investigated and successfully used in separation processes, for which the determination of the corresponding ternary phase diagrams is a prerequisite. However, due the large number of ILs that can be prepared and their high structural versatility, it is impossible to experimentally cover and characterize all possible combinations of ILs and salts that may form ABS. The development of tools for the prediction and design of IL-based ABS is thus a crucial requirement. Based on a large compilation of experimental data, a correlation describing the formation of IL-based ABS is shown here, based on the hydrogen-bonding interaction energies of ILs (EHB) obtained by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and the molar entropy of hydration of the salt ions. The ability of the proposed model to predict the formation of novel IL-based ABS is further ascertained.
Maximizing commonality between military and general aviation fly-by-light helicopter system designs
NASA Astrophysics Data System (ADS)
Enns, Russell; Mossman, David C.
1995-05-01
In the face of shrinking defense budgets, survival of the United States rotorcraft industry is becoming increasingly dependent on increased sales in a highly competitive civil helicopter market. As a result, only the most competitive rotorcraft manufacturers are likely to survive. A key ingredient in improving our competitive position is the ability to produce more versatile, high performance, high quality, and low cost of ownership helicopters. Fiber optic technology offers a path of achieving these objectives. Also, adopting common components and architectures for different helicopter models (while maintaining each models' uniqueness) will further decrease design and production costs. Funds saved (or generated) by exploiting this commonality can be applied to R&D used to further improve the product. In this paper, we define a fiber optics based avionics architecture which provides the pilot a fly-by-light / digital flight control system which can be implemented in both civilian and military helicopters. We then discuss the advantages of such an architecture.
NASA Astrophysics Data System (ADS)
Yamamoto, Shu; Ara, Takahiro
Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.
Theory and simulation of DNA-coated colloids: a guide for rational design.
Angioletti-Uberti, Stefano; Mognetti, Bortolo M; Frenkel, Daan
2016-03-07
By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.
Model of the Ares V Launch System
NASA Technical Reports Server (NTRS)
2006-01-01
This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.
CRISPR-enabled tools for engineering microbial genomes and phenotypes.
Tarasava, Katia; Oh, Eun Joong; Eckert, Carrie A; Gill, Ryan T
2018-06-19
In recent years CRISPR-Cas technologies have revolutionized microbial engineering approaches. Genome editing and non-editing applications of various CRISPR-Cas systems have expanded the throughput and scale of engineering efforts, as well as opened up new avenues for manipulating genomes of non-model organisms. As we expand the range of organisms used for biotechnological applications, we need to develop better, more versatile tools for manipulation of these systems. Here we summarize the current advances in microbial gene editing using CRISPR-Cas based tools, and highlight state-of-the-art methods for high-throughput, efficient genome-scale engineering in model organisms Escherichia coli and Saccharomyces cerevisiae. We also review non-editing CRISPR-Cas applications available for gene expression manipulation, epigenetic remodeling, RNA editing, labeling and synthetic gene circuit design. Finally, we point out the areas of research that need further development in order to expand the range of applications and increase the utility of these new methods. This article is protected by copyright. All rights reserved.
Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi
2012-05-14
We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.
NASA Astrophysics Data System (ADS)
Kurzydłowski, D.; Grochala, W.
2017-10-01
Hybrid density functional calculations are performed for a variety of systems containing d9 ions (C u2 + and A g2 + ) and exhibiting quasi-one-dimensional magnetic properties. In particular, we study fluorides containing these ions in a rarely encountered compressed octahedral coordination that forces the unpaired electron into the local d (z2) orbital. We predict that such systems should exhibit exchange anisotropies surpassing that of S r2Cu O3 , one of the best realizations of a one-dimensional system known to date. In particular, we predict that the interchain coupling in the A g2 + -containing [AgF ] [B F4 ] system should be nearly four orders of magnitude smaller than the intrachain interaction. Our results indicate that quasi-one-dimensional spin-1/2 systems containing chains with spin sites in the d (z2)1 local ground state could constitute a versatile model for testing modern theories of quantum many-body physics in the solid state.
RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)
NASA Astrophysics Data System (ADS)
Long, A. J.
2015-03-01
The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.
NASA Astrophysics Data System (ADS)
Reynders, Edwin P. B.; Langley, Robin S.
2018-08-01
The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.
NASA Astrophysics Data System (ADS)
Delay, Frederick; Badri, Hamid; Fahs, Marwan; Ackerer, Philippe
2017-12-01
Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are frequently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by some of the authors, as the continuous form is completely new and here fully differentiated for handling all types of model parameters. Adjoint states assist descent methods by calculating the gradient components of the objective function, these being a key to good convergence of inverse solutions. Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwithstanding, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging an inversion toolbox quasi-independent from the code employed for solving the forward problem.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy
NASA Astrophysics Data System (ADS)
Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.
2016-12-01
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.
Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M
2016-12-07
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
NASA Astrophysics Data System (ADS)
Paradis, Alexandre
The principal objective of the present thesis is to elaborate a computational model describing the mechanical properties of NiTi under different loading conditions. Secondary objectives are to build an experimental database of NiTi under stress, strain and temperature in order to validate the versatility of the new model proposed herewith. The simulation model used presently at Laboratoire sur les Alliage a Memoire et les Systemes Intelligents (LAMSI) of ETS is showing good behaviour in quasi-static loading. However, dynamic loading with the same model do not allows one to include degradation. The goal of the present thesis is to build a model capable of describing such degradation in a relatively accurate manner. Some experimental testing and results will be presented. In particular, new results on the behaviour of NiTi being paused during cycling are presented in chapter 2. A model is developed in chapter 3 based on Likhachev's micromechanical model. Good agreement is found with experimental data. Finally, an adaptation of the model is presented in chapter 4, allowing it to be eventually implemented into a finite-element commercial software.
An Improved Dynamic Model for the Respiratory Response to Exercise
Serna, Leidy Y.; Mañanas, Miguel A.; Hernández, Alher M.; Rabinovich, Roberto A.
2018-01-01
Respiratory system modeling has been extensively studied in steady-state conditions to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli and to simulate its interaction with mechanical ventilation. Nevertheless, the studies focused on the instantaneous response are limited, which restricts its application in clinical practice. The aim of this study is double: firstly, to analyze both dynamic and static responses of two known respiratory models under exercise stimuli by using an incremental exercise stimulus sequence (to analyze the model responses when step inputs are applied) and experimental data (to assess prediction capability of each model). Secondly, to propose changes in the models' structures to improve their transient and stationary responses. The versatility of the resulting model vs. the other two is shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper regulation of the arterial blood gases, suitable constant times and a better adjustment to experimental data. The proposed model adjusts the breathing pattern every respiratory cycle using an optimization criterion based on minimization of work of breathing through regulation of respiratory frequency. PMID:29467674
Electronic Fingerprinting for Industry
NASA Technical Reports Server (NTRS)
1995-01-01
Veritec's VeriSystem is a complete identification and tracking system for component traceability, improved manufacturing and processing, and automated shop floor applications. The system includes the Vericode Symbol, a more accurate and versatile alternative to the traditional bar code, that is scanned by charge coupled device (CCD) cameras. The system was developed by Veritec, Rockwell International and Marshall Space Flight Center to identify and track Space Shuttle parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, G., E-mail: Giuseppe.Castro@lns.infn.it; Celona, L.; Mascali, D.
2016-08-15
The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He{sup +} beams. DAEδALUS and IsoDAR experiments require high intensities for H{sub 2}{sup +} beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H{sub 2}{sup +} beam intensity. In this paper the studies for the increasing of the H{sub 2}{sup +}/p ratiomore » and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.« less
Nanosilver: new ageless and versatile biomedical therapeutic scaffold
Ullah Khan, Shahid; Khan, Muhammad Hafeez Ullah; Khan, Dilfaraz; Ullah Khan, Wasim; Rahim, Abdur; Kamal, Sajid; Ullah Khan, Farman; Fahad, Shah
2018-01-01
Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields. PMID:29440898
Zhang, Ruiqi; Li, Zhenyu; Yang, Jinlong
2017-09-21
Oxides of two-dimensional (2D) atomic crystals have been widely studied due to their unique properties. In most 2D oxides, oxygen acts as a functional group, which makes it difficult to control the degree of oxidation. Because borophene is an electron-deficient system, it is expected that oxygen will be intrinsically incorporated into the basal plane of borophene, forming stoichiometric 2D boron oxide (BO) structures. By using first-principles global optimization, we systematically explore structures and properties of 2D BO systems with well-defined degrees of oxidation. Stable B-O-B and OB 3 tetrahedron structure motifs are identified in these structures. Interesting properties, such as strong linear dichroism, Dirac node-line (DNL) semimetallicity, and negative differential resistance, have been predicted for these systems. Our results demonstrate that 2D BO represents a versatile platform for electronic structure engineering via tuning the stoichiometric degree of oxidation, which leads to various technological applications.
NASA Astrophysics Data System (ADS)
Castro, G.; Torrisi, G.; Celona, L.; Mascali, D.; Neri, L.; Sorbello, G.; Leonardi, O.; Patti, G.; Castorina, G.; Gammino, S.
2016-08-01
The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He+ beams. DAEδALUS and IsoDAR experiments require high intensities for H2+ beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H2+ beam intensity. In this paper the studies for the increasing of the H2+/p ratio and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.
NASA Astrophysics Data System (ADS)
Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.
2005-08-01
A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library
A membrane-based subsystem for water-vapor recovery from plant-growth chambers
NASA Technical Reports Server (NTRS)
Ray, R. J.
1992-01-01
Bioregenerative systems--life-support systems to regenerate oxygen, food, and water--are the key to establishing man's permanent presence in space. NASA is investigating the use of plant-growth chambers (PGC's) for space missions and for bases on the moon and Mars. PGC's serve several important purposes, including the following: (1) oxygen and food production; (2) carbon-dioxide removal; and (3) water purification and reuse. The key to the successful development of PGC's is a system to recover and reuse the water vapor that is transpired by the leaves of the growing plants. In this program we propose to develop a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in the PGC. This system has characteristics that make it ideally suited to use in space: (1) minimal power requirements; (2) small volume and mass; (3) simplicity; (4) reliability; and (5) versatility. In Phase 1 we will do the following: (1) develop an accurate, predictive model of our temperature- and humidity-control system, based on parametric tests of membrane modules; and (2) use this model to design systems for selected PGC's. In Phase 2, we will seek to design, fabricate, test, and deliver a breadboard unit to NASA for testing on a PGC.
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems.
Whitacre, James M; Bender, Axel
2010-06-15
A generic mechanism--networked buffering--is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems.
SL12-GADRAS-PD2Ka Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.
2014-09-09
The GADRAS Development project comprises several elements that are all related to the Detector Response Function (DRF), which is the core of GADRAS. An ongoing activity is implementing continuous improvements in the accuracy and versatility of the DRF. The ability to perform rapid computation of the response of gammaray detectors for 3-D descriptions of source objects and their environments is a good example of a recent utilization of this versatility. The 3-D calculations, which execute several orders of magnitude faster than competing techniques, compute the response as an extension of the DRF so the radiation transport problem is never solvedmore » explicitly, thus saving considerable computational time. Maintenance of the Graphic User Interface (GUI) and extension of the GUI to enable construction of the 3-D source models is included in tasking for the GADRAS Development project. Another aspect of this project is application of the isotope identification algorithms for search applications. Specifically, SNL is tasked with development of an isotope-identification based search capability for use with the RSL-developed AVID system, which supports simultaneous operation of numerous radiation search assets. A Publically Available (PA) GADRAS-DRF application, which eliminates sensitive analysis components, will soon be available so that the DRF can be used by researchers at universities and corporations.« less
Methods for modeling cytoskeletal and DNA filaments
NASA Astrophysics Data System (ADS)
Andrews, Steven S.
2014-02-01
This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.
Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".
Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra
2014-12-20
The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.
Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16.
Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra
2014-09-30
The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96 h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-03-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.
1993-01-01
A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.
NASA Technical Reports Server (NTRS)
1998-01-01
NASA has transferred the improved portable leak detector technology to UE Systems, Inc.. This instrument was developed to detect leaks in fluid systems of critical launch and ground support equipment. This system incorporates innovative electronic circuitry, improved transducers, collecting horns, and contact sensors that provide a much higher degree of reliability, sensitivity and versatility over previously used systems. Potential commercial uses are pipelines, underground utilities, air-conditioning systems, petrochemical systems, aerospace, power transmission lines and medical devices.
