Science.gov

Sample records for versatile model system

  1. Origami: A Versatile Modeling System for Visualising Chemical Structure and Exploring Molecular Function

    ERIC Educational Resources Information Center

    Davis, James; Leslie, Ray; Billington, Susan; Slater, Peter R.

    2010-01-01

    The use of "Origami" is presented as an accessible and transferable modeling system through which to convey the intricacies of molecular shape and highlight structure-function relationships. The implementation of origami has been found to be a versatile alternative to conventional ball-and-stick models, possessing the key advantages of being both…

  2. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies.

    PubMed

    Wen, Wan-Shun; Yuan, Zhi-Min; Ma, Shi-Jie; Xu, Jiang; Yuan, Dong-Tang

    2016-03-15

    The RNA-guided nuclease CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) and its variants such as nickase Cas9, dead Cas9, guide RNA scaffolds and RNA-targeting Cas9 are convenient and versatile platforms for site-specific genome editing and epigenome modulation. They are easy-to-use, simple-to-design and capable of targeting multiple loci simultaneously. Given that cancer develops from cumulative genetic and epigenetic alterations, CRISPR-Cas9 and its variants (hereafter referred to as CRISPR-Cas9 systems) hold extensive application potentials in cancer modeling and therapy. To date, they have already been applied to model oncogenic mutations in cell lines (e.g., Choi and Meyerson, Nat Commun 2014;5:3728) and in adult animals (e.g., Xue et al., Nature 2014;514:380-4), as well as to combat cancer by disabling oncogenic viruses (e.g., Hu et al., Biomed Res Int 2014;2014:612823) or by manipulating cancer genome (e.g., Liu et al., Nat Commun 2014;5:5393). Given the importance of epigenome and transcriptome in tumourigenesis, manipulation of cancer epigenome and transcriptome for cancer modeling and therapy is a promising area in the future. Whereas (epi)genetic modifications of cancer microenvironment with CRISPR-Cas9 systems for therapeutic purposes represent another promising area in cancer research. Herein, we introduce the functions and mechanisms of CRISPR-Cas9 systems in genome editing and epigenome modulation, retrospect their applications in cancer modelling and therapy, discuss limitations and possible solutions and propose future directions, in hope of providing concise and enlightening information for readers interested in this area. © 2015 UICC.

  3. The Yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins.

    PubMed

    Siggers, Keri A; Lesser, Cammie F

    2008-07-17

    Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.

  4. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening

    PubMed Central

    Rijal, Girdhari; Li, Weimin

    2017-01-01

    Most of the anticancer drug candidates entering preclinical trials fail to be approved for clinical applications. The following are among the main causes of these failures: studying molecular mechanisms of cancer development, identifying therapeutic targets, and testing drug candidates using inappropriate tissue culture models, which do not recapitulate the native microenvironment where the cancer cells originate. It has become clear that three-dimensional (3D) cell cultures are more biologically and clinically relevant than 2D models. The spatial and mechanical conditions of 3D cultures enable the cancer cells to display heterogeneous growth, assume diverse phenotypes, express distinct gene and protein products, and attain metastatic potential and resistance to drugs that are reminiscent of tumors in humans. However, the current 3D culture systems using synthetic polymers or selected components of the extracellular matrix (ECM) are defective (particularly the biophysical and biochemical properties of the native ECM) and remain distant to optimally support the signaling cue–oriented cell survival and growth. We introduce a reconstitutable tissue matrix scaffold (TMS) system fabricated using native tissue ECM, with tissue-like architecture and resilience. The structural and compositional properties of TMS favor robust cell survival, proliferation, migration, and invasion in culture and vascularized tumor formation in animals. The combination of porous and hydrogel TMS allows compartmental culture of cancerous and stromal cells, which are distinguishable by biomarkers. The response of the cancer cells grown on TMS to drugs well reflects animal and clinical observations. TMS enables more biologically relevant studies and is suitable for preclinical drug screening. PMID:28924608

  5. A versatile scalable PET processing system

    SciTech Connect

    H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman

    2011-06-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed tomore » accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.« less

  6. A versatile system for optical manipulation experiments

    NASA Astrophysics Data System (ADS)

    Hanstorp, Dag; Ivanov, Maksym; Alemán Hernández, Ademir F.; Enger, Jonas; Gallego, Ana M.; Isaksson, Oscar; Karlsson, Carl-Joar; Monroy Villa, Ricardo; Varghese, Alvin; Chang, Kelken

    2017-08-01

    In this paper a versatile experimental system for optical levitation is presented. Microscopic liquid droplets are produced on demand from piezo-electrically driven dispensers. The charge of the droplets is controlled by applying an electric field on the piezo-dispenser head. The dispenser releases droplets into a vertically focused laser beam. The size and position in 3 dimensions of trapped droplets are measured using two orthogonally placed high speed cameras. Alternatively, the vertical position is determined by imaging scattered light onto a position sensitive detector. The charge of a trapped droplets is determined by recording its motion when an electric field is applied, and the charge can be altered by exposing the droplet to a radioactive source or UV light. Further, spectroscopic information of the trapped droplet is obtained by imaging the droplet on the entrance slit of a spectrometer. Finally, the trapping cell can be evacuated, allowing investigations of droplet dynamics in vacuum. The system is utilized to study a variety of physical phenomena, and three pilot experiments are given in this paper. First, a system used to control and measure the charge of the droplet is presented. Second, it is demonstrated how particles can be made to rotate and spin by trapping them using optical vortices. Finally, the Raman spectra of trapped glycerol droplets are obtained and analyzed. The long term goal of this work is to create a system where interactions of droplets with the surrounding medium or with other droplets can be studied with full control of all physical variables.

  7. A Versatile Nonlinear Method for Predictive Modeling

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  8. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    SciTech Connect

    Bustard, Chad; Zweibel, Ellen G.; D’Onghia, Elena, E-mail: bustard@wisc.edu

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses,more » we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.« less

  9. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

    PubMed

    Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

    2016-01-01

    The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Versatile clinical information system design for emergency departments.

    PubMed

    Amouh, Teh; Gemo, Monica; Macq, Benoît; Vanderdonckt, Jean; El Gariani, Abdul Wahed; Reynaert, Marc S; Stamatakis, Lambert; Thys, Frédéric

    2005-06-01

    Compared to other hospital units, the emergency department presents some distinguishing characteristics of its own. Emergency health-care delivery is a collaborative process involving the contribution of several individuals who accomplish their tasks while working autonomously under pressure and sometimes with limited resources. Effective computerization of the emergency department information system presents a real challenge due to the complexity of the scenario. Current computerized support suffers from several problems, including inadequate data models, clumsy user interfaces, and poor integration with other clinical information systems. To tackle such complexity, we propose an approach combining three points of view, namely the transactions (in and out of the department), the (mono and multi) user interfaces and data management. Unlike current systems, we pay particular attention to the user-friendliness and versatility of our system. This means that intuitive user interfaces have been conceived and specific software modeling methodologies have been applied to provide our system with the flexibility and adaptability necessary for the individual and group coordinated tasks. Our approach has been implemented by prototyping a web-based, multiplatform, multiuser, and versatile clinical information system built upon multitier software architecture, using the Java programming language.

  11. Versatile monolithic 2-micron laser systems

    NASA Astrophysics Data System (ADS)

    Wysmolek, M.; Steinke, M.; Neumann, J.; Kracht, D.

    2018-02-01

    To answer a growing demand in development of high power pulsed and continuous wave sources at 2 micron spectral range we have participated in several projects, which resulted in a delivery of versatile monolithic sources providing picosecond, nanosecond and CW laser signal. As an example of pulsed sources we developed all-fiber monolithic devices based on a directly modulated laser diode and gain-switched laser diode to generate nanosecond and picosecond pulses, respectively, which are amplified in the same fiber amplifier chain up to 50 µJ with 96 ps and more than 1 mJ with pulses longer than 35 ns.

  12. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.

    PubMed

    Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2017-08-22

    A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.

  13. An Easily Constructed and Versatile Molecular Model

    NASA Astrophysics Data System (ADS)

    Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar

    1996-08-01

    Three-dimensional molecular models are powerful tools used in basic courses of general and organic chemistry when the students must visualize the spatial distributions of atoms in molecules and relate them to the physical and chemical properties of such molecules. This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves. These models are based upon two different types of arrays of thin flexible wires, like telephone hook-up wires, which may be bent easily but keep their shapes.

  14. High Efficiency Variable Speed Versatile Power Air Conditioning System

    DTIC Science & Technology

    2013-08-08

    Design concept applicable for wide range of HVAC and refrigeration systems • One TXV size can be used for a wide range of cooling capacity...versatility, can run from AC and DC sources Cooling load adaptive, variable Speed Fully operable up to 140 degrees Fahrenheit 15. SUBJECT TERMS 16. SECURITY...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 High Efficiency HVAC &R Technology

  15. A versatile modular vector system for rapid combinatorial mammalian genetics.

    PubMed

    Albers, Joachim; Danzer, Claudia; Rechsteiner, Markus; Lehmann, Holger; Brandt, Laura P; Hejhal, Tomas; Catalano, Antonella; Busenhart, Philipp; Gonçalves, Ana Filipa; Brandt, Simone; Bode, Peter K; Bode-Lesniewska, Beata; Wild, Peter J; Frew, Ian J

    2015-04-01

    Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.

  16. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  17. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  18. Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System

    NASA Astrophysics Data System (ADS)

    Ouyang, Mengxing; Hill, Winfield; Lee, Jung Hyun; Hur, Soojung Claire

    2017-03-01

    Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.

  19. DLR MiroSurge: a versatile system for research in endoscopic telesurgery.

    PubMed

    Hagn, Ulrich; Konietschke, R; Tobergte, A; Nickl, M; Jörg, S; Kübler, B; Passig, G; Gröger, M; Fröhlich, F; Seibold, U; Le-Tien, L; Albu-Schäffer, A; Nothhelfer, A; Hacker, F; Grebenstein, M; Hirzinger, G

    2010-03-01

    Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans. To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front-ends towards surgery and configurable interfaces for the surgeon. This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback. While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.

  20. Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs

    PubMed Central

    2015-01-01

    Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells. PMID:24779637

  1. A highly versatile and easily configurable system for plant electrophysiology.

    PubMed

    Gunsé, Benet; Poschenrieder, Charlotte; Rankl, Simone; Schröeder, Peter; Rodrigo-Moreno, Ana; Barceló, Juan

    2016-01-01

    In this study we present a highly versatile and easily configurable system for measuring plant electrophysiological parameters and ionic flow rates, connected to a computer-controlled highly accurate positioning device. The modular software used allows easy customizable configurations for the measurement of electrophysiological parameters. Both the operational tests and the experiments already performed have been fully successful and rendered a low noise and highly stable signal. Assembly, programming and configuration examples are discussed. The system is a powerful technique that not only gives precise measuring of plant electrophysiological status, but also allows easy development of ad hoc configurations that are not constrained to plant studies. •We developed a highly modular system for electrophysiology measurements that can be used either in organs or cells and performs either steady or dynamic intra- and extracellular measurements that takes advantage of the easiness of visual object-oriented programming.•High precision accuracy in data acquisition under electrical noisy environments that allows it to run even in a laboratory close to electrical equipment that produce electrical noise.•The system makes an improvement of the currently used systems for monitoring and controlling high precision measurements and micromanipulation systems providing an open and customizable environment for multiple experimental needs.

  2. Versatile all-digital time interval measuring system

    NASA Astrophysics Data System (ADS)

    Vyhlidal, David; Cech, Miroslav

    2011-06-01

    This paper describes a design and performance of a versatile all-digital time interval measuring system. The measurement method is based on an interpolation principle. In this principle the time interval is first roughly digitized by a coarse counter driven by a high stability reference clock and the fractions between the clock periods are measured by two Time-to-Digital Converter chips TDC-GPX manufactured by Acam messelectronic. Control circuits allow programmable customization of the system to satisfy many applications such as laser range finding, event counting, or time-of-flight measurements in various physics experiments. The system has two reference clocks inputs and two independent channels for measuring start and stop events. Only one 40 MHz reference is required for the measurement. The second reference can be, for example, 1 PPS (Pulse per Second) signal from a GPS (Global Positioning System) to time tag events. Time intervals are measured using the highest resolution mode of the TDC-GPX chips. The resolution of each chip is software programmable and is PLL (Phase Locked Loop) stabilized against temperature and voltage variations. The system can achieve a timing resolution better than 15 ps rms with up to 90 kHz repetition rate. The time interval measurement range is from 0 ps up to 1 second. The power consumption of the whole system is 18 W including an embedded computer board and an LCD (Liquid Crystal Display) screen. The embedded computer controls the whole system, collects and evaluates measurement data and with the display provides a user interface. The system is implemented using commercially available components.

  3. Zebrafish: A Versatile Animal Model for Fertility Research.

    PubMed

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun; Goh, Bey Hing

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  4. Zebrafish: A Versatile Animal Model for Fertility Research

    PubMed Central

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research. PMID:27556045

  5. Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems

    NASA Astrophysics Data System (ADS)

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru

    2017-11-01

    This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2  +  1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2  +  1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.

  6. [The GIPSY-RECPAM model: a versatile approach for integrated evaluation in cardiologic care].

    PubMed

    Carinci, F

    2009-01-01

    Tree-structured methodology applied for the GISSI-PSICOLOGIA project, although performed in the framework of earliest GISSI studies, represents a powerful tool to analyze different aspects of cardiologic care. The GISSI-PSICOLOGIA project has delivered a novel methodology based on the joint application of psychometric tools and sophisticated statistical techniques. Its prospective use could allow building effective epidemiological models relevant to the prognosis of the cardiologic patient. The various features of the RECPAM method allow a versatile use in the framework of modern e-health projects. The study used the Cognitive Behavioral Assessment H Form (CBA-H) psychometrics scales. The potential for its future application in the framework of Italian cardiology is relevant and particularly indicated to assist planning of systems for integrated care and routine evaluation of the cardiologic patient.

  7. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  8. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-09-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.

  9. A Versatile, User-Oriented, Computerized Library System.

    ERIC Educational Resources Information Center

    Neuron, Eric

    This paper deals with the problem of the referencing or storing methods in information systems which must be designed to allow for rapid retrieval of the key data leading to the desired information or the recovery of the information directly. Considered as a secondary, but frequently desirable, feature for the system is the ability to determine…

  10. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  11. A versatile microsatellite instability reporter system in human cells.

    PubMed

    Koole, Wouter; Schäfer, Henning S; Agami, Reuven; van Haaften, Gijs; Tijsterman, Marcel

    2013-09-01

    Here, we report the investigation of microsatellite instability (MSI) in human cells with a newly developed reporter system based on fluorescence. We composed a vector into which microsatellites of different lengths and nucleotide composition can be introduced between a functional copy of the fluorescent protein mCherry and an out-of-frame copy of EGFP; in vivo frameshifting will lead to EGFP expression, which can be quantified by fluorescence activated cell sorting (FACS). Via targeted recombineering, single copy reporters were introduced in HEK293 and MCF-7 cells. We found predominantly -1 and +1 base pair frameshifts, the levels of which are kept in tune by mismatch repair. We show that tract length and composition greatly influences MSI. In contrast, a tracts' potential to form a G-quadruplex structure, its strand orientation or its transcriptional status is not affecting MSI. We further validated the functionality of the reporter system for screening microsatellite mutagenicity of compounds and for identifying modifiers of MSI: using a retroviral miRNA expression library, we identified miR-21, which targets MSH2, as a miRNA that induces MSI when overexpressed. Our data also provide proof of principle for the strategy of combining fluorescent reporters with next-generation sequencing technology to identify genetic factors in specific pathways.

  12. High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles

    DTIC Science & Technology

    2013-08-01

    MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY , MICHIGAN High efficiency variable speed versatile power air conditioning system for...power draw was measured using a calibrated Watt meter. The schematic of the setup is shown in Figure 5 and the setup is shown in Figure 6. Figure...Rocky Research environmental chamber. Cooling Capacity was directly measured in Btu/hr or Watts via measuring the Air flow velocity and the air

  13. Versatile simulation testbed for rotorcraft speech I/O system design

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1986-01-01

    A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer command structure and features, feedback from the recognizer, and random access to controls via speech command.

  14. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Developments to Increase the Performance, Operational Versatility and Automation of a Lunar Surface Manipulation System

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Jones, Thomas C.; Doggett, William R.; Roithmayr, Carlos M.; King, Bruce D.; Mikulas, Marting M.

    2009-01-01

    The objective of this paper is to describe and summarize the results of the development efforts for the Lunar Surface Manipulation System (LSMS) with respect to increasing the performance, operational versatility, and automation. Three primary areas of development are covered, including; the expansion of the operational envelope and versatility of the current LSMS test-bed, the design of a second generation LSMS, and the development of automation and remote control capability. The first generation LSMS, which has been designed, built, and tested both in lab and field settings, is shown to have increased range of motion and operational versatility. Features such as fork lift mode, side grappling of payloads, digging and positioning of lunar regolith, and a variety of special end effectors are described. LSMS operational viability depends on bei nagble to reposition its base from an initial position on the lander to a mobility chassis or fixed locations around the lunar outpost. Preliminary concepts are presented for the second generation LSMS design, which will perform this self-offload capability. Incorporating design improvements, the second generation will have longer reach and three times the payload capability, yet it will have approximately equivalent mass to the first generation. Lastly, this paper covers improvements being made to the control system of the LSMS test-bed, which is currently operated using joint velocity control with visual cues. These improvements include joint angle sensors, inverse kinematics, and automated controls.

  16. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  17. Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1991-01-01

    A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.

  18. A versatile stereoscopic visual display system for vestibular and oculomotor research.

    PubMed

    Kramer, P D; Roberts, D C; Shelhamer, M; Zee, D S

    1998-01-01

    Testing of the vestibular system requires a vestibular stimulus (motion) and/or a visual stimulus. We have developed a versatile, low cost, stereoscopic visual display system, using "virtual reality" (VR) technology. The display system can produce images for each eye that correspond to targets at any virtual distance relative to the subject, and so require the appropriate ocular vergence. We elicited smooth pursuit, "stare" optokinetic nystagmus (OKN) and after-nystagmus (OKAN), vergence for targets at various distances, and short-term adaptation of the vestibulo-ocular reflex (VOR), using both conventional methods and the stereoscopic display. Pursuit, OKN, and OKAN were comparable with both methods. When used with a vestibular stimulus, VR induced appropriate adaptive changes of the phase and gain of the angular VOR. In addition, using the VR display system and a human linear acceleration sled, we adapted the phase of the linear VOR. The VR-based stimulus system not only offers an alternative to more cumbersome means of stimulating the visual system in vestibular experiments, it also can produce visual stimuli that would otherwise be impractical or impossible. Our techniques provide images without the latencies encountered in most VR systems. Its inherent versatility allows it to be useful in several different types of experiments, and because it is software driven it can be quickly adapted to provide a new stimulus. These two factors allow VR to provide considerable savings in time and money, as well as flexibility in developing experimental paradigms.

  19. A versatile system for the rapid collection, handling and graphics analysis of multidimensional data

    NASA Astrophysics Data System (ADS)

    O'Brien, P. M.; Moloney, G.; O'Connor, A.; Legge, G. J. F.

    1993-05-01

    The aim of this work was to provide a versatile system for handling multiparameter data that may arise from a variety of experiments — nuclear, AMS, microprobe elemental analysis, 3D microtomography etc. Some of the most demanding requirements arise in the application of microprobes to quantitative elemental mapping and to microtomography. A system to handle data from such experiments had been under continuous development and use at MARC for the past 15 years. It has now been made adaptable to the needs of multiparameter (or single parameter) experiments in general. The original system has been rewritten, greatly expanded and made much more powerful and faster, by use of modern computer technology — a VME bus computer with a real time operating system and a RISC workstation running Unix and the X Window system. This provides the necessary (i) power, speed and versatility, (ii) expansion and updating capabilities (iii) standardisation and adaptability, (iv) coherent modular programming structures, (v) ability to interface to other programs and (vi) transparent operation with several levels, involving the use of menus, programmed function keys and powerful macro programming facilities.

  20. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.

    PubMed

    Li, Zhendong; Chan, Garnet Kin-Lic

    2017-06-13

    , which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.

  1. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    PubMed

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  2. A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins

    PubMed Central

    Tastet, Christophe; Lescuyer, Pierre; Diemer, Hélène; Luche, Sylvie; van Dorsselaer, Alain; Rabilloud, Thierry

    2003-01-01

    A new, versatile, multiphasic buffer system for high resolution sodium dodecyl sulfatepolyacrylamide gel electrophoresis of proteins in the relative molecular weight Mw range of 300,000-3000 Da is described. The system, based on the theory of multiphasic zone electrophoresis, allows complete stacking and destacking of proteins in the above Mw range. The buffer system uses taurine and chloride as trailing and leading ion, respectively, and Tris, at a pH close to its pKa, as the buffering counter ion. Coupled with limited variation in the acrylamide concentration, this electrophoresis system allows to tailor the resolution in the 6–200 kDa Mw range, with minimal difficulties in the post electrophoretic identification processes. PMID:12783456

  3. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    NASA Astrophysics Data System (ADS)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  4. Versatile microwave-driven trapped ion spin system for quantum information processing

    PubMed Central

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof

    2016-01-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  5. Design and implementation of a versatile and variable-frequency piezoelectric coefficient measurement system.

    PubMed

    Wu, J S; Huang, Y K; Wu, F L; Lin, D Y

    2012-08-01

    We present a simple but versatile piezoelectric coefficient measurement system, which can measure the longitudinal and transverse piezoelectric coefficients in the pressing and bending modes, respectively, at different applied forces and a wide range of frequencies. The functionality of this measurement system has been demonstrated on three samples, including a PbZr(0.52)Ti(0.48)O(3) (PZT) piezoelectric ceramic bulk, a ZnO thin film, and a laminated piezoelectric film sensor. The static longitudinal piezoelectric coefficients of the PZT bulk and the ZnO film are estimated to be around 210 and 8.1 pC/N, respectively. The static transverse piezoelectric coefficients of the ZnO film and the piezoelectric film sensor are determined to be, respectively, -0.284 and -0.031 C/m(2).

  6. Utilizing ARC EMCS Seedling Cassettes as Highly Versatile Miniature Growth Chambers for Model Organism Experiments

    NASA Technical Reports Server (NTRS)

    Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David; Reinsch, S.; DeSimone, Julia C.; Myers, Zachary A.

    2014-01-01

    The aim of our ground testing was to demonstrate the capability of safely putting specific model organisms into dehydrated stasis, and to later rehydrate and successfully grow them inside flight proven ARC EMCS seedling cassettes. The ARC EMCS seedling cassettes were originally developed to support seedling growth during space flight. The seeds are attached to a solid substrate, launched dry, and then rehydrated in a small volume of media on orbit to initiate the experiment. We hypothesized that the same seedling cassettes should be capable of acting as culture chambers for a wide range of organisms with minimal or no modification. The ability to safely preserve live organisms in a dehydrated state allows for on orbit experiments to be conducted at the best time for crew operations and more importantly provides a tightly controlled physiologically relevant growth experiment with specific environmental parameters. Thus, we performed a series of ground tests that involved growing the organisms, preparing them for dehydration on gridded Polyether Sulfone (PES) membranes, dry storage at ambient temperatures for varying periods of time, followed by rehydration. Inside the culture cassettes, the PES membranes were mounted above blotters containing dehydrated growth media. These were mounted on stainless steel bases and sealed with plastic covers that have permeable membrane covered ports for gas exchange. The results showed we were able to demonstrate acceptable normal growth of C.elegans (nematodes), E.coli (bacteria), S.cerevisiae (yeast), Polytrichum (moss) spores and protonemata, C.thalictroides (fern), D.discoideum (amoeba), and H.dujardini (tardigrades). All organisms showed acceptable growth and rehydration in both petri dishes and culture cassettes initially, and after various time lengths of dehydration. At the end of on orbit ISS European Modular Cultivation System experiments the cassettes could be frozen at ultra-low temperatures, refrigerated, or chemically

  7. A facile approach to construct versatile signal amplification system for bacterial detection.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan

    2014-01-01

    In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.

  8. Versatile time-dependent spatial distribution model of sun glint for satellite-based ocean imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhang, Kai; Ma, Zhongqi; Wang, Jiwen; Zhang, Yue

    2017-01-01

    We propose a versatile model to describe the time-dependent spatial distribution of sun glint areas in satellite-based wave water imaging. This model can be used to identify whether the imaging is affected by sun glint and how strong the glint is. The observing geometry is calculated using an accurate orbit prediction method. The Cox-Munk model is used to analyze the bidirectional reflectance of wave water surface under various conditions. The effects of whitecaps and the reflectance emerging from the sea water have been considered. Using the moderate resolution atmospheric transmission radiative transfer model, we are able to effectively calculate the sun glint distribution at the top of the atmosphere. By comparing the modeled data with the medium resolution imaging spectrometer image and Feng Yun 2E (FY-2E) image, we have proven that the time-dependent spatial distribution of sun glint areas can be effectively predicted. In addition, the main factors in determining sun glint distribution and the temporal variation rules of sun glint have been discussed. Our model can be used to design satellite orbits and should also be valuable in either eliminating sun glint or making use of it.

  9. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  10. A versatile strategy for gene trapping and trap conversion in emerging model organisms.

    PubMed

    Kontarakis, Zacharias; Pavlopoulos, Anastasios; Kiupakis, Alexandros; Konstantinides, Nikolaos; Douris, Vassilis; Averof, Michalis

    2011-06-01

    Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom. Here, we present iTRAC, a versatile gene-trapping approach that combines the implementation of unbiased genetic screens with the generation of sophisticated genetic tools both in established and emerging model organisms. The approach utilises an exon-trapping transposon vector that carries an integrase docking site, allowing the targeted integration of new constructs into trapped loci. We provide proof of principle for iTRAC in the emerging model crustacean Parhyale hawaiensis: we generate traps that allow specific developmental and physiological processes to be visualised in unparalleled detail, we show that trapped genes can be easily cloned from an unsequenced genome, and we demonstrate targeting of new constructs into a trapped locus. Using this approach, gene traps can serve as platforms for generating diverse reporters, drivers for tissue-specific expression, gene knockdown and other genetic tools not yet imagined.

  11. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    PubMed Central

    Avery, James; Dowrick, Thomas; Faulkner, Mayo; Goren, Nir; Holder, David

    2017-01-01

    A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication. PMID:28146122

  12. Improving the viability and versatility of the E × B probe with an active cooling system

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Cai, Guobiao; You, Fengyi; Ren, Xiang; Zheng, Hongru; He, Bijiao

    2018-04-01

    A thermostatic E × B probe is designed to protect the probe body from the thermal effect of the plasma plume that has a significant influence on the resolution of the probe for high-power electric thrusters. An active cooling system, which consists of a cooling panel and carbon fiber felts combined with a recycling system of liquid coolants or an open-type system of gas coolants, is employed to realize the protection of the probe. The threshold for the design parameters for the active cooling system is estimated by deriving the energy transfer of the plasma plume-probe body interaction and the energy taken away by the coolants, and the design details are explained. The diagnostics of the LIPS-300 ion thruster with a power of 3 kW and a screen-grid voltage of 1450 V was implemented by the designed thermostatic E × B probe. The measured spectra illustrate that the thermostatic E × B probe can distinguish the fractions of Xe+ ions and Xe2+ ions without areas of overlap. In addition, the temperature of the probe body was less than 306 K in the beam region of the plasma plume during the 200-min-long continuous test. A thermostatic E × B probe is useful for enhancing the viability and versatility of equipment and for reducing uneconomical and complex test procedures.