Parametric instabilities in resonantly-driven Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Lellouch, S.; Goldman, N.
2018-04-01
Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.
HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models
NASA Technical Reports Server (NTRS)
Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.
2014-01-01
We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.
Quantifying Aluminum Crystal Size Part 1: The Model-Eliciting Activity
ERIC Educational Resources Information Center
Diefes-Dux, Heidi A.; Hjalmarson, Margret; Zawojewski, Judith S.; Bowman, Keith
2006-01-01
Model-eliciting activities (MEA), specially designed client-drive, open-ended problems, have been implemented in a first-year engineering course and in secondary schools. The educational goals and settings are different, but the design of an MEA enables it to be versatile. This paper will introduce the reader to the principles that guide MEA…
Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions.
de la Fuente, Jesús M; Barrientos, Africa G; Rojas, Teresa C; Rojo, Javier; Cañada, Javier; Fernández, Asunción; Penadés, Soledad
2001-06-18
Glycosphingolipid clustering and interactions at the cell membrane can be modeled by gold glyconanoparticles prepared with biologically significant oligosaccharides. Such water-soluble gold glyconanoparticles with highly polyvalent carbohydrate displays (see picture, gray hemisphere: gold nanoparticle) have been obtained by a simple and versatile strategy. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
ERIC Educational Resources Information Center
Weeber, Marc; Klein, Henny; de Jong-van den Berg, Lolkje T. W.; Vos, Rein
2001-01-01
Proposes a two-step model of discovery in which new scientific hypotheses can be generated and subsequently tested. Applying advanced natural language processing techniques to find biomedical concepts in text, the model is implemented in a versatile interactive discovery support tool. This tool is used to successfully simulate Don R. Swanson's…
Aperture Averaging of Scintillation for Space-to-Ground Optical Communication Applications.
1983-08-15
SCINTILLATION FOR SPACE-TO-GROUND OPTICAL COMUNICATION APPLICATIONS ........................ 5 REFERENCES...theoretical investigations necessary for the evaluation and applica- tion of scientific advances to now military space systems. Versatility and flexibility...systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that con
Affect Recognition through Facebook for Effective Group Profiling towards Personalized Instruction
ERIC Educational Resources Information Center
Troussas, Christos; Espinosa, Kurt Junshean; Virvou, Maria
2016-01-01
Social networks are progressively being considered as an intense thought for learning. Particularly in the research area of Intelligent Tutoring Systems, they can create intuitive, versatile and customized e-learning systems which can advance the learning process by revealing the capacities and shortcomings of every learner and by customizing the…
Nomoto, Mika; Tada, Yasuomi
2018-01-01
Cell-free protein synthesis (CFPS) systems largely retain the endogenous translation machinery of the host organism, making them highly applicable for proteomics analysis of diverse biological processes. However, laborious and time-consuming cloning procedures hinder progress with CFPS systems. Herein, we report the development of a rapid and efficient two-step polymerase chain reaction (PCR) method to prepare linear DNA templates for a wheat germ CFPS system. We developed a novel, effective short 3'-untranslated region (3'-UTR) sequence that facilitates translation. Application of the short 3'-UTR to two-step PCR enabled the generation of various transcription templates from the same plasmid, including fusion proteins with N- or C-terminal tags, and truncated proteins. Our method supports the cloning-free expression of target proteins using an mRNA pool from biological material. The established system is a highly versatile platform for in vitro protein synthesis using wheat germ CFPS. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori
2012-01-01
Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.
MINIVER upgrade for the AVID system. Volume 3: EXITS user's and input guide
NASA Technical Reports Server (NTRS)
Pond, J. E.; Schmitz, C. P.
1983-01-01
The successful design of thermal protection systems for vehicles operating in atmosphere and near-space environments requires accurate analyses of heating rate and temperature histories encountered along a trajectory. For preliminary design calculations, however, the requirement for accuracy must be tempered by the need for speed and versatility in computational tools used to determine thermal environments and structural thermal response. The MINIVER program was found to provide the proper balance between versatility, speed and accuracy for an aerothermal prediction tool. The advancement in computer aided design concepts at Langley Research Center (LaRC) in the past few years has made it desirable to incorporate the MINIVER program into the LaRC Advanced Vehicle Integrated Design, AVID, system. In order to effectively incorporate MINIVER into the AVID system, several changes to MINIVER were made. The thermal conduction options in MINIVER were removed and a new Explicit Interactive Thermal Structures (EXITS) code was developed. Many upgrades to the MINIVER code were made and a new Langley version of MINIVER called LANMIN was created.
MINIVER upgrade for the AVID system. Volume 1: LANMIN user's manual
NASA Technical Reports Server (NTRS)
Engel, C. D.; Praharaj, S. C.
1983-01-01
The successful design of thermal protection systems for vehicles operating in atmosphere and near space environments requires accurate analyses of heating rate and temperature histories encountered along a trajectory. For preliminary design calculations, however, the requirement for accuracy must be tempered by the need for speed and versatility in computational tools used to determine thermal environments and structural thermal response. The MINIVER program has been found to provide the proper balance between versatility, speed and accuracy for an aerothermal prediction tool. The advancement in computer aided design concepts at Langley Research Center (LaRC) in the past few years has made it desirable to incorporate the MINIVER program into the LaRC Advanced Vehicle Integrated Design, AVID, system. In order to effectively incorporate MINIVER into the AVID system, several changes to MINIVER were made. The thermal conduction options in MINIVER were removed and a new Explicit Interactive Thermal Structures (EXITS) code was developed. Many upgrades to the MINIVER code were made and a new Langley version of MINIVER called LANMIN was created. The theoretical methods and subroutine functions used in LANMIN are described.
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.
Long, Jingjunjiao; Gholizadeh, Hamideh; Lu, Jun; Bunt, Craig; Seyfoddin, Ali
2017-01-01
Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A voxel visualization and analysis system based on AutoCAD
NASA Astrophysics Data System (ADS)
Marschallinger, Robert
1996-05-01
A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.
NASA Astrophysics Data System (ADS)
Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.
2016-04-01
We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.
A facile approach to construct versatile signal amplification system for bacterial detection.
Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan
2014-01-01
In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Walther, Marc; Graf, Thomas; Kolditz, Olaf; Liedl, Rudolf; Post, Vincent
2017-08-01
Application of numerical models is a common method to assess groundwater resources. The versatility of these models allows consideration of different levels of complexity, but the accuracy of the outcomes hinges upon a proper description of the system behaviour. In seawater intrusion assessment, the implementation of the sea-side boundary condition is of particular importance. We evaluate the influence of the slope of the sea-side boundary on the simulation results of seawater intrusion in a freshwater aquifer by employing a series of slope variations together with a sensitivity analysis by varying additional sensitive parameters (freshwater inflow and longitudinal and transverse dispersivities). Model results reveal a multi-dimensional dependence of the investigated variables with an increasing relevance of the sea-side boundary slope for seawater intrusion (decrease of up to 32%), submarine groundwater discharge zone (reduction of up to 55%), and turnover times (increase of up to 730%) with increasing freshwater inflow or dispersivity values.
Development of deployable structures for large space platform systems, part 1
NASA Technical Reports Server (NTRS)
Cox, R. L.; Nelson, R. A.
1982-01-01
Eight deployable platform design objectives were established: autodeploy/retract; fully integrated utilities; configuration variability; versatile payload and subsystem interfaces; structural and packing efficiency; 1986 technology readiness; minimum EVA/RMS; and Shuttle operational compatibility.
A Versatile, Automatic Chromatographic Column Packing Device
ERIC Educational Resources Information Center
Barry, Eugene F.; And Others
1977-01-01
Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)
Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya
2010-04-01
Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.
Hybrid metamaterials for electrically triggered multifunctional control
Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.
2016-01-01
Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342
NASA Technical Reports Server (NTRS)
Walklet, T.
1981-01-01
The feasibility of a miniature versatile portable speech prosthesis (VPSP) was analyzed and information on its potential users and on other similar devices was collected. The VPSP is a device that incorporates speech synthesis technology. The objective is to provide sufficient information to decide whether there is valuable technology to contribute to the miniaturization of the VPSP. The needs of potential users are identified, the development status of technologies similar or related to those used in the VPSP are evaluated. The VPSP, a computer based speech synthesis system fits on a wheelchair. The purpose was to produce a device that provides communication assistance in educational, vocational, and social situations to speech impaired individuals. It is expected that the VPSP can be a valuable aid for persons who are also motor impaired, which explains the placement of the system on a wheelchair.
Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems
Yu, Yang-Yang; Zhai, Dan-Dan; Si, Rong-Wei; Sun, Jian-Zhong; Liu, Xiang; Yong, Yang-Chun
2017-01-01
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed. PMID:28054970
A versatile and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy.
Elezzabi, A Y; Maraghechi, P
2012-05-01
A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.
Revealing Nanostructures through Plasmon Polarimetry.
Kleemann, Marie-Elena; Mertens, Jan; Zheng, Xuezhi; Cormier, Sean; Turek, Vladimir; Benz, Felix; Chikkaraddy, Rohit; Deacon, William; Lombardi, Anna; Moshchalkov, Victor V; Vandenbosch, Guy A E; Baumberg, Jeremy J
2017-01-24
Polarized optical dark-field spectroscopy is shown to be a versatile noninvasive probe of plasmonic structures that trap light to the nanoscale. Clear spectral polarization splittings are found to be directly related to the asymmetric morphology of nanocavities formed between faceted gold nanoparticles and an underlying gold substrate. Both experiment and simulation show the influence of geometry on the coupled system, with spectral shifts Δλ = 3 nm from single atoms. Analytical models allow us to identify the split resonances as transverse cavity modes, tightly confined to the nanogap. The direct correlation of resonance splitting with atomistic morphology allows mapping of subnanometre structures, which is crucial for progress in extreme nano-optics involving chemistry, nanophotonics, and quantum devices.
Topological solitons as addressable phase bits in a driven laser
NASA Astrophysics Data System (ADS)
Garbin, Bruno; Javaloyes, Julien; Tissoni, Giovanna; Barland, Stéphane
2015-01-01
Optical localized states are usually defined as self-localized bistable packets of light, which exist as independently controllable optical intensity pulses either in the longitudinal or transverse dimension of nonlinear optical systems. Here we demonstrate experimentally and analytically the existence of longitudinal localized states that exist fundamentally in the phase of laser light. These robust and versatile phase bits can be individually nucleated and canceled in an injection-locked semiconductor laser operated in a neuron-like excitable regime and submitted to delayed feedback. The demonstration of their control opens the way to their use as phase information units in next-generation coherent communication systems. We analyse our observations in terms of a generic model, which confirms the topological nature of the phase bits and discloses their formal but profound analogy with Sine-Gordon solitons.
Neuropharmacological Potential and Delivery Prospects of Thymoquinone for Neurological Disorders
Cho, Duk-Yeon; Ezazul Haque, Md.; Kim, In-Su; Ganesan, Palanivel
2018-01-01
Thymoquinone (TQ) is an active ingredient isolated from Nigella sativa and has various pharmacological activities, such as protection against oxidative stress, inflammation, and infections. In addition, it might be a potential neuropharmacological agent because it exhibits versatile potential for attenuating neurological impairments. It features greater beneficial effects in toxin-induced neuroinflammation and neurotoxicity. In various models of neurological disorders, it demonstrates emergent functions, including safeguarding various neurodegenerative diseases and other neurological diseases, such as stroke, schizophrenia, and epilepsy. TQ also has potential effects in trauma mediating and chemical-, radiation-, and drug-induced central nervous system injuries. Considering the pharmacokinetic limitations, research has concentrated on different TQ novel formulations and delivery systems. Here, we visualize the neuropharmacological potential, challenges, and delivery prospects of TQ, specifically focusing on neurological disorders along with its chemistry, pharmacokinetics, and toxicity. PMID:29743967
On how role versatility boosts an STI.