  13. Improving the viability and versatility of the E × B probe with an active cooling system.

    PubMed

    Liu, Lihui; Cai, Guobiao; You, Fengyi; Ren, Xiang; Zheng, Hongru; He, Bijiao

    2018-04-01

    A thermostatic E × B probe is designed to protect the probe body from the thermal effect of the plasma plume that has a significant influence on the resolution of the probe for high-power electric thrusters. An active cooling system, which consists of a cooling panel and carbon fiber felts combined with a recycling system of liquid coolants or an open-type system of gas coolants, is employed to realize the protection of the probe. The threshold for the design parameters for the active cooling system is estimated by deriving the energy transfer of the plasma plume-probe body interaction and the energy taken away by the coolants, and the design details are explained. The diagnostics of the LIPS-300 ion thruster with a power of 3 kW and a screen-grid voltage of 1450 V was implemented by the designed thermostatic E × B probe. The measured spectra illustrate that the thermostatic E × B probe can distinguish the fractions of Xe + ions and Xe 2+ ions without areas of overlap. In addition, the temperature of the probe body was less than 306 K in the beam region of the plasma plume during the 200-min-long continuous test. A thermostatic E × B probe is useful for enhancing the viability and versatility of equipment and for reducing uneconomical and complex test procedures.

  14. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research.

    PubMed

    Staats, Stefanie; Lüersen, Kai; Wagner, Anika E; Rimbach, Gerald

    2018-04-18

    Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.

  15. AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system

    NASA Astrophysics Data System (ADS)

    Hamre, Børge; Stamnes, Snorre; Stamnes, Knut; Stamnes, Jakob

    2017-02-01

    Reliable, accurate, and efficient modeling of the transport of electromagnetic radiation in turbid media has important applications in the study of the Earth's climate by remote sensing. For example, such modeling is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol and cloud particles in the atmosphere, the dissolved organic and particulate biogeochemical matter in lakes, rivers, coastal, and open-ocean waters. It is also needed to simulate the performance of remote sensing detectors deployed on aircraft, balloons, and satellites as well as radiometric detectors deployed on buoys, gliders and other aquatic observing systems. Accurate radiative transfer modeling is also required to compute irradiances and scalar irradiances that are used to compute warming/cooling and photolysis rates in the atmosphere and primary production and warming/cooling rates in the water column. AccuRT is a radiative transfer model for the coupled atmosphere-water system that is designed to be a versatile tool for researchers in the ocean optics and remote sensing communities. It addresses the needs of researchers interested in analyzing irradiance and radiance measurements in the field and laboratory as well as those interested in making simulations of the top-of-the-atmosphere radiance in support of remote sensing algorithm development.

  16. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    PubMed

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  17. Versatile Optical Bench for Teaching, Development, and Testing of Electron and Ion Optical Systems

    ERIC Educational Resources Information Center

    Bhiday, M. R.; And Others

    1977-01-01

    Describes a versatile apparatus for demonstrating the imaging properties of various types of electrostatic lenses. The apparatus can be used to study the focusing properties of different types of electrostatic electron or ion lenses or their combinations. (MLH)

  18. Solid, Cystic, and Tubular: Novice Ultrasound Skills Training Using a Versatile, Affordable Practice Model.

    PubMed

    Sevak, Shruti; Lurvey, Benjamin; Woodfin, Ashley A; Hothem, Zachary; Callahan, Rose E; Robbins, James; Ziegler, Kathryn

    2018-04-09

    In spite of the recognized benefits of ultrasound, many physicians have little experience with using ultrasound to perform procedures. Many medical schools and residency programs lack a formal ultrasound training curriculum. We describe an affordable ultrasound training curriculum and versatile, inexpensive practice model. Participants underwent a didactic session to teach the theory required to perform ultrasound-guided procedures. Motor skills were taught using a practice model incorporating analogs of common anatomic and pathologic structures into an opacified gelatin substrate. The Marcia and Eugene Applebaum Simulation Learning Institute, Beaumont Hospital, Royal Oak, MI; a private nonprofit tertiary care hospital associated with the OUWB School of Medicine, Rochester, MI. The model was tested in a cohort of 50 medical students and general surgery residents. The gelatin model can be constructed for $1.03 per learner. The solid, cystic, and vascular structural analogs were readily identifiable on ultrasound and easily differentiated based on their echotextures. Eighty-four percent of participants successfully aspirated the cystic structure, 88% successfully biopsied a portion of the solid structure, and 76% successfully cannulated the tubular structure. Overall, 82% of participants achieved a passing score for the exercise based on a validated Objective Structured Assessment of Technical Skill instrument. There were no significant differences between the medical students and residents. This model can be used to teach basic ultrasound skills such as aspiration, biopsy, and vessel cannulation, providing a foundation for the use of ultrasound in a broad range of clinical procedures, as well as providing practice opportunities for medical students and residents to gain increased ultrasound competency and confidence. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. A versatile variable field module for Asylum Cypher scanning probe system

    NASA Astrophysics Data System (ADS)

    Liu, Hongxue; Comes, Ryan; Lu, Jiwei; Wolf, Stuart; Hodgson, Jim; Rutgers, Maarten

    2013-03-01

    Atomic force microscopy (AFM) has become one of the most widely used techniques for measuring and manipulating various characteristics of materials at the nanoscale. However, there are very limited option for the characterization of field dependence properties. In this work, we demonstrate a versatile variable field module (VFM) with magnetic field up to 1800 Oe for the Asylum Research Cypher system. The magnetic field is changed by adjusting the distance between a rare earth magnet and the AFM probe. A built-in Hall sensor makes it possible to perform in-situ measurements of the field. Rotating the magnet makes it possible to do angular field dependent measurements. The capability of the VFM system is demonstrated by degaussing a floppy disk media with increasing magnetic field. The written bits are erased at about 800 Oe. Angular dependence measurements clearly show the evolution of magnetic domain structures. A completely reversible magnetic force microscopy (MFM) phase contrast is observed when the magnetic field is rotated by 180°. Further demonstration of successful magnetic switching of CoFe2O4 pillars in CoFe2O4-BiFeO3 nanocomposites will be presented and field dependent MFM and piezoresponse force microscopy (PFM) will be discussed. The work at University of Virginia was supported by DARPA under contract no. HR-0011-10-1-0072.

  20. DEEM, a versatile platform of FRD measurement for highly multiplexed fibre systems in astronomy

    NASA Astrophysics Data System (ADS)

    Yan, Yunxiang; Yan, Qi; Wang, Gang; Sun, Weimin; Luo, A.-Li; Ma, Zhenyu; Zhang, Qiong; Li, Jian; Wang, Shuqing

    2018-06-01

    We present a new method of DEEM, the direct energy encircling method, for characterizing the performance of fibres in most astronomical spectroscopic applications. It is a versatile platform to measure focal ratio degradation (FRD), throughput, and point spread function. The principle of DEEM and the relation between the encircled energy and the spot size were derived and simulated based on the power distribution model (PDM). We analysed the errors of DEEM and pointed out the major error source for better understanding and optimization. The validation of DEEM has been confirmed by comparing the results with conventional method which shows that DEEM has good robustness with high accuracy in both stable and complex experiment environments. Applications on the integral field unit (IFU) show that the FRD of 50 μm core fibre is substandard for the requirement which requires the output focal ratio to be slower than 4.5. The homogeneity of throughput is acceptable and higher than 85 per cent. The prototype IFU of the first generation helps to find out the imperfections to optimize the new design of the next generation based on the staggered structure with 35 μm core fibres of N.A. = 0.12, which can improve the FRD performance. The FRD dependence on wavelength and core size is revealed that higher output focal ratio occurs at shorter wavelengths for large core fibres, which is in agreement with the prediction of PDM. But the dependence of the observed data is weaker than the prediction.

  1. Versatile optical system for static and dynamic thermomagnetic recording using a scanning laser microscope

    NASA Astrophysics Data System (ADS)

    Clegg, Warwick W.; Jenkins, David F. L.; Helian, Na; Windmill, James; Windmill, Robert

    2001-12-01

    Scanning Laser Microscopes (SLM) have been used to characterise the magnetic domain properties of various magnetic and magneto-optical materials. The SLM in our laboratory has been designed to enable both static and dynamic read-write operations to be performed on stationary media. In a conventional (static) SLM, data bits are recorded thermo-magnetically by focusing a pulse of laser light onto the sample surface. If the laser beam has a Gaussian intensity distribution (TEM00) then so will the focused laser spot. The resultant temperature profile will largely mirror the intensity distribution of the focused spot, and in the region where the temperature is sufficiently high for switching to occur, in the presence of bias field, a circular data bit will be recorded. However, in a real magneto-optical drive the bits are written onto non-stationary media, and the resultant bit will be non-circular. A versatile optical system has been developed to facilitate both recording and imaging of data bits. To simulate the action of a Magneto-Optical drive, the laser is pulsed via an Acousto-Optic Modulator, whilst being scanned across the sample using a galvanometer mounted mirror, thus imitating a storage medium rotating above a MO head with high relative velocity between the beam and medium. Static recording is simply achieved by disabling the galvanometer scan mirror. Polar magneto-optic Kerr effect images are acquired using multiple-segment photo-detectors for diffraction-limited scanned spot detection, with either specimen scanning for highest resolution or beam scanning for near real-time image acquisition. Results will be presented to illustrate the systems capabilities.

  2. Mantle properties and the MOR process: a new and versatile model for mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Osmaston, Miles

    2014-05-01

    Introduction. First I summarize the reasons why a radical departure from the current MOR model is now essential. I then outline the new model and its apparent versatility, not only in providing the observed contrasting spreading-rate-dependent characteristics but also some of the other common features of the MOR system which warrant clearer explanation. Ophiolites have been thought to provide on-land guidance but turn out to be a non-mid-ocean variant, outside the scope of this presentation. Seismic anisotropy and mantle mobility. Ever since the 1969 discovery [1] of seismic anisotropy in the uppermost oceanic mantle, this has been attributed to the shearing of olivine in a convectively driven MOR-divergent flow beneath the flanks. This would imply a high degree of rheological mobility of this mantle, but new constraints on its rheological properties and dynamical behaviour have come from two directions and need to be taken into account in forming a model. 1. Contrary to the seismologists' rule-book, the oceanic seismological Low Velocity Zone (LVZ) is no longer to be thought of as mobile, because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs which, we find, also has other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces, such as thermal convection. 2. My work on the global dynamic pattern for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle (660km). The metasomatism of kimberlite xenoliths from >180km depth suggests that the reason for this downwards extent of 'keels' is the same as [3]. Phase changes. Another geodynamically important property apparently

  3. Unmanned Aerial Systems as Versatile Tools for Atmospheric and Environmental Research

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos; Levin, Zev

    2013-04-01

    Unmanned Aerial Systems (UASs) are increasingly recognized as versatile tools for different earth-sciences applications providing chiefly a link between in-situ ground based measurements and satellite remote sensing observations. Based on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute (APAESO is co-financed by the European Development Fund and the Republic of Cyprus through the Cyprus Research Promotion Foundation: ΝΕΑ ΥΠΟΔΟΜΗ/ΝΕΚΥΠ/0308/09), we have acquired four CRUISERS (ET-Air, Slovakia) as UAS platforms and a substantial range of scientific instruments to be employed on these platforms. The APAESO platforms are aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the (Eastern) Mediterranean They will enable 3D measurements for determining physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into land management practices, vegetation and agricultural mapping, contaminant detection and the monitoring and assessment of hydrological parameters and processes of a given region at high spatial resolution. Currently, we are building up an Unmanned Airplane Facility at CyI. In the process of reaching full operational capacity, we have initiated and carried out first test missions involving highly specialized and specifically adapted instrumentation for atmospheric investigations. The first scientific mission involves the employment of a DOAS-system (Differential Optical Absorption Spectroscopy) in cooperation with colleagues from Heidelberg and Mainz, Germany and has been successfully completed. More recently, we started work on a new collaborative project aimed at measuring vertical profiles of aerosols in the Eastern Mediterranean. The project involves colleagues from the University of Frankfurt

  4. Three-Dimensional Mechanical Model of the Human Spine and the Versatility of its Use

    NASA Astrophysics Data System (ADS)

    Sokol, Milan; Velísková, Petra; Rehák, Ľuboš; Žabka, Martin

    2014-03-01

    The aim of the work is oriented towards the simulation or modeling of the lumbar and thoracic human spine as a load-bearing 3D system in a computer program (ANSYS). The human spine model includes a determination of the geometry based on X-ray pictures of frontal and lateral projections. For this reason, another computer code, BMPCOORDINATES, was developed as an aid to obtain the most precise and realistic model of the spine. Various positions, deformations, scoliosis, rotation and torsion can be modelled. Once the geometry is done, external loading on different spinal segments is entered; consequently, the response could be analysed. This can contribute a lot to medical practice as a tool for diagnoses, and developing implants or other artificial instruments for fixing the spine.

  5. A versatile petri net based architecture for modeling and simulation of complex biological processes.

    PubMed

    Nagasaki, Masao; Doi, Atsushi; Matsuno, Hiroshi; Miyano, Satoru

    2004-01-01

    The research on modeling and simulation of complex biological systems is getting more important in Systems Biology. In this respect, we have developed Hybrid Function Petri net (HFPN) that was newly developed from existing Petri net because of their intuitive graphical representation and their capabilities for mathematical analyses. However, in the process of modeling metabolic, gene regulatory or signal transduction pathways with the architecture, we have realized three extensions of HFPN, (i) an entity should be extended to contain more than one value, (ii) an entity should be extended to handle other primitive types, e.g. boolean, string, (iii) an entity should be extended to handle more advanced type called object that consists of variables and methods, are necessary for modeling biological systems with Petri net based architecture. To deal with it, we define a new enhanced Petri net called hybrid functional Petri net with extension (HFPNe). To demonstrate the effectiveness of the enhancements, we model and simulate with HFPNe four biological processes that are diffcult to represent with the previous architecture HFPN.

  6. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners

    PubMed Central

    Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.

    2016-01-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  7. A versatile model for soft patchy particles with various patch arrangements.

    PubMed

    Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2016-01-21

    We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.

  8. VAC: Versatile Advection Code

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Keppens, Rony

    2012-07-01

    The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

  9. Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling

    PubMed Central

    Triana, Sergio; de Cock, Hans; Ohm, Robin A.; Danies, Giovanna; Wösten, Han A. B.; Restrepo, Silvia; González Barrios, Andrés F.; Celis, Adriana

    2017-01-01

    Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and the atypical variant of M. furfur, but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia. PMID:28959251

  10. Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling.

    PubMed

    Triana, Sergio; de Cock, Hans; Ohm, Robin A; Danies, Giovanna; Wösten, Han A B; Restrepo, Silvia; González Barrios, Andrés F; Celis, Adriana

    2017-01-01

    Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa , Malassezia sympodialis , and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur , and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis . The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa , M. sympodialis , M. pachydermatis , and the atypical variant of M. furfur , but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia .

  11. Connecting the dots: a versatile model for the atmospheres of tidally locked Super-Earths

    NASA Astrophysics Data System (ADS)

    Carone, L.; Keppens, R.; Decin, L.

    2014-11-01

    Radiative equilibrium temperatures are calculated for the troposphere of a tidally locked Super-Earth based on a simple greenhouse model, using Solar system data as a guideline. These temperatures provide in combination with a Newtonian relaxation scheme thermal forcing for a 3D atmosphere model using the dynamical core of the Massachusetts Institute of Technology global circulation model. Our model is of the same conceptional simplicity than the model of Held & Suarez and is thus computationally fast. Furthermore, because of the coherent, general derivation of radiative equilibrium temperatures, our model is easily adaptable for different planets and atmospheric scenarios. As a case study relevant for Super-Earths, we investigate a Gl581g-like planet with Earth-like atmosphere and irradiation and present results for two representative rotation periods of Prot = 10 d and Prot = 36.5 d. Our results provide proof of concept and highlight interesting dynamical features for the rotating regime 3 < Prot < 100 d, which was shown by Edson et al. to be an intermediate regime between equatorial superrotation and divergence. We confirm that the Prot = 10 d case is more dominated by equatorial superrotation dynamics than the Prot = 36.5 d case, which shows diminishing influence of standing Rossby-Kelvin waves and increasing influence of divergence at the top of the atmosphere. We argue that this dynamical regime change relates to the increase in Rossby deformation radius, in agreement with previous studies. However, we also pay attention to other features that are not or only in partial agreement with other studies, like, e.g. the number of circulation cells and their strength, the role and extent of thermal inversion layers, and the details of heat transport.

  12. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    PubMed

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  13. A versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast.

    PubMed

    Forsberg, J; Englund, C-J; Duda, L-C

    2009-08-01

    We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.

  14. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans

    PubMed Central

    Zhang, Liangyu; Ward, Jordan D.; Cheng, Ze; Dernburg, Abby F.

    2015-01-01

    Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3′ UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism. PMID:26552885

  15. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice

    PubMed Central

    Kramer, Edgar R.

    2015-01-01

    Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828

  16. Two-dimensional flow-through microcosms - Versatile test systems to study biodegradation processes in porous aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, Robert D.; Rolle, Massimo; Kürzinger, Petra; Grathwohl, Peter; Meckenstock, Rainer U.; Griebler, Christian

    2009-05-01

    SummaryA fundamental prerequisite of any remedial activity is a sound knowledge of both the biotic and abiotic processes involved in transport and degradation of contaminants. Investigations of these aspects in situ often seem infeasible due to the complexity of interacting processes. A simplified portrayal of nature can be facilitated in laboratory-based two-dimensional (2D) sediment flow-through microcosms. This paper describes the versatility of such simple aquifer model systems with respect to biodegradation of aromatic hydrocarbons, i.e. toluene and ethylbenzene, under various environmental conditions. Initially constructed to study non-reactive and bioreactive transport of organic contaminants in homogeneous porous media under steady state hydraulic conditions, experimental setups developed towards more realistic heterogeneous sediment packing and transient hydraulic conditions. High-resolution spatial and temporal sampling allowed to obtain new insights on the distribution of bioactivities in contaminant plumes and associated controlling and limiting factors. Major biodegradation activities in saturated porous sediments are located at the fringes of contaminant plumes and are driven by dispersive mixing. These hot-spots of contaminant biotransformation are characterized by steep physical-chemical gradients in the millimeter to centimeter range. Sediment heterogeneity, i.e. high-conductivity zones, was shown to significantly enhance transverse mixing and subsequently biodegradation. On the contrary, transient hydraulic conditions may generate intermediate disturbances to biodegrader populations and thus may interfere with optimized contaminant conversion. However, a bacterial strain aerobically degrading toluene, i.e. Pseudomonas putida F1, was shown to adapt to vertically moving contaminant plumes, in the way that it regained full biodegradation potential two-times faster in areas with a mid-term (days to weeks) contamination history than in areas not

  17. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  18. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  19. Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model

    NASA Astrophysics Data System (ADS)

    Kanazawa, Takuya; Kieburg, Mario

    2018-06-01

    We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.

  20. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  1. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    PubMed

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  2. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  3. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    PubMed Central

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  4. Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging.

    PubMed

    Kim, Kyung Lock; Sung, Gihyun; Sim, Jaehwan; Murray, James; Li, Meng; Lee, Ara; Shrinidhi, Annadka; Park, Kyeng Min; Kim, Kimoon

    2018-04-27

    Here we report ultrastable synthetic binding pairs between cucurbit[7]uril (CB[7]) and adamantyl- (AdA) or ferrocenyl-ammonium (FcA) as a supramolecular latching system for protein imaging, overcoming the limitations of protein-based binding pairs. Cyanine 3-conjugated CB[7] (Cy3-CB[7]) can visualize AdA- or FcA-labeled proteins to provide clear fluorescence images for accurate and precise analysis of proteins. Furthermore, controllability of the system is demonstrated by treating with a stronger competitor guest. At low temperature, this allows us to selectively detach Cy3-CB[7] from guest-labeled proteins on the cell surface, while leaving Cy3-CB[7] latched to the cytosolic proteins for spatially conditional visualization of target proteins. This work represents a non-protein-based bioimaging tool which has inherent advantages over the widely used protein-based techniques, thereby demonstrating the great potential of this synthetic system.

  5. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization.

    PubMed

    Hamadani, Behrang H; Roller, John; Dougherty, Brian; Yoon, Howard W

    2012-07-01

    An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.

  6. SMOG 2: A Versatile Software Package for Generating Structure-Based Models.

    PubMed

    Noel, Jeffrey K; Levi, Mariana; Raghunathan, Mohit; Lammert, Heiko; Hayes, Ryan L; Onuchic, José N; Whitford, Paul C

    2016-03-01

    Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have proven to be an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Originally developed in the context of protein folding, structure-based models (SBMs) have since been extended to probe a diverse range of biomolecular processes, spanning from protein and RNA folding to functional transitions in molecular machines. The hallmark feature of a structure-based model is that part, or all, of the potential energy function is defined by a known structure. Within this general class of models, there exist many possible variations in resolution and energetic composition. SMOG 2 is a downloadable software package that reads user-designated structural information and user-defined energy definitions, in order to produce the files necessary to use SBMs with high performance molecular dynamics packages: GROMACS and NAMD. SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs, and it can process template files that are altered according to the needs of each user. This computational infrastructure also allows for experimental or bioinformatics-derived restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups and post-translational/transcriptional modifications. The code and user guide can be downloaded at http://smog-server.org/smog2.

  7. NEW VERSATILE AEROSOL GENERATION SYSTEM DEVELOPED FOR USE IN A LARGE WIND TUNNEL

    EPA Science Inventory

    A new aerosol generation system was developed to accommodate a variety of research activities performed within a large wind tunnel. Because many of the velocity measurements are taken in the wind tunnel with a laser Doppler anemometer (LDA), it is necessary to maintain an aero...

  8. Versatility of Cooperative Transcriptional Activation: A Thermodynamical Modeling Analysis for Greater-Than-Additive and Less-Than-Additive Effects

    PubMed Central

    Frank, Till D.; Carmody, Aimée M.; Kholodenko, Boris N.

    2012-01-01

    We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive responses when

  9. hydroPSO: A Versatile Particle Swarm Optimisation R Package for Calibration of Environmental Models

    NASA Astrophysics Data System (ADS)

    Zambrano-Bigiarini, M.; Rojas, R.

    2012-04-01

    Particle Swarm Optimisation (PSO) is a recent and powerful population-based stochastic optimisation technique inspired by social behaviour of bird flocking, which shares similarities with other evolutionary techniques such as Genetic Algorithms (GA). In PSO, however, each individual of the population, known as particle in PSO terminology, adjusts its flying trajectory on the multi-dimensional search-space according to its own experience (best-known personal position) and the one of its neighbours in the swarm (best-known local position). PSO has recently received a surge of attention given its flexibility, ease of programming, low memory and CPU requirements, and efficiency. Despite these advantages, PSO may still get trapped into sub-optimal solutions, suffer from swarm explosion or premature convergence. Thus, the development of enhancements to the "canonical" PSO is an active area of research. To date, several modifications to the canonical PSO have been proposed in the literature, resulting into a large and dispersed collection of codes and algorithms which might well be used for similar if not identical purposes. In this work we present hydroPSO, a platform-independent R package implementing several enhancements to the canonical PSO that we consider of utmost importance to bring this technique to the attention of a broader community of scientists and practitioners. hydroPSO is model-independent, allowing the user to interface any model code with the calibration engine without having to invest considerable effort in customizing PSO to a new calibration problem. Some of the controlling options to fine-tune hydroPSO are: four alternative topologies, several types of inertia weight, time-variant acceleration coefficients, time-variant maximum velocity, regrouping of particles when premature convergence is detected, different types of boundary conditions and many others. Additionally, hydroPSO implements recent PSO variants such as: Improved Particle Swarm

  10. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Doggett, William R.; Hafley, Robert A.; Komendera, Erik; Correll, Nikolaus; King, Bruce

    2012-01-01

    Within NASA Space Science, Exploration and the Office of Chief Technologist, there are Grand Challenges and advanced future exploration, science and commercial mission applications that could benefit significantly from large-span and large-area structural systems. Of particular and persistent interest to the Space Science community is the desire for large (in the 10- 50 meter range for main aperture diameter) space telescopes that would revolutionize space astronomy. Achieving these systems will likely require on-orbit assembly, but previous approaches for assembling large-scale telescope truss structures and systems in space have been perceived as very costly because they require high precision and custom components. These components rely on a large number of mechanical connections and supporting infrastructure that are unique to each application. In this paper, a new assembly paradigm that mitigates these concerns is proposed and described. A new assembly approach, developed to implement the paradigm, is developed incorporating: Intelligent Precision Jigging Robots, Electron-Beam welding, robotic handling/manipulation, operations assembly sequence and path planning, and low precision weldable structural elements. Key advantages of the new assembly paradigm, as well as concept descriptions and ongoing research and technology development efforts for each of the major elements are summarized.

  12. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  13. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    PubMed

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  14. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria

    PubMed Central

    Ashida, Hiroshi; Sasakawa, Chihiro

    2016-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections. PMID:26779450

  15. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility.

    PubMed

    Jaschob, Daniel; Riffle, Michael

    2012-07-30

    Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. JobCenter is a client-server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or "in the cloud") and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/.

  16. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility

    PubMed Central

    2012-01-01

    Background Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. Results JobCenter is a client–server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or “in the cloud”) and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. Conclusions JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/. PMID:22846423

  17. Versatile Photocatalytic Systems for H2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst

    PubMed Central

    2013-01-01

    The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2R′N2R″)2]2+ core (P2R′N2R″ = bis(1,5-R′-diphospha-3,7-R″-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 (“on particle” system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 (“through particle” system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h–1 with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system. PMID:24320740

  18. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  19. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light

    NASA Astrophysics Data System (ADS)

    Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar

    2009-05-01

    In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.

  20. A versatile system for processing geostationary satellite data with run-time visualization capability

    SciTech Connect

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. The authors are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government. The author`s contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface andmore » satellite observations and complex modeling of the interaction of radiation with clouds. One of the first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived. These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, the authors have produced an environment whereby they can easily modify and monitor the data processing as required. Through the principles of modular programming, they have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000

  1. Virus-mimetic nanovesicles as a versatile antigen-delivery system

    PubMed Central

    Zhang, Pengfei; Chen, Yixin; Zeng, Yun; Shen, Chenguang; Li, Rui; Guo, Zhide; Li, Shaowei; Zheng, Qingbing; Chu, Chengchao; Wang, Zhantong; Zheng, Zizheng; Tian, Rui; Ge, Shengxiang; Zhang, Xianzhong; Xia, Ning-Shao; Liu, Gang; Chen, Xiaoyuan

    2015-01-01

    It is a critically important challenge to rapidly design effective vaccines to reduce the morbidity and mortality of unexpected pandemics. Inspired from the way that most enveloped viruses hijack a host cell membrane and subsequently release by a budding process that requires cell membrane scission, we genetically engineered viral antigen to harbor into cell membrane, then form uniform spherical virus-mimetic nanovesicles (VMVs) that resemble natural virus in size, shape, and specific immunogenicity with the help of surfactants. Incubation of major cell membrane vesicles with surfactants generates a large amount of nano-sized uniform VMVs displaying the native conformational epitopes. With the diverse display of epitopes and viral envelope glycoproteins that can be functionally anchored onto VMVs, we demonstrate VMVs to be straightforward, robust and tunable nanobiotechnology platforms for fabricating antigen delivery systems against a wide range of enveloped viruses. PMID:26504197

  2. A versatile system for processing geostationary satellite data with run-time visualization capability

    NASA Technical Reports Server (NTRS)

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow

  3. A versatile system for rapid multiplex genome-edited CAR T cell generation

    PubMed Central

    Ren, Jiangtao; Zhang, Xuhua; Liu, Xiaojun; Fang, Chongyun; Jiang, Shuguang; June, Carl H.; Zhao, Yangbing

    2017-01-01

    The therapeutic potential of CRISPR system has already been demonstrated in many instances and begun to overlap with the rapidly expanding field of cancer immunotherapy, especially on the production of genetically modified T cell receptor or chimeric antigen receptor (CAR) T cells. Efficient genomic disruption of multiple gene loci to generate universal donor cells, as well as potent effector T cells resistant to multiple inhibitory pathways such as PD-1 and CTLA4 is an attractive strategy for cell therapy. In this study, we accomplished rapid and efficient multiplex genomic editing, and re-directing T cells with antigen specific CAR via a one-shot CRISPR protocol by incorporation of multiple gRNAs in a CAR lentiviral vector. High efficient double knockout of endogenous TCR and HLA class I could be easily achieved to generate allogeneic universal CAR T cells. We also generated Fas-resistant universal CAR T cells by triple gene disruption. Simultaneous gene editing of four gene loci using the one-shot CRISPR protocol to generate allogeneic universal T cells deficient of both PD1 and CTLA-4 was also attempted. PMID:28199983

  4. A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide

    PubMed Central

    Morizono, Kouki; Xie, Yiming; Helguera, Gustavo; Daniels, Tracy R.; Lane, Timothy F.; Penichet, Manuel L.; Chen, Irvin S. Y.