Cortés, Andrés J
2017-12-19
The prevalence of the HIV-1 infection has decayed in the last decades in western heterosexual populations. However, among men who have sex with men (MSM) the prevalence is still high, despite intensive campaigns and treatment programs that keep infected men as undetectable (Beyrer et al. 2012). Promiscuity and condom fatigue (Adam et al. 2005), which are not unique to the MSM community, are making unprotected anal intercourse (UAI) more common and sexually transmitted infections (STIs) presumably harder to track. Yet, MSM communities are peculiar in the sense that men can adopt fixed (insertive or receptive) or versatile (both practices) roles. Some old theoretical work (Wiley & Herschkorn 1989, Van Druten et al. 1992, Trichopoulos et al. 1998) predicted that the transmission of HIV-1 would be enhanced in MSM populations engaged more in role versatility than in role segregation, in which fixed roles are predominantly adopted. These predictions were based on the assumption that the probability of acquisition from unprotected insertive anal (UIA) sex was neglectable. However, as later shown (Vittinghoff et al. 1999, Goodreau et al. 2005), this assumption is inappropriate and HIV-1 may still be acquired via UIA sex. Here I show through a stochastic model that the increase of the HIV-1 prevalence among MSM due to role versatility holds under a stronger assumption of bidirectional virus transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Versatile aggressive mimicry of cicadas by an Australian predatory katydid.
Marshall, David C; Hill, Kathy B R
2009-01-01
In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species.
NASA Astrophysics Data System (ADS)
Gaburro, Nicola; Marchioro, Giacomo; Daffara, Claudia
2017-07-01
Surface metrology of artworks requires the design of suitable devices for in-situ non-destructive measurement together with reliable procedures for an effective analysis of such non-engineered variegate objects. To advance the state-of-the-art it has been implemented a versatile optical micro-profilometry taking advantage of the adapt- ability of conoscopic holography sensors, able to operate with irregular shapes and composite materials (diffusive, specular, and polychrome) of artworks. The scanning technique is used to obtain wide field and high spatially resolved areal profilometry. The prototype has a modular scheme based on a set of conoscopic sensors, extending the typical design based on a scanning stage and a single probe with a limited bandwidth, thus allowing the collection of heights data from surface with different scales and materials with variegate optical response. The system was optimized by characterizing the quality of the measurement with the probes triggered in continuous scanning modality. The results obtained on examples of cultural heritage objects (2D paintings, 3D height-relief) and materials (pictorial, metallic) demonstrate the versatility of the implemented device.
Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University
NASA Astrophysics Data System (ADS)
An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok
2011-10-01
A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.
NASA Astrophysics Data System (ADS)
Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.
2018-01-01
An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.
Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests
NASA Astrophysics Data System (ADS)
Toth, G.; Keppens, R.; Botchev, M. A.
1998-04-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.
Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus
2016-05-04
Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.
Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus
2016-01-01
Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246
An implementation of the distributed programming structural synthesis system (PROSSS)
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1981-01-01
A method is described for implementing a flexible software system that combines large, complex programs with small, user-supplied, problem-dependent programs and that distributes their execution between a mainframe and a minicomputer. The Programming Structural Synthesis System (PROSSS) was the specific software system considered. The results of such distributed implementation are flexibility of the optimization procedure organization and versatility of the formulation of constraints and design variables.
Distributed Computerized Catalog System
NASA Technical Reports Server (NTRS)
Borgen, Richard L.; Wagner, David A.
1995-01-01
DarkStar Distributed Catalog System describes arbitrary data objects in unified manner, providing end users with versatile, yet simple search mechanism for locating and identifying objects. Provides built-in generic and dynamic graphical user interfaces. Design of system avoids some of problems of standard DBMS, and system provides more flexibility than do conventional relational data bases, or object-oriented data bases. Data-collection lattice partly hierarchical representation of relationships among collections, subcollections, and data objects.
Research on automatic control system of greenhouse
NASA Astrophysics Data System (ADS)
Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng
2017-03-01
This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.
Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Combustion Systems
NASA Astrophysics Data System (ADS)
Gomez, Alessandro
2013-11-01
Since the pioneering work of Weinberg's group at Imperial College in the `60s, the counterflow system has been the workhorse of laminar flame studies. Recent developments have shown that it is also a promising benchmark for highly turbulent (Ret ~ 1000) nonpremixed and premixed flames of direct relevance to gasturbine combustion. Case studies will demonstrate the versatility of the system in mimicking real flame effects, such as heat loss and flame stratification in premixed flames, and the compactness of the combustion region. The system may offer significant advantages from a computational viewpoint, including: a) aerodynamic flame stabilization near the interface between the two opposed jets, with ensuing simplifications in the prescription of boundary conditions; b) a fiftyfold reduction of the domain of interest as compared to conventional nonpremixed jet flames at the same Reynolds number; and c) millisecond mean residence times, which is particularly useful for DNS/LES computational modeling, and for soot suppression in the combustion of practical fuels.
Remote monitoring and security alert based on motion detection using mobile
NASA Astrophysics Data System (ADS)
Suganya Devi, K.; Srinivasan, P.
2016-03-01
Background model does not have any robust solution and constitutes one of the main problems in surveillance systems. The aim of the paper is to provide a mobile based security to a remote monitoring system through a WAP using GSM modem. It is most designed to provide durability and versatility for a wide variety of indoor and outdoor applications. It is compatible with both narrow and band networks and provides simultaneous image detection. The communicator provides remote control, event driven recording, including pre-alarm and post-alarm and image motion detection. The web cam allowing them to be mounted either to a ceiling or wall without requiring bracket, with the use of web cam. We could continuously monitoring status in the client system through the web. If any intruder arrives in the client system, server will provide an alert to the mobile (what we are set in the message that message send to the authorized person) and the client can view the image using WAP.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.
2011-01-01
The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.
Image formation simulation for computer-aided inspection planning of machine vision systems
NASA Astrophysics Data System (ADS)
Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz
2017-06-01
In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.
A mathematical model for simulating noise suppression of lined ejectors
NASA Technical Reports Server (NTRS)
Watson, Willie R.
1994-01-01
A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.
Alegado, Rosanna A; Campbell, Marianne C; Chen, Will C; Slutz, Sandra S; Tan, Man-Wah
2003-07-01
The soil-borne nematode, Caenorhabditis elegans, is emerging as a versatile model in which to study host-pathogen interactions. The worm model has shown to be particularly effective in elucidating both microbial and animal genes involved in toxin-mediated killing. In addition, recent work on worm infection by a variety of bacterial pathogens has shown that a number of virulence regulatory genes mediate worm susceptibility. Many of these regulatory genes, including the PhoP/Q two-component regulators in Salmonella and LasR in Pseudomonas aeruginosa, have also been implicated in mammalian models suggesting that findings in the worm model will be relevant to other systems. In keeping with this concept, experiments aimed at identifying host innate immunity genes have also implicated pathways that have been suggested to play a role in plants and animals, such as the p38 MAP kinase pathway. Despite rapid forward progress using this model, much work remains to be done including the design of more sensitive methods to find effector molecules and further characterization of the exact interaction between invading pathogens and C. elegans' cellular components.
Compact, high power, energy efficient transmit systems for UUVs using single crystal transducers
NASA Astrophysics Data System (ADS)
Robinson, Harold
2004-05-01
UUVs are currently being designed to perform a multiplitude of tasks in ocean exploration and Naval warfighting. Many of these tasks require the use of active acoustic projectors, and many may require the UUV to operate independently for hours, days, or even weeks. In order for a UUV to be as versatile as possible, its active transmit system must be versatile as well, implying that broad acoustic bandwidths are a must. However, due to size and battery life limitations, this broadband system must also be compact and energy efficient. By virtue of their extraordinary material properties, ferroelectric single crystals are the ideal transduction material for developing such broadband systems. The effect of their high coupling factor on transmit systems shall be illustrated by showing the dramatic impact on amplifier size, power factor, and acoustic response that is possible using these materials. In particular, a transducer built with these materials can be well matched to the power amplifier, i.e., 80% or more of the amplifier power reaches the transducer, over decades of frequency. Measured results from several prototype single crystal transducers shall be presented to demonstrate that the theoretical gains are actually realizable in practical devices. [Work sponsored by DARPA.
Acoustic Transmitters for Underwater Neutrino Telescopes
Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.
2012-01-01
In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022
Polyoxometalate (POM) catalyst systems : chemical principles and reactions with lignin and oxygen
I.A. Weinstock; R.H. Atalla; J.S. Bond; E.M.G. Barbuzzi; V.A. Grigoriev; Y. Gueletii; J.J. Cowan; D.M. Sonnen; R.S. Reiner; S.E. Reichel; R.A. Heintz; C.J. Houtman; A.J. Bailey; C.L. Hill
2000-01-01
Chemical data pertinent to most-recently developed POM delignification systems will be presented. These data will be used to demonstrate the fundamental basis for the stability, self-buffering properties, versatility and high selectivity of these systems when used in combination with oxygen to convert native or residual lignin in wood or wood-pulp fibers to CO2 and H2O...
NASA Astrophysics Data System (ADS)
Nadort, Annemarie; Liang, Liuen; Grebenik, Ekaterina; Guller, Anna; Lu, Yiqing; Qian, Yi; Goldys, Ewa; Zvyagin, Andrei
2015-12-01
Nanoparticle-based delivery of drugs and contrast agents holds great promise in cancer research, because of the increased delivery efficiency compared to `free' drugs and dyes. A versatile platform to investigate nanotechnology is the chick embryo chorioallantoic membrane tumour model, due to its availability (easy, cheap) and accessibility (interventions, imaging). In our group, we developed this model using several tumour cell lines (e.g. breast cancer, colon cancer). In addition, we have synthesized in-house silica coated photoluminescent upconversion nanoparticles with several functional groups (COOH, NH2, PEG). In this work we will present the systematic assessment of their in vivo blood circulation times. To this end, we injected chick embryos grown ex ovo with the functionalized UCNPs and obtained a small amount of blood at several time points after injection to create blood smears The UCNP signal from the blood smears was quantified using a modified inverted microscope imaging set-up. The results of this systematic study are valuable to optimize biochemistry protocols and guide nanomedicine advancement in the versatile chick embryo tumour model.
ERIC Educational Resources Information Center
Porter, Lon A., Jr.; Chapman, Cole A.; Alaniz, Jacob A.
2017-01-01
In this work, a versatile and user-friendly selection of stereolithography (STL) files and computer-aided design (CAD) models are shared to assist educators and students in the production of simple and inexpensive 3D printed filter fluorometer instruments. These devices are effective resources for supporting active learners in the exploration of…
Instrumented Compliant Wrist with Proximity and Contact Sensing for Close Robot Interaction Control.
Laferrière, Pascal; Payeur, Pierre
2017-06-14
Compliance has been exploited in various forms in robotic systems to allow rigid mechanisms to come into contact with fragile objects, or with complex shapes that cannot be accurately modeled. Force feedback control has been the classical approach for providing compliance in robotic systems. However, by integrating other forms of instrumentation with compliance into a single device, it is possible to extend close monitoring of nearby objects before and after contact occurs. As a result, safer and smoother robot control can be achieved both while approaching and while touching surfaces. This paper presents the design and extensive experimental evaluation of a versatile, lightweight, and low-cost instrumented compliant wrist mechanism which can be mounted on any rigid robotic manipulator in order to introduce a layer of compliance while providing the controller with extra sensing signals during close interaction with an object's surface. Arrays of embedded range sensors provide real-time measurements on the position and orientation of surfaces, either located in proximity or in contact with the robot's end-effector, which permits close guidance of its operation. Calibration procedures are formulated to overcome inter-sensor variability and achieve the highest available resolution. A versatile solution is created by embedding all signal processing, while wireless transmission connects the device to any industrial robot's controller to support path control. Experimental work demonstrates the device's physical compliance as well as the stability and accuracy of the device outputs. Primary applications of the proposed instrumented compliant wrist include smooth surface following in manufacturing, inspection, and safe human-robot interaction.
Parameterizing A Surface Water Model for Multiwalled Carbon Nanotubes
The unique electronic, mechanical, and structural properties of carbon nanotubes (CNTs) has lead to increasing production of these versatile materials; currently, the use of carbon-based nanomaterials in consumer products is second only to that of nano-scale silver. Although ther...
SCANIT: centralized digitizing of forest resource maps or photographs
Elliot L. Amidon; E. Joyce Dye
1981-01-01
Spatial data on wildland resource maps and aerial photographs can be analyzed by computer after digitizing. SCANIT is a computerized system for encoding such data in digital form. The system, consisting of a collection of computer programs and subroutines, provides a powerful and versatile tool for a variety of resource analyses. SCANIT also may be converted easily to...
1993-03-29
Small Expendable Deployer System (SEDS) is a tethered date collecting satellite and is intended to demonstrate a versatile and economical way of delivering smaller payloads to higher orbits or downward toward Earth's atmosphere. 19th Navstar Global Positioning System Satellite mission joined with previously launched satellites used for navigational purposes and geodite studies. These satellites are used commercially as well as by the military.
A novel interacting multiple model based network intrusion detection scheme
NASA Astrophysics Data System (ADS)
Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry
2006-04-01
In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.
Michel*, Raphael; Gradzielski*, Michael
2012-01-01
In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications. PMID:23109874
NASA Astrophysics Data System (ADS)
Liu, Shibing; Yang, Bingen
2017-10-01
Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.
Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems
NASA Astrophysics Data System (ADS)
Rimer, S.; Mullapudi, A. M.; Kerkez, B.
2017-12-01
The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting stormwater elements.
Mercier, Luc; Böhm, Johann; Fekonja, Nina; Allio, Guillaume; Lutz, Yves; Koch, Marc; Goetz, Jacky G.; Laporte, Jocelyn
2016-01-01
ABSTRACT Skeletal muscle structure and function are altered in different myopathies. However, the understanding of the molecular and cellular mechanisms mainly rely on in vitro and ex vivo investigations in mammalian models. In order to monitor in vivo the intracellular structure of the neuromuscular system in its environment under normal and pathological conditions, we set-up and validated non-invasive imaging of ear and leg muscles in mice. This original approach allows simultaneous imaging of different cellular and intracellular structures such as neuromuscular junctions and sarcomeres, reconstruction of the 3D architecture of the neuromuscular system, and video recording of dynamic events such as spontaneous muscle fiber contraction. Second harmonic generation was combined with vital dyes and fluorescent-coupled molecules. Skin pigmentation, although limiting, did not prevent intravital imaging. Using this versatile toolbox on the Mtm1 knockout mouse, a model for myotubular myopathy which is a severe congenital myopathy in human, we identified several hallmarks of the disease such as defects in fiber size and neuromuscular junction shape. Intravital imaging of the neuromuscular system paves the way for the follow-up of disease progression or/and disease amelioration upon therapeutic tests. It has also the potential to reduce the number of animals needed to reach scientific conclusions. PMID:28243519
White-Light Optical Information Processing and Holography.
1985-07-29
this technique is the processing system does not require to carry its own light source. It is very suitable for spaceborne and satellite application. We...developed a technique of generating a spatialtrequency color coded speech spectrogram with a white-light optical system . This system not only offers a low...that the annoying moire fringes can be eliminated. In short, we have once again demonstrated the versatility of the white-light progress system ; a
Mobile lidar system for environmental monitoring
NASA Astrophysics Data System (ADS)
Zhao, Guangyu; Lian, Ming; Li, Yiyun; Duan, Zheng; Zhu, Shiming; Svanberg, Sune
2018-04-01
A versatile mobile remote sensing system for multidisciplinary environmental monitoring tasks on the Chinese scene is described. The system includes a 20 Hz Nd:YAG laser-pumped dye laser, optical transmitting/receiving systems with a 30 cm and a 40 cm Newtonian telescope, and electronics, all integrated in a laboratory, installed on a Jiefang truck. Results from field experiments on atomic mercury DIAL mapping and remote laser-induced fluorescence and break-down spectroscopy are given.
Advanced Computed-Tomography Inspection System
NASA Technical Reports Server (NTRS)
Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa
1993-01-01
Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.
NASA Astrophysics Data System (ADS)
Zhang, Xiancheng; Noda, Shigeho; Himeno, Ryutaro; Liu, Hao
2017-06-01
We present a novel methodology and strategy to predict pressures and flow rates in the global cardiovascular network in different postures varying from supine to upright. A closed-loop, multiscale mathematical model of the entire cardiovascular system (CVS) is developed through an integration of one-dimensional (1D) modeling of the large systemic arteries and veins, and zero-dimensional (0D) lumped-parameter modeling of the heart, the cardiac-pulmonary circulation, the cardiac and venous valves, as well as the microcirculation. A versatile junction model is proposed and incorporated into the 1D model to cope with splitting and/or merging flows across a multibranched junction, which is validated to be capable of estimating both subcritical and supercritical flows while ensuring the mass conservation and total pressure continuity. To model gravitational effects on global hemodynamics during postural change, a robust venous valve model is further established for the 1D venous flows and distributed throughout the entire venous network with consideration of its anatomically realistic numbers and locations. The present integrated model is proven to enable reasonable prediction of pressure and flow rate waveforms associated with cardiopulmonary circulation, systemic circulation in arteries and veins, as well as microcirculation within normal physiological ranges, particularly in mean venous pressures, which well match the in vivo measurements. Applications of the cardiovascular model at different postures demonstrate that gravity exerts remarkable influence on arterial and venous pressures, venous returns and cardiac outputs whereas venous pressures below the heart level show a specific correlation between central venous and hydrostatic pressures in right atrium and veins.
Kimmance, Susan; McCormack, Paul
2017-01-01
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis. PMID:28158278
Polimene, Luca; Clark, Darren; Kimmance, Susan; McCormack, Paul
2017-01-01
The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis.
Subspace Signal Processing in Structured Noise
1990-12-01
1.7 Motivation for the Model ....... ........................... 8 1.8 E x am p les...S). We do not require that H be orthogonal to S. * 1.7 Motivation for the Model The linear model is quite versatile in terms of the types of signals...cross terms zero, we choose . = (SHs)- mS~u’ (3.69) This implies that = Ps4 , (3.70) and S t s (3.71) : = Ps . RPs -. The last step is to maximize
NASA Astrophysics Data System (ADS)
Lo Brutto, M.; Sciortino, R.; Garraffa, A.
2017-02-01
Digital documentation and 3D modelling of archaeological sites are important for understanding, definition and recognition of the values of the sites and of the archaeological finds. The most part of archaeological sites are outdoor location, but a cover to preserve the ruins protects often parts of the sites. The possibility to acquire data with different techniques and merge them by using a single reference system allows creating multi-parties models in which 3D representations of the individual objects can be inserted. The paper presents the results of a recent study carried out by Geomatics Laboratory of University of Palermo for the digital documentation and 3D modelling of Eraclea Minoa archaeological site. This site is located near Agrigento, in the south of Sicily (Italy) and is one of the most famous ancient Greek colonies of Sicily. The paper presents the results of the integration of different data source to survey the Eraclea Minoa archaeological site. The application of two highly versatile recording systems, the TLS (Terrestrial Laser Scanning) and the RPAS (Remotely Piloted Aircraft System), allowed the Eraclea Minoa site to be documented in high resolution and with high accuracy. The integration of the two techniques has demonstrated the possibility to obtain high quality and accurate 3D models in archaeological survey.
The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?
Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri
2012-01-01
Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.
Maan, Martine E.; Sefc, Kristina M.
2013-01-01
Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150
Direct measurement of Kramers turnover with a levitated nanoparticle
NASA Astrophysics Data System (ADS)
Rondin, Loïc; Gieseler, Jan; Ricci, Francesco; Quidant, Romain; Dellago, Christoph; Novotny, Lukas
2017-12-01
Understanding the thermally activated escape from a metastable state is at the heart of important phenomena such as the folding dynamics of proteins, the kinetics of chemical reactions or the stability of mechanical systems. In 1940, Kramers calculated escape rates both in the high damping and low damping regimes, and suggested that the rate must have a maximum for intermediate damping. This phenomenon, today known as the Kramers turnover, has triggered important theoretical and numerical studies. However, as yet, there is no direct and quantitative experimental verification of this turnover. Using a nanoparticle trapped in a bistable optical potential, we experimentally measure the nanoparticle's transition rates for variable damping and directly resolve the Kramers turnover. Our measurements are in agreement with an analytical model that is free of adjustable parameters. The levitated nanoparticle presented here is a versatile experimental platform for studying and simulating a wide range of stochastic processes and testing theoretical models and predictions.
Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells.
Park, Jeong Hun; Jang, Jinah; Lee, Jung-Seob; Cho, Dong-Woo
2017-01-01
The technical advances of three-dimensional (3D) printing in the field of tissue engineering have enabled the creation of 3D living tissue/organ analogues. Diverse 3D tissue/organ printing techniques with computer-aided systems have been developed and used to dispose living cells together with biomaterials and supporting biochemicals as pre-designed 3D tissue/organ models. Furthermore, recent advances in bio-inks, which are printable hydrogels with living cell encapsulation, have greatly enhanced the versatility of 3D tissue/organ printing. Here, we introduce 3D tissue/organ printing techniques and biomaterials that have been developed and widely used thus far. We also review a variety of applications in an attempt to repair or replace the damaged or defective tissue/organ, and develop the in vitro tissue/organ models. The potential challenges are finally discussed from the technical perspective of 3D tissue/organ printing.
CRUSER News. Issue 30, Aug 2013
2013-08-01
Versatile Low Cost Tactical SUAS by Dr. Richard Guiler, Physical Sciences Inc. • Small Unmanned Aircraft System ( SUAS )/Unattended Ground Sensor...NPS faculty JIFX 13-4 was held last week and included several different planned experiments in the unmanned systems /robot- ics thread. One of the many... planned experiments for the unmanned systems / robotics thread. • Tactical Operations for Multiple Swarm UAVs by Dr Timothy Chung, NPS • ងlb
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
Orr, Tim R.; Hoblitt, Richard P.
2008-01-01
Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.
A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System
Avery, James; Dowrick, Thomas; Faulkner, Mayo; Goren, Nir; Holder, David
2017-01-01
A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication. PMID:28146122
Design of a versatile clinical aberrometer
NASA Astrophysics Data System (ADS)
Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris
2005-09-01
We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.
A robust gene-stacking method utilizing yeast assembly for plant synthetic biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. But, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. We describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We also demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies formore » stacking genes and traits to address many impending environmental and agricultural challenges.« less
Versatile buffer layer architectures based on Ge1-xSnx alloys
NASA Astrophysics Data System (ADS)
Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.
2005-05-01
We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.
A robust gene-stacking method utilizing yeast assembly for plant synthetic biology
Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim; ...
2016-10-26
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. But, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. We describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We also demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies formore » stacking genes and traits to address many impending environmental and agricultural challenges.« less
The NiCl2-Li-arene(cat.) combination: a versatile reducing mixture.
Alonso, Francisco; Yus, Miguel
2004-06-20
The NiCl2.2H2O-Li-arene(cat.) combination described in this tutorial review has shown to be a useful and versatile mixture able to reduce a broad range of functionalities bearing carbon-carbon multiple bonds, as well as carbon-heteroatom and heteroatom-heteroatom single and multiple bonds. The analogous deuterated combination, NiCl2.2D2O-Li-arene(cat.), allows the easy incorporation of deuterium in the reaction products. Alternatively, the anhydrous NiCl2-Li-arene (or polymer-supported arene)(cat.) system generates a highly reactive metallic nickel, which in the presence of molecular hydrogen at atmospheric pressure is able to catalyze the hydrogenation of almost the same type of functionalities mentioned above.
NASA Astrophysics Data System (ADS)
Straka, Mika J.; Caldarelli, Guido; Squartini, Tiziano; Saracco, Fabio
2018-04-01
Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007-2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo's hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.
Kawada, Y; Yamada, T; Unno, Y; Yunoki, A; Sato, Y; Hino, Y
2012-09-01
A simple but versatile data acquisition system for software coincidence experiments is described, in which any time stamping and live time controller are not provided. Signals from β- and γ-channels are fed to separately two fast ADCs (16 bits, 25 MHz clock maximum) via variable delay circuits and pulse-height stretchers, and also to pulse-height discriminators. The discriminating level was set to just above the electronic noise. Two ADCs were controlled with a common clock signal, and triggered simultaneously by the logic OR pulses from both discriminators. Paired digital signals for each sampling were sent to buffer memories connected to main PC with a FIFO (First-In, First-Out) pipe via USB. After data acquisition in list mode, various processing including pulse-height analyses was performed using MS-Excel (version 2007 and later). The usefulness of this system was demonstrated for 4πβ(PS)-4πγ coincidence measurements of (60)Co, (134)Cs and (152)Eu. Possibilities of other extended applications will be touched upon. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Jin-Sil; Kim, Soojin; Yoo, Dongwon; Shin, Tae-Hyun; Kim, Hoyoung; Gomes, Muller D.; Kim, Sun Hee; Pines, Alexander; Cheon, Jinwoo
2017-05-01
Nanoscale distance-dependent phenomena, such as Förster resonance energy transfer, are important interactions for use in sensing and imaging, but their versatility for bioimaging can be limited by undesirable photon interactions with the surrounding biological matrix, especially in in vivo systems. Here, we report a new type of magnetism-based nanoscale distance-dependent phenomenon that can quantitatively and reversibly sense and image intra-/intermolecular interactions of biologically important targets. We introduce distance-dependent magnetic resonance tuning (MRET), which occurs between a paramagnetic `enhancer' and a superparamagnetic `quencher', where the T1 magnetic resonance imaging (MRI) signal is tuned ON or OFF depending on the separation distance between the quencher and the enhancer. With MRET, we demonstrate the principle of an MRI-based ruler for nanometre-scale distance measurement and the successful detection of both molecular interactions (for example, cleavage, binding, folding and unfolding) and biological targets in in vitro and in vivo systems. MRET can serve as a novel sensing principle to augment the exploration of a wide range of biological systems.