    2010-01-01

    Background Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. Methods We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. Results When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. Conclusions This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin. PMID:19455593

  5. A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria.

    PubMed

    Fahlgren, Noah; Feldman, Maximilian; Gehan, Malia A; Wilson, Melinda S; Shyu, Christine; Bryant, Douglas W; Hill, Steven T; McEntee, Colton J; Warnasooriya, Sankalpi N; Kumar, Indrajit; Ficor, Tracy; Turnipseed, Stephanie; Gilbert, Kerrigan B; Brutnell, Thomas P; Carrington, James C; Mockler, Todd C; Baxter, Ivan

    2015-10-05

    Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Use of laccase as a novel, versatile reporter system in filamentous fungi.

    PubMed

    Mander, Gerd J; Wang, Huaming; Bodie, Elizabeth; Wagner, Jens; Vienken, Kay; Vinuesa, Claudia; Foster, Caroline; Leeder, Abigail C; Allen, Gethin; Hamill, Valerie; Janssen, Giselle G; Dunn-Coleman, Nigel; Karos, Marvin; Lemaire, Hans Georg; Subkowski, Thomas; Bollschweiler, Claus; Turner, Geoffrey; Nüsslein, Bernhard; Fischer, Reinhard

    2006-07-01

    Laccases are copper-containing enzymes which oxidize phenolic substrates and transfer the electrons to oxygen. Many filamentous fungi contain several laccase-encoding genes, but their biological roles are mostly not well understood. The main interest in laccases in biotechnology is their potential to be used to detoxify phenolic substances. We report here on a novel application of laccases as a reporter system in fungi. We purified a laccase enzyme from the ligno-cellulolytic ascomycete Stachybotrys chartarum. It oxidized the artificial substrate 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate) (ABTS). The corresponding gene was isolated and expressed in Aspergillus nidulans, Aspergillus niger, and Trichoderma reesei. Heterologously expressed laccase activity was monitored in colorimetric enzyme assays and on agar plates with ABTS as a substrate. The use of laccase as a reporter was shown in a genetic screen for the isolation of improved T. reesei cellulase production strains. In addition to the laccase from S. charatarum, we tested the application of three laccases from A. nidulans (LccB, LccC, and LccD) as reporters. Whereas LccC oxidized ABTS (Km = 0.3 mM), LccD did not react with ABTS but with DMA/ADBP (3,5-dimethylaniline/4-amino-2,6-dibromophenol). LccB reacted with DMA/ADBP and showed weak activity with ABTS. The different catalytic properties of LccC and LccD allow simultaneous use of these two laccases as reporters in one fungal strain.

  7. Use of Laccase as a Novel, Versatile Reporter System in Filamentous Fungi

    PubMed Central

    Mander, Gerd J.; Wang, Huaming; Bodie, Elizabeth; Wagner, Jens; Vienken, Kay; Vinuesa, Claudia; Foster, Caroline; Leeder, Abigail C.; Allen, Gethin; Hamill, Valerie; Janssen, Giselle G.; Dunn-Coleman, Nigel; Karos, Marvin; Lemaire, Hans Georg; Subkowski, Thomas; Bollschweiler, Claus; Turner, Geoffrey; Nüsslein, Bernhard; Fischer, Reinhard

    2006-01-01

    Laccases are copper-containing enzymes which oxidize phenolic substrates and transfer the electrons to oxygen. Many filamentous fungi contain several laccase-encoding genes, but their biological roles are mostly not well understood. The main interest in laccases in biotechnology is their potential to be used to detoxify phenolic substances. We report here on a novel application of laccases as a reporter system in fungi. We purified a laccase enzyme from the ligno-cellulolytic ascomycete Stachybotrys chartarum. It oxidized the artificial substrate 2,2′-azino-di-(3-ethylbenzthiazolinsulfonate) (ABTS). The corresponding gene was isolated and expressed in Aspergillus nidulans, Aspergillus niger, and Trichoderma reesei. Heterologously expressed laccase activity was monitored in colorimetric enzyme assays and on agar plates with ABTS as a substrate. The use of laccase as a reporter was shown in a genetic screen for the isolation of improved T. reesei cellulase production strains. In addition to the laccase from S. charatarum, we tested the application of three laccases from A. nidulans (LccB, LccC, and LccD) as reporters. Whereas LccC oxidized ABTS (Km = 0.3 mM), LccD did not react with ABTS but with DMA/ADBP (3,5-dimethylaniline/4-amino-2,6-dibromophenol). LccB reacted with DMA/ADBP and showed weak activity with ABTS. The different catalytic properties of LccC and LccD allow simultaneous use of these two laccases as reporters in one fungal strain. PMID:16820501

  8. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma

    PubMed Central

    Mahdi, Min Y.; Gonzalez-Gomez, Ignacio; Asgharzadeh, Shahab; D’Apuzzo, Massimo; Erdreich-Epstein, Anat; Moats, Rex A.

    2016-01-01

    implantation into nontransgenic cerebella. Thus, BarTeL mice provide a versatile model with opportunities for use in medulloblastoma biology and therapeutics. PMID:27310018

  10. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  11. Versatile microsecond movie camera

    NASA Astrophysics Data System (ADS)

    Dreyfus, R. W.

    1980-03-01

    A laboratory-type movie camera is described which satisfies many requirements in the range 1 microsec to 1 sec. The camera consists of a He-Ne laser and compatible state-of-the-art components; the primary components are an acoustooptic modulator, an electromechanical beam deflector, and a video tape system. The present camera is distinct in its operation in that submicrosecond laser flashes freeze the image motion while still allowing the simplicity of electromechanical image deflection in the millisecond range. The gating and pulse delay circuits of an oscilloscope synchronize the modulator and scanner relative to the subject being photographed. The optical table construction and electronic control enhance the camera's versatility and adaptability. The instant replay video tape recording allows for easy synchronization and immediate viewing of the results. Economy is achieved by using off-the-shelf components, optical table construction, and short assembly time.

  12. Systematic Identification and Evolutionary Analysis of Catalytically Versatile Cytochrome P450 Monooxygenase Families Enriched in Model Basidiomycete Fungi

    PubMed Central

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin’s theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our

  13. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  14. HEMCO v1.0: A Versatile, ESMF-Compliant Component for Calculating Emissions in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Keller, C. A.; Long, M. S.; Yantosca, R. M.; Da Silva, A. M.; Pawson, S.; Jacob, D. J.

    2014-01-01

    We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.

  15. Characterization and calibration of gas sensor systems at ppb level—a versatile test gas generation system

    NASA Astrophysics Data System (ADS)

    Leidinger, Martin; Schultealbert, Caroline; Neu, Julian; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    This article presents a test gas generation system designed to generate ppb level gas concentrations from gas cylinders. The focus is on permanent gases and volatile organic compounds (VOCs) for applications like indoor and outdoor air quality monitoring or breath analysis. In the design and the setup of the system, several issues regarding handling of trace gas concentrations have been considered, addressed and tested. This concerns not only the active fluidic components (flow controllers, valves), which have been chosen specifically for the task, but also the design of the fluidic tubing regarding dead volumes and delay times, which have been simulated for the chosen setup. Different tubing materials have been tested for their adsorption/desorption characteristics regarding naphthalene, a highly relevant gas for indoor air quality monitoring, which has generated high gas exchange times in a previous gas mixing system due to long time adsorption/desorption effects. Residual gas contaminations of the system and the selected carrier air supply have been detected and quantified using both an analytical method (GC-MS analysis according to ISO 16000-6) and a metal oxide semiconductor gas sensor, which detected a maximum contamination equivalent to 28 ppb of carbon monoxide. A measurement strategy for suppressing even this contamination has been devised, which allows the system to be used for gas sensor and gas sensor system characterization and calibration in the low ppb concentration range.

  16. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  17. From inflammation to wound healing: using a simple model to understand the functional versatility of murine macrophages.

    PubMed

    Childs, Lauren M; Paskow, Michael; Morris, Sidney M; Hesse, Matthias; Strogatz, Steven

    2011-11-01

    Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur.

  18. From Inflammation to Wound Healing: Using a Simple Model to Understand the Functional Versatility of Murine Macrophages

    PubMed Central

    Paskow, Michael; Morris, Sidney M.; Hesse, Matthias; Strogatz, Steven

    2011-01-01

    Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur. PMID:21347813

  19. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  20. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  1. Terrain modeling for microwave landing system

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    A powerful analytical approach for evaluating the terrain effects on a microwave landing system (MLS) is presented. The approach combines a multiplate model with a powerful and exhaustive ray tracing technique and an accurate formulation for estimating the electromagnetic fields due to the antenna array in the presence of terrain. Both uniform theory of diffraction (UTD) and impedance UTD techniques have been employed to evaluate these fields. Innovative techniques are introduced at each stage to make the model versatile to handle most general terrain contours and also to reduce the computational requirement to a minimum. The model is applied to several terrain geometries, and the results are discussed.

  2. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  3. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  4. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates.

    PubMed

    Buntru, Matthias; Vogel, Simon; Stoff, Katrin; Spiegel, Holger; Schillberg, Stefan

    2015-05-01

    Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 μg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 μg/mL of firefly luciferase using plasmid templates, and up to 180 μg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 μg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 μg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins. © 2014 Wiley Periodicals, Inc.

  5. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    PubMed

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium.

    PubMed

    Grim, Sharon L; Dick, Gregory J

    2016-01-01

    Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA , which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating

  7. Generalized Stoner criterion and versatile spin ordering in two-dimensional spin-orbit coupled electron systems

    NASA Astrophysics Data System (ADS)

    Liu, Weizhe Edward; Chesi, Stefano; Webb, David; Zülicke, U.; Winkler, R.; Joynt, Robert; Culcer, Dimitrie

    2017-12-01

    Spin-orbit coupling is a single-particle phenomenon known to generate topological order, and electron-electron interactions cause ordered many-body phases to exist. The rich interplay of these two mechanisms is present in a broad range of materials and has been the subject of considerable ongoing research and controversy. Here we demonstrate that interacting two-dimensional electron systems with strong spin-orbit coupling exhibit a variety of time reversal symmetry breaking phases with unconventional spin alignment. We first prove that a Stoner-type criterion can be formulated for the spin polarization response to an electric field, which predicts that the spin polarization susceptibility diverges at a certain value of the electron-electron interaction strength. The divergence indicates the possibility of unconventional ferromagnetic phases even in the absence of any applied electric or magnetic field. This leads us, in the second part of this work, to study interacting Rashba spin-orbit coupled semiconductors in equilibrium in the Hartree-Fock approximation as a generic minimal model. Using classical Monte Carlo simulations, we construct the complete phase diagram of the system as a function of density and spin-orbit coupling strength. It includes both an out-of-plane spin-polarized phase and in-plane spin-polarized phases with shifted Fermi surfaces and rich spin textures, reminiscent of the Pomeranchuk instability, as well as two different Fermi-liquid phases having one and two Fermi surfaces, respectively, which are separated by a Lifshitz transition. We discuss possibilities for experimental observation and useful application of these novel phases, especially in the context of electric-field-controlled macroscopic spin polarizations.

  8. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality bymore » 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16

  9. VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN-VIVO AND IN-VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE, AND COARSE AMBIENT PARTICLES. PART II. FIELD EVALUATION. (R826232)

    EPA Science Inventory

    Abstract

    This study presents results from a field evaluation of a mobile versatile aerosol concentration enrichment system (VACES), designed to enhance the ambient concentrations of ultrafine (less than 0.18 VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN VIVO AND IN VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE AND COARSE AMBIENT PARTICLES. PART II: FIELD EVALUATION. (R827352C001)

    EPA Science Inventory

    This study presents results from a field evaluation of a mobile versatile aerosol concentration enrichment system (VACES), designed to enhance the ambient concentrations of ultrafine (less than 0.18 small m...</p>
      </li>

      <li>
      <p><a target=VERSATILE AEROSOL CONCENTRATION ENRICHMENT SYSTEM (VACES) FOR SIMULTANEOUS IN VIVO AND IN VITRO EVALUATION OF TOXIC EFFECTS OF ULTRAFINE, FINE AND COARSE AMBIENT PARTICLES. PART I: DEVELOPMENT AND LABORATORY CHARACTERIZATION. (R827352C001)

    EPA Science Inventory

    This study presents the development and bench-testing of a versatile aerosol concentration enrichment system (VACES) capable of simultaneously concentrating ambient particles of the coarse, fine and ultrafine size fractions for conducting in vivo and in vitro studies. The VACE...

  10. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    SciTech Connect

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less

  11. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  12. A versatile fibre optic sensor interrogation system for the Ariane Launcher based on an electro-optically tuneable laser diode

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Hirth, F.; Müller, M. S.; Hoffmann, L.; Buck, T. C.; Koch, A. W.

    2017-11-01

    Availability of reliable flight sensor data and knowledge of the structural behaviour are essential for safe operation of the Ariane launcher. The Ariane launcher is currently monitored by hundreds of electric sensors during test and qualification. Fibre optic sensors are regarded as a potential technique to overcome limitations of recent monitoring systems for the Ariane launcher [1]. These limitations include cumbersome application of sensors and harness as well as a very limited degree of distributed sensing capability. But, in order to exploit the various advantages of fibre optic sensors (high degree of multiplexing, distributed sensing capability, lower mass impact, etc.) dedicated measurement systems have to be developed and investigated. State-of-the-art fibre optic measurement systems often use free beam setups making them bulky and sensitive to vibration impact. Therefore a new measurement system is developed as part of the ESAstudy [2].

  13. A simple and versatile data acquisition system for software coincidence and pulse-height discrimination in 4πβ-γ coincidence experiments.

    PubMed

    Kawada, Y; Yamada, T; Unno, Y; Yunoki, A; Sato, Y; Hino, Y

    2012-09-01

    A simple but versatile data acquisition system for software coincidence experiments is described, in which any time stamping and live time controller are not provided. Signals from β- and γ-channels are fed to separately two fast ADCs (16 bits, 25 MHz clock maximum) via variable delay circuits and pulse-height stretchers, and also to pulse-height discriminators. The discriminating level was set to just above the electronic noise. Two ADCs were controlled with a common clock signal, and triggered simultaneously by the logic OR pulses from both discriminators. Paired digital signals for each sampling were sent to buffer memories connected to main PC with a FIFO (First-In, First-Out) pipe via USB. After data acquisition in list mode, various processing including pulse-height analyses was performed using MS-Excel (version 2007 and later). The usefulness of this system was demonstrated for 4πβ(PS)-4πγ coincidence measurements of (60)Co, (134)Cs and (152)Eu. Possibilities of other extended applications will be touched upon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 2. Part A. The Versatile Maintenance Expert System (VMES) Research Project

    DTIC Science & Technology

    1989-03-01

    DI _1.3)))an also the wire connecting m419 (id (3))( (tp (P-PORT))(port-of rDim) (m88 ( l l ) (type (P-PORT)) (port-of ( DI -1.1))) (m428 (id (2)) (type (P...research on this project had two dis - tinct but overlapping phases: consolidation of work done during the previous two years and developing new...diagnosis when VMES notices a diagnostic short-cut from the dual device model is present; this will be dis - cussed in the section of "Dual Device Model

  15. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements

    PubMed Central

    Nguyen, Nga T.; McInturf, Samuel A.; Mendoza-Cózatl, David G.

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  16. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    PubMed

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  17. A low-cost tracked C-arm (TC-arm) upgrade system for versatile quantitative intraoperative imaging.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Anglin, Carolyn

    2014-07-01

    C-arm fluoroscopy is frequently used in clinical applications as a low-cost and mobile real-time qualitative assessment tool. C-arms, however, are not widely accepted for applications involving quantitative assessments, mainly due to the lack of reliable and low-cost position tracking methods, as well as adequate calibration and registration techniques. The solution suggested in this work is a tracked C-arm (TC-arm) which employs a low-cost sensor tracking module that can be retrofitted to any conventional C-arm for tracking the individual joints of the device. Registration and offline calibration methods were developed that allow accurate tracking of the gantry and determination of the exact intrinsic and extrinsic parameters of the imaging system for any acquired fluoroscopic image. The performance of the system was evaluated in comparison to an Optotrak[Formula: see text] motion tracking system and by a series of experiments on accurately built ball-bearing phantoms. Accuracies of the system were determined for 2D-3D registration, three-dimensional landmark localization, and for generating panoramic stitched views in simulated intraoperative applications. The system was able to track the center point of the gantry with an accuracy of [Formula: see text] mm or better. Accuracies of 2D-3D registrations were [Formula: see text] mm and [Formula: see text]. Three-dimensional landmark localization had an accuracy of [Formula: see text] of the length (or [Formula: see text] mm) on average, depending on whether the landmarks were located along, above, or across the table. The overall accuracies of the two-dimensional measurements conducted on stitched panoramic images of the femur and lumbar spine were 2.5 [Formula: see text] 2.0 % [Formula: see text] and [Formula: see text], respectively. The TC-arm system has the potential to achieve sophisticated quantitative fluoroscopy assessment capabilities using an existing C-arm imaging system. This technology may be useful to

  18. A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants1[OA

    PubMed Central

    Qu, Shaohong; Desai, Aparna; Wing, Rod; Sundaresan, Venkatesan

    2008-01-01

    Transposon insertional mutagenesis is an effective alternative to T-DNA mutagenesis when transformation through tissue culture is inefficient as is the case for many crop species. When used as activation tags, transposons can be exploited to generate novel gain-of-function phenotypes without transformation and are of particular value in the study of polyploid plants where gene knockouts will not have phenotypes. We have developed an in cis-activation-tagging Ac-Ds transposon system in which a T-DNA vector carries a Dissociation (Ds) element containing 4× cauliflower mosaic virus enhancers along with the Activator (Ac) transposase gene. Stable Ds insertions were selected using green fluorescent protein and red fluorescent protein genes driven by promoters that are functional in maize (Zea mays) and rice (Oryza sativa). The system has been tested in rice, where 638 stable Ds insertions were selected from an initial set of 26 primary transformants. By analysis of 311 flanking sequences mapped to the rice genome, we could demonstrate the wide distribution of the elements over the rice chromosomes. Enhanced expression of rice genes adjacent to Ds insertions was detected in the insertion lines using semiquantitative reverse transcription-PCR method. The in cis-two-element vector system requires minimal number of primary transformants and eliminates the need for crossing, while the use of fluorescent markers instead of antibiotic or herbicide resistance increases the applicability to other plants and eliminates problems with escapes. Because Ac-Ds has been shown to transpose widely in the plant kingdom, the activation vector system developed in this study should be of utility more generally to other monocots. PMID:17993541

  1. A versatile telemetry system for continuous measurement of heart rate, body temperature and locomotor activity in free-ranging ruminants

    PubMed Central

    Signer, Claudio; Ruf, Thomas; Schober, Franz; Fluch, Gerhard; Paumann, Thomas; Arnold, Walter

    2012-01-01

    Summary 1. Measuring physiological and behavioural parameters in free-ranging animals – and therefore under fully natural conditions – is of general biological concern but difficult to perform. 2. We have developed a minimally invasive telemetry system for ruminants that is capable of measuring heart rate (HR), body temperature (Tb) and locomotor activity (LA). A ruminal transmitter unit was per os placed into the reticulum and therefore located in close proximity to the heart. The unit detected HR by the use of an acceleration sensor and also measured Tb. HR and Tb signals were transmitted via short-distance UHF link to a repeater system located in a collar unit. The collar unit decoded and processed signals received from the ruminal unit, measured LA with two different activity sensors and transmitted pulse interval-modulated VHF signals over distances of up to 10 km. 3. HR data measured with the new device contained noise caused by reticulum contractions and animal movements that triggered the acceleration sensor in the ruminal unit. We have developed a software filter to remove this noise. Hence, the system was only capable of measuring HR in animals that showed little or no activity and in the absence of rumen contractions. Reliability of this ‘stationary HR’ measurement was confirmed with a second independent measurement of HR detected by an electrocardiogram in a domestic sheep (Ovis aries). 4. In addition, we developed an algorithm to correctly classify an animal as ‘active’ or ‘at rest’ during each 3-min interval from the output of the activity sensors. Comparison with direct behavioural observations on free-ranging Alpine ibex (Capra ibex) showed that 87% of intervals were classified correctly. 5. First results from applications of this new technique in free-ranging Alpine ibex underlined its suitability for reliable and long-term monitoring of physiological and behavioural parameters in ruminants under harsh field conditions. With the

  2. A versatile system for biological and soil chemical tests on a planetary landing craft. I - Scientific objectives

    NASA Technical Reports Server (NTRS)

    Radmer, R. J.; Kok, B.; Martin, J. P.

    1976-01-01

    We describe an approach for the remote detection and characterization of life in planetary soil samples. A mass spectrometer is used as the central sensor to monitor changes in the gas phase in eleven test cells filled with soil. Many biological assays, ranging from general 'in situ' assays to specific metabolic processes (such as photosynthesis, respiration, denitrification, etc.) can be performed by appropriate additions to the test cell via attached preloaded injector capsules. The system is also compatible with a number of chemical assays such as the analysis of atmospheric composition (both chemical and isotopic), the status of soil water, and the determination of compounds of carbon, nitrogen and sulfur in the soil.

  3. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography.

    PubMed

    Spórna-Kucab, Aneta; Ignatova, Svetlana; Garrard, Ian; Wybraniec, Sławomir

    2013-12-15

    Two mixtures of decarboxylated and dehydrogenated betacyanins from processed red beet roots (Beta vulgaris L.) juice were fractionated by high performance counter-current chromatography (HPCCC) producing a range of isolated components. Mixture 1 contained mainly betacyanins, 14,15-dehydro-betanin (neobetanin) and their decarboxylated derivatives while mixture 2 consisted of decarboxy- and dehydro-betacyanins. The products of mixture 1 arose during thermal degradation of betanin/isobetanin in mild conditions while the dehydro-betacyanins of mixture 2 appeared after longer heating of the juice from B. vulgaris L. Two solvent systems were found to be effective for the HPCCC. A highly polar, high salt concentration system of 1-PrOH-ACN-(NH4)2SO4 (satd. soln)-water (v/v/v/v, 1:0.5:1.2:1) (tail-to-head mode) enabled the purification of 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (all from mixture 1) plus 17-decarboxy-neobetanin, 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2-decarboxy-neobetanin and 2,15,17-tridecarboxy-neobetanin (from mixture 2). The other solvent system included heptafluorobutyric acid (HFBA) as ion-pair reagent and consisted of tert-butyl methyl ether (TBME)-1-BuOH-ACN-water (acidified with 0.7% HFBA) (2:2:1:5, v/v/v/v) (head-to-tail mode). This system enabled the HPCCC purification of 2,17-bidecarboxy-betanin/-isobetanin and neobetanin (from mixture 1) plus 2,15,17-tridecarboxy-2,3-dehydro-neobetanin, 2,17-bidecarboxy-2,3-dehydro-neobetanin and 2,15,17-tridecarboxy-neobetanin (mixture 2). The results of this research are crucial in finding effective isolation methods of betacyanins and their derivatives which are meaningful compounds due their colorant properties and potential health benefits regarding antioxidant and cancer prevention. The pigments were detected by LC-DAD and LC-MS/MS techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.).

    PubMed

    Strehler, Emanuel E

    2015-04-24

    The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    PubMed Central

    Baldini, Edoardo; Mann, Andreas; Borroni, Simone; Arrell, Christopher; van Mourik, Frank; Carbone, Fabrizio

    2016-01-01

    A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements. PMID:27990455

  6. LIBS: a new versatile field-deployable real-time detector system with potential for landmine detection

    NASA Astrophysics Data System (ADS)

    Harmon, Russell S.; De Lucia, Frank C.; Winkel, Raymond J., Jr.; LaPointe, Aaron; Grossman, Scott L.; McNesby, Kevin L.; Miziolek, Andrzej W.

    2003-09-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique that utilizes a pulsed laser to create a microplasma on the target together with an array spectrometer to capture the transient light for elemental identification and quantification. LIBS has certain important characteristics that make it a very attractive sensor technology for military uses. Such attributes include that facts that LIBS (1) is relatively simple and straightforward, (2) requires no sample preparation, (3) generates a real-time response, and (4) only engages a very small sample (pg-ng) of matter in each laser shot and microplasma event, (5) has inherent high sensitivity, and (6) responds to all forms of unknowns, and, therefore, is particularly suited for the sensing of dangerous materials. Additionally, a LIBS sensor system can be inexpensive, configured to be man-portable, and designed for both in-situ point sensing and remote stand-off detection with distances of up to 20-25 meters. Broadband LIBS results covering the spectral region from 200-970 nm acquired at the Army Research Laboratory (ARL) under laboratory conditions for a variety of landmine casings and explosive materials. This data will illustrate the potential that LIBS has to be developed into a hand-deployable device that could be utilized as a confirmatory sensor in landmine detection. The concept envisioned is a backpack-size system in which an eyesafe micro-laser is contained in the handle of a deminer's probe and light is delivered and collected through an optical fiber in the tapered tip of the probe. In such a configuration, analyses can be made readily by touching the buried object that one is interested in identifying.

  7. Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system

    PubMed Central

    Szczesny, Roman J.; Kowalska, Katarzyna; Klosowska-Kosicka, Kamila; Chlebowski, Aleksander; Owczarek, Ewelina P.; Warkocki, Zbigniew; Kulinski, Tomasz M.; Adamska, Dorota; Affek, Kamila; Jedroszkowiak, Agata; Kotrys, Anna V.; Tomecki, Rafal; Krawczyk, Pawel S.; Borowski, Lukasz S.; Dziembowski, Andrzej

    2018-01-01

    Deciphering a function of a given protein requires investigating various biological aspects. Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent analyses. Additionally, downregulation or inactivation of the studied gene enables functional studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in many cases it is restricted to non-essential genes. Recombinase-dependent gene integration methods, like the Flp-In system, are very good alternatives. The system is widely used in different research areas, which calls for the existence of compatible vectors and efficient protocols that ensure straightforward DNA cloning and generation of stable cell lines. We have created and validated a robust series of 52 vectors for streamlined generation of stable mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-independent DNA cloning method all constructs for a given coding-sequence can be made with just three universal PCR primers. Our collection allows tetracycline-inducible expression of proteins with various tags suitable for protein localization, FRET, bimolecular fluorescence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation, the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional promoter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coilin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a guideline for future experiments and compared the effectiveness of commonly used inducers for tetracycline-responsive promoters. As proof of concept we examined the role of the

  8. Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.

    PubMed

    Li, Peng; Kinch, Lisa N; Ray, Ann; Dalia, Ankur B; Cong, Qian; Nunan, Linda M; Camilli, Andrew; Grishin, Nick V; Salomon, Dor; Orth, Kim

    2017-07-01

    Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a "selfish plasmid" encoding the deadly binary toxins PirA vp /PirB vp To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus , we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus Although the plasmid-encoded binary toxins PirA vp /PirB vp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type

  9. Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires

    PubMed Central

    Li, Peng; Kinch, Lisa N.; Ray, Ann; Dalia, Ankur B.; Nunan, Linda M.; Camilli, Andrew; Grishin, Nick V.

    2017-01-01

    ABSTRACT Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a “selfish plasmid” encoding the deadly binary toxins PirAvp/PirBvp. To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus, we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus. Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus. Although the plasmid-encoded binary toxins PirAvp/PirBvp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an

  10. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  11. Ionic liquid-based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds.