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography
NASA Astrophysics Data System (ADS)
Chu, Kengyeh K.; Kusek, Mark E.; Liu, Linbo; Som, Avira; Yonker, Lael M.; Leung, Huimin; Cui, Dongyao; Ryu, Jinhyeob; Eaton, Alexander D.; Tearney, Guillermo J.; Hurley, Bryan P.
2017-04-01
A model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-μm resolution optical imaging technique termed micro-optical coherence tomography (μOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment. By applying μOCT to the trans-epithelial migration model, we can robustly monitor the spatial distribution as well as the quantity of neutrophils chemotactically crossing the epithelial boundary over time. Here, we demonstrate the imaging and quantitative migration results of our system as applied to neutrophils migrating across intestinal epithelia in response to a chemoattractant. We also demonstrate that perturbation of a key molecular event known to be critical for effective neutrophil trans-epithelial migration (CD18 engagement) substantially impacts this process both qualitatively and quantitatively.
Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography
Chu, Kengyeh K.; Kusek, Mark E.; Liu, Linbo; Som, Avira; Yonker, Lael M.; Leung, Huimin; Cui, Dongyao; Ryu, Jinhyeob; Eaton, Alexander D.; Tearney, Guillermo J.; Hurley, Bryan P.
2017-01-01
A model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-μm resolution optical imaging technique termed micro-optical coherence tomography (μOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment. By applying μOCT to the trans-epithelial migration model, we can robustly monitor the spatial distribution as well as the quantity of neutrophils chemotactically crossing the epithelial boundary over time. Here, we demonstrate the imaging and quantitative migration results of our system as applied to neutrophils migrating across intestinal epithelia in response to a chemoattractant. We also demonstrate that perturbation of a key molecular event known to be critical for effective neutrophil trans-epithelial migration (CD18 engagement) substantially impacts this process both qualitatively and quantitatively. PMID:28368012
An Easily Constructed and Versatile Molecular Model
NASA Astrophysics Data System (ADS)
Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar
1996-08-01
Three-dimensional molecular models are powerful tools used in basic courses of general and organic chemistry when the students must visualize the spatial distributions of atoms in molecules and relate them to the physical and chemical properties of such molecules. This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves. These models are based upon two different types of arrays of thin flexible wires, like telephone hook-up wires, which may be bent easily but keep their shapes.
Versatile data handling system study
NASA Technical Reports Server (NTRS)
1974-01-01
The objective of the study is discussed to arrive at recommendations for the most suitable image recording equipment for the use with various spaceborne earth observation sensors. Future sensors presently under consideration were included in the study, as well as existing sensors and those under development.
Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A
2016-05-19
The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.
CRISPR: a Versatile Tool for Both Forward and Reverse Genetics Research
Gurumurthy, Channabasavaiah B.; Grati, M'hamed; Ohtsuka, Masato; Schilit, Samantha L.P.; Quadros, Rolen M.; Liu, Xue Zhong
2016-01-01
Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples. PMID:27384229
PyMOOSE: Interoperable Scripting in Python for MOOSE
Ray, Subhasis; Bhalla, Upinder S.
2008-01-01
Python is emerging as a common scripting language for simulators. This opens up many possibilities for interoperability in the form of analysis, interfaces, and communications between simulators. We report the integration of Python scripting with the Multi-scale Object Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system for compartmental neuronal models and for models of signaling pathways based on chemical kinetics. We show how the Python-scripting version of MOOSE, PyMOOSE, combines the power of a compiled simulator with the versatility and ease of use of Python. We illustrate this by using Python numerical libraries to analyze MOOSE output online, and by developing a GUI in Python/Qt for a MOOSE simulation. Finally, we build and run a composite neuronal/signaling model that uses both the NEURON and MOOSE numerical engines, and Python as a bridge between the two. Thus PyMOOSE has a high degree of interoperability with analysis routines, with graphical toolkits, and with other simulators. PMID:19129924
Disease modeling in genetic kidney diseases: zebrafish.
Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario
2017-07-01
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Coarse-graining using the relative entropy and simplex-based optimization methods in VOTCA
NASA Astrophysics Data System (ADS)
Rühle, Victor; Jochum, Mara; Koschke, Konstantin; Aluru, N. R.; Kremer, Kurt; Mashayak, S. Y.; Junghans, Christoph
2014-03-01
Coarse-grained (CG) simulations are an important tool to investigate systems on larger time and length scales. Several methods for systematic coarse-graining were developed, varying in complexity and the property of interest. Thus, the question arises which method best suits a specific class of system and desired application. The Versatile Object-oriented Toolkit for Coarse-graining Applications (VOTCA) provides a uniform platform for coarse-graining methods and allows for their direct comparison. We present recent advances of VOTCA, namely the implementation of the relative entropy method and downhill simplex optimization for coarse-graining. The methods are illustrated by coarse-graining SPC/E bulk water and a water-methanol mixture. Both CG models reproduce the pair distributions accurately. SYM is supported by AFOSR under grant 11157642 and by NSF under grant 1264282. CJ was supported in part by the NSF PHY11-25915 at KITP. K. Koschke acknowledges funding by the Nestle Research Center.
Three-Component Soliton States in Spinor F =1 Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Bersano, T. M.; Gokhroo, V.; Khamehchi, M. A.; D'Ambroise, J.; Frantzeskakis, D. J.; Engels, P.; Kevrekidis, P. G.
2018-02-01
Dilute-gas Bose-Einstein condensates are an exceptionally versatile test bed for the investigation of novel solitonic structures. While matter-wave solitons in one- and two-component systems have been the focus of intense research efforts, an extension to three components has never been attempted in experiments. Here, we experimentally demonstrate the existence of robust dark-bright-bright (DBB) and dark-dark-bright solitons in a multicomponent F =1 condensate. We observe lifetimes on the order of hundreds of milliseconds for these structures. Our theoretical analysis, based on a multiscale expansion method, shows that small-amplitude solitons of these types obey universal long-short wave resonant interaction models, namely, Yajima-Oikawa systems. Our experimental and analytical findings are corroborated by direct numerical simulations highlighting the persistence of, e.g., the DBB soliton states, as well as their robust oscillations in the trap.
Three-Component Soliton States in Spinor F=1 Bose-Einstein Condensates.
Bersano, T M; Gokhroo, V; Khamehchi, M A; D'Ambroise, J; Frantzeskakis, D J; Engels, P; Kevrekidis, P G
2018-02-09
Dilute-gas Bose-Einstein condensates are an exceptionally versatile test bed for the investigation of novel solitonic structures. While matter-wave solitons in one- and two-component systems have been the focus of intense research efforts, an extension to three components has never been attempted in experiments. Here, we experimentally demonstrate the existence of robust dark-bright-bright (DBB) and dark-dark-bright solitons in a multicomponent F=1 condensate. We observe lifetimes on the order of hundreds of milliseconds for these structures. Our theoretical analysis, based on a multiscale expansion method, shows that small-amplitude solitons of these types obey universal long-short wave resonant interaction models, namely, Yajima-Oikawa systems. Our experimental and analytical findings are corroborated by direct numerical simulations highlighting the persistence of, e.g., the DBB soliton states, as well as their robust oscillations in the trap.
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM.
Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam
2015-01-01
In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.
Review: Tauopathy in the retina and optic nerve: does it shadow pathological changes in the brain?
Ho, Wing-Lau; Leung, Yen; Tsang, Andrea Wing-Ting; So, Kwok-Fai; Chiu, Kin
2012-01-01
Tau protein’s versatility lies in its functions within the central nervous system, including protein scaffolding and intracellular signaling. Tauopathy has been one of the most extensively studied neuropathologies among the neurodegenerative diseases. Because the retina and optic nerve are parts of the central nervous system, we hypothesize that tauopathy also plays a role in various eye diseases. However, little is known about tauopathy in the retina and optic nerve. Here, we summarize the findings from histopathological studies on animal models and human specimens with distinct neurodegenerative diseases. Similar pathological changes of tau protein can be found in Alzheimer’s disease, frontotemporal lobe dementia, and glaucoma. In view of the important roles of tauopathy in the brain, it is hoped that this review can stimulate research on eye diseases of the retina and optic nerve. PMID:23170062
Study of Nonlinear MHD Tribological Squeeze Film at Generalized Magnetic Reynolds Numbers Using DTM
Rashidi, Mohammad Mehdi; Freidoonimehr, Navid; Momoniat, Ebrahim; Rostami, Behnam
2015-01-01
In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N 1), dimensionless axial magnetic force strength parameter (N 2), dimensionless tangential magnetic force strength parameter (N 3), and magnetic Reynolds number (Re m) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics. PMID:26267247
Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark
2016-01-01
Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.
ERIC Educational Resources Information Center
Kao, Jacqueline Y.; Yang, Min-Han; Lee, Chi-Young
2015-01-01
Neo magnets are neodymium magnet beads that have been marketed as a desktop toy. We proposed using neo magnets as an alternative building block to traditional ball-and-stick models to construct carbon allotropes, such as fullerene and various nanocone structures. Due to the lack of predetermined physical connections, the versatility of carbon…
Low cost attitude control system reaction wheel development
NASA Astrophysics Data System (ADS)
Bialke, William
1991-03-01
In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.
Advantage of resonant power conversion in aerospace applications
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1983-01-01
An ultrasonic, sinusoidal aerospace power distribution system is shown to have many advantages over other candidate power systems. These advantages include light weight, ease of fault clearing, versatility in handling many loads including motors, and the capability of production within the limits of present technology. References are cited that demonstrate the state of resonant converter technology and support these conclusions.
Low cost attitude control system reaction wheel development
NASA Technical Reports Server (NTRS)
Bialke, William
1991-01-01
In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of a low power and low cost Reaction Wheel Assembly was initiated. The details of the versatile design resulting from this effort are addressed. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware.
An Operational Summary of the BERMEX81-V3 Experiment: 17-19 September 1981.
1982-07-01
1979 and 1980) were to utilize the Versatile Experimental Kevlar Array (VEKA-3B), a two-hydrophone, vertically moored system with an RF telemetry link to...the nose and tail sections of a MK35 tor- pedo . Operational parameters of the BTS 9029 are presented in Table C-3. The BTS 9029 system was fully
Nanobiotechnology: Cell Membrane-Based Delivery Systems.
Zhang, Pengfei; Liu, Gang; Chen, Xiaoyuan
2017-04-01
The increasingly rapid pace of research in the field of bioinspired drug delivery systems is revealing the promise of cell membrane-based nanovesicles for biomedical applications. Those cell membrane-based nanoparticles combine the natural functionalities of cell plasma membranes and the bioengineering flexibility of synthetic nanomaterials, and such versatility provides a means of designing exciting new drug formulations for personalized treatment in future nanomedicine.
Starsat: A space astronomy facility
NASA Technical Reports Server (NTRS)
Hamilton, E. C.; Mundie, C. E.; Korsch, D.; Love, R. A.; Fuller, F. S.; Parker, J. R.; Fritz, C. G.; White, R. E.; Giudici, R. J.
1976-01-01
Preliminary design and analyses of a versatile telescope for Spacelab missions are presented. The system is an all-reflective Korsch three-mirror telescope with excellent performance characteristics over a wide field and a broad spectral range, making it particularly suited for ultraviolet observations. The system concept is evolved around the utilization of existing hardware and designs which were developed for other astronomy space projects.
Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control
NASA Astrophysics Data System (ADS)
Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.