    PubMed

    Santos, João H; e Silva, Francisca A; Ventura, Sónia P M; Coutinho, João A P; de Souza, Ranyere L; Soares, Cleide M F; Lima, Álvaro S

    2015-01-01

    The comparative evaluation of distinct types of ionic liquid-based aqueous biphasic systems (IL-ABS) and more conventional polymer/salt-based ABS to the extraction of two antioxidants, eugenol and propyl gallate, is focused. In a first approach, IL-ABS composed of ILs and potassium citrate (C6H5K3O7/C6H8O7) buffer at pH 7 were applied to the extraction of two antioxidants, enabling the assessment of the impact of IL cation core on the extraction. The second approach uses ABS composed of polyethylene glycol (PEG) and potassium phosphate (K2HPO4/KH2PO4) buffer at pH 7 with imidazolium-based ILs as adjuvants. Their application to the extraction of the compounds allowed the investigation of the impact of the presence/absence of IL, the PEG molecular weight, and the alkyl side chain length of the imidazolium cation on the partition. It is possible to maximize the extractive performance of both antioxidants up to 100% using both types of IL-ABS. The IL enhances the performance of ABS technology. The data puts in evidence the pivotal role of the appropriate selection of the ABS components and design to develop a successful extractive process, from both environmental and performance points of view. © 2014 American Institute of Chemical Engineers.

  12. Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System.

    PubMed

    Velasco-Lozano, Susana; da Silva, Eunice S; Llop, Jordi; López-Gallego, Fernando

    2018-02-16

    The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. TGF Observations From A Small, Low-Cost, Low-Mass, High-Speed Versatile Detector System.

    NASA Astrophysics Data System (ADS)

    Sample, J. G.; Smith, D. M.; Johnson, J.; Varney, C.; Gannon, J.; Hunter, S.; Murtaugh, J.; Durtka, J.; Cunningham, B.

    2017-12-01

    The Light And Fast TGF Recorder or LAFTR is a NASA-University Student Instrumentation Project (USIP) that is designed to observe Terrestrial Gamma Flashes from a sounding balloon. LAFTR is a joint project between UC-Santa Cruz and Montana State University. LAFTR utilizes a small plastic scintillator with a fast shaped SiPM readout and a comparator based digitization similar to ADELE but with 6 energy channels. The discriminator bank is read out with a low-cost FPGA and data stored on board for recovery. LAFTR is able to time-tag gamma ray photons to 10ns at an approximate maximum rate of >5 MCounts/s. The entire systems fits well within the 6lb limit for unrestricted balloon launching and launch plans will be in advance of approaching thunderstorms. The small size of the scintillator and fast counting are ideal for unsaturated observations from near the TGF generation region which LAFTR will access via a valved latex balloon developed by the BOREALIS program at MSU. The valved balloon allows for a flight of several hours at >15km altitude. A test flight is planned for Fall 2017 followed by science observation flights throughout the next year. Although designed for single balloon flights, the low-cost nature of LAFTR potentially allows for many units to be produced allowing multi-point measurements and distributed arrays of ground and tower-based TGF observations as it affords significant student experiences throughout.

  14. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  15. Trypanosomes - versatile microswimmers

    NASA Astrophysics Data System (ADS)

    Krüger, Timothy; Engstler, Markus

    2016-11-01

    Evolution has generated a plethora of flagellate microswimmers. They populate all natural waters, from the deep sea to the ponds in our neighbourhood. But flagellates also thrive in the bodies of higher organisms, where they mostly remain undetected, but can also become pathogenic. Trypanosomes comprise a large group of mostly parasitic flagellates that cause many diseases, such as human sleeping sickness or the cattle plague nagana. We consider African trypanosomes as extremely versatile microswimmers, as they have to adapt to very diverse microenvironments. They swim efficiently in the blood of their mammalian hosts, but also in various tissue spaces and even in the human brain. Furthermore, in the transmitting tsetse fly, trypanosomes undergo characteristic morphological changes that are accompanied by amazing transitions between solitary and collective types of motion. In this review, we provide a basic introduction to trypanosome biology and then focus on the complex type of rotational movement that trypanosomes display. We relate their swimming performance to morphological parameters and the respective microenvironment, developing a contemporary view on the physics of trypanosome motility. The genetically programmed successions of life style-dependent motion patterns provide challenges and opportunities for interdisciplinary studies of microswimmers.

  16. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  17. Versatile data handling system study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objective of the study is discussed to arrive at recommendations for the most suitable image recording equipment for the use with various spaceborne earth observation sensors. Future sensors presently under consideration were included in the study, as well as existing sensors and those under development.

  18. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  19. Communication system modeling

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Walsh, J. R., Jr.; Wetherington, R. D.

    1971-01-01

    This report presents the results of work on communications systems modeling and covers three different areas of modeling. The first of these deals with the modeling of signals in communication systems in the frequency domain and the calculation of spectra for various modulations. These techniques are applied in determining the frequency spectra produced by a unified carrier system, the down-link portion of the Command and Communications System (CCS). The second modeling area covers the modeling of portions of a communication system on a block basis. A detailed analysis and modeling effort based on control theory is presented along with its application to modeling of the automatic frequency control system of an FM transmitter. A third topic discussed is a method for approximate modeling of stiff systems using state variable techniques.

  20. Physcomitrella patens, a versatile synthetic biology chassis.

    PubMed

    Reski, Ralf; Bae, Hansol; Simonsen, Henrik Toft

    2018-05-24

    During three decades the moss Physcomitrella patens has been developed to a superb green cell factory with the first commercial products on the market. In the past three decades the moss P. patens has been developed from an obscure bryophyte to a model organism in basic biology, biotechnology, and synthetic biology. Some of the key features of this system include a wide range of Omics technologies, precise genome-engineering via homologous recombination with yeast-like efficiency, a certified good-manufacturing-practice production in bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein products, superb product stability from batch-to-batch, and a reliable procedure for cryopreservation of cell lines in a master cell bank. About a dozen human proteins are being produced in P. patens as potential biopharmaceuticals, some of them are not only similar to their animal-produced counterparts, but are real biobetters with superior performance. A moss-made pharmaceutical successfully passed phase 1 clinical trials, a fragrant moss, and a cosmetic moss-product is already on the market, highlighting the economic potential of this synthetic biology chassis. Here, we focus on the features of mosses as versatile cell factories for synthetic biology and their impact on metabolic engineering.

  1. Study of an engine flow diverter system for a large scale ejector powered aircraft model

    NASA Technical Reports Server (NTRS)

    Springer, R. J.; Langley, B.; Plant, T.; Hunter, L.; Brock, O.

    1981-01-01

    Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed.

  2. Mathematical circulatory system model

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Stevens, Scott A. (Inventor)

    2010-01-01

    A system and method of modeling a circulatory system including a regulatory mechanism parameter. In one embodiment, a regulatory mechanism parameter in a lumped parameter model is represented as a logistic function. In another embodiment, the circulatory system model includes a compliant vessel, the model having a parameter representing a change in pressure due to contraction of smooth muscles of a wall of the vessel.

  3. Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research

    ERIC Educational Resources Information Center

    Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver

    2009-01-01

    Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…

  4. Versatile solid-state relay

    NASA Technical Reports Server (NTRS)

    Fox, D. A.

    1977-01-01

    Solid-state relay (SSR), containing multinode control logic, is operated as normally open, normally closed, or latched. Moreover several can be paralleled to form two-pole or double-throw relays. Versatile unit ends need to design custom control circuit for every relay application. Technique can be extended to incorporate selectable time delay, on operation or release, or pulsed output.

  5. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks

    PubMed Central

    2011-01-01

    Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking

  6. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks.

    PubMed

    Xie, Xueying; Jin, Jing; Mao, Yongyi

    2011-08-18

    Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking versatility appear to be evolutionary

  7. Integrated Workforce Modeling System

    NASA Technical Reports Server (NTRS)

    Moynihan, Gary P.

    2000-01-01

    There are several computer-based systems, currently in various phases of development at KSC, which encompass some component, aspect, or function of workforce modeling. These systems may offer redundant capabilities and/or incompatible interfaces. A systems approach to workforce modeling is necessary in order to identify and better address user requirements. This research has consisted of two primary tasks. Task 1 provided an assessment of existing and proposed KSC workforce modeling systems for their functionality and applicability to the workforce planning function. Task 2 resulted in the development of a proof-of-concept design for a systems approach to workforce modeling. The model incorporates critical aspects of workforce planning, including hires, attrition, and employee development.

  8. Modelling healthcare systems with phase-type distributions.

    PubMed

    Fackrell, Mark

    2009-03-01

    Phase-type distributions constitute a very versatile class of distributions. They have been used in a wide range of stochastic modelling applications in areas as diverse as telecommunications, finance, biostatistics, queueing theory, drug kinetics, and survival analysis. Their use in modelling systems in the healthcare industry, however, has so far been limited. In this paper we introduce phase-type distributions, give a survey of where they have been used in the healthcare industry, and propose some ideas on how they could be further utilized.

  9. Coastal Modeling System

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Coastal Modeling System The work unit develops the Coastal Modeling System ( CMS ) and conducts basic research to...further understanding of sediment transport under mixed oceanic and atmospheric forcing. The CMS is a suite of coupled two-dimensional numerical...models for simulations of waves, hydrodynamics, salinity and sediment transport, and morphology change. The CMS was identified by the USACE Hydraulics

  10. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  11. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  12. integrated Earth System Model

    SciTech Connect

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  13. A versatile laboratory cryogenic plant

    SciTech Connect

    Dobrov, V.M.; Marevichev, I.P.; Petrova, Y.B.

    1983-07-01

    The Institute of Theoretical and Experimental physics has designed a versatile cryogenic plant (VCP) which can liquefy helium, hydrogen, neon, and can extract neon from a gaseous neon-helium mixture. It can also be used as a refrigerator for cryostating external objects. The versatile cryogenic plant is schematicized and the refrigerating capacity and VCP control panel are detailed. Characteristic features which distinguish the VCP from other plants are specified. The processes involved in the liquefaction of helium, hydrogen, or neon, and the cryostating and cooling of an external object are explained. The use of the plant showed it to be economic,more » reliable, and convenient to operate.« less

  14. Modeling Physical Systems Using Vensim PLE Systems Dynamics Software

    NASA Astrophysics Data System (ADS)

    Widmark, Stephen

    2012-02-01

    Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address this problem by having my students use a variety of software solutions to model physical systems described by differential equations. These include spreadsheets, applets, software my students themselves create, and systems dynamics software. For the latter, cost is often the main issue in choosing a solution for use in a public school and so I researched no-cost software. I found Sphinx SD,2OptiSim,3 Systems Dynamics,4 Simile (Trial Edition),5 and Vensim PLE.6 In evaluating each of these solutions, I looked for the fewest restrictions in the license for educational use, ease of use by students, power, and versatility. In my opinion, Vensim PLE best fulfills these criteria.7

  15. Multilayer network decoding versatility and trust

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Yadav, Alok; Jalan, Sarika

    2016-01-01

    In the recent years, the multilayer networks have increasingly been realized as a more realistic framework to understand emergent physical phenomena in complex real-world systems. We analyze massive time-varying social data drawn from the largest film industry of the world under a multilayer network framework. The framework enables us to evaluate the versatility of actors, which turns out to be an intrinsic property of lead actors. Versatility in dimers suggests that working with different types of nodes are more beneficial than with similar ones. However, the triangles yield a different relation between type of co-actor and the success of lead nodes indicating the importance of higher-order motifs in understanding the properties of the underlying system. Furthermore, despite the degree-degree correlations of entire networks being neutral, multilayering picks up different values of correlation indicating positive connotations like trust, in the recent years. The analysis of weak ties of the industry uncovers nodes from a lower-degree regime being important in linking Bollywood clusters. The framework and the tools used herein may be used for unraveling the complexity of other real-world systems.

  16. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  17. Common Duckweed (Lemna minor) Is a Versatile High-Throughput Infection Model For the Burkholderia cepacia Complex and Other Pathogenic Bacteria

    PubMed Central

    Thomson, Euan L. S.; Dennis, Jonathan J.

    2013-01-01

    Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R2 = 0.81) was found between the strains’ virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R2 = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhBBc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial virulence

  18. Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria.

    PubMed

    Thomson, Euan L S; Dennis, Jonathan J

    2013-01-01

    Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R(2) = 0.81) was found between the strains' virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R(2) = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhB(Bc). Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial

  19. Airport Airside System Model

    DOT National Transportation Integrated Search

    1971-06-01

    The model of an airport airside system simulates aircraft operations and controller functions in the terminal area, both in the air and on the ground. The model encompasses all operations between the terminal gate and the point of handoff between the...

  20. On how role versatility boosts an STI.

    PubMed

    Cortés, Andrés J

    2017-12-19

    The prevalence of the HIV-1 infection has decayed in the last decades in western heterosexual populations. However, among men who have sex with men (MSM) the prevalence is still high, despite intensive campaigns and treatment programs that keep infected men as undetectable (Beyrer et al. 2012). Promiscuity and condom fatigue (Adam et al. 2005), which are not unique to the MSM community, are making unprotected anal intercourse (UAI) more common and sexually transmitted infections (STIs) presumably harder to track. Yet, MSM communities are peculiar in the sense that men can adopt fixed (insertive or receptive) or versatile (both practices) roles. Some old theoretical work (Wiley & Herschkorn 1989, Van Druten et al. 1992, Trichopoulos et al. 1998) predicted that the transmission of HIV-1 would be enhanced in MSM populations engaged more in role versatility than in role segregation, in which fixed roles are predominantly adopted. These predictions were based on the assumption that the probability of acquisition from unprotected insertive anal (UIA) sex was neglectable. However, as later shown (Vittinghoff et al. 1999, Goodreau et al. 2005), this assumption is inappropriate and HIV-1 may still be acquired via UIA sex. Here I show through a stochastic model that the increase of the HIV-1 prevalence among MSM due to role versatility holds under a stronger assumption of bidirectional virus transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling Sustainable Food Systems

    NASA Astrophysics Data System (ADS)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  2. Modeling Sustainable Food Systems.

    PubMed

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  3. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals

    SciTech Connect

    Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin

    In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble andmore » membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.« less

  4. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  5. A Versatile Ion Injector at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

  6. Sine systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography.

    PubMed

    Fernández, Rosa; Kvist, Sebastian; Lenihan, Jennifer; Giribet, Gonzalo; Ziegler, Alexander

    2014-01-01

    In spite of the high relevance of lumbricid earthworms ('Oligochaeta': Lumbricidae) for soil structure and functioning, the taxonomy of this group of terrestrial invertebrates remains in a quasi-chaotic state. Earthworm taxonomy traditionally relies on the interpretation of external and internal morphological characters, but the acquisition of these data is often hampered by tedious dissections or restricted access to valuable and rare museum specimens. The present state of affairs, in conjunction with the difficulty of establishing primary homologies for multiple morphological features, has led to an almost unrivaled instability in the taxonomy and systematics of certain earthworm groups, including Lumbricidae. As a potential remedy, we apply for the first time a non-destructive imaging technique to lumbricids and explore the future application of this approach to earthworm taxonomy. High-resolution micro-computed tomography (μCT) scanning of freshly fixed and museum specimens was carried out using two cosmopolitan species, Aporrectodea caliginosa and A. trapezoides. By combining two-dimensional and three-dimensional dataset visualization techniques, we demonstrate that the morphological features commonly used in earthworm taxonomy can now be analyzed without the need for dissection, whether freshly fixed or museum specimens collected more than 60 years ago are studied. Our analyses show that μCT in combination with soft tissue staining can be successfully applied to lumbricid earthworms. An extension of the approach to other families is poised to strengthen earthworm taxonomy by providing a versatile tool to resolve the taxonomic chaos currently present in this ecologically important, but taxonomically neglected group of terrestrial invertebrates.

  7. Sine Systemate Chaos? A Versatile Tool for Earthworm Taxonomy: Non-Destructive Imaging of Freshly Fixed and Museum Specimens Using Micro-Computed Tomography

    PubMed Central

    Fernández, Rosa; Kvist, Sebastian; Lenihan, Jennifer; Giribet, Gonzalo; Ziegler, Alexander

    2014-01-01

    In spite of the high relevance of lumbricid earthworms (‘Oligochaeta’: Lumbricidae) for soil structure and functioning, the taxonomy of this group of terrestrial invertebrates remains in a quasi-chaotic state. Earthworm taxonomy traditionally relies on the interpretation of external and internal morphological characters, but the acquisition of these data is often hampered by tedious dissections or restricted access to valuable and rare museum specimens. The present state of affairs, in conjunction with the difficulty of establishing primary homologies for multiple morphological features, has led to an almost unrivaled instability in the taxonomy and systematics of certain earthworm groups, including Lumbricidae. As a potential remedy, we apply for the first time a non-destructive imaging technique to lumbricids and explore the future application of this approach to earthworm taxonomy. High-resolution micro-computed tomography (μCT) scanning of freshly fixed and museum specimens was carried out using two cosmopolitan species, Aporrectodea caliginosa and A. trapezoides. By combining two-dimensional and three-dimensional dataset visualization techniques, we demonstrate that the morphological features commonly used in earthworm taxonomy can now be analyzed without the need for dissection, whether freshly fixed or museum specimens collected more than 60 years ago are studied. Our analyses show that μCT in combination with soft tissue staining can be successfully applied to lumbricid earthworms. An extension of the approach to other families is poised to strengthen earthworm taxonomy by providing a versatile tool to resolve the taxonomic chaos currently present in this ecologically important, but taxonomically neglected group of terrestrial invertebrates. PMID:24837238

  8. System equivalent model mixing

    NASA Astrophysics Data System (ADS)

    Klaassen, Steven W. B.; van der Seijs, Maarten V.; de Klerk, Dennis

    2018-05-01

    This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) frequency based models, either of numerical or experimental nature, can be mixed to form a hybrid model. This model follows the dynamic behaviour of a predefined weighted master model. A large variety of applications can be thought of, such as the DoF-space expansion of relatively small experimental models using numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpretation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion techniques. SEMM's concept is further illustrated by means of a numerical example. It will become apparent that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One of the main applications is tested in a practical case, performed on a validated benchmark structure; it will emphasize the practicality of the method.

  9. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica ‘Solar Lake’), a Model Anoxygenic Photosynthetic Cyanobacterium

    PubMed Central

    Grim, Sharon L.; Dick, Gregory J.

    2016-01-01

    Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth’s biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica ‘Solar Lake’, a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with

  10. Versatile plasmid-based expression systems for Gram-negative bacteria--General essentials exemplified with the bacterium Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Schwab, Helmut; Koefinger, Petra

    2015-12-25

    The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Modelling robot construction systems

    NASA Technical Reports Server (NTRS)

    Grasso, Chris

    1990-01-01

    TROTER's are small, inexpensive robots that can work together to accomplish sophisticated construction tasks. To understand the issues involved in designing and operating a team of TROTER's, the robots and their components are being modeled. A TROTER system that features standardized component behavior is introduced. An object-oriented model implemented in the Smalltalk programming language is described and the advantages of the object-oriented approach for simulating robot and component interactions are discussed. The presentation includes preliminary results and a discussion of outstanding issues.

  12. Versatile Desktop Experiment Module (DEMo) on Heat Transfer

    ERIC Educational Resources Information Center

    Minerick, Adrienne R.

    2010-01-01

    This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

  13. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function

    PubMed Central

    Curthoys, Norman P.

    2014-01-01

    Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase+ cells, was isolated. LLC-PK1-FBPase+ cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase+ cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3−, pH 6.9), the LLC-PK1-FBPase+ cells exhibit a gradual increase in NH4+ ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase+ cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase+ cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase+ cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells. PMID:24808535

  14. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  15. Model of the Ares V Launch System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is a studio photograph of a model of the Ares V rocket. Named for the Greek god associated with Mars, Ares vehicles will return humans to the moon and later take them to Mars and other destinations. The Ares V is a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars, while the Crew will be carried by the Ares I. Ares V is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.

  16. Enroute NASA/FAA low-frequency propfan test in Alabama (October 1987): A versatile atmospheric aircraft long-range noise prediction system

    NASA Astrophysics Data System (ADS)

    Tsouka, Despina G.

    In order to obtain a flight-to-static noise prediction of an advanced Turboprop (propfan) Aircraft, FAA went on an elaboration of the data that were measured during a full scale measuring program that was conducted by NASA and FAA/DOT/TSC on October 1987 in Alabama. The elaboration process was based on aircraft simulation to a point source, on an atmospheric two dimensional noise model, on the American National Standard algorithm for the calculation of atmospheric absortion, and on the DOT/TSC convention for ground reflection effects. Using the data of the Alabama measurements, the present paper examines the development of a generalized, flexible and more accurate process for the evaluation of the static and flight low-frequency long-range noise data. This paper also examines the applicability of the assumptions made by the Integrated Noise Model about linear propagation, of the three dimensional Hamiltonian Rays Tracing model and of the Weyl-Van der Pol model. The model proposes some assumptions in order to increase the calculations flexibility without significant loss of accuracy. In addition, it proposes the usage of the three dimensional Hamiltonian Rays Tracing model and the Weyl-Van der Pol model in order to increase the accuracy and to ensure the generalization of noise propagation prediction over grounds with variable impedance.

  17. Development of a Versatile Laser-Ultrasonic System and Application to the Online Measurement for Process Control of Wall Thickness and Eccentricity of Seamless Tubes

    SciTech Connect

    Robert V. Kolarik II

    2002-10-23

    A system for the online, non-contact measurement of wall thickness in steel seamless mechanical tubing has been developed and demonstrated at a tubing production line at the Timken Company in Canton, Ohio. The system utilizes laser-generation of ultrasound and laser-detection of time of flight with interferometry, laser-doppler velocimetry and pyrometry, all with fiber coupling. Accuracy (<1% error) and precision (1.5%) are at targeted levels. Cost and energy savings have exceeded estimates. The system has shown good reliability in measuring over 200,000 tubes in its first six months of deployment.

  18. Performance evaluation of a versatile multidimensional chromatographic preparative system based on three-dimensional gas chromatography and liquid chromatography-two-dimensional gas chromatography for the collection of volatile constituents.

    PubMed

    Pantò, Sebastiano; Sciarrone, Danilo; Maimone, Mariarosa; Ragonese, Carla; Giofrè, Salvatore; Donato, Paola; Farnetti, Sara; Mondello, Luigi

    2015-10-23

    The present research deals with the multi-collection of the most important sesquiterpene alcohols belonging to sandalwood essential oil, as reported by the international regulations: (Z)-α-santalol, (Z)-α-trans bergamotol, (Z)-β-santalol, epi-(Z)-β-santalol, α-bisabolol, (Z)-lanceol, and (Z)-nuciferol. A versatile multidimensional preparative system, based on the hyphenation of liquid and gas chromatography techniques, was operated in the LC-GC-GC-prep or GC-GC-GC-prep configuration, depending on the concentration to be collected from the sample, without any hardware or software modification. The system was equipped with a silica LC column in combination with polyethylene glycol-poly(5% diphenyl/95% dimethylsiloxane)-medium polarity ionic liquid or β-cyclodextrin based GC stationary phases. The GC-GC-GC-prep configuration was exploited for the collection of four components, by using a conventional split/splitless injector, while the LC-GC-GC-prep approach was applied for three low abundant components (<5%), in order to increase the quantity collected within a single run, by the LC injection of a high sample amount. All target compounds, whose determination is hampered by the unavailability of commercial standards, were collected at milligram levels and with a high degree of purity (>87%). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-01-01

    Behavioral diversity is an essential feature of living systems, enabling them to exhibit adaptive behavior in hostile and dynamically changing environments. However, traditional engineering approaches strive to avoid, or suppress, the behavioral diversity in artificial systems to achieve high performance in specific environments for given tasks. The goals of this research include understanding how living systems exhibit behavioral diversity and using these findings to build lifelike robots that exhibit truly adaptive behaviors. To this end, we have focused on one of the most primitive forms of intelligence concerning behavioral diversity, namely, a plasmodium of true slime mold. The plasmodium is a large amoeba-like unicellular organism that does not possess any nervous system or specialized organs. However, it exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously between these. Inspired by the plasmodium, we built a mathematical model that exhibits versatile oscillatory patterns and spontaneously transitions between these patterns. This model demonstrates that, in contrast to coupled nonlinear oscillators with a well-designed complex diffusion network, physically interacting mechanosensory oscillators are capable of generating versatile oscillatory patterns without changing any parameters. Thus, the results are expected to shed new light on the design scheme for lifelike robots that exhibit amazingly versatile and adaptive behaviors.

  20. Methanol: A Versatile Fuel for Immediate Use

    ERIC Educational Resources Information Center

    Reed, T. B.; Lerner, R. M.

    1973-01-01

    Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

  1. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    PubMed

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  2. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  3. Robust and versatile ionic liquid microarrays achieved by microcontact printing

    NASA Astrophysics Data System (ADS)

    Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

    2014-04-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

  4. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    SciTech Connect

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sitesmore » under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.« less

  5. Versatile composite resins simplifying the practice of restorative dentistry.

    PubMed

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  6. The versatility of limb scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Bourassa, A. E.; Degenstein, D. A.; Sioris, C.; Rieger, L. A.; Zawada, D.

    2017-12-01

    Vertically resolved measurements of limb scattered sunlight spectra in the UV-Vis-NIR spectral range have been made from several satellite instruments in low earth orbit for many years, and there has been much success in using these measurements for retrievals of trace gas and aerosol from the upper troposphere to the mesosphere. Due in a large part to improvements in radiative transfer modelling, the versatility of the limb scatter measurement has continued to grow over the last several years. Using OSIRIS and OMPS instruments as primary examples, this talk will review the current capability of limb scatter measurements, and highlight recent results on ozone variability and trends in the UTLS, the continuation of the aerosol extinction record, NO2 distributions in the upper troposphere, and a new tomographic retrieval of ozone from the OMPS measurements. The future of limb scatter observations will also be discussed, including the development of two new Canadian suborbital instrument concepts that are targeted at high spatial resolution UTLS water vapor and cloud/aerosol measurements.

  7. ASTP ranging system mathematical model

    NASA Technical Reports Server (NTRS)

    Ellis, M. R.; Robinson, L. H.

    1973-01-01

    A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.

  8. Building versatile bipartite probes for quantum metrology

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio

    2016-01-01

    We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.

  9. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  10. CELCAP: A Computer Model for Cogeneration System Analysis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A description of the CELCAP cogeneration analysis program is presented. A detailed description of the methodology used by the Naval Civil Engineering Laboratory in developing the CELCAP code and the procedures for analyzing cogeneration systems for a given user are given. The four engines modeled in CELCAP are: gas turbine with exhaust heat boiler, diesel engine with waste heat boiler, single automatic-extraction steam turbine, and back-pressure steam turbine. Both the design point and part-load performances are taken into account in the engine models. The load model describes how the hourly electric and steam demand of the user is represented by 24 hourly profiles. The economic model describes how the annual and life-cycle operating costs that include the costs of fuel, purchased electricity, and operation and maintenance of engines and boilers are calculated. The CELCAP code structure and principal functions of the code are described to how the various components of the code are related to each other. Three examples of the application of the CELCAP code are given to illustrate the versatility of the code. The examples shown represent cases of system selection, system modification, and system optimization.

  11. Modeling Transportation Systems : an Overview

    DOT National Transportation Integrated Search

    1971-06-01

    The purpose of this report is to outline the role of systems analysis and mathematical modeling in the planning of transportation systems. The planning process is divided into three sectors (demand, supply, and policy) reflecting the demand for trans...

  12. Fibrin matrices: The versatile therapeutic delivery systems.

    PubMed

    Ahmad, Ejaj; Fatima, Munazza Tamkeen; Hoque, Mehboob; Owais, Mohammad; Saleemuddin, Mohammed

    2015-11-01

    Fibrin sealants, that have been employed for over a century by surgeons to stop post surgery bleeding, are finding novel applications in the controlled delivery of antibiotics and several other therapeutics. Fibrinogen can be easily purified from blood plasma and converted by thrombolysis to fibrin that undergoes spontaneous aggregation to form insoluble clot. During the gelling, fibrin can be formulated into films, clots, threads, microbeads, nanoconstructs and nanoparticles. Whole plasma clots in the form of beads and microparticles can also be prepared by activating endogenous thrombin, for possible drug delivery. Fibrin formulations offer remarkable scope for controlling the porosity as well as in vivo degradability and hence the release of the associated therapeutics. Binding/covalent-linking of therapeutics to the fibrin matrix, crosslinking of the matrix with bifunctional reagents and coentrapment of protease inhibitors have been successful in regulating both in vitro and in vivo release of the therapeutics. The release rates can also be remarkably lowered by preentrapment of therapeutics in insoluble particles like liposomes or by anchoring them to the matrix via molecules that bind them as well as fibrin. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.

    PubMed

    Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V

    2018-06-05

    The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.

  14. Modeling formalisms in Systems Biology

    PubMed Central

    2011-01-01

    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422

  15. Modelling a Simple Mechanical System.

    ERIC Educational Resources Information Center

    Morland, Tim

    1999-01-01

    Provides an example of the modeling power of Mathematics, demonstrated in a piece of A-Level student coursework which was undertaken as part of the MEI Structured Mathematics scheme. A system of two masses and two springs oscillating in one dimension is found to be accurately modeled by a system of linear differential equations. (Author/ASK)

  16. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  17. Flight Model Discharge System.

    DTIC Science & Technology

    1987-04-01

    will immediately remove the charge from the front surface of the dielectric and return it to ground. The 2-hour time constant network will then reset the...ATDP programs. NEWT5 permits the digitized input of board and component position data, while ATDP automates certain phases of input and output table...format. 8.5 RESULTS The system-level results are presented as curves of AR (normalized radiator area) versus THOT and as curves of Q (heater

  18. ASN reputation system model

    NASA Astrophysics Data System (ADS)

    Hutchinson, Steve; Erbacher, Robert F.

    2015-05-01

    Network security monitoring is currently challenged by its reliance on human analysts and the inability for tools to generate indications and warnings for previously unknown attacks. We propose a reputation system based on IP address set membership within the Autonomous System Number (ASN) system. Essentially, a metric generated based on the historic behavior, or misbehavior, of nodes within a given ASN can be used to predict future behavior and provide a mechanism to locate network activity requiring inspection. This will provide reinforcement of notifications and warnings and lead to inspection for ASNs known to be problematic even if initial inspection leads to interpretation of the event as innocuous. We developed proof of concept capabilities to generate the IP address to ASN set membership and analyze the impact of the results. These results clearly show that while some ASNs are one-offs with individual or small numbers of misbehaving IP addresses, there are definitive ASNs with a history of long term and wide spread misbehaving IP addresses. These ASNs with long histories are what we are especially interested in and will provide an additional correlation metric for the human analyst and lead to new tools to aid remediation of these IP address blocks.

  19. A versatile zero ripple topology

    NASA Astrophysics Data System (ADS)

    Capel, A.; Spruyt, H.; Weinberg, A.; O'Sullivan, D.; Crausaz, A.

    A lightweight and efficient converter topology is described that presents zero ripple current on both input and output terminals simultaneously. The static and dynamic analyses are performed by using state representation with the current-injected method. A hardware application suitable for a Space Station battery conditioner is presented as a validation of the theoretical model.

  20. TMAP - A Versatile Mobile Robot

    NASA Astrophysics Data System (ADS)

    Weiss, Joel A.; Simmons, Richard K.

    1989-03-01

    TMAP, the Teleoperated Mobile All-purpose Platform, provides the Army with a low cost, light weight, flexibly designed, modularly expandable platform for support of maneuver forces and light infantry units. The highly mobile, four wheel drive, diesel-hydraulic platform is controllable at distances of up to 4km from a portable operator control unit using either fiber optic or RF control links. The Martin Marietta TMAP system is based on a hierarchical task decomposition Real-time Control System architecture that readily supports interchange of mission packages and provides the capability for simple incorporation of supervisory control concepts leading to increased system autonomy and resulting force multiplication. TMAP has been designed to support a variety of missions including target designation, anti-armor, anti-air, countermine, and reconnaissance/surveillance. As a target designation system TMAP will provide the soldier with increased survivability and effectiveness by providing substantial combat standoff, and the firepower effectiveness of several manual designator operators. Force-on-force analysis of simulated TMAP engagements indicate that TMAP should provide significant force multiplication for the Army in Air-Land Battle 2000.

  1. A Versatile Technique for Solving Quintic Equations

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2006-01-01

    In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…

  2. Guinea Pigs: Versatile Animals for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

  3. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2009-03-19

    ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential as a biocatalyst for the production ofhydrogen gas, a biofuel...Biofilm formation by a metabolically versatile bacterium: final report Report Title ABSTRACT Rhodopseudomonas palustris is a photosynthetic bacterium...agricultural waste. We characterized five new Rhodopseudomonas genome sequences and isolated and described R. palustris mutant strains that produce

  4. Stress Erythropoiesis Model Systems.

    PubMed

    Bennett, Laura F; Liao, Chang; Paulson, Robert F

    2018-01-01

    Bone marrow steady-state erythropoiesis maintains erythroid homeostasis throughout life. This process constantly generates new erythrocytes to replace the senescent erythrocytes that are removed by macrophages in the spleen. In contrast, anemic or hypoxic stress induces a physiological response designed to increase oxygen delivery to the tissues. Stress erythropoiesis is a key component of this response. It is best understood in mice where it is extramedullary occurring in the adult spleen and liver and in the fetal liver during development. Stress erythropoiesis utilizes progenitor cells and signals that are distinct from bone marrow steady-state erythropoiesis. Because of that observation many genes may play a role in stress erythropoiesis despite having no effect on steady-state erythropoiesis. In this chapter, we will discuss in vivo and in vitro techniques to study stress erythropoiesis in mice and how the in vitro culture system can be extended to study human stress erythropoiesis.

  5. ICAN: A versatile code for predicting composite properties

    NASA Technical Reports Server (NTRS)

    Ginty, C. A.; Chamis, C. C.

    1986-01-01

    The Integrated Composites ANalyzer (ICAN), a stand-alone computer code, incorporates micromechanics equations and laminate theory to analyze/design multilayered fiber composite structures. Procedures for both the implementation of new data in ICAN and the selection of appropriate measured data are summarized for: (1) composite systems subject to severe thermal environments; (2) woven fabric/cloth composites; and (3) the selection of new composite systems including those made from high strain-to-fracture fibers. The comparisons demonstrate the versatility of ICAN as a reliable method for determining composite properties suitable for preliminary design.

  6. Graphical Modeling Meets Systems Pharmacology.

    PubMed

    Lombardo, Rosario; Priami, Corrado

    2017-01-01

    A main source of failures in systems projects (including systems pharmacology) is poor communication level and different expectations among the stakeholders. A common and not ambiguous language that is naturally comprehensible by all the involved players is a boost to success. We present bStyle, a modeling tool that adopts a graphical language close enough to cartoons to be a common media to exchange ideas and data and that it is at the same time formal enough to enable modeling, analysis, and dynamic simulations of a system. Data analysis and simulation integrated in the same application are fundamental to understand the mechanisms of actions of drugs: a core aspect of systems pharmacology.

  7. Data management system performance modeling

    NASA Technical Reports Server (NTRS)

    Kiser, Larry M.

    1993-01-01

    This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.

  8. Intrusion detection: systems and models

    NASA Technical Reports Server (NTRS)

    Sherif, J. S.; Dearmond, T. G.

    2002-01-01

    This paper puts forward a review of state of the art and state of the applicability of intrusion detection systems, and models. The paper also presents a classfication of literature pertaining to intrusion detection.

  9. Air carrier operations system model

    DOT National Transportation Integrated Search

    2001-03-01

    Representatives from the Federal Aviation Administration (FAA) and several 14 Code of Federal Regulations (CFR) Part 121 air carriers met several times during 1999-2000 to develop a system engineering model of the generic functions of air carrier ope...

  10. Mobility Models for Systems Evaluation

    NASA Astrophysics Data System (ADS)

    Musolesi, Mirco; Mascolo, Cecilia

    Mobility models are used to simulate and evaluate the performance of mobile wireless systems and the algorithms and protocols at the basis of them. The definition of realistic mobility models is one of the most critical and, at the same time, difficult aspects of the simulation of applications and systems designed for mobile environments. There are essentially two possible types of mobility patterns that can be used to evaluate mobile network protocols and algorithms by means of simulations: traces and synthetic models [130]. Traces are obtained by means of measurements of deployed systems and usually consist of logs of connectivity or location information, whereas synthetic models are mathematical models, such as sets of equations, which try to capture the movement of the devices.

  11. Mathematical modeling of aeroelastic systems

    NASA Astrophysics Data System (ADS)

    Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.

    2017-12-01

    In the paper, the stability of elastic elements of a class of designs that are in interaction with a gas or liquid flow is investigated. The definition of the stability of an elastic body corresponds to the concept of stability of dynamical systems by Lyapunov. As examples the mathematical models of flowing channels (models of vibration devices) at a subsonic flow and the mathematical models of protective surface at a supersonic flow are considered. Models are described by the related systems of the partial differential equations. An analytic investigation of stability is carried out on the basis of the construction of Lyapunov-type functionals, a numerical investigation is carried out on the basis of the Galerkin method. The various models of the gas-liquid environment (compressed, incompressible) and the various models of a deformable body (elastic linear and elastic nonlinear) are considered.

  12. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains

    NASA Astrophysics Data System (ADS)

    Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G.

    2017-08-01

    The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L . Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.

  13. A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.

    2018-04-01

    The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.

  14. Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains.

    PubMed

    Malvestio, Irene; Kreuz, Thomas; Andrzejak, Ralph G

    2017-08-01

    The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes is the nonlinear interdependence measure L. Although its efficacy has already been demonstrated, it still needs to be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking regimes. We also examine the influence of different parameters and spike train distances. Our results show that the measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.

  15. Surface plasmon resonance-enabled antibacterial digital versatile discs

    NASA Astrophysics Data System (ADS)

    Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli

    2012-02-01

    We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

  16. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile?

    PubMed

    Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri

    2012-01-01

    Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.

  17. Stirling Engine Dynamic System Modeling

    NASA Technical Reports Server (NTRS)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  18. SYSTEMS BIOLOGY MODEL DEVELOPMENT AND APPLICATION

    EPA Science Inventory

    System biology models holistically describe, in a quantitative fashion, the relationships between different levels of a biologic system. Relationships between individual components of a system are delineated. System biology models describe how the components of the system inter...

  19. System identification and model reduction using modulating function techniques

    NASA Technical Reports Server (NTRS)

    Shen, Yan

    1993-01-01

    Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

  20. Graphical Modeling Meets Systems Pharmacology

    PubMed Central

    Lombardo, Rosario; Priami, Corrado

    2017-01-01

    A main source of failures in systems projects (including systems pharmacology) is poor communication level and different expectations among the stakeholders. A common and not ambiguous language that is naturally comprehensible by all the involved players is a boost to success. We present bStyle, a modeling tool that adopts a graphical language close enough to cartoons to be a common media to exchange ideas and data and that it is at the same time formal enough to enable modeling, analysis, and dynamic simulations of a system. Data analysis and simulation integrated in the same application are fundamental to understand the mechanisms of actions of drugs: a core aspect of systems pharmacology. PMID:28469411

  1. Modelling robotic systems with DADS

    NASA Technical Reports Server (NTRS)

    Churchill, L. W.; Sharf, I.

    1993-01-01

    With the appearance of general off-the-shelf software packages for the simulation of mechanical systems, modelling and simulation of mechanisms has become an easier task. The authors have recently used one such package, DADS, to model the dynamics of rigid and flexible-link robotic manipulators. In this paper, we present this overview of our learning experiences with DADS, in the hope that it will shorten the learning process for others interested in this software.

  2. Aeroelastic Analysis Of Versatile Thermal Insulation Panels For Launchers Applications

    NASA Astrophysics Data System (ADS)

    Carrera, E.; Zappino, E.; Augello, G.; Ferrarese, A.; Montabone, M.

    2011-05-01

    The aeroelastic behavior of a Versatile Thermal Insulation (VTI) has been investigated. Among the various loadings acting on the panels in this work the attention is payed to fluid structure interaction. e.g. panel flutter phenomena. Known available results from open literature, related to similar problems, permit to analyze the effect of various Mach regimes, including boundary layers thickness effects, in-plane mechanical and thermal loadings, nonlinear effect and amplitude of so called limit cycle oscillations. Dedicated finite element model is developed for the supersonic regime. The model used for coupling orthotropic layered structural model with to Piston Theory aerodynamic models allows the calculations of flutter conditions in case of curved panels supported in a dis- crete number of points. Through this approach the flutter boundaries of the VTI-panel have been investigated.

  3. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  4. Video distribution system cost model

    NASA Technical Reports Server (NTRS)

    Gershkoff, I.; Haspert, J. K.; Morgenstern, B.

    1980-01-01

    A cost model that can be used to systematically identify the costs of procuring and operating satellite linked communications systems is described. The user defines a network configuration by specifying the location of each participating site, the interconnection requirements, and the transmission paths available for the uplink (studio to satellite), downlink (satellite to audience), and voice talkback (between audience and studio) segments of the network. The model uses this information to calculate the least expensive signal distribution path for each participating site. Cost estimates are broken downy by capital, installation, lease, operations and maintenance. The design of the model permits flexibility in specifying network and cost structure.

  5. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  6. Versatile optical coherence tomography for imaging the human eye

    PubMed Central

    Tao, Aizhu; Shao, Yilei; Zhong, Jianguang; Jiang, Hong; Shen, Meixiao; Wang, Jianhua

    2013-01-01

    We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications. PMID:23847729

  7. System modelling for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Diaz-Aguiló, Marc; Grynagier, Adrien; Rais, Boutheina

    LISA Pathfinder is the technology demonstrator for LISA, a space-borne gravitational waves observatory. The goal of the mission is to characterise the dynamics of the LISA Technology Package (LTP) to prove that on-board experimental conditions are compatible with the de-tection of gravitational waves. The LTP is a drag-free dynamics experiment which includes a control loop with sensors (interferometric and capacitive), actuators (capacitive actuators and thrusters), controlled disturbances (magnetic coils, heaters) and which is subject to various endogenous or exogenous noise sources such as infrared pressure or solar wind. The LTP experiment features new hardware which was never flown in space. The mission has a tight operation timeline as it is constrained to about 100 days. It is therefore vital to have efficient and precise means of investigation and diagnostics to be used during the on-orbit operations. These will be conducted using the LTP Data Analysis toolbox (LTPDA) which allows for simulation, parameter identification and various analyses (covariance analysis, state estimation) given an experimental model. The LTPDA toolbox therefore contains a series of models which are state-space representations of each component in the LTP. The State-Space Models (SSM) are objects of a state-space class within the LTPDA toolbox especially designed to address all the requirements of this tool. The user has access to a set of linear models which represent every satellite subsystem; the models are available in different forms representing 1D, 2D and 3D systems, each with settable symbolic and numeric parameters. To limit the possible errors, the models can be automatically linked to produce composite systems and closed-loops of the LTP. Finally, for the sake of completeness, accuracy and maintainability of the tool, the models contain all the physical information they mimic (i.e. variable units, description of parameters, description of inputs/outputs, etc). Models

  8. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  9. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  10. A versatile and interoperable network sensors for water resources monitoring

    NASA Astrophysics Data System (ADS)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  11. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  12. Mechanism-based model of a mass rapid transit system: A perspective

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Khoon, Lee Kee; Guang, Hung Gih; Monterola, Christopher

    2015-01-01

    In this paper, we discuss our findings on the spatiotemporal dynamics within the mass rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin-Destination (OD) station pairs follows a power-law, implying the existence of critical OD pairs. We then present and discuss the empirically validated agent-based model (ABM) we have developed. The model allows recreation of the observed statistics and the setting up of various scenarios and their effects on the system, such as increasing the commuter population and the propagation of travel delays within the transportation network. The proposed model further enables identification of bottlenecks that can cause the MRT to break down, and consequently provide foresight on how such disruptions can possibly be managed. This can potentially provide a versatile approach for transport planners and government regulators to make quantifiable policies that optimally balance cost and convenience as a function of the number of the commuting public.

  13. Discrete modelling of drapery systems

    NASA Astrophysics Data System (ADS)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  14. Airfoil flutter model suspension system

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H. (Inventor)

    1987-01-01

    A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.

  15. Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid

    PubMed Central

    Marshall, David C.; Hill, Kathy B. R.

    2009-01-01

    Background In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. Methodology/Principal Findings We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. Conclusions/Significance We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species. PMID:19142230

  16. Versatile aggressive mimicry of cicadas by an Australian predatory katydid.

    PubMed

    Marshall, David C; Hill, Kathy B R

    2009-01-01

    In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species.

  17. Aerial Measuring System Sensor Modeling

    SciTech Connect

    R. S. Detwiler

    2002-04-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimatingmore » detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 {micro}Ci/m{sup 2}. The helicopter calculations modeled the transport of americium-241 ({sup

  18. Propulsion System Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Tai, Jimmy C. M.; McClure, Erin K.; Mavris, Dimitri N.; Burg, Cecile

    2002-01-01

    The Aerospace Systems Design Laboratory at the School of Aerospace Engineering in Georgia Institute of Technology has developed a core competency that enables propulsion technology managers to make technology investment decisions substantiated by propulsion and airframe technology system studies. This method assists the designer/manager in selecting appropriate technology concepts while accounting for the presence of risk and uncertainty as well as interactions between disciplines. This capability is incorporated into a single design simulation system that is described in this paper. This propulsion system design environment is created with a commercially available software called iSIGHT, which is a generic computational framework, and with analysis programs for engine cycle, engine flowpath, mission, and economic analyses. iSIGHT is used to integrate these analysis tools within a single computer platform and facilitate information transfer amongst the various codes. The resulting modeling and simulation (M&S) environment in conjunction with the response surface method provides the designer/decision-maker an analytical means to examine the entire design space from either a subsystem and/or system perspective. The results of this paper will enable managers to analytically play what-if games to gain insight in to the benefits (and/or degradation) of changing engine cycle design parameters. Furthermore, the propulsion design space will be explored probabilistically to show the feasibility and viability of the propulsion system integrated with a vehicle.

  19. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  20. Automated parking garage system model

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1975-01-01

    A one-twenty-fifth scale model of the key components of an automated parking garage system is described. The design of the model required transferring a vehicle from an entry level, vertically (+Z, -Z), to a storage location at any one of four storage positions (+X, -X, +Y, +Y, -Y) on the storage levels. There are three primary subsystems: (1) a screw jack to provide the vertical motion of the elevator, (2) a cam-driven track-switching device to provide X to Y motion, and (3) a transfer cart to provide horizontal travel and a small amount to vertical motion for transfer to the storage location. Motive power is provided by dc permanent magnet gear motors, one each for the elevator and track switching device and two for the transfer cart drive system (one driving the cart horizontally and the other providing the vertical transfer). The control system, through the use of a microprocessor, provides complete automation through a feedback system which utilizes sensing devices.

  1. The National energy modeling system

    NASA Astrophysics Data System (ADS)

    The DOE uses a variety of energy and economic models to forecast energy supply and demand. It also uses a variety of more narrowly focussed analytical tools to examine energy policy options. For the purpose of the scope of this work, this set of models and analytical tools is called the National Energy Modeling System (NEMS). The NEMS is the result of many years of development of energy modeling and analysis tools, many of which were developed for different applications and under different assumptions. As such, NEMS is believed to be less than satisfactory in certain areas. For example, NEMS is difficult to keep updated and expensive to use. Various outputs are often difficult to reconcile. Products were not required to interface, but were designed to stand alone. Because different developers were involved, the inner workings of the NEMS are often not easily or fully understood. Even with these difficulties, however, NEMS comprises the best tools currently identified to deal with our global, national and regional energy modeling, and energy analysis needs.

  2. Quantitative Predictive Models for Systemic Toxicity (SOT)

    EPA Science Inventory

    Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...

  3. The Community Climate System Model.

    NASA Astrophysics Data System (ADS)

    Blackmon, Maurice; Boville, Byron; Bryan, Frank; Dickinson, Robert; Gent, Peter; Kiehl, Jeffrey; Moritz, Richard; Randall, David; Shukla, Jagadish; Solomon, Susan; Bonan, Gordon; Doney, Scott; Fung, Inez; Hack, James; Hunke, Elizabeth; Hurrell, James; Kutzbach, John; Meehl, Jerry; Otto-Bliesner, Bette; Saravanan, R.; Schneider, Edwin K.; Sloan, Lisa; Spall, Michael; Taylor, Karl; Tribbia, Joseph; Washington, Warren

    2001-11-01

    The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users. The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a flux coupler that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1% per year. In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several pro-jections of the climate of the twenty-first century. The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface

  4. Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)

    DTIC Science & Technology

    2017-06-22

    AFRL-RX-WP-JA-2017-0341 EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) M. Fernanda...AND SUBTITLE EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-2-5518 5b...Expanding applications of SERS through versatile nanomaterials engineering M. Fernanda Cardinal, Emma Vander Ende, Ryan A. Hackler, Michael O. McAnally

  5. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  6. Development of a model protection and dynamic response monitoring system for the national transonic facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    A state-of-the-art, computerized mode protection and dynamic response monitoring system has been developed for the NASA Langley Research Center National Transonic Facility (NTF). This report describes the development of the model protection and shutdown system (MPSS). A technical description of the system is given along with discussions on operation and capabilities of the system. Applications of the system to vibration problems are presented to demonstrate the system capabilities, typical applications, versatility, and investment research return derived from the system to date. The system was custom designed for the NTF but can be used at other facilities or for other dynamic measurement/diagnostic applications. Potential commercial uses of the system are described. System capability has been demonstrated for forced response testing and for characterizing and quantifying bias errors for onboard inertial model attitude measurement devices. The system is installed in the NTF control room and has been used successfully for monitoring, recording and analyzing the dynamic response of several model systems tested in the NTF.

  7. Injectable nanocomposite cryogels for versatile protein drug delivery.

    PubMed

    Koshy, Sandeep T; Zhang, David K Y; Grolman, Joshua M; Stafford, Alexander G; Mooney, David J

    2018-01-01

    Sustained, localized protein delivery can enhance the safety and activity of protein drugs in diverse disease settings. While hydrogel systems are widely studied as vehicles for protein delivery, they often suffer from rapid release of encapsulated cargo, leading to a narrow duration of therapy, and protein cargo can be denatured by incompatibility with the hydrogel crosslinking chemistry. In this work, we describe injectable nanocomposite hydrogels that are capable of sustained, bioactive, release of a variety of encapsulated proteins. Injectable and porous cryogels were formed by bio-orthogonal crosslinking of alginate using tetrazine-norbornene coupling. To provide sustained release from these hydrogels, protein cargo was pre-adsorbed to charged Laponite nanoparticles that were incorporated within the walls of the cryogels. The presence of Laponite particles substantially hindered the release of a number of proteins that otherwise showed burst release from these hydrogels. By modifying the Laponite content within the hydrogels, the kinetics of protein release could be precisely tuned. This versatile strategy to control protein release simplifies the design of hydrogel drug delivery systems. Here we present an injectable nanocomposite hydrogel for simple and versatile controlled release of therapeutic proteins. Protein release from hydrogels often requires first entrapping the protein in particles and embedding these particles within the hydrogel to allow controlled protein release. This pre-encapsulation process can be cumbersome, can damage the protein's activity, and must be optimized for each protein of interest. The strategy presented in this work simply premixes the protein with charged nanoparticles that bind strongly with the protein. These protein-laden particles are then placed within a hydrogel and slowly release the protein into the surrounding environment. Using this method, tunable release from an injectable hydrogel can be achieved for a variety of

  8. The Occupational Versatility Program: Student-Directed Learning in Industrial Arts.

    ERIC Educational Resources Information Center

    Lavender, John

    1978-01-01

    Describes the Occupational Versatility program in industrial arts, involving a self-instructional school shop in which the learning system is student-managed, nongraded, upgraded, and team taught. This federally funded learning method has also been successfully applied to home economics and art education. Information sources for the teacher are…

  9. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  10. Some Approaches to Modeling Complex Information Systems.

    ERIC Educational Resources Information Center

    Rao, V. Venkata; Zunde, Pranas

    1982-01-01

    Brief discussion of state-of-the-art of modeling complex information systems distinguishes between macrolevel and microlevel modeling of such systems. Network layout and hierarchical system models, simulation, information acquisition and dissemination, databases and information storage, and operating systems are described and assessed. Thirty-four…

  11. Versatile Miniature Tunable Liquid Lenses Using Transparent Graphene Electrodes.

    PubMed

    Shahini, Ali; Xia, Jinjun; Zhou, Zhixian; Zhao, Yang; Cheng, Mark Ming-Cheng

    2016-02-16

    This paper presents, for the first time, versatile and low-cost miniature liquid lenses with graphene as electrodes. Tunable focal length is achieved by changing the droplet curvature using electrowetting on dielectric (EWOD). Ionic liquid and KCl solution are utilized as lens liquid on the top of a flexible Teflon-coated PDMS/parylene membrane. Transparent and flexible, graphene allows transmission of visible light as well as large deformation of the polymer membrane to achieve requirements for different lens designs and to increase the field of view without damaging of electrodes. The tunable range for the focal length is between 3 and 7 mm for a droplet with a volume of 3 μL. The visualization of bone marrow dendritic cells is demonstrated by the liquid lens system with a high resolution (456 lp/mm).

  12. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    DTIC Science & Technology

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  13. The System of Systems Architecture Feasibility Assessment Model

    DTIC Science & Technology

    2016-06-01

    OF SYSTEMS ARCHITECTURE FEASIBILITY ASSESSMENT MODEL by Stephen E. Gillespie June 2016 Dissertation Supervisor Eugene Paulo THIS PAGE...Dissertation 4. TITLE AND SUBTITLE THE SYSTEM OF SYSTEMS ARCHITECTURE FEASIBILITY ASSESSMENT MODEL 5. FUNDING NUMBERS 6. AUTHOR(S) Stephen E...SoS architecture feasibility assessment model (SoS-AFAM). Together, these extend current model- based systems engineering (MBSE) and SoS engineering

  14. Aeroelastic analysis of versatile thermal insulation (VTI) panels with pinched boundary conditions

    NASA Astrophysics Data System (ADS)

    Carrera, Erasmo; Zappino, Enrico; Patočka, Karel; Komarek, Martin; Ferrarese, Adriano; Montabone, Mauro; Kotzias, Bernhard; Huermann, Brian; Schwane, Richard

    2014-03-01

    Launch vehicle design and analysis is a crucial problem in space engineering. The large range of external conditions and the complexity of space vehicles make the solution of the problem really challenging. The problem considered in the present work deals with the versatile thermal insulation (VTI) panel. This thermal protection system is designed to reduce heat fluxes on the LH2 tank during the long coasting phases. Because of the unconventional boundary conditions and the large-scale geometry of the panel, the aeroelastic behaviour of VTI is investigated in the present work. Known available results from literature related to similar problem, are reviewed by considering the effect of various Mach regimes, including boundary layer thickness effects, in-plane mechanical and thermal loads, non-linear effects and amplitude of limit cycle oscillations. A dedicated finite element model is developed for the supersonic regime. The models used for coupling the orthotropic layered structural model with Piston Theory aerodynamic models allow the calculations of flutter conditions in case of curved panels supported in a discrete number of points. An advanced computational aeroelasticity tool is developed using various dedicated commercial softwares (CFX, ZAERO, EDGE). A wind tunnel test campaign is carried out to assess the computational tool in the analysis of this type of problem.

  15. Modeling the Earth System, volume 3

    NASA Technical Reports Server (NTRS)

    Ojima, Dennis (Editor)

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  16. System Operations Studies : Feeder System Model. User's Manual.

    DOT National Transportation Integrated Search

    1982-11-01

    The Feeder System Model (FSM) is one of the analytic models included in the System Operations Studies (SOS) software package developed for urban transit systems analysis. The objective of the model is to assign a proportion of the zone-to-zone travel...

  17. Using the Model Coupling Toolkit to couple earth system models

    USGS Publications Warehouse

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  18. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect

    Chassin, David P.; Malard, Joel M.; Posse, Christian

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We reviewmore » and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.« less

  19. Next generation system modeling of NTR systems

    NASA Technical Reports Server (NTRS)

    Buksa, John J.; Rider, William J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal rocket (NTR) modeling challenges; current approaches; shortcomings of current analysis method; future needs; and present steps to these goals.

  20. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  1. A reference model for model-based design of critical infrastructure protection systems

    NASA Astrophysics Data System (ADS)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  2. Performance modeling of automated manufacturing systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, N.; Narahari, Y.

    A unified and systematic treatment is presented of modeling methodologies and analysis techniques for performance evaluation of automated manufacturing systems. The book is the first treatment of the mathematical modeling of manufacturing systems. Automated manufacturing systems are surveyed and three principal analytical modeling paradigms are discussed: Markov chains, queues and queueing networks, and Petri nets.