2016-08-01
Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.
de Aquino, Emerson Vidal; Rohwedder, Jarbas José Rodrigues; Pasquini, Celio
2006-11-01
Monosegmented flow analysis (MSFA) has been used as a flow-batch system to produce a simple, robust, and mechanized titrator that enables true titrations to be performed without the use of standards. This paper also introduces the use of coulometry with monosegmented titration by proposing a versatile flow cell. Coulometric generation of the titrand is attractive for titrations performed in monosegmented systems, because the reagent can be added without increasing the volume of sample injected. Also, biamperomeric and potentiometric detection of titration end-points can increase the versatility of the monosegmented titrator. The cell integrates coulometric generation of the titrand with detection of end-point by potentiometry or biamperometry. The resulting titrator is a flow-batch system in which the liquid monosegment, constrained by the interfaces of the gaseous carrier stream, plays the role of a sample of known volume to be titrated. The system has been used for determination of ascorbic acid, by coulometric generation of I2 with biamperometric detection, and for determination of Fe(II), by coulometric generation of Ce(IV) with potentiometric detection of the end-point, both in feed supplements.
Papper, Vladislav; Gorgy, Karine; Elouarzaki, Kamal; Sukharaharja, Ayrine; Cosnier, Serge; Marks, Robert S
2013-07-15
A photoactivatable poly(pyrrole-diazirine) film was synthesized and electropolymerized as a versatile tool for covalent binding of laccase and glucose oxidase on multiwalled carbon nanotube coatings and Pt, respectively. Irradiation of the functionalized nanotubes allowed photochemical grafting of laccase and its subsequent direct electrical wiring, as illustrated by the electrocatalytic reduction of oxygen. Moreover, covalent binding of glucose oxidase as model enzyme, achieved by UV activation of electropolymerized pyrrole-diazirine, allowed a glucose biosensor to be realized. This original method to graft biomolecules combines electrochemical and photochemical techniques. The simplicity of this new method allows it to be extended easily to other biological systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases.
Bouameur, Jamal-Eddine; Favre, Bertrand; Borradori, Luca
2014-04-01
The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.
Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems.
Lichtenecker, Roman J; Weinhäupl, Katharina; Reuther, Lukas; Schörghuber, Julia; Schmid, Walther; Konrat, Robert
2013-11-01
The addition of labeled α-ketoisovalerate to the growth medium of a protein-expressing host organism has evolved into a versatile tool to achieve concomitant incorporation of specific isotopes into valine- and leucine- residues. The resulting target proteins represent excellent probes for protein NMR analysis. However, as the sidechain resonances of these residues emerge in a narrow spectral range, signal overlap represents a severe limitation in the case of high-molecular-weight NMR probes. We present a protocol to eliminate leucine labeling by supplying the medium with unlabeled α-ketoisocaproate. The resulting spectra of a model protein exclusively feature valine signals of increased intensity, confirming the method to be a first example of independent valine and leucine labeling employing α-ketoacid precursor compounds.
CRISPR-mediated Ophthalmic Genome Surgery.
Cho, Galaxy Y; Abdulla, Yazeed; Sengillo, Jesse D; Justus, Sally; Schaefer, Kellie A; Bassuk, Alexander G; Tsang, Stephen H; Mahajan, Vinit B
2017-09-01
Clustered regularly interspaced short palindromic repeats (CRISPR) is a genome engineering system with great potential for clinical applications due to its versatility and programmability. This review highlights the development and use of CRISPR-mediated ophthalmic genome surgery in recent years. Diverse CRISPR techniques are in development to target a wide array of ophthalmic conditions, including inherited and acquired conditions. Preclinical disease modeling and recent successes in gene editing suggest potential efficacy of CRISPR as a therapeutic for inherited conditions. In particular, the treatment of Leber congenital amaurosis with CRISPR-mediated genome surgery is expected to reach clinical trials in the near future. Treatment options for inherited retinal dystrophies are currently limited. CRISPR-mediated genome surgery methods may be able to address this unmet need in the future.
Mitchell, K.M.; Foss, A.M.; Prudden, H.J.; Mukandavire, Z.; Pickles, M.; Williams, J.R.; Johnson, H.C.; Ramesh, B.M.; Washington, R.; Isac, S.; Rajaram, S.; Phillips, A.E.; Bradley, J.; Alary, M.; Moses, S.; Lowndes, C.M.; Watts, C.H.; Boily, M.-C.; Vickerman, P.
2014-01-01
In India, the identity of men who have sex with men (MSM) is closely related to the role taken in anal sex (insertive, receptive or both), but little is known about sexual mixing between identity groups. Both role segregation (taking only the insertive or receptive role) and the extent of assortative (within-group) mixing are known to affect HIV epidemic size in other settings and populations. This study explores how different possible mixing scenarios, consistent with behavioural data collected in Bangalore, south India, affect both the HIV epidemic, and the impact of a targeted intervention. Deterministic models describing HIV transmission between three MSM identity groups (mostly insertive Panthis/Bisexuals, mostly receptive Kothis/Hijras and versatile Double Deckers), were parameterised with behavioural data from Bangalore. We extended previous models of MSM role segregation to allow each of the identity groups to have both insertive and receptive acts, in differing ratios, in line with field data. The models were used to explore four different mixing scenarios ranging from assortative (maximising within-group mixing) to disassortative (minimising within-group mixing). A simple model was used to obtain insights into the relationship between the degree of within-group mixing, R0 and equilibrium HIV prevalence under different mixing scenarios. A more complex, extended version of the model was used to compare the predicted HIV prevalence trends and impact of an HIV intervention when fitted to data from Bangalore. With the simple model, mixing scenarios with increased amounts of assortative (within-group) mixing tended to give rise to a higher R0 and increased the likelihood that an epidemic would occur. When the complex model was fit to HIV prevalence data, large differences in the level of assortative mixing were seen between the fits identified using different mixing scenarios, but little difference was projected in future HIV prevalence trends. An oral pre-exposure prophylaxis (PrEP) intervention was modelled, targeted at the different identity groups. For intervention strategies targeting the receptive or receptive and versatile MSM together, the overall impact was very similar for different mixing patterns. However, for PrEP scenarios targeting insertive or versatile MSM alone, the overall impact varied considerably for different mixing scenarios; more impact was achieved with greater levels of disassortative mixing. PMID:24727187
Using computer graphics to enhance astronaut and systems safety
NASA Technical Reports Server (NTRS)
Brown, J. W.
1985-01-01
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.
Role of silver nanoparticles (AgNPs) on the cardiovascular system.
Gonzalez, Carmen; Rosas-Hernandez, Hector; Ramirez-Lee, Manuel Alejandro; Salazar-García, Samuel; Ali, Syed F
2016-03-01
With the advent of nanotechnology, the use and applications of silver nanoparticles (AgNPs) have increased, both in consumer products as well as in medical devices. However, little is known about the effects of these nanoparticles on human health, more specific in the cardiovascular system, since this system represents an important route of action in terms of distribution, bioaccumulation and bioavailability of the different circulating substances in the bloodstream. A collection of studies have addressed the effects and applications of different kinds of AgNPs (shaped, sized, coated and functionalized) in several components of the cardiovascular system, such as endothelial cells, isolated vessels and organs as well as integrative animal models, trying to identify the underlying mechanisms involved in their actions, to understand their implication in the field of biomedicine. The purpose of the present review is to summarize the most relevant studies to date of AgNPs effects in the cardiovascular system and provide a broader picture of the potential toxic effects and exposure risks, which in turn will allow pointing out the directions of further research as well as new applications of these versatile nanomaterials.
A dynamic motion simulator for future European docking systems
NASA Technical Reports Server (NTRS)
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
Bayat, Hadi; Modarressi, Mohammad Hossein; Rahimpour, Azam
2018-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) is a microbial adaptive immune system. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which has revolutionized the genome editing approaches through multiple distinct features such as using T-rich protospacer-adjacent motif, applying a short guide RNA lacking trans-activating crRNA, introducing a staggered double-strand break, and possessing RNA processing activity in addition to DNA nuclease activity. In the present review, we attempt to highlight most recent advances in CRISPR-Cpf1 (CRISPR-Cas12a) system in particular, considering ground expeditions of the nature and the biology of this system, introducing novel Cpf1 variants that have broadened the versatility and feasibility of CRISPR-Cpf1 system, and lastly the great impact of the CRISPR-Cpf1 system on the manipulation of the genome of prokaryotic, mammalian, and plant models is summarized. With regard to recent developments in utilizing the CRISPR-Cpf1 system in genome editing of various organisms, it can be concluded with confidence that this system is a reliable molecular toolbox of genome editing approaches.
Analytical model and figures of merit for filtered Microwave Photonic Links.
Gasulla, Ivana; Capmany, José
2011-09-26
The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America
Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya
2008-01-01
This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.
NASA Astrophysics Data System (ADS)
Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.
2012-01-01
A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.
Recreating the synthesis of starch granules in yeast
Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C
2016-01-01
Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361
Non-thermalization in trapped atomic ion spin chains
NASA Astrophysics Data System (ADS)
Hess, P. W.; Becker, P.; Kaplan, H. B.; Kyprianidis, A.; Lee, A. C.; Neyenhuis, B.; Pagano, G.; Richerme, P.; Senko, C.; Smith, J.; Tan, W. L.; Zhang, J.; Monroe, C.
2017-10-01
Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.
Non-thermalization in trapped atomic ion spin chains.
Hess, P W; Becker, P; Kaplan, H B; Kyprianidis, A; Lee, A C; Neyenhuis, B; Pagano, G; Richerme, P; Senko, C; Smith, J; Tan, W L; Zhang, J; Monroe, C
2017-12-13
Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).
Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...
2015-11-04
Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
Study of liquid and vapor flow into a Centaur capillary device
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Risberg, J. A.
1979-01-01
The following areas of liquid and vapor flow were analyzed and experimentally evaluated; 1) the refilling of capillary devices with settled liquid, and 2) vapor flow across wetted screens. These investigations resulted in: 1) the development of a versatile computer program that was successfully correlated with test data and used to predict Centaur D-1S LO2 and LH2 start basket refilling; 2) the development of a semi-empirical model that was only partially correlated with data due to difficulties in obtaining repeatable test results. Also, a comparison was made to determine the best propellant management system for the Centaur D-1S vehicle. The comparison identified the basline Centaur D-1S system (using pressurization, boost pumps and propellant settling) as the best candidate based on payload weight penalty. However, other comparison criteria and advanced mission condition were identified where pressure fed systems, thermally subcooled boost pumps and capillary devices would be selected as attractive alternatives.
Practical Guide for Ascidian Microinjection: Phallusia mammillata.
Yasuo, Hitoyoshi; McDougall, Alex
2018-01-01
Phallusia mammillata has recently emerged as a new ascidian model. Its unique characteristics, including the optical transparency of eggs and embryos and efficient translation of exogenously introduced mRNA in eggs, make the Phallusia system suitable for fluorescent protein (FP)-based imaging approaches. In addition, genomic and transcriptomic resources are readily available for this ascidian species, facilitating functional gene studies. Microinjection is probably the most versatile technique for introducing exogenous molecules such as plasmids, mRNAs, and proteins into ascidian eggs/embryos. However, it is not practiced widely within the community; presumably, because the system is rather laborious to set up and it requires practice. Here, we describe in as much detail as possible two microinjection methods that we use daily in the laboratory: one based on an inverted microscope and the other on a stereomicroscope. Along the stepwise description of system setup and injection procedure, we provide practical tips in the hope that this chapter might be a useful guide for introducing or improving a microinjection setup.
Booly: a new data integration platform.
Do, Long H; Esteves, Francisco F; Karten, Harvey J; Bier, Ethan
2010-10-13
Data integration is an escalating problem in bioinformatics. We have developed a web tool and warehousing system, Booly, that features a simple yet flexible data model coupled with the ability to perform powerful comparative analysis, including the use of Boolean logic to merge datasets together, and an integrated aliasing system to decipher differing names of the same gene or protein. Furthermore, Booly features a collaborative sharing system and a public repository so that users can retrieve new datasets while contributors can easily disseminate new content. We illustrate the uses of Booly with several examples including: the versatile creation of homebrew datasets, the integration of heterogeneous data to identify genes useful for comparing avian and mammalian brain architecture, and generation of a list of Food and Drug Administration (FDA) approved drugs with possible alternative disease targets. The Booly paradigm for data storage and analysis should facilitate integration between disparate biological and medical fields and result in novel discoveries that can then be validated experimentally. Booly can be accessed at http://booly.ucsd.edu.