  3. NASA's SPICE System Models the Solar System

    NASA Technical Reports Server (NTRS)

    Acton, Charles

    1996-01-01

    SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.

  4. The CICT Earth Science Systems Analysis Model

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Coughlan, Joe; Biegel, Bryan; Stevens, Ken; Hansson, Othar; Hayes, Jordan

    2004-01-01

    Contents include the following: Computing Information and Communications Technology (CICT) Systems Analysis. Our modeling approach: a 3-part schematic investment model of technology change, impact assessment and prioritization. A whirlwind tour of our model. Lessons learned.

  5. Model Information Exchange System (MIXS).

    DOT National Transportation Integrated Search

    2013-08-01

    Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...

  6. Versatility of hydrocarbon production in cyanobacteria.

    PubMed

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  7. Buried nanoantenna arrays: versatile antireflection coating.

    PubMed

    Kabiri, Ali; Girgis, Emad; Capasso, Federico

    2013-01-01

    Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.

  8. A Versatile Integrated Ambient Ionization Source Platform.

    PubMed

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-30

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. Graphical abstract ᅟ.

  9. Multiplexed microimmunoassays on a digital versatile disk.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis A; Arnandis-Chover, Tania; Puchades, Rosa; Maquieira, Angel

    2009-07-15

    Multiplexed microimmunoassays for five critical compounds were developed using a digital versatile disk (DVD) as an analytical support and detecting technology. To this end, coating conjugates were adsorbed on the polycarbonate face of the disk; a pool of specific antibodies, gold labeled secondary antibodies, and silver amplification were addressed for developing the assays. The detection principle is based on the capture of attenuated analog signals with the disk drive that were proportional to optical density of the immunoreaction product. The multiplexed assay achieved detection limits (IC10) of 0.06, 0.25, 0.37, 0.16, and 0.10 microg/L, sensitivities of (IC50) 0.54, 1.54, 2.62, 2.02, and 5.9 microg/L, and dynamic ranges of 2 orders of magnitude for atrazine, chlorpyrifos, metolachlor, sulfathiazole, and tetracycline, respectively. The features of the methodology were verified by analyzing natural waters and compared with reference chromatographic methods, showing its potential for high-throughput multiplexed screening applications. Analytes of different chemical nature (pesticides and antibiotics) were directly quantified without sample treatment or preconcentration in a total time of 30 min with similar sensitivity and selectivity to the ELISA plate format using the same immunoreagents. The multianalyte capabilities of immunoassaying methods developed with digital disk and drive demonstrated the competitiveness to quantify targets that require different sample treatment and instrumentation by chromatographic methods.

  10. Precise and versatile formula for birefringent filters

    NASA Astrophysics Data System (ADS)

    Shao, Zhongxing

    1996-07-01

    In an investigation of extraordinary-(E-) ray behavior and the index of refraction for E waves in a uniaxial crystal, a precise and versatile formula for birefringent filters, based on the exact construction of the optical path difference, is set up with neither the approximation Delta n = no - ne less than or equals no (or n e), nor the ambiguity sin( theta )/sin(rw) = ne. The exact construction gives the correct variation of the position and the dimension in each path, yielding the path difference while the filter is tuning. The formula is applicable not only to a filter with its optical axis parallel to the entrance surface (FAPS) but also to a filter with its axis inclined to the surface (FAIS). Also, the formula indicates that a FAIS allows laser wavelengths to be tuned over a wider range than does a FAPS. The origin of the wider range is interpreted to be the greater variation in the index for the FAIS while the filter is tuning. With the help of the formula we design a FAIS for tuning a cw 42.25.Lc.

  11. A Versatile Integrated Ambient Ionization Source Platform

    NASA Astrophysics Data System (ADS)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  12. System Behavior Models: A Survey of Approaches

    DTIC Science & Technology

    2016-06-01

    MODELS: A SURVEY OF APPROACHES by Scott R. Ruppel June 2016 Thesis Advisor: Kristin Giammarco Second Reader: John M. Green THIS PAGE...Thesis 4. TITLE AND SUBTITLE SYSTEM BEHAVIOR MODELS: A SURVEY OF APPROACHES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott R. Ruppel 7. PERFORMING...Monterey Phoenix, Petri nets, behavior modeling, model-based systems engineering, modeling approaches, modeling survey 15. NUMBER OF PAGES 85 16

  13. Model mount system for testing flutter

    NASA Technical Reports Server (NTRS)

    Farmer, M. G. (Inventor)

    1984-01-01

    A wind tunnel model mount system is disclosed for effectively and accurately determining the effects of attack and airstream velocity on a model airfoil or aircraft. The model mount system includes a rigid model attached to a splitter plate which is supported away from the wind tunnel wall several of flexible rods. Conventional instrumentation is employed to effect model rotation through a turntable and to record model flutter data as a function of the angle of attack versus dynamic pressure.

  14. 3D printing of versatile reactionware for chemical synthesis.

    PubMed

    Kitson, Philip J; Glatzel, Stefan; Chen, Wei; Lin, Chang-Gen; Song, Yu-Fei; Cronin, Leroy

    2016-05-01

    In recent decades, 3D printing (also known as additive manufacturing) techniques have moved beyond their traditional applications in the fields of industrial manufacturing and prototyping to increasingly find roles in scientific research contexts, such as synthetic chemistry. We present a general approach for the production of bespoke chemical reactors, termed reactionware, using two different approaches to extrusion-based 3D printing. This protocol describes the printing of an inert polypropylene (PP) architecture with the concurrent printing of soft material catalyst composites, using two different 3D printer setups. The steps of the PROCEDURE describe the design and preparation of a 3D digital model of the desired reactionware device and the preparation of this model for use with fused deposition modeling (FDM) type 3D printers. The protocol then further describes the preparation of composite catalyst-silicone materials for incorporation into the 3D-printed device and the steps required to fabricate a reactionware device. This combined approach allows versatility in the design and use of reactionware based on the specific needs of the experimental user. To illustrate this, we present a detailed procedure for the production of one such reactionware device that will result in the production of a sealed reactor capable of effecting a multistep organic synthesis. Depending on the design time of the 3D model, and including time for curing and drying of materials, this procedure can be completed in ∼3 d.

  15. Attached shuttle payload carriers: Versatile and affordable access to space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The shuttle has been primarily designed to be a versatile vehicle for placing a variety of scientific and technological equipment in space including very large payloads; however, since many large payloads do not fill the shuttle bay, the space and weight margins remaining after the major payloads are accommodated often can be made available to small payloads. The Goddard Space Flight Center (GSFC) has designed standardized mounting structures and other support systems, collectively called attached shuttle payload (ASP) carriers, to make this additional space available to researchers at a relatively modest cost. Other carrier systems for ASP's are operated by other NASA centers. A major feature of the ASP carriers is their ease of use in the world of the Space Shuttle. ASP carriers attempt to minimized the payload interaction with Space Transportation System (STS) operations whenever possible. Where this is not possible, the STS services used are not extensive. As a result, the interfaces between the carriers and the STS are simplified. With this near autonomy, the requirements for supporting documentation are considerably lessened and payload costs correspondingly reduced. The ASP carrier systems and their capabilities are discussed in detail. The range of available capabilities assures that an experimenter can select the simplest, most cost-effective carrier that is compatible with his or her experimental objectives. Examples of payloads which use ASP basic hardware in nonstandard ways are also described.

  16. Analysis hierarchical model for discrete event systems

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  17. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  18. Modelling Root Systems Using Oriented Density Distributions

    NASA Astrophysics Data System (ADS)

    Dupuy, Lionel X.

    2011-09-01

    Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.

  19. Human systems dynamics: Toward a computational model

    NASA Astrophysics Data System (ADS)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  20. Metadata Authoring with Versatility and Extensibility

    NASA Technical Reports Server (NTRS)

    Pollack, Janine; Olsen, Lola

    2004-01-01

    NASA's Global Change Master Directory (GCMD) assists the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 13,800 data set descriptions in Directory Interchange Format (DIF) and 700 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information and direct links to the data, thus allowing researchers to discover data pertaining to a geographic location of interest, then quickly acquire those data. The GCMD strives to be the preferred data locator for world-wide directory-level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are attracting widespread usage; however, a need for tools that are portable, customizable and versatile still exists. With tool usage directly influencing metadata population, it has become apparent that new tools are needed to fill these voids. As a result, the GCMD has released a new authoring tool allowing for both web-based and stand-alone authoring of descriptions. Furthermore, this tool incorporates the ability to plug-and-play the metadata format of choice, offering users options of DIF, SERF, FGDC, ISO or any other defined standard. Allowing data holders to work with their preferred format, as well as an option of a stand-alone application or web-based environment, docBUlLDER will assist the scientific community in efficiently creating quality data and services metadata.

  1. Hydrological modelling in forested systems

    EPA Science Inventory

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  2. Modeling human-environmental systems

    Treesearch

    Morgan Grove; Charlie Schweik; Tom Evans; Glen Green

    2002-01-01

    This chapter focuses on the integration and development of environmental models that include human decision making. While many methodological and technical issues are common to all types of environmental models, our goal is to highlight the unique characteristics that need to be considered when modeling human-environmental dynamics and to identify future directions for...

  3. Electronic Education System Model-2

    ERIC Educational Resources Information Center

    Güllü, Fatih; Kuusik, Rein; Laanpere, Mart

    2015-01-01

    In this study we presented new EES Model-2 extended from EES model for more productive implementation in e-learning process design and modelling in higher education. The most updates were related to uppermost instructional layer. We updated learning processes object of the layer for adaptation of educational process for young and old people,…

  4. A model for plant lighting system selection.

    PubMed

    Ciolkosz, D E; Albright, L D; Sager, J C; Langhans, R W

    2002-01-01

    A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

  5. An online model composition tool for system biology models

    PubMed Central

    2013-01-01

    Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914

  6. Nanosilver: new ageless and versatile biomedical therapeutic scaffold

    PubMed Central

    Ullah Khan, Shahid; Khan, Muhammad Hafeez Ullah; Khan, Dilfaraz; Ullah Khan, Wasim; Rahim, Abdur; Kamal, Sajid; Ullah Khan, Farman; Fahad, Shah

    2018-01-01

    Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields. PMID:29440898

  7. Ultrafast and versatile spectroscopy by temporal Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Xiaoming; Marhic, Michel E.; Wong, Kenneth K. Y.

    2014-06-01

    One of the most remarkable and useful properties of a spatially converging lens system is its inherent ability to perform the Fourier transform; the same applies for the time-lens system. At the back focal plane of the time-lens, the spectral information can be instantaneously obtained in the time axis. By implementing temporal Fourier transform for spectroscopy applications, this time-lens-based architecture can provide orders of magnitude improvement over the state-of-art spatial-dispersion-based spectroscopy in terms of the frame rate. On the other hand, in addition to the single-lens structure, the multi-lens structures (e.g. telescope or wide-angle scope) will provide very versatile operating conditions. Leveraging the merit of instantaneous response, as well as the flexible lens structure, here we present a 100-MHz frame rate spectroscopy system - the parametric spectro-temporal analyzer (PASTA), which achieves 17 times zoom in/out ratio for different observation ranges.

  8. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    1991-01-01

    A number of topics related to building a generalized distributed system model are discussed. The effects of distributed database modeling on evaluation of transaction rollbacks, the measurement of effects of distributed database models on transaction availability measures, and a performance analysis of static locking in replicated distributed database systems are covered.

  9. Identifiability Of Systems With Modeling Errors

    NASA Technical Reports Server (NTRS)

    Hadaegh, Yadolah " fred" ; Bekey, George A.

    1988-01-01

    Advances in theory of modeling errors reported. Recent paper on errors in mathematical models of deterministic linear or weakly nonlinear systems. Extends theoretical work described in NPO-16661 and NPO-16785. Presents concrete way of accounting for difference in structure between mathematical model and physical process or system that it represents.

  10. Applying Modeling Tools to Ground System Procedures

    NASA Technical Reports Server (NTRS)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  11. Dispersion Modeling in Complex Urban Systems

    EPA Science Inventory

    Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...

  12. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  13. Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles.

    PubMed

    Wu, Naiqi; Zhou, MengChu

    2005-12-01

    An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, an automated material handling system (MHS), and is computer-controlled. An effective and flexible alternative for implementing MHS is to use automated guided vehicle (AGV) system. The deadlock issue in AMS is very important in its operation and has extensively been studied. The deadlock problems were separately treated for parts in production and transportation and many techniques were developed for each problem. However, such treatment does not take the advantage of the flexibility offered by multiple AGVs. In general, it is intractable to obtain maximally permissive control policy for either problem. Instead, this paper investigates these two problems in an integrated way. First we model an AGV system and part processing processes by resource-oriented Petri nets, respectively. Then the two models are integrated by using macro transitions. Based on the combined model, a novel control policy for deadlock avoidance is proposed. It is shown to be maximally permissive with computational complexity of O (n2) where n is the number of machines in AMS if the complexity for controlling the part transportation by AGVs is not considered. Thus, the complexity of deadlock avoidance for the whole system is bounded by the complexity in controlling the AGV system. An illustrative example shows its application and power.

  14. NASA Lewis Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Haller, Henry C.

    1994-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis' aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given.

  15. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  16. EXPOSURE ANALYSIS MODELING SYSTEM (EXAMS): USER MANUAL AND SYSTEM DOCUMENTATION

    EPA Science Inventory

    The Exposure Analysis Modeling System, first published in 1982 (EPA-600/3-82-023), provides interactive computer software for formulating aquatic ecosystem models and rapidly evaluating the fate, transport, and exposure concentrations of synthetic organic chemicals - pesticides, ...

  17. Modeling noisy resonant system response

    NASA Astrophysics Data System (ADS)

    Weber, Patrick Thomas; Walrath, David Edwin

    2017-02-01

    In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.

  18. System analysis through bond graph modeling

    NASA Astrophysics Data System (ADS)

    McBride, Robert Thomas

    2005-07-01

    Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.

  19. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    PubMed

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement

    PubMed Central

    Harne, R. L.; Wang, K. W.

    2015-01-01

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. PMID:25608517

  1. Prediction of convective activity using a system of parasitic-nested numerical models

    NASA Technical Reports Server (NTRS)

    Perkey, D. J.

    1976-01-01

    A limited area, three dimensional, moist, primitive equation (PE) model is developed to test the sensitivity of quantitative precipitation forecasts to the initial relative humidity distribution. Special emphasis is placed on the squall-line region. To accomplish the desired goal, time dependent lateral boundaries and a general convective parameterization scheme suitable for mid-latitude systems were developed. The sequential plume convective parameterization scheme presented is designed to have the versatility necessary in mid-latitudes and to be applicable for short-range forecasts. The results indicate that the scheme is able to function in the frontally forced squallline region, in the gently rising altostratus region ahead of the approaching low center, and in the over-riding region ahead of the warm front. Three experiments are discussed.

  2. Watershed modeling applications in south Texas

    USGS Publications Warehouse

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    This fact sheet presents an overview of six selected watershed modeling studies by the USGS and partners that address a variety of water-resource issues in south Texas. These studies provide examples of modeling applications and demonstrate the usefulness and versatility of watershed models in aiding the understanding of hydrologic systems.

  3. Hydrological modeling in forested systems

    Treesearch

    H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun

    2015-01-01

    Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...

  4. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    PubMed

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  5. Error Propagation in a System Model

    NASA Technical Reports Server (NTRS)

    Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)

    2015-01-01

    Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.

  6. Systems Engineering Models and Tools | Wind | NREL

    Science.gov Websites

    (tm)) that provides wind turbine and plant engineering and cost models for holistic system analysis turbine/component models and wind plant analysis models that the systems engineering team produces. If you integrated modeling of wind turbines and plants. It provides guidance for overall wind turbine and plant

  7. Multiple system modelling of waste management

    SciTech Connect

    Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less

  8. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  9. Medicine, material science and security: the versatility of the coded-aperture approach.

    PubMed

    Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A

    2014-03-06

    The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.

  10. Gypsy moth life system model

    Treesearch

    J. J. Colbert; G. E. Racin

    1991-01-01

    The model is composed of four major subsystems that are driven by weather. The stand subsystem incorporates the effects of damage by the gypsy moth into annual tree diameter and height growth as well as tree mortality.

  11. Integrating systems biology models and biomedical ontologies

    PubMed Central

    2011-01-01

    Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms. PMID:21835028

  12. Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...

  13. Precipitation-runoff modeling system; user's manual

    USGS Publications Warehouse

    Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.

    1983-01-01

    The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)

  14. An expert system for water quality modelling.

    PubMed

    Booty, W G; Lam, D C; Bobba, A G; Wong, I; Kay, D; Kerby, J P; Bowen, G S

    1992-12-01

    The RAISON-micro (Regional Analysis by Intelligent System ON a micro-computer) expert system is being used to predict the effects of mine effluents on receiving waters in Ontario. The potential of this system to assist regulatory agencies and mining industries to define more acceptable effluent limits was shown in an initial study. This system has been further developed so that the expert system helps the model user choose the most appropriate model for a particular application from a hierarchy of models. The system currently contains seven models which range from steady state to time dependent models, for both conservative and nonconservative substances in rivers and lakes. The menu driven expert system prompts the model user for information such as the nature of the receiving water system, the type of effluent being considered, and the range of background data available for use as input to the models. The system can also be used to determine the nature of the environmental conditions at the site which are not available in the textual information database, such as the components of river flow. Applications of the water quality expert system are presented for representative mine sites in the Timmins area of Ontario.

  15. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  16. Brief History of Agricultural Systems Modeling

    NASA Technical Reports Server (NTRS)

    Jones, James W.; Antle, John M.; Basso, Bruno O.; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrrero, Mario; Howitt, Richard E.; Janssen, Sandor; hide

    2016-01-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the next generation models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be considered

  17. Brief history of agricultural systems modeling

    DOE PAGES

    Jones, James W.; Antle, John M.; Basso, Bruno; ...

    2017-06-21

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of thismore » history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. Furthermore, the lessons from

  18. Brief history of agricultural systems modeling.

    PubMed

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  19. Brief history of agricultural systems modeling

    SciTech Connect

    Jones, James W.; Antle, John M.; Basso, Bruno

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of thismore » history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. Furthermore, the lessons from

  20. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  1. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  2. Modular, Semantics-Based Composition of Biosimulation Models

    ERIC Educational Resources Information Center

    Neal, Maxwell Lewis

    2010-01-01

    Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…

  3. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  4. EPA EXPOSURE MODELS LIBRARY AND INTEGRATED MODEL EVALUATION SYSTEM

    EPA Science Inventory

    The third edition of the U.S. Environmental Protection Agencys (EPA) EML/IMES (Exposure Models Library and Integrated Model Evaluation System) on CD-ROM is now available. The purpose of the disc is to provide a compact and efficient means to distribute exposure models, documentat...

  5. MODEL VERSION CONTROL FOR GREAT LAKES MODELS ON UNIX SYSTEMS

    EPA Science Inventory

    Scientific results of the Lake Michigan Mass Balance Project were provided where atrazine was measured and modeled. The presentation also provided the model version control system which has been used for models at Grosse Ile for approximately a decade and contains various version...

  6. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  7. A Versatile PDMS/Paper Hybrid Microfluidic Platform for Sensitive Infectious Disease Diagnosis

    PubMed Central

    2015-01-01

    Bacterial meningitis is a serious health concern worldwide. Given that meningitis can be fatal and many meningitis cases occurred in high-poverty areas, a simple, low-cost, highly sensitive method is in great need for immediate and early diagnosis of meningitis. Herein, we report a versatile and cost-effective polydimethylsiloxane (PDMS)/paper hybrid microfluidic device integrated with loop-mediated isothermal amplification (LAMP) for the rapid, sensitive, and instrument-free detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The introduction of paper into the microfluidic device for LAMP reactions enables stable test results over a much longer period of time than a paper-free microfluidic system. This hybrid system also offers versatile functions, by providing not only on-site qualitative diagnostic analysis (i.e., a yes or no answer), but also confirmatory testing and quantitative analysis in laboratory settings. The limit of detection of N. meningitidis is about 3 copies per LAMP zone within 45 min, close to single-bacterium detection sensitivity. In addition, we have achieved simple pathogenic microorganism detection without a laborious sample preparation process and without the use of centrifuges. This low-cost hybrid microfluidic system provides a simple and highly sensitive approach for fast instrument-free diagnosis of N. meningitidis in resource-limited settings. This versatile PDMS/paper microfluidic platform has great potential for the point of care (POC) diagnosis of a wide range of infectious diseases, especially for developing nations. PMID:25019330

  8. Comprehensive system models: Strategies for evaluation

    NASA Technical Reports Server (NTRS)

    Field, Christopher; Kutzbach, John E.; Ramanathan, V.; Maccracken, Michael C.

    1992-01-01

    The task of evaluating comprehensive earth system models is vast involving validations of every model component at every scale of organization, as well as tests of all the individual linkages. Even the most detailed evaluation of each of the component processes and the individual links among them should not, however, engender confidence in the performance of the whole. The integrated earth system is so rich with complex feedback loops, often involving components of the atmosphere, oceans, biosphere, and cryosphere, that it is certain to exhibit emergent properties very difficult to predict from the perspective of a narrow focus on any individual component of the system. Therefore, a substantial share of the task of evaluating comprehensive earth system models must reside at the level of whole system evaluations. Since complete, integrated atmosphere/ ocean/ biosphere/ hydrology models are not yet operational, questions of evaluation must be addressed at the level of the kinds of earth system processes that the models should be competent to simulate, rather than at the level of specific performance criteria. Here, we have tried to identify examples of earth system processes that are difficult to simulate with existing models and that involve a rich enough suite of feedbacks that they are unlikely to be satisfactorily described by highly simplified or toy models. Our purpose is not to specify a checklist of evaluation criteria but to introduce characteristics of the earth system that may present useful opportunities for model testing and, of course, improvement.

  9. NEMS - National Energy Modeling System: An Overview

    EIA Publications

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  10. Systems, Purposes, Images, Plans: A Communication Model.

    ERIC Educational Resources Information Center

    Hildum, Donald C.

    A definition and a general description of communication that makes use of the insights of linguistics and psychology are presented in this paper, along with a conceptual model of communication that incorporates a systems approach. Following a lengthy discussion of the components required for a communication exchange, the systems approach model is…

  11. Tutor-Student System Dropout Prevention Model.

    ERIC Educational Resources Information Center

    George, John E.; Prugh, Linda S.

    This paper reports on an intensive, highly-structured, one-to-one tutoring system used as a model program. The "Tutor-Student System in Beginning Reading," the basic instructional material for the model program, was developed to train tutors to say and do what the reading specialist normally says and does when teaching reading in a…

  12. A Mathematical Model for an Educational System.

    ERIC Educational Resources Information Center

    McReynolds, William Peter

    The document contents divide into (1) the basic flow model of an educational system and its application to the secondary school system of Ontario and (2) a group of interrelated submodels that describe the entrance to higher education in considerably finer detail. In the first section, the principal variable of the model--the transition…

  13. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  14. Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius

    PubMed Central

    Wagner, Michaela; van Wolferen, Marleen; Wagner, Alexander; Lassak, Kerstin; Meyer, Benjamin H.; Reimann, Julia; Albers, Sonja-Verena

    2012-01-01

    For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches. PMID:22707949

  15. Coastal Modeling System: Dredging Module

    DTIC Science & Technology

    2016-06-01

    nonuniform sediments, spatially variable placement thicknesses or depths, and a user-friendly interface within the SMS. ERDC/CHL CHETN-I-90 June...and W. Wu. 2011. Nonuniform sediment transport modeling and Grays Harbor, WA. In Proceedings of the Coastal Sediments’11. Jacksonville, FL. Stark, J

  16. Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems

    NASA Astrophysics Data System (ADS)

    Rimer, S.; Mullapudi, A. M.; Kerkez, B.

    2017-12-01

    The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting

  17. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  18. Modeling of Embedded Human Systems

    DTIC Science & Technology

    2013-07-01

    ISAT study [7] for DARPA in 20051 concretized the notion of an embedded human, who is a necessary component of the system. The proposed work integrates...Technology, IEEE Transactions on, vol. 16, no. 2, pp. 229–244, March 2008. [7] C. J. Tomlin and S. S. Sastry, “Embedded humans,” tech. rep., DARPA ISAT

  19. A Mathematical Model for Railway Control Systems

    NASA Technical Reports Server (NTRS)

    Hoover, D. N.

    1996-01-01

    We present a general method for modeling safety aspects of railway control systems. Using our modeling method, one can progressively refine an abstract railway safety model, sucessively adding layers of detail about how a real system actually operates, while maintaining a safety property that refines the original abstract safety property. This method supports a top-down approach to specification of railway control systems and to proof of a variety of safety-related properties. We demonstrate our method by proving safety of the classical block control system.

  20. A new system model for radar polarimeters

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1991-01-01

    The validity of the 2 x 2 receive R and transmit T model for radar polarimeter systems, first proposed by Zebker et al. (1987), is questioned. The model is found to be invalid for many practical realizations of radar polarimeters, which can lead to significant errors in the calibration of polarimetric radar images. A more general model is put forward, which addresses the system defects which cause the 2 x 2 model to break down. By measuring one simple parameter from a polarimetric active radar calibration (PARC), it is possible to transform the scattering matrix measurements made by a radar polarimeter to a format compatible with a 2 x 2 R and T matrix model. Alternatively, the PARC can be used to verify the validity of the 2 x 2 model for any polarimetric radar system. Recommendations for the use of PARCs in polarimetric calibration and to measure the orientation angle of the horizontal (H) and vertical (V) coordinate system are also presented.

  1. A new system model for radar polarimeters

    NASA Astrophysics Data System (ADS)

    Freeman, Anthony

    1991-09-01

    The validity of the 2 x 2 receive R and transmit T model for radar polarimeter systems, first proposed by Zebker et al. (1987), is questioned. The model is found to be invalid for many practical realizations of radar polarimeters, which can lead to significant errors in the calibration of polarimetric radar images. A more general model is put forward, which addresses the system defects which cause the 2 x 2 model to break down. By measuring one simple parameter from a polarimetric active radar calibration (PARC), it is possible to transform the scattering matrix measurements made by a radar polarimeter to a format compatible with a 2 x 2 R and T matrix model. Alternatively, the PARC can be used to verify the validity of the 2 x 2 model for any polarimetric radar system. Recommendations for the use of PARCs in polarimetric calibration and to measure the orientation angle of the horizontal (H) and vertical (V) coordinate system are also presented.

  2. Systems Engineering Model for ART Energy Conversion

    SciTech Connect

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less

  3. Agent-Based Modeling in Systems Pharmacology.

    PubMed

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  4. Metric half-span model support system

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Dollyhigh, S. M.; Shaw, D. S. (Inventor)

    1982-01-01

    A model support system used to support a model in a wind tunnel test section is described. The model comprises a metric, or measured, half-span supported by a nonmetric, or nonmeasured half-span which is connected to a sting support. Moments and forces acting on the metric half-span are measured without interference from the support system during a wind tunnel test.

  5. User Modeling in Adaptive Hypermedia Educational Systems

    ERIC Educational Resources Information Center

    Martins, Antonio Constantino; Faria, Luiz; Vaz de Carvalho, Carlos; Carrapatoso, Eurico

    2008-01-01

    This document is a survey in the research area of User Modeling (UM) for the specific field of Adaptive Learning. The aims of this document are: To define what it is a User Model; To present existing and well known User Models; To analyze the existent standards related with UM; To compare existing systems. In the scientific area of User Modeling…

  6. System Models and Aging: A Driving Example.

    ERIC Educational Resources Information Center

    Melichar, Joseph F.

    Chronological age is a marker in time but it fails to measure accurately the performance or behavioral characteristics of individuals. This paper models the complexity of aging by using a system model and a human function paradigm. These models help facilitate representation of older adults, integrate research agendas, and enhance remediative…

  7. GRIFFIN: A versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations

    PubMed Central

    Staritzbichler, René; Anselmi, Claudio; Forrest, Lucy R.; Faraldo-Gómez, José D.

    2014-01-01

    As new atomic structures of membrane proteins are resolved, they reveal increasingly complex transmembrane topologies, and highly irregular surfaces with crevices and pores. In many cases, specific interactions formed with the lipid membrane are functionally crucial, as is the overall lipid composition. Compounded with increasing protein size, these characteristics pose a challenge for the construction of simulation models of membrane proteins in lipid environments; clearly, that these models are sufficiently realistic bears upon the reliability of simulation-based studies of these systems. Here, we introduce GRIFFIN, which uses a versatile framework to automate and improve a widely-used membrane-embedding protocol. Initially, GRIFFIN carves out lipid and water molecules from a volume equivalent to that of the protein, so as to conserve the system density. In the subsequent optimization phase GRIFFIN adds an implicit grid-based protein force-field to a molecular dynamics simulation of the pre-carved membrane. In this force-field, atoms inside the implicit protein volume experience an outward force that will expel them from that volume, whereas those outside are subject to electrostatic and van-der-Waals interactions with the implicit protein. At each step of the simulation, these forces are updated by GRIFFIN and combined with the intermolecular forces of the explicit lipid-water system. This procedure enables the construction of realistic and reproducible starting configurations of the protein-membrane interface within a reasonable timeframe and with minimal intervention. GRIFFIN is a standalone tool designed to work alongside any existing molecular dynamics package, such as NAMD or GROMACS. PMID:24707227

  8. A model for international border management systems.

    SciTech Connect

    Duggan, Ruth Ann

    2008-09-01

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  9. Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    PubMed Central

    Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node

  10. Local difference measures between complex networks for dynamical system model evaluation.

    PubMed

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node

  11. Information system modeling for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.

    1999-07-01

    Information system modeling has historically been relegated to a low priority among the designers of information systems. Often times, there is a rush to design and implement hardware and software solutions after only the briefest assessments of the domain requirements. Although this process results in a rapid development cycle, the system usually does not satisfy the needs of the users and the developers are forced to re-program certain aspects of the system. It would be much better to create an accurate model of the system based on the domain needs so that the implementation of the solution satisfies the needs of the users immediately. It would also be advantageous to build extensibility into the model so that updates to the system could be carried out in an organized fashion. The significance of this research is the development of a new formal framework for the construction of a multimedia medical information system. This formal framework is constructed using visual modeling which provides a way of thinking about problems using models organized around real- world ideas. These models provide an abstract way to view complex problems, making them easier for one to understand. The formal framework is the result of an object-oriented analysis and design process that translates the systems requirements and functionality into software models. The usefulness of this information framework is demonstrated with two different applications in epilepsy research and care, i.e., surgical planning of epilepsy and decision threshold determination.

  12. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  13. A versatile expression vector for the growth and amplification of unmodified phage display polypeptides.

    PubMed

    Winton, Alexander J; Baptiste, Janae L; Allen, Mark A

    2018-09-01

    Proteins and polypeptides represent nature's most complex and versatile polymer. They provide complicated shapes, diverse chemical functionalities, and tightly regulated and controlled sizes. Several disease states are related to the misfolding or overproduction of polypeptides and yet polypeptides are present in several therapeutic molecules. In addition to biological roles; short chain polypeptides have been shown to interact with and drive the bio-inspired synthesis or modification of inorganic materials. This paper outlines the development of a versatile cloning vector which allows for the expression of a short polypeptide by controlling the incorporation of a desired DNA coding insert. As a demonstration of the efficacy of the expression system, a solid binding polypeptide identified from M13 phage display was expressed and purified. The solid binding polypeptide was expressed as a soluble 6xHis-SUMO tagged construct. Expression was performed in E. coli using auto-induction followed by Ni-NTA affinity chromatography and ULP1 protease cleavage. Methodology demonstrates the production of greater than 8 mg of purified polypeptide per liter of E. coli culture. Isotopic labeling of the peptide is also demonstrated. The versatility of the designed cloning vector, use of the 6xHis-SUMO solubility partner, bacterial expression in auto-inducing media and the purification methodology make this expressionun vector a readily scalable and user-friendly system for the creation of desired peptide domains. Copyright © 2018. Published by Elsevier Inc.

  14. Requirements based system risk modeling

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Cornford, Steven; Feather, Martin

    2004-01-01

    The problem that we address in this paper is assessing the expected degree of success of the system or mission based on the degree to which each requirement is satisfied and the relative weight of the requirements. We assume a complete list of the requirements, the relevant risk elements and their probability of occurrence and the quantified effect of the risk elements on the requirements. In order to assess the degree to which each requirement is satisfied, we need to determine the effect of the various risk elements on the requirement.

  15. Fault-tolerant continuous flow systems modelling

    NASA Astrophysics Data System (ADS)

    Tolbi, B.; Tebbikh, H.; Alla, H.

    2017-01-01

    This paper presents a structural modelling of faults with hybrid Petri nets (HPNs) for the analysis of a particular class of hybrid dynamic systems, continuous flow systems. HPNs are first used for the behavioural description of continuous flow systems without faults. Then, faults' modelling is considered using a structural method without having to rebuild the model to new. A translation method is given in hierarchical way, it gives a hybrid automata (HA) from an elementary HPN. This translation preserves the behavioural semantics (timed bisimilarity), and reflects the temporal behaviour by giving semantics for each model in terms of timed transition systems. Thus, advantages of the power modelling of HPNs and the analysis ability of HA are taken. A simple example is used to illustrate the ideas.

  16. The UK Earth System Model project

    NASA Astrophysics Data System (ADS)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  17. Plasmids as stochastic model systems

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2003-05-01

    Plasmids are self-replicating gene clusters present in on average 2-100 copies per bacterial cell. To reduce random fluctuations and thereby avoid extinction, they ubiquitously autoregulate their own synthesis using negative feedback loops. Here I use van Kampen's Ω-expansion for a two-dimensional model of negative feedback including plasmids and ther replication inhibitors. This analytically summarizes the standard perspective on replication control -- including the effects of sensitivity amplification, exponential time-delays and noisy signaling. I further review the two most common molecular sensitivity mechanisms: multistep control and cooperativity. Finally, I discuss more controversial sensitivity schemes, such as noise-enhanced sensitivity, the exploitation of small-number combinatorics and double-layered feedback loops to suppress noise in disordered environments.

  18. Computational Model for Ethnographically Informed Systems Design

    NASA Astrophysics Data System (ADS)

    Iqbal, Rahat; James, Anne; Shah, Nazaraf; Terken, Jacuqes

    This paper presents a computational model for ethnographically informed systems design that can support complex and distributed cooperative activities. This model is based on an ethnographic framework consisting of three important dimensions (e.g., distributed coordination, awareness of work and plans and procedure), and the BDI (Belief, Desire and Intention) model of intelligent agents. The ethnographic framework is used to conduct ethnographic analysis and to organise ethnographically driven information into three dimensions, whereas the BDI model allows such information to be mapped upon the underlying concepts of multi-agent systems. The advantage of this model is that it is built upon an adaptation of existing mature and well-understood techniques. By the use of this model, we also address the cognitive aspects of systems design.

  19. Generic Sensor Failure Modeling for Cooperative Systems.

    PubMed

    Jäger, Georg; Zug, Sebastian; Casimiro, António

    2018-03-20

    The advent of cooperative systems entails a dynamic composition of their components. As this contrasts current, statically composed systems, new approaches for maintaining their safety are required. In that endeavor, we propose an integration step that evaluates the failure model of shared information in relation to an application's fault tolerance and thereby promises maintainability of such system's safety. However, it also poses new requirements on failure models, which are not fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined generic failure model as well as a processing chain for automatically extracting such failure models from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic failure model not only fulfills the predefined requirements, but also models failure characteristics appropriately when compared to traditional techniques.

  20. Geographic information system/watershed model interface

    USGS Publications Warehouse

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  1. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  2. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology

    USGS Publications Warehouse

    Bowker, Matthew A.; Maestre, Fernando T.; Eldridge, David; Belnap, Jayne; Castillo-Monroy, Andrea; Escolar, Cristina; Soliveres, Santiago

    2014-01-01

    Model systems have had a profound influence on the development of ecological theory and general principles. Compared to alternatives, the most effective models share some combination of the following characteristics: simpler, smaller, faster, general, idiosyncratic or manipulable. We argue that biological soil crusts (biocrusts) have unique combinations of these features that should be more widely exploited in community, landscape and ecosystem ecology. In community ecology, biocrusts are elucidating the importance of biodiversity and spatial pattern for maintaining ecosystem multifunctionality due to their manipulability in experiments. Due to idiosyncrasies in their modes of facilitation and competition, biocrusts have led to new models on the interplay between environmental stress and biotic interactions and on the maintenance of biodiversity by competitive processes. Biocrusts are perhaps one of the best examples of micro-landscapes—real landscapes that are small in size. Although they exhibit varying patch heterogeneity, aggregation, connectivity and fragmentation, like macro-landscapes, they are also compatible with well-replicated experiments (unlike macro-landscapes). In ecosystem ecology, a number of studies are imposing small-scale, low cost manipulations of global change or state factors in biocrust micro-landscapes. The versatility of biocrusts to inform such disparate lines of inquiry suggests that they are an especially useful model system that can enable researchers to see ecological principles more clearly and quickly.

  3. A versatile nondestructive evaluation imaging workstation

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  4. A versatile nondestructive evaluation imaging workstation

    NASA Astrophysics Data System (ADS)

    Chern, E. James; Butler, David W.

    1994-02-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  5. Modeling autism: a systems biology approach

    PubMed Central

    2012-01-01

    Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and

  6. Ontological Model of Business Process Management Systems

    NASA Astrophysics Data System (ADS)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  7. MDOT Pavement Management System : Prediction Models and Feedback System

    DOT National Transportation Integrated Search

    2000-10-01

    As a primary component of a Pavement Management System (PMS), prediction models are crucial for one or more of the following analyses: : maintenance planning, budgeting, life-cycle analysis, multi-year optimization of maintenance works program, and a...

  8. System monitoring and diagnosis with qualitative models

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin

    1991-01-01

    A substantial foundation of tools for model-based reasoning with incomplete knowledge was developed: QSIM (a qualitative simulation program) and its extensions for qualitative simulation; Q2, Q3 and their successors for quantitative reasoning on a qualitative framework; and the CC (component-connection) and QPC (Qualitative Process Theory) model compilers for building QSIM QDE (qualitative differential equation) models starting from different ontological assumptions. Other model-compilers for QDE's, e.g., using bond graphs or compartmental models, have been developed elsewhere. These model-building tools will support automatic construction of qualitative models from physical specifications, and further research into selection of appropriate modeling viewpoints. For monitoring and diagnosis, plausible hypotheses are unified against observations to strengthen or refute the predicted behaviors. In MIMIC (Model Integration via Mesh Interpolation Coefficients), multiple hypothesized models of the system are tracked in parallel in order to reduce the 'missing model' problem. Each model begins as a qualitative model, and is unified with a priori quantitative knowledge and with the stream of incoming observational data. When the model/data unification yields a contradiction, the model is refuted. When there is no contradiction, the predictions of the model are progressively strengthened, for use in procedure planning and differential diagnosis. Only under a qualitative level of description can a finite set of models guarantee the complete coverage necessary for this performance. The results of this research are presented in several publications. Abstracts of these published papers are presented along with abtracts of papers representing work that was synergistic with the NASA grant but funded otherwise. These 28 papers include but are not limited to: 'Combined qualitative and numerical simulation with Q3'; 'Comparative analysis and qualitative integral representations

  9. Hypersonic Vehicle Propulsion System Simplified Model Development

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  10. A versatile miniature bioreactor and its application to bioelectrochemistry studies.

    PubMed

    Kloke, A; Rubenwolf, S; Bücking, C; Gescher, J; Kerzenmacher, S; Zengerle, R; von Stetten, F

    2010-08-15

    Often, reproducible investigations on bio-microsystems essentially require a flexible but well-defined experimental setup, which in its features corresponds to a bioreactor. We therefore developed a miniature bioreactor with a volume in the range of a few millilitre that is assembled by alternate stacking of individual polycarbonate elements and silicone gaskets. All the necessary supply pipes are incorporated as bore holes or cavities within the individual elements. Their combination allows for a bioreactor assembly that is easily adaptable in size and functionality to experimental demands. It allows for controlling oxygen transfer as well as the monitoring of dissolved oxygen concentration and pH-value. The system provides access for media exchange or sterile sampling. A mass transfer coefficient for oxygen (k(L)a) of 4.3x10(-3) s(-1) at a flow rate of only 15 ml min(-1) and a mixing time of 1.5s at a flow rate of 11 ml min(-1) were observed for the modular bioreactor. Single reactor chambers can be interconnected via ion-conductive membranes to form a two-chamber test setup for investigations on electrochemical systems such as fuel cells or sensors. The versatile applicability of this modular and flexible bioreactor was demonstrated by recording a growth curve of Escherichia coli (including monitoring of pH and oxygen) saturation, and also as by two bioelectrochemical experiments. In the first electrochemical experiment the use of the bioreactor enabled a direct comparison of electrode materials for a laccase-catalyzed oxygen reduction electrode. In a second experiment, the bioreactor was utilized to characterize the influence of outer membrane cytochromes on the performance of Shewanella oneidensis in a microbial fuel cell. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Building a generalized distributed system model

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Foudriat, E. C.

    1991-01-01

    A modeling tool for both analysis and design of distributed systems is discussed. Since many research institutions have access to networks of workstations, the researchers decided to build a tool running on top of the workstations to function as a prototype as well as a distributed simulator for a computing system. The effects of system modeling on performance prediction in distributed systems and the effect of static locking and deadlocks on the performance predictions of distributed transactions are also discussed. While the probability of deadlock is considerably small, its effects on performance could be significant.

  12. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    SciTech Connect

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less

  13. An evaluative model of system performance in manned teleoperational systems

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1989-01-01

    Manned teleoperational systems are used in aerospace operations in which humans must interact with machines remotely. Manual guidance of remotely piloted vehicles, controling a wind tunnel, carrying out a scientific procedure remotely are examples of teleoperations. A four input parameter throughput (Tp) model is presented which can be used to evaluate complex, manned, teleoperations-based systems and make critical comparisons among candidate control systems. The first two parameters of this model deal with nominal (A) and off-nominal (B) predicted events while the last two focus on measured events of two types, human performance (C) and system performance (D). Digital simulations showed that the expression A(1-B)/C+D) produced the greatest homogeneity of variance and distribution symmetry. Results from a recently completed manned life science telescience experiment will be used to further validate the model. Complex, interacting teleoperational systems may be systematically evaluated using this expression much like a computer benchmark is used.

  14. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  15. Common modeling system for digital simulation

    NASA Technical Reports Server (NTRS)

    Painter, Rick

    1994-01-01

    The Joint Modeling and Simulation System is a tri-service investigation into a common modeling framework for the development digital models. The basis for the success of this framework is an X-window-based, open systems architecture, object-based/oriented methodology, standard interface approach to digital model construction, configuration, execution, and post processing. For years Department of Defense (DOD) agencies have produced various weapon systems/technologies and typically digital representations of the systems/technologies. These digital representations (models) have also been developed for other reasons such as studies and analysis, Cost Effectiveness Analysis (COEA) tradeoffs, etc. Unfortunately, there have been no Modeling and Simulation (M&S) standards, guidelines, or efforts towards commonality in DOD M&S. The typical scenario is an organization hires a contractor to build hardware and in doing so an digital model may be constructed. Until recently, this model was not even obtained by the organization. Even if it was procured, it was on a unique platform, in a unique language, with unique interfaces, and, with the result being UNIQUE maintenance required. Additionally, the constructors of the model expended more effort in writing the 'infrastructure' of the model/simulation (e.g. user interface, database/database management system, data journalizing/archiving, graphical presentations, environment characteristics, other components in the simulation, etc.) than in producing the model of the desired system. Other side effects include: duplication of efforts; varying assumptions; lack of credibility/validation; and decentralization in policy and execution. J-MASS provides the infrastructure, standards, toolset, and architecture to permit M&S developers and analysts to concentrate on the their area of interest.

  16. A distributed snow-evolution modeling system (SnowModel)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...

  17. Rethinking modeling framework design: object modeling system 3.0

    USDA-ARS?s Scientific Manuscript database

    The Object Modeling System (OMS) is a framework for environmental model development, data provisioning, testing, validation, and deployment. It provides a bridge for transferring technology from the research organization to the program delivery agency. The framework provides a consistent and efficie...

  18. Model verification of large structural systems. [space shuttle model response

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1978-01-01

    A computer program for the application of parameter identification on the structural dynamic models of space shuttle and other large models with hundreds of degrees of freedom is described. Finite element, dynamic, analytic, and modal models are used to represent the structural system. The interface with math models is such that output from any structural analysis program applied to any structural configuration can be used directly. Processed data from either sine-sweep tests or resonant dwell tests are directly usable. The program uses measured modal data to condition the prior analystic model so as to improve the frequency match between model and test. A Bayesian estimator generates an improved analytical model and a linear estimator is used in an iterative fashion on highly nonlinear equations. Mass and stiffness scaling parameters are generated for an improved finite element model, and the optimum set of parameters is obtained in one step.

  19. Modeling Web-Based Educational Systems: Process Design Teaching Model

    ERIC Educational Resources Information Center

    Rokou, Franca Pantano; Rokou, Elena; Rokos, Yannis

    2004-01-01

    Using modeling languages is essential to the construction of educational systems based on software engineering principles and methods. Furthermore, the instructional design is undoubtedly the cornerstone of the design and development of educational systems. Although several methodologies and languages have been proposed for the specification of…

  20. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  1. A Telecommunications Industry Primer: A Systems Model.

    ERIC Educational Resources Information Center

    Obermier, Timothy R.; Tuttle, Ronald H.

    2003-01-01

    Describes the Telecommunications Systems Model to help technical educators and students understand the increasingly complex telecommunications infrastructure. Specifically looks at ownership and regulatory status, service providers, transport medium, network protocols, and end-user services. (JOW)

  2. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy

    NASA Astrophysics Data System (ADS)

    Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.

    2016-12-01

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  3. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.

    PubMed

    Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M

    2016-12-07

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  4. The Modular Modeling System (MMS): User's Manual

    USGS Publications Warehouse

    Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.

    1996-01-01

    The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.

  5. On Roles of Models in Information Systems

    NASA Astrophysics Data System (ADS)

    Sølvberg, Arne

    The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.

  6. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  7. Solving Operational Models of Interdependent Infrastructure Systems

    DTIC Science & Technology

    2014-12-01

    resilience, getting the biggest “reduction in bang ” for their buck. The most important part of those modeling efforts is the formulation of a mathematical...about the requirements of each system to the model of the other system through shared data. This type of algorithm simulates the dynamic...than just another big project. I found a true interest and excitement working with you both and consider you both the highest caliber faculty I have

  8. Programming model for distributed intelligent systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  9. An ecological process model of systems change.

    PubMed

    Peirson, Leslea J; Boydell, Katherine M; Ferguson, H Bruce; Ferris, Lorraine E

    2011-06-01

    In June 2007 the American Journal of Community Psychology published a special issue focused on theories, methods and interventions for systems change which included calls from the editors and authors for theoretical advancement in this field. We propose a conceptual model of systems change that integrates familiar and fundamental community psychology principles (succession, interdependence, cycling of resources, adaptation) and accentuates a process orientation. To situate our framework we offer a definition of systems change and a brief review of the ecological perspective and principles. The Ecological Process Model of Systems Change is depicted, described and applied to a case example of policy driven systems level change in publicly funded social programs. We conclude by identifying salient implications for thinking and action which flow from the Model.

  10. Reprint of "versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16".

    PubMed

    Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra

    2014-12-20

    The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16.

    PubMed

    Gruber, Steffen; Hagen, Jeremias; Schwab, Helmut; Koefinger, Petra

    2014-09-30

    The Gram-negative β-proteobacterium Ralstonia eutropha H16 is primarily known for polyhydroxybutyrate (PHB) production and its ability to grow chemolithoautotrophically by using CO2 and H2 as sole carbon and energy sources. The majority of metabolic engineering and heterologous expression studies conducted so far rely on a small number of suitable expression systems. Particularly the plasmid based expression systems already developed for the use in R. eutropha H16 suffer from high segregational instability and plasmid loss after a short time of fermentation. In order to develop efficient and highly stable plasmid expression vectors for the use in R. eutropha H16, a new plasmid design was created including the RP4 partitioning system, as well as various promoters and origins of replication. The application of minireplicons derived from broad-host-range plasmids RSF1010, pBBR1, RP4 and pSa for the construction of expression vectors and the use of numerous, versatile promoters extend the range of feasible expression levels considerably. In particular, the use of promoters derived from the bacteriophage T5 was described for the first time in this work, characterizing the j5 promoter as the strongest promoter yet to be applied in R. eutropha H16. Moreover, the implementation of the RP4 partition sequence in plasmid design increased plasmid stability significantly and enables fermentations with marginal plasmid loss of recombinant R. eutropha H16 for at least 96 h. The utility of the new vector family in R. eutropha H16 is demonstrated by providing expression data with different model proteins and consequently further raises the value of this organism as cell factory for biotechnological applications including protein and metabolite production. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Modelling of nanoscale quantum tunnelling structures using algebraic topology method

    NASA Astrophysics Data System (ADS)

    Sankaran, Krishnaswamy; Sairam, B.

    2018-05-01

    We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.

  13. Logic Modeling in Quantitative Systems Pharmacology

    PubMed Central

    Traynard, Pauline; Tobalina, Luis; Eduati, Federica; Calzone, Laurence

    2017-01-01

    Here we present logic modeling as an approach to understand deregulation of signal transduction in disease and to characterize a drug's mode of action. We discuss how to build a logic model from the literature and experimental data and how to analyze the resulting model to obtain insights of relevance for systems pharmacology. Our workflow uses the free tools OmniPath (network reconstruction from the literature), CellNOpt (model fit to experimental data), MaBoSS (model analysis), and Cytoscape (visualization). PMID:28681552

  14. Modeling, system identification, and control of ASTREX

    NASA Technical Reports Server (NTRS)

    Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.

    1993-01-01

    The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.

  15. Generic Sensor Failure Modeling for Cooperative Systems

    PubMed Central

    Jäger, Georg; Zug, Sebastian

    2018-01-01

    The advent of cooperative systems entails a dynamic composition of their components. As this contrasts current, statically composed systems, new approaches for maintaining their safety are required. In that endeavor, we propose an integration step that evaluates the failure model of shared information in relation to an application’s fault tolerance and thereby promises maintainability of such system’s safety. However, it also poses new requirements on failure models, which are not fulfilled by state-of-the-art approaches. Consequently, this work presents a mathematically defined generic failure model as well as a processing chain for automatically extracting such failure models from empirical data. By examining data of an Sharp GP2D12 distance sensor, we show that the generic failure model not only fulfills the predefined requirements, but also models failure characteristics appropriately when compared to traditional techniques. PMID:29558435

  16. Behavioral Reference Model for Pervasive Healthcare Systems.

    PubMed

    Tahmasbi, Arezoo; Adabi, Sahar; Rezaee, Ali

    2016-12-01

    The emergence of mobile healthcare systems is an important outcome of application of pervasive computing concepts for medical care purposes. These systems provide the facilities and infrastructure required for automatic and ubiquitous sharing of medical information. Healthcare systems have a dynamic structure and configuration, therefore having an architecture is essential for future development of these systems. The need for increased response rate, problem limited storage, accelerated processing and etc. the tendency toward creating a new generation of healthcare system architecture highlight the need for further focus on cloud-based solutions for transfer data and data processing challenges. Integrity and reliability of healthcare systems are of critical importance, as even the slightest error may put the patients' lives in danger; therefore acquiring a behavioral model for these systems and developing the tools required to model their behaviors are of significant importance. The high-level designs may contain some flaws, therefor the system must be fully examined for different scenarios and conditions. This paper presents a software architecture for development of healthcare systems based on pervasive computing concepts, and then models the behavior of described system. A set of solutions are then proposed to improve the design's qualitative characteristics including, availability, interoperability and performance.

  17. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  18. Human performance modeling for system of systems analytics :soldier fatigue.

    SciTech Connect

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in Septembermore » 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.« less

  19. Model verification of large structural systems

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1977-01-01

    A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.

  20. Quantitative model validation of manipulative robot systems

    NASA Astrophysics Data System (ADS)

    Kartowisastro, Iman Herwidiana

    This thesis is concerned with applying the distortion quantitative validation technique to a robot manipulative system with revolute joints. Using the distortion technique to validate a model quantitatively, the model parameter uncertainties are taken into account in assessing the faithfulness of the model and this approach is relatively more objective than the commonly visual comparison method. The industrial robot is represented by the TQ MA2000 robot arm. Details of the mathematical derivation of the distortion technique are given which explains the required distortion of the constant parameters within the model and the assessment of model adequacy. Due to the complexity of a robot model, only the first three degrees of freedom are considered where all links are assumed rigid. The modelling involves the Newton-Euler approach to obtain the dynamics model, and the Denavit-Hartenberg convention is used throughout the work. The conventional feedback control system is used in developing the model. The system behavior to parameter changes is investigated as some parameters are redundant. This work is important so that the most important parameters to be distorted can be selected and this leads to a new term called the fundamental parameters. The transfer function approach has been chosen to validate an industrial robot quantitatively against the measured data due to its practicality. Initially, the assessment of the model fidelity criterion indicated that the model was not capable of explaining the transient record in term of the model parameter uncertainties. Further investigations led to significant improvements of the model and better understanding of the model properties. After several improvements in the model, the fidelity criterion obtained was almost satisfied. Although the fidelity criterion is slightly less than unity, it has been shown that the distortion technique can be applied in a robot manipulative system. Using the validated model, the importance of

  1. Aviation system modeling study and alternatives

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Aviation System Modeling Study was directed toward two primary goals: an improved understanding of the U.S. aviation system, and technology. There are three major categories into which the individual study efforts may be subdivided. These three categories are: special issue studies, task studies, and data base development.

  2. Modeling a Longitudinal Relational Research Data Systems

    ERIC Educational Resources Information Center

    Olsen, Michelle D. Hunt

    2010-01-01

    A study was conducted to propose a research-based model for a longitudinal data research system that addressed recommendations from a synthesis of literature related to: (1) needs reported by the U.S. Department of Education, (2) the twelve mandatory elements that define federally approved state longitudinal data systems (SLDS), (3) the…

  3. Knowledge Management System Model for Learning Organisations

    ERIC Educational Resources Information Center

    Amin, Yousif; Monamad, Roshayu

    2017-01-01

    Based on the literature of knowledge management (KM), this paper reports on the progress of developing a new knowledge management system (KMS) model with components architecture that are distributed over the widely-recognised socio-technical system (STS) aspects to guide developers for selecting the most applicable components to support their KM…

  4. Cost and Performance Model for Photovoltaic Systems

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

    1986-01-01

    Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

  5. Model Adoption Exchange Payment System: Executive Summary.

    ERIC Educational Resources Information Center

    Ambrosino, Robert J.

    This executive summary provides a brief description of the Model Adoption Exchange Payment System (MAEPS), a unique payment system aimed at improving the delivery of adoption exchange services throughout the United States. Following a brief introductory overview, MAEPS is described in terms of (1) its six components (registration, listing,…

  6. Eclectic Model in the Malaysian Education System

    ERIC Educational Resources Information Center

    Othman, Nooraini; Mohamad, Khairul Azmi; Ilmuwan, Yayasan

    2011-01-01

    The present work aims at analysing the adoption of eclectic model in the Malaysian education system. The analysis is specifically looked from the angle of Islam and the Muslims. Malaysia has a long history of education system developments, from pre to post independence of the country. From what was initially traditional, modernity later came to…

  7. Predictive Model of Systemic Toxicity (SOT)

    EPA Science Inventory

    In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...

  8. Modelling the Shuttle Remote Manipulator System: Another flexible model

    NASA Technical Reports Server (NTRS)

    Barhorst, Alan A.