Booly: a new data integration platform
2010-01-01
Background Data integration is an escalating problem in bioinformatics. We have developed a web tool and warehousing system, Booly, that features a simple yet flexible data model coupled with the ability to perform powerful comparative analysis, including the use of Boolean logic to merge datasets together, and an integrated aliasing system to decipher differing names of the same gene or protein. Furthermore, Booly features a collaborative sharing system and a public repository so that users can retrieve new datasets while contributors can easily disseminate new content. Results We illustrate the uses of Booly with several examples including: the versatile creation of homebrew datasets, the integration of heterogeneous data to identify genes useful for comparing avian and mammalian brain architecture, and generation of a list of Food and Drug Administration (FDA) approved drugs with possible alternative disease targets. Conclusions The Booly paradigm for data storage and analysis should facilitate integration between disparate biological and medical fields and result in novel discoveries that can then be validated experimentally. Booly can be accessed at http://booly.ucsd.edu. PMID:20942966
Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid
Marshall, David C.; Hill, Kathy B. R.
2009-01-01
Background In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. Methodology/Principal Findings We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. Conclusions/Significance We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species. PMID:19142230
Levi, Carmit Shani; Lesmes, Uri
2014-10-01
The world's population is inevitably ageing thanks to modern progress; however, the development of food and oral formulations tailored to the needs of the elderly is still in its infancy. In vitro digestion models offer high throughput, robust and practically ethics free evaluation of the digestive fate of ingested products. To date, no data have been made publicly available to facilitate the development or application of an in vitro model mirroring the physicochemical conditions of the elderly gastrointestinal system. This study reports the development of a novel and highly bio-relevant in vitro model based on two serially connected bioreactors recreating the dynamic conditions of the adult or elderly alimentary canal. This report and its supplementary material describe in detail the set-up of the system, the applied physicochemical parameters and the development of the controlling software. These are intended to openly depict a versatile platform, which could assist future efforts to develop age-tailored oral formulations. SDS-PAGE analyses of samples collected from the in vitro digestion of β-lactoglobulin, α-lactalbumin and lactoferrin suggest the bioaccessibility of "slow digesting" and "fast digesting" proteins identified in adult models do not necessarily maintain this trait under elderly gastro-intestinal conditions. Overall, this study brings forward a new generic yet advanced model that could facilitate age-tailoring the digestive fate of liquid formulations.
The noisy edge of traveling waves
Hallatschek, Oskar
2011-01-01
Traveling waves are ubiquitous in nature and control the speed of many important dynamical processes, including chemical reactions, epidemic outbreaks, and biological evolution. Despite their fundamental role in complex systems, traveling waves remain elusive because they are often dominated by rare fluctuations in the wave tip, which have defied any rigorous analysis so far. Here, we show that by adjusting nonlinear model details, noisy traveling waves can be solved exactly. The moment equations of these tuned models are closed and have a simple analytical structure resembling the deterministic approximation supplemented by a nonlocal cutoff term. The peculiar form of the cutoff shapes the noisy edge of traveling waves and is critical for the correct prediction of the wave speed and its fluctuations. Our approach is illustrated and benchmarked using the example of fitness waves arising in simple models of microbial evolution, which are highly sensitive to number fluctuations. We demonstrate explicitly how these models can be tuned to account for finite population sizes and determine how quickly populations adapt as a function of population size and mutation rates. More generally, our method is shown to apply to a broad class of models, in which number fluctuations are generated by branching processes. Because of this versatility, the method of model tuning may serve as a promising route toward unraveling universal properties of complex discrete particle systems. PMID:21187435
NASA Astrophysics Data System (ADS)
Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.
2008-02-01
The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).
Olsen, Aaron M; Camp, Ariel L; Brainerd, Elizabeth L
2017-12-15
The planar, one degree of freedom (1-DoF) four-bar linkage is an important model for understanding the function, performance and evolution of numerous biomechanical systems. One such system is the opercular mechanism in fishes, which is thought to function like a four-bar linkage to depress the lower jaw. While anatomical and behavioral observations suggest some form of mechanical coupling, previous attempts to model the opercular mechanism as a planar four-bar have consistently produced poor model fits relative to observed kinematics. Using newly developed, open source mechanism fitting software, we fitted multiple three-dimensional (3D) four-bar models with varying DoF to in vivo kinematics in largemouth bass to test whether the opercular mechanism functions instead as a 3D four-bar with one or more DoF. We examined link position error, link rotation error and the ratio of output to input link rotation to identify a best-fit model at two different levels of variation: for each feeding strike and across all strikes from the same individual. A 3D, 3-DoF four-bar linkage was the best-fit model for the opercular mechanism, achieving link rotational errors of less than 5%. We also found that the opercular mechanism moves with multiple degrees of freedom at the level of each strike and across multiple strikes. These results suggest that active motor control may be needed to direct the force input to the mechanism by the axial muscles and achieve a particular mouth-opening trajectory. Our results also expand the versatility of four-bar models in simulating biomechanical systems and extend their utility beyond planar or single-DoF systems. © 2017. Published by The Company of Biologists Ltd.
Methodological Developments in Geophysical Assimilation Modeling
NASA Astrophysics Data System (ADS)
Christakos, George
2005-06-01
This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to investigate critical issues related to knowledge reliability, such as uncertainty due to model structure error (conceptual uncertainty).
Secreting and sensing the same molecule allows cells to achieve versatile social behaviors
Youk, Hyun; Lim, Wendell A.
2014-01-01
Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the functional capabilities of the core ‘secrete-and-sense’ circuit motif shared by these cells, we engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element revealed parameters that control the degree to which the cell communicated with itself versus with its neighbors. This tunable interplay of self- and neighbor-communication enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial by responding only to itself, social through quorum sensing and an isogenic population of cells splitting into social and asocial subpopulations. A mathematical model explained these behaviors. The versatility of the secrete-and-sense circuit motif may explain its recurrence across species. PMID:24503857
Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.
Peña, Jennifer M; Carrillo, Mayra A; Hallem, Elissa A
2015-03-01
Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fiscal output data produce versatile graphic-numeric charts
NASA Technical Reports Server (NTRS)
Powell, R. W.; Romo, J. J.
1971-01-01
Refined computerized plotting system produces low-cost graphic-numeric charts that illustrate fiscal data on monthly incremental or cumulative basis, or both. Output is in the form of hard copy or microfilm, or visual-aid transparencies prepared from hard copy for rapid management status presentations.
Using the Microcomputer to Develop Listening Skills.
ERIC Educational Resources Information Center
Mohler, Stephen C.
A college-level introductory Spanish instructional system uses an interactive combination of microcomputer and program-stop tape recorder to enhance students' listening skills. The basic content is listening drills, adapted to the computer medium. Microcomputer use adds considerable versatility to instructional materials, including such features…
Acoustic Purification of Extracellular Microvesicles
Lee, Kyungheon; Shao, Huilin; Weissleder, Ralph; Lee, Hakho
2015-01-01
Microvesicles (MVs) are an increasingly important source for biomarker discovery and clinical diagnostics. The small size of MVs and their presence in complex biological environment, however, pose practical technical challenges, particularly when sample volumes are small. We herein present an acoustic nano-filter system that size-specifically separates MVs in a continuous and contact-free manner. The separation is based on ultrasound standing waves that exert differential acoustic force on MVs according to their size and density. By optimizing the design of the ultrasound transducers and underlying electronics, we were able to achieve a high separation yield and resolution. The “filter size-cutoff” can be controlled electronically in situ and enables versatile MV-size selection. We applied the acoustic nano-filter to isolate nanoscale (<200 nm) vesicles from cell culture media as well as MVs in stored red blood cell products. With the capacity for rapid and contact-free MV isolation, the developed system could become a versatile preparatory tool for MV analyses. PMID:25672598
Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Evans-Holm, Martha; Carlson, Joseph W.; Levis, Robert W.; Spradling, Allan C.; Hoskins, Roger A.; Bellen, Hugo J.
2011-01-01
We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit. PMID:21985007
Advanced design for orbital debris removal in support of solar system exploration
NASA Technical Reports Server (NTRS)
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.
NASA Astrophysics Data System (ADS)
J. Chung, K.; H. An, Y.; K. Jung, B.; Y. Lee, H.; C., Sung; S. Na, Y.; S. Hahm, T.; S. Hwang, Y.
2013-03-01
A new spherical torus called VEST (Versatile Experiment Spherical Torus) is designed, constructed and successfully commissioned at Seoul National University. A unique design feature of the VEST is two partial solenoid coils installed at both vertical ends of a center stack, which can provide sufficient magnetic fluxes to initiate tokamak plasmas while keeping a low aspect ratio configuration in the central region. According to initial double null merging start-up scenario using the partial solenoid coils, appropriate power supplies for driving a toroidal field coil, outer poloidal field coils, and the partial solenoid coils are fabricated and successfully commissioned. For reliable start-up, a pre-ionization system with two cost-effective homemade magnetron power supplies is also prepared. In addition, magnetic and spectroscopic diagnostics with appropriate data acquisition and control systems are well prepared for initial operation of the device. The VEST is ready for tokamak plasma operation by completing and commissioning most of the designed components.
Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan
2016-04-21
Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.
Casellato, Claudia; Ferrante, Simona; Gandolla, Marta; Volonterio, Nicola; Ferrigno, Giancarlo; Baselli, Giuseppe; Frattini, Tiziano; Martegani, Alberto; Molteni, Franco; Pedrocchi, Alessandra
2010-09-23
Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters.Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability.We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected.
2010-01-01
Background Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters. Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task. Methods The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability. We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis. Results Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement. Conclusions The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected. PMID:20863391
Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-09-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.
Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152
Evaluation of FNS control systems: software development and sensor characterization.
Riess, J; Abbas, J J
1997-01-01
Functional Neuromuscular Stimulation (FNS) systems activate paralyzed limbs by electrically stimulating motor neurons. These systems have been used to restore functions such as standing and stepping in people with thoracic level spinal cord injury. Research in our laboratory is directed at the design and evaluation of the control algorithms for generating posture and movement. This paper describes software developed for implementing FNS control systems and the characterization of a sensor system used to implement and evaluate controllers in the laboratory. In order to assess FNS control algorithms, we have developed a versatile software package using Lab VIEW (National Instruments, Corp). This package provides the ability to interface with sensor systems via serial port or A/D board, implement data processing and real-time control algorithms, and interface with neuromuscular stimulation devices. In our laboratory, we use the Flock of Birds (Ascension Technology Corp.) motion tracking sensor system to monitor limb segment position and orientation (6 degrees of freedom). Errors in the sensor system have been characterized and nonlinear polynomial models have been developed to account for these errors. With this compensation, the error in the distance measurement is reduced by 90 % so that the maximum error is less than 1 cm.
Aerospace applications of SINDA/FLUINT at the Johnson Space Center
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Bellmore, Phillip E.; Andish, Kambiz K.; Keller, John R.
1992-01-01
SINDA/FLUINT has been found to be a versatile code for modeling aerospace systems involving single or two-phase fluid flow and all modes of heat transfer. Several applications of SINDA/FLUINT are described in this paper. SINDA/FLUINT is being used extensively to model the single phase water loops and the two-phase ammonia loops of the Space Station Freedom active thermal control system (ATCS). These models range from large integrated system models with multiple submodels to very detailed subsystem models. An integrated Space Station ATCS model has been created with ten submodels representing five water loops, three ammonia loops, a Freon loop and a thermal submodel representing the air loop. The model, which has approximately 800 FLUINT lumps and 300 thermal nodes, is used to determine the interaction between the multiple fluid loops which comprise the Space Station ATCS. Several detailed models of the flow-through radiator subsystem of the Space Station ATCS have been developed. One model, which has approximately 70 FLUINT lumps and 340 thermal nodes, provides a representation of the ATCS low temperature radiator array with two fluid loops connected only by conduction through the radiator face sheet. The detailed models are used to determine parameters such as radiator fluid return temperature, fin efficiency, flow distribution and total heat rejection for the baseline design as well as proposed alternate designs. SINDA/FLUINT has also been used as a design tool for several systems using pressurized gasses. One model examined the pressurization and depressurization of the Space Station airlock under a variety of operating conditions including convection with the side walls and internal cooling. Another model predicted the performance of a new generation of manned maneuvering units. This model included high pressure gas depressurization, internal heat transfer and supersonic thruster equations. The results of both models were used to size components, such as the heaters and gas bottles and also to point to areas where hardware testing was needed.
Modeling Mendel's Laws on Inheritance in Computational Biology and Medical Sciences
ERIC Educational Resources Information Center
Singh, Gurmukh; Siddiqui, Khalid; Singh, Mankiran; Singh, Satpal
2011-01-01
The current research article is based on a simple and practical way of employing the computational power of widely available, versatile software MS Excel 2007 to perform interactive computer simulations for undergraduate/graduate students in biology, biochemistry, biophysics, microbiology, medicine in college and university classroom setting. To…
Introducing DeBRa: a detailed breast model for radiological studies
NASA Astrophysics Data System (ADS)
Ma, Andy K. W.; Gunn, Spencer; Darambara, Dimitra G.
2009-07-01
Currently, x-ray mammography is the method of choice in breast cancer screening programmes. As the mammography technology moves from 2D imaging modalities to 3D, conventional computational phantoms do not have sufficient detail to support the studies of these advanced imaging systems. Studies of these 3D imaging systems call for a realistic and sophisticated computational model of the breast. DeBRa (Detailed Breast model for Radiological studies) is the most advanced, detailed, 3D computational model of the breast developed recently for breast imaging studies. A DeBRa phantom can be constructed to model a compressed breast, as in film/screen, digital mammography and digital breast tomosynthesis studies, or a non-compressed breast as in positron emission mammography and breast CT studies. Both the cranial-caudal and mediolateral oblique views can be modelled. The anatomical details inside the phantom include the lactiferous duct system, the Cooper ligaments and the pectoral muscle. The fibroglandular tissues are also modelled realistically. In addition, abnormalities such as microcalcifications, irregular tumours and spiculated tumours are inserted into the phantom. Existing sophisticated breast models require specialized simulation codes. Unlike its predecessors, DeBRa has elemental compositions and densities incorporated into its voxels including those of the explicitly modelled anatomical structures and the noise-like fibroglandular tissues. The voxel dimensions are specified as needed by any study and the microcalcifications are embedded into the voxels so that the microcalcification sizes are not limited by the voxel dimensions. Therefore, DeBRa works with general-purpose Monte Carlo codes. Furthermore, general-purpose Monte Carlo codes allow different types of imaging modalities and detector characteristics to be simulated with ease. DeBRa is a versatile and multipurpose model specifically designed for both x-ray and γ-ray imaging studies.
Ebert, Lars Christian; Ptacek, Wolfgang; Naether, Silvio; Fürst, Martin; Ross, Steffen; Buck, Ursula; Weber, Stefan; Thali, Michael
2010-03-01
The Virtopsy project, a multi-disciplinary project that involves forensic science, diagnostic imaging, computer science, automation technology, telematics and biomechanics, aims to develop new techniques to improve the outcome of forensic investigations. This paper presents a new approach in the field of minimally invasive virtual autopsy for a versatile robotic system that is able to perform three-dimensional (3D) surface scans as well as post mortem image-guided soft tissue biopsies. The system consists of an industrial six-axis robot with additional extensions (i.e. a linear axis to increase working space, a tool-changing system and a dedicated safety system), a multi-slice CT scanner with equipment for angiography, a digital photogrammetry and 3D optical surface-scanning system, a 3D tracking system, and a biopsy end effector for automatic needle placement. A wax phantom was developed for biopsy accuracy tests. Surface scanning times were significantly reduced (scanning times cut in half, calibration three times faster). The biopsy module worked with an accuracy of 3.2 mm. Using the Virtobot, the surface-scanning procedure could be standardized and accelerated. The biopsy module is accurate enough for use in biopsies in a forensic setting. The Virtobot can be utilized for several independent tasks in the field of forensic medicine, and is sufficiently versatile to be adapted to different tasks in the future. (c) 2009 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Cassandro, Vincent J.; Simonton, Dean Keith
2010-01-01
Creative individuals are considered "versatile" when their achievements extend beyond their most commonly cited domain, thus indicating remarkable and varied interests and abilities. The present study examined the association between versatility and (a) the personalities of eminent creators and (b) the topical diversity of their creative products.…
Metadynamics Enhanced Markov Modeling of Protein Dynamics.
Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard
2018-05-31
Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.
Progress in Finite Element Modeling of the Lower Extremities
2015-06-01
bending and subsequent injury , e.g., the distal tibia motion results in bending of the tibia rather than the tibia rotating about the knee joint...layers, rich anisotropy, and wide variability. Developing a model for predictive injury capability, therefore, needs to be versatile and flexible to... injury capability presents many challenges, the first of which is identifying the types of conditions where injury prediction is needed. Our focus
AI/OR computational model for integrating qualitative and quantitative design methods
NASA Technical Reports Server (NTRS)
Agogino, Alice M.; Bradley, Stephen R.; Cagan, Jonathan; Jain, Pramod; Michelena, Nestor
1990-01-01
A theoretical framework for integrating qualitative and numerical computational methods for optimally-directed design is described. The theory is presented as a computational model and features of implementations are summarized where appropriate. To demonstrate the versatility of the methodology we focus on four seemingly disparate aspects of the design process and their interaction: (1) conceptual design, (2) qualitative optimal design, (3) design innovation, and (4) numerical global optimization.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Feng, Yuanming; Wang, Wei; Yang, Chengwen; Wang, Ping
2017-03-01
A novel and versatile “bottom-up” approach is developed to estimate the radiobiological effect of clinic radiotherapy. The model consists of multi-scale Monte Carlo simulations from organ to cell levels. At cellular level, accumulated damages are computed using a spectrum-based accumulation algorithm and predefined cellular damage database. The damage repair mechanism is modeled by an expanded reaction-rate two-lesion kinetic model, which were calibrated through replicating a radiobiological experiment. Multi-scale modeling is then performed on a lung cancer patient under conventional fractionated irradiation. The cell killing effects of two representative voxels (isocenter and peripheral voxel of the tumor) are computed and compared. At microscopic level, the nucleus dose and damage yields vary among all nucleuses within the voxels. Slightly larger percentage of cDSB yield is observed for the peripheral voxel (55.0%) compared to the isocenter one (52.5%). For isocenter voxel, survival fraction increase monotonically at reduced oxygen environment. Under an extreme anoxic condition (0.001%), survival fraction is calculated to be 80% and the hypoxia reduction factor reaches a maximum value of 2.24. In conclusion, with biological-related variations, the proposed multi-scale approach is more versatile than the existing approaches for evaluating personalized radiobiological effects in radiotherapy.
PACE 2: Pricing and Cost Estimating Handbook
NASA Technical Reports Server (NTRS)
Stewart, R. D.; Shepherd, T.
1977-01-01
An automatic data processing system to be used for the preparation of industrial engineering type manhour and material cost estimates has been established. This computer system has evolved into a highly versatile and highly flexible tool which significantly reduces computation time, eliminates computational errors, and reduces typing and reproduction time for estimators and pricers since all mathematical and clerical functions are automatic once basic inputs are derived.
Northeast Artificial Intelligence Consortium (NAIC) Review of Technical Tasks. Volume 2, Part 1.
1987-07-01
34- . 6.2 Transformation Invariant Attributes for S Digitized Object Outlines ................................. 469 6.3 Design of an Inference Engine for an...Attributes for Digital Object Outlines ...................................... 597 7 SPEECH UNDERSTANDING RESEARCH ( Rochester Institute of Technology...versatile maintenance expert system ES) for trouble-shooting--’ digital circuits. +" Some diagnosis systems, such as MYCLN [19] for medical diagnosis and CRIB
Self-Mixing Thin-Slice Solid-State Laser Metrology
Otsuka, Kenju
2011-01-01
This paper reviews the dynamic effect of thin-slice solid-state lasers subjected to frequency-shifted optical feedback, which led to the discovery of the self-mixing modulation effect, and its applications to quantum-noise-limited versatile laser metrology systems with extreme optical sensitivity. PMID:22319406
CCDs in the Mechanics Lab--A Competitive Alternative? (Part I).
ERIC Educational Resources Information Center
Pinto, Fabrizio
1995-01-01
Reports on the implementation of a relatively low-cost, versatile, and intuitive system to teach basic mechanics based on the use of a Charge-Coupled Device (CCD) camera and inexpensive image-processing and analysis software. Discusses strengths and limitations of CCD imaging technologies. (JRH)
ERIC Educational Resources Information Center
Marsh, Fred E., Jr.
1982-01-01
Identifies and describes the major areas of videodisc technology; discusses the operation, reliability, storage capacities, and applications of two types of laser systems; and illustrates the versatility of the optical digital disc through a description of its ability to digitize large bodies of data. Included are six figures and three tables.…
Using Microcomputers for Cognitive Rehabilitation.
ERIC Educational Resources Information Center
Gianutsos, Rosamond
Many useful diagnostic procedures and therapeutic exercises associated with cognitive therapy can be conducted with a popular interactive computing system such as that in use at Bellevue Hospital. When purchasing a computer for this purpose versatility and availability of software, serviceability, modularity, and speed are factors to take into…
How to Set Up an Electronic Bulletin Board.
ERIC Educational Resources Information Center
Lukas, Terrence
1981-01-01
Describes a versatile, inexpensive information system using microcomputers and television sets which enables Indiana University Northwest to relay information for students to different sites simultaneously and to update information quickly and easily. Illustrates how to set up the hardware, discusses programing, and includes the actual program…
Test Operations Procedure (TOP) 02-1-100 Anthropomorphic Test Device Operation and Setup
2016-02-09
using the Data Acquisition for Anthropomorphic Test Devices (D4D) in vehicle vulnerability testing. The D4D is an onboard data acquisition system ( DAS ...for Anthropomorphic Test Devices (D4D)** in vehicle vulnerability testing. The D4D is an onboard data acquisition system ( DAS ) that is intended for...use with the Hybrid II/III ATD’s. The D4D was developed to augment the existing DAS system, the legacy Versatile Information Systems Integrated On
Nuclear medicine imaging system
Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.
1983-03-11
It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.
Versatile Miniature Tunable Liquid Lenses Using Transparent Graphene Electrodes.
Shahini, Ali; Xia, Jinjun; Zhou, Zhixian; Zhao, Yang; Cheng, Mark Ming-Cheng
2016-02-16
This paper presents, for the first time, versatile and low-cost miniature liquid lenses with graphene as electrodes. Tunable focal length is achieved by changing the droplet curvature using electrowetting on dielectric (EWOD). Ionic liquid and KCl solution are utilized as lens liquid on the top of a flexible Teflon-coated PDMS/parylene membrane. Transparent and flexible, graphene allows transmission of visible light as well as large deformation of the polymer membrane to achieve requirements for different lens designs and to increase the field of view without damaging of electrodes. The tunable range for the focal length is between 3 and 7 mm for a droplet with a volume of 3 μL. The visualization of bone marrow dendritic cells is demonstrated by the liquid lens system with a high resolution (456 lp/mm).
Trost, Barry M; Chan, Vincent S; Yamamoto, Daisuke
2010-04-14
A highly enantioselective method for the catalytic addition of terminal 1,3-diynes to aldehydes was developed using our dinuclear zinc ProPhenol (1) system. Furthermore, triphenylphosphine oxide was found to interact synergistically with the catalyst to substantially enhance the chiral recognition. The generality of this catalytic transformation was demonstrated with aryl, alpha,beta-unsaturated and saturated aldehydes, of which the latter were previously limited in alkynyl zinc additions. The chiral diynol products are also versatile building blocks that can be readily elaborated; this was illustrated through highly selective trans-hydrosilylations, which enabled the synthesis of a beta-hydroxyketone and enyne. Additionally, the development of this method allowed for the rapid total syntheses of several biologically important diynol-containing natural products.
NASA Astrophysics Data System (ADS)
Gu, L.
2017-12-01
In this study, we examine responses of sun-induced chlorophyll fluorescence to biological and environmental variations measured with a versatile Fluorescence Auto-Measurement Equipment (FAME). FAME was developed to automatically and continuously measure chlorophyll fluorescence (F) of a leaf, plant or canopy in both laboratory and field environments, excited by either artificial light source or sunlight. FAME is controlled by a datalogger and allows simultaneous measurements of environmental variables complementary to the F signals. A built-in communication system allows FAME to be remotely monitored and data-downloaded. Radiance and irradiance calibrations can be done online. FAME has been applied in a variety of environments, allowing an investigation of biological and environmental controls on F emission.
A versatile cis-acting inverter module for synthetic translational switches.
Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide
2013-01-01
Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.
Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine
Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.
2009-01-01
Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154