    1993-01-01

    High fidelity elastic system modeling algorithms are discussed. The particular system studied is the Space Shuttle Remote Manipulator System (RMS) undergoing full articulated motion. The model incorporates flexibility via a methodology the author has been developing. The technique is based in variational principles, so rigorous boundary condition generation and weak formulations for the associated partial differential equations are realized, yet the analyst need not integrate by parts. The methodology is formulated using vector-dyad notation with minimal use of tensor notation, therefore the technique is believed to be affable to practicing engineers. The objectives of this work are as follows: (1) determine the efficacy of the modeling method; and (2) determine if the method affords an analyst advantages in the overall modeling and simulation task. Generated out of necessity were Mathematica algorithms that quasi-automate the modeling procedure and simulation development. The project was divided into sections as follows: (1) model development of a simplified manipulator; (2) model development of the full-freedom RMS including a flexible movable base on a six degree of freedom orbiter (a rigid-body is attached to the manipulator end-effector); (3) simulation development for item 2; and (4) comparison to the currently used model of the flexible RMS in the Structures and Mechanics Division of NASA JSC. At the time of the writing of this report, items 3 and 4 above were not complete.

  9. World energy projection system: Model documentation

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  10. Versatile in situ gas analysis apparatus for nanomaterials reactors.

    PubMed

    Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole

    2014-09-02

    We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.

  11. Lithium: a versatile tool for understanding renal physiology

    PubMed Central

    Ecelbarger, Carolyn M.

    2013-01-01

    By virtue of its unique interactions with kidney cells, lithium became an important research tool in renal physiology and pathophysiology. Investigators have uncovered the intricate relationships of lithium with the vasopressin and aldosterone systems, and the membrane channels or transporters regulated by them. While doing so, their work has also led to 1) questioning the role of adenylyl cyclase activity and prostaglandins in lithium-induced suppression of aquaporin-2 gene transcription; 2) unraveling the role of purinergic signaling in lithium-induced polyuria; and 3) highlighting the importance of the epithelial sodium channel (ENaC) in lithium-induced nephrogenic diabetes insipidus (NDI). Lithium-induced remodeling of the collecting duct has the potential to shed new light on collecting duct remodeling in disease conditions, such as diabetes insipidus. The finding that lithium inhibits glycogen synthase kinase-3β (GSK3β) has opened an avenue for studies on the role of GSK3β in urinary concentration, and GSK isoforms in renal development. Finally, proteomic and metabolomic profiling of the kidney and urine in rats treated with lithium is providing insights into how the kidney adapts its metabolism in conditions such as acquired NDI and the multifactorial nature of lithium-induced NDI. This review provides state-of-the-art knowledge of lithium as a versatile tool for understanding the molecular physiology of the kidney, and a comprehensive view of how this tool is challenging some of our long-standing concepts in renal physiology, often with paradigm shifts, and presenting paradoxical situations in renal pathophysiology. In addition, this review points to future directions in research where lithium can lead the renal community. PMID:23408166

  12. A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.

    2012-06-01

    Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.

  13. A substantial fraction of phytoplankton-derived DON is resistant to degradation by a metabolically versatile, widely distributed marine bacterium

    PubMed Central

    Kimmance, Susan; McCormack, Paul

    2017-01-01

    The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction

  14. A substantial fraction of phytoplankton-derived DON is resistant to degradation by a metabolically versatile, widely distributed marine bacterium.

    PubMed

    Polimene, Luca; Clark, Darren; Kimmance, Susan; McCormack, Paul

    2017-01-01

    The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction

  15. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  16. Modeling stochastic noise in gene regulatory systems

    PubMed Central

    Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung

    2014-01-01

    The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368

  17. Modelling ecological systems in a changing world

    PubMed Central

    Evans, Matthew R.

    2012-01-01

    The world is changing at an unprecedented rate. In such a situation, we need to understand the nature of the change and to make predictions about the way in which it might affect systems of interest; often we may also wish to understand what might be done to mitigate the predicted effects. In ecology, we usually make such predictions (or forecasts) by making use of mathematical models that describe the system and projecting them into the future, under changed conditions. Approaches emphasizing the desirability of simple models with analytical tractability and those that use assumed causal relationships derived statistically from data currently dominate ecological modelling. Although such models are excellent at describing the way in which a system has behaved, they are poor at predicting its future state, especially in novel conditions. In order to address questions about the impact of environmental change, and to understand what, if any, action might be taken to ameliorate it, ecologists need to develop the ability to project models into novel, future conditions. This will require the development of models based on understanding the processes that result in a system behaving the way it does, rather than relying on a description of the system, as a whole, remaining valid indefinitely. PMID:22144381

  18. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  19. Mass storage system reference model, Version 4

    NASA Technical Reports Server (NTRS)

    Coleman, Sam (Editor); Miller, Steve (Editor)

    1993-01-01

    The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.

  20. An Integrated Ecological Modeling System for Assessing ...

    EPA Pesticide Factsheets

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

  1. OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems

    PubMed Central

    2016-01-01

    Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of “ODEs and formalized flow diagrams” as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler’s behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features. PMID:27270918

  2. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  3. Mathematical models for space shuttle ground systems

    NASA Technical Reports Server (NTRS)

    Tory, E. G.

    1985-01-01

    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.

  4. Summary of photovoltaic system performance models

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. J.

    1984-01-01

    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.

  5. SPACEWAY: Providing affordable and versatile communication solutions

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, E. J.

    1995-08-01

    By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.

  6. SPACEWAY: Providing affordable and versatile communication solutions

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, E. J.

    1995-01-01

    By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world.

  7. Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde, formic acid, acetic acid and ammonia in outdoor air.

    PubMed

    Coelho, Lúcia H G; Melchert, Wanessa R; Rocha, Flavio R; Rocha, Fábio R P; Gutz, Ivano G R

    2010-11-15

    The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All

  8. Polymer-Silica Nanocomposites: A Versatile Platform for Multifunctional Materials

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-Kai

    was ground into two different sizes of powder followed by powder pressing, heat-treating and etching. A new robust porous silver foam was then successfully made. By combining the results from room temperature and high temperature processes, we further study the patterned silver nanoparticles arrays in order to examine how mobility of silver can be controlled on a quantifiable scale. Furthermore, we have identified a thiolcontaining sol-gel precursor to control the affinity between silver and silica matrix. Lastly, the effects of interfacial interactions between sol-gel silica and other nanocomposite components and the effect of thickness of the sol-gel layer on mechanical properties were investigated. These studies were applied to the biomimetic hydroxyapatite-gelatin system. We have found that by limiting the thickness while maintaining interfacial interactions of the sol-gel layer, a unique moldable property and short hardening time from these nanocomposites can be achieved without compromising its biocompatibility. Their biocompatibility has been proven based on the in vitro and in vivo testing of these materials. In conclusion, the present study has demonstrated that polymer-silica nanocomposite is a versatile platform to carry out applications in nanocrystal growth, nanoporous metals, metal-ceramic composites, nano-imprint thin film, and bone grafts. These important findings not only provide new insights into nanocomposites but also give new meanings to the previously functional-limited sol-gel materials.

  9. Metagenomic systems biology and metabolic modeling of the human microbiome: from species composition to community assembly rules.

    PubMed

    Levy, Roie; Borenstein, Elhanan

    2014-01-01

    The human microbiome is a key contributor to health and development. Yet little is known about the ecological forces that are at play in defining the composition of such host-associated communities. Metagenomics-based studies have uncovered clear patterns of community structure but are often incapable of distinguishing alternative structuring paradigms. In a recent study, we integrated metagenomic analysis with a systems biology approach, using a reverse ecology framework to model numerous human microbiota species and to infer metabolic interactions between species. Comparing predicted interactions with species composition data revealed that the assembly of the human microbiome is dominated at the community level by habitat filtering. Furthermore, we demonstrated that this habitat filtering cannot be accounted for by known host phenotypes or by the metabolic versatility of the various species. Here we provide a summary of our findings and offer a brief perspective on related studies and on future approaches utilizing this metagenomic systems biology framework.

  10. Intrinsic Uncertainties in Modeling Complex Systems.

    SciTech Connect

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrainedmore » within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.« less

  11. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  12. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  13. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  14. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    SciTech Connect

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  15. Brominated Luciferins Are Versatile Bioluminescent Probes

    DOE PAGES

    Steinhardt, Rachel C.; Rathbun, Colin M.; Krull, Brandon T.; ...

    2016-12-08

    Here, we report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed. Differences in photon output were analyzed by computation and photophysical measurements. The brightest brominated luciferin was further evaluated in cell and animal models. At low doses, the analogue outperformed the native substrate in cells. The remaining luciferins, although weak emitters with firefly luciferase, were inherently capable of light production and thus potential substrates for orthogonal mutant enzymes.

  16. Versatile Affordable Advanced Fuels and Combustion Technologies

    DTIC Science & Technology

    2010-11-01

    2010. 25. M.B. Colket, R.J. Hall, and S.D. Stouffer, ―Modeling Soot Formation in a Well-Stirred Reactor,‖ Paper GT2004-54001, Proceedings of the ASME...Sea and Air, Paper GT2009-59255, June 8-12, 2009. 33. E. Corporan, M.J. DeWitt, C.D. Klingshirn, R. Striebich, and M.-D. Cheng, ―Emissions...Ona, M.J. Wornat, ―Composition Influence on Deposition in Endothermic Fuels,‖ Paper 2006-7973, Proceedings of the 14 th AIAA/AHI Hypersonics

  17. Modeling Imperfect Generator Behavior in Power System Operation Models

    SciTech Connect

    Krad, Ibrahim

    A key component in power system operations is the use of computer models to quickly study and analyze different operating conditions and futures in an efficient manner. The output of these models are sensitive to the data used in them as well as the assumptions made during their execution. One typical assumption is that generators and load assets perfectly follow operator control signals. While this is a valid simulation assumption, generators may not always accurately follow control signals. This imperfect response of generators could impact cost and reliability metrics. This paper proposes a generator model that capture this imperfect behaviormore » and examines its impact on production costs and reliability metrics using a steady-state power system operations model. Preliminary analysis shows that while costs remain relatively unchanged, there could be significant impacts on reliability metrics.« less

  18. Model based systems engineering for astronomical projects

    NASA Astrophysics Data System (ADS)

    Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.

    2014-08-01

    Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)

  19. Oxygen production System Models for Lunar ISRU

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo

    2007-01-01

    In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.

  20. Structural Identifiability of Dynamic Systems Biology Models

    PubMed Central

    Villaverde, Alejandro F.

    2016-01-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas. PMID:27792726

  1. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  2. Qualitative models for space system engineering

    NASA Technical Reports Server (NTRS)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  3. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  4. Pyrimidinone: versatile Trojan horse in DNA photodamage?

    PubMed

    Micheel, Mathias; Torres Ziegenbein, Christian; Gilch, Peter; Ryseck, Gerald

    2015-09-26

    (6-4) Photolesions between adjacent pyrimidine DNA bases are prone to secondary photochemistry. It has been shown that singlet excited (6-4) moieties form Dewar valence isomers as well as triplet excitations. We here report on the triplet state of a minimal model for the (6-4) photolesion, 1-methyl-2(1H)-pyrimidinone. Emphasis is laid on its ability to abstract hydrogen atoms from alcohols and carbohydrates. Steady-state and time-resolved experiments consistently yield bimolecular rate constants of ∼10(4) M(-1) s(-1) for the hydrogen abstraction. The process also occurs intramolecularly as experiments on zebularine (1-(β-d-ribofuranosyl)-2(1H)-pyrimidinone) show.

  5. A biokinetic model for systemic nickel

    DOE PAGES

    Melo, Dunstana; Leggett, Richard Wayne

    2017-01-01

    The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less

  6. A biokinetic model for systemic nickel

    SciTech Connect

    Melo, Dunstana; Leggett, Richard Wayne

    The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less

  7. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  8. Nanostructured lipid carriers: versatile oral delivery vehicle

    PubMed Central

    Poonia, Neelam; Kharb, Rajeev; Lather, Viney; Pandita, Deepti

    2016-01-01

    Oral delivery is the most accepted and economical route for drug administration and leads to substantial reduction in dosing frequency. However, this route still remains a challenge for the pharmaceutical industry due to poorly soluble and permeable drugs leading to poor oral bioavailability. Incorporating bioactives into nanostructured lipid carriers (NLCs) has helped in boosting their therapeutic functionality and prolonged release from these carrier systems thus providing improved pharmacokinetic parameters. The present review provides an overview of noteworthy studies reporting impending benefits of NLCs in oral delivery and highlights recent advancements for developing engineered NLCs either by conjugating polymers over their surface or modifying their charge to overcome the mucosal barrier of GI tract for active transport across intestinal membrane. PMID:28031979

  9. Versatile spin-polarized electron source

    DOEpatents

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  10. Multispectral system analysis through modeling and simulation

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Gleason, J. M.; Cicone, R. C.

    1977-01-01

    The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in Landsat data, examining system design and operational configuration, and development of information extraction techniques.

  11. Multispectral system analysis through modeling and simulation

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Gleason, J. M.; Cicone, R. C.

    1977-01-01

    The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in LANDSAT data, examining system design and operational configuration, and development of information extraction techniques.

  12. Model authoring system for fail safe analysis

    NASA Technical Reports Server (NTRS)

    Sikora, Scott E.

    1990-01-01

    The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.

  13. Cockpit System Situational Awareness Modeling Tool

    NASA Technical Reports Server (NTRS)

    Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara

    2004-01-01

    This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.

  14. Versatile Measurement Techniques to Validate Analytical Structural Mechanical Models

    DTIC Science & Technology

    2007-03-01

    temperature is about 33 C. 109 34 For flight 4P temperature and strain data versus flight time is presented. Also a scatter plot of strain for gage 2...versus temperature is shown. As shown in the chart the maximum strain was about 91 microstrain during flight 4P . The maximum temperature is about 87...some more data will be taken on some tests of steel blocks for VASM. 153 33 References • SBIR Topic AF# SD01-CBM04 • LUNA Draft Marketing Manual • Luna

  15. Model systems: how chemical biologists study RNA

    PubMed Central

    Rios, Andro C.; Tor, Yitzhak

    2009-01-01

    Ribonucleic acids are structurally and functionally sophisticated biomolecules and the use of models, frequently truncated or modified sequences representing functional domains of the natural systems, is essential to their exploration. Functional non-coding RNAs such as miRNAs, riboswitches, and, in particular, ribozymes, have changed the view of RNA’s role in biology and its catalytic potential. The well-known truncated hammerhead model has recently been refined and new data provide a clearer molecular picture of the elements responsible for its catalytic power. A model for the spliceosome, a massive and highly intricate ribonucleoprotein, is also emerging, although its true utility is yet to be cemented. Such catalytic model systems could also serve as “chemo-paleontological” tools, further refining the RNA world hypothesis and its relevance to the origin and evolution of life. PMID:19879179

  16. Functional Risk Modeling for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Thomson, Fraser; Mathias, Donovan; Go, Susie; Nejad, Hamed

    2010-01-01

    We introduce an approach to risk modeling that we call functional modeling , which we have developed to estimate the capabilities of a lunar base. The functional model tracks the availability of functions provided by systems, in addition to the operational state of those systems constituent strings. By tracking functions, we are able to identify cases where identical functions are provided by elements (rovers, habitats, etc.) that are connected together on the lunar surface. We credit functional diversity in those cases, and in doing so compute more realistic estimates of operational mode availabilities. The functional modeling approach yields more realistic estimates of the availability of the various operational modes provided to astronauts by the ensemble of surface elements included in a lunar base architecture. By tracking functional availability the effects of diverse backup, which often exists when two or more independent elements are connected together, is properly accounted for.

  17. Performance modeling for large database systems

    NASA Astrophysics Data System (ADS)

    Schaar, Stephen; Hum, Frank; Romano, Joe

    1997-02-01

    One of the unique approaches Science Applications International Corporation took to meet performance requirements was to start the modeling effort during the proposal phase of the Interstate Identification Index/Federal Bureau of Investigations (III/FBI) project. The III/FBI Performance Model uses analytical modeling techniques to represent the III/FBI system. Inputs to the model include workloads for each transaction type, record size for each record type, number of records for each file, hardware envelope characteristics, engineering margins and estimates for software instructions, memory, and I/O for each transaction type. The model uses queuing theory to calculate the average transaction queue length. The model calculates a response time and the resources needed for each transaction type. Outputs of the model include the total resources needed for the system, a hardware configuration, and projected inherent and operational availability. The III/FBI Performance Model is used to evaluate what-if scenarios and allows a rapid response to engineering change proposals and technical enhancements.

  18. Conceptual model of knowledge base system

    NASA Astrophysics Data System (ADS)

    Naykhanova, L. V.; Naykhanova, I. V.

    2018-05-01

    In the article, the conceptual model of the knowledge based system by the type of the production system is provided. The production system is intended for automation of problems, which solution is rigidly conditioned by the legislation. A core component of the system is a knowledge base. The knowledge base consists of a facts set, a rules set, the cognitive map and ontology. The cognitive map is developed for implementation of a control strategy, ontology - the explanation mechanism. Knowledge representation about recognition of a situation in the form of rules allows describing knowledge of the pension legislation. This approach provides the flexibility, originality and scalability of the system. In the case of changing legislation, it is necessary to change the rules set. This means that the change of the legislation would not be a big problem. The main advantage of the system is that there is an opportunity to be adapted easily to changes of the legislation.

  19. Agent-based models of cellular systems.

    PubMed

    Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca

    2013-01-01

    Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.

  20. The Consumer Health Information System Adoption Model.

    PubMed

    Monkman, Helen; Kushniruk, Andre W

    2015-01-01

    Derived from overlapping concepts in consumer health, a consumer health information system refers to any of the broad range of applications, tools, and educational resources developed to empower consumers with knowledge, techniques, and strategies, to manage their own health. As consumer health information systems become increasingly popular, it is important to explore the factors that impact their adoption and success. Accumulating evidence indicates a relationship between usability and consumers' eHealth Literacy skills and the demands consumer HISs place on their skills. Here, we present a new model called the Consumer Health Information System Adoption Model, which depicts both consumer eHealth literacy skills and system demands on eHealth literacy as moderators with the potential to affect the strength of relationship between usefulness and usability (predictors of usage) and adoption, value, and successful use (actual usage outcomes). Strategies for aligning these two moderating factors are described.

  1. Reliability models for dataflow computer systems

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.; Buckles, B. P.

    1985-01-01

    The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers.

  2. Trends in modeling Biomedical Complex Systems

    PubMed Central

    Milanesi, Luciano; Romano, Paolo; Castellani, Gastone; Remondini, Daniel; Liò, Petro

    2009-01-01

    In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards tools to investigate complex biomedical systems are discussed and the prominent literature useful to both the practitioner and the theoretician are presented. PMID:19828068

  3. Student Modeling in an Intelligent Tutoring System

    DTIC Science & Technology

    1996-12-17

    Multi-Agent Architecture." Advances in Artificial Intelligence : Proceedings of the 12 th Brazilian Symposium on Aritificial Intelligence , edited by...STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D-27 DIMTVMON* fCKAJWINT A Appr"v*d t=i...Air Force Base, Ohio AFIT/GCS/ENG/96D-27 STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D

  4. A Web Interface for Eco System Modeling

    NASA Astrophysics Data System (ADS)

    McHenry, K.; Kooper, R.; Serbin, S. P.; LeBauer, D. S.; Desai, A. R.; Dietze, M. C.

    2012-12-01

    We have developed the Predictive Ecosystem Analyzer (PEcAn) as an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates heterogeneous data assimilation, tracks data provenance, and enables more effective feedback between models and field research. The over-arching goal of PEcAn is to make otherwise complex analyses transparent, repeatable, and accessible to a diverse array of researchers, allowing both novice and expert users to focus on using the models to examine complex ecosystems rather than having to deal with complex computer system setup and configuration questions in order to run the models. Through the developed web interface we hide much of the data and model details and allow the user to simply select locations, ecosystem models, and desired data sources as inputs to the model. Novice users are guided by the web interface through setting up a model execution and plotting the results. At the same time expert users are given enough freedom to modify specific parameters before the model gets executed. This will become more important as more and more models are added to the PEcAn workflow as well as more and more data that will become available as NEON comes online. On the backend we support the execution of potentially computationally expensive models on different High Performance Computers (HPC) and/or clusters. The system can be configured with a single XML file that gives it the flexibility needed for configuring and running the different models on different systems using a combination of information stored in a database as well as pointers to files on the hard disk. While the web interface usually creates this configuration file, expert users can still directly edit it to fine tune the configuration.. Once a workflow is finished the web interface will allow for the easy creation of plots over result data while also allowing the user to

  5. Integrated modelling of stormwater treatment systems uptake.

    PubMed

    Castonguay, A C; Iftekhar, M S; Urich, C; Bach, P M; Deletic, A

    2018-05-24

    Nature-based solutions provide a variety of benefits in growing cities, ranging from stormwater treatment to amenity provision such as aesthetics. However, the decision-making process involved in the installation of such green infrastructure is not straightforward, as much uncertainty around the location, size, costs and benefits impedes systematic decision-making. We developed a model to simulate decision rules used by local municipalities to install nature-based stormwater treatment systems, namely constructed wetlands, ponds/basins and raingardens. The model was used to test twenty-four scenarios of policy-making, by combining four asset selection, two location selection and three budget constraint decision rules. Based on the case study of a local municipality in Metropolitan Melbourne, Australia, the modelled uptake of stormwater treatment systems was compared with attributes of real-world systems for the simulation period. Results show that the actual budgeted funding is not reliable to predict systems' uptake and that policy-makers are more likely to plan expenditures based on installation costs. The model was able to replicate the cumulative treatment capacity and the location of systems. As such, it offers a novel approach to investigate the impact of using different decision rules to provide environmental services considering biophysical and economic factors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Understanding and Modeling Teams As Dynamical Systems

    PubMed Central

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  7. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    PubMed

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  8. An Adaptive Testing System for Supporting Versatile Educational Assessment

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Lin, Yen-Ting; Cheng, Shu-Chen

    2009-01-01

    With the rapid growth of computer and mobile technology, it is a challenge to integrate computer based test (CBT) with mobile learning (m-learning) especially for formative assessment and self-assessment. In terms of self-assessment, computer adaptive test (CAT) is a proper way to enable students to evaluate themselves. In CAT, students are…

  9. Versatile Gaussian probes for squeezing estimation

    NASA Astrophysics Data System (ADS)

    Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo

    2017-05-01

    We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.

  10. Porous Silicon—A Versatile Host Material

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2010-01-01

    This work reviews the use of porous silicon (PS) as a nanomaterial which is extensively investigated and utilized for various applications, e.g., in the fields of optics, sensor technology and biomedicine. Furthermore the combination of PS with one or more materials which are also nanostructured due to their deposition within the porous matrix is discussed. Such nanocompounds offer a broad avenue of new and interesting properties depending on the kind of involved materials as well as on their morphology. The filling of the pores performed by electroless or electrochemical deposition is described, whereas different morphologies, reaching from micro- to macro pores are utilized as host material which can be self-organized or fabricated by prestructuring. For metal-deposition within the porous structures, both ferromagnetic and non-magnetic metals are used. Emphasis will be put on self-arranged mesoporous silicon, offering a quasi-regular pore arrangement, employed as template for filling with ferromagnetic metals. By varying the deposition parameters the precipitation of the metal structures within the pores can be tuned in geometry and spatial distribution leading to samples with desired magnetic properties. The correlation between morphology and magnetic behaviour of such semiconducting/magnetic systems will be determined. Porous silicon and its combination with a variety of filling materials leads to nanocomposites with specific physical properties caused by the nanometric size and give rise to a multiplicity of potential applications in spintronics, magnetic and magneto-optic devices, nutritional food additives as well as drug delivery.

  11. Virus-Based Nanoparticles as Versatile Nanomachines

    PubMed Central

    Koudelka, Kristopher J.; Pitek, Andrzej S.; Manchester, Marianne; Steinmetz, Nicole F.

    2016-01-01

    Nanoscale engineering is revolutionizing the way we prevent, detect, and treat diseases. Viruses have played a special role in these developments because they can function as prefabricated nanoscaffolds that have unique properties and are easily modified. The interiors of virus particles can encapsulate and protect sensitive compounds, while the exteriors can be altered to display large and small molecules in precisely defined arrays. These properties of viruses, along with their innate biocompatibility, have led to their development as actively targeted drug delivery systems that expand on and improve current pharmaceutical options. Viruses are naturally immunogenic, and antigens displayed on their surface have been used to create vaccines against pathogens and to break self-tolerance to initiate an immune response to dysfunctional proteins. Densely and specifically aligned imaging agents on viruses have allowed for high-resolution and noninvasive visualization tools to detect and treat diseases earlier than previously possible. These and future applications of viruses have created an exciting new field within the disciplines of both nanotechnology and medicine. PMID:26958921

  12. System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model

    SciTech Connect

    Gerald Sehlke; Jake Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and groundwater data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or groundwater modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  13. System Dynamics Modeling of Transboundary Systems: the Bear River Basin Model

    SciTech Connect

    Gerald Sehlke; Jacob J. Jacobson

    2005-09-01

    System dynamics is a computer-aided approach to evaluating the interrelationships of different components and activities within complex systems. Recently, system dynamics models have been developed in areas such as policy design, biological and medical modeling, energy and the environmental analysis, and in various other areas in the natural and social sciences. The Idaho National Engineering and Environmental Laboratory, a multi-purpose national laboratory managed by the Department of Energy, has developed a systems dynamics model in order to evaluate its utility for modeling large complex hydrological systems. We modeled the Bear River Basin, a transboundary basin that includes portions of Idaho,more » Utah and Wyoming. We found that system dynamics modeling is very useful for integrating surface water and ground water data and for simulating the interactions between these sources within a given basin. In addition, we also found system dynamics modeling is useful for integrating complex hydrologic data with other information (e.g., policy, regulatory and management criteria) to produce a decision support system. Such decision support systems can allow managers and stakeholders to better visualize the key hydrologic elements and management constraints in the basin, which enables them to better understand the system via the simulation of multiple “what-if” scenarios. Although system dynamics models can be developed to conduct traditional hydraulic/hydrologic surface water or ground water modeling, we believe that their strength lies in their ability to quickly evaluate trends and cause–effect relationships in large-scale hydrological systems; for integrating disparate data; for incorporating output from traditional hydraulic/hydrologic models; and for integration of interdisciplinary data, information and criteria to support better management decisions.« less

  14. Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool.

    PubMed

    Kim, Adele; Pyykko, Ilmari

    2011-08-01

    Transposons have been promising elements for gene integration, and the Sleeping Beauty (SB) system has been the major one for many years, although there have been several other transposon systems available, for example, Tol2. However, recently another system known as PiggyBac (PB) has been introduced and developed for fulfilling the same purposes, for example, mutagenesis, transgenesis and gene therapy and in some cases with improved transposition efficiency and advantages over the Sleeping Beauty transposon system, although improved hyperactive transposase has highly increased the transposition efficacy for SB. The PB systems have been used in many different scientific research fields; therefore, the purpose of this review is to describe some of these versatile uses of the PiggyBac system to give readers an overview on the usage of PiggyBac system.

  15. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  16. Army Systems Engineering Career Development Model

    DTIC Science & Technology

    2015-01-15

    Army Systems Engineering Career Development Model Technical Report SERC -2015-TR-042-3 January 15, 2015 Principal Investigators: Dr...0021, RT 121 Report No. SERC -2015-TR-042-3 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Technology The Systems Engineering Research Center ( SERC ) is a federally funded University Affiliated Research Center managed by Stevens Institute

  17. Army Systems Engineering Career Development Model

    DTIC Science & Technology

    2014-03-28

    Report No. SERC -2014-TR-042-2 March 28, 2014 Army Systems Engineering Career Development Model Final Technical Report SERC -2014-TR-042-2 March 28...of Technology 8. PERFORMING ORGANIZATION REPORT NUMBER SERC -2014-TR-042-2 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) DASD (SE) 10...distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is the final report on SERC Research Task (RT)-104, which seeks to develop a Systems

  18. Columbia River System Analysis Model - Phase 1

    DTIC Science & Technology

    1991-10-01

    Reach reservoirs due to the impact of APPENDIX D 6 Wenatchee River flows and additional inflow downstream of Rocky Reach. An inflow link terminates at...AD-A246 639I 11 11111 till11 1 111 US Army Corps of Engineers Hydrologic Engineering Center Columbia River System Analysis Model - Phase I Libby...WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) Columbia River System Analysis - Phase I 12. PERSONAL AUTHOR(S

  19. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  20. Integrated Modeling of Complex Optomechanical Systems

    NASA Astrophysics Data System (ADS)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